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The literature on error-driven learning in Harmonic Grammar (HG)
has adopted the Perceptron reweighing rule. Yet, this rule is not suited
to HG, as it fails at ensuring non-negative weights. A variant is thus
considered which truncates the updates at zero, keeping the weights
non-negative. Convergence guarantees and error bounds for the orig-
inal Perceptron are shown to extend to its truncated variant.

1 introduction

Language learning is the process of selecting a grammar from a given
typology of grammars based on some linguistic data. Assume that the
learner maintains a current grammar representing its current hypoth-
esis on the target adult grammar it is being trained on. Training data
come in a stream. Whenever the current grammar makes an error on
the current piece of training data, it is updated to a slightly different
one. The current piece of data is then discarded and the learner waits
for the next piece of training data to evaluate the performance of the
updated grammar. This learning scheme is called error-driven because
the learning dynamics is driven by the errors made on the incoming
stream of data. This scheme has been thoroughly investigated in the
machine learning literature (where it is commonly called online learn-
ing; for a review, see Kivinen 2003; Cesa-Bianchi and Lugosi 2006,
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chapters 11, 12; and Mohri et al. 2012, ch. 7). Within the language
acquisition literature, this learning scheme has been endorsed at least
since Wexler and Culicover (1980) for two reasons. First, an error-
driven learner describes a sequence of grammars in typological space
and thus provides a tool to model child acquisition paths. Second, an
error-driven learner does not keep track of previously seen data (the
current piece of data is discarded at the end of each iteration) and can
thus be used to model the early stages of language acquisition prior
to the development of the native language lexicon (such as the early
acquisition of phonotactics; Hayes 2004).

The most basic question of the computational theory of error-
driven learning concerns convergence: is it possible to guarantee that
the learner only makes a finite number of errors, so that it describes
a finite sequence of grammars in typological space? Convergence is
crucial because it means that the learner eventually settles on a final
grammar which will never be further updated and thus counts as the
grammar learned by the algorithm. This paper focuses on convergence
of error-driven learning within the framework of Harmonic Grammar
(HG; Legendre, Miyata, and Smolensky 1998b,a; Smolensky and Leg-
endre 2006).

Within the HG framework, the typology of grammars is parame-
terized through an assignment of weights to a given, finite set of con-
straints which extract the relevant properties of the linguistic data.
Whenever the HG error-driven learner makes an error, the constraints
are slightly reweighed. The recent HG computational literature has
adopted the Perceptron (or delta) reweighing rule (Pater 2008; Jesney
and Tessier 2011; Coetzee and Pater 2008, 2011; Coetzee and Kawa-
hara 2013; Boersma and Pater to appear, among many others). Ac-
cording to this rule, a certain amount is added to certain weights and
subtracted from others. This reweighing rule comes with convergence
guarantees, reviewed in Section 2: the number of errors is always fi-
nite and can be bounded in terms of certain “geometric” properties of
the training data (Rosenblatt 1958, 1962; Block 1962; Novikoff 1962;
Minsky and Papert 1969; Cesa-Bianchi and Lugosi 2006, chapters 11,
12; Mohri et al. 2012, ch. 7).

Despite current practice, the Perceptron is not suited to HG. Cru-
cially, HG requires the weights to be non-negative, in order to avoid
undesired typological predictions. Yet, the Perceptron does not en-
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force non-negativity of the final weights, since the current weights
are decreased (as well as increased) throughout learning. A simple
solution to this problem is a variant of the Perceptron reweighing
rule which truncates the updates at zero, thus ensuring non-negativity
of the final weights (Boersma and Pater to appear; Boersma and van
Leussen 2014). Although a run of the original and the truncated Per-
ceptron can differ substantially, Section 3 shows that a run of the trun-
cated Perceptron can be “mimicked” with a run of the original Percep-
tron on a slightly different sequence of data. Convergence guarantees
thus extend from the original to the truncated Perceptron. This obser-
vation yields the first convergence guarantee for an HG error-driven
learner consistent with HG’s restriction to non-negative weights. This
result is constraint-independent, namely it follows from the HG mode
of constraint interaction and thus holds for any constraint set. Sec-
tion 4 extends the reasoning to the stochastic implementation of HG
error-driven learning and to the noisy learning setting.

2 the perceptron hg learner

This Section reviews the implementation of error-driven learning used
in the current HG literature, based on the Perceptron reweighing rule.
2.1 Algorithmic core
Within HG, the typology of grammars is parameterized by an assign-
ment of weights θ1, . . . ,θk, . . . ,θn to a given collection of n phonological
constraints C1, . . . , Ck, . . . , Cn. These weights are collected together into
a weight vector θ = (θ1, . . . ,θn). The error-driven learning scheme can
then be made explicit in HG as in (1).
(1)

..Initialize the
current weight

vector θ
.

(a): get an
underlying/
winner/loser
form triplet
(x , y, z)

.

(b): check whether
the current weight

vector θ is consistent
with the current
triplet (x , y, z)

.

(c): update the
current weight
vector θ in

response to its
current failure

.

no

.

yes
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The algorithm maintains a current vector θ of constraint weights. The
analyses reported in this paper are independent of how these weights
are initialized; for concreteness, I assume throughout that they are all
initialized to zero (the extension to arbitrary initial weights is straight-
forward). The current weights are then updated by looping through
the three steps (1a)–(1c), described in detail below.
2.2 Data provided at step (1a)
At step (1a), the learner receives a piece of data. At a minimum, this
piece of data consists of a surface form y, say some form which is licit
according to the phonotactics corresponding to the target grammar
the learner is being trained on. In some applications, the correspond-
ing underlying form x can be assumed to be provided as well. In other
applications, the learner needs to be endowed with an additional sub-
routine to reconstruct the underlying form (e.g., set the current un-
derlying form x identical to the current surface form y; Prince and
Tesar 2004; Hayes 2004; Magri 2015). Yet, the analyses reported in
this paper are independent of the subroutine for the choice of the un-
derlying form, which I thus assume to be provided in some arbitrary
way along with the surface form at step (1a). The mapping (x , y) of the
underlying form x to the surface form y must beat the mapping (x , z)
of x to any other loser candidate z (loser candidates are stricken out
as a mnemonic) according to the target grammar the learner is being
trained on. The learner needs to focus on one such loser candidate z.
Usually, this loser candidate is chosen through a proper subroutine.1
Yet, the analyses reported in this paper are independent of the sub-
routine for the choice of the loser form, which I thus assume to be
provided in some arbitrary way at step (1a) as well. In the end, I as-
sume that the learner is fed at step (1a) a piece of data which consists
of an underlying/winner/loser form triplet (x , y, z). The collection of
these triplets is called the training set (each triplet from the training
set can of course be fed multiple times to the learner).

