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This paper shows a computational learning paradigm to compare and
test theories about language universals. Its main contribution lies in
the illustration of the encoding and comparison of theories about ty-
pological universals to measure the generalisation ability of these the-
ories. In so doing, this method uncovers hidden dependencies between
theoretical dimensions and primitives that were considered indepen-
dent and independently motivated.

1 multilingual computational
modelling of language

Current computational linguistic work shows great interest in ex-
tending successful probabilistic modelling to multilingual approaches.
Many tasks and applications, such as tagging or parsing, are being in-
vestigated in a multilingual perspective. The final goal of this line of
work is to uncover cross-linguistic regularities to automatically extend
new techniques and technologies to new languages, and to make use
of large amounts of data.
Computational modelling can interact with large-scale linguistic

work at other interesting levels. From the point of view of the theory,
the properties of the computational models might shed light on some
of the properties of the generative processes underlying natural lan-
guage. From the point of view of the data, computational models can
be used to develop and test correlations between different aspects of
the data on a large scale. Methodologically, computational models and

Journal of Language Modelling Vol 3, No 2 (2015), pp. 317–344



Paola Merlo

machine learning techniques provide robust tools to test the predictive
power of the proposed generalisation.

Language universals – whether defined as linguistic properties,
observed or very abstract, that are exhibited by all languages or as
statistical implications of pairs of linguistic properties – are at the mo-
ment a topic of great debate. Their nature and even their existence has
been called into question (Dunn et al. 2011) and their general nature
and distribution are being investigated from a formal and cognitive
point of view (Cinque 2005; Cysouw 2010a; Steedman 2011; Culbert-
son et al. 2012; Culbertson and Smolensky 2012; Futrell et al. 2015).

We will specifically concentrate on the quantitative properties of
word order universals (Dryer 1992; Cysouw 2010b; Steedman 2011).
In this debate, it is of great interest to attempt to explain not only
the possible or impossible word orders as attested by typological tra-
ditions, but also their distribution. Data-driven computational models
can help cast light on this question in two main ways. First, through
their formal nature, they can make the assumptions in the proposals
explicit and operational. Second, through the large-scale that is inher-
ently possible with automatic methods, claims can be quantified and
verified not only at the level of language type, but also at the level of
linguistic token, for each individual language.

This paper concentrates on a central methodological point. It will
illustrate how to formalise some of the current proposals for the much
debated Universal 20 (Greenberg 1966) – the universal governing the
linear order of a noun and its modifiers – in such a way that they
can be evaluated and compared quantitatively in a setting where their
ability to generalise to new cases is properly tested. In this respect,
this work shares the goals of Cysouw (2010a), but differently from
these previous proposals of the same nature, the proposed theories
are encoded as faithfully as possible, by using their defined primitives
and operations as features in our models.

2 the facts

One of the most easily observable distinguishing features of human
languages is the order of words: the order of the main grammatical
functions in the sentence, the position of the verb in the sentence,
and the respective order of the modifiers of a noun, among others.
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While there is great variety in the orders, most languages have very
strong preferences for a few or only one order, and, across languages,
not all orders are equally preferred (Greenberg 1966; Dryer 1992).
Greenberg’s universal 20 describes the cross-linguistic preferences for
the word order of elements inside the noun phrase.

Greenberg’s Universal 20
When any or all the items (demonstrative, numeral, and de-
scriptive adjective) precede the noun, they are always found
in this order. If they follow, the order is exactly the same or
its exact opposite.
We can reformulate universal 20 more explicitly (Cinque 2005):

(a) In prenominal position, the order of demonstrative, numeral, and
adjective is Dem>Num>A.

(b) In postnominal position, the order is either Dem>Num>A or
A>Num>Dem.
Some aspects of Greenberg’s formulation have withstood the test

of time, but some others have been found to be too strong. (See, for
example, Dryer’s and Cinque’s large data collections in the cited work.)
On the one hand, a larger sample of languages has shown that two of
the three orders indicated by Greenberg’s as the only possible orders
are indeed among the most frequent ones. On the other hand, larger
samples have also shown that many more orders are possible than
stated in Greenberg’s universal, but with different frequencies (Cinque
2005; Dryer 2006).
Establishing the actual basic facts is not so simple. We will con-

centrate here only on the quantitative aspects and will assume without
argument the results described in the literature that assign certain lan-
guages to certain word orders. In assessing the reliability of the pro-
posed counts, one has to assess the possible sources of errors induced
by sampling. Sampling, in general, is subject to random error and to
bias error. Random error occurs when the size of the sample is not ad-
equate to the complexity of the problem, so that some possible events
are not observed. Greenberg’s sample of languages was probably too
small, and inspections of larger samples have discovered some orders
that looked impossible.
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Bias error occurs when the nature of the sample is biased with
respect to the conclusions one wants to draw. To draw conclusions on
language universals, it is therefore crucial that the sample be repre-
sentative of the true underlying linguistic diversity, for example, as
generated by a posited probabilistic system. The remedy to random
error is to have a sufficiently large number of data points: Dryer’s and
Cinque’s current language collections range in the hundreds. To ad-
dress the problem of bias error, Dryer suggests counting language gen-
era and not individual languages, since some genera are much more
densely populated, and better studied, than others (Dryer 2006).1

Table 1 reports the 24 combinatorially possible orders of the four
elements: N, Dem, Num, Adj and the actual counts that have been pro-
posed in several publications: the first column shows discretised fre-
quencies; the following two columns are Dryer’s (2006) counts by lan-
guage and by genera; and the following column are Cinque’s counts,
as can be deduced from the 2005 paper. In the first column, the discre-
tised frequencies are calculated according to Dryer’s counts of genera.
As can be observed, there are some discrepancies across the different
counting methods and across authors, which have been discussed in
detail in the related publications, but also many points of agreement.
In particular, while the exact numbers sometimes vary, the rank of lan-
guages or genera based on frequencies is almost identical. This obser-
vation indicates that aiming to predict the frequency rank, as opposed
to exact frequency counts, would be more robust across theories and
more robust to new observations. The numerical frequency data are
then transformed into ordered data by a process of discretisation and
then used by a discrete classifier. The discretisations can be done at dif-
ferent levels of granularity. Table 2 shows a two-way, four-way, and
seven-way discretisation. More will be said about this discretisation
later. In what follows, therefore, we investigate how different theo-
ries fare in explaining different levels of frequency of word orders and
how well they generalise this prediction to previously unseen data.

