
Data-oriented parsing with
discontinuous constituents

and function tags

Andreas van Cranenburgh1,2, Remko Scha2, and Rens Bod2
1 Huygens ING, Royal Netherlands Academy of Arts and Sciences

2 Institute for Logic, Language and Computation, University of Amsterdam

abstract

Keywords:
discontinuous
constituents,
statistical parsing,
tree-substitution
grammar

Statistical parsers are effective but are typically limited to producing
projective dependencies or constituents. On the other hand, linguisti-
cally rich parsers recognize non-local relations and analyze both form
and function phenomena but rely on extensive manual grammar en-
gineering. We combine advantages of the two by building a statistical
parser that produces richer analyses.

We investigate new techniques to implement treebank-based
parsers that allow for discontinuous constituents. We present two sys-
tems. One system is based on a Linear Context-Free Rewriting System
(lcfrs), while using a Probabilistic Discontinuous Tree-Substitution
Grammar (pdtsg) to improve disambiguation performance. Another
system encodes discontinuities in the labels of phrase-structure trees,
allowing for efficient context-free grammar parsing.

The two systems demonstrate that tree fragments as used in tree-
substitution grammar improve disambiguation performance while
capturing non-local relations on an as-needed basis. Additionally, we
present results for models that produce function tags, resulting in a
more linguistically adequate model of the data. We report substantial
accuracy improvements in discontinuous parsing for German, English,
and Dutch, including results on spoken Dutch.
This article is a substantially revised and extended version of van Cranenburgh
and Bod (2013). While finishing this article, we learned with great sadness of the
passing of our co-author Remko Scha. We dedicate this article to his memory.

Journal of Language Modelling Vol 4, No 1 (2016), pp. 57–111

van Cranenburgh, Scha, Bod

1 introduction

Probabilistic algorithms for parsing and disambiguation select the
most probable analysis for a given sentence in accordance with a cer-
tain probability distribution. A fundamental property of such algo-
rithms is thus the definition of the space of possible sentence structures
that constitutes the domain of the probability distribution. Modern sta-
tistical parsers are often automatically derived from corpora of syntac-
tically annotated sentences (“treebanks”). In this case, the “linguistic
backbone” of the probabilistic grammar naturally depends on the con-
vention for encoding syntactic structure that was used in annotating
the corpus.

When different parsing and disambiguation algorithms are ap-
plied to the same treebank, their relative accuracies can be objectively
assessed if the treebank is split into a training set (that is used to in-
duce a grammar and its probabilities) and a test set (that provides a
“gold standard” to assess the performance of the system). This is com-
mon practice now. In many cases, however, the linguistic significance
of these evaluations may be questioned, since the test sets consist of
phrase-structure trees, i.e., part-whole structures where all parts are
contiguous chunks. Non-local syntactic relations are not represented
in these trees; utterances in which such relations occur are therefore
skipped or incorrectly annotated.

For certain practical applications this restriction may be harm-
less, but from a linguistic (and cognitive) viewpoint it cannot be de-
fended. Since Chomsky’s transformational-generative grammar, there
have been many proposals for formal grammars with a less narrow
scope. Some of these formalisms have been employed to annotate large
corpora; in principle, they can thus be used in treebank grammars ex-
tracted from these corpora.

The Penn treebank, for instance, enriches its phrase-structure rep-
resentations with “empty constituents” that share an index with the
constituent that, from a transformational perspective, would be an-
alyzed as originating in that position. Most grammars based on the
Penn treebank ignore this information, but it was used by, e.g., John-
son (2002), Dienes and Dubey (2003), and Gabbard et al. (2006).

Another perspective on non-local syntactic dependencies gener-
alizes the notion of a “syntactic constituent,” in that it allows “dis-

[58]

Discontinuous data-oriented parsing

continuous constituent structures,” where a non-terminal node dom-
inates a lexical yield that consists of different non-contiguous parts
(McCawley 1982). Several German and Dutch treebanks have been
annotated in terms of discontinuous constituency, and some statisti-
cal parsers have been developed that use these treebanks. Also, phrase
structures with co-indexed traces can be converted into discontinu-
ous constituent structures; the Penn treebank can therefore be trans-
formed and used in the discontinuous constituency approach (Evang
and Kallmeyer 2011). Figure 1 shows an example of a tree with dis-
continuous constituents.

SMAIN

PPART

NP

VNW N WW VNW BW WW

Dat
That

werkwoord
verb

had
had

ze
she

zelf
herself

uitgevonden
invented

Figure 1:
A tree from the Dutch Alpino treebank
(van der Beek et al. 2002). PPART is a
discontinuous constituent (indicated with
crossing branches) due to its extraposed NP
object. Part-of-speech tags: VNW=pronoun,
N=noun, WW=verb, BW=adverb. The tags
also contain additional morphological features
not shown here that distinguish personal
pronouns from others, auxiliary verbs from
main verbs, etc.

It is an annotation choice to employ discontinuous constituents;
some treebanks elect not to model non-local phenomena, while others
may choose different mechanisms. For example, two German tree-
banks employ discontinuous constituents (Skut et al. 1997; Brants et al.
2002), while another German treebank does not (Telljohann et al.
2004, 2012). The annotation scheme of the latter treebank lacks infor-
mation expressed in the former two. For instance, it cannot encode
the heads of non-local modifiers; with discontinuous constituents, a
modifier is a sibling of its head, regardless of their configuration.
On the other hand, the co-indexed traces of the Penn treebank pro-
vide more information than discontinuous constituents, because they
assume that constituents have been moved from somewhere else in
the tree and encode the original position. Discontinuous constituents
describe surface structure without making such assumptions. Some
phenomena that can be analyzed with discontinuous constituents are
extraposition, topicalization, scrambling, and parentheticals; cf. Maier
et al. (2014) for an overview of such phenomena in German.

[59]

van Cranenburgh, Scha, Bod
Figure 2:

A dependency structure derived from the tree
in Figure 1. The obj1 arc makes this structure

non-projective.
Dat werkwoord had ze zelf uitgevonden

VNW N WW VNW BW WW

det

obj1

su
predm

vc

root

The notion of discontinuous constituents in annotation is useful
to bridge the gap between the information represented in constituency
and dependency structures. Constituency structures capture the hier-
archical structure of phrases – which is useful for identifying re-usable
elements; discontinuous constituents extend this to allow for arbitrary
non-local relations that may arise due to such phenomena as extrapo-
sition and free word order. There is a close relation of discontinuous
constituency to non-projectivity in dependency structures (Maier and
Lichte 2011). Compare Figure 2, which shows a dependency structure
for the constituency tree in Figure 1. Note that in this dependency
structure, the edge labels are grammatical functions present in the
original treebank, while the constituent labels in Figure 1 are syntac-
tic categories. The dependency structure encodes the non-local rela-
tions within the discontinuous constituent. On the other hand, it does
not represent the hierarchical grouping given by the NP and PPART
constituents. By encoding both hierarchical and non-local informa-
tion, trees with discontinuous constituents combine the advantages of
constituency and dependency structures. We will also come back to
grammatical function labels.

This paper is concerned with treebank-based parsing algorithms
that accept discontinuous constituents. It takes as its point of departure
work by Kallmeyer andMaier (2010, 2013) that represents discontinu-
ous structures in terms of a string-rewriting version of Linear Context-
Free Rewriting Systems (Section 3.1). In addition, we employ Tree-
Substitution Grammar (tsg). We make the following contributions:
1. We discuss the notions of competence and performance in (com-
putational) linguistics (Section 2). We argue that instead of fo-
cussing on the search for the formal (competence) grammar
with the right capacity for natural language, we can consider
performance aspects such as cognitive limitations and pruning
strategies.

[60]

Discontinuous data-oriented parsing

2. We show that Tree-Substitution Grammar can be applied to dis-
continuous constituents (Section 3.2) and that it is possible, using
a transformation, to parse with a Tree-Substitution Grammar
without having to write a separate parser for this formalism (Sec-
tion 4.2).

3. We induce a tree-substitution grammar from a treebank (Sec-
tion 5) using a method called Double-dop (Sangati and Zuidema
2011). This method extracts a set of recurring tree fragments. We
show that compared to another method which implicitly works
with all possible fragments, this explicit method offers advantages
in both accuracy and efficiency (Section 4.2.1, Section 9).

4. Fragments make it possible to treat discontinuous constituency
as a statistical phenomenon within an encompassing context-free
framework (Section 4.1, Section 7); this yields a considerable ef-
ficiency improvement without hurting accuracy (Section 9).

5. Finally, we present an evaluation on three languages. We em-
ploy manual state splits from previous work for improved per-
formance (Section 8) and discuss methods and results for gram-
mars that produce function tags in addition to phrasal labels (Sec-
tion 8.3).
This work explores parsing discontinuous constituents with

Linear Context-Free Rewriting Systems and Context-Free Grammar,
as well as with and without the use of tree fragments through tree
substitution. Figure 3 gives an overview of these systems and how
they are combined in a coarse-to-fine pipeline (cf. Section 6.4).

2 the division of labor between
competence and performance

Traditionally, two aspects of language cognition have been distin-
guished: competence and performance (Chomsky 1965). Linguistic
competence comprises a language user’s “knowledge of language,”
usually described as a system of rules, while linguistic performance
includes the details of the user’s production and comprehension be-
havior. For a computational model, its syntactic competence defines
the set of possible sentences that it can process in principle, and the
structures it may assign to them, while its performance includes such

[61]

van Cranenburgh, Scha, Bod

(start)

treebank
grammars

recurring
fragments
grammars

Discontinuities
encoded in
LCFRS

Discontinuities
split in multiple
non-terminals

PLCFRS

Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

Split-PCFG

SÑ VP*12 NP VP*22

VP*12 Ñ VB
VP*22 Ñ PRT

Disco-2DOP Split-2DOP
S

xWake v1 upy

VP2
xWake, upy

NP
xv1y

VB
xWakey

PRT
xupy

S
xWake v1 upy

VP*12
xWakey

NP
xv1y

VP*22
xupy

VB
xWakey

PRT
xupy

Figure 3: The systems explored in this work

aspects as disambiguation using occurrence frequencies of grammati-
cal constructions. Thus, the choice of a formalism to describe the sys-
tem’s competence grammar depends on one’s decisions on how syn-
tax should be formalized. Regular and context-free grammars have
been argued to be too limited (Chomsky 1956; Shieber 1985), while
richer alternatives – context-sensitive and beyond – are considered
too powerful to allow for an efficient computational implementa-
tion; this applies to Transformational Grammar (Peters and Ritchie
1973), Lexical-Functional Grammar, and Head-Driven Phrase Struc-
ture Grammar (Trautwein 1995). We may therefore wish to strike a
balance and find a grammar formalism that is just powerful enough to
describe the syntax of natural language. Joshi (1985) proposes Mildly
Context-Sensitive grammars, which are beyond context-free, but avoid
the computational complexity that comes with the full class of context-
sensitive grammars. The first formalism developed in this framework
was Tree-Adjoining Grammar (tag; Joshi 1985). There has been

[62]

Discontinuous data-oriented parsing

work on automatic extraction of tree-adjoining grammars from cor-
pora (Chiang 2000; Xia et al. 2001; Kaeshammer and Demberg 2012),
and formal extensions such as multi-component tag (Weir 1988;
Schuler et al. 2000; Kallmeyer 2009). Linear Context-Free Rewriting
Systems (lcfrss), as employed in the work reported below, are in-
stances of Mildly Context-Sensitive grammar. lcfrs appears to be a
lingua franca among mildly context-sensitive formalisms, since several
formalisms have been shown to be equivalent to it (Vijay-Shanker and
Weir 1994).
Irrespective of whether one accepts the competence-performance

dichotomy, a practical natural language system needs to deal with
phenomena that depend on world knowledge reflected in language
use (e.g., the fact that in “eat pizza with a fork”, with a fork is prototyp-
ically related to eat rather than to pizza). This has led to a statistical
turn in computational linguistics, in whichmodels are directly induced
from treebanks (Scha 1990; Charniak 1996; Bod et al. 2003; Geman
and Johnson 2004). If the end goal is to make an adequate model
of language performance, there is actually no need to have a compe-
tence grammar which is ‘just right.’ Instead, we might reduce some
of the formal complexity by encoding it in statistical patterns. Con-
cretely, we can opt for a grammar formalism that deliberately overgen-
erates, and count on grammatical analyses having a higher probabil-
ity of being selected during disambiguation. This operationalizes the
idea of there being a spectrum between ungrammaticality, marked-
ness, and felicity. In Section 4.1 we introduce an approximation of
lcfrs that makes it possible to produce discontinuous constituents in
cubic time using a context-free grammar, by encoding information in
non-terminal labels. A probabilistic variant of the resulting grammar
makes stronger independence assumptions than the equivalent lcfrs,
but as a component in a larger statistical system this does not have to
pose a problem.

In the debate about the context-freeness of language, cross-
serial dependencies have played an important role (Huybregts 1976;
Bresnan et al. 1982; Shieber 1985). Consider the following example
in Dutch:
(1) Jan

Jan
zag
saw
dat
that

Karel
Karel

hem
him

haar
her

laat
lets
leren
teach

zwemmen.
swim.

‘Jan saw that Karel lets him teach her to swim.’

[63]

van Cranenburgh, Scha, Bod
Figure 4:

Cross-serial dependencies in Dutch
expressed with discontinuous constituents

SMAIN

N WW

CP

VG

SSUB

N VNW

INF2

INF2

VNW WWWWWW

Jan
Jan

zag
saw

dat
that

Karel
Karel

hem
him

haar
her

zwemmen
swim

leren
teach

laat
lets

Ojeda (1988) gives an account using discontinuous constituents;
cf. Figure 4. In Section 4.1 we show how such analyses may be pro-
duced by an overgenerating context-free grammar.
This is an instance of the more general idea of approximating

rich formal models in formally weaker but statistically richer models,
i.e., descriptive aspects of language that can be handled as a perfor-
mance rather than a competence problem. Another instance of this
is constituted by the various restricted versions of tag, whose string
languages form a proper subset of those of lcfrs. Restricted variants
of tag that generate context-free string languages are Tree-Insertion
Grammar (Schabes and Waters 1995; Hoogweg 2003; Yamangil and
Shieber 2012), and off-spine tag (Swanson et al. 2013); tsg is an even
more restricted variant of tag in which the adjunction operation is
removed altogether. These results suggest that there is a trade-off to be
made in the choice of formalism. While on the one hand Mild Context-
Sensitivity already aims to limit formal complexity to precisely what
is needed for adequate linguistic description, a practical, statistical
implementation presents further opportunities for constraining com-
plexity.

