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The frequency of intensional and non-first-order definable operators
in natural languages constitutes a challenge for automated reasoning
with the kind of logical translations that are deemed adequate by for-
mal semanticists. Whereas linguists employ expressive higher-order
logics in their theories of meaning, the most successful logical rea-
soning strategies with natural language to date rely on sophisticated
first-order theorem provers and model builders. In order to bridge the
fundamental mathematical gap between linguistic theory and compu-
tational practice, we present a general translation from a higher-order
logic frequently employed in the linguistics literature, two-sorted Type
Theory, to first-order logic under Henkin semantics. We investigate al-
ternative formulations of the translation, discuss their properties, and
evaluate the availability of linguistically relevant inferences with stan-
dard theorem provers in a test suite of inference problems stated in
English. The results of the experiment indicate that translation from
higher-order logic to first-order logic under Henkin semantics is a
promising strategy for automated reasoning with natural languages.

1 introduction

One of the big challenges for applying automated inference to natural
language input comes from a stark discrepancy in the preferred logical
languages in theoretical semantics on the one hand and in computa-
tional semantics on the other. Theoretically-minded linguists custom-
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arily employ expressive higher-order logics in their theories of mean-
ing in order to elegantly account for important and intricate features
of the human language such as intensionality and generalized quan-
tifiers. In contrast to these established linguistic theories, the most
successful logical reasoning strategies with natural language rely on
theorem provers and model builders for first-order logic. Advanced
and sophisticated theories of meaning thus seem entirely out of reach
for applications of automated reasoning, and any hope for adequate
logic-based reasoning with language may seem doomed even before
we start to consider additional challenges such as the necessary inte-
gration of world knowledge and discourse pragmatics.
To cope with the discrepancy, previous work by Bos and Markert

(2006) on applying first-order inference tools to natural language in
part approximated intensions and higher-order quantification in first-
order logic, and in part ignored their role in language. Of course, this
strategy restricts the fragment of natural language that can be treated,
and it forces computational semanticists to recast the theories of for-
mal linguists in a different logical language. Analyses of intensional
contexts in terms of possible worlds can be simulated in first-order
logic by adding worlds to the first-order structure (Lewis 1968), but
some generalized quantifiers such as ‘most’, when given a plausible
formal definition of their meaning, can be shown not to be express-
ible in first-order logic (Barwise and Cooper 1981).

However, on second glance, all hope is not lost for wielding the
higher-order descriptions of formal semanticists in computational en-
vironments in a more direct, systematic and comprehensive fashion.
A standard approach to automated inference with higher-order logic
outside of linguistics exploits a reduction to first-order logic that is
complete for Henkin semantics, a semantics for higher-order logic that
is weaker than the standard semantics, but for which complete proof
systems exist. In this paper, we explore the application of this idea to
natural language input, starting our inferencing toolchain with logical
representations for natural language sentences couched in two-sorted
Type Theory (Ty2, Gallin 1975), one of the standard higher-order log-
ics favored by formal semanticists.

The inferencing architecture we will introduce thus avoids an
error-prone and ad-hoc case-by-case approximation of higher-order
phenomena that requires a separate verification of the adequacy of
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each hand-encoded solution. Instead reasoning starts with the original
higher-order representations of linguists, which are reduced to first-
order logic by a systematic translation with well-understood proper-
ties. Rather than being tailored to specific linguistic applications, the
present proposal provides a general translation of full higher-order
logic, and the fine-grained semantic representations of the formal se-
mantics literature are accepted as input without any modification.
This means that higher-order representations of challenging natural
language facts can be developed independently of implementations in
formalisms familiar to semanticists without having to worry about a
possible manual reduction to first-order logic, and the original rep-
resentations may then serve as input to automated reasoning. Since
the semantics of higher-order logic is preserved in the translation pro-
cess (in a sense to be elucidated shortly), the first-order translation is
guaranteed to be adequate for any input.
We begin by defining a Henkin semantics for Ty2 and illustrating

how it differs from its standard semantics, arguing that Henkin se-
mantics is not only formally interesting but also adequate for reason-
ing with natural language. After defining two translations of different
logical strength from higher-order logic to first-order logic and de-
scribing their mathematical properties, we assess the practical value
of the general strategy outlined above with a test suite of natural-
language inference problems that focuses on phenomena that have
figured prominently in linguistics. Test items that encode reasoning
problems in natural language are translated into Ty2 under standard
semantic analyses derived from Montague’s seminal PTQ fragment of
English (Montague 1973), and from there into first-order logic by our
Henkin-complete translation function. We then apply standard first-
order inference tools to evaluate the feasibility of automated reason-
ing on the resulting first-order translations.

In Section 2, we introduce the formal definition of Henkin seman-
tics and argue that it provides much of the proof-theoretic strength
needed to formalize linguistically relevant natural language infer-
ences. Section 3 defines a systematic translation from Ty2 to first-order
logic and its properties. Section 4 is devoted to the evaluation of the
approach, presenting a grammar fragment with meaning postulates,
the test suite, and the results of our experiments. In the remaining sec-
tions we discuss related work and future perspectives. The appendix
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contains axioms for the translations, essential proofs of their prop-
erties, meaning postulates for lexical items in our grammar, and the
test suite.

2 henkin semantics for ty2
Validity in first-order logic is semi-decidable, while validity in higher-
order logic is not. It follows that there can be no computable transla-
tion from higher-order logic to first-order logic that is both sound and
complete for standard semantics. However, Henkin (1950) showed
that higher-order logic can be given a natural semantics such that the
valid formulae are exactly the theorems of a certain formal calculus.
As all semi-decidable problems are reducible to first-order theorem
proving, the task of proving higher-order theorems for Henkin seman-
tics can in principle be reduced to first-order theorem proving.

While not every higher-order tautology is valid for Henkin se-
mantics, we will demonstrate that certain linguistically interesting
higher-order theorems that are not expressible in first-order logic in-
deed are. This observation subsumes, for instance, many natural infer-
ences licensed by the quantifier ‘most’, which is undefinable in first-
order logic.
2.1 Ty2
We assume two-sorted Type Theory (Ty2), a standard language for
formalizing semantic analyses for natural language (see, e.g., Groe-
nendijk and Stokhof 1982), as representation language.

Classical type theory as formulated by Church (1940) has only
two basic types, e for entities and t for truth values (ι and o in Church’s
notation). Ty2 has two basic types apart from t, namely e for entities
and s for possible worlds. Since classical type theory consists of those
expressions of Ty2 in which types containing s do not occur, our trans-
lation below can also be applied to analyses in classical one-sorted
higher-order logic.

Let us first define the syntax of Ty2, and Henkin semantics. The
presentation essentially follows Gallin (1975).
Definition 1. Types is the smallest set such that:

• s, e, t ∈ Types,
• if σ,τ ∈ Types, then 〈στ〉 ∈ Types.
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t is the type of the truth values true and false, s is the type of
possible worlds, and e the type of entities. 〈στ〉 is the type of func-
tions mapping objects of type σ to objects of type τ. We let cn be an
enumeration of the words over some finite alphabet.
Definition 2 (Syntax of Ty2). The set LTy2 of Ty2 terms is the smallest
set such that:

• for every type τ and every n ∈ N, xn
τ ∈ LTy2 (variables),

• for every type τ and every n ∈ N, cn
τ ∈ LTy2 (constants),

• if α〈στ〉 and βσ are in LTy2, then (αβ)τ is in LTy2 (function applica-
tion),

• if ατ is in LTy2, then (λxn
σατ)〈στ〉 is in LTy2 for every n ∈ N (lambda

abstraction).
For every type σ, the constants ∀̇σ〈〈σt〉t〉 (universal quantifier over

objects of type σ), ∃̇σ〈〈σt〉t〉 (existential quantifier), ισ〈〈σt〉σ〉 (choice oper-
ator), and ≡̇σ〈σ〈σt〉〉 (equality) are constants of LTy2.1 Moreover, ¬̇〈t t〉,
∧̇〈t〈t t〉〉, ∨̇〈t〈t t〉〉 and →̇〈t〈t t〉〉 are constants of LTy2. The dots are intended
to prevent confusion with the corresponding logical symbols of first-
order logic. Furthermore, for all types σ,τ,ρ, we assume the combi-
nator symbols Iσ〈σσ〉, Kσ,τ

〈σ〈τσ〉〉, and Sρ,σ,τ
〈〈ρ〈στ〉〉〈〈ρσ〉〈ρτ〉〉〉. These are all logical

constants. In addition, there is a countably infinite supply of non-logical
constants for every type.

As the definition indicates, we write α,β , ... for meta-variables for
terms, c for meta-variables for constants, and σ,τ for meta-variables
for types. Terms of the form (λxα) are called lambda abstracts.

Wewill also needweaker versions of Ty2 that contain fewer terms:
Definition 3 (Restrictions of Ty2). Let C be a non-empty set of vari-
ables, constants and lambda abstracts. The language L CTy2, the restriction
of Ty2 to C , is the smallest set such that:

• C ⊆L CTy2,
• whenever α ∈ C , then every sub-term of α is also in L CTy2,
• if α〈στ〉 and βσ are in L CTy2, then (αβ)τ is in L CTy2 (function applica-
tion).

1The superscript types are regarded part of the constants’ names. Generally,
we formalize polymorphic constants as families of constants whose names con-
tain the type parameters.
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Following standard practice in formal semantics, we employ some
abbreviations and conventions that make Ty2 terms look more similar
to first-order formulae: Types are omitted where redundant. ∀xσ and
∃xσ denote ∀̇σλxσ and ∃̇σλxσ, respectively. Variables are often repre-
sented by letters other than x , and without a number superscript. In
particular, variables of type s are often denoted by w, and variables
over propositions, properties and other higher-order objects by P or
Q. Functional application is written in an ‘uncurried’ functional nota-
tion: P(x , y(z)) stands for ((P x)(yz)). Logical constants such as →̇ and
≡̇ are rendered in infix notation.
2.2 Henkin semantics
Henkin semantics was originally introduced by Henkin (1950) for one-
sorted type theory, but the generalization to Ty2 is straightforward
(Gallin 1975, p. 59). We will use a more general variant in which the
universes for higher types may be empty, which will be needed for a
weak version of our translation.
Definition 4. A frame D is a collection of mutually disjoint sets
{Dσ}σ∈Types such that:
1. De, Ds ̸= ;,
2. Dt ⊆ {T, F},
3. for 〈στ〉 ∈ Types, D〈στ〉 is a (possibly empty) set of functions from Dσ

to Dτ.
An L CTy2-assignment v with respect to a frame D is a mapping from

V C , the variables ofL CTy2, into the domain of D such that variables of type
σ are mapped to elements of Dσ.2 An L CTy2-interpretation I is a mapping
from the constants of L CTy2 to D such that constants of type σ are mapped
to elements of Dσ, and, for every type σ, the following conditions hold:
1. If ∀̇σ ∈ L CTy2, then I (∀̇σ)(x) = T if and only if x(y) = T for every

y ∈ Dσ.
2. If ≡̇σ ∈ L CTy2, then I (≡̇σ)(x)(y) = T if and only if x= y (x,y ∈ Dσ).
3. If ¬̇ ∈ L CTy2, then I (¬̇)(x) = T if x= F and F if x= T .
4. If ∧̇ ∈ L CTy2, then I (∧̇)(x)(y) = T if and only if x= y = T .
2Note that L CTy2-assignments w.r.t. D only exist when Dτ ̸= ; for all xn

τ ∈ C ;
mutatis mutandis, the same holds for interpretations.
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5. Analogous definitions are assumed for other connectives and ∃̇σ.
6. If ισ ∈ L CTy2, and g ∈ D〈σt〉 is such that g(x) = T for some x ∈ Dσ,

then g(I (ισ)(g)) = T . Otherwise, g(I (ισ)(g)) = F .
Informally, ι selects an element out of every non-empty set. Because
of this property, ι is called a choice operator.

7. Appropriate equations are assumed for the combinators.3

Given a frame D, an L CTy2-interpretation I , and an assignment v, the
interpretation function ⟦·⟧vD,I is defined on the terms of L CTy2 by induction
as follows:
1. if xn

σ ∈ V C , then ⟦xn
σ⟧vD,I := v(xn

σ),
2. if cn

σ ∈ L CTy2 is a constant, then ⟦cn
σ⟧vD,I := I (cn

σ),
3. if (α〈στ〉βσ)τ ∈ L CTy2, then ⟦αβ⟧vD,I := ⟦α⟧vD,I

�⟦β⟧vD,I
�
,

4. if (λxn
σατ)στ ∈ L CTy2, then ⟦(λxn

σατ)στ⟧vD,I := the function f : Dσ→
Dτ such that f (x) := ⟦ατ⟧v[xn

σ 7→x]
D,I ,4

where the third and the fourth clause result in an undefined value if⟦β⟧vD,I ̸∈ Dσ, or if ⟦α⟧vD,I is not defined.

Definition 5. A frame D with anL CTy2-interpretation I is called a general
L CTy2-model if, for every L CTy2-assignment v and every term ασ ∈ L CTy2,⟦ασ⟧vD,I is a well-defined element of Dσ. A term αt is called aL CTy2-Henkin
tautology iff ⟦αt⟧vD,I = T for all general L CTy2-models D and all L CTy2-
assignments v.

IfC contains all logical constants, we refer toL CTy2-Henkin tautologies
simply as Henkin tautologies, and to generalL CTy2-models as generalLTy2-
models.