1Dryer (2005, 584) provides the following definition: “A genus is a group
of languages whose relatedness is fairly obvious without systematic comparative
analysis and which even the most conservative “splitter” would accept.”. (An
explanation of genus is also available on WALS online at http://wals.info/
languoid/genealogy.) Examples are such subfamilies of Indo-European as Ger-
manic, Slavic, and Romance languages.
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Table 1: Attested word orders of Universal 20 and their estimated frequencies.
(See the text for more explanation.)

D’s D’s D’s C’s
Discr Lang Gen Freq

Dem Num Adj N V. Freq 74 44 V. many†
Dem Adj Num N Rare 3 2 0
Num Dem Adj N 0 0 0 0
Num Adj Dem N 0 0 0 0
Adj Dem Num N 0 0 0 0
Adj Num Dem N 0 0 0 0

Dem Num N Adj Freq 22 17 Many*
Dem Adj N Num Rare 11 6 V. few (7)
Num Dem N Adj 0 0 0 0
Num Adj N Dem Rare 4 3 V. few (8)
Adj Dem N Num 0 0 0 0
Adj Num N Dem 0 0 0 0

Dem N Adj Num Freq 28 22 Many**
Dem N Num Adj Rare 3 3 V. few (4)
Num N Dem Adj Rare 5 3 0
Num N Adj Dem Freq 38 21 Few (2)
Adj N Dem Num Rare 4 2 V. few (3)
Adj N Num Dem Rare 2 1 V. few

N Dem Num Adj Rare 4 3 Few (8)
N Dem Adj Num Rare 6 4 V. few (3)
N Num Dem Adj Rare 1 1 0
N Num Adj Dem Rare 9 7 Few (7)
N Adj Dem Num Freq 19 11 Few (8)
N Adj Num Dem V. Freq 108 57 V. many (27)

† The exact counts are not provided.
* Cinque mentions European languages and 13 others.
** Ten languages and alternative order for three more.
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Table 2: Two-way (possible or 0), four-way (very frequent, frequent, rare, none,
abbreviated as VF,F,R,0) and seven-way (57,44,22,11,6,3,0) discretisation and
the observed counts based on genera from Dryer’s.

Two-way Four-way Seven-way Dryer’s
Discr Discr Discr Genera

Dem Num Adj N Possible VF 44 44
Dem Adj Num N Possible R 3 2
Num Dem Adj N 0 0 0 0
Num Adj Dem N 0 0 0 0
Adj Dem Num N 0 0 0 0
Adj Num Dem N 0 0 0 0

Dem Num N Adj Possible F 22 17
Dem Adj N Num Possible R 6 6
Num Dem N Adj 0 0 0 0
Num Adj N Dem Possible R 3 3
Adj Dem N Num 0 0 0 0
Adj Num N Dem 0 0 0 0

Dem N Adj Num Possible F 22 22
Dem N Num Adj Possible R 3 3
Num N Dem Adj Possible R 3 3
Num N Adj Dem Possible F 22 21
Adj N Dem Num Possible R 3 2
Adj N Num Dem Possible R 3 1

N Dem Num Adj Possible R 3 3
N Dem Adj Num Possible R 3 4
N Num Dem Adj Possible R 3 1
N Num Adj Dem Possible R 6 7
N Adj Dem Num Possible F 11 11
N Adj Num Dem Possible VF 57 57
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3 some theories

We will compare the descriptive and predictive adequacy of a few of
the proposals that have been put forth to explain Greenberg’s Univer-
sal 20, choosing a few theories that have different properties.
In a paper that has received much commentary (Cinque 2005),

Greenberg’s Universal 20 is derived from independently motivated
principles of syntax organised in a derivational explanation. Based
on data as those shown in the fifth column of Table 1, Cinque re-
marks that there are 24 combinatorially possible orders of the four
elements: N, Dem, Num, Adj. According to Cinque, only 14 of them
are attested in the languages of the world (but see Dryer’s counts in
the same table, Table 1). Some of the 14 orders are unexpected un-
der Universal 20. Cinque proposes that the actually attested orders,
and none of the unattested ones, are derivable from a single universal
order of the basic constructive syntactic operator (the Linear Corre-
spondence Axiom, Kayne 1994), and from independent conditions on
phrasal movement. The Linear Correspondence Axiom first combines
Nouns and Adjectives, then adds Numerals and finally adds Demon-
stratives. Different types of movement can move the merged elements
to different positions in the phrase: all the way to the beginning of
the phrase or only partially. These conditions enable one to consider
some forms of movement as more costly than others and no movement
as the preferred unmarked option. In this way, Cinque’s proposal also
derives the exceptions, and the different degrees of markedness of the
various orders.