Another performance aspect of language relevant for compu-
tational linguistics is pruning. While normally considered an im-
plementation aspect made necessary by practical hardware limi-
tations, finding linguistically and psychologically plausible short-
cuts in language processing forms an interesting research question.
Schuler et al. (2010) present a parser with human-like memory
constraints based on a finite-state model. Although Roark et al.
(2012) are not concerned with cognitive plausibility, they also
work with finite-state methods and show that cfg parsing can

[64]

Discontinuous data-oriented parsing

be done in quadratic or even linear time with finite-state prun-
ing methods.
As a specific example of a cognitive limitation relevant to parsing

algorithms, consider center embedding. Karlsson (2007) reports from
a corpus study that center embeddings only occur up to depth 3 in
written language, and up to depth 2 in spoken language. If a statistical
parser would take such cognitive limitations into account, many im-
plausible analyses could be ruled out from the outset. More generally,
it is worthwhile to strive for an explicit performance model that in-
corporates such cognitive and computational limitations as first class
citizens.

In this work we do not go all the way to a finite-state model, but
we do show that the non-local relations expressed in discontinuous
constituents can be expressed in a context-free grammar model. We
start with a mildly context-sensitive grammar formalism to parse dis-
continuous constituents, augmented with tree substitution. We then
show that an approximation with context-free grammar is possible
and effective. We find that the reduced independence assumptions
and larger contexts taken into account as a result of tree substitu-
tion make it possible to capture non-local relations without going be-
yond context-free. Tree substitution thus increases the capabilities of
the performance side without increasing the complexity of the com-
petence side. A performance phenomenon that is modeled by this is
that non-local relations are only faithfully produced as far as observed
in the data.

3 grammar formalisms

In this section we describe two formalisms related to discontinuous
constituents; (string rewriting) Linear Context-Free Rewriting Systems
and Discontinuous Tree-Substitution Grammar.
(String rewriting) Linear Context-Free Rewriting Systems (lcfrs;

Vijay-Shanker et al. 1987) can produce such structures. An lcfrs
generalizes cfg by allowing non-terminals to rewrite tuples of strings
instead of just single, contiguous strings. This property makes lcfrs
suitable for directly parsing discontinuous constituents (Kallmeyer
and Maier 2010, 2013), as well as non-projective dependencies
(Kuhlmann and Satta 2009; Kuhlmann 2013).

[65]

van Cranenburgh, Scha, Bod

A tree-substitution grammar (tsg) provides a generalization of
context-free grammar (cfg) that operates with larger chunks than
just single grammar productions. A probabilistic tsg can be seen as
a pcfg in which several productions may be applied at once, captur-
ing structural relations between those productions. Tree-substitution
grammars have numerous applications. They can be used for statisti-
cal parsing, such as with Data-Oriented Parsing (dop; Scha 1990; Bod
1992; Bod et al. 2003; Bansal and Klein 2010; Sangati and Zuidema
2011) and Bayesian tsgs (O’Donnell et al. 2009; Post and Gildea 2009;
Cohn et al. 2009, 2010; Shindo et al. 2012). Other applications include
grammaticality judgements (Post 2011), multi-word expression iden-
tification (Green et al. 2011), stylometry (Bergsma et al. 2012; van
Cranenburgh 2012b), and native language detection (Swanson and
Charniak 2012).
Before defining these formalisms, we first define the tree struc-

tures they operate on. The notion of a “discontinuous tree” stems from
a long linguistic tradition (Pike 1943, Sections 4.12–14; Wells 1947,
Sections 55–62; McCawley 1982). It generalizes the usual notion of a
phrase-structure tree in that it allows a non-terminal node to dominate
a lexical span that consists of non-contiguous chunks. In our interpre-
tation of this idea, it results in three formal differences:

1. A non-terminal with non-contiguous daughters does not have a
non-arbitrary place in the left-to-right order with respect to its
sibling nodes. Therefore, it is not obvious anymore that the left-
to-right order of the terminals is to be described in terms of their
occurrence in a tree with totally ordered branches. Instead, we
employ trees with unordered branches, while every node is aug-
mented with an explicit representation of its (ordered) yield.

2. An “ordinary” (totally ordered) tree has a contiguous string of leaf
nodes as its yield. When we allow discontinuities, this property
still applies to the (totally lexicalized) complete trees of complete
sentences. But for tree fragments, it fails; their yields may contain
gaps. In the general case, the yield of a discontinuous tree is thus
a tuple of strings.

3. Extracting a fragment from a tree now consists of two steps:
(a) Extracting a connected subset of nodes, and

[66]

Discontinuous data-oriented parsing

(b) Updating the yield tuples of the nodes. In the yield tuple of
every non-terminal leaf node, every element (a contiguous
chunk of words) is replaced by a terminal variable. This re-
placement is percolated up the tree, to the yield tuples of all
nodes. Different occurrences of the same word carry a unique
index, to allow for the percolation to proceed correctly.

We now proceed to give a more formal definition of our notion
of a discontinuous tree.
Definition 1. A discontinuous syntactic tree is a rooted, unordered
tree. Each node consists of a label and a yield. A yield is a tuple of
strings composed of lexical items; the tuple of strings denotes a sub-
sequence of the yield at the root of the tree. We write xa by to denote
a yield consisting of the contiguous sequence of lexical items ‘a’ and
‘b’, while xa b, cy denotes a yield containing ‘a b’ followed by ‘c’ with
an intervening gap. Given a node X ,
• the yield of X is composed of the terminals in the yields of the
children of X;
• conversely, the yield of each child of X is a subsequence of the
yield of X ;
• the yields of siblings do not overlap.
Figure 5 shows a tree according to this definition in which dis-

continuities are visualized with crossing branches as before. The same
tree is rendered in Figure 6, without crossing branches, to highlight
the fact that the information about discontinuities is encoded in the
yields of the tree nodes.

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

WW
xuitgevondeny

WW
xhady

N
xzey

BW
xzelfy

Figure 5:
A discontinuous tree
with yield tuples

[67]

van Cranenburgh, Scha, Bod
Figure 6:

An equivalent
representation of the tree

in Figure 5, without
crossing branches

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

WW
xuitgevondeny

NP
xDat werkwoordy

N
xwerkwoordy

VNW
xDaty

BW
xzelfy

N
xzey

WW
xhady

Definition 2. An incomplete tree is a discontinuous tree in which
the yields may contain variables vn with n P N in addition to lexical
items. Variables stand in for any contiguous string of lexical items. An
incomplete tree contains 2 or more nodes, or a single node with only
lexical items in its yield. A node without children whose yield consists
solely of variables is called a substitution site.

An incomplete tree may be derived from an extracted tree frag-
ment. The tree fragment may contain variables for substrings which
needed to be distinguished in other parts of the tree, but only occur
contiguously in the fragment. We reduce these strings of contiguous
variables to single variables; i.e., we abstract fragments from their
original context by reducing strings of variables that appear contigu-
ously across the fragment into single variables (e.g. Figure 7).

Figure 7:
Reducing variables in a
fragment extracted from

the tree in Figure 5

SMAIN
xv1 v2 v3 v4 v5 v6y

PPART2
xv1 v2, v6y

WW
xv3y

N
xv4y

BW
xv5y

SMAIN
xv1 v2 v3 v4 v5y

PPART2
xv1, v5y

WW
xv2y

N
xv3y

BW
xv4y

The fan-out of a non-terminal node equals the number of terminals
in its yield that are not directly preceded by another terminal in the
same yield; i.e., the number of contiguous substrings (components) of
which the yield consists.1 From here on we denote the fan-out of a
discontinuous non-terminal with a subscript that is part of its label.

1Note that a distinction is often made between the fan-out of non-terminals
in grammar productions, and the block degree of nodes of a syntactic tree (Maier
and Lichte 2011; Kuhlmann 2013). Due to the fact that the productions of a tsg
are trees, these notions coincide for our purposes.

[68]

Discontinuous data-oriented parsing

3.1 Linear Context-Free Rewriting Systems
String-rewriting lcfrs can be seen as the discontinuous counterpart
of cfg, and its probabilistic variant can be used to articulate a discon-
tinuous treebank grammar. lcfrs productions differ from cfg pro-
ductions in that they generate for a given non-terminal one or more
strings at a time in potentially non-adjacent positions in the sentence.
The number of these positions, the measure of discontinuity in a con-
stituent, is called the fan-out. A cfg is an lcfrs with a maximum
fan-out of 1. Together with the number of non-terminals on the right-
hand side, the fan-out defines a hierarchy of grammars with increas-
ing complexity, of which cfg is the simplest case. In this paper we
use the simple rcg notation (Boullier 1998) for lcfrs. We focus on
string-rewriting lcfrs and use the tree produced as a side-effect of a
string’s derivation as its syntactic analysis. It is possible to define an
lcfrs that rewrites trees or graphs; however, the formalisms used in
this paper are all expressible as string-rewriting lcfrss.
Definition 3. A string-rewriting lcfrs is a tuple G “ xN , T, V, P, Sy.
N and T are disjoint finite sets of non-terminals and terminals, respec-
tively. A function φ : N Ñ t1, 2, . . . , u specifies the unique fan-out for
every non-terminal symbol. V is a finite set of variables; we refer to
the variables as x i

j with i, j P N. S is the distinguished start symbol
with S P N and φpSq “ 1. P is a finite set of productions, of the form:

Apα1, . . . ,αφpAqq Ñ B1px1
1 , . . . , x1

φpB1q
q . . . Brpx r

1, . . . , x r
φpBr q

q

for r ě 0, where A, B1, …, Br P N , each x i
j P V for 1 ď i ď r, 1 ď j ď

φpBiq, and α j P pT Y V q
` for 1 ď j ď φpAq. Observe that a component

α j is a concatenation of one or more terminals and variables.
The rank r refers to the number of non-terminals on the right-

hand side of a production, while the fan-out φ of a non-terminal refers
to the number of components it covers. A rank of zero implies a lexi-
cal production; in that case the right-hand side (rhs) is notated as ϵ
implying no new non-terminals are produced (not to be confused with
generating the empty string), and the left-hand side (lhs) argument
is composed only of terminals.

Productions must be linear and non-erasing: if a variable occurs in
a production, it occurs exactly once on the lhs, and exactly once on

[69]

van Cranenburgh, Scha, Bod

the rhs. A production is monotone2 if for any two variables x1 and x2

occurring in a non-terminal on the rhs, x1 precedes x2 on the lhs iff
x1 precedes x2 on the rhs. Due to our method of grammar extraction
from treebanks, (cf. Section 3.1.1 below) all productions in this work
are monotone and, except in some examples, at most binary (r ď 2);
lexical productions (r “ 0) have fan-out 1 and introduce only a single
terminal.
A production is instantiated when its variables are bound to spans

such that for each component α j of the lhs, the concatenation of the
strings that its terminals and bound variables point to forms a con-
tiguous, non-overlapping span in the input. In the remainder we will
notate discontinuous non-terminals with a subscript indicating their
fan-out.

When a sentence is parsed by an lcfrs, its derivation tree (Boul-
lier 1998, Section 3.3; Kallmeyer 2010, pp. 115–117) is a discontinu-
ous tree. Conversely, given a set of discontinuous trees, a set of pro-
ductions can be extracted that generate those trees.

In a probabilistic lcfrs (plcfrs), each production is associated
with a probability and the probability of derivation is the product of
the probabilities of its productions. Analogously to a pcfg, a plcfrs
may be induced from a treebank by using relative frequencies as prob-
abilities (Maier and Søgaard 2008).
Definition 4. The language of an lcfrs G is defined as fol-
lows (Kallmeyer and Maier 2013, pp. 92–93):
1. For every A P N , we define the yield of A, yieldGpAq, as follows:
(a) For every production Aptq Ñ ϵ with t P T , xty P yieldGpAq

(b) For every production

Apα1, . . . ,αφpAqq Ñ B1px1
1 , . . . , x1

φpB1q
q . . . Brpx r

1, . . . , x r
φpBr q

q

and all tuples τ1 P yieldGpB1q, . . . ,τr P yieldGpBrq:

x f pα1q, . . . , f pαφpAqqy P yieldGpAq

where f is defined as follows:
i. f ptq “ t for all t P T ,

2This property is called ordered in the rcg literature.

[70]

Discontinuous data-oriented parsing

ii. f px i
jq “ τir js for all 1 ď i ď r, 1 ď j ď φpBiq, and

iii. f pabq “ f paq f pbq for all a, b P pT Y V q`.
f is the composition function of the production.

(c) Nothing else is in yieldGpAq.
2. The language of G is then LpGq “ yieldGpSq.
3.1.1 Extracting LCFRS productions from trees
lcfrs productions may be induced from a discontinuous tree, using
a procedure described in Maier and Søgaard (2008). We extend this
procedure to handle substitution sites, i.e., non-terminals with only
variable terminals in their yield, but no lexical items; such nodes oc-
cur in tree fragments extracted from a treebank. The procedure is as
follows:

Given a discontinuous tree, we extract a grammar production for
each non-leaf non-terminal node. The label of the node forms the lhs
non-terminal, and the labels of the nodes immediately dominated by it
form the rhs non-terminals. The arguments of each rhs non-terminal
are based on their yield tuples. Adjacent variables in the yield of the
rhs non-terminals are collapsed into single variables and replaced on
both lhs and rhs. Consider the tree fragment in Figure 7, which gives
the following lcfrs production:

SMAINpabcdeq Ñ PPARTpa, eqWWpbq Npcq BWpdq

Pre-terminals yield a production with their terminal as a direct argu-
ment to the pre-terminal, and an empty rhs. Substitution sites in a
tree only appear on the rhs of extracted productions, since it is not
known what they will expand to. See Figure 8 for examples of lcfrs
productions extracted from a discontinuous tree.
3.2 Discontinuous Tree-Substitution Grammar
We now employ string-rewriting lcfrs, introduced in the previous
section, to replace the cfg foundation of tsgs. Note that the re-
sulting formalism directly rewrites elementary trees with discontin-
uous constituents, making it an instantiation of the more general
notion of a tree-rewriting lcfrs. Tree-rewriting lcfrss are more
general because they allow other rewriting operations besides sub-
stitution. However, since we limit the operations in the formalism

[71]

van Cranenburgh, Scha, Bod
Figure 8:
The lcfrs

G “ xN , T, V, P,Sy

extracted from the tree
in Figure 5

N “ tSMAIN, PPART, NP, VNW, N, WW, BWu

T “ tDat, had, uitgevonden, werkwoord, ze, zelfu
V “ ta, b, c, d, eu

φ “ tSMAIN : 1, PPART : 2, NP : 1,
VNW : 1, N : 1, WW : 1, BW : 1u

S “ SMAIN
P “ tSMAINpabcdeq ÑWWpbq Npcq BWpdq PPARTpa, eq,

PPARTpa, bq Ñ NPpaqWWpbq,

NPpabq Ñ VNWpaq Npbq,

VNWpDatq Ñ ϵ, Npwerkwoordq Ñ ϵ,

WWphadq Ñ ϵ, Npzeq Ñ ϵ, BWpzelfq Ñ ϵ,

WWpuitgevondenq Ñ ϵu

to substitution, it remains possible to specify a direct mapping to
a string-rewriting grammar, as we shall see in the next section. As
noted before, a tsg can be seen as a tag without the adjunction
operation. A discontinuous tsg may be related to a special case
of set-local multi-component tag (Weir 1988; Kallmeyer 2009).
A multi-component tag is able to specify constraints that require
particular elementary trees to apply together; this mechanism can
be used to generate the non-local elements of discontinuous con-
stituents.