A generalLTy2-model 〈D,I 〉 is called a full model if, for every 〈στ〉 ∈
Types, D〈στ〉 contains all functions from Dσ to Dτ. A term αt is called a
tautology in the standard sense if ⟦αt⟧vD,I = T for all full models 〈D,I 〉
and all assignments v.

3When C does not contain all lambda abstracts, the presence of the (finitely
many) combinators still yields the full strength of Henkin semantics as it is usu-
ally defined. However, as we will mostly be concerned with weaker versions of
Henkin semantics, the combinators play no role for our immediate purposes, and
we omit the equations for reasons of space. See Hindley and Seldin 2008, p. 110,
for the necessary equations.

4Note that v[xn
σ 7→ x] is a L CTy2-assignment, as xn

σ ∈ C .
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Informally, there are two types of models for higher-order logic.
Full models are defined by the requirement that they contain any
higher-order function over their domain that in principle exists. Gen-
eral L CTy2-models are only required to provide some interpretation for
every term of L CTy2. The notion of ‘general model’ is in turn graded by
the set C : having more elements in C results in a stronger semantics,
i.e., a semantics that allows fewer models.

Every full model is also a generalL CTy2-model for every C , but the
converse does not hold: some generalL CTy2-models are not full models.
Similarly, if C ⊆ D, then every general L DTy2-model is also a generalL CTy2-model. There is an inverse relationship between the sets of tau-
tologies for the various notions of semantics. Since every full model is
a general model, all L CTy2-Henkin tautologies hold in every full model
and are therefore tautologies in the standard sense. However, there are
tautologies in the standard sense that are not L CTy2-Henkin tautologies
for any C . Analogously, if C ⊆ D, then all L CTy2-tautologies are alsoL DTy2-tautologies. It is in this sense that the notion of ‘general model’
yields a weaker semantics than the standard semantics of higher-order
logic, and that increasing C results in a stronger semantics. A seman-
tics based on full models is called a standard semantics, and a semantics
based on general models is a Henkin semantics. When C contains all
logical constants, our definitions of ‘general models’ and ‘Henkin tau-
tologies’ coincide with the usual definition of Henkin semantics, since
all lambda abstracts can be defined with the combinators (Hindley
and Seldin 2008, p. 110). The significance of Henkin semantics for
our application rests on the following theorem of Henkin (1950):
Theorem 6 (Henkin’s Completeness Theorem). There is a (finitary)
calculus that generates exactly the set of Henkin tautologies of LTy2.
Because the set of tautologies in the standard sense is not recur-

sively enumerable, no such theorem is available in the standard case.
Example

Let us assume that C = {woman〈et〉, dance〈et〉} ∪ {xn
τ : n ∈ N,τ ∈

{e, t, 〈ee〉, 〈et〉, 〈t t〉, 〈t〈t t〉〉, 〈〈et〉t〉, 〈〈et〉〈〈et〉t〉〉}}. Consider the frame
characterized by the following sets:
• De := {a, b, c, d, e},
• D〈ee〉 := {{a 7→ a, b 7→ a, c 7→ a, d 7→ a, e 7→ a}},
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• D〈et〉, D〈t t〉, D〈t〈t t〉〉, D〈〈et〉t〉, D〈〈et〉〈〈et〉t〉〉 are the full sets of functions
with the respective domains and ranges,
• for other types τ, we set Dτ := ;.
For this frame, we define an interpretation I given by I (woman)

= χDe
and I (dance) = χ{a,b}. Since Dτ is empty for most τ, the frame

does not constitute a full model. However, the frame together with I
is a general L CTy2-model.

We now add a constant most〈〈et〉〈〈et〉t〉〉, representing the natural-
language quantifier ‘most’. ‘Most’ is often assumed to express that
more than half of the elements in the restrictor are also in the
nuclear scope (e.g., Gamut 1991, p. 252, Westerståhl 2011). In
most(woman, dance), woman is the restrictor and dance is the nuclear
scope, and the term is true iff more than half of the women are also
dancers. Barwise and Cooper (1981, C13) show that, under this in-
terpretation, the meaning of ‘most’ cannot be expressed in first-order
logic.5 However, it is definable in LT y2. Generalized to sets of any
cardinality, MOST(P,Q) is true if and only if the cardinality of P ∩Q
is strictly greater than that of P\Q. Equivalently, MOST(P,Q) is true if
and only if P ∩Q ̸= ; and there is no surjective mapping from P\Q to
P ∩Q. If we identify subsets of De with their characteristic functions,
i.e., the functions of type 〈et〉, we can express this definition in LT y2

as follows:
(1) ∀P〈et〉∀Q〈et〉 : most(P,Q)↔ [∃xe(P(x)∧Q(x)) ∧

∀ f〈ee〉 : (∀ye : (P(y)∧¬Q(y))→ (P( f (y))∧Q( f (y))))
→∃xe(P(x)∧Q(x)∧∀ze : (P(z)∧¬Q(z))→ f (z) ̸= x)]
‘MOST(P,Q) holds if and only if P ∩Q ̸= ;, and
for every mapping f from P\Q to P ∩Q
there is an x ∈ P ∩Q that is not in the image of P\Q under f ’
(i.e., f is not surjective)

5The intuition is that, when describing the cardinality of a set using a formula
of first-order logic, one can only count up to some fixed finite number which
depends on the formula, not being able to distinguish sets of greater cardinality.
Choosing for each first-order formula (1) a sufficiently large universe of a model
M and (2) sets U and V such that U , V, M\U , M\V , and the relative difference of
U and V are each sufficiently large, we see that MOST(U , V ) cannot be first-order
definable. For the version generalized to infinite sets that we will consider, the
undefinability follows more easily from the compactness theorem.
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In the sense of the standard semantics of higher-order logic, this
definition indeed ensures that MOST has the desired model-theoretic
interpretation: in a full model that satisfies (1), I (most)(χP ,χQ) holds
if and only if the cardinality of P∩Q is strictly greater than that of P\Q.

This is not always true for general models. To see this, consider
the general L CTy2-model we constructed. Since D〈〈et〉〈〈et〉t〉〉 contains all
possible functions, it includes in particular a function such that (1) be-
comes true when I (most) is set to this function. Under this interpre-
tation, the term ((most woman) dance) is true in the model: the single
function f : De → De included in the frame maps I (woman)\I (dance)
to {a} ⊊ I (woman) ∩ I (dance). In other words, there is no surjective
function in this particular general model from P\Q to P ∩ Q, as re-
quired for most according to (1). However, intuitively the statement
‘most women dance’ is not satisfied in the model: I (woman) contains
five elements, while I (dance) only contains two elements. Thus, even
when the definition of ‘most’ is satisfied in a general model, it need not
actually have the intended model-theoretic interpretation. The prob-
lem with definitions like (1) is that, in a general model, the domain of
the quantifier ∀〈ee〉 is not the set of functions from De to De. Instead it
is D〈ee〉, which need not contain all functions from De to De.
Henkin semantics comes closer to standard semantics when C

contains more terms – in particular, if C contains all logical constants
of LTy2, then every general L CTy2-model for which De and Ds are finite
is a full model. The reason is that every function between two finite
sets Dσ and Dτ is definable with the choice operator. On the other
hand, if De or Ds is infinite, then by the Löwenheim-Skolem theorem
there will always be general L CTy2-models which are not full models,
and in which the interpretation of ‘most’ differs from the one intended.
2.3 Henkin semantics for natural language
The fact that MOST cannot be defined in a model-theoretically ade-
quate way in Henkin semantics might be taken as evidence that it is
too weak to express the concept ‘most’ meaningfully. But this is not
the case. Many interesting facts about MOST are logical consequences
of (1) under Henkin semantics. A case in point is monotonicity, one of
the properties of generalized quantifiers that have received significant
attention in linguistics (Barwise and Cooper 1981; Westerståhl 2011).
MOST is upward monotonic in the second argument:
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Proposition 7. MOST is upward monotonic in the second argument:
InLTy2: ∀PetQet Bet : (most(P,Q)∧(∀xe : Q(x)→ B(x)))→most(P, B)
Informally: If MOST(P,Q) and B ⊇Q hold, then MOST(P, B) holds.
The upward monotonicity of MOST in its second argument cor-

responds to the linguistic observation that the inferences in (2) are
valid. In fact, different quantifiers exhibit different inference patterns,
showing that these monotonicity properties are both interesting and
non-trivial. For instance, ‘few’ does not license the parallel pattern (3):

(2) a. Most children are playing in the street. ⊢ Most children are
playing.

b. Most men sing and dance. ⊢ Most men dance.
(3) a. Few children are playing in the street. ⊬ Few children are

playing.
b. Few men sing and dance. ⊬ Few men dance.
A system for automated reasoning from natural language should

account for these facts. Proposition 7 (and, by extension, formaliza-
tions of the inferences in (2)) are consequences of (1) under Henkin
semantics. To see this, consider the following elementary argument:

Proof. Let 〈D,I 〉 be a general LT y2-model in which MOST(P,Q) and
B ⊇ Q hold. Clearly, P ∩ B ⊇ P ∩ Q ̸= ;. Let f ∈ D〈ee〉 with { f (x) :
x ∈ P\B} ⊆ P ∩ B. For all x ∈ De, set π(x) to be x if x ∈ P ∩ Q and
an arbitrary element of P ∩ Q otherwise. Define f ′ : De → P ∩ Q by
f ′(x) := π( f (x)). As a suitable π can be defined in LTy2 with the
choice operator ι,6 f ′ ∈ D〈ee〉. By the assumption MOST(P,Q), we know
that f ′|P\Q : P\Q → P ∩Q is not surjective. Thus, f |P\B : P\B → P ∩ B
cannot be surjective. As f was arbitrary, MOST(P, B) holds.

As we only assumed that 〈D,I 〉 is a general LTy2-model, Propo-
sition 7 is a Henkin tautology. It should also be noted that the proof
crucially relies on the choice operator, and the proposition does in-
deed not hold in all general L CTy2-models if C is too small.

6 Informally, we use lambda abstraction to define Ax := {x} ∩ P ∩ Q if x ∈
P ∩ Q and Ax := P ∩ Q otherwise. Then we set π(x) := ι(Ax ). Formally, π :=⟦λx1

e .ιeλx2
e

�
x3(x2)∧ x4(x2)∧ ((x3(x1)∧ x4(x1))→ x1 = x2)

�⟧v[x3 7→χP , x4 7→χQ]
D,I .
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A similar argument shows that Henkin semantics is also strong
enough to prove that, if there are at least four objects of type e,MOST is
not downward monotonic in either argument, and not upward mono-
tonic in the first argument. It is also possible to formalize more specific
numerical inferences, such as ‘If exactly four out of five members of
P are also in Q, then most members of P are in Q.’ Three of the four
semantic postulates for ‘most’ given by Barwise and Cooper (1981,
p. 208)7 are provable from our definition of ‘most’ under Henkin se-
mantics as well.

It may seem surprising that Henkin semantics is strong enough to
prove non-trivial facts about MOST, even though it cannot define it
in a model-theoretically adequate way. The point is that many con-
sequences of (1) do not depend on the existence of functions that
are not definable by lambda abstraction, and are, for that reason,
true in every general LTy2-model.8 This is an instance of a general
phenomenon. Although concrete mathematical theorems can be con-
structed that are true in all full models but not valid for Henkin seman-
tics, we are not aware of any known theorem of this kind that is not
of a meta-mathematical nature and is interesting to mathematicians
working outside of logic. Given this it seems plausible that Henkin se-
mantics provides all the proof-theoretical strength that is needed for
typical natural language inferences.

3 translating ty2 to first-order logic

The crucial step for leveraging the power of first-order reasoning en-
gines when coming from semantic representations in higher-order
logic is in the formulation of an appropriate translation from higher-

7 In our notation, they are the following: (1)MOST(A,A) always holds, (2) up-
ward monotonicity in the second argument, (3) if A ̸= ;, then MOST(A, X ) is true
for some but not all sets X , (4) if A ̸= ;, thenMOST(A, X ) andMOST(A, Y ) together
imply X ∩ Y ̸= ;. (4) follows under the standard semantics, the other three pos-
tulates also follow under Henkin semantics. To be precise, our definition proves
MOST(A,A) only under the assumption A ̸= ;, as MOST(;,;) is false according to
our axiom. Depending on whether one views it as being intuitively true or false,
our axiom could be modified to evaluate MOST(;,;) to true.

8As opposed to consequences that do depend on the existence of such func-
tions and, for that reason, are only guaranteed to hold in full models; they may
be false in some general models.
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order logic to first-order logic. In this section, we will show how the
translation from Ty2 to first-order logic can be effected in such a way
that Henkin tautologies are translated into first-order tautologies. The
guiding idea is that the translation of terms of Ty2 into terms and
formulae of first-order logic preserves the term structure as faithfully
as possible and aims at exploiting the strengths of first-order provers
by translating terms representing connectives and quantifiers into the
corresponding symbols of first-order logic. Moreover, two groups of
first-order axioms are added in the process that encode the typing and
the intended behavior of the translations of Ty2 terms. Given these
axioms the translations of Henkin tautologies are theorems of first-
order logic – the translation is complete for Henkin semantics. It is also
sound: if the translation of a term is a first-order tautology, then the
term itself must be a Henkin tautology.
3.1 Translation
The translation consists of three parts: a type translation Tty (translat-
ing types into first-order terms), a term translation Tterm (translating
terms of Ty2 into terms of first-order logic), and a formula transla-
tion T f (translating Ty2 terms of type t into first-order formulae). The
overall translation T of a term of type t is obtained as its formula trans-
lation with the addition of two groups of axioms. The components of
the translation will be described next.