In a different proposal, a factorial, but not derivational, explana-
tion is proposed (Cysouw 2010a). Statistical models are used and an
explanation of typological frequencies is produced by the cumulative
combination of various interacting characteristics. The author exper-
iments with various models to see which one better predicts the at-
tested frequencies. Three characteristics are used by all models of the
NP-internal word order: hierarchical structure, noun-adjective order,
and whether the noun is at the phrase boundary. In a further simpli-
fication of the model, the hierarchical structure can be broken down
into less complex features (noun-adjective co-occurrence, demonstra-
tive at the edge of the phrase, and noun at the edge of the phrase).2

2Like Cinque, Cysouw is concerned with demonstrating that the proposed
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This factorial explanation does not provide a generative process that
explains how the different word orders could arise from a common
grammar, but it identifies the predictive properties of the frequency
distributions of word order and their relative importance.

Dryer proposes a factorial explanation based on general principles
of symmetry and harmony (Dryer 2006). Differently from Cinque’s and
Cysouw’s, this proposal does not assign any weights to the factors. The
factors comprise two symmetry principles that describe the closeness
of the modifiers to the noun; a principle of asymmetry that captures
the main observation that prenominal modifiers exhibit fewer alterna-
tives than post-nominal modifiers (also observed by Cinque); a princi-
ple of intra-categorial harmony; and universal 18. Figure 1 spells out
the principles. What is really very important in Dryer’s contribution
are the provided observed frequencies. On the one hand, Dryer shows
that a few of the word orders that Cinque had declared impossible are
actually attested, one of them quite frequently. On the other hand,
it provides frequency counts based on genera and not simply on lan-
guages, based on an independently justified sampling procedure that
factors out influences of language family. These genus-based counts
are used in our study, and are shown in Table 1.

In conclusion, all these theories attempt to describe the very dif-
ferent frequency counts of types of languages by proposing factors
that favour harmonic orders, and that derive the asymmetry between

principles are not limited to explaining Universal 20. To strengthen the generality
of the proposed method, Cysouw discusses how it can also be used to explain the
typology of sentence word order, as it is captured by Greenberg’s Universal 1.
Recall Universal 1: “In declarative sentences with nominal subject and object, the
dominant order is almost always one in which the subject precedes the object.”
This universal holds for 96% of the world’s languages, but it does not model
the finer-grained differences in frequency of the six word order types. Cysouw
proposes a more complex three-feature model. The first feature is pairwise order:
whether the order is SO or OS, VO or OV, SV or VS. The second feature is pairwise
adjacency: for instance, whether S and O are adjacent or not. The third feature
is individual position: for instance, whether S is first, medial, or final. Cysouw
shows that the first two features are less important than the third and that overall
the model has a better fit than universal 1. However, notice that this model
comprises two three-valued features and one binary feature, so it has five degrees
of freedom. These are enough degrees of freedom to simply list all the six possible
word orders of the three S,O,V elements.
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• Symmetry Principle 1
The adjective and numeral tend to occur closer to the noun than the
determiner, when they occur on the same side of the noun.
• Symmetry Principle 2
The adjective tends to occur closer to the noun than the numeral, when
they occur on the same side of the noun.
• Asymmetry Principle
The symmetry principles tend to apply more strongly to prenominal
modifiers than to postnominal modifiers; exceptions to the symmetry
principles will occur only to the postnominal modifiers.
• Greenberg’s Universal 18
When the descriptive adjective precedes the noun, the demonstrative and
the numeral, with overwhelmingly more than chance frequency do
likewise.
• Intra-categorial Harmony
The demonstrative, numeral, and adjective tend to all occurr on the same
side of the noun.

Figure 1:
The five
principles
used in Dryer’s
explanation of
Universal 20.

prenominal and post-nominal modifiers. They all try to fit the fre-
quency distribution of the languages to the models and to compare to
other proposals. In the rest of the paper, we illustrate an encoding and
an automatic learning method to test how well these models predict
the observed distributions of word orders.

4 building predictive models

In this section, we test the generalising ability of some of the different
explanations that have been proposed for Universal 20. The method
will require transforming the three theories into a vectorial represen-
tation, as described below, and then automatically finding the relative
weight of each element in the vector, a process of parameter fitting.
We use the ability to classify new instances in a supervised learning
setting as an indication of the generalising power of the theory. We
compare the three theories described above.
Fitting parameters to a model based on available data gives us a

measure of the descriptive fit of the model to the data, an interesting
measure in itself, but it does not test the power of generalisation of the
model. This is because it is always possible to fit the data if the number
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of parameters in the model is sufficiently large given the amount of
variation to explain. (For a similar point with a different example,
see also Abney 2011.) So the true test of generalisation of a model
cannot lie in showing that all the data is explained if that data was
actually used to determine some aspects of the model. In explaining
Universal 20, what needs to be shown is that the same set of operations
and (markedness) weights that capture the observed data also predicts
new data to a good degree. In practice, the proper procedure requires
fitting the weights on a subset of languages (the training data), and
seeing if the quantitative model so developed predicts the frequency
distribution for test data not seen during training.
The steps of the simple formalisation that we propose here, there-

fore, are as follows:
1. Formalise the properties and operations of a model of word order
as simple primitive features with a set of associated values;

2. Encode each word order as a vector of instantiated primitives de-
fined by the model;

3. Learn the model through a learning algorithm on a subset of the
data;

4. Run the model on previously unseen data to test generalisation
ability.
In the rest of the section, we briefly illustrate the feature-based

formalisation of the linguistic proposals, and describe the experimen-
tal materials and method.
4.1 Materials
The different linguistic proposals are translated into a feature-based
summary description of each of the word orders. This vectorial rep-
resentation of the data is compatible with many different training
regimes and algorithms. Two proposals (Cysouw’s and Dryer’s) are
declarative, and therefore easily transferred in the simple declarative
feature-based framework. Cinque’s model is derivational and requires
the most interpretation to be formalised and translated into features.
We describe here the process to reach this conversion in detail.