The following definitions are based on the definition for continu-
ous tsg in Sima’an (1997).
Definition 5. A probabilistic, discontinuous tsg (pdtsg) is a tuple
xN , T, V, S,C ,Py, where N and T are disjoint finite sets that denote the
set of non-terminal and terminal symbols, respectively; V is a finite set
of variables; S denotes the start non-terminal; and C is a finite set of
elementary trees. For all trees in C it holds that for each non-terminal,
there is a unique fan-out; this induces a function φ Ă N ˆ t1, 2, . . .u
with φpAq being the unique fan-out of A P N . For convenience, we
abbreviate φprootptqq for a tree t as φptq. The function P assigns a
value 0 ă Pptq ď 1 (probability) to each elementary tree t such that
for every non-terminal A P N , the probabilities of all elementary trees
whose root node is labelled A sum to 1.

[72]

Discontinuous data-oriented parsing

The tuple xN , T, V, S,C y of a given pdtsg xN , T, V, S,C ,Py is called
the dtsg underlying the pdtsg.
Definition 6. Substitution: The substitution A ˝ B is defined iff the
label of the left-most substitution site of A equals the label of the root
node of B. The left-most substitution site of an incomplete tree A is
the leaf node containing the first occurrence of a variable in the yield
of the root of A. When defined, the result of A ˝ B equals a copy of
the tree Awith B substituted for the left-most substitution site of A. In
the yield argument of A, each variable terminal is replaced with the
corresponding component of one or more contiguous terminals from
B. For example, given yieldpAq “ xl1v2, l4y and yieldpBq “ xl2l3y where
ln is a lexical terminal and vn a variable, yieldpA ˝ Bq “ xl1l2l3, l4y.
Definition 7. A left-most derivation (derivation henceforth) d is a
sequence of zero or more substitutions T “ p. . . p f1 ˝ f2q˝ . . .q˝ fm, where
f1, . . . , fm P C , rootpT q “ rootp f1q “ S,φpT q “ 1 and T contains no
substitution sites. The probability Ppdq is defined as:

Pp f1q ¨ . . . ¨ Pp fmq “

m
ź

i“1

Pp fiq

Refer to Figure 9 for an example.
SMAIN

xv1 had ze zelf v2y

PPART2
xv1, v2y

xv1y xv2y

WW
xhady

N
xzey

BW
xzelfy

PPART2
xv1,uitgevondeny

NP
xv1y

WW
xuitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

WW
xuitgevondeny

WW
xhady

N
xzey

BW
xzelfy

Figure 9:
A discontinuous
tree-substitution derivation
of the tree in Figure 1. Note
that in the first fragment,
which has a discontinuous
substitution site, the
destination for the
discontinuous spans is
marked in advance, shown
with variables (vn) as
placeholders.

[73]

van Cranenburgh, Scha, Bod

Definition 8. A parse is any tree which is the result of a derivation.
A parse can have various derivations. Given the set DpT q of derivations
yielding parse T , the probability of T is defined as ř

dPDpTq Ppdq.

4 grammar transformations

cfg, lcfrs, and dtsg can be seen as natural extensions of each other.
This makes it possible to define transformations that help to make
parsing more efficient. Specifically, we define simplified versions of
these grammars that can be parsed efficiently, while their productions
or labels map back to the original grammar.

4.1 A CFG approximation of discontinuous LCFRS parsing
Barthélemy et al. (2001) introduced a technique to guide the pars-
ing of a range concatenation grammar (rcg) by a grammar with
a lower parsing complexity. Van Cranenburgh (2012a) applies this
idea to probabilistic lcfrs parsing and extends the method to
prune unlikely constituents in addition to filtering impossible con-
stituents.

The approximation can be formulated as a tree transformation in-
stead of a grammar transformation. The tree transformation by Boyd
(2007) encodes discontinuities in the labels of tree nodes.3 The re-
sulting trees can be used to induce a pcfg that can be viewed as an
approximation to the corresponding plcfrs grammar of the original,
discontinuous treebank. We will call this a Split-pcfg.
Definition 9. A Split-pcfg is a pcfg induced from a treebank trans-
formed by the method of Boyd (2007); that is, discontinuous con-
stituents have been split into several non-terminals, such that each
new non-terminal covers a single contiguous component of the yield
of the discontinuous constituent. Given a discontinuous non-terminal

3Hsu (2010) compares three methods for resolving discontinuity in trees:
(a) node splitting, as applied here; (b) node adding, a simpler version of node
splitting that does not introduce new non-terminal labels; and (c) node rais-
ing, the more commonly applied method of resolving discontinuity. While the
latter two methods yield better performance, we use the node splitting ap-
proach because it provides a more direct mapping to discontinuous constituents,
which, as we shall later see, makes it a useful source of information for pruning
purposes.

[74]

Discontinuous data-oriented parsing

Xn in the original treebank, the new non-terminals will be labelled
X˚m

n , with m the index of the component, s.t. 1 ď m ď n.
For example:

lcfrs productions: Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

cfg approximation: SÑ VP*12 NP VP*22

VP*12 Ñ VB
VP*22 Ñ PRT

In a post-processing step, pcfg derivations are converted to discon-
tinuous trees by merging siblings marked with ‘*’. This approxima-
tion overgenerates compared to the respective lcfrs, i.e., it licenses
a superset of the derivations of the respective lcfrs. For example,
a component VP*12 may be generated without generating its counter-
part VP*22 ; such derivations can be filtered in post-processing. Further-
more, two components VP*12 and VP*22 may be generated which were
extracted from different discontinuous constituents, such that their
combination could not be generated by the lcfrs.4 Another prob-
lemwould occur when productions contain discontinuous constituents
with the same label; the following two productions map to the same
productions in the cfg approximation:

VPpadcebq Ñ VP2pa, bq CNJpcq VP2pd, eq

VPpadcbeq Ñ VP2pa, bq CNJpcq VP2pd, eq

However, such productions do not occur in any of the treebanks used
in this work. The increased independence assumptions due to rewrit-
ing discontinuous components separately are more problematic, es-
pecially with nested discontinuous constituents. They necessitate the
use of non-local statistical information to select the most likely struc-
tures, for instance by turning to tree-substitution grammar (cf. Section
2 above). (Note that the issue is not as problematic when the approx-
imation is only used as a source of pruning information).

As a specific example of the transformation, consider the case
of cross-serial dependencies. Figure 10 shows the parse tree for the

4A reviewer points out that if discontinuous rewriting is seen as synchronous
rewriting (synchronous cfgs are equivalent to lcfrss with fan-out 2), the split
transformation is analogous to taking out the synchronicity.

[75]

van Cranenburgh, Scha, Bod
SMAIN

N WW

CP

VG

SSUB

N VNW

INF2

INF2

VNW WWWWWW

Jan
Jan

zag
saw

dat
that

Karel
Karel

hem
him

haar
her

zwemmen
swim

leren
teach

laat
lets

discontinuous constituents:

SMAINpabcq Ñ Npaq WWpbq CPpcq

CPpabq Ñ VGpaq SSUBpbq

SSUBpabcdq Ñ Npaq

INF2pb, dq WWpcq

INF2pab, cdq Ñ VNWpaq INF2pb, dq

WWpcq

INF2pa, bq Ñ VNWpaq WWpbq

SMAIN

N

Jan

WW

zag

CP

VG

dat

SSUB

N

Karel

VNW

hem

INF*12

INF*12

VNW

haar

WW

laat

INF*22

WW

leren

INF*22

WW

zwemmen

PCFG approximation:

SMAIN Ñ NWWCP
CP Ñ VG SSUB

SSUB Ñ N INF*12 WW INF*22

INF*12 Ñ VNW INF*12

INF*22 Ñ WW INF*22

INF*12 Ñ VNW

INF*22 Ñ WW

Figure 10: Cross-serial dependencies in Dutch expressed with discontinuous con-
stituents (top); and the same parse tree, after discontinuities have been encoded
in node labels (bottom)

example sentence from the previous section, along with the grammar
productions for it, before and after applying the cfg approximation of
lcfrs. Note that in the approximation, the second level of INF nodes
may be rewritten separately, and a context-free grammar cannot place
the non-local constraint that each transitive verb should be paired with
a direct object. On the other hand, through the use of tree substitution,
an elementary tree may capture the whole construction of two verbs
cross-serially depending on two objects, and the model needs only
to prefer an analysis with this elementary tree. Once an elementary
tree contains the whole construction, it no longer matters whether
its internal nodes contain discontinuous constituents or indexed node
labels, and the complexity of discontinuous rewriting is weakened to
a statistical regularity.

A phenomenon which cannot be captured in this representation,
not even with the help of tree-substitution, is recursive synchronous
rewriting (Kallmeyer et al. 2009). Although this phenomenon is rare,
it does occur in treebanks.

[76]

Discontinuous data-oriented parsing

4.2 TSG compression
Using grammar transformations, it is possible to parse with a tsg
without having to represent elementary trees in the chart explicitly,
but instead work with a parser for the base grammar underlying the
tsg (typically a cfg, in our case an lcfrs).
In this section we present such a transformation for an arbitrary

discontinuous tsg to a string-rewriting lcfrs. We first look at well-
established strategies for reducing a continuous tsg to a cfg, and then
show that these carry over to the discontinuous case. Previous work
was based on probabilistic tsg without discontinuity; this special case
of pdtsg is referred to as ptsg.
4.2.1 Compressing PTSG to PCFG
Goodman (2003) gives a reduction to a pcfg for the special case of a
ptsg based on all fragments from a given treebank and their frequen-
cies. This reduction is stochastically equivalent to an all-fragments
ptsg after the summation of probabilities from equivalent deriva-
tions; however, it does not admit parsing with tsgs consisting of arbi-
trary sets of elementary trees or assuming arbitrary probability mod-
els. Perhaps counter-intuitively, restrictions on the set of fragments in-
crease the size of Goodman’s reduction (e.g., depth restriction, Good-
man 2003, p. 134). While Goodman (2003) gives instantiations of his
reduction with various probability models, the limitation is that proba-
bility assignments of fragments have to be expressible as a composition
of the weights of the productions in each fragment. Since each produc-
tion in the reduction participates in numerous implicit fragments, it is
not possible to adjust the probability of an individual fragment with-
out affecting related fragments. We leave Goodman’s reduction aside
for now, because we would prefer a more general method.

A naive way to convert any tsg is to decorate each internal
node of its elementary trees with a globally unique number, which
can be removed from derivations in a post-processing step. Each el-
ementary tree then contributes one or more grammar productions,
and because of the unique labels, elementary trees will always be de-
rived as a whole. However, this conversion results in a large number
of non-terminals, which are essentially ‘inert’: they never participate
in substitution but deterministically rewrite to the rest of their ele-
mentary tree.

[77]

van Cranenburgh, Scha, Bod

A more compact transformation is used in Sangati and Zuidema
(2011), which can be applied to arbitrary ptsgs, but adds a min-
imal number of new non-terminal nodes. Internal nodes are re-
moved from elementary trees, yielding a flattened tree of depth
1. Each flattened tree is then converted to a grammar production.
Each production and original fragment is stored in a backtrans-
form table. This table makes it possible to restore the original frag-
ments of a derivation built from flattened productions. Whenever
two fragments would map to the same flattened production, a unary
node with a unique identifier is added to disambiguate them. The
weight associated with an elementary tree carries over to the first
production it produces; the rest of the productions are assigned
a weight of 1.
4.2.2 Compressing PDTSG to PLCFRS
The transformation defined by Sangati and Zuidema (2011) assumes
that a sequence of productions can be read off from a syntactic tree,
such as a standard phrase-structure tree that can be converted into
a sequence of context-free grammar productions. Using the method
for inducing lcfrs productions from syntactic trees given in Sec-
tion 4.2.1, we can apply the same tsg transformation to discontinuous
trees as well.

Due to the design of the parser we will use, it is desirable
to have grammar productions in binarized form, and to separate
phrasal and lexical productions. We therefore binarize the flat-
tened trees with a left-factored binarization that adds unique iden-
tifiers to every intermediate node introduced by the binarization.
In order to separate phrasal and lexical productions, a new pos
tag is introduced for each terminal, which selects for that spe-
cific terminal. A sequence of productions is then read off from the
transformed tree. The unique identifier in the first production is
used to look up the original elementary tree in the backtransform
table.5

Figure 11 illustrates the transformation of a discontinuous tsg.
The middle column shows the productions after transforming each ele-

5Note that only this first production requires a globally unique identifier; to
reduce the grammar constant, the other identifiers can be merged for equivalent
productions.