1A reasonable choice is to set the current loser z equal to the candidate which
is predicted to win according to the grammar corresponding to the current weight
vector θ . With this choice of the current loser, the following step (1b) can be
reformulated as follows: “check whether the intended winner y coincides with
the predicted winner z”.
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2.3 Consistency condition checked at step (1b)
At step (1b), the learner checks whether the current weight vector θ
is consistent with the current underlying/winner/loser form triplet
(x , y, z), namely whether the HG grammar corresponding to the cur-
rent weight vector θ manages to make the intended winner y beat
the intended loser z for the underlying form x . To start, assume that
all constraints are binary, namely they assign at most one violation.
In this case, the condition that the intended winner y beats the in-
tended loser z boils down to the condition (2). This condition says
that the sum of the current weights θ1,θ2, . . . of the winner-preferring
constraints collected into the set W (namely those constraints which
assign fewer violations to the winner y than to the loser z) is larger
than the sum of the weights of the loser-preferring constraints collected
into the set L (namely those constraints which assign fewer violations
to the loser z than to the winner y).
(2)
∑
h∈W

θh >
∑
k∈L

θk

In the general case of arbitrary (possibly non-binary) constraints, the
consistency condition generalizes to (3). The violation difference of con-
straint Ck is the difference between the number of violations Ck(x , z) it
assigns to the loser z minus the number of violations Ck(x , y) it assigns
to the winner y (see appendix A.1 for discussion). Condition (3) thus
requires the average of the constraint violation differences weighted
by the current weights θk to be strictly positive.
(3)

n∑
k=1

�
Ck(x , z)− Ck(x , y)︸ ︷︷ ︸
violation difference
of constraint Ck

�
θk > 0

In the case of binary constraints, the consistency condition (3) indeed
reduces to (2).
2.4 Update performed at step (1c)
If the consistency condition (2)/(3) is satisfied, the current weight
vector already predicts that the current winner y beats the current
loser z. The learner thus has nothing to learn from the current com-
parison and loops back to step (1a). Otherwise, the current weight
vector θ needs to be updated at step (1c) in response to its current
failure. To start, assume that the constraints are all binary. Failure of
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condition (2) suggests that the weights corresponding to the winner-
preferring (loser-preferring) constraints are too small (too large). One
reasonable update strategy is thus (4), which promotes (demotes)
the winner-preferring (the loser-preferring) constraints by a small
amount, say 1 for concreteness; for an illustration, see (10) below.
(4) a. Increase the current weight of each winner-preferring con-

straint by 1;
b. decrease the current weight of each loser-preferring con-

straint by 1.
In the general case of arbitrary (possibly non-binary) constraints, the
update rule (4) is generalized as in (5) (Jesney and Tessier 2011; Co-
etzee and Pater 2008, 2011; Coetzee and Kawahara 2013; Boersma
and Pater to appear, among many others). If a constraint Ck is winner-
preferring (loser-preferring), its violation difference Ck(x , z)−Ck(x , y)
is positive (negative) and its weight is therefore increased (decreased)
by the update rule (5). In the case of binary constraints, the update
rule (5) indeed reduces to (4).
(5) Update each current weight θk by adding the corresponding vi-

olation difference Ck(x , z)−Ck(x , y).
After the update, the learner loops back to step (1a), waits for another
piece of data, and starts all over again.
2.5 Convergence
Boersma and Pater (to appear) note that the HG reweighing rule (5)
can be interpreted as the Perceptron (or delta) update rule. They thus
reinterpret the convergence guarantees for the Perceptron (Rosenblatt
1958, 1962; Block 1962; Novikoff 1962; Minsky and Papert 1969; Cris-
tianini and Shawe-Taylor 2000, Theorem 2.3; Cesa-Bianchi and Lugosi
2006, ch. 12; Mohri et al. 2012, ch. 7) as the following Theorem 1 on
convergence of the HG error-driven learner.2 See Magri (to appear)
for discussion of the error bound (6).

2 Boersma and Pater (to appear) call the learner just described the (deter-
ministic) HG-GLA. I prefer the name HG (Perceptron) error-driven learner, thus
keeping the acronym “GLA” for a specific implementation of OT error-driven
learning, characterized by the fact that the promotion amount is set equal to the
demotion amount.
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Theorem 1 The HG error-driven learner (1) with the HG update condi-
tion (3) and the Perceptron reweighing rule (5) converges: the number of
errors is bounded by

(6)
� radius of the training data
margin of the training data

�2
when the training set consists of underlying/winner/loser form triplets
which are all consistent with some HG grammar and have bounded viola-
tion differences.

Theorem 1 provides an error bound (6) which depends on some
“geometric” properties of the training data, namely their radius and
their margin (of separability). Here is the idea in a nutshell. The train-
ing set consists of underlying/winner/loser form triplets (x , y, z). For
each of these training triplets, collect into a vector the n violation
differences assigned by the phonological constraints C1, . . . , Cn to that
triplet. The resulting vector can be thought of as a point in the carte-
sian n-dimensional space. The radius of the training data which ap-
pears in the numerator of (6) is the radius of the smallest sphere
which contains all the vectors of constraint violation differences that
the learner is trained on, as explained in Appendix A.2. Of course,
the error bound (6) only makes sense provided that the radius in the
numerator is finite, or equivalently that the violation differences are
bounded, as indeed required by the statement of the Theorem. That
is in particular the case if the number of violations assigned by the
constraints is upper bounded by some constant.