Types are represented by first-order terms. The basic types t, s,
e are directly represented by first-order constants. Higher types are
represented by terms of first-order logic by replacing 〈··〉 by g(·, ·) as
follows:
(4) a. Tty(τ) := τ if τ= e, s, t

b. Tty(〈στ〉) := g(Tty(σ), Tty(τ))

The idea behind the translation of Ty2 terms is that terms of type
t are translated into first-order formulae, and other terms into first-
order terms. We first define a term translation Tterm, translating every
Ty2 term into a first-order term. Polymorphic constants are repre-
sented by first-order functions whose arguments represent their type
arguments. For instance, ιe is translated as ι(e), where ι is a one-place
first-order function symbol. Other constants and variables are trans-
lated as themselves: Tterm(cτ) := c, where c is a first-order constant,
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and Tterm(xτ) := x . Note that while variables and constants are trans-
lated as themselves, the type information attached to the terms is not
directly accessible to the first-order language and will be encoded in
additional axioms.

Functional application is translated recursively as a two-place
function symbol:
(5) Tterm(αβ) := f (Tterm(α), Tterm(β))

Lambda abstracts are translated by introducing a function sym-
bol whose arguments represent the free variables of the lambda ab-
stract. Formally, assume that we are given a term λx .α with free vari-
ables {(v1)σ1 , ..., (vn)σn}. Then Tterm(λxτ.ασ) := gλx .α(v1, ..., vn), where
gλx .α is a fresh n-place function symbol which by itself does not
carry any meaning. Its intended behavior will be encoded in an ad-
ditional axiom.
Our third translation function, formula translation (T f ), is only ap-

plied to terms of type t; it translates them into first-order formulae.
Propositional connectives, quantifiers, and the equality operator are
translated into the corresponding logical symbols of first-order logic
whenever possible. The remaining terms of type t are converted to
first-order formulae using the predicate symbol isTrue:
(6) a. T f ((◦̇αt)βt) := T f (α) ◦ T f (β)

if ◦ is a binary propositional connective
b. T f (¬̇αt) := ¬T f (α)

c. T f (∀̇τ(λxτ.αt)) := ∀x : hasType(x , Tty(τ))→ T f (α) (similarly
for ∃)

d. T f (∀̇τα〈τt〉) := ∀x : hasType(x , Tty(τ))→ isTrue( f (Tterm(α), x))
if α is not a lambda abstract (similarly for ∃)

e. T f ((≡̇tα)β) := (T f (α)↔ T f (β))

f. T f ((≡̇τα)β) := (Tterm(α) = Tterm(β)) if τ ̸= t

g. T f (αt) := isTrue(Tterm(α)) when no other case applies
If αt is a term of type t, the overall translation T (α) is defined to

be the formula translation T f (α).
To illustrate the definitions, let us consider the term in (7a). This

term straightforwardly encodes an (extensional) translation of the sen-
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tence ‘Most men sing and dance.’ The actual Ty2 term behind the sim-
plified notation in (7a) is (7b). By the preceding definitions, its term
translation is (7c). Thus, the overall (formula) translation, as given by
(6g), is the first-order formula (7d).
(7) a. most(man,λxe.sing(x)∧ dance(x))

b. ((most man) λxe.ϕ) with ϕ = (∧̇ (sing x)) (dance x)

c. Tterm((most man) λxe.ϕ)
= f ( f (most(e), man), Tterm(λxe.ϕ)) (by 5)
= f ( f (most(e), man), gλxe .ϕ)

d. isTrue( f ( f (most(e), man), gλxe .ϕ)

Note that the term translation of most〈〈et〉〈〈et〉t〉〉 as most(e) follows
from assuming thatmost is a polymorphic constantmostσ〈〈σt〉〈〈σt〉t〉〉 with
type argument σ = e in our example.

Axioms
To ensure that translations of Henkin tautologies are in fact provable,
axioms need to be added that encode the meaning and the intended
behavior of the function and predicate symbols. They are stated in the
first-order language of the translation.

Type information is not encoded in the first-order translation of
Ty2 terms. A first group of axioms guarantees the correct typing of
all objects. For instance the following axiom states that the result of
applying a functor of type 〈στ〉 to an argument of type σ has type τ:
(8) ∀x0∀x1∀x2 : [∃x3(hasType(x0, g(x3, x2)) ∧ hasType(x1, x3))]

→ hasType( f (x0, x1), x2)

A second group of axioms encodes postulates of Henkin’s system,
defining the types and the intended behavior of constants and func-
tions. For instance, given a type τ, the next axiom states that the trans-
lation ι(Tty(τ)) of the iota operator ιτ selects an element from every
non-empty set of objects of type τ:
(9) ∀y : hasType(y, g(Tty(τ), t))→�

(∃ z isTrue( f (y, z)))→ isTrue( f (y, f (ι(Tty(τ)), y)))
�

‘For every object y of type 〈τ, t〉 such that y(z) = T for some z,
y(ιτ(y)) = T also holds.’
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For every function symbol gλx .α, there is an axiom which states
that, given arguments of the appropriate types, the function has the
value defined by the lambda abstract. More formally, assuming that
the free variables of α are {v1

σ1
, ..., vn

σn
}, the axiom takes the form (10a)

if α is of type t, and (10b) otherwise:

(10) a. ∀v1, ..., vn : (hasType(v1, Tty(σ1)) ∧ ... ∧ hasType(vn, Tty(σn)))
→ [hasType(gλx .α(v1, ..., vn), g(Tty(τ), t))
∧ ∀x : hasType(x , Tty(τ))
→ [isTrue( f (gλx .α(v1, ..., vn), x))↔ T f (α)]]

b. ∀v1, ...vn : [hasType(v1, Tty(σ1)) ∧ ... ∧ hasType(vn, Tty(σn))] →
[hasType(gλx .α(v1, ..., vn), g(Tty(τ), Tty(σ)))
∧ ∀x : hasType(x , Tty(τ))→ f (gλx .α(v1, ..., vn), x) = Tterm(α)]

In the case of example (7c), the defining axiom of gλxe .ϕ is (11).

(11) hasType(gλxe .ϕ , g(e, t)) ∧ ∀x : hasType(x , e) →�
isTrue( f (gλxe .ϕ , x))↔ (isTrue( f (sing, x)) ∧ isTrue( f (dance, x)))

�
Given C ⊂ LTy2, we define the C -axiomatization, A C , as the

set containing the first group of axioms (for typing) and the defin-
ing axioms for all constants, variables, and lambda abstracts in L CTy2.
The intention is thatA C provides the necessary information to prove
L CTy2-Henkin tautologies.9 We can show that this is indeed the case:10
Theorem 8. Let C ⊂ LTy2 and αt ∈ L CTy2. Then α is an L CTy2-Henkin
tautology if and only if A C ⊢ T (α).

In this sense our translation is sound and complete for Henkin
semantics.

3.2 Restricting the axiomatization
The strength of Henkin semantics and, in consequence, the useful-
ness of the first-order translation of higher-order meaning charac-
terizations of natural language expressions depends on the choice
of C . On the one hand, we have seen that choosing C to be too

9The full set of axioms can be found in Appendix A.
10A proof is given in Appendix B.1.
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small may result in linguistically relevant inferences not being cov-
ered. On the other hand, when automated reasoning techniques come
into play, a surplus of axioms may easily distract the algorithms, mak-
ing automated inference inefficient to the point of being practically
infeasible.
In our experiments to be described in the next section we will use

two axiomatizations. For a term αt , the strong axiomatization A s(α)
is constructed from the set C containing all constants, variables, and
lambda abstracts in α and, furthermore, all logical constants of Ty2.
If C contains instances of a polymorphic constant, such as ιτ for some
type τ, a single axiom is used for all types, like (12), replacing the
infinitely many axioms in (9). This choice keeps A s(α) finite. Due
to the combinators, the strong axiomatization has the full strength of
Henkin semantics.

(12) ∀x∀y : hasType(y, g(x , t))→
[(∃z isTrue( f (y, z)))→ isTrue( f (y, f (ι(x), y)))]

The weak axiomatization A w(α) is constructed from the set C (α)
that contains only the lambda abstracts, variables, and constants oc-
curring in α. If α contains instances of a polymorphic constant, only
axioms for those specific instances occurring in α are used. We can
go even further and leave out constants and lambda abstracts when
they are eliminated by the formula translation. More precisely, we add
logical constants to C (α) only when they are translated into corre-
sponding first-order constants rather than into first-order connectives
or quantifiers. Similarly, lambda abstracts enter C (α) only when they
do not exclusively occur as arguments of constants which represent
first-order quantifiers.

Unlike the strong axiomatization, the weak axiomatization lacks
the full power of Henkin semantics, but it also has considerable advan-
tages. As it introduces fewer axioms than the translation with strong
axiomatization, it might remove an unnecessary burden from the theo-
rem provers. Where they fail for the strong axiomatization, they might
still be able to prove theorems of weak translations of semantic repre-
sentations of natural language. More importantly, under certain con-
ditions the weak translation has finite models, which is highly rele-
vant and desirable in the context of automated reasoning, since finite
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models can be constructed automatically.11 We obtain the following
theorem:12
Theorem 9. Assume αt ∈ L CTy2 is true in a general L CTy2-model for which
De and Ds are finite. Then

∧
ϕ∈A w(α)ϕ ∧ T (α) is true in some finite (first-

order) model.
However, note that satisfiability of the weak translation of αt only

ensures satisfiability in a L C (α)Ty2 -model, not necessarily satisfiability
in a LTy2-model. In the context of our application, this means that
weak translations of Henkin validities might not be provable, and that
models for weak translations may not correspond to LTy2-models.
3.3 Relationship to previous translations
The translation we outlined in this section is similar to previous trans-
lations from higher-order logic to first-order logic, in particular to
the ‘lambda lifting’ translation of Meng and Paulson (2008) and to
the translation of Hurd (2002), who also encodes types as first-order
terms. Compared to approaches which represent types by means of
first-order predicate symbols (Kerber 1992), typing by terms offers
the advantage that it can be expressed with finitely many axioms. This
is of course crucial for the application of automated reasoning tools.
The main difference between our formulation and Meng and Paul-
son (2008) resides in the special treatment of connectives and quan-
tifiers in the formula translation, T f . Treating the logical constants
separately makes it possible to exploit the strengths of first-order the-
orem provers at the inferencing step. Unlike Hurd (2002) and Meng
and Paulson (2008), we provide a formal proof of soundness and com-
pleteness (Appendix B.1).

4 testing and evaluation
We have defined a translation from Ty2 to first-order logic and made
precise in which sense it preserves the semantics of Ty2. To assess the
feasibility of automated inference on the resulting first-order formu-
lae in a linguistic context, we now apply our translation and standard

11The possibility of finite models may be surprising at first, as even A w(α)
seems to model an infinite set of types. However, note thatA w(α) does not con-
tain an axiom that demands that e, s, and t and the higher types be distinct.

12A proof is given in Appendix B.2.
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first-order reasoning engines to a set of natural language reasoning
problems of the type commonly considered in linguistics. Our selec-
tion focuses on sentences with lexical elements whose semantic anal-
ysis involves intensionality and generalized quantifiers, because these
are typically cited as the main motivation for higher-order logic rather
than first-order logic in the semantic characterization of natural lan-
guage expressions. A sizable part of our test suite is derived from the
FraCaS test suite (Cooper et al. 1996), which was created precisely
for evaluating the semantic competence of natural language process-
ing systems.

We will first introduce a fragment of English with Montague-style
semantic representations and standard meaning postulates for (classes
of) lexical elements from the literature. We then describe the con-
tents and structure of our test suite and proceed to assess the perfor-
mance of first-order inference engines (comprising theorem provers
and model builders) on the task of classifying valid and invalid in-
ferences that are handed to them in the form of first-order trans-
lations of the higher-order logical representations which our gram-
mar assigns to the test items. The inference engines of course also
draw on the meaning postulates as additional axioms. Throughout
our evaluation, we will disregard complications arising from possi-
ble ambiguities and only consider pre-determined intended readings
of our items.

The experiments will show that the weak translation performs
significantly better than the strong translation, confirming or refuting
87.7% of those items in the test suite where a proof or refutation exists
in principle. While every item that is challenging due to intensional-
ity is correctly recognized, items involving generalized quantifiers are
considerably harder for automated reasoning.
4.1 Fragment
Our fragment is derived from the English textbook grammar of Black-
burn and Bos (2005), who construct semantic representations directly
in first-order logic. Their grammar architecture is well-suited for our
purposes because its modular design easily supports alternative se-
mantic representation languages by simply plugging in other lexi-
cal semantic specifications and adding syntactic rules where needed.
Moreover, Blackburn and Bos’ grammar is already equipped with an
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interface to different reasoning engines that we can exploit for eval-
uating the performance of inference engines on our first-order trans-
lations.
The semantic analyses are inspired by Montague’s PTQ fragment

(Montague 1973), with two major changes: As laid out in the previ-
ous sections, we use Ty2 rather than Intensional Logic (IL). Ty2 of-
fers technical advantages (Friedman and Warren 1980, p. 323), and,
as a version of typed lambda calculus, its formal properties are well-
understood. Montague’s representations can be translated straightfor-
wardly into Ty2, since IL can be regarded a sublanguage of Ty2 (Gallin
1975). Second, we follow Bennett (1974) and Dowty et al. (1981,
p. 188) in representing the arguments of extensional predicates as in-
dividuals rather than individual concepts. For instance, walk is trans-
lated into a term of type 〈s〈et〉〉, while Montague chose the more elab-
orate 〈s〈〈se〉t〉〉.