[78]

Discontinuous data-oriented parsing

Elementary tree Productions Weight
S

xv1 v2 v3 v4 uitgevonden y

PPART2
xv1, uitgevonden y

NP
xv1y

WW
xuitgevonden y

WW
xv2y

N
xv3y

BW
xv4y

Spabq Ñ S1paq WWpbq f { f 1

S1pabq Ñ S2paq BWpbq 1

S2pabq Ñ S3paq Npbq 1

S3pabq Ñ NPpaq WW4pbq 1
WW4puitgevondenq Ñ ϵ 1

S
xv1 had ze zelf v2y

PPART2
xv1, v2y

xv1y xv2y

WW
xhady

N
xzey

BW
xzelfy

Spabcq Ñ S5
2pa, cq BW6pbq f { f 1

S5
2pab, cq Ñ S7

2pa, cq Npbq 1

S7
2pab, cq Ñ PPART2pa, cq WW8pbq 1

WW8phadq Ñ ϵ 1

N7pzeq Ñ ϵ 1

BW6pzelfq Ñ ϵ 1

PPART2
xv1,uitgevondeny

NP
xv1y

WW
xuitgevondeny

PPART2pa, bq Ñ NPpaq WW9pbq f { f 1

WW9puitgevondenq Ñ ϵ 1

Figure 11: Transforming a discontinuous tree-substitution grammar into an
lcfrs and backtransform table. The elementary trees are extracted from the
tree in Figure 1 with labels abbreviated. The first production of each fragment
is used as an index to the backtransform table so that the original fragments in
derivations can be reconstructed.

Base grammar

Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

Trees

Fragments

tre
eba
nk

gra
mm
ar

recurring

fragments

backtransform
table

(productionñ fragment)

S
xWake him upy

VP2
xWake, upy

NP
xhimy

VB
xWakey

PRT
xupy

S
xWake v1 upy

VP2
xWake, upy

NP
xv1y

VB
xWakey

PRT
xupy

Figure 12: Diagram of the methods of grammar induction.

[79]

van Cranenburgh, Scha, Bod

mentary tree. The rightmost column shows how relative frequencies
can be used as weights, where f is the frequency of the elementary tree
in the treebank, and f 1 is the frequency mass of elementary trees with
the same root label. Note that the productions for the first elementary
tree contain no discontinuity, because the discontinuous internal node
is eliminated. Conversely, the transformation may also introduce more
discontinuity, due to the binarization (but cf. Section 8.1 below).
Figure 12 presents an overview of the methods of grammar induc-

tion presented thus far, as well as the approach for finding recurring
fragments that will be introduced in the next section.

5 inducing a tsg from a treebank

In Data-Oriented Parsing the grammar is implicit in the treebank it-
self, and in principle all possible fragments from its trees can be used
to derive new sentences. Grammar induction is therefore conceptu-
ally simple (even though the grammar may be very large), as there
is no training or learning involved. This maximizes re-use of previous
experience.

The use of all possible fragments allows for multiple derivations
of the same tree; this spurious ambiguity is seen as a virtue in dop, be-
cause it combines the specificity of larger fragments and the smoothing
of smaller fragments. This is in contrast to parsimonious approaches
which decompose each tree in the training corpus into a sequence of
fragments representing a single derivation.
5.1 Extracting recurring fragments
Representing all possible fragments of a treebank is not feasible, since
the number of fragments is exponential in terms of the number of
nodes. A practical solution is to define a subset. A method called
Double-dop (2dop; Sangati and Zuidema 2011) implements this with-
out compromising on the principle of data-orientation. It restricts the
fragment set to recurring fragments, i.e., fragments that occur in at
least two different contexts. These are found by considering every pair
of trees and extracting the largest tree fragments they have in com-
mon. It is feasible to do this exhaustively for the whole treebank. This
is in contrast to the sampling of fragments in earlier dop models (Bod
2001) and Bayesian tsgs. Since the space of fragments is enormous

[80]

Discontinuous data-oriented parsing

(that is, exponential in terms of sentence length), it stands to reason
that a sampling approach will not discover all relevant fragments in a
reasonable time frame.
Sangati et al. (2010) presents a tree-kernel method for extract-

ing maximal recurring fragments that operates in quadratic time in
terms of the number of nodes in the treebank. A faster version of this
method was presented in van Cranenburgh (2014), which uses a linear
average time tree kernel, and introduces the ability to handle discon-
tinuous trees. We obtain a further increase in speed by implementing
an inverted index with a compressed bitmap (Chambi et al. 2015).

5.2 Discontinuous fragments
The aforementioned fragment extraction algorithms can be adapted
to support trees with discontinuous constituents. Instead of imple-
menting a new version with data structures for discontinuous trees
following Definitions 1 and 2, we apply a representation that makes
it possible to add discontinuous trees as a special case.
In the representation, leaf nodes are decorated with indices in-

dicating their ordering. Just as in Figure 6, a discontinuous tree may
be represented as a continuous tree, as long as information about the
yield is encoded somehow. We do this by storing indices as leaf nodes,
which denote an ordering and refer to a separate list of tokens. This
makes it possible to use the same data structures as for continuous
trees, as long as the child nodes are kept in a canonical order (induced
from the order of the lowest index of each child).

Indices are used not only to keep track of the order of lexical nodes
in a fragment, but also for that of the contribution of substitution sites.
This is necessary in order to preserve the configuration of the yield in
the original sentence. When leaf nodes are compared, the indices stand
in for the token at the sentence position referred to. After a fragment is
extracted, any indices need to be canonicalized. The indices originate
from the original sentence, but need to be decoupled from this original
context. This process is analogous to how lcfrs productions are read
off from a tree with discontinuous constituents, in which contiguous
intervals of indices are replaced by variables.

The canonicalization of fragments is achieved in three steps, as
defined in the pseudocode of Algorithm 1; Figure 13 illustrates the

[81]

van Cranenburgh, Scha, Bod

process. In the examples, substitution sites have spans denoted with
inclusive start:end intervals, as extracted from the original parse tree,
which are reduced to variables denoting contiguous spans whose re-
lation to the other spans is reflected by their indices.

Algorithm 1 Canonicalizing discontinuous fragments.
Input: A tree fragment t with indexed terminals wi or intervals xi : j, . . . y as
leaves (0 ď i ă j ă n)

Output: A tree fragment with modified indices.
1: k Ð the smallest index in t
2: subtract k from each index in t
3: for all intervals I = xi : j, . . . y of the substitution sites in t
4: for all i : j P I
5: replace i : j with i
6: subtract j ´ i from all indices k s.t. k ą j
7: for all indices i in t
8: if the indices i ` 1 and i ` 2 are not in t
9: k Ð the smallest index in t s.t. k ą i
10: subtract k ´ i from all indices y s.t. y ą i

Figure 13:
Canonicalization of fragments

extracted from parse trees. These
sample fragments have been extracted

from the tree in Figure 1. The
fragments are visualized here as
discontinuous tree structures, but

since the discontinuities are encoded
in the indices of the yield, they can be
represented in a standard bracketing

format as used by the fragment
extractor.

1. Translate indices so that they start at 0; e.g.:
WW

uitgevonden5

WW

uitgevonden0

2. Reduce spans of frontier non-terminals to length 1;
move surrounding indices accordingly; e.g.:

S

VP2

0:1 5:5

WW

had2

N

ze3

BW

zelf4

S

VP2

0 5

WW

had1

N

ze2

BW

zelf3
3. Compress gaps to length 1; e.g.:

VP2

NP

0

WW

uitgevonden5

VP2

NP

0

WW

uitgevonden2

We will refer to the combination of Double-dop with discontin-
uous constituents as Disco-2dop. When recurring fragments are ex-
tracted from the Tiger treebank (cf. Section 8.1), we find that 10.4%

[82]

Discontinuous data-oriented parsing

of fragment types contain a discontinuous node (root, internal, or sub-
stitution site). This can be contrasted with the observation that 30%
of sentences in the Tiger treebank contain one or more discontinu-
ous constituents, and that 20.9% of production types in the plcfrs
treebank grammar of Tiger contain a discontinuous non-terminal. On
the other hand, when occurrence frequencies are taken into account,
both the fragments and productions with discontinuities account for
around 6.5% of the total frequency mass.

6 parsing with plcfrs and pdtsg

After extracting fragments by means of the method of Section 5, we
augment the set of fragments with all depth 1 fragments, in order to
preserve complete coverage of the training set trees. Since depth 1
fragments are equivalent to single grammar productions, this ensures
strong equivalence between the tsg and the respective treebank gram-
mar.6 We then apply the grammar transformation (cf. Section 4.2.1)
to turn the fragments into productions. Productions corresponding to
fragments are assigned a probability based on the relative frequency
of the respective fragment; productions introduced by the transforma-
tion are given a probability of 1. For an example, please refer back to
Figure 11.
We parse with the transformed grammar using the disco-dop

parser (van Cranenburgh et al. 2011; van Cranenburgh 2012a).
This is an agenda-based parser for plcfrs based on the algorithm
in Kallmeyer and Maier (2010, 2013), extended to produce n-best
derivations (Huang and Chiang 2005) and exploit coarse-to-fine prun-
ing (Charniak et al. 2006).

Parsing with lcfrs can be done with a weighted deduction sys-
tem and an agenda-based parser. The deduction steps are given in
Figure 14; for the pseudo-code of the parser see Algorithm 2, which
is an extended version of the parser in Kallmeyer and Maier (2010,
2013) that obtains the complete parse forest as opposed to just the
Viterbi derivation.

6Previous dop work such as Zollmann and Sima’an (2005) adds all possible
tree fragments up to depth 3. Preliminary experiments on 2dop gave no im-
provement on performance, while tripling the grammar size; therefore we do not
apply this in further experiments.

[83]

van Cranenburgh, Scha, Bod
Figure 14:

Weighted deduction system
for binarized lcfrs

Lexical:
p : rA, xxwiyys

p : Apwiq Ñ ϵ P G

Unary: x : rB,αs

p ¨ x : rA,αs

p : Apαq Ñ Bpαq

is an instantiated rule
from G

Binary: x : rB,βs, y : rC ,γs

p ¨ x ¨ y : rA,αs

p : Apαq Ñ Bpβq Cpγq

is an instantiated rule
from G

Goal: rS, xxw1 ¨ ¨ ¨ wnyys

In Section 6.1 we describe the probabilistic instantiation of dtsg
and the criterion to select the best parse. Section 6.2 describes how
derivations from the compressed tsg are converted back into trees
composed of the full elementary trees. Section 6.4 describes how
coarse-to-fine pruning is employed to make parsing efficient.

Algorithm 2 A probabilistic agenda-based parser for lcfrs.
Input: A sentence w1 ¨ ¨ ¨ wn, a grammar G
Output: A chart C with Viterbi probabilities, a parse forest F .
1: initialize agenda A with all possible pos tags for input
2: while A not empty
3: xI , xy Ð pop item with best score on agenda
4: add xI , xy to C
5: for all xI 1, zy that can be deduced from xI , xy and items in C
6: if I 1 RA YC
7: enqueue xI 1, zy in A
8: else if I 1 PA ^ z ą score for I 1 in A
9: update weight of I 1 in A to z
10: add edge for I 1 to F

6.1 Probabilities and disambiguation
Our probabilistic model uses the relative frequency estimate (rfe),
which has shown good results with the Double-dop model (Sangati
and Zuidema 2011). The relative frequency of a fragment is the num-
ber of its occurrences, divided by the total number of occurrences of
fragments with the same root node.
In dop many derivations may produce the same parse tree, and

it has been shown that approximating the most probable parse, which

[84]

Discontinuous data-oriented parsing

considers all derivations for a tree, yields better results than the most
probable derivation (Bod 1995). To select a parse tree from a deriva-
tion forest, we compute tree probabilities on the basis of the 10,000
most probable dop derivations, and select the tree with the largest
probability. Although the algorithm of Huang and Chiang (2005)
makes it is possible to extract the exact k-best derivations from a
derivation forest, we apply pruning while building the forest.

6.2 Reconstructing derivations
After a derivation forest is obtained and a list of k-best derivations has
been produced, the backtransform is applied to these derivations to
recover their internal structure. This proceeds by doing a depth-first
traversal of the derivations, and expanding each non-intermediate7
node into a template of the original fragment. These templates are
stored in a backtransform table indexed by the first binarized pro-
duction of the fragment in question. The template fragment has its
substitution sites marked, which are filled with values obtained by
recursively expanding the children of the current constituent.

6.3 Efficient discontinuous parsing
We review several strategies for making discontinuous parsing effi-
cient. As noted by Levy (2005, p. 138), the intrinsic challenge of dis-
continuous constituents is that a parser will generate a large number
of potential discontinuous spans.

6.3.1 Outside estimates
Outside estimates (also known as context-summary estimates and
figures-of-merit) are computed offline for a given grammar. During
parsing they provide an estimate of the outside probability for a given
constituent, i.e., the probability of a complete derivation with that
constituent divided by the probability of the constituent. The estimate
can be used to prioritize items in the agenda. Estimates were first intro-
duced for discontinuous lcfrs parsing in Kallmeyer and Maier (2010,
2013). Their estimates are only applied up to sentences of 30 words.
Beyond 30 words the table grows too large.

7An intermediate node is a node introduced by the binarization.

[85]

van Cranenburgh, Scha, Bod

A different estimate is given by Angelov and Ljunglöf (2014), who
succeed in parsing longer sentences and providing an A* estimate,
which is guaranteed to find the best derivation.
6.3.2 Non-projective dependency conversion
Hall and Nivre (2008), Versley (2014), and Fernández-González and
Martins (2015) apply a reversible dependency conversion to the Tiger
treebank, and use a non-projective dependency parser to parse with
the converted treebank. The method has the advantage of being fast
due to the greedy nature of the arc-eager transition-based dependency
parser that is employed. The parser copes with non-projectivity by
reordering tokens during parsing. Experiments are reported on the full
Tiger treebank without length restrictions.
6.3.3 Reducing fan-out
The most direct way of reducing the complexity of lcfrs parsing is
to reduce the fan-out of the grammar.