The precise definition of themargin (of separability)which appears
in the denominator of (6) is somewhat involved and is therefore rel-
egated to Appendix A.3. The following intuitive illustration suffices
for the rest of the paper. Theorem 1 assumes that the training set is
consistent with some HG grammar. Yet, consistent training sets can
differ in their degree of consistency. The training set has a high degree
of consistency if it is consistent with a certain HG grammar and re-
mains consistent when the corresponding weight vector is tampered
with. The training set has instead a small degree of consistency if even
a slight modification of any consistent weight vector affects consis-
tency. The margin which appears in the denominator of (6) can be in-
terpreted as the degree of consistency of the training set. Intuitively, a
training set with a large degree of consistency should be easy to learn:
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it should be easy to shoot at a consistent weight vector. A training set
with a small degree of consistency should instead be hard to learn: a
careful aim is required to shoot precisely at a consistent weight vec-
tor. The error bound (6) formalizes this intuition: a training set with a
high (low) degree of consistency has a large (small) margin, yielding
a small (large) error bound (6) which provides guarantees for better
(worse) performance of the HG learner.

3 the perceptron hg learner

This section explains why the problem of convergence for HG error-
driven learning is still open in the literature and provides a simple and
principled solution.
3.1 The problem of non-negative weights
Constraints in HG are always interpreted as expressing penalties, never
rewards. Hence, constraint weights need to be enforced to satisfy the
non-negativity condition (7) in order for HG to avoid undesired ty-
pological predictions, whereby less marked structures are mapped to
more marked ones (Legendre et al. 2006; Keller 2000).
(7) θ1, . . . ,θn ≥ 0

Here is an elementary counterexample which illustrates the impor-
tance of this non-negativity condition. Suppose that the constraint
set contains the markedness constraint NoVoice against voiced ob-
struents and the identity faithfulness constraint Ident[voice] for
voicing. Suppose furthermore that the underlying form /ta/ comes
with the two surface candidates [ta] and [da]. If the two constraints
are allowed to take on negative weights (say θNoVoice = −3 and
θIdent = −1), the corresponding HG grammar maps the voiceless
stop to a voiced one, whereby an unfaithful mapping yields no gain in
markedness.

Despite the non-negativity condition (7) being a crucial compo-
nent of HG’s mode of constraint interaction, the Perceptron update
rule (4)/(5) used in the current literature does not in any way guar-
antee that the current and final weights entertained by the algorithm
satisfy this non-negativity condition (7). Even if the current weights
are initialized to large initial values, there is no guarantee that they
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will never drop below zero, as the number of updates – and thus in
particular the number of demotions (4b) – crucially depends on the
size of the initial weights. Furthermore, certain modeling applications
have been argued to require certain constraints to start with initial
weights equal to zero, namely to start right at the edge of the forbidden
zone. For instance, Jesney and Tessier (2011) argue that input-output
faithfulness constraints need to start with null initial weights, in order
to prevent gang-up effects that might foul the learner into learning
phonotactically unrestrictive final weights. In conclusion, the Percep-
tron reweighing rule (4)/(5) does not yield a proper HG error-driven
learner. The rest of this section develops a solution to this problem.3

3.2 The truncated Perceptron reweighing rule
To start, assume for concreteness that all constraints are binary. A nat-
ural strategy to enforce non-negativity of the current and final weights
is to switch from the original Perceptron update rule (4) to the truncated
Perceptron update rule (8). The two update rules coincide as long as
the current weights stay non-negative. But when the original update
rule (4) would demote a certain weight below zero, the truncated rule
(8) leaves that weight unchanged; for an illustration, see (12) below.

3 A different solution to this problem is to use the Winnow algorithm in-
stead of the Perceptron algorithm (Littlestone 1988). In fact, Winnow adopts a
multiplicative update rule (rather than the Perceptron’s additive update rule) and
therefore effectively keeps the weights non-negative. Unfortunately, convergence
guarantees for Winnow only hold when the amount of reweighing (also called the
plasticity or the step size) has been properly chosen in a way that crucially depends
on the margin of the training data. Since the margin is not known beforehand,
the algorithm needs to be supplemented with a procedure to estimate the margin
online, making the overall implementation more complex. Despite this difficulty,
it might be worth exploring the use of Winnow’s reweighing rule for HG error-
driven learning. In fact, Boersma and Pater (to appear) report simulation results
with a reweighing rule which is very similar to Winnow’s (it only differs be-
cause the current weights are not normalized, contrary to what is prescribed by
Winnow). Although the variant tested in Boersma and Pater’s simulations has
no guarantees of convergence (normalization of the weights plays a crucial role
in Winnow’s convergence proof), they report that the number of errors is sig-
nificantly smaller than with the Perceptron on their test cases. Indeed, Winnow
and the Perceptron have been compared extensively in the machine learning
literature (Kivinen, Warmuth, and Auer 1997), with the two update rules out-
performing each other on different types of training sets.

[ 353 ]



Giorgio Magri

(8) a. Increase the current weight of each winner-preferring con-
straint by 1;

b. decrease the current weight of each loser-preferring con-
straint by 1, unless that would make that weight negative, in
which case do not modify that weight.

In the general case of arbitrary (possibly non-binary) constraints, the
truncated Perceptron reweighing rule becomes (9). This is the original
update rule (5) apart from the additional “unless” clause in italics,
meant to prevent the weights from ever turning negative.4 In the case
of binary constraints, (9) indeed reduces to (8).
(9) Update each current weight by adding the violation difference of

the corresponding constraint, unless that update would make that
current weight negative, in which case do not modify that weight.