Representative lexical entries are shown in Figure 1. They are
mostly standard. ‘Believe’ and ‘know’ take as their arguments a possi-
ble world, a proposition, and an entity that represents the agent (Mon-
tague 1973). Adverbs attaching to VPs map properties to properties.
We translate the definite article by means of the ι operator, i.e., a
choice function (von Heusinger 1997). We opt for a uniform treat-
ment of all adjectives as functions mapping properties to properties,
following Montague (1970). Generalized quantifiers are rendered as
functions of type 〈〈et〉〈〈et〉t〉〉, i.e., as relations between sets of objects
of type e. The fragment licenses both singular and plural noun phrases,
but no special plural semantics is assumed; the occurrence of plurals
is restricted to NPs with quantifiers such as ‘most’ and ‘many’.

The context-free grammar rules of the fragment stipulate how the
semantic representations of daughter constituents are combined to de-
rive the semantic representation of their mother node. The typical
mode of composition is functional application. The phrase structure
rules of our grammar needed for the test suite are shown in Figure 2
together with their semantic composition rules. The fragment gener-
ates one translation per syntactic analysis and does not account for
scope ambiguities. This is not a substantial restriction since ambigui-
ties could be captured by adopting one of Blackburn and Bos’ alterna-
tives of semantic composition with a more sophisticated underspeci-
fied semantics by means of dominance constraints. Our choice here is
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Cat. Words Translation
Vintr dance dance〈s〈et〉〉
Vtr see λP〈〈s〈et〉〉t〉λwsλxe.P(λwsλye see〈s〈e〈et〉〉〉(ws, xe, ye))

Vi-tr seek λP〈s〈〈s〈et〉〉t〉〉λwsλxe.seek〈s〈〈s〈〈s〈et〉〉t〉〉〈et〉〉〉(w, P, x)

Vcop be λP〈〈s〈et〉〉t〉λwsλxe.P(λwsλye (x = y))

Vs know λP〈st〉λwsλxe.know〈s〈〈st〉〈et〉〉〉(w, P, x)

Vaux does not λP〈s〈et〉〉λwsλxe.¬P(w, x)

Adv possibly λP〈s〈et〉〉λw1
sλxe.possibly〈s〈〈st〉t〉〉(w1,λw2

s P(w2, x))

Adj tall λP〈s〈et〉〉λwsλxe.tall〈s〈〈s〈et〉〉〈et〉〉〉(w, P, x)

Det
most λP〈s〈et〉〉λQ〈s〈et〉〉.most〈〈et〉〈〈et〉t〉〉(P(ws),Q(ws))

every λP〈s〈et〉〉λQ〈s〈et〉〉.∀xe(P(ws, x)→Q(ws, x))

the λP〈s〈et〉〉λQ〈s〈et〉〉.Q(ws, ι
e(P(ws)))

PN John λP〈s〈et〉〉.P(ws, johne)

N unicorn unicorn〈s〈et〉〉
P in in〈〈〈s〈et〉〉t〉〈〈s〈et〉〉〈s〈et〉〉〉〉
Conj and λP〈s〈et〉〉λQ〈s〈et〉〉λwsλxe.(P(w, x)∧Q(w, x))

Figure 1:
Lexical Entries.
For every
category, an
example word
is given

S:αβ → NP:α VP:β VP:αβ → Adv:α VP:β
VP:α → Vintr:α VP:αβ → VP:β PP:α
VP:αβ → Vtr:α NP:β PP:αβ → P:α NP:β
VP:α(λws.β) → Vi-t r :α NP:β NP:αβ → Det:α N:β
VP:α(λws.β) → Vs:α S:β NP:α → PN:α
VP:λx∃P〈s〈e〉〉α(P, w, x) → Vcop Adj:α N:αβ → Adj:α N:β
VP:αβ → Vcop:α NP:β
VP:β(α,γ) → VP:α Conj:β VP:γ
VP:αβ → Vaux:α VP:β

Figure 2:
Phrase Structure
Rules
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S
think(w, john,λwsmost(woman(w), dance(w)))

VP
λwsλxe.think(w, x ,λwsmost(woman(w),dance(w)))

S
most(woman(w), dance(w))

VP

V
dance
dance

NP
λP〈s〈et〉〉.most(woman(w)), P(w))

N
women
woman

Det
most

λP〈s〈et〉〉λQ〈s〈et〉〉.most(P(ws)),Q(ws))

V
thinks

λP〈st〉λwsλxe.think(w, x , P)

NP

N
John

λP〈s〈et〉〉.P(ws, john)

Figure 3: An analysis in our fragment

motivated by simplicity and the compatibility of the easiest choice of
composition mechanism with our main objectives.
The analysis of the sentence ‘John thinks most women dance’ is

shown in Figure 3. The following translations illustrate the coverage
of the semantic fragment:13

(13) Mia possibly dances.
possibly(w1

s ,λw2
s .dance(w2

s , miae))

(14) Mia thinks that John dances.
think(w1

s , miae,λw2
s .dance(w2

s , johne))

(15) Most men sing and dance.
most(man(ws),λxe(sing(ws, xe) ∧ dance(ws, xe)))

(16) The blond man dances.
dance(ws, ι

e
〈〈et〉e〉(blond(ws, man)))

(17) John seeks a unicorn.
seek(ws, johne,λwsλP〈s〈et〉〉∃xe (unicorn(ws, xe) ∧ P(ws, xe)))

13With the notation of arguments we follow the linguistic convention of
putting subjects before objects to enhance readability. The relationship to a strict
Ty2 representation should be transparent.
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4.2 Meaning postulates
The semantic representations we obtain from the grammar are insuf-
ficient for drawing inferences that go beyond simple first-order tau-
tologies expressed in natural language. A substantive portion of the
semantic import of words such as ‘most’ and ‘believe’ is hidden behind
inconspicuous Ty2 constants such as most and believe. Since these con-
stants by themselves are atomic expressions with arbitrary meaning,
further information about their actual meaning must be made avail-
able for exploitation in reasoning.

There are two ways to add the relevant information: either by
stating meaning postulates in LTy2 and adding them as axioms, or
by restricting the class of models to those where the interpretations
of the constants satisfy certain restrictions. A prominent example of
the first option is Montague (1973);14 the second option was chosen
in the semantic postulates of Barwise and Cooper (1981) and in the
treatment of generalized quantifiers in Discourse Representation The-
ory (Kamp and Reyle 1993, Def. 4.24). In the present context, an ax-
iomatic solution is to be preferred as it makes it possible to enlist our
translation functions to also translate potentially higher-order mean-
ing postulates to first-order logic. In effect, the first-order translations
of the postulates may simply be added to the axiomatization A of
the first-order translation. The situation is more complicated if the in-
formation is supplied model-theoretically, as Henkin’s completeness
theorem need not remain true if the class of permissible models is
constrained. Therefore, we opt for the first solution and supply infor-
mation about constants such as believe andmost by meaning postulates
in LTy2.

To see the impact of meaning postulates on reasoning and to
appreciate the relevance of the translation functions for them, we dis-
cuss a selection of postulates for representative constants in our frag-
ment.15 The examples will also indicate the sorts of difficult seman-
tic questions which have to be addressed in formulating appropriate
axioms.

14Montague actually understood meaning postulates as constraints on the in-
terpretations, but the completeness theorem for Henkin semantics guarantees
that this is equivalent to treating them as axioms.

15The full set of meaning postulates is given in Appendix C.
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Verbs: belief and knowledge
There is a considerable amount of work on the logic of knowledge and
belief from a philosophical point of view (cf. Hintikka 1962; Rescher
2005 for an overview). It has often been argued that belief and knowl-
edge should be closed under logical inferences (Rescher 2005). We as-
sume a principle of logical omniscience which states that if an agent
knows (thinks) something, she knows everything which follows from
it logically (see (18)). Such a postulate is not without problems as no
actual person could be aware of every logical truth, but we accept
it as a general consequence of the standard possible-worlds analysis
of propositional attitudes. We also assume that only true propositions
can be known (Rescher 2005), as formalized in (19):
(18) Deductivity Axiom

a. ∀xe∀P〈st〉∀Q〈st〉∀w1
s : think(w1, P, x)→�∀w2

s (P(w
2)→Q(w2))
�→ think(w1,Q, x)

b. ‘If x knows/believes P in world w1 and P → Q holds neces-
sarily, then x knows/believes Q in world w1.’

(19) Veridicality Axiom
a. ∀xe∀P〈st〉∀ws(know(w, P, x)→ P(w))

b. ‘If x knows P in world w, then P is true in world w.’

Adjectives
Adjectives are commonly classified based on the inference patterns
they license (Kamp and Partee 1995, Partee 1995). As examples like
(20a) show, adjectives like ‘blond’ are intersective (see (20b)). This
property is formalized by the meaning postulate (20c) (Partee 1995,
p. 324).

(20) a. Mia is a blond woman. Mia is a robber. ⊢ Mia is a woman
and Mia is a blond robber.

b. ⟦blond N⟧= ⟦blond⟧∩ ⟦N⟧
c. For each intersective adjective meaning ADJ:
∃P〈s〈et〉〉∀ws∀Q〈s〈et〉〉∀xe : ADJ(w,Q, x)↔ [P(w, x)∧Q(w, x)]
where P, which is uniquely defined by the axiom, represents
the set ⟦blond⟧ in (20b).
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Similar meaning postulates account for other subsective and for
privative adjectives (Partee 1995).16
Other adjectives, such as ‘alleged’, ‘potential’, and ‘arguable’, are

neither subsective nor privative. They do not allow any inference on
whether the property denoted by the noun holds: an ‘alleged robber’
may or may not be a robber. For the modal modifier ‘alleged’ we adopt
the following postulate, adapted from Jespersen and Primiero (2013,
p. 104):
(21) a. ∀P〈s〈et〉〉∀x1

e∀w1
s : alleged(w1, P, x1)

↔∃x2
e allege(w1, x2,λw2(P(w2, x1)))

b. ‘Somebody alleges that x is a P if and only if x is an alleged P.’
Adverbs

It is often assumed that ‘necessarily’ can be modeled via universal
quantification over possible worlds (Montague 1973). This is formal-
ized by the following postulate (Gamut 1991, p. 201, MP7):
(22) a. ∀w1

s∀P〈st〉
�
necessarily(w1, P)↔∀w2

s P(w2)
�

b. ‘P is necessarily true if and only if it is true in all worlds.’
‘Possibly’ is characterized by replacing the universal quantifier

by an existential quantifier. Note that the world argument w1
s plays no

role and is only needed because we assume a uniform analysis of all
adverbs, and the extension of many adverbs does depend on the world.

Generalized quantifiers
In (1) we saw how ‘most’ can be defined in Ty2. Certain quantifiers
have straightforward definitions in first-order logic. Besides ‘all’ and
‘some’, these include, for instance, ‘exactly two’, ‘at most two’, and
‘only’. (23a) provides a (simplistic) definition of ‘only’ as in ‘Only men
danced’:
(23) a. ∀P〈et〉∀Q〈et〉 (only(P,Q)↔∀xe (Q(x)→ P(x)))

b. ‘ONLY(P,Q) holds if and only if Q ⊆ P.’
16Subsective adjectives are a superclass of intersective adjectives. They license

the inference that the property denoted by the noun holds: a skillful writer is a
writer, but need not be a skillful violinist even if she is known to be a violinist.
Privative adjectives such as ‘fake’ license the inference that the property denoted
by the noun does not hold: a fake diamond is not a diamond.
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There are other quantifiers whose meaning is less straightforward
to capture, including ‘few’ and ‘many’. However, we can indirectly
characterize these quantifiers by postulating rules concerning proper-
ties such as monotonicity (Barwise and Cooper 1981, p. 209). While
our two examples are upward and downward monotonic, respectively,
in the second argument (Barwise and Cooper 1981, p. 185, SP 2), it is
less clear whether they are also monotonic in the first argument (Bar-
wise and Cooper 1981, p. 185). We assume that they are (see (24a)).
We also state that ‘few’ and ‘many’ are incompatible (see (24b)), and
postulate that ‘few’ holds if the intersection of its two arguments is
empty (see (24c)). These axioms are somewhat weaker than the op-
tional axiom SP4 (NOT MANY⇔ FEW) of Barwise and Cooper (1981,
p. 209), which seems unnatural to us.
(24) a. i. FEW is downward-monotonic in both arguments.

ii. MANY is upward-monotonic in both arguments.
b. ¬(FEW(P,Q)∧MANY(P,Q))

c. P ∩Q = ; → FEW(P,Q)

The axioms, whose rendering inLT y2 is similar to what we saw for
‘most’ in (1), suffice to prove important facts about these quantifiers
and to make relevant predictions on the validity of natural language
inferences. For instance, they entail that MANY is true if the extension
of the second argument is ‘large’, while FEW is true if it is ‘small’,
and that MANY is conservative, i.e., inferences like ‘Many men dance’
⇒ ‘Some men dance’ are valid, which corresponds to Axiom SP6 in
Barwise and Cooper (1981, p. 209). Conversely, they predict that ‘No
men dance’ is incompatible with the statement ‘Many men dance’.