In the simplest set up, we code the principles and operations
proposed by Cinque for each word order as a vector of properties,
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a summary that describes each language and its word order. To ex-
plain the frequency distribution of the word orders, Cinque affects
markedness weights to the different types of move operations. In the
computational terminology that will be used below, these weights are
the parameters of Cinque’s model, and this process is a process of
parameter fitting on the available data.

Recall that the salient property of Cinque’s explanation is the
interaction between a fixed universal word order (the Linear Corre-
spondence Axiom) and structure movement operations, with different
markedness weights. A simplified specification of Cinque’s explana-
tion for each word order can be encoded as the values of three merge
operations and the values of two types of move operations, partial
and complete movement. The three merge operations build the struc-
ture linearly, corresponding to the word order. Some word orders
that require merge sequences not allowed by the Linear Correspon-
dence Axiom are encoded as negative data. The move operations
can move elements one step, two steps, that is they can be partial
movement, or all the way to the beginning of the phrase, as com-
plete movement. These two types of move operations can be of sev-
eral kinds, NP-movement, pied-piping, among others. It is crucial
to point out that this is only a model of Cinque’s explanation, lim-
ited only to the discriminating features. For example, the fact that
there are two movement types in the description of each word or-
der does not imply that there are necessarily two movement steps.
There could be more than one partial movement or none. In the
vectorial representation, all partial movements (that is, movements
that do not reach the left edge of the phrase) are reduced to one
value.

The features and the possible values of Cinque’s model are shown
in Figure 2. First, second and third represent the three merge opera-
tions, and their values are the pairs of syntactic part-of-speech-tags
of heads that are being merged (we assume a dependency repre-
sentation for the trees). Partial and complete are the two features
representing the two movements, and their possible values, which
encode the types of movement that Cinque postulates. The values of
this feature are not, encoding the fact that no movement has taken
place, np, encoding the movement of the NP alone, of-who-pp, encod-
ing NP-movement with pied-piping of the picture of who type, and
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Figure 2:
Cinque’s move
and merge

feature vectors.
(See the text for
explanation.)

• Template: < first, second, third, partial, complete, frequency >
• Attributes and Values

– first: AN, DN, ND, NNum, NumN
– second: AD, DA, DNum, NumA, NumD, NumN
– third: AD, AN, ANum, DNum, NumA, NumD
– partial: not, np, of-who-pp, whose-pp
– complete: not, np, of-who-pp, whose-pp
– frequency: very frequent, frequent, rare, none (VF,F,R,No)

• Vectors
AN NumA DNum not not VF
NumN DNum AN not not R
AN DA NumD not not No
DN AD NumA not not No
NumN DNum AD not not No
DN NumD ANum not not No
AN NumA DNum whose-pp not F
AN NumA DNum of-who-pp not R
AN DA NumD whose-pp not No
AN NumA DNum not of-who-pp R
NNum DNum AD not not No
ND NumN ANum not not No
AN NumA DNum whose-pp not F
AN NumA DNum np not R
AN DA NumD not not R
AN NumA DNum np of-who-pp F
AN NumA DNum not of-who-pp R
AN NumA DNum of-who-pp whose-pp R
AN NumA DNum np not R
AN NumA DNum whose-pp np R
AN NumA DNum np np R
AN NumA DNum np whose-pp R
AN NumA DNum whose-pp np F
AN NumA DNum whose-pp whose-pp VF
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whose-pp, encoding NP-movement with pied-piping of the whose pic-
ture type.3

The values in the last column are the frequency property of the
word order, the dependent variable we are trying to explain. We dis-
cuss them below.

Recall that Cysouw proposes a factorial explanation, where fac-
tors are preferences of directionality and surface proximity. Cysouw
shows that three factors are sufficient to achieve a good fit to the data,
and argues that a model with fewer parameters should be preferred to
a model with more parameters: whether the Noun is near the edge of
the Noun phrase or not, whether the Demonstrative is near the edge
or not, and whether the Adjective is near the Noun. These are surface
observed properties that can be encoded directly in the vector of fea-
tures that describes each word order. The resulting features, feature
values, and vectors are shown in Figure 3.

Dryer’s factorial explanation is based on general principles of
symmetry and harmony, and does not use any weighing coefficients.
Again, these are observed properties that can be encoded directly in
the vector of features that describes each word order. The resulting
features, feature values, and vectors are shown in Figure 4.
The goal attribute, the attribute we are trying to predict, is the

frequency of a given word order. Since the actual counts of languages
are still under discussion, and therefore are not entirely reliable, it is a
better representation of the current state of reliability of the frequency
counts to group them in frequency classes. We can group the languages
in different frequency groups, by discretising the frequencies in differ-
ent ways: either as simply possible or impossible (two values), or as
having different levels of frequency. Table 2 shows the different dis-
cretisaton values and how they compare to Dryer’s counts based on
genera. We defined four and seven discrete values, based on obser-
vation of the groupings of the actual numerical values. Figures 2, 3,

3Many instances of wh-movement involve pied-piping. Pied-piping occurs
when a fronted wh-word pulls an entire encompassing phrase to the front of the
clause. Cinque indicates that picture of who pied-piped movement moves a cluster
of the form [XP[NP]], while the whose picture type moves [NP[XP]]. The names
refer to the two constructions in questions such as Whose pictures are you looking
at? and relative clauses such as Mary, your picture of whom/whose picture Tom
likes, is very nice.
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Figure 3:
Cysouw’s

feature vectors.
(See the text

for explanation.)