Boersma and Pater (to appear, p. 19) and Boersma and van Leussen
(2014, section 5) report encouraging simulation results with this trun-
cated reweighing rule. But what about its theoretical guarantees? The-
orem 1 guarantees that the learner with the original Perceptron update
rule (4)/(5) can only make a finite number of errors and furthermore
provides an explicit error bound. What about the truncated Perceptron
update rule (8)/(9)? The two update rules are superficially similar; yet,
they describe quite different algorithms. Indeed, suppose that the cur-
rent weights are all initialized to zero. The original Perceptron update
rule will then perform lots of demotions below zero that the truncated
Perceptron is forbidden to mimic. As a result, the sequence of gram-
mars entertained by the original Perceptron will turn out to be quite
different from the sequence of grammars entertained by the truncated
Perceptron. Is there any way to extend the theoretical guarantees that
hold for the original Perceptron to its truncated variant?
3.3 Sketch of the analysis on a concrete example
Consider three constraints IdentVoiceOnset (which requires preser-
vation of voicing in onset position), IdentVoice (which requires

4A slight variant of (8)/(9) is as follows: when updating a weight would make
that weight negative, instead of leaving that weight unchanged, set that weight
equal to the smallest licit value, namely to zero. The analysis presented below
trivially extends to this variant as well.
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preservation of voicing in an arbitrary position), and NoVoice (which
militates against obstruent voicing). Assume that the underlying form
/da/ only comes with the two candidates [da] and [ta]. Suppose that
at a certain iteration of the HG learner, the current weight of the con-
straint IdentVoiceOnset is equal to zero, thus barely satisfying the
non-negativity condition (7). Suppose for concreteness that the cur-
rent weights of the other two constraints IdentVoice and NoVoice
are instead positive, say equal to 7 and 3 respectively, as indicated by
the weight vector on the left hand side of (10).
(10) Update by the original Perceptron:

..IdentVoiceOnset
IdentVoice

NoVoice

07
3

.
−1

6
4

. (/da/, [ta], [da])

Suppose that the learner is trained on a target grammar which bans
voiced obstruents across the board. The learner is thus fed the un-
derlying form /da/ together with the corresponding intended winner
[ta] and the faithful loser [da] , as indicated by the label on top of the
arrow in (10).

The markedness constraint NoVoice prefers the winner candi-
date [ta] while the two faithfulness constraints IdentVoiceOnset
and IdentVoice prefer the loser candidate [da], as shown in (11).
(11) Input: /da/ IdentVoiceOnset IdentVoice NoVoice

θ = 0 θ = 7 θ = 3

a. [ta] ∗(l) ∗(l)
b. + [da] ∗(w)

The weight θNoVoice = 3 of the winner-preferring constraint is
not larger than the sum θIdentVoiceOnset + θIdentVoice = 0 + 7
of the weights of the two loser-preferring faithfulness constraints.
Condition (2) therefore fails and the current weights need to be up-
dated. The original Perceptron update rule (4) prescribes that the
weights of the two loser-preferring constraints IdentVoiceOnset
and IdentVoice each be decreased by 1 while the weight of the
winner-preferring constraint NoVoice be increased by 1, obtain-
ing the updated weight vector on the right hand side of (10). The
weight of the loser-preferring constraint IdentVoiceOnset has thus
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dropped to the negative value −1, in violation of the non-negativity
condition (7). If this were the final update, the learner would have
effectively failed.

The update according to the truncated Perceptron update rule (9)
in this same scenario is described in (12). The weight of the winner-
preferring constraint NoVoice is increased by 1 and the weight of the
loser-preferring constraint IdentVoice is decreased by 1, just as in
the case of the original Perceptron. The crucial difference is that the
weight of the constraint IdentVoiceOnset is left unchanged in order
to prevent it from turning negative, despite the fact that the constraint
is loser-preferring.
(12) Update by the truncated Perceptron:

..IdentVoiceOnset
IdentVoice

NoVoice

07
3

.
06

4

. (/da/, [ta], [da])

Crucially, the update (12) by the truncated Perceptron can be ana-
lyzed as the sequence (13) of two updates by the original Perceptron.
At the first update (13a), the original Perceptron is fed the piece of
data (/da/, [ta], [da]) as in (10). Thus, in particular, the weight of the
loser-preferring constraint IdentVoiceOnset is demoted to −1.
(13) Sequence of two updates by the original Perceptron:

..IdentVoiceOnset
IdentVoice

NoVoice

07
3

.
−1

6
4

.
06

4

. (/da/, [ta], [da]). (x , y, z).

︸ ︷︷ ︸
a.

.

︸ ︷︷ ︸
b.

Immediately afterwards, the original Perceptron is fed with the “dum-
my” piece of data described in (14). This piece of data consists
of the underlying form x together with the corresponding winner
candidate y and the loser candidate z. The only constraint which
distinguishes between these two candidates is IdentVoiceOnset,
which prefers the winner. There are no loser-preferring constraints.
In other words, the violation differences corresponding to this triplet
(x , y, z) are all null apart from the one corresponding to the constraint
IdentVoiceOnset which is equal to +1. Condition (2) fails: the right
hand side is null (because there are no loser-preferring constraints)
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and the left-hand side is negative (because IdentVoiceOnset is
the only winner-preferring constraint, and its current weight −1 is
negative). The original Perceptron thus performs the update (13b):
the weight of the winner-preferring constraint IdentVoiceOnset is
increased by 1 back to zero, and no other weights are modified.
(14) Input: x IdentVoiceOnset IdentVoice NoVoice

θ = −1 θ = 6 θ = 4

a. y

b. + z ∗(w)
In the end, the final weights after the two updates (13) by the original
Perceptron are identical to the final weights after the single update
(12) by the truncated Perceptron.
3.4 Convergence of the truncated Perceptron reweighing rule
The analysis of this specific example extends to the general case.
Any update according to the truncated Perceptron reweighing rule
(9) can be analyzed as a sequence of updates according to the orig-
inal Perceptron reweighing rule (5), namely the update triggered
by the actual piece of data followed by some updates triggered by
dummy data which undo the illicit demotions that yielded negative
weights. These dummy data have a winner-preferring constraint but
no loser-preferring constraints. In other words, their constraint viola-
tion differences are all null apart for one, which is equal to +1. If the
training data are consistent with some HG grammar, the training plus
the dummy data are consistent as well (see Appendix A.5). Of course,
these dummy data have no phonological meaning. Indeed, I am not
suggesting that the set of phonological forms should be extended with
these dummy data. These artificial data only play a role in the analysis
(not in the simulations) of the truncated Perceptron.