Considering the gradual and context-dependent nature of these
two quantifiers, not many more inferences seem possible without ap-
pealing to a notion of discourse context.

Example
As an illustration of the interaction of the grammar fragment, the
meaning postulates, and the translations from Ty2 to first-order logic,
consider (25), a variant of one of the examples in (2). The Ty2 trans-
lations generated by our fragment for the premise and the conclusion
are given in (26). The respective first-order translations are shown
in (27).
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(25) Most women sing and dance. ⊢ Most women dance.
(26) a. most(woman(w),λx(sing(w, x)∧ dance(w, x))

b. most(woman(w), dance(w))

(27) a. isTrue( f ( f (most, f (woman, w)), gϕ(w)))
where gϕ is defined by
∀w : hasType(w, s)→ [hasType(gϕ(w), g(e, t))
∧ ∀x : (hasType(x , e)→ ([isTrue( f ( f (sing, w), x))
∧ isTrue( f ( f (dance, w), x))]↔ isTrue( f (gϕ(w), x))))]

b. isTrue( f ( f (most, f (woman, w)), f (dance, w)))

To show that the inference in (25) is valid, we need to prove that,
given the axioms and the first-order translations of the meaning postu-
lates, (27a) logically entails (27b). We need the meaning postulate for
most, whose first-order translation is too complex to be easily readable,
but whose meaning is essentially captured by the informal explanation
in (1). At this point the problem of proving the entailment in (25) has
been reduced to proving a first-order formula which consists of the
elements of A , the translation of (1) and (27a) as its premises, and
of (27b) as its conclusion.

For the proof, one may first remodel the higher-order proof of
Proposition 7 in the first-order translation. The defining axiom of
gϕ can then be exploited to prove that isTrue( f (gϕ(w), x)) entails
isTrue( f ( f (dance, w), x)), which corresponds to the fact that ‘x sings
and dances’ logically entails ‘x dances’. By the first-order version of (1),
the claim (27b) follows.

4.3 Test suite
We created a small test suite for natural language inference which
requires solving inference problems that have figured prominently in
formal semantics research. Inferences relying onworld knowledge typ-
ical for prominent tasks such as the Recognizing Textual Entailment
challenges (Dagan et al. 2009) are not addressed with our test suite,
because we are interested in the feasibility and quality of reasoning
with first-order translations of higher-order meaning specifications of
natural language rather than in the bigger (and even more intricate)
question of modeling typical human reasoning by means of other types
of knowledge resources. The test suite contains 117 items divided into
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six sections which focus on modality, knowledge and belief, general-
ized quantifiers, adjectives, de dicto readings, and first-order inferences,
respectively.

Each item consists of a set of premises, a conjecture, and a symbol
connecting those two. The items are grouped in three classes: If the
premises entail the conjecture, the inference is valid. If the premises
are incompatible with the conjecture, we call the inference contradic-
tory. Items for which the correctness of the inference is not determined
by their form or by meaning postulates are contingent; the inferences
that they represent might be supported by some models but not by
others.17 In each item the conjecture is separated from the premises
by a symbol that indicates the class to which the item belongs. If the
inference is valid, the separator is ‘⊢’; ‘⊢ NON’ designates contradic-
tory items, and ‘⋉’ appears in contingent items. Consider the following
example:

(28) Mia is a woman. Mia dances. ⊢ A woman dances.
The first two sentences are the premises, ‘A woman dances’ is the

conjecture. The conjecture is entailed by the premise, as indicated by
the symbol ‘⊢’.18

52 items are valid (44.4%), 12 are contradictory (10.3%), and 53
are contingent (45.3%). These judgments are based on whether the
Ty2 representations of the sentences that are provided by our grammar
fragment support the inference under standard higher-order semantics
or not, assuming the meaning postulates as axioms.19 For every one
of our items, its membership in the three inference classes coincides
for standard semantics and Henkin semantics. One item, (3.24), which
tests for monotonicity properties of ‘most’, is special in that it requires
the strong axiomatization. For all others the weak axiomatization is
sufficient.

17Logically speaking, this means that the inferences in the last class are also
invalid (like those in the second class).

18Our conjecture corresponds to what the literature on Textual Entailment calls
hypothesis (Dagan et al. 2009). The subtle difference in terminology is meant to
stress that there is a deeper difference in the conception of what exactly consti-
tutes reasoning with natural language.

19To put it differently, the inference patterns follow the linguistic theory our
fragment of English implements.
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29 items in the sections on adjectives and generalized quantifiers
are derived from the FraCaS test suite. The original FraCaS test suite
contains question-answer pairs, but it was later converted by MacCart-
ney (2009) to the format employed in our test suite. The following ex-
ample from FraCaS together with MacCartney’s conversion illustrates
the difference:
(29) Original FraCaS format (item 197)

a. Premise: John has a genuine diamond.
b. Question: Does John have a diamond?
c. Answer: Yes

(30) Converted: John has a genuine diamond. ⊢ John has a diamond.
For our experiments, we draw on those parts of FraCaS that are

covered by our fragment. It captures 18% (14 out of 80 items) of the
FraCaS section on generalized quantifiers and 65% (15 out of 23 items)
of the section on adjectives. Other items would require nontrivial addi-
tions to syntax or lexical items for which there is no standard analysis
in the semantics literature.
In three instances the predictions implied by our grammar and

meaning postulates do not align with those assumed in FraCaS: in two
cases additional information about the expression ‘on time’ would be
needed to infer that finishing on time implies finishing. In the third
case the reason for the deviation is due to different assumptions about
the properties of certain adjectives in FraCaS compared to what our
meaning postulates assume. It is important to note that these differ-
ences between the predictions of our fragment and the FraCaS anno-
tation result from differences in linguistic modeling, not from a weak-
ness of Henkin semantics – given our meaning postulates, the predic-
tions are the same for Henkin semantics and standard semantics.
4.4 Experiment
The goal of the experiment was to assess to what extent the trans-
lation supports efficient automated inference on reasoning problems
that are typically encountered in formal semantics research. To this
end we applied first-order reasoners to the natural language inference
problems in the test suite. The transformation pipeline from the test
suite to the application of inference engines is straightforward: The
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inference problems encoded in the test suite were translated to Ty2
by parsing the natural language sentences in the test items according
to our grammar fragment. This step resulted in a syntactic analysis
coupled with higher-order logical representations. The latter served
as input to the translation to first-order logic introduced in Section 3.
The first-order formulae were then ready to be processed by freely
available first-order reasoners, following the implementation devel-
oped by Bos (2004).

Following Bos, two types of reasoning tools were employed: the-
orem provers and finite model builders. The theorem provers try to find
a proof for each first-order formula, while the model builders try to
construct a finite model. A complete theorem prover will find a proof
for every valid formula, and it will find a proof for the negation of
every contradictory formula. Thus, ideally, a proof or refutation can
be found for the first-order translation of every valid or contradic-
tory inference. However, by complexity and undecidability results of
first-order logic, proving even a small formula may take a very long
time, and there is no general algorithm determining whether or not a
formula has a proof. In particular, there is no general procedure for
showing that a formula is contingent. Finite model builders provide
a partial solution to this problem: If a formula is contingent, there
exist models for both the formula and its negation. If they are finite,
these models can be found by a model builder. Since statements made
in natural language often concern situations involving finitely many
objects, it may be expected that the restriction to finite models is
not critical and that for many inference problems either a proof or
a counter-model is found in a reasonable amount of time. If this is
the case, an automated decision of many natural-language inferences
is possible.
Let us now take a closer look at the technicalities involved in

putting this idea to work. As indicated earlier, the premises and the
conjecture of each test item were translated to Ty2 representations
according to the specifications of the grammar fragment. The premise
term of a test item is the term p := [α1 ∧ ...∧αn ∧ β1 ∧ ...∧ βk], where
α1, ...,αn are the meaning postulates, and β1, ...,βk are the Ty2 trans-
lations of the premises 1 to k. Let γ be the Ty2 translation of the con-
jecture. Using the taxonomy introduced in the previous section, an
inference is valid if and only if p→ γ is a tautology. It is contradictory
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if and only if p→¬γ is a tautology. If neither of these cases holds, the
inference pattern is contingent.

The inference engine constructed from theorem provers and
model builders was tasked to determine if A ⊢ T (p → γ) or
A ⊢ T (p→ ¬γ) holds, with A either the strong or weak axiomatiza-
tion. Table 1 summarizes the questions to the inference engine and
their possible answers. Obtaining an answer is of course constrained
by the general undecidability of the questions in first-order logic, en-
tailing the risk of non-terminating searches. The theorem provers try
to find a proof for either T (p → γ) or T (p → ¬γ) given the axioms
A . If the inference pattern is contingent, no proof will be found. The
model builder tries to find a finite model for either A ∪ {T (p ∧ γ)}
(the inference is not contradictory) or A ∪{T (p ∧¬γ)} (the inference
is not valid). If translations of natural language expressions are well-
behaved for our purposes, a proof or refutation is found whenever an
inference is valid or contradictory, and both a model and a counter-
model are found whenever an inference pattern is contingent. Under
these circumstances it is possible to determine if an item is valid,
contingent, or contradictory.

Valid Contingent Contradictory
A ⊢ T (p→ γ) proof – –
A ⊢ T (p→¬γ) – – proof
A ∪{T (p ∧ γ)} model model –
A ∪{T (p ∧¬γ)} – model model

Table 1:
Maximal possible output for valid,
contingent, and contradictory
inference patterns

With our experiments we are interested in determining how well
our first-order translation of typical natural language reasoning prob-
lems behaves in supporting these decisions with currently available
standard first-order reasoning tools. The implementation was based
on the theorem provers Spass (Weidenbach 2001), E (Schulz 2004),
and Prover9 (McCune 2005–2010), and on the model builder Mace4
(McCune 2005–2010). The provers and the model builder were as-
signed a maximum of 30 seconds to work on each problem, and were
terminated if this was insufficient to find a result.
Two experiments were conducted, one with the strong axiomati-

zation A s(p→ γ) and one with the weak axiomatization A w(p→ γ).
Since finite model building techniques are restricted to finite models
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and the strong axiomatization has only infinite models, the experi-
ment with the strong axiomatization was run with the theorem provers
alone. Only those meaning postulates αi were included in the premise
term p which belonged to constants occurring in the translation of the
input. It is to be expected that meaning postulates unrelated to the
input will usually not be relevant, at the same time, their presence
would likely slow down the search more than they would help.

Since a term that is a L CTy2-tautology for some C is also a Henkin
tautology and a tautology in the standard sense, finding a proof with
the strong or the weak translation guarantees that an inference is
valid. Model building behaves differently: finding a model for the
weak translation only guarantees satisfiability in a weak notion of
semantics, but not satisfiability in a general LTy2-model, much less
satisfiability in a full model. Applied to weak translations, our infer-
ence engine may therefore deem invalid an inference that would in
fact be valid under standard semantics. As mentioned above, our test
suite contains only one item whose treatment requires the strong ax-
iomatization. For all other items, the predictions are the same for the
semantics underlying the weak translation and for standard semantics.
4.5 Results
The overall success rates of the provers on valid and contradictory
items in the test suite are summarized in Table 2. The figure in the
column ‘Some’ expresses the percentage of items for which at least
one prover found a proof or refutation. The ‘strong’ row shows results
for the Henkin-complete axiomatization A s, the ‘weak’ row for the
translation with the weakened axiomatization A w.

Table 3 shows the percentage of proofs found within a certain
time interval, ranging from 0.1 up to 5 seconds.

There was no test item for which a proof was found under the
strong axiomatization but not under the weak axiomatization. In other
words, for our test items no proofs were lost by weakening the ax-
iomatization. The performance of the model builder is summarized in
Table 4.

Table 2:
Success rates of provers

Spass Prover9 E Some
strong 24.6% 47.7% 23.1% 50.8%
weak 53.8% 76.9% 38.5% 87.7%
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≤ 0.1 s ≤ 1 s ≤ 2 s ≤ 5 s
strong 24.2% 79% 83.9% 91.9%
weak 45.5% 74.5% 82.7% 94.5%

Table 3:
Time required by
provers

Recall (models found where expected) 78.7%
Accuracy (models expected where found) 98.5%
Determined items (among contingent ones) 56.6%
% of models found within 0.1 seconds 91.1%
% of models found within a second 96.3%
% of models found within two seconds 96.3%
% of models found within five seconds 97.8%

Table 4:
Performance of
model builder

Total Sp P9 E Mace4 Success

first-order
valid 4 2 4 4 3/0/0 4

contradictory 1 1 1 1 0/1/0 1

contingent 1 0 0 0 1/1/1 1

modality valid 8 7 8 7 7/0/0 8

contingent 7 0 0 0 7/4/4 4

knowledge/ valid 6 5 5 2 6/0/0 6

belief contingent 4 0 0 0 4/3/3 3

quantifiers
valid 24 16 13 1 18/1/1 18

contradictory 4 1 1 0 1/3/1 2

contingent 31 0 0 0 27/16/16 16

adjectives
valid 10 3 10 4 10/0/0 10

contradictory 7 0 7 5 0/5/0 7

contingent 8 0 0 0 6/8/6 6

de dicto valid 1 0 1 1 1/0/0 1

contingent 1 0 0 0 1/1/1 1

(total) 117 35 50 25 92/43/33 88

Table 5:
Results for the
weak translation.
For the theorem
provers, the
figures are the
numbers of items
proven. For
Mace4, the
figures are the
number of items
such that a
model was found
(a) for
A ∪{T (p ∧ γ)},
(b) for
A ∪{T (p ∧¬γ)},
and (c) for both
problems

Combining the information obtained from the model builder with
the results from the provers, all components of our inference engine
together provide enough information to determine whether an item is
valid, contingent, or contradictory in 75.2% of the cases. The success
rates of each theorem prover and the model builder are summarized
in Table 5, organized by the semantic phenomena that structure the
test suite (as depicted in detail in Appendix D).