• Template: < NA-adjacency, N-edge, Dem-edge, frequency >
• Attributes and Values

– NA-adjacency: Y, N
– N-edge: Y, N
– Dem-edge: Y, N
– frequency: very frequent, frequent, rare, none (VF,F,R,No)

• Vectors
Y Y Y VF
Y Y Y R
Y Y N No
N Y N No
N Y N No
N Y N No
Y N Y F
Y N Y R
Y N N No
Y N N R
N N N No
N N N No
Y N Y F
N N Y R
N N N R
Y N N F
Y N N R
Y N N R
N Y N R
N Y N R
N Y N R
N Y Y R
Y Y N F
Y Y Y VF
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• Template:
<symmetry1, symmetry2, asymmetry, U18, harmony, frequency>
• Attributes and Values

– symmetry1: Y, N
– symmetry2: Y, N
– asymmetry: Y, N
– U18: Y, N
– harmony: Y, N
– frequency: very frequent, frequent, rare, none (VF,F,R,No)

• Vectors
Y Y Y Y Y VF
Y N N Y Y R
N Y N Y Y No
N Y N Y Y No
N N N Y Y No
N N N Y Y No
Y Y Y Y N F
Y Y Y N N R
N Y N Y N No
Y Y Y N N R
N Y N N N No
Y N N N N No
Y Y Y Y N F
Y N Y Y N R
N Y Y Y N R
Y Y Y Y N F
N Y Y N N R
Y Y Y N N R
N N Y Y Y R
N Y Y Y Y R
N N Y Y Y R
Y N Y Y Y R
N Y Y Y Y F
Y Y Y Y Y VF

Figure 4:
Dryer’s
feature vectors.
(See the text
for explanation.)
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and 4 show a four-way discretisation into very frequent (VF), frequent
(F), rare (R), and unattested (No). Notice that the fact that we also en-
code unattested word orders means we explicitly represent negative
data.
We can define the problem in two slightly different ways, as a

classification of types or a classification of tokens. In classifying lan-
guage types, we try to assign each language type to a correct frequency
value. Each type to be classified is unique, which yields 24 data points,
for this universal. In developing a model based on a subset of the data,
we are guaranteed that the new test data will be completely unseen.
In classifying tokens, we construct an experimental situation

which corresponds to the real sampling. Each language type is rep-
resented by a variable number of languages. Some of the types are
represented by many languages (those that are frequent), in our rep-
resentation many instances of a given feature vector, other types will
be represented by fewer languages. These differential frequencies are
represented in the training by repeating each example the number of
times indicated in Dryer’s frequency counts by genera. So, for example,
the vector that represents the word order N Dem Adj Num, attested
in four genera, is repeated four times. Unattested word orders will
be explicitly represented as negative data. (That is, unattested word
orders are explicitly represented by one training exemplar.)4 This set
up has many more data points (214 in total) and it could happen that
the test set contains examples of word orders that have also been seen
at training time.

Figure 5 summarises the experimental setup. The three predictive
regimes, ten-fold cross-validation, and the learning methods will be
explained in the next section.
4.2 Models
Once the data are encoded in an appropriate way, we need to re-
produce Cinque’s way of assigning markedness values (fitting the
weights), done by hand, or Cysouw’s way of fitting the model to the

4This is a representational choice that allows us to represent negative data,
as is common in supervised learning. Conceptually, this amounts to giving unat-
tested word orders a (negative) observation in the training set. This means that
we consider unattested data as data that we have not yet seen and that belong
to a qualitatively different frequency class from rare data.
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• Type-based encoding: each language type as positive or negative piece of
data, possible or impossible word order.
• Token-based encoding: token-based classification encodes frequency of
languages (notion of markedness), following Dryer’s frequency counts
based on genera, as size of sample in the training set.
• Ten-fold cross-validation
• Three predictive regimes:

– two-way: possible, impossible;
– four-way: very frequent, frequent, rare, unattested;
– seven-way: two levels of very frequent, two levels of frequent, two
levels of rare; one for unattested.

Figure 5:
Summary of
materials and
method.

data. Cinque’s and Cysouw’s methods consist, manually or automat-
ically, in assigning weights to reproduce the observed frequencies of
possible and impossible values, with as close a fit as possible.

We will then test the predictive ability of these weighted expla-
nations on data not seen at training time. In this set up, formally,
we say that a computer program learns from experience E with re-
spect to some task T and performance measure P, if its performance
at task T , as measured by P, improves with E. In our case, the train-
ing experience E will be provided by a database of correctly classified
language types or tokens; the task T consists in classifying word or-
der types or tokens unseen in E into predetermined frequency classes;
and the performance measure P will be defined as the percentage of
types or tokens correctly classified. This learning paradigm is called
supervised learning, because of the training phase, in which the algo-
rithm is provided with examples and the correct answers. In the testing
phase, these rules or probabilities are applied to additional data, not
included in the training phase. The accuracy of classification on the
test set indicates whether the rules or probabilities developed in the
training phase are general enough, yielding good test accuracy, or are
too specific to the training set to generalise well to other data.

There are numerous algorithms for learning the weights of a
model in a supervised setting, and many regimes for training and
testing such algorithms. In the following experiments, we use two
probabilistic learning algorithms – Naive Bayes and the Weighted Av-
erage One-dependence Estimator – and n-fold cross-validation as the
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Figure 6:

Naive Bayes
classifier.

Assume target function f : X → V , where each instance x is described by
attributes 〈a1, a2 . . . an〉.
Most probable value of f (x) is:

v = argmax
v j∈V

P(v j |a1, a2 . . . an), (1)

v = argmax
v j∈V

P(a1, a2 . . . an|v j)P(v j)

P(a1, a2 . . . an)
(2)

= argmax
v j∈V

P(a1, a2 . . . an|v j)P(v j). (3)

Naive Bayes assumption:
P(a1, a2 . . . an|v j) =

∏
i

P(ai |v j) (4)

Naive Bayes classifier: vNB = argmax
v j∈V

P(v j)
∏

i

P(ai |v j)

training and testing protocol (Russel and Norvig 1995; Webb et al.
2005).