Let me take stock. The convergence Theorem 1 for the original
Perceptron ensures convergence whenever the training data are con-
sistent. A run of the truncated Perceptron can be analyzed as a run
of the original Perceptron on the training data extended with dummy
data which undo forbidden reweighing. Furthermore, consistency of
the original training data guarantees consistency of the extended data.
The convergence Theorem 1 for the original Perceptron thus yields the
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analogous convergence Theorem 2 for the truncated Perceptron. Ap-
pendix A.6 formalizes the reasoning sketched above into a proof. See
Magri (to appear) for more discussion of the error bound (15).
Theorem 2 Let the set of dummy data consist of underlying/winner/loser
form triplets whose violation differences are all equal to zero apart from
one which is equal to +1. The HG error-driven learner (1) with the HG
update condition (3) and the truncated Perceptron reweighing rule (9)
converges: the number of errors is bounded by

(15)
� radius of the training data
margin of the training plus dummy data

�2
when the training set consists of underlying/winner/loser form triplets
which are all consistent with some HG grammar and have bounded viola-
tion differences.

The error bound (15) for the truncated Perceptron only differs
from the error bound (6) for the original Perceptron because the lat-
ter has the margin of only the training data at the denominator while
the former has the margin of the training plus dummy data. Let me
comment on this difference. The margin of a training set quantifies its
degree of consistency. Intuitively, extending a training set with addi-
tional data can only shrink the degree of consistency (any grammar
consistent with the extended training set is also consistent with the
original one, but not vice versa; see Appendix A.3). Hence, the mar-
gin of the original training set extended with the dummy data which
appears in the error bound (15) for the truncated Perceptron is equal
to or smaller than the margin of just the original training set which
appears in the error bound (6) for the original Perceptron. The er-
ror bound (15) for the truncated Perceptron is therefore worse than
(namely, at least as large as) the error bound (6) for the original Per-
ceptron. The difference between the two margins quantifies the price
that needs to be paid for HG’s assumption (7) of non-negative weights.

4 extension to the stochastic
implementation and the noisy setting

This section extends the analysis of the truncated Perceptron to the
stochastic implementation and the noisy learning setting.
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4.1 Stochastic implementation
The implementation of error-driven learning considered so far is
called deterministic, to distinguish it from the stochastic implemen-
tation (Boersma 1997, 1998; Boersma and Hayes 2001; Coetzee and
Pater 2008, 2011; Coetzee and Kawahara 2013; Boersma and Pa-
ter to appear; Jarosz 2013). Intuitively, the latter differs because
the current piece of data is compared not with the current gram-
mar but with a variant thereof sampled from a neighborhood of the
current grammar. This intuition can be formalized as follows. At step
(1b), the deterministic HG error-driven learner checks whether the
current weights θ1, . . . ,θn satisfy the update condition (2) or (3), de-
pending on whether the constraints are binary or possibly gradient.
The only innovation of the stochastic implementation is that this up-
date condition is checked not for the current weights θ1, . . . ,θn but
for the stochastic weights θ1 + ε1, . . . ,θn + εn, obtained by adding to
the current weights certain values ε1, . . . ,εn sampled independently
from each other according to the same underlying distribution. In
other words, the learner checks the stochastic update conditions (16)
or (17), depending on whether the constraints are binary or possibly
gradient.

(16)
∑
h∈W

(θh + εh)>
∑
k∈L

(θk + εk)

(17)
n∑

k=1

�
Ck(x , z)− Ck(x , y)︸ ︷︷ ︸
violation difference

�
(θk + εk)> 0

These stochastic values εk are usually sampled according to a
gaussian distribution with zero mean and small variance (Boersma
1997, 1998; Boersma and Hayes 2001). Since the tails of the gaus-
sian distribution decrease exponentially fast, these stochastic values
are bounded with high probability between some thresholds −∆ and
+∆. From an analytical perspective, it is nonetheless convenient to
assume they are deterministically bounded, namely sampled according
to a distribution concentrated between−∆ and+∆. The analyses carry
over with high probability to the gaussian distribution. The algorithm
(1) with the update condition (16)/(17) at step (1b) is called the HG
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stochastic error-driven learner5 (Boersma 1997, 1998; Boersma and
Hayes 2001; Coetzee and Pater 2008, 2011; Coetzee and Kawahara
2013; Boersma and Pater to appear, Jarosz 2013).

For simplicity, assume that all constraints are binary (the reason-
ing extends to the general case). The stochastic update condition (16)
can be rewritten as in (18), where the value ε on the right hand side is
the sum of those stochastic values ε1,ε2, . . . which correspond to the
loser-preferring constraints minus the sum of those stochastic values
which instead correspond to the winner-preferring constraints.6
(18)
∑
h∈W

θh −
∑
k∈L

θk > ε

The stochastic update condition (18) is thus almost identical to the
deterministic update condition (2), repeated in (19) with all the terms
rearranged on the left. The only difference is that zero on the right
hand side of (19) is replaced by ε in (18). Yet, ε cannot be much
different from zero, since it is the sum of numbers sampled between
−∆ and +∆.
(19)
∑
h∈W

θh −
∑
k∈L

θk > 0

Since the deterministic and stochastic implementations only differ for
the update conditions and since these conditions differ onlyminimally,
the convergence Theorem 1 for the original deterministic Perceptron
extends to the stochastic variant. Based on this reasoning, Boersma and
Pater (to appear) obtain the convergence guarantees for the stochastic
original Perceptron summarized in Theorem 3. The error bound (20)
is the sum of two terms. The first term (20a) coincides with the error
bound (6) for the deterministic HG learner. The second term (20b)
thus quantifies the number of additional errors due to the stochastic
implementation.
Theorem 3 Assume that the stochastic values ε1, . . . ,εn of the n con-
straints are sampled independently in between −∆ and +∆ for some con-

5 It is called instead the Noisy HG-GLA in Boersma and Pater (to appear). As
explained in footnote 2, I prefer not to use the acronym “GLA” in the context
of HG. Furthermore, I prefer “stochastic” over “noisy”, in order to avoid any
confusion between the stochastic implementation considered here and the noisy
learning setting considered in Subsection 4.2.