[ 545 ]



Michael Hahn, Frank Richter

4.6 Discussion
The lower success rates for the strong axiomatization indicate that
the additional axioms make automated inference harder when they
are not relevant to proving. This effect has often been observed when
automated deduction is applied to large axiom sets (e.g., Hoder and
Voronkov 2011). The additional strength does not provide an advan-
tage in the context of our test suite, as only one item depends on it,
and for that item a proof is not found even with the strong axiomatiza-
tion. The predictions with respect toA w and the Henkin-completeA s

agree on all other items. With this general result in mind, we will focus
our discussion on the results obtained with the weak axiomatization.

The difficulty of the test items for reasoning varied with the lin-
guistic phenomena. The combined performance of the reasoning en-
gines on items dealing with first-order tautologies, modality, knowl-
edge and belief, and adjectives is satisfactory, with a success rate
of 89.3%. It is unclear why Spass and E perform rather poorly on the
section on adjectives, while Prover9 proves all items.

The section on generalized quantifiers was clearly much harder
for the systems and reveals the limitations of the current approach.
Among the validities and contradictions in that section, eight items
(28.6%) remain undetermined. Two of the undetermined items are
statements about monotonicity. While it is not clear why item (3.23)
(monotonicity of ‘at least three’) is not proved, items (3.15) (‘Most
women dance. ⊢ Some women dance.’) and (3.22) (‘Most men dance
and play air guitar. ⊢ Most men dance.’) express properties of ‘most’
that are probably too hard to prove automatically on the basis of (1).
It is not clear why the provers did not succeed on the items derived
from FraCaS.

Two items, (3.2) and (3.14), are wrongly classified as contingent
because the proof requires the meaning postulate (24c) for ‘few’,20
which is not included in the input, as ‘few’ does not occur in the items
in question. It is noticeable that among the contingent items, models

20Both of these items require the inference thatMANY(P,Q) cannot hold when
P ∩Q = ;. In the context of our meaning postulates, this follows from the mutual
exclusiveness of FEW and MANY (see (24b)) and the monotonicity of MANY (see
(24a-ii)) when also considering that FEW(P,Q) holds whenever P ∩ Q = ; (see
(24c)).
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verifying the conjecture are foundmore often thanmodels falsifying it,
resulting in only 56.6% of them being determined. The reason might
be that models falsifying these inferences are often necessarily larger
than the smallest models verifying it. For instance, a model verifying
the implication ‘Few blond men dance’⇒ ‘Few men dance’ need only
contain a single element of type e, but to show that ‘Few blond men
dance’ does not generally entail ‘Few men dance’ (item (3.36)), one
needs at least two objects and also a function f ∈ Dee.21

With respect to our axiomatization, the quantifiers and determin-
ers fall into three classes: those for which we have given a direct def-
inition (most, at most two, at least three), those which are indirectly
characterized in terms of their properties (few, many, several), and the
definite article, which is directly translated as the ι operator. As the
indirect characterizations involve direct statements about monotonic-
ity and conservativity, which are targeted by most test items, it is not
surprising that the inference engines perform better on few, many, and
several than on most. The first-order-definable quantifiers at most two
and at least three show a success rate comparable to the other quanti-
fiers. This difference is not surprising, either: the definition of most is
more complex than the definitions of the numerical quantifiers, and
the test items on ‘most’ require that the provers make inferences that
are equivalent to proving statements such as Proposition 7 (upward
monotonicity in the second argument). Our observations on the suc-
cess rates of the provers simply emphasize the point that the way in
which meaning postulates are stated may have a significant influence
on the feasibility of automated inference. Nonetheless, the success of
the model builder Mace4 on item (3.29) (‘Most men dance. ⋉ Most
men dance and play air guitar.’) demonstrates that the direct defini-
tion of most can in principle be useful for automated reasoning.

5 related work
Higher-order reasoning with natural language is not a lively research
area, but there are a number of related fields. In this section we discuss
an alternative recent system for reasoning with quantifiers, and earlier
work with higher-order provers and higher-order model building.

21Since ⟦man(w)⟧ ⊇ ⟦blond(w,man)⟧, ⟦man(w)⟧ cannot be equal to⟦blond(w, man)⟧ when the implication is false.
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The Natlog system (MacCartney 2009) is in some respects closest
to some of the targets of our reasoning architecture, and it was also
evaluated on the basis of the FraCaS test suite. By aligning premises
with conjectures at the word level, computing entailment relations
between them, and deriving the entailment relation between the sen-
tences by projecting the individual entailment relations using a syn-
tactic dependency analysis, Natlog is able to reason with quantifiers
and negation. In contrast to our grammar fragment, Natlog has wide
coverage, but it cannot handle problems with more than one premise
(MacCartney 2009, p. 142), which, as we saw, are unproblematic for
approaches based on theorem proving such as ours. On the single-
premise problems, which constitute 53% of the test suite, MacCartney
reports an accuracy of 70.5%, with 89.3% precision and 65.7% recall
on the binary task of recognizing valid inferences. On the section on
adjectives, our experiments show an accuracy of 66.7%, with 86.6%
precision and 75% recall (relative to the original FraCaS annotation).
These results are comparable to MacCartney’s figures for the same
section: 71.4% accuracy, 83.3% precision, and 80% recall. However,
both our system and Natlog only covered 15 items from this section;
they only intersect on 11 items. The situation is different in the sec-
tion on generalized quantifiers. The decision rate of our system is 57%,
whereas Natlog, by virtue of its architecture, makes some decision on
every sentence. With undetermined items taken as ‘wrongly classified’,
our system achieves 28.6% accuracy, 66.7% precision, and 0% recall,
since only the model builder had some success on the FraCaS data on
generalized quantifiers. These figures are far lower than those of the
Natlog system, which are 95.2% accuracy, 100% precision, and 97.7%
recall, respectively.

Unfortunately, a quantitative comparison between MacCartney’s
and our results is not very meaningful overall with the data we have so
far, considering that (1) our system as well as Natlog only tested por-
tions of the FraCaS test suite, (2) the intersection between the tested
items was even smaller, and (3) the development of Natlog was guided
by the FraCaS data whereas the predictions of our model partly devi-
ate from the FraCaS annotation. Although comparing the raw numbers
produced by Natlog with our system’s performance clearly indicates
that there is much room for improvement in the generalized quanti-
fiers section, our results also suggest that in principle natural language
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problems of the type encoded in the FraCaS test suite can be solved by
theorem proving, provided that a system is given access to appropriate
meaning postulates for (classes of) lexical items.
A very exciting competitor to reasoning with a translation to

first-order logic arises from automated reasoning tools that work di-
rectly on higher-order logic. Ramsay (1995) presents a special auto-
matic proof system for an intensional logic, based on the property the-
ory of Turner (1987). Kohlhase and Konrad (1998) apply the higher-
order theorem prover HOT to corrections in natural language, using
the higher-order unification analysis proposed by Dalrymple et al.
(1991).22 The difference in the application domain and the consid-
erable advances in automated theorem proving in the last 15 years
makes this older work hard to compare to our present study. In order
to see what higher-order reasoning can achieve and how it compares
to translations under Henkin semantics, it would be interesting to ob-
serve the performance of more recent higher-order theorem provers
such as LEO II (Benzmüller et al. 2007) or Satallax (Brown 2013)
with Ty2 representations that result from parsing natural language.
We leave such comparison for future work.

Another interesting perspective on higher-order reasoning is pro-
vided by investigating the potential of model builders for natural lan-
guage. Konrad (2004) presents the higher-order model builder Kimba
and puts it to the test with linguistic data. In particular he uses it to
determine the referent of definites within a discourse and to find the
valid readings of sentences involving reciprocals. Konrad develops a
model builder for a fragment of higher-order logic whose design is
guided by typical properties of representations for natural language.
In our reasoning architecture, first-order model generation comes af-
ter the weak version of the translation from Ty2 representations, and
our approach to model-building targets full Ty2, which of course com-
prises a large class of expressions which are irrelevant for natural
language semantics. A further notable difference concerns our treat-
ment of generalized quantifiers such as ‘most’, which turns out to be
complementary to what Konrad did. Recall that we define MOST by
a meaning postulate within the representation language. Konrad de-

22They use HOT to prove that, for instance, ‘No, PETER likes Mary’ is a valid
response to ‘Jon likes Mary’, while ‘No, PETER likes Sarah’ is not.
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fines it by means of MORE, whose interpretation is directly fixed by a
model-theoretic constraint. It seems plausible that defining functions
such as MOST model-theoretically rather than by meaning postulates
can make model generation vastly more efficient. In particular, nu-
merical quantifiers like ‘two’ and ‘three’ have complex definitions in
LTy2, which soon become completely intractable as their size grows
with the number that they encode. Such quantifiers are far more nat-
urally defined model-theoretically. While model-theoretic definitions
have their limitations in the context of proof systems (as we argued
in Section 4.2), they fit very naturally into systems for finite model
generation: a reasonable model-theoretic definition will in general be
decidable on finite structures. Conversely, it would be interesting to
explore whether extending our fragment could lead to a successful
application of this type of architecture to Konrad’s data. Of particular
interest would be a treatment of plurals, reciprocals, and definites. For
the latter we assumed a simplistic analysis with a choice operator, and
plural did not receive any treatment at all, although it is clearly highly
relevant for a more realistic and comprehensive coverage of naturally
occurring data.

6 conclusion

We defined and discussed translations under Henkin semantics from
Ty2 to first-order logic for automated reasoning with natural language,
and investigated the performance of a reasoning architecture with sev-
eral first-order theorem provers and a model generator on a test suite
targeting typical reasoning tasks of theoretical semantics. Unlike pre-
vious work on automated reasoning with natural language, we took as
input formulae in higher-order logic as proposed by formal semanti-
cists. The architecture was evaluated on a set of 117 natural language
inference problems, partly derived from the classical FraCaS test suite
originally compiled for such purposes. The inference tasks were ex-
pressed in a small fragment of English; they focused on modality,
propositional attitudes, generalized quantifiers, and adjectives, and
relied on a set of associated meaning postulates commonly assumed
in semantics.

The results are promising: Despite the general undecidability of
first-order logic, 75.2% of the test items could be determined, a great
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majority in less than a second. The success rate of the combined infer-
ence engines suggests that theorem proving with higher-order repre-
sentations for natural-language expressions can indeed be reduced to
first-order proving by adopting Henkin semantics. At the same time,
the system’s poor performance on generalized quantifiers confirms ex-
pectations that the syntactic form of meaning postulates plays a sig-
nificant role in the efficiency and ultimate success (or failure) of au-
tomated inference. Fine-tuning of meaning postulates and finding a
good balance in exploiting the complementary strengths of theorem
provers and model builders will be necessary to improve performance.
Our experiments enlisted model builders only in combination

with a weak translation, which makes model generation unsound rel-
ative to stronger versions of Henkin semantics. Unsoundness did not
affect any items in our particular test suite, but we need a better un-
derstanding of which classes of terms occurring in logical translations
of natural language may cause trouble. In addition, the models created
by the model builder suffer from being virtually incomprehensible to
human readers due to their compact encoding of functions and types.
Readability and usefulness of the models could be greatly enhanced by
disentangling these structures automatically for human exploration.
Determining the precise advantages and disadvantages of transla-

tions of different strength remains a general desideratum. First-order
generation for stronger translations is not generally impossible, but it
must be prepared to cope with the fact that general models of higher-
order logic are always infinite because the set of types is infinite. Ad-
vanced techniques for generating and representing infinite models,
such as the ones introduced by Caferra et al. (2004), might offer vi-
able solutions. At the other end of the scale, it is also interesting to
explore which weakenings of the translation are best suited to nat-
ural language applications, and to exploit the advantages of smaller
structures. This strategy has to take into account the dangers of po-
tentially unsound translations. Our results suggest that the strength of
our weak axiomatization is a promising choice as long as the meaning
postulates are chosen carefully.

The setting in which we tested the feasibility of first-order trans-
lations of Ty2 in automated reasoning was restricted to a toy gram-
mar and to test cases that belong to the theoretical toolbox of for-
mal semanticists. Opening up its application to broad coverage and to
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accounting for effects of discourse pragmatics and world knowledge
would of course expose the usual weaknesses of deductive reason-
ing when confronted with potentially incomplete knowledge on the
one hand and an overwhelming amount of relevant facts on the other
hand (see the discussion in Ovchinnikova 2012, pp. 73–92). However,
despite the considerable challenges ahead, Bos (2006) and Bos and
Markert (2006) report that automated inference on first-order repre-
sentations of natural language can succeed in real-world applications.
If this is correct, future work should investigate to what extent our
translations can successfully widen the empirical scope of Bos’ work
to encompass semantic effects of intensionality and generalized quan-
tifiers, replacing hand-encoded first-order approximations with well-
studied higher-order analyses. The DRT-based wide-coverage Boxer
system (Bos 2008) seems a promising starting point to extending the
linguistic coverage.
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appendices
A axioms
All axioms with type parameters are shown in a form with type con-
stants as described for the weak axiomatization. The versions with
quantification over types introduced in Section 3.2 (for the strong ax-
iomatization) are derived straightforwardly.