Maier et al. (2012) introduces a linguistically motivated reduction
of the fan-outs of the Negra and Penn treebanks to fan-out 2 (up to a
single gap per constituent). This enables parsing of sentences of up to
length 40.
Nederhof and Vogler (2014) introduce a method of synchronous

parsing with an lcfrs and a definite clause grammar. A parameter
allows the fan-out (and thus parsing complexity) of the lcfrs to be
reduced. Experiments are reported on sentences of up to 30 words on
a small section of the Tiger treebank.
6.3.4 Coarse-to-fine pruning
We will focus on coarse-to-fine pruning, introduced in Charniak et al.
(2006) and applied to discontinuous parsing by van Cranenburgh
(2012a), who reports parsing results on the Negra treebank without
length restrictions. Compared to the previous methods, this method
does not change the grammar, but adds several new grammars to be
used as preprocessing steps. Compared to the outside estimates, this
method exploits sentence-specific information, since pruning informa-
tion is collected during parsing with the coarser grammars.
Pauls and Klein (2009) present a comparison of coarse-to-fine and

(hierarchical A*) outside estimates, and conclude that except when

[86]

Discontinuous data-oriented parsing

near-optimality is required, coarse-to-fine is more effective as it prunes
a larger number of unlikely constituents.
A similar observation is obtained from a comparison of the

discontinuous coarse-to-fine method and the outside estimates of
Angelov and Ljunglöf (2014): coarse-to-fine is faster with longer sen-
tences (30 words and up), at the cost of not always producing the
most likely derivation (Ljunglöf, personal communication).
6.4 Coarse-to-fine pipeline
In order to tame the complexity of lcfrs and dop, we apply coarse-
to-fine pruning. Different grammars are used in the sequel, each being
an overgenerating approximation of the next. That is, a coarse gram-
mar will generate a larger set of constituents than a fine grammar.
Parsing with a coarser grammar is more efficient, and all constituents
which can be ruled out as improbable with a coarser grammar can
be discarded as candidates when parsing with the next grammar. A
constituent is ruled improbable if it does not appear in the k-best
derivations of a parse forest. We use the same setup as in van Cra-
nenburgh (2012a); namely, we parse in three stages, using three dif-
ferent grammars:
1. Split-pcfg: A cfg approximation of the discontinuous treebank
grammar; rewrites spans of discontinuous constituents indepen-
dently.

2. plcfrs: The discontinuous treebank grammar; rewrites discon-
tinuous constituents in a single operation. A discontinuous span
Xnxx1, . . . , xny is added to the chart only if all of X ˚m

n xxmy with
1 ď m ď n are part of the k-best derivations of the chart of the
previous stage.

3. Disco-dop: The discontinuous dop grammar; uses tree fragments
instead of individual productions from the treebank. A discontin-
uous span Xnxx1, . . . , xny is added to the chart only if Xnxx1, . . . , xny

is part of the k-best derivations of the chart of the previous stage,
or if Xn is an intermediate symbol introduced by the tsg com-
pression.
The first stage is necessary because without pruning, the plcfrs

generates too many discontinuous spans, the majority of which are
improbable or not even part of a complete derivation. The second stage

[87]

van Cranenburgh, Scha, Bod

is not necessary for efficiency but gives slightly better accuracy on
discontinuous constituents.
For example, while parsing the sentence “Wake your friend up,”

the discontinuous VP “Wake … up” may be produced in the plcfrs
stage. Before allowing this constituent to enter into the agenda and
the chart, the chart of the previous stage is consulted to see if the
two discontinuous components “Wake” and “up” were part of the k-
best derivations. In the dop stage, multiple elementary trees may be
headed by this discontinuous constituent, and again they are only al-
lowed on the chart if the previous stage produced the constituent as
part of its k-best derivations.

The initial values for k are 10,000 and 50 for the plcfrs and
dop grammar respectively. These values are chosen to be able to di-
rectly compare the new approach with the results in van Cranenburgh
(2012a). However, experimenting with a higher value for k for the
dop stage has shown to yield improved performance. In other coarse-
to-fine work the pruning criterion is based on a posterior thresh-
old (e.g., Charniak et al. 2006; Bansal and Klein 2010); the k-best ap-
proach has the advantage that it does not require the computation of
inside and outside probabilities.

For the initial pcfg stage, we apply beam search as in Collins
(1999). The highest scoring item in each cell is tracked and only items
up to 10,000 times less probable are allowed to enter the chart.
Experiments and results are described in Sections 8–9.

7 discontinuity without lcfrs

The idea up to now has been to generate discontinuous constituents
using formal rewrite operations of lcfrs. It should be noted, however,
that the pcfg approximation used in the pruning stage reproduces dis-
continuities using information derived from the non-terminal labels.
Instead of using this technique only as a crutch for pruning, it can also
be combined with the use of fragments to obtain a pipeline that runs in
cubic time. While the cfg approximation increases the independence
assumptions for discontinuous constituents, the use of large fragments
in the dop approach can mitigate this increase. To create the cfg ap-
proximation of the discontinuous treebank grammar, the treebank is
transformed by splitting discontinuous constituents into several non-

[88]

Discontinuous data-oriented parsing

terminal nodes (as explained in Section 4.1), after which grammar
productions are extracted. This last step can also be replaced with
fragment extraction to obtain a dop grammar from the transformed
treebank. We shall refer to this alternative approach as ‘Split-2dop.’
The coarse-to-fine pipeline is now as follows:
1. Split-pcfg: A treebank grammar based on the cfg approxima-
tion of discontinuous constituents; rewrites spans of discontinu-
ous constituents independently.

2. Split-2dop grammar: tree fragments based on the same trans-
formed treebank as above.
Since every discontinuous non-terminal is split up into a new non-

terminal for each of its spans, the independence assumptions for that
non-terminal in a probabilistic grammar are increased. While this rep-
resentation is not sufficient to express the full range of nested discon-
tinuous configurations, it appears adequate for the linguistic phenom-
ena in the treebanks used in this work, since their trees can be unam-
biguously transformed back and forth into this representation. More-
over, the machinery of Data-Oriented Parsing mitigates the increase
in independence assumptions through the use of large fragments. We
can therefore parse using a dop model with a context-free grammar as
the symbolic backbone, and still recover discontinuous constituents.

8 experimental setup
In this section we describe the experimental setup for benchmarking
our discontinuous Double-dop implementations on several discontin-
uous treebanks.
8.1 Treebanks and preprocessing
We evaluate on three languages: for German, we use the Negra (Skut
et al. 1997) and Tiger (Brants et al. 2002) treebanks; for English,
we use a discontinuous version of the Penn treebank (Evang and
Kallmeyer 2011); and for Dutch, we use the Lassy (Van Noord 2009)
and cgn (van der Wouden et al. 2002) treebanks; cf. Table 1. Negra
and Tiger contain discontinuous annotations by design, as a strategy
to cope with the relatively free word order of German. The discontin-
uous Penn treebank consists of the wsj section in which traces have

[89]

van Cranenburgh, Scha, Bod
Table 1: The discontinuous treebanks used in the experiments and the number
of sentences used for development, training, and testing

Treebank train (sentences) dev (sentences) test (sentences)
G E R M A N
Negra 18,602 1000 1000

(#1–18,602) (#19,603–20,602) (#18,603–19,602)
Tiger 40,379 / 45,427 5048 5047
E N G L I S H
ptb: wsj 39,832 1346 2416
D U T C H
Lassy small 52,157 6520 6523
CGN 70,277 2000 2000

been converted to discontinuous constituents; we use the version used
in Evang and Kallmeyer (2011, Sections 5.1–5.2) without restrictions
on the transformations. The Lassy treebank is referred to as a depen-
dency treebank but when discontinuity is allowed it can be directly
interpreted as a constituency treebank. The Corpus Gesproken Neder-
lands (CGN, Spoken Dutch Corpus; van der Wouden et al. 2002) is a
Dutch spoken language corpus with the same syntactic annotations.
We use the syntactically annotated sentences from the Netherlands
(i.e., without the Flemish part) of up to 100 tokens. The train-dev-test
splits we employ are as commonly used for the Penn treebank: sec. 2–
21, sec. 24, sec. 23, respectively. For Negra we use the one defined in
Dubey and Keller (2003). For Tiger we follow Hall and Nivre (2008)
who define sections 0–9 where sentence i belongs to section i mod
10, sec. 0 is used as test, sec. 1 as development, and 2–9 as training.
When parsing the Tiger test set, the development set is added to the
training set as well; while this is not customary, it ensures the results
are comparable with Hall and Nivre (2008).
The same split is applied to the cgn treebank but with a single

training set. For Lassy the split is our own.8

8The Lassy split derives from 80–10–10 partitions of the canonically ordered
sentence IDs in each subcorpus (viz. dpc, WR, WS, and wiki). Canonically ordered
refers to a ‘version sort’ where an identifier such as ‘2.12.a’ is treated as a tuple
of three elements compared consecutively.

[90]

Discontinuous data-oriented parsing

For purposes of training we apply heuristics for head assign-
ment (Klein and Manning 2003) and binarize the trees in the train-
ing sets head-outward with h “ 1, v “ 1 markovization; i.e., n-ary
nodes are factored into nodes specifying an immediate sibling and
parent. Note that for lcfrs, a binarization may increase the fan-out,
and thus the complexity of parsing. It is possible to select the bina-
rization in such a way as to minimize this complexity (Gildea 2010).
However, experiments show that this increase in fan-out does not
actually occur, regardless of the binarization strategy (van Cranen-
burgh 2012a). Head-outward means that constituents are binarized in
a right-factored manner up until the head child, after which the rest
of the binarization continues in a left-factored manner.
We add fan-out markers to guarantee unique fan-outs for non-

terminal labels, e.g., tVP, VP2, VP3, . . .u, which are removed again for
evaluation.

For the Dutch and German treebanks, punctuation is not part
of the syntactic annotations. This causes spurious discontinuities, as
the punctuation interrupts the constituents dominating its surround-
ing tokens. Additionally, punctuation provides a signal for constituent
boundaries, and it is useful to incorporate it as part of the rest of the
phrase structures. We use the method described in van Cranenburgh
(2012a): punctuation is attached to the highest constituent that con-
tains a neighbor to its right. With this strategy there is no increase
in the amount of discontinuity with respect to a version of the tree-
bank with punctuation removed. The CGN treebank contains spoken
language phenomena, including disfluencies such as interjections and
repeated words. In preprocessing, we treat these as if they were punc-
tuation tokens; i.e., they are moved to an appropriate constituent (as
defined above) and are ignored in the evaluation.
The complexity of parsing with a binarized lcfrs is Opn3φq with

φ the highest fan-out of the non-terminals in the grammar (Seki et al.
1991). For a given grammar, it is possible to give a tighter upper
bound on the complexity of parsing. Given the unique fan-outs of non-
terminals in a grammar, the number of operations it takes to apply a
production is the sum of the fan-outs in the production (Gildea 2010):

cppq “ φpAq `

r
ÿ

i“1

φpBiq

[91]

van Cranenburgh, Scha, Bod

The complexity of parsing with a grammar is then the maximum value
of this measure for productions in the grammar. In our experiments
we find a worst-case time complexity of Opn9q for parsing with the
dop grammars extracted from Negra and wsj. The following sentence
from Negra contributes a grammar production with complexity 9. The
production is from the VP of vorgeworfen; bracketed words are from
other constituents, indicating the discontinuities:
(2) Den

The
Stadtteilparlamentariern
district-MPs

[ist]
have

immer
always

wieder
again

[“Kirchturmpolitik”]
“parochialism”

vorgeworfen
accused

[worden],
been,

weil
because

sie
they

nicht
not

über
beyond

die
the
Grenzen
boundaries

des
of-the

Ortsbezirks
local-district

hinausgucken
look-out

würden.
would.

‘Time and again, the district MPs have been accused of “parochialism” be-
cause they would not look out beyond the boundaries of the local district.’
The complexities for Tiger and Lassy are Opn10q and Opn12q respec-

tively, due to a handful of anomalous sentences; by discarding these
sentences, a grammar with a complexity of Opn9q can be obtained with
no or negligible effect on accuracy.
8.2 Unknown words
In initial experiments the parser is trained and evaluated on gold
standard part-of-speech tags, as in previous experiments on discon-
tinuous parsing. Later we show results when tags are assigned auto-
matically with a simple unknown word model, based on the Stanford
parser (Klein and Manning 2003). An open class threshold σ deter-
mines which tags are considered open class tags; tags that rewrite
more than σ words are considered open class tags, and words they
rewrite are open class words. Open class words in the training set that
do not occur more than 4 times are replaced with signatures based on
a list of features; words in the test set which are not part of the known
words from the training set are replaced with similar signatures. The
features are defined in the Stanford parser as Model 4, which is rela-
tively language independent; cf. Table 2 for the list of features.9 Sig-
natures are formed by concatenating the names of features that apply

9This table is based on code from the Stanford parser (release 2014-08-
27), specifically the method getSignature4 in the file EnglishUnknownWord-
Model.java.

[92]

Discontinuous data-oriented parsing

Feature Description
AC All capital letters
SC Initial capital, first word in sentence
C Initial capital, other position
L, U Has lower / upper case letter
S No letters
N, n All digits / one or more digits
H, P, C Has dash / period / comma
x Last character if letter and length ą 3

Table 2:
Unknown word features,
Stanford parser Model 4

to a word; e.g., ‘forty-two’ gives _UNK-L-H-o. A probability mass ε
is assigned for combinations of known open class words with unseen
tags. We use ε= 0.01. We tuned σ on each training set to ensure that
no closed class words are identified as open class words; for English
and German we use σ = 150, and we use σ = 100 for Dutch.

8.3 Function tags
We investigated two methods of having the parser produce function
tags in addition to the usual phrase labels. The first method is to train a
separate discriminative classifier that adds function tags to parse trees
in a post-processing step. This approach is introduced in Blaheta and
Charniak (2000). We employed their feature set.

Another approach is to simply append the function tags to the
non-terminal labels, resulting in, e.g., NP-SBJ and NP-OBJ for subject
and object noun phrases. While this approach introduces sparsity and
may affect the performance without function tags, we found this ap-
proach to perform best and therefore report results with this approach.
Gabbard et al. (2006) and Fraser et al. (2013) use this approach as well.
Compared to the classifier approach, it does not require any tuning,
and the resulting model is fully generative. We apply this to the Tiger,
wsj, and Lassy treebanks.

The Penn treebank differs from the German and Dutch treebanks
with respect to function tags. The Penn treebank only has function
tags on selected non-terminals (never on preterminals) and each non-
terminal may have several function tags from four possible categories;
whereas the German and Dutch treebanks have a single function tag

[93]

van Cranenburgh, Scha, Bod

on most non-terminals. The tag set also differs considerably: the Penn
treebank has 20 function tags, Lassy has 31, and Tiger has 43.
8.4 Treebank refinements
We apply a set of manual treebank refinements based on previous
work. In order to compare the results on Negra with previous work,
we do not apply the state splits when working with gold standard pos
tags.