6Namely: ε=∑k∈L εk −∑h∈W εh.
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stant ∆ ≥ 0. The HG error-driven learner with the stochastic update con-
dition and the original Perceptron reweighing rule converges: the number
of errors is bounded by

(20)
� radius of training data
margin of training data

�2
︸ ︷︷ ︸

(a)

+2n∆

largest absolute value
of violation differences�margin of training data�2︸ ︷︷ ︸

(b)
when the training set consists of underlying/winner/loser form triplets
which are all consistent with some HG grammar and have bounded viola-
tion differences.

By reasoning as in Subsection 3.3, this result extends to the
stochastic truncated Perceptron, yielding the following Theorem 4.
Again, the only difference between the two error bounds (20) and (21)
for the original and the truncated Perceptron is that the denominator
of the former has the margin of the training data while the denomi-
nator of the latter has the margin of the training plus dummy data.
Theorem 4 Let the set of dummy data consist of underlying/winner/loser
form triplets whose violation differences are all equal to zero apart from
one which is equal to +1. Assume that the stochastic values ε1, . . . ,εn of the
n constraints are sampled in between −∆ and +∆ for some constant∆≥ 0.
The HG error-driven learner (1) with the stochastic update condition and
the truncated Perceptron reweighing rule converges: the number of errors
is bounded by

(21)

 radius of training datamargin of training
plus dummy data


2

+ 2n∆

largest absolute value
of violation differences�
margin of training
plus dummy data

�2
when the training set consists of underlying/winner/loser form triplets
which are all consistent with some HG grammar and have bounded viola-
tion differences.
4.2 Noisy learning setting
A realistic learning setting needs to allow for the possibility that the
(possibly infinite) sequence of pristine training data generated by some
target grammar has been interspersed with data corrupted by trans-
mission noise or production errors (Gibson and Wexler 1994, p. 410;
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Frank and Kapur 1996, p. 625; Boersma and Hayes 2001, pp. 66–
67; Bíró 2006, among many others). No assumptions are made on
the corrupted data, apart from there being only a finite number of
them.7 The classical error bound for the Perceptron algorithm in this
noisy learning setting is due to Freund and Schapire (1999) (build-
ing on Klasner and Simon 1995; see also Mohri et al. 2012, ch. 7 for
a textbook treatment). The shape of their bound is recalled in (22).
The precise definition of the quantity which appears as the second
term in the numerator is somewhat involved and therefore relegated
to Appendix A.7. What is crucial is that this quantity is null when
there are no corrupted training data and grows with the number of
corrupted data. The error bound (22) differs from the error bound (6)
for the noise-free setting because of this additional quantity, which
thus quantifies the additional number of errors due to the corrupted
training data. Subsequent improvements of Freund and Shapire’s er-
ror bound (Shalev-Shwartz and Singer 2005; Mohri and Rostamizadeh
2013) do not alter its basic shape (22).
Theorem 5 Consider the HG error-driven learner with the deterministic
update condition8 and the original Perceptron reweighing rule. Suppose it
is trained on a (possibly infinite) sequence of pristine training data consist-
ing of underlying/winner/loser form triplets which are all consistent with
some HG grammar and have bounded violation differences. Suppose that
this sequence is interspersed with a finite number of arbitrary corrupted
data. The number of errors made by the learner on this corrupted training
sequence is bounded by:

(22)


radius of the pristine
plus corrupted data +

a quantity which depends
on the corrupted data

margin of the pristine data


2

7 Indeed, if an infinite number of corrupted data were allowed, the worst case
number of errors would always be infinite: whenever the learner rests on a cur-
rent hypothesis, we can prompt it to perform yet another update by maliciously
crafting an appropriate piece of corrupted data.

8 It is only for simplicity that the analysis of the noisy learning setting is
limited to the deterministic implementation. Theorems 3 and 5 can be easily
combined, yielding an error bound for the HG stochastic learner in the noisy
setting.
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By reasoning as in Subsection 3.3, this result extends to the trun-
cated Perceptron, yielding the following Theorem 6. Again, the only
difference between the two error bounds (22) and (23) for the original
and the truncated Perceptron is that the denominator of the former has
the margin of the pristine training data while the denominator of the
latter has the margin of the pristine training data plus the dummy data.

Theorem 6 Let the set of dummy data consist of underlying/winner/loser
form triplets whose violation differences are all equal to zero apart from
one which is equal to +1. Consider the HG error-driven learner with the de-
terministic update condition and the truncated Perceptron reweighing rule.
Suppose it is trained on a (possibly infinite) sequence of pristine training
data consisting of underlying/winner/loser form triplets which are all con-
sistent with some HG grammar and have bounded violation differences.
Suppose that this sequence is interspersed with a finite number of arbitrary
corrupted data. The number of errors made by the learner on this training
sequence can be bounded by:

(23)


radius of the pristine
plus corrupted data +

a quantity which depends
on the corrupted data

margin of the pristine plus dummy data


2

5 conclusions

The current HG error-driven learning literature has adopted the Per-
ceptron reweighing rule. Yet, this reweighing rule is not suited to HG,
as it does not guarantee non-negativity of the weights. I have thus
considered a variant whereby the updates are “truncated” at zero,
enforcing non-negativity of the weights in a principled way. A run
of the truncated Perceptron can be analyzed as a run of the original
Perceptron on the same training sequence interspersed with dummy
data used to “undo” the truncated updates. Convergence guarantees
for the original Perceptron (Theorem 1), its stochastic implementation
(Theorem 3), and its noise robustness (Theorem 5) thus extend to the
truncated variant (Theorems 2, 4, and 6). This observation provides
the first constraint-independent convergence guarantees for an HG
error-driven learner consistent with HG’s restriction to non-negative
weights.
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A appendices

A.1 Representing the training data as EWCs
At each iteration, the error-driven learner (1) processes a piece of data
which consists of a certain winner candidate y and a certain loser can-
didate z for a certain underlying form x . Denote by ak the difference
between the number Ck(x , z) of violations assigned by constraint Ck to
the loser mapping minus the number Ck(x , y) of violations assigned
to the winner-mapping, namely ak = Ck(x , z)− Ck(x , y). Collect these
violation differences corresponding to the constraints C1, . . . , Cn into a
vector a= (a1, . . . , an), called an elementary weighting condition (EWC),
in analogy with Prince’s 2002 elementary ranking conditions in Opti-
mality Theory. The consistency condition (3) between a weight vec-
tor θ = (θ1, . . . ,θn) and an underlying/winner/loser form triplet is only
stated in terms of the violation differences, not in terms of the actual
numbers of constraint violations. It can thus be restated as in (24a)
in terms of the EWC a = (a1, . . . , an) corresponding to the data triplet.
Also the original and the truncated Perceptron reweighing rules (5)
and (9) are only stated in terms of violation differences, and can thus
be restated as in (24b) and (24c) in terms of EWCs.