First group:
Axioms for Typing and the Axioms of Extensionality
(31) Typing

a. ∀x0 : isTrue(x0)→ hasType(x0, t)

b. ∀x0∀x1∀x2 : [∃x3hasType(x0, g(x3, x2)) ∧ hasType(x1, x3)]
→ hasType( f (x0, x1), x2))

c. ∃x : hasType(x , e) ∧ ∃y : hasType(y, s)
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(32) Axioms of Extensionality
a. ∀x0∀x1∀x2∀x3 : [hasType(x0, g(x2, x3)) ∧

hasType(x1, g(x2, x3))]
→ [∀x4hasType(x4, x2)→ f (x0, x4) = f (x1, x4)]→ x0 = x1

b. ∀x0∀x1 : [[hasType(x0, t)∧ hasType(x1, t)]
∧ [isTrue(x0)↔ isTrue(x1)]]→ x0 = x1

Second group:
Defining Axioms for Ty2 Constants instantiated for all types ρ,σ,τ:
(33) For every constant cn

τ:
hasType(Tterm(cn

τ), Tty(τ))

(34) For every variable xn
σ:

hasType(xn, Tty(σ))

(35) Combinators
a. ∀x0 : hasType(x0, Tty(σ))→ f (I(σ), x0) = x0

b. ∀x0∀x1 : [hasType(x0, Tty(σ))∧ hasType(x1, Tty(τ))]
→ f ( f (K(Tty(σ), Tty(τ)), x0), x1) = x0

c. ∀x0∀x1∀x2 : [hasType(x0, g(Tty(τ), g(Tty(σ), Tty(ρ))))
∧ hasType(x1, g(Tty(τ), Tty(σ)))∧ hasType(x2, Tty(τ))]
→ f ( f ( f (S(Tty(τ), Tty(σ), Tty(ρ)), x0), x1), x2)
= f ( f (x0, x2), f (x1, x2))

(36) Equality
a. ∀x1∀x2 : isTrue( f ( f (≡̇(Tty(σ)), x1), x2))
↔ (hasType(x1, Tty(σ))∧ x1 = x2)

(37) Choice
a. ∀x1 : hasType(x1, g(Tty(σ), t))→ [∃x2isTrue( f (x1, x2)))
→ isTrue( f (x1, f (ι(Tty(σ)), x1)))]

(38) Existential Quantifier
a. ∀x1hasType(x1, Tty(σ))→ [∀x2 : isTrue( f (∃̇(Tty(σ)), x2))
↔∃x3(hasType(x3, Tty(σ))∧ isTrue( f (x2, x3))]

(39) Universal Quantifier
a. ∀x1hasType(x1, Tty(σ))→ [∀x2 : isTrue( f (∀̇(Tty(σ)), x2))
↔∀x3(hasType(x3, Tty(σ))→ isTrue( f (x2, x3)))]
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(40) Propositional Connectives
a. ∀x0 : hasType(x0, t)→
(isTrue( f (¬̇, x0))↔ not(isTrue(x0))))

b. ∀x0∀x1 : [hasType(x0, t)∧ hasType(x1, t)]
→ [isTrue( f ( f (∧̇, x0), x1))↔ (isTrue(x0)∧ isTrue(x1))]

c. ∀x0∀x1 : [hasType(x0, t)∧ hasType(x1, t)]
→ [isTrue( f ( f (→̇, x0), x1))↔ (isTrue(x0)→ isTrue(x1))]

d. ∀x0∀x1 : [hasType(x0, t)∧ hasType(x1, t)]
→ (isTrue( f ( f (∨̇, x0), x1))↔ (isTrue(x0)∨ isTrue(x1)))

(41) Function symbols for lambda abstracts: see (10)

B proofs

B.1 Soundness and completeness
In this section, we prove Theorem 8. We adapt familiar proofs of
Henkin’s completeness theorem based on first-order translations and
the first-order completeness theorem (van Benthem and Doets 1983,
pp. 276–283, Leivant 1994, sections 5.4–5.5). First we embed L CTy2 in
a multi-sorted first-order language, FC :
Definition 10. The sorts of FC are the types of LTy2. The terms of FC
are the terms of L CTy2 plus the variables of LTy2, and the sort of ασ as a
term of FC is σ. The variables of FC are the variables of LTy2. A lambda
abstract λx .α with n free variables x1, ..., xn is understood as an n-place
function symbol applied to x1, ..., xn. The language FC of C -formulae is
the smallest set such that

• isTrue(αt) ∈ FC for every term αt ∈ L CTy2 of sort t. We will write αt

for isTrue(αt).
• If α, β ∈ FC , then (α◦̂β) ∈ FC for all propositional connectives ◦,
similarly for negation

• If α ∈ FC and xσ is a variable, then (∀̂σxσ α) ∈ FC and (∃̂σxσ α) ∈
FC

• If ασ,βσ ∈ L CTy2, then (ασ≡̂σβσ) ∈ FC
We interpret FC over structures in which the universes may be empty

for some sorts and where therefore the interpretation of a term or formula
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with free variables may be undefined. An FC -structure M has as its uni-
verse a family {Dτ : τ ∈ Types} of mutually disjoint sets, where Ds, De ̸= ;,
and for all other types τ, Dτ is non-empty (at least) if there is a term of
type τ in L CTy2, interpreting constants of sort σ by elements of Dσ. FC -
structures interpret ≡σ as equality between objects of sort σ, and provide
an interpretation for the predicate symbol isTrue(·t), the function symbol
(·〈τσ〉, ·τ)σ for each pair of sorts τ, σ ∈ Types, and all function symbols
representing lambda abstracts λx .α ∈ C . An M-assignment v is a partial
function from the variables of LTy2 such that v(xσ) ∈ Dσ for every xσ in
the domain of v. Evaluation is defined as follows:

• ⟦α⟧vM is undefined if v is undefined for some variable occurring free
in α.
Otherwise, we have:

• ⟦x⟧vM = v(x)

• ⟦(α〈τσ〉βτ)⟧vM = ⟦(·〈τσ〉, ·τ)σ⟧M(⟦α⟧vM,⟦β⟧vM)
• ⟦(∀̂σxσ α)⟧vM = 1 iff ⟦α⟧v′M = 1 for every M-assignment v′ that has

xσ in its domain and that agrees with v on Domain(v)\{xσ}, and 0
otherwise

• ⟦(∃̂σxσ α)⟧vM = 1 iff ⟦α⟧v′M = 1 for some M-assignment v′ that has
xσ in its domain and that agrees with v on Domain(v)\{xσ}, and 0
otherwise

with straightforward clauses for atoms and propositional connectives. A
structureM verifies a formulaϕ ∈ FC iff ⟦ϕ⟧vM = 1 for allM-assignments
v that have all free variables of ϕ in their domain.
There is a canonical translation from FC to LTy2, but FC is in

general more expressive than L CTy2. The formula translation T f can be
extended canonically to FC . Axioms from A C that do not contain
quantification over types can be understood as formulae of FC . For
instance, the first-order formula representing the Axiom of Extension-
ality for objects of type t, (32b), can be identified with the C -formula
(42) ∀̂t x t ∀̂t yt : (x t↔̂yt)→̂(x t≡̂t yt).

Furthermore, every axiom that does not contain positive occur-
rences of variables representing types can be associated with a (possi-
bly infinite) family of C -formulae. For instance the first-order formula
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of the Axiom of Extensionality for higher types, (32a), can be associ-
ated with the set
(43) {∀̂σxσ(((ϕστxσ)≡̂τ(ψστxσ)))→̂((ϕ̂̇ ≡στ ψ) : σ,τ ∈ Types}.

The only axioms from A C containing positive occurrences of
variables representing types are the typing axioms (31, 33, 34). As
these axioms only fix the types of the constant symbols, they are
already implicit in the syntax of FC . Replacing the others by C -
formulae in this manner, we obtain a set BC ⊂ FC of C -formulae
representing all axioms in A C apart from the typing axioms.

The notion of an L CT y2-interpretation is straightforwardly ex-
tended to FC , and L CTy2-models can therefore be canonically viewed
as FC -structures. We obtain the following characterization:
Proposition 11. The class of L CTy2-models is (via this identification)
equal to the class of FC -structures that satisfy the formulae in BC .
Proof. Immediate from Definition 4.
We now proceed to the proof of completeness (Lemma 12) and

soundness (Lemma 13).
Lemma 12. If ϕ ∈ FC is true in all L CTy2-models, then A C ⊢ T (ϕ).
Proof. We show that if T (ϕ) is satisfiable in a model ofA C , then ϕ is
true in some L CTy2-model. The claim then follows from the complete-
ness theorem for first-order logic.

LetM be a model ofA C that verifies T (ϕ). For every α ∈M and
every type σ such that ⟦hasType⟧M(α,⟦Tty(σ)⟧M) = T , take a fresh
object ασ. Set αστ(βσ) to be ⟦ f ⟧M(α,β)τ, which exists by the second
typing axiom. By the Axiom of Extensionality, there can be at most
two objects of type t. Identify the one that verifies isTrue, if it exists,
with T , and the other one, if it exists, with F . We thus obtain a frame
{Dσ : σ ∈ Types}, from which we build an FC -structureM′ by setting⟦c⟧M′ to ⟦c⟧M for every constant c ∈ L CTy2. In the case that c is a
polymorphic logical constant cτ1,...,τn , i.e., a quantifier or a combina-
tor, we set ⟦cτ1,...,τn⟧M′ to ⟦c⟧M(⟦T (τ1)⟧M, ...,⟦T (τn)⟧M) for all types
τ1, ...,τn.

We then need to show M |= T (ψ) ⇒ M′ |= ψ for all ψ ∈ FC .
First, by induction, ⟦t⟧vM′ = ⟦Tterm(t)⟧wM for every term t ∈ L CTy2 and
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all assignments v : Var ∩ L CT y2 → M′, w: Var → M such that w ⊃ v,
where Var is the set of Ty2 variables. The claim follows by induction
over formula structure. The structureM verifies the first-order trans-
lation of every element of BC . Therefore, by Proposition 11, M′ is a
L CT y2-model and, in particular, ϕ has a L CTy2-model.

We have shown that every model of A C encodes a L CTy2-model,
preserving the truth ofFC -formulae. This shows that a finite modelM
of a first-order translation generated by a model builder can be viewed
as encoding a (possibly infinite) L CTy2-model such that the value of
every L CTy2-term in this model can be computed fromM.
Lemma 13. Let ϕ ∈ FC . IfA C ⊢ T (ϕ), then ϕ holds in allL CTy2-models.

Proof. Assume ¬ϕ holds in some L CTy2-model M. As above, we in-
terpret L CTy2-models as multi-sorted first-order structures. We extend
them by adding every τ ∈ Types to the universe, giving them a separate
sort, and defining predicates isTrue and ≡σ straightforwardly. Then we
can interpret the first-order language of the translation in these struc-
tures. Obtain a first-order structure M′ in this manner. We show that
M |= ψ ⇒ M′ |= T (ψ) for all ψ ∈ FC . Thus M′ |= T (¬ϕ). The typ-
ing axioms are evidently true in M′. The other axioms are true in M′
by Proposition 11. Thus A C ̸|= T (ϕ), and by soundness of first-order
deduction, A C ⊬ T (ϕ).

This concludes the proof of Theorem 8.

B.2 Model building
In this section, we prove Theorem 9.

Proof. Set C := {α}. Let 〈D,I 〉 be a general L CTy2-model such that De

and Ds are finite, and αt is true in 〈D,I 〉. We say that e, t, s have rank
1, and the rank of g(σ,τ) is one plus the maximum of the ranks of σ
and τ. Let n be twice the maximum rank of all the types of sub-terms
occurring in α. Obtain a finite L CTy2-model N by setting Dτ := ; for all
types τ of rank > n. As in the proof of Lemma 13, we can view N as a
first-order-structure that verifies A C ∧ T (α).
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C meaning postulates

For every postulate, the set of triggering constant symbols is given.
Where it occurs, α stands for the triggering constant symbol.
1. Intersective adjectives: blond, Scandinavian, Irish, British, female,

male
∃P1
〈s〈et〉〉∀ws∀P2〈s〈et〉〉∀xe(α(w, P2, x)↔ (P1(w, x)∧ P2(w, x)))

2. Subsective, non-intersective adjectives: genuine, skillful, successful,
interesting, large, small, fat, tall, blue
∀P〈s〈et〉〉∀xe∀ws(α(w, P, x)→ P(w, x))

3. Privative adjectives: fake, former
∀P〈s〈et〉〉∀xe∀ws(α(w, P, x)→¬P(w, x))

4. alleged
∀P〈s〈et〉〉∀xe∀w1

s (alleged(w1, P, x)↔ allegedly(w1, (λw2P(w2, x))))
Note that this axiom is slightly different from the one given in the
text (see (21)), but the version here is sufficient for the relevant
test items.