For Dutch and German we split the pos tags for the sentence-
ending punctuation ‘.!?’. For all treebanks we add the feature ‘year’
to the preterminal label of tokens with numbers in the range 1900–
2040, and replace the token with 1970. Other numbers are replaced
with 000.
8.4.1 Tiger
For Tiger we apply the refinements described in Fraser et al. (2013).
Since the Negra treebank is only partially annotated with morpholog-
ical information, we do not apply these refinements to that treebank.
8.4.2 WSJ
We follow the treebank refinements of Klein and Manning (2003) for
the Wall Street Journal section of the Penn treebank.
8.4.3 Lassy
The Lassy treebank contains fine-grained part-of-speech tags with
morphological features. It is possible to use the full part-of-speech tags
as the preterminal labels, but this introduces sparsity. We select a sub-
set of features to add to the preterminal labels:
• nouns: proper/regular;
• verbs: auxiliary/main, finite/infinite;
• conjunctions: coordinating/subordinating;
• pronouns: personal/demonstrative;
• pre- vs. postposition.
Additionally, we percolate the feature identifying finite and infi-

nite verbs to the parents and grandparents of the verb.
For multi-word units (MWU), we append the label of its head

child. This helps distinguish MWUs as being nominal, verbal, preposi-
tional, or otherwise.

[94]

Discontinuous data-oriented parsing

The last two transformations are based on those for Tiger. Unary
NPs are added for single nouns and pronouns in sentential, preposi-
tional and infinitival constituents. For conjuncts, the function tag of
the parent is copied. Both transformations can be reversed.
Since the cgn treebank uses a different syntax for the fine-grained

pos tags, we do not apply these refinements to that treebank.

8.5 Metrics
We employ the exact match and Parseval measures (Black et al. 1992)
as evaluation metrics. Both are based on bracketings that identify the
label and yield of each constituent. The exact match is the proportion
of sentences in which all labelled bracketings are correct. The Par-
seval measures consist of the precision, recall, and F-measure of the
correct labelled bracketings averaged across the treebank. Since the
pos accuracy is crucial to the performance of a parser and neither of
the previous metrics reflect it, we also report the proportion of correct
pos tags.

We use the evaluation parameters typically used with EVALB on
the Penn treebank. Namely, the root node and punctuation are not
counted towards the score (similar to COLLINS.prm,10 except that we
discount all punctuation, including brackets). Counting the root node
as a constituent should not be done because it is not part of the cor-
pus annotation and the parser is able to generate it without doing
any work; when the root node is counted it inflates the F-score by
several percentage points. Punctuation should be ignored because in
the original annotation of the Dutch and German treebanks, punctu-
ation is attached directly under the root node instead of as part of
constituents. Punctuation can be re-attached using heuristics for the
purposes of parsing, but evaluation should not be affected by this.

It is not possible to directly compare evaluation results from dis-
continuous parsing to existing state-of-the-art parsers that do not pro-
duce discontinuous constituents, since parses without discontinuous
constituents contain a different set of bracketings; cf. Figure 15, which
compares discontinuous bracketings to the bracketings extracted from
a tree in which discontinuity has been resolved by attaching non-
head siblings higher in the tree, as used in work on parsing Negra.

10This is part of the EVALB software, cf. http://nlp.cs.nyu.edu/evalb/

[95]

http://nlp.cs.nyu.edu/evalb/

van Cranenburgh, Scha, Bod
Figure 15:

Bracketings from a tree
with and without

discontinuous constituents

S

VP2

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

xS, t1 . . . 5uy

xVP2, t1, 2, 5uy

xNP, t1, 2uy

S

VPNP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

xS, t1 . . . 5uy

xVP, t5uy

xNP, t1, 2uy

Compared to an evaluation of bracketings without discontinuous con-
stituents, an evaluation including discontinuous bracketings is more
stringent. This is because bracketings are scored in an all-or-nothing
manner, and a discontinuous bracketing includes non-local elements
that would be scored separately when discontinuity is removed in a
preprocessing step.
For function tags we use two metrics:

1. The non-null metric of Blaheta and Charniak (2000), which is
the F-score of function tags on all correctly parsed bracketings.
Since the German and Dutch treebanks include function tags on
pre-terminals, we also include function tags on correctly tagged
words in this metric.

2. A combined F-measure on bracketings of the form xC , F, spany,
where C is a syntactic category and F a function tag.

9 evaluation

This section presents an evaluation on three languages, and with re-
spect to the use of function tags, tree fragments, pruning, and proba-
bilities.

9.1 Main results on three languages
Table 3 lists the results for discontinuous parsing of three Germanic
languages, with unknown word models. The cited works by Kallmeyer
and Maier (2013) and Evang and Kallmeyer (2011) also use lcfrs

[96]

Discontinuous data-oriented parsing

for discontinuity but employ a treebank grammar with relative fre-
quencies of productions. Hall and Nivre (2008), Versley (2014), and
Fernández-González and Martins (2015) use a conversion to depen-
dencies discussed in Section 6.3.2. For English and German our results
improve upon the best known discontinuous constituency parsing re-
sults. The new system achieves a 16% relative error reduction over the
previous best result for discontinuous parsing on sentences of sizeď 40
in the Negra test set. In terms of efficiency, the Disco-2dop model is
more than three times as fast as the dop reduction, taking about three
hours instead of ten on a single core. The grammar is also more com-
pact: the Disco-2dop grammar is only a third the size of that of the
dop reduction, at 6 mb versus 18 mb compressed size.

Table 3 also includes results from van Cranenburgh and Bod
(2013) who do not add function tags to non-terminal labels nor ap-
ply the extensive treebank refinements described in Sections 8.3–8.4.
Although the refinements and some of the function tags would be ex-
pected to improve performance, the rest of the function tags increase
sparsity and consequently the resulting F-scores are slightly lower; but
this tradeoff seems to be justified in order to get parse trees with func-
tion tags. The results on cgn show a surprisingly high exact match
score. This is due to a large number of interjection utterances, e.g.,
“uhm.”; since such sentences only consist of a root node and pos tags,
the bracketing F1-score is not affected by this.
9.2 Function tags
Table 4 reports an evaluation including function tags. For these three
treebanks, the models reproduce most of the information in the orig-
inal treebank. The following parts are not yet incorporated. The Ger-
man and Dutch treebanks contain additional lexical information con-
sisting of lemmas and morphological features. These could be added to
the non-terminal labels of the model or obtained from an external pos
tagger. Lastly, some non-terminals have multiple parents; these occur
in the German and Dutch treebanks and are referred to as secondary
edges.
9.3 All-fragments vs. recurring fragments
The original Disco-dop model (van Cranenburgh et al. 2011) is based
on an all-fragments model, while Disco-2dop is based on recurring

[97]

van Cranenburgh, Scha, Bod
Table 3: Discontinuous parsing of three Germanic languages. POS is the part-
of-speech tagging accuracy; F1 is the labelled bracketing F1-score; EX is the
exact match score. Results marked with * use gold standard pos tags; those
marked with † do not discount the root node and punctuation. NB: Kallmeyer
and Maier (2013) and Evang and Kallmeyer (2011) use a different test set and
length restriction. ‘vanCraBod2013’ refers to van Cranenburgh and Bod (2013),
and ‘FeMa2015’ to Fernández-González and Martins (2015)

DEV TEST
Treebank and parser |w| POS F1 EX POS F1 EX
G E R M A N
Negra
van Cranenburgh (2012a)* ď 40 100 74.3 34.3 100 72.3 33.2
Kallmeyer and Maier (2013)*† ď 30 100 75.8
this work, Disco-2DOP* ď 40 100 77.7 41.5 100 76.8 40.5
this work, Disco-2DOP ď 40 96.7 76.4 39.2 96.3 74.8 38.7
Tiger
Hall and Nivre (2008) ď 40 97.0 75.3 32.6
Versley (2014) ď 40 100 74.2 37.3
FeMa2015 ď 40 82.6 45.9
vanCraBod2013, Disco-2DOP ď 40 97.6 78.7 40.5 97.6 78.8 40.8
this work, Disco-2DOP ď 40 96.6 78.3 40.2 96.1 78.2 40.0
this work, Split-2DOP ď 40 96.6 78.1 39.2 96.2 78.1 39.0
E N G L I S H
wsj
Evang and Kallmeyer (2011)*† ă 25 100 79.0
vanCraBod2013, Disco-2DOP ď 40 96.0 85.2 28.0 96.6 85.6 31.3
this work, Disco-2DOP ď 40 96.1 86.9 29.5 96.7 87.0 34.4
this work, Split-2DOP ď 40 96.1 86.7 29.5 96.7 87.0 33.9
D U T C H
Lassy
vanCraBod2013, Disco-2DOP ď 40 94.1 79.0 37.4 94.6 77.0 35.2
this work, Disco-2DOP ď 40 96.7 78.3 36.2 96.3 76.6 34.0
this work, Split-2DOP ď 40 96.8 78.0 34.9 96.3 76.2 32.7
cgn
this work, Disco-2DOP ď 40 96.7 72.6 64.1 96.7 73.0 63.8
this work, Split-2DOP ď 40 96.6 71.2 63.4 96.7 72.2 63.3

[98]

Discontinuous data-oriented parsing

Language, treebank phrase labels function tags combined
German, Tiger 78.2 93.5 68.1
English, wsj 87.0 86.3 82.5
Dutch, Lassy 76.6 92.8 70.0

Table 4:
Evaluation of function tags on
sentences ď 40 words, test sets; F1

scores as defined at the end of
Section 8.5

fragments. Table 5 compares previous results of Disco-dop to the new
Disco-2dop implementation. The second column shows the accuracy
for different values of k, i.e., the number of coarse derivations that de-
termine the allowed labelled spans for the fine stage. While increasing
this value did not yield improvements using the dop reduction, with
Disco-2dop there is a substantial improvement in performance, with
k “ 5000 yielding the best score among the handful of values tested.
Figure 16 shows the average time spent in each stage using the latter
model on wsj. The average time to parse a sentence (ď 40 words)
for this grammar is 7.7 seconds. Efficiency could be improved signif-
icantly by improving the pcfg parser using better chart representa-
tions such as packed parse forests and bit vectors (Schmid 2004).

Model k=50 k=5000
F1 F1

dop reduction: disco-dop 74.3 73.5
Double-dop: disco-2dop 76.3 77.7

Table 5:
Comparing F-scores for the dop
reduction (implicit fragments) with
Double-dop (explicit fragments) on
the Negra development set with
different amounts of pruning (higher
k means less pruning); gold standard
pos tags

10 20 30 40
words

0

5

10

15

20

C
P
U

 t
im

e
 (

se
co

n
d
s)

DOP
PLCFRS
Split-PCFG

Figure 16:
Average time spent in each
stage for sentences by
length; disco-2dop, wsj
development set

[99]

van Cranenburgh, Scha, Bod

9.4 Effects of pruning
The effects of pruning can be further investigated by comparing dif-
ferent levels of pruning. We first parse the sentences in the Negra de-
velopment set that are up to 30 words long with a plcfrs treebank
grammar, with k “ 10, 000 and without pruning. Out of 897 sentences,
the Viterbi derivation is pruned on only 14 occasions, while the pruned
version is about 300 times faster.
Table 6 shows results for different levels of pruning on sentences

of all lengths. For sentences of all lengths it is not feasible to parse
with the unpruned plcfrs. However, we can compare the items in
the parse forest after pruning and the best derivation to the gold tree
from the treebank. From the various measures, it can be concluded
that the pruning has a large effect on speed and the number of items
in the resulting parse forest, while having only a small effect on the
quality of the parse (forest).

Table 6: Results for different levels of pruning; mean over 1000 sentences

(pcfg) k=100 k=1000 k=5000 k=10,000

CPU time (seconds) 2.461 0.128 0.193 0.444 0.739
Number of items in chart 69,570.5 207.6 282.7 378.2 436.5
Percentage of gold
standard items in chart 94.7 94.2 97.2 98.1 98.4

F1 score 69.3 69.8 69.9 69.9 69.8

9.5 Without LCFRS
Table 3 shows that the Disco-2dop and Split-2dop techniques have
comparable performance, demonstrating that the complexity of lcfrs
parsing can be avoided. Table 7 shows the performance in each step
of the coarse-to-fine pipelines, with and without lcfrs. Surprisingly,
the use of a formalism that explicitly models discontinuity as an oper-
ation does not give any improvement over a simpler model in which
discontinuities are only modeled probabilistically by encoding them
into labels and fragments. This demonstrates that given the use of tree
fragments, discontinuous rewriting through lcfrs comes at a high
computational cost without a clear benefit over cfg.

[100]

Discontinuous data-oriented parsing

Pipeline F1 EX%
Split-pcfg (no lcfrs, no tsg) 65.8 28.0
Split-pcfg ñ plcfrs (no tsg) 65.9 28.6
Split-pcfg ñ plcfrs ñ 2dop 77.7 41.5
Split-pcfg ñ Split-2dop (no lcfrs) 78.1 42.0

Table 7:
Parsing discontinuous constituents
is possible without lcfrs (Negra
development set, gold standard pos
tags; results are for final stage)

9.6 The role of probabilities
From the results it is clear that a probabilistic tree-substitution gram-
mar is able to provide much better results than a simple treebank
grammar. However, it is not obvious whether the improvement is
specifically due to the more fine-grained statistics (i.e., frequencies of
more specific events), or generally because of the use of larger chunks.
A serendipitous discovery during development of the parser provides
insight into this: during an experiment, the frequencies of fragments
were accidentally permuted and assigned to different fragments, but
the resulting decrease in performance was surprisingly low, from 77.7
to 74.1 F1 – suggesting that most of the improvement over the 65.9 F1

score of the plcfrs treebank grammar comes from memorizing larger
chunks, as opposed to statistical reckoning.

9.7 Previous work
Earlier work on recovering empty categories and their antecedents
in the Penn treebank (Johnson 2002; Levy and Manning 2004; Gab-
bard et al. 2006; Schmid 2006; Cai et al. 2011) has recovered non-
local dependencies by producing the traces and co-indexation as in the
original annotation. If the results include both traces and antecedents
(which holds for all but the last work cited), the conversion to discon-
tinuous constituents of Evang and Kallmeyer (2011) could be applied
to obtain a discontinuous F-score. Since this would require access to
the original parser output, we have not pursued this.

As explained in Section 8.5, it is not possible to directly compare
the results to existing parsers that do not produce discontinuous con-
stituents. However, the F-measures do give a rough measure, since the
majority of constituents are not discontinuous.

For English, there is a result with 2dop by Sangati and Zuidema
(2011) with an F1 score of 87.9. This difference can be attributed to the
absence of discontinuous bracketings, as well as their use of the Max-

[101]

van Cranenburgh, Scha, Bod

imum Constituents Parse instead of the Most Probable Parse; the for-
mer optimizes the F-measure instead of the exact match score. Shindo
et al. (2012) achieve an F1 score of 92.9 with a Bayesian tsg that
uses symbol refinement through latent variables (i.e., automatic state
splitting).