(24) a.
n∑

k=1

akθk > 0

b. θk← θk + ak

c. θk←
¨
θk + ak if θk + ak ≥ 0

θk otherwise
In conclusion, the piece of training data (x , y, z) fed to the learner at
step (1a) can be represented as an EWC. Throughout this appendix,
I thus assume that the HG learner is trained on a sequence of EWCs
sampled from a certain training set A of EWCs.
A.2 Geometric definition of the radius
Suppose there are only n= 2 constraints C1 and C2. A generic EWC thus
has the shape a= (a1, a2), where a1 and a2 are the violation differences
corresponding to the two constraints C1 and C2, respectively. The EWC
can thus be represented with a point in the cartesian plane, through
the convention that the horizontal axis corresponds to constraint C1

and the vertical axis corresponds to constraint C2. To illustrate, the
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a. Example of EWCs
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a′′
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b. Example of radius
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•
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c. Example of margin

.

•
.

a′

.
•

.
a′′

.
•
.

a′′′
Figure 1:
Geometric
illustration of
EWCs (left),
radius (center)
and margin
(right).

EWC set A = {a′,a′′,a′′} consisting of the three EWCs a′ = (2,−2),
a′′ = (3,1), and a′′′ = (0,2) can be represented as in Figure 1a.

Consider now various circles of different radiuses centered in the
origin. The radius could be too small, so that the corresponding circle
fails at containing all EWCs in A, as in the case of the dashed circle in
Figure 1b. Or the radius could be too large, so that the corresponding
circle contains all EWCs with some slack, as in the case of the dotted
circle. Or the radius could coincide with the distance from the origin
of the EWC furthest away, so that the corresponding circle contains all
EWCs without any slack, as in the case of the solid circle. The radius
of the latter solid circle in Figure 1b is univocally determined. It is
called the radius of the EWC set A and denoted by ρ(A). The extension
from n = 2 to an arbitrary number n of constraints is conceptually
straightforward. The analytic definition of the radius for an arbitrary
number n of constraints is provided in (25a) in Appendix A.4.
A.3 Geometric definition of the margin
With only n = 2 constraints, a generic weight vector has the shape
θ = (θ1,θ2): it consists of the weights θ1 and θ2 of the two constraints
C1 and C2. The corresponding decision line is the line through the origin
which is perpendicular to the arrow which starts at the origin and
ends at the point whose horizontal and vertical coordinates are θ1 and
θ2 respectively. To illustrate, the decision line corresponding to the
weight vector θ = (2,1) is represented by the dashed line in Figure 1c.
The decision line splits the plane into two half planes, one of which
contains the arrow. The consistency condition (24a) between a weight
vector and an EWC says that the EWC lies in the half-plane which
contains the arrow which represents the weight vector. To illustrate,
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Figure 1c shows that the weight vector considered is consistent with
the EWC set A = {a′,a′′,a′′′}, because all three EWCs lie in the half-
plane containing the arrow.

The distance of an EWC a from the decision line is the length of
the segment which starts at a and falls perpendicularly on the decision
line, represented by the dotted segments in 1c. This distance can be in-
terpreted as the “degree of consistency” of the EWC with (the decision
line corresponding to) the weight vector. Thus, although the weight
vector plotted in Figure 1c is consistent with both EWCs a′ and a′′, the
former EWC is closer to the decision line and thus has a smaller de-
gree of consistency than the latter. Indeed, a small perturbation of the
weights slightly rotates the decision line and might affect consistency
with the closer a′ but not with a′′. Since we are interested in worst-
case analyses, we focus on the most “dangerous” EWC in the EWC set
A, namely the one which is closest to the decision line and thus has
the smallest degree of consistency. The distance of that EWC from the
decision line is called the margin of the EWC set A with respect to the
weight vector θ , and is denoted by µ(A,θ ). To illustrate, the margin
of the EWC set A= {a′,a′′,a′′′} relative to the decision line represented
by the dashed line in Figure 1c is the distance of either EWCs a′ or a′′′.

Different weight vectors induce different decision lines that in
turn differ because of their distances from the various EWCs. Among
all weight vectors consistent with the EWC set, consider a weight vec-
tor bθ whose decision line achieves the largest distance from the closest
EWC, namely whose margin µ(A, bθ ) is at least as large as the margin
µ(A,θ ) relative to any other weight vector θ . The margin of any such
optimal weight vector is called the margin of the EWC set A and is de-
noted by µ(A). As is clear from this geometric definition, all optimal
weight vectors correspond to the same decision line, which is there-
fore unique. The extension from n = 2 to an arbitrary number n of
constraints is conceptually straightforward. The analytic definition of
the margin for an arbitrary number n of constraints is provided in
(25b) in Appendix A.4.
A.4 Analytical expression of the radius and the margin
Let 〈·, ·〉 be the Euclidean scalar product, defined by 〈v,w〉 =∑ni=1 viwi

for any pair of vectors v = (v1, . . . , vn) and w = (w1, . . . , wn). Let || · ||
be the Euclidean norm, defined by ∥v∥2 = 〈v,v〉 =∑ni=1 v2

i . The consis-
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tency condition (24a) between a weight vector θ and an EWC a can
thus be rewritten as the condition 〈θ ,a〉> 0. The radius ρ(A) and the
margin µ(A) of a finite EWC set A, which were defined geometrically
in Appendices A.2 and A.3, can now be expressed analytically for an
arbitrary number n of constraints as in (25).
(25) a. ρ(A) =max