The Naive Bayes algorithm is based on Bayes theorem and is de-
fined in Figure 6. In this method, the objective of training is to learn
the most probable word order type given the probability of each vector
of features (see equation (1) in Figure 6). This probability is decom-
posed, according to Bayes rule, into the probability of the features
given the word order and the prior probability of the word order itself
(see equations (2) and (3) in Figure 6).
This method is chosen because it is a simple generative proba-

bilistic model. Its generative probabilistic aspect provides a mathe-
matically well-founded framework to predict frequencies and com-
bine attributes. In a generative probabilistic setting, the typological
frequencies are the expression of an underlying generative probabilis-
tic model – the probabilistic independent variables – that give rise
to the observed dependent variable – the frequency. The simplicity of
the model has two justifications: on the one hand, the simplest models
provide the strongest theories, by Occam’s razor; on the other hand,
a simple model allows a clear interpretation of the outputs and of the
results.
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In a classification task, we want to predict the class, in our case
the frequency of the word order (for example, very frequent, frequent,
rare, none), based on some descriptively pertinent features of the prob-
lem. The most noticeable feature of Naive Bayes is the very strong
conditional independence assumption across features (see equation
(4) in Figure 6). In our case, this assumption represents the intuition
that the principles used to build word orders are independently mo-
tivated, and therefore they should be able to combine freely. This is
a strong assumption that has important theoretical consequences. To
verify its validity, then, we also experimented with a more complex
model where properties are not assumed to be independent of each
other. The model, called an averaged weighted one-dependence es-
timator (WAODE), assumes dependence from only one attribute at a
time, taking the weighted average of the results of all the attributes.
To avoid excessive dependence of the results on a specific parti-

tion of the data, we use cross-validation. Cross-validation is a training
and testing protocol in which the data is randomly partitioned into n
parts, and then the learner is run n times, using n − 1 partitions for
training and the remaining one for testing. At each run of the learner,
a different partition is chosen for testing. The performance measure is
averaged over all n experiments.

Finally, the results will be compared to an uninformed baseline
which consists in assuming that all word orders belong to the most
frequent class. The baseline is helpful in indicating whether the models
learn anything beyond mere frequency effects.

5 results and discussion

We are now in a position to run the experiment. We run a 10-fold
cross-validation, using a Naive Bayes classifier. We use the widely-
used, open-source Weka data mining software.5 Table 3 shows the
results of the experiment, as the proportion of correct answers (per-
cent accuracy).6 In comparing these numbers, the discussion in the
introduction should be borne in mind which indicated that models

5http://weka.wikispaces.com/
6As usual, accuracy is defined as the number of correctly classified items

over the total number of items.
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Table 3:

Percent (rounded accuracy)
of languages or language
types classified in the right
frequency class. Italics
indicate lower than
baseline results.

Naive Bayes
Type (24) Token (214)

Two Four Seven Two Four Seven
Cinque 88 58 42 97 87 89
Cysouw 67 21 66 93 90 68
Dryer 92 54 63 97 93 71
Baseline 71 50 38 97 47 28

with more parameters have more degrees of freedom and can fit the
data better, but at the cost of greater complexity. At comparable per-
formance levels, then, smaller models are usually preferred. By the
same reasoning, small models that achieve lower performance than
their competitors can often improve results by adding factors. As can
be seen by the accuracy results, the models’ generalisation is far from
perfect, at the level of language types (shown in the left panel). In the
binary classification, possible or impossible languages, almost 10% of
the data are incorrectly classified. See for example the results on two-
way type-based classification of both Cinque and Dryer. Some of the
models of type-based classification have performances below or equal
to the baseline: the model does not learn. This result illustrates the les-
son that models need to be tested on external data; conclusions based
on the data used to develop the models are often overly optimistic.
Token-based classification yields better results, especially in the four-
way classification, with a small number of factors.
5.1 Analysis of results
We concentrate now on a more detailed analysis of the models, start-
ing with Cinque’s model. The aggregated accuracy results shown in
Table 3 can be disaggregated into more informative subcases, by look-
ing at precision and recall by frequency type and by looking at confu-
sion matrices.7 All the mistakes, as indicated by the results per class
and by the confusion matrix, shown in Tables 4 and 5, fall in the fre-
quent, rare, and none category. Interestingly, most mistakes tend to

7As usual, we use the measures of precision and recall. Precision is the num-
ber of correctly classified items over the total number of items proposed by the
algorithm as belonging to a given class; recall is the number of correctly classified
items over the total number of items that should have been found in a given class;
and F is their harmonic mean. Confusion matrices indicate the correct output by
rows and the model’s predictions by columns.
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Naive Bayes Results
Precision Recall F

Very Frequent 91 100 95
Frequent 85 86 85
Rare 91 57 70
None 56 71 62

Table 4:
Percent precision, recall
and F measure
by frequency class
of token-based Naive Bayes
classifier for Cinque’s
model.

Confusion Matrix
Very Frequent Frequent Rare None

Very Frequent 101 0 0 0
Frequent 10 61 0 0
Rare 0 11 20 4
None 0 0 2 5

Table 5:
Confusion Matrix of
token-based Naive Bayes
classifier for Cinque’s
model.

classify the tokens in a class of higher frequency than the correct one;
only four of the rare cases are mistakenly classified as unattested. This
shows that the attributes associated with frequent events dominate the
classification.