5. Mutual exclusiveness of small, large
∀ws∀xe∀P〈s〈et〉〉(small(w, P, x)→¬large(w, P, x))

6. necessarily
∀w1

s∀P〈st〉(necessarily(w1, P)↔∀w2
s P(w2))

7. possibly
∀w1

s∀P〈st〉(possibly(w1, P)↔∃w2
s P(w2))

8. two
∀P1
〈et〉∀P2〈et〉(twoe(P1, P2)↔∃x1

e∃x2
e (x

1 ̸≡ x2 ∧ (P1(x1)∧ P1(x2))))

9. at-most-two
∀P1
〈et〉∀P2〈et〉(at-most-twoe(P1, P2)↔ ∃x1

e∃x2
e∀x3

e (x
3 ̸≡ x1 → (x3 ̸≡

x2→¬(P1(x3)∧ P2(x3)))))

10. at-least-three
∀P1
〈et〉∀P2〈et〉(at-least-threee(P1, P2) ↔ ∃x1

e∃x2
e∃x3

e ((((((((x
1 ̸≡ x2 ∧

x1 ̸≡ x3)∧x2 ̸≡ x3)∧P1(x1))∧P2(x1))∧P1(x2))∧P2(x2))∧P1(x3))∧
P2(x3)))

11. most
∀P1
〈et〉∀P2〈et〉(most e(P1, P2) ↔ ∀ f〈ee〉(∀x1

e ((P
1(x1) ∧ ¬P2(x1)) →

(P1( f (x1))∧ P2( f (x1))))→ ∃x2
e ((P

1(x2)∧ P2(x2))∧∀x3
e ((P

1(x3)∧
¬P2(x3))→ f (x3) ̸≡ x2))))
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12. only
∀P1
〈et〉∀P2〈et〉(onlye(P1, P2)↔∀xe(P2(x)→ P1(x)))

13. Conservativity of SEVERAL
∀P1
〈et〉∀P2〈et〉(α(P1, P2)→∃xe(P1(x)∧ P2(x)))

14. Monotonicity: upwards on first argument: SEVERAL, MANY
∀P1
〈et〉∀P2〈et〉∀P3

〈et〉(α(P
1, P2)→ (∀xe(P1(x)→ P3(x))→ α(P3, P2)))

15. Monotonicity: upwards on second argument: SEVERAL, MANY
∀P1
〈et〉∀P2〈et〉∀P3

〈et〉(α(P
1, P2)→ (∀xe(P2(x)→ P3(x))→ α(P1, P3)))

16. Monotonicity: downwards on first argument: FEW
∀P1
〈et〉∀P2〈et〉∀P3

〈et〉(α(P
1, P2)→ (∀xe(P3(x)→ P1(x))→ α(P3, P2)))

17. Monotonicity: downwards on second argument: FEW
∀P1
〈et〉∀P2〈et〉∀P3

〈et〉(α(P
1, P2)→ (∀xe(P3(x)→ P2(x))→ α(P1, P3)))

18. Non-empty extension: FEW
∀P1
〈et〉∀P2〈et〉(∀xe¬(P1(x)∧ P2(x))→ fewe(P1, P2))

19. Mutual exclusiveness of MANY and FEW
∀P1
〈et〉∀P2〈et〉¬(manye(P1, P2)∧ f ewe(P1, P2))

20. Deductivity: think, know
∀xe∀P1

〈st〉∀P2〈st〉∀w1
s ((α(w

1, P1, x)∧∀w2
s (P

1(w2)→ P2(w2)))
→ α(w1, P2, x))

21. Veridicality: know
∀xe∀P〈st〉∀ws(know(w, P, x)→ P(w))

D test suite
Each test item consists of premises and a conjecture, which are sepa-
rated by a symbol which is ⊢ for valid items, ⊢ NON for contradictory
ones, and ⋉ for contingent items. Our notational conventions and ter-
minology are explained in Section 4.3.

First-order inferences
(0.0) ⊢ NON Mia dances and does not dance.
(0.1) Mia dances and does not dance. ⊢ Mia dances.
(0.2) ⊢ Every man dances or does not dance.
(0.3) Mia is a woman. Mia dances. ⊢ A woman dances.
(0.4) Mia is a robber. ⋉ Mia is a man.
(0.5) Mia is a woman. Every woman dances. ⊢ Mia dances.
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Modality
(1.0) Mia dances. ⊢ Mia possibly dances.
(1.1) Mia dances. ⋉ Mia necessarily dances.
(1.2) Mia is a robber. ⋉ Mia allegedly is a robber.
(1.3) Mia necessarily dances. ⊢ Mia dances.
(1.4) Mia possibly dances. ⋉ Mia dances.
(1.5) Mia allegedly is a robber. ⋉ Mia is a robber.
(1.6) Mia necessarily dances. ⊢ Mia possibly dances.
(1.7) Mia possibly dances. ⋉ Mia necessarily dances.
(1.8) Mia does not possibly dance. ⊢Mia necessarily does not dance.
(1.9) Mia does not dance. ⊢ Mia does not necessarily dance.
(1.10) Mia does not possibly dance. ⊢ Mia does not dance.
(1.11) ⊢ Mia dances or does not necessarily dance.
(1.12) Mia is an alleged robber. ⊢ Mia allegedly is a robber.
(1.13) Mia necessarily is a robber. ⋉ Mia allegedly is a robber.
(1.14) Mia allegedly is a robber. ⋉ Mia possibly is a robber.

Propositional attitudes
(2.0) Mia thinks that John necessarily dances. ⊢Mia thinks that John

dances.
(2.1) John thinks that Mia knows that Vincent dances. ⊢ John thinks

that Vincent dances.
(2.2) John thinks that Mia eats several burgers. ⊢ John thinks that

Mia eats a burger.
(2.3) John thinks that Mia is a blond woman. ⊢ John thinks that Mia

is a woman.
(2.4) John thinks that Mia is an alleged robber. ⋉ John thinks that

Mia is a robber.
(2.5) John knows that Mia dances. ⊢ Mia dances.
(2.6) John thinks that Mia dances. ⋉ Mia dances.
(2.7) Mia necessarily knows that Mia dances. ⊢ Mia necessarily

dances.
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(2.8) Mia knows that John dances. John is the chairman. ⋉ Mia
knows that the chairman dances.

(2.9) Mia knows that John saw a unicorn. ⊢ Some unicorn is a
unicorn.

(2.10) Mia thinks that John saw a unicorn. ⋉ Some unicorn is a
unicorn.

Generalized quantifiers
(3.0) Few women dance. ⊢ NON Many women dance.
(3.1) No women dance. ⊢ Few women dance.
(3.2) No women dance. ⊢ NON Many women dance.
(3.3) Few women dance. ⋉ No women dance.
(3.4) Many women dance. ⋉ All women dance.
(3.5) All women dance. ⋉ Many women dance.
(3.6) Mia eats every burger. Mia eats a burger. ⊢ Mia eats most

burgers.
(3.7) Every man dances. A man dances. ⊢ Most men dance.
(3.8) Mia eats a burger. ⋉ Mia eats most burgers.
(3.9) Mia eats most burgers. ⋉ Mia eats all burgers.
(3.10) Only men dance. No woman is a man. ⊢ No woman dances.
(3.11) John is a man. Every man dances. ⊢ The man dances.
(3.12) At least three women dance. ⊢NONAtmost two women dance.
(3.13) The man dances. John is a man. ⊢ A man dances.
(3.14) Many women dance. ⊢ Some women dance.
(3.15) Few women dance. ⋉ Some women dance.
(3.16) Several women dance. ⊢ Some women dance.
(3.17) Most women dance. ⊢ Some women dance.
(3.18) At least three women dance. ⊢ Some women dance.
(3.19) At most two women dance. ⋉ Some women dance.
(3.20) The man dances and plays air guitar. ⊢ The man dances.
(3.21) Many men dance and play air guitar. ⊢ Many men dance.
(3.22) Few men dance and play air guitar. ⋉ Few men dance.
(3.23) Several men dance and play air guitar. ⊢ Several men dance.
(3.24) Most men dance and play air guitar. ⊢ Most men dance.

[ 561 ]



Michael Hahn, Frank Richter

(3.25) At least three men dance and play air guitar. ⊢ At least three
men dance.

(3.26) At most two men dance and play air guitar. ⋉ At most two men
dance.

(3.27) The man dances. ⋉ The man dances and plays air guitar.
(3.28) Many men dance. ⋉ Many men dance and play air guitar.
(3.29) Few men dance. ⊢ Few men dance and play air guitar.
(3.30) Several men dance. ⋉ Several men dance and play air guitar.
(3.31) Most men dance. ⋉ Most men dance and play air guitar.
(3.32) At least three men dance. ⋉ At least three men dance and play

air guitar.
(3.33) At most two men dance. ⊢ At most two men dance and play

air guitar.
(3.34) The blond man dances. ⋉ The man dances.
(3.35) Many blond men dance. ⊢ Many men dance.
(3.36) Few blond men dance. ⋉ Few men dance.
(3.37) Several blond men dance. ⊢ Several men dance.
(3.38) Most blond men dance. ⋉ Most men dance.
(3.39) At least three blond men dance. ⊢ At least three men dance.
(3.40) At most two blond men dance. ⋉ At most two men dance.
(3.41) The man dances. ⋉ The blond man dances.
(3.42) Many men dance. ⋉ Many blond men dance.
(3.43) Few men dance. ⊢ Few blond men dance.
(3.44) Several men dance. ⋉ Several blond men dance.
(3.45) Most men dance. ⋉ Most blond men dance.
(3.46) At least three men dance. ⋉ At least three blond men dance.
(3.47) At most three men dance. ⊢ At most three blond men dance.

Generalized quantifiers (from FraCaS)
(F22) No delegate finished the report on time. ⋉ No delegate finished

the report.
(F23) Some delegates finished the survey on time. ⋉ Some delegates

finished the survey.
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(F24) Many delegates obtained interesting results from the survey.
⊢ Many delegates obtained results from the survey.

(F38) No delegate finished the report. ⋉ Some delegate finished the
report on time.

(F39) Some delegates finished the survey. ⋉ Some delegates finished
the survey on time.

(F40) Many delegates obtained results from the survey. ⋉ Many del-
egates obtained interesting results from the survey.

(F54) No Scandinavian delegate finished the report on time. ⋉ Some
delegate finished the report on time.

(F55) Some Irish delegates finished the survey on time. ⊢ Some del-
egates finished the survey on time.

(F56) Many British delegates obtained interesting results from the
survey. ⋉Many delegates obtained interesting results from the
survey.

(F63) At least three female commissioners spend time at home. ⊢ At
least three commissioners spend time at home.

(F70) No delegate finished the report on time. ⊢ NON Some Scandi-
navian delegate finished the report on time.

(F71) Some delegates finished the survey on time. ⋉ Some Irish del-
egates finished the survey on time.

(F72) Many delegates obtained interesting results from the survey.
⋉ Many British delegates obtained interesting results from the
survey.

(F79) At least three commissioners spend time at home. ⋉ At least
three male commissioners spend time at home.

Adjectives
(4.0) Mia is a blond woman. ⊢ Mia is a woman.
(4.1) Mia is blond. Mia is a woman. ⊢ Mia is a blond woman.
(4.2) Mia is a blond woman. Mia is a robber. ⊢Mia is a blond robber.
(4.3) Mia has a genuine diamond. ⊢ Mia has a diamond.
(4.4) Mia is a skillful robber. Mia is a boxer. ⋉Mia is a skillful boxer.
(4.5) Excalibur is a fake sword. ⊢ NON Excalibur is a sword.
(4.6) ⊢ No fake sword is a sword.
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(4.7) Excalibur is a weapon. Excalibur is a fake sword. ⊢ NON Ex-
calibur is a fake weapon.

(4.8) Mia is an alleged robber. ⋉ Mia is a robber.
(4.9) Mia is an alleged robber. Mia is a boxer. ⋉ Mia is an alleged

boxer.

Adjectives (from FraCaS)
(F197) John has a genuine diamond. ⊢ John has a diamond.
(F198) John is a former university student. ⊢ NON John is a university

student.
(F199) John is a successful former university student. ⊢ John is suc-

cessful.
(F200) John is a former successful university student. ⋉ John is suc-

cessful.
(F201) John is a former successful university student. ⋉ John is a uni-

versity student.
(F204) Mickey is a small animal. ⊢ NON Mickey is a large animal.
(F205) Dumbo is a large animal. ⊢ NON Dumbo is a small animal.
(F206) Fido is not a small animal. ⋉ Fido is a large animal.
(F207) Fido is not a large animal. ⋉ Fido is a small animal.
(F210) All mice are small animals. Mickey is a large mouse. ⊢ NON

Mickey is a large animal.
(F211) All elephants are large animals. Dumbo is a small elephant.

⊢ NON Dumbo is a small animal.
(F214) All legal authorities are law lecturers. All law lecturers are legal

authorities. ⊢ All fat legal authorities are fat law lecturers.
(F215) All legal authorities are law lecturers. All law lecturers are legal

authorities. ⋉ All competent legal authorities are competent
law lecturers.

(F218) Kim is a clever person. ⊢ Kim is clever.
(F219) Kim is a clever politician. ⊢ Kim is clever.

De dicto
(5.0) Mia seeks a unicorn. ⋉ Some unicorn is a unicorn.
(5.1) Mia sees a unicorn. ⊢ Some unicorn is a unicorn.
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