For German, the best results without discontinuity and no length
restriction are F1 scores of 84.2 for Negra (Petrov 2010) and 76.8 for
Tiger (Fraser et al. 2013; note that this result employs a different train-
dev-test split than the one in this work).

10 conclusion

We have shown how to parse with discontinuous tree-substitution
grammars and presented a practical implementation. We employ a
fragment extraction method that finds recurring structures in tree-
banks efficiently, and supports discontinuous treebanks. This enables
a data-oriented parsing implementation that employs a compact, ef-
ficient, and accurate model for discontinuous parsing in a generative
model that improves upon previous results for this task.

Surprisingly, it turns out that the formal power of lcfrs is not
necessary to describe discontinuity, since equivalent results can be
obtained with a probabilistic tree-substitution grammar in which non-
local relations are encoded in the non-terminal labels. In other words,
it is feasible to produce discontinuous constituents without invoking
mild context-sensitivity.

We have presented parsing results on three languages. Compared
to previous work on statistical parsing, our models are linguistically
richer. In addition to discontinuous constituents, our models also re-
produce function tags from the treebank. While there have been pre-
vious results on reproducing non-local relations or function tags, this
work reproduces both using models derived straightforwardly from
treebanks, while exploiting ready-made treebank transformations for
improved performance.

The source code of the parser used in this work is available at
https://github.com/andreasvc/disco-dop.

[102]

https://github.com/andreasvc/disco-dop

Discontinuous data-oriented parsing

acknowledgments

We are grateful to Kilian Evang for supplying the discontinuous Penn
treebank, to the reviewers for detailed comments, and to Dave Carter
and Adam Przepiórkowski for copy-editing suggestions.
This work is supported by the Computational Humanities Pro-

gram of the Royal Netherlands Academy of Arts and Sciences, as part
of The Riddle of Literary Quality.

references
Krasimir Angelov and Peter Ljunglöf (2014), Fast statistical parsing with
parallel multiple context-free grammars, in Proceedings of EACL, pp. 368–376,
http://aclweb.org/anthology/E14-1039.
Mohit Bansal and Dan Klein (2010), Simple, accurate parsing with an
all-fragments grammar, in Proceedings of ACL, pp. 1098–1107,
http://aclweb.org/anthology/P10-1112.
François Barthélemy, Pierre Boullier, Philippe Deschamp, and Éric de la
Clergerie (2001), Guided parsing of range concatenation languages, in
Proceedings of ACL, pp. 42–49, http://aclweb.org/anthology/P01-1007.
Shane Bergsma, Matt Post, and David Yarowsky (2012), Stylometric
analysis of scientific articles, in Proceedings of NAACL, pp. 327–337,
http://aclweb.org/anthology/N12-1033.
Ezra Black, John Lafferty, and Salim Roukos (1992), Development and
evaluation of a broad-coverage probabilistic grammar of English-language
computer manuals, in Proceedings of ACL, pp. 185–192,
http://aclweb.org/anthology/P92-1024.
Don Blaheta and Eugene Charniak (2000), Assigning function tags to
parsed text, in Proceedings of NAACL, pp. 234–240,
http://aclweb.org/anthology/A00-2031.
Rens Bod (1992), A computational model of language performance:
data-oriented parsing, in Proceedings COLING, pp. 855–859,
http://aclweb.org/anthology/C92-3126.
Rens Bod (1995), The problem of computing the most probable tree in
data-oriented parsing and stochastic tree grammars, in Proceedings of EACL,
pp. 104–111, http://aclweb.org/anthology/E95-1015.
Rens Bod (2001), What is the minimal set of fragments that achieves maximal
parse accuracy?, in Proceedings of ACL, pp. 69–76,
http://aclweb.org/anthology/P01-1010.

[103]

http://aclweb.org/anthology/E14-1039
http://aclweb.org/anthology/P10-1112
http://aclweb.org/anthology/P01-1007
http://aclweb.org/anthology/N12-1033
http://aclweb.org/anthology/P92-1024
http://aclweb.org/anthology/A00-2031
http://aclweb.org/anthology/C92-3126
http://aclweb.org/anthology/E95-1015
http://aclweb.org/anthology/P01-1010

van Cranenburgh, Scha, Bod

Rens Bod, Remko Scha, and Khalil Sima’an, editors (2003), Data-Oriented
Parsing, The University of Chicago Press.
Pierre Boullier (1998), Proposal for a natural language processing syntactic
backbone, Technical Report RR-3342, inria-Rocquencourt, Le Chesnay,
France, http://www.inria.fr/RRRT/RR-3342.html.
Adriane Boyd (2007), Discontinuity revisited: An improved conversion to
context-free representations, in Proceedings of the Linguistic Annotation
Workshop, pp. 41–44, http://aclweb.org/anthology/W07-1506.
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and
George Smith (2002), The Tiger treebank, in Proceedings of the workshop on
treebanks and linguistic theories, pp. 24–41,
http://www.bultreebank.org/proceedings/paper03.pdf.
Joan Bresnan, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen
(1982), Cross-serial dependencies in Dutch, Linguistic Inquiry, 13(4):613–635.
Shu Cai, David Chiang, and Yoav Goldberg (2011), Language-independent
parsing with empty elements, in Proceedings of ACL-HLT, pp. 212–216,
http://aclweb.org/anthology/P11-2037.
Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin (2015),
Better bitmap performance with Roaring bitmaps, Software: Practice and
Experience, ISSN 1097-024X, doi:10.1002/spe.2325,
http://arxiv.org/abs/1402.6407, to appear.
Eugene Charniak (1996), Tree-bank grammars, in Proceedings of the National
Conference on Artificial Intelligence, pp. 1031–1036.
Eugene Charniak, Mark Johnson, M. Elsner, J. Austerweil, D. Ellis,
I. Haxton, C. Hill, R. Shrivaths, J. Moore, M. Pozar, et al. (2006),
Multilevel coarse-to-fine PCFG parsing, in Proceedings of NAACL-HLT,
pp. 168–175, http://aclweb.org/anthology/N06-1022.
David Chiang (2000), Statistical parsing with an automatically-extracted tree
adjoining grammar, in Proceedings of ACL, pp. 456–463,
http://aclweb.org/anthology/P00-1058.
Noam Chomsky (1956), Three models for the description of language, IRE
Transactions on Information Theory, 2(3):113–124.
Noam Chomsky (1965), Aspects of the Theory of Syntax, MIT press.
Trevor Cohn, Phil Blunsom, and Sharon Goldwater (2010), Inducing
tree-substitution grammars, The Journal of Machine Learning Research,
11(Nov):3053–3096.
Trevor Cohn, Sharon Goldwater, and Phil Blunsom (2009), Inducing
compact but accurate tree-substitution grammars, in Proceedings of NAACL-HLT,
pp. 548–556, http://aclweb.org/anthology/N09-1062.

[104]

http://www.inria.fr/RRRT/RR-3342.html
http://aclweb.org/anthology/W07-1506
http://www.bultreebank.org/proceedings/paper03.pdf
http://aclweb.org/anthology/P11-2037
http://arxiv.org/abs/1402.6407
http://aclweb.org/anthology/N06-1022
http://aclweb.org/anthology/P00-1058
http://aclweb.org/anthology/N09-1062

Discontinuous data-oriented parsing

Michael Collins (1999), Head-driven statistical models for natural language
parsing, Ph.D. thesis, University of Pennsylvania.
Peter Dienes and Amit Dubey (2003), Deep syntactic processing by combining
shallow methods, in Proceedings of ACL, pp. 431–438,
http://aclweb.org/anthology/P03-1055.
Amit Dubey and Frank Keller (2003), Probabilistic parsing for German using
sister-head dependencies, in Proceedings of ACL, pp. 96–103,
http://aclweb.org/anthology/P03-1013.
Kilian Evang and Laura Kallmeyer (2011), PLCFRS parsing of English
discontinuous constituents, in Proceedings of IWPT, pp. 104–116,
http://aclweb.org/anthology/W11-2913.
Daniel Fernández-González and André F. T. Martins (2015), Parsing as
reduction, in Proceedings of ACL, pp. 1523–1533,
http://aclweb.org/anthology/P15-1147.
Alexander Fraser, Helmut Schmid, Richárd Farkas, Renjing Wang, and
Hinrich Schütze (2013), Knowledge sources for constituent parsing of
German, a morphologically rich and less-configurational language,
Computational Linguistics, 39(1):57–85,
http://aclweb.org/anthology/J13-1005.
Ryan Gabbard, Mitchell Marcus, and Seth Kulick (2006), Fully parsing the
Penn treebank, in Proceedings of NAACL-HLT, pp. 184–191,
http://aclweb.org/anthology/N06-1024.
Stuart Geman and Mark Johnson (2004), Probability and statistics in
computational linguistics, a brief review, in Mark Johnson, Sanjeev P.
Khudanpur, Mari Ostendorf, and Roni Rosenfeld, editors, Mathematical
foundations of speech and language processing, pp. 1–26, Springer.
Daniel Gildea (2010), Optimal parsing strategies for linear context-free
rewriting systems, in Proceedings of NAACL-HLT, pp. 769–776,
http://aclweb.org/anthology/N10-1118.
Joshua Goodman (2003), Efficient parsing of DOP with PCFG-reductions, in
Bod et al. (2003), pp. 125–146.
Spence Green, Marie-Catherine de Marneffe, John Bauer, and
Christopher D. Manning (2011), Multiword expression identification with tree
substitution grammars: A parsing tour de force with French, in Proceedings of
EMNLP, pp. 725–735, http://aclweb.org/anthology/D11-1067.
Johan Hall and Joakim Nivre (2008), Parsing discontinuous phrase structure
with grammatical functions, in Bengt Nordström and Aarne Ranta, editors,
Advances in Natural Language Processing, volume 5221 of Lecture Notes in
Computer Science, pp. 169–180, Springer,
http://dx.doi.org/10.1007/978-3-540-85287-2_17.

[105]

http://aclweb.org/anthology/P03-1055
http://aclweb.org/anthology/P03-1013
http://aclweb.org/anthology/W11-2913
http://aclweb.org/anthology/P15-1147
http://aclweb.org/anthology/J13-1005
http://aclweb.org/anthology/N06-1024
http://aclweb.org/anthology/N10-1118
http://aclweb.org/anthology/D11-1067
http://dx.doi.org/10.1007/978-3-540-85287-2_17

van Cranenburgh, Scha, Bod

Lars Hoogweg (2003), Extending DOP with insertion, in Bod et al. (2003),
pp. 317–335.
Yu-Yin Hsu (2010), Comparing conversions of discontinuity in PCFG parsing,
in Proceedings of Treebanks and Linguistic Theories, pp. 103–113,
http://hdl.handle.net/10062/15954.
Liang Huang and David Chiang (2005), Better k-best parsing, in Proceedings
of IWPT, pp. 53–64, NB corrected version on author homepage:
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf.
Marinus A.C. Huybregts (1976), Overlapping dependencies in Dutch, Utrecht
Working Papers in Linguistics, 1:24–65.
Mark Johnson (2002), A simple pattern-matching algorithm for recovering
empty nodes and their antecedents, in Proceedings of ACL, pp. 136–143,
http://aclweb.org/anthology/P02-1018.
Aravind K. Joshi (1985), How much context sensitivity is necessary for
characterizing structural descriptions: Tree adjoining grammars, in David R.
Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural language
parsing: Psychological, computational and theoretical perspectives, pp. 206–250,
Cambridge University Press, New York.
Miriam Kaeshammer and Vera Demberg (2012), German and English
treebanks and lexica for tree-adjoining grammars, in Proceedings of LREC,
pp. 1880–1887,
http://www.lrec-conf.org/proceedings/lrec2012/pdf/398_Paper.pdf.
Laura Kallmeyer (2009), A declarative characterization of different types of
multicomponent tree adjoining grammars, Research on Language and
Computation, 7(1):55–99.
Laura Kallmeyer (2010), Parsing Beyond Context-Free Grammars, Cognitive
Technologies, Springer.
Laura Kallmeyer and Wolfgang Maier (2010), Data-driven parsing with
probabilistic linear context-free rewriting systems, in Proceedings of COLING,
pp. 537–545, http://aclweb.org/anthology/C10-1061.
Laura Kallmeyer and Wolfgang Maier (2013), Data-driven parsing using
probabilistic linear context-free rewriting systems, Computational Linguistics,
39(1):87–119, http://aclweb.org/anthology/J13-1006.
Laura Kallmeyer, Wolfgang Maier, and Giorgio Satta (2009), Synchronous
rewriting in treebanks, in Proceedings of IWPT,
http://aclweb.org/anthology/W09-3810.
Fred Karlsson (2007), Constraints on multiple centre-embedding of clauses,
Journal of Linguistics, 43(2):365–392.

[106]

http://hdl.handle.net/10062/15954
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf
http://aclweb.org/anthology/P02-1018
http://www.lrec-conf.org/proceedings/lrec2012/pdf/398_Paper.pdf
http://aclweb.org/anthology/C10-1061
http://aclweb.org/anthology/J13-1006
http://aclweb.org/anthology/W09-3810

Discontinuous data-oriented parsing

Dan Klein and Christopher D. Manning (2003), Accurate unlexicalized
parsing, in Proceedings of ACL, volume 1, pp. 423–430,
http://aclweb.org/anthology/P03-1054.
Marco Kuhlmann (2013), Mildly non-projective dependency grammar,
Computational Linguistics, 39(2):355–387,
http://aclweb.org/anthology/J13-2004.
Marco Kuhlmann and Giorgio Satta (2009), Treebank grammar techniques
for non-projective dependency parsing, in Proceedings of EACL, pp. 478–486,
http://aclweb.org/anthology/E09-1055.
Roger Levy (2005), Probabilistic models of word order and syntactic discontinuity,
Ph.D. thesis, Stanford University.
Roger Levy and Christopher D. Manning (2004), Deep dependencies from
context-free statistical parsers: correcting the surface dependency
approximation, in Proceedings of ACL, pp. 327–334,
http://aclweb.org/anthology/P04-1042.
Wolfgang Maier, Miriam Kaeshammer, Peter Baumann, and Sandra
Kübler (2014), Discosuite – A parser test suite for German discontinuous
structures, in Proceedings of LREC,
http://www.lrec-conf.org/proceedings/lrec2014/pdf/230_Paper.pdf.
Wolfgang Maier, Miriam Kaeshammer, and Laura Kallmeyer (2012),
PLCFRS parsing revisited: Restricting the fan-out to two, in Proceedings of TAG,
volume 11, http://wolfgang-maier.net/pub/tagplus12.pdf.
Wolfgang Maier and Timm Lichte (2011), Characterizing discontinuity in
constituent treebanks, in Proceedings of Formal Grammar 2009, pp. 167–182,
Springer.
Wolfgang Maier and Anders Søgaard (2008), Treebanks and mild
context-sensitivity, in Proceedings of Formal Grammar 2008, pp. 61–76.
James D. McCawley (1982), Parentheticals and discontinuous constituent
structure, Linguistic Inquiry, 13(1):91–106,
http://www.jstor.org/stable/4178261.
Mark-Jan Nederhof and Heiko Vogler (2014), Hybrid grammars for
discontinuous parsing, in Proceedings of COLING, pp. 1370–1381,
http://aclweb.org/anthology/C14-1130.
Timothy J. O’Donnell, Joshua B. Tenenbaum, and Noah D. Goodman
(2009), Fragment grammars: Exploring computation and reuse in language,
Technical Report MIT-CSAIL-TR-2009-013, MIT CSAIL,
http://hdl.handle.net/1721.1/44963.
Almerindo E. Ojeda (1988), A linear precedence account of cross-serial
dependencies, Linguistics and Philosophy, 11(4):457–492.