The Naive Bayes confusion matrix by frequency class indicates
that very frequent orders and unattested word orders are overesti-
mated (Recall > Precision), while frequent and rare word orders are
underestimated (Precision > Recall). The fact that the F-measure de-
creases with the frequency of the class indicates that the model is not
a good predictor of cases that are rarely attested in the training data.
Even more informative are the actual probabilities learnt by the

model. If we look at the joint probability distribution of the attributes
and their values, shown in Table 6, we can see that there is a very
strong association among one value of the three merge attributes (first,
second, and third) and one class of frequency: first:AN, second:NumA,
and third:DNum are indicators of the difference between all three at-
tested frequency classes and the unattested one. The attributes com-
plete and partial are not as informative about the frequency distinc-
tions.

We can also calculate the probabilities of different aspects of the
model by marginalising out some of the details of the distribution.
If we marginalise out the values by frequency, we find that partial
and complete movement have very different distributions, as shown
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Table 6:

Cinque’s joint
probability
Naive Bayes

tables.

Very Frequent Frequent Rare None

First

AN 0.96 0.95 0.85 0.25
DN 0.01 0.013 0.025 0.25
ND 0.01 0.013 0.025 0.17
NNum 0.01 0.013 0.025 0.17
NumN 0.01 0.013 0.075 0.17

Second

AD 0.01 0.012 0.24 0.15
DA 0.01 0.012 0.097 0.23
DNum 0.01 0.012 0.073 0.23
NA 0.95 0.93 0.76 0.08
NumD 0.01 0.012 0.24 0.15
NumN 0.01 0.012 0.24 0.15

Third

AD 0.01 0.012 0.24 0.23
AN 0.01 0.012 0.073 0.08
ANum 0.01 0.012 0.24 0.23
DNum 0.95 0.93 0.76 0.08
NumA 0.01 0.012 0.24 0.15
NumD 0.01 0.012 0.097 0.23

Partial
not 0.43 0.013 0.28 0.64
np 0.009 0.29 0.38 0.09
of-who-pp 0.009 0.013 0.20 0.09
whose-pp 0.55 0.68 0.13 0.18

Complete
not 0.43 0.53 0.46 0.73
np 0.009 0.16 0.15 0.09
of-who-pp 0.009 0.29 0.15 0.09
whose-pp 0.55 0.013 0.23 0.09

Table 7:
Probability distributions of feature

values by type of movement.

not np of-who-pp whose-pp
Partial 0.34 0.19 0.08 0.39
Complete 0.54 0.10 0.13 0.22

in Table 7.8 If we sum up the probabilities and compare all types
of movement operations (the last three columns) to no movement,
we find that the partial movement operation is twice as probable
as no movement, while complete movement is a little less probable
than no complete movement. This shows that while no movement
is preferred to complete movement, as predicted by Cinque’s the-
ory, partial movement is more probable than no partial movement,
and also more probable than complete movement. These two results

8Recall that movement of the pictures of who type is coded as of-who-pp and
whose picture is coded as whose-pp.
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Very Frequent Frequent Rare None
Y N Y N Y N Y N

NA-adjacency 0.99 0.01 0.99 0.01 0.40 0.60 0.33 0.67
N-edge 0.99 0.01 0.16 0.84 0.49 0.51 0.55 0.45
Dem-edge 0.99 0.01 0.55 0.45 0.51 0.49 0.11 0.89

Table 8:
Cysouw’s joint
probability
Naive Bayes
tables.

Naive Bayes Results
Precision Recall F

Very Frequent 99 100 99
Frequent 83 100 91
Rare 81 60 69
None 0 0 0

Table 9:
Percent precision, recall and F measure by
frequency class of token-based Naive Bayes
classifier for Cysouw’s model.

are not expected, as complete movement is supposed to be easier
than partial movement, so that one could expect it to occur more
often.

We can also observe how partial and complete movement types
pattern across frequency levels. There are different types of frequent
word orders, and even more types of rare word orders. If we look at
the distribution of types of movement for frequent and rare word or-
ders, we see the patterns shown in the two central columns (Frequent,
Rare) of the last two sets of rows (Partial, Complete) in Table 6. Par-
tial movement is not always more frequent and complete movement
is not always less frequent. The noticeable differences in distributions
indicate that all these distinctions (partial, complete) and their four
levels are needed for accurate classification.

The same analysis of results can be applied to Cysouw’s model. In
Table 8, we can see that NA-adjacency distinguishes very frequent and
frequent word orders from rare and unattested word orders, but does
not distinguish within these two groups; N-edge distinguishes all four
classes; Dem-edge makes a three-way distinction, it distinguishes very
frequent, from frequent and rare, from unattested. The most promi-
nent results shown in the disaggregated precision and recall measures
by class concerns unattested word orders, as indicated in Table 9.
Cysouw’s model does not appear to be able to predict this frequency
class. The confusion matrix, shown in Table 10, indicates that unat-
tested word orders are confused with rare word orders, but also with
frequent word orders. Rare word orders also show several errors, con-
fused with frequent and, in two cases, with very frequent word orders.
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Table 10:

Confusion Matrix
of Naive Bayes
classifier for

Cysouw’s model.

Very frequent Frequent Rare None
Very frequent 101 0 0 0
Frequent 0 71 0 0
Rare 2 12 21 0
None 0 2 5 0

Table 11:
Dryer’s joint
probability
Naive Bayes

tables.

Very Frequent Frequent Rare None
Y N Y N Y N Y N

Symmetry1 0.99 0.01 0.84 0.16 0.62 0.38 0.22 0.78
Symmetry2 0.99 0.01 0.99 0.01 0.54 0.46 0.55 0.45
Asymmetry 0.99 0.01 0.99 0.01 0.92 0.08 0.11 0.89
U18 0.99 0.01 0.99 0.01 0.65 0.35 0.67 0.33
Harmony 0.99 0.01 0.16 0.84 0.49 0.51 0.55 0.45

This model makes fewer mistakes, but appears to have a higher degree
of confusion across frequency types than Cinque’s model.
The analysis of Dryer’s model shows different patterns of dis-

tributions and errors from the other two models. If we look at the
joint probability distributions associated with the attributes in Dryer’s
model, shown in Table 11, we can observe that the principle Sym-
metry1 discriminates all frequency classes, while neither the princi-
ples Symmetry2, Asymmetry nor U18 make a clear distinction between
very frequent and frequent word orders, and between rare and unat-
tested word orders. The Harmony principle, on the other hand, does
discriminate among all frequency classes, often in the opposite direc-
tion from the principle Symmetry1. The most surprising observation
that emerges from these probabilites is that frequent word orders are
observed to be frequent, despite the fact that they are disharmonic
(P=0.17 for the probability of exhibiting the Harmony property for
frequent word orders, compared to P=0.87 for those not exhibiting
this property). Table 12 shows that this model is affected by frequency
effects, as shown by the fact that frequent word orders are overesti-
mated (Precision> Recall), while rare word orders are underestimated
(Precision < Recall). Table 13 shows that there are twice as many er-
rors confusing more frequent with less frequent word orders than the
reverse (11 vs. 5). The table also shows that frequent and rare orders
are confused, and that rare and unattested orders are also confused.

These analyses of the errors show that, once tested in a precise
learner, the attributes that define these three theories do not always
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Naive Bayes Results
Precision Recall F

Very Frequent 100 100 100
Frequent 94 84 90
Rare 73 86 79
None 86 86 86

Table 12:
Percent precision, recall,
and F measure by
frequency class of
token-based Naive Bayes
classifier for Dryer’s model.

Very frequent Frequent Rare None
Very frequent 101 0 0 0
Frequent 0 61 10 0
Rare 0 4 30 1
None 0 0 1 6

Table 13:
Confusion Matrix of Naive
Bayes classifier for Dryer’s
model.

behave as expected. For example, in Cinque’s model, complete move-
ment is less likely than partial movement, while in Dryer’s model
some of the attributes do not discriminate the typological frequency
classes.9 Also, all the models make mistakes when used predictively.
Because the Naive Bayes model is predicated on a strong independence
assumption of the attributes, we turn to verifying if this assumption is
valid for our data.
5.2 Validating the independence assumption
As a control of the independence assumption in the Naive Bayes
model, we also learn the data with a probabilistic classifier that relaxes
the strong independence assumption. The model, called an averaged
weighted one-dependence estimator (WAODE), assumes dependence
from only one attribute at a time, taking the weighted average of all
the possible dependencies. What is relevant here is that this consti-
tutes a minimally different model from a Naive Bayes classifier, so that
only the assumption of independence of attributes is changed across
the two models. For Cinque’s and Dryer’s models, results are much
better, as shown in Table 14. In particular, the classifiers no longer
mistake systematically the frequent word orders, as shown in Tables
15, 16, and 17, reporting the confusion matrices. However, here again
the accuracy, while very high, is not perfect. This demonstrates that
a true separate test set is needed to assess the real generality of the

9 I thank one of the reviewers for pointing out, correctly, that this result actu-
ally means that Dryer’s model could have fewer attributes, hence could be made
more economical, without loss in predictive power.
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Table 14:

Percent of languages
classified in the right
frequency class, for a
token-based four-way

classification.

WAODE classifier Naive Bayes
Precision Recall F Acc Acc

Cinque 94 93 93 93 87
Cysouw 87 90 88 90 90
Dryer 96 96 96 96 93

Table 15:
Confusion Matrix of
WAODE classifier for

Cinque’s model.

Very frequent Frequent Rare None
Very frequent 101 0 0 0
Frequent 0 71 0 0
Rare 0 10 23 1
None 0 0 2 5

Table 16:
Confusion Matrix of
WAODE classifier for

Dryer’s model.

Very frequent Frequent Rare None
Very frequent 101 0 0 0
Frequent 0 71 0 0
Rare 0 7 28 0
None 0 0 1 6

Table 17:
Confusion Matrix of
WAODE classifier for
Cysouw’s model.

Very frequent Frequent Rare None
Very frequent 101 0 0 0
Frequent 0 71 0 0
Rare 1 12 21 0
None 0 2 5 0

proposed models. Cysow’s model, on the other hand, has the same ac-
curacy (and same confusion matrix) in the two models, which shows
that the parameters in this model are indeed independent.
The fact that a classifier that makes weaker independence as-

sumptions about its attributes yields better performance than Naive
Bayes, which assumes conditional independence of the attributes, in-
dicates that the attributes are not independent. These attributes are
supposed to be the primitive, independently motivated – in a differ-
ent sense of the word independent – operations and properties of the
different linguistic proposals that give rise to the different word or-
ders. Finding a statistical dependence among them indicates that part
of the explanation of the data is given by the interaction of the factors,
interaction that cannot be independently motivated, as it is specific to
these data. This means that part of the explanation provided by the
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linguistic models rests on interactions other than those operations that
can be justified on general theoretical grounds.

6 conclusions

This paper has shown in detail how simple computational learning
paradigms can help test and compare theories about universals. The
process of finding probabilities automates and makes mathematically
precise the assignment of weights that we find in proposals about lan-
guage universals, but does not change the logic of these proposals.
The added value of this procedure is two-fold. On the one hand, we
use a mathematically well-defined probabilistic framework, so that
combination of factors, ranking, and optimisation processes are well-
defined. On the other hand, the evaluation rests on the use of unseen
data, so that the quantitative results are a measure of generalisation.
This method, then, constitutes a well-defined procedure to estimate
the weights of the operations and aspects of themodels and to compare
their generalisation capabilities, with sometimes interesting results.
For example, we uncover the fact that the properties of the models
are interdependent, and hence not theoretically fully independently
motivated. Future work lies in developing more accurate models for
more complex or more comprehensive problems.
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