[107]

http://aclweb.org/anthology/P03-1054
http://aclweb.org/anthology/J13-2004
http://aclweb.org/anthology/E09-1055
http://aclweb.org/anthology/P04-1042
http://www.lrec-conf.org/proceedings/lrec2014/pdf/230_Paper.pdf
http://wolfgang-maier.net/pub/tagplus12.pdf
http://www.jstor.org/stable/4178261
http://aclweb.org/anthology/C14-1130
http://hdl.handle.net/1721.1/44963

van Cranenburgh, Scha, Bod

Adam Pauls and Dan Klein (2009), Hierarchical search for parsing, in
Proceedings of NAACL-HLT, pp. 557–565,
http://aclweb.org/anthology/N09-1063.
P. Stanley Peters and R. W. Ritchie (1973), On the generative power of
transformational grammars, Information Sciences, 6:49–83,
http://dx.doi.org/10.1016/0020-0255(73)90027-3.
Slav Petrov (2010), Products of random latent variable grammars, in
Proceedings of NAACL-HLT, pp. 19–27,
http://aclweb.org/anthology/N10-1003.
Kenneth L. Pike (1943), Taxemes and immediate constituents, Language,
19(2):65–82, http://www.jstor.org/stable/409840.
Matt Post (2011), Judging grammaticality with tree substitution grammar
derivations, in Proceedings of the ACL-HLT 2011, pp. 217–222,
http://aclweb.org/anthology/P11-2038.
Matt Post and Daniel Gildea (2009), Bayesian learning of a tree substitution
grammar, in Proceedings of the ACL-IJCNLP 2009 Conference, Short Papers,
pp. 45–48, http://aclweb.org/anthology/P09-2012.
Brian Roark, Kristy Hollingshead, and Nathan Bodenstab (2012),
Finite-state chart constraints for reduced complexity context-free parsing
pipelines, Computational Linguistics, 38(4):719–753,
http://aclweb.org/anthology/J12-4002.
Federico Sangati and Willem Zuidema (2011), Accurate parsing with
compact tree-substitution grammars: Double-DOP, in Proceedings of EMNLP,
pp. 84–95, http://aclweb.org/anthology/D11-1008.
Federico Sangati, Willem Zuidema, and Rens Bod (2010), Efficiently extract
recurring tree fragments from large treebanks, in Proceedings of LREC,
pp. 219–226, http://dare.uva.nl/record/371504.
Remko Scha (1990), Language theory and language technology; competence
and performance, in Q.A.M. de Kort and G.L.J. Leerdam, editors,
Computertoepassingen in de Neerlandistiek, pp. 7–22, LVVN, Almere, the
Netherlands, original title: Taaltheorie en taaltechnologie; competence en
performance. English translation: http://iaaa.nl/rs/LeerdamE.html.
Yves Schabes and Richard C. Waters (1995), Tree insertion grammar:
cubic-time, parsable formalism that lexicalizes context-free grammar without
changing the trees produced, Computational Linguistics, 21(4):479–513,
http://aclweb.org/anthology/J95-4002.
Helmut Schmid (2004), Efficient parsing of highly ambiguous context-free
grammars with bit vectors, in Proceedings of COLING ’04,
http://aclweb.org/anthology/C04-1024.

[108]

http://aclweb.org/anthology/N09-1063
http://dx.doi.org/10.1016/0020-0255(73)90027-3
http://aclweb.org/anthology/N10-1003
http://www.jstor.org/stable/409840
http://aclweb.org/anthology/P11-2038
http://aclweb.org/anthology/P09-2012
http://aclweb.org/anthology/J12-4002
http://aclweb.org/anthology/D11-1008
http://dare.uva.nl/record/371504
http://iaaa.nl/rs/LeerdamE.html
http://aclweb.org/anthology/J95-4002
http://aclweb.org/anthology/C04-1024

Discontinuous data-oriented parsing

Helmut Schmid (2006), Trace prediction and recovery with unlexicalized
PCFGs and slash features, in Proceedings of COLING-ACL, pp. 177–184,
http://aclweb.org/anthology/P06-1023.
William Schuler, Samir AbdelRahman, Tim Miller, and Lane Schwartz
(2010), Broad-coverage parsing using human-like memory constraints,
Computational Linguistics, 36(1):1–30,
http://aclweb.org/anthology/J10-1001.
William Schuler, David Chiang, and Mark Dras (2000), Multi-component
TAG and notions of formal power, in Proceedings of ACL, pp. 448–455,
http://aclweb.org/anthology/P00-1057.
Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami
(1991), On multiple context-free grammars, Theoretical Computer Science,
88(2):191–229.
Stuart M. Shieber (1985), Evidence against the context-freeness of natural
language, Linguistics and Philosophy, 8:333–343.
Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and Masaaki Nagata
(2012), Bayesian symbol-refined tree substitution grammars for syntactic
parsing, in Proceedings of ACL, pp. 440–448,
http://aclweb.org/anthology/P12-1046.
Khalil Sima’an (1997), Efficient Disambiguation by means of stochastic tree
substitution grammars, in D. Jones and H. Somers, editors, New Methods in
Language Processing, pp. 178–198, UCL Press, UK.
Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit
(1997), An annotation scheme for free word order languages, in Proceedings of
ANLP, pp. 88–95, http://aclweb.org/anthology/A97-1014.
Ben Swanson, Elif Yamangil, Eugene Charniak, and Stuart Shieber
(2013), A context free TAG variant, in Proceedings of the ACL, pp. 302–310,
http://aclweb.org/anthology/P13-1030.
Benjamin Swanson and Eugene Charniak (2012), Native language detection
with tree substitution grammars, in Proceedings of ACL, pp. 193–197,
http://aclweb.org/anthology/P12-2038.
Heike Telljohann, Erhard Hinrichs, and Sandra Kübler (2004), The
Tüba-D/Z Treebank: Annotating German with a context-free backbone, in
Proceedings of LREC, pp. 2229–2235,
http://www.lrec-conf.org/proceedings/lrec2004/pdf/135.pdf.
Heike Telljohann, Erhard W Hinrichs, Sandra Kübler, Heike
Zinsmeister, and Kathrin Beck (2012), Stylebook for the Tübingen treebank
of written German (TüBa-D/Z), technical report, Seminar für
Sprachwissenschaft, Universität Tübingen, Germany,
http://www.sfs.uni-tuebingen.de/fileadmin/static/ascl/
resources/tuebadz-stylebook-1201.pdf.

[109]

http://aclweb.org/anthology/P06-1023
http://aclweb.org/anthology/J10-1001
http://aclweb.org/anthology/P00-1057
http://aclweb.org/anthology/P12-1046
http://aclweb.org/anthology/A97-1014
http://aclweb.org/anthology/P13-1030
http://aclweb.org/anthology/P12-2038
http://www.lrec-conf.org/proceedings/lrec2004/pdf/135.pdf
http://www.sfs.uni-tuebingen.de/fileadmin/static/ascl/resources/tuebadz-stylebook-1201.pdf
http://www.sfs.uni-tuebingen.de/fileadmin/static/ascl/resources/tuebadz-stylebook-1201.pdf

van Cranenburgh, Scha, Bod

Marten H. Trautwein (1995), Computational pitfalls in tractable grammar
formalisms, Ph.D. thesis, University of Amsterdam, http://www.illc.uva.nl/
Research/Publications/Dissertations/DS-1995-15.text.ps.gz.
Andreas van Cranenburgh (2012a), Efficient parsing with linear
context-free rewriting systems, in Proceedings of EACL, pp. 460–470, corrected
version: http://andreasvc.github.io/eacl2012corrected.pdf.
Andreas van Cranenburgh (2012b), Literary authorship attribution with
phrase-structure fragments, in Proceedings of CLFL, pp. 59–63, revised version:
http://andreasvc.github.io/clfl2012.pdf.
Andreas van Cranenburgh (2014), Extraction of phrase-structure fragments
with a linear average time tree kernel, Computational Linguistics in the
Netherlands Journal, 4:3–16, ISSN 2211-4009, http://www.clinjournal.org/
sites/default/files/01-Cranenburgh-CLIN2014.pdf.
Andreas van Cranenburgh and Rens Bod (2013), Discontinuous parsing
with an efficient and accurate DOP model, in Proceedings of IWPT, pp. 7–16,
http://www.illc.uva.nl/LaCo/CLS/papers/iwpt2013parser_final.pdf.
Andreas van Cranenburgh, Remko Scha, and Federico Sangati (2011),
Discontinuous data-oriented parsing: A mildly context-sensitive all-fragments
grammar, in Proceedings of SPMRL, pp. 34–44,
http://aclweb.org/anthology/W11-3805.
Leonoor van der Beek, Gosse Bouma, Robert Malouf, and Gertjan van
Noord (2002), The Alpino dependency treebank, Language and Computers,
45(1):8–22.
Ton van der Wouden, Heleen Hoekstra, Michael Moortgat, Bram
Renmans, and Ineke Schuurman (2002), Syntactic analysis in the spoken
Dutch corpus (CGN), in Proceedings of LREC, pp. 768–773,
http://www.lrec-conf.org/proceedings/lrec2002/pdf/71.pdf.
Gertjan Van Noord (2009), Huge parsed corpora in Lassy, in Proceedings of
TLT7, LOT, Groningen, The Netherlands.
Yannick Versley (2014), Experiments with easy-first nonprojective
constituent parsing, in Proceedings of SPMRL-SANCL 2014, pp. 39–53,
http://aclweb.org/anthology/W14-6104.
K. Vijay-Shanker and David J. Weir (1994), The equivalence of four
extensions of context-free grammars, Theory of Computing Systems,
27(6):511–546.
K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi (1987),
Characterizing structural descriptions produced by various grammatical
formalisms, in Proceedings of ACL, pp. 104–111,
http://aclweb.org/anthology/P87-1015.

[110]

http://www.illc.uva.nl/Research/Publications/Dissertations/DS-1995-15.text.ps.gz
http://www.illc.uva.nl/Research/Publications/Dissertations/DS-1995-15.text.ps.gz
http://andreasvc.github.io/eacl2012corrected.pdf
http://andreasvc.github.io/clfl2012.pdf
http://www.clinjournal.org/sites/default/files/01-Cranenburgh-CLIN2014.pdf
http://www.clinjournal.org/sites/default/files/01-Cranenburgh-CLIN2014.pdf
http://www.illc.uva.nl/LaCo/CLS/papers/iwpt2013parser_final.pdf
http://aclweb.org/anthology/W11-3805
http://www.lrec-conf.org/proceedings/lrec2002/pdf/71.pdf
http://aclweb.org/anthology/W14-6104
http://aclweb.org/anthology/P87-1015

Discontinuous data-oriented parsing

David J. Weir (1988), Characterizing mildly context-sensitive grammar
formalisms, Ph.D. thesis, University of Pennsylvania,
http://repository.upenn.edu/dissertations/AAI8908403/.
Rulon S. Wells (1947), Immediate constituents, Language, 23(2):81–117,
http://www.jstor.org/stable/410382.
Fei Xia, Chung-Hye Han, Martha Palmer, and Aravind Joshi (2001),
Automatically extracting and comparing lexicalized grammars for different
languages, in Proceedings of IJCAI, pp. 1321–1330.
Elif Yamangil and Stuart Shieber (2012), Estimating compact yet rich tree
insertion grammars, in Proceedings of ACL, pp. 110–114,
http://aclweb.org/anthology/P12-2022.
Andreas Zollmann and Khalil Sima’an (2005), A consistent and efficient
estimator for data-oriented parsing, Journal of Automata Languages and
Combinatorics, 10(2/3):367–388,
http://staff.science.uva.nl/~simaan/D-Papers/JALCsubmit.pdf.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[111]

http://repository.upenn.edu/dissertations/AAI8908403/
http://www.jstor.org/stable/410382
http://aclweb.org/anthology/P12-2022
http://staff.science.uva.nl/~simaan/D-Papers/JALCsubmit.pdf
http://creativecommons.org/licenses/by/3.0/

	Introduction
	The division of labor between competence and performance
	Grammar formalisms
	Linear Context-Free Rewriting Systems
	Extracting LCFRS productions from trees

	Discontinuous Tree-Substitution Grammar

	Grammar transformations
	A CFG approximation of discontinuous LCFRS parsing
	TSG compression
	Compressing PTSG to PCFG
	Compressing PDTSG to PLCFRS

	Inducing a TSG from a treebank
	Extracting recurring fragments
	Discontinuous fragments

	Parsing with PLCFRS and PDTSG
	Probabilities and disambiguation
	Reconstructing derivations
	Efficient discontinuous parsing
	Outside estimates
	Non-projective dependency conversion
	Reducing fan-out
	Coarse-to-fine pruning

	Coarse-to-fine pipeline

	Discontinuity without LCFRS
	Experimental setup
	Treebanks and preprocessing
	Unknown words
	Function tags
	Treebank refinements
	Tiger
	WSJ
	Lassy

	Metrics

	Evaluation
	Main results on three languages
	Function tags
	All-fragments vs. recurring fragments
	Effects of pruning
	Without LCFRS
	The role of probabilities
	Previous work

	Conclusion
	References