a∈A
∥a∥

b. µ(A) =max
θ ̸=0
µ(θ ,A) where µ(A,θ ) =min

a∈A

〈θ ,a〉
∥θ∥

The assumption that the set A is finite ensures that the maxima over
A are well defined. This assumption is not restrictive. In fact, all the
theorems considered in the paper assume that the training set con-
sists of underlying/winner/loser form triplets with bounded violation
differences. Since the violation differences are integers, this bounded-
ness assumption is equivalent to the assumption that the EWC set A
corresponding to the training set is finite.
A.5 Consistency of the training plus dummy data
The analysis of the truncated Perceptron sketched in Section 3 relies
on the notion of dummy data. These are underlying/winner/loser form
triplets which have a unique non-zero constraint violation difference,
which is equal to +1. The set of EWCs corresponding to these dummy
data will be denoted by E. Thus, an EWC e in E is a vector which has
a unique non-zero component, which is equal to +1.

Denote by A the set of EWCs corresponding to the underly-
ing/winner/loser form triplets the learner is trained on. Suppose that
this training set is consistent with the HG grammar corresponding to
some weight vector θ = (θ1, . . . ,θn). Can I conclude that the set A∪ E
obtained by extending the training set A with the dummy data E is
consistent with θ as well? Since each dummy EWC e has no negative
components and the weight vector θ has nonnegative components,
that is indeed the case as long as all the weights θk are all different
from zero, namely not only non-negative but actually strictly positive.
If that is not the case, then consistency with the dummy EWC set
E might fail. For instance, the dummy EWC e = (1, 0, . . . , 0) (whose
unique non-null component corresponds to constraint C1) is not con-
sistent with a weight vector θ which assigns to constraint C1 a null
weight θ1 = 0 (because 〈θ ,e〉= 0 ̸> 0). Yet, the following lemma guar-
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antees that a consistent EWC set A is always consistent with weights
which are strictly positive (namely neither negative nor equal to zero),
as weights which are equal to zero can be slightly increased without
compromising consistency. This lemma will be used below for the
proof of the convergence Theorem 2 for the truncated Perceptron.
Lemma 1 A finite set A of EWCs consistent with some HG grammar is in
particular consistent with an HG grammar corresponding to weights which
are all strictly positive.
Proof. The hypothesis that A is consistent means that there exists a
weight vector θ = (θ1, . . . ,θn) of non-negative weights θk ≥ 0 such
that 〈θ ,a〉 > 0 for every EWC a in A. If all the weights happen to be
strictly positive (i.e., θk > 0), then the claim is proven. Thus, assume
that some weights are equal to zero. Let Ω be the set of those indices
k such that the corresponding weight θk is strictly positive and let Ω
be its complement, as defined in (26).
(26) Ω=
¦

k ∈ {1, . . . , n}
���θk > 0
©

Ω=
¦

k ∈ {1, . . . , n}
���θk = 0
©

I will now construct another weight vector bθ = (bθ1, . . . , bθn) which has
all positive weights bθk > 0 and furthermore is consistent with A as
well. Let the constants A and B be defined as in (27), which makes
sense because of the assumption that the training EWC set A is finite.
The constant A is strictly positive, because the original weight vector θ
is consistent with every EWC a in A. The constant B is instead strictly
negative, because at least one EWC needs to have a negative entry
(otherwise the claim is trivial).
(27) a. A=min

a∈A
〈θ ,a〉 b. B = min

a=(a1,...,an)∈A
min

k
ak

Define the new weight vector bθ = (bθ1, . . . , bθn) as in (28). The weights
thus defined are all strictly positive as desired, because the constant A
is strictly positive and the constant B is strictly negative. In general,
A is a small value and |B| is a large value. Thus we have effectively
only slightly perturbed the original weight vector θ by replacing its
null weights with a small positive value.

(28) bθk =

(
θk if k ∈ Ω
− A

2(n− 1)B
if k ∈ Ω
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The scalar product between the perturbed weight vector bθ and an
arbitrary EWC a in A can be computed as in (29), which shows that bθ
is consistent with a.
(29) 〈bθ ,a〉 =

∑
k∈Ω
bθkak +
∑
k∈Ω
bθkak

(a)
=
∑
k∈Ω
θkak −
∑
k∈Ω

A
2(n− 1)B

ak

(b)
=
∑
k∈Ω
θkak +
∑
k∈Ω
θkak −
∑
k∈Ω

A
2(n− 1)B

ak

= 〈θ ,a〉 −∑
k∈Ω

A
2(n− 1)B

ak

(c)≥ A−∑
k∈Ω

A
2(n− 1)B

ak

(d)≥ A−∑
k∈Ω

A
2(n− 1)B

B

≥ A−∑
k∈Ω

A
2(n− 1)

(e)≥ A− A
2

> 0

In step (29a), I have used the position (28). In step (29b), I have added
the quantity ∑k∈Ω θkak, which is null because the weights θk corre-
sponding to indices k ∈ Ω are all null. In step (29c), I have lower-
bounded by replacing 〈θ ,a〉 with the smallest possible value A. In step
(29d), I have lower-bounded by replacing ak with its smallest possible
value B (this step is licit, because ak is multiplied by a positive coef-
ficient, since B is negative). In step (29e), I have used the fact that
the original weight vector θ can contain at most n−1 null weights (at
least one weight needs to be non-null in order for θ to yield a strictly
positive scalar product with the EWCs in A), so that the sum over Ω
has at most n− 1 terms. ■

A.6 Proof of the convergence Theorem 2 for the truncated Perceptron
Using the preceding lemma, I can now straightforwardly formalize the
reasoning sketched in Subsection 3.2 into a proof of the convergence
Theorem 2 for the truncated Perceptron, restated below in terms of
EWCs.
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Theorem 2. Let E be the set of the dummy EWCs, whose components
are all zeros but for one component which is instead equal to +1. The HG
error-driven learner with the deterministic update condition (24a) and the
truncated Perceptron reweighing rule (24c) converges: when trained on a
finite EWC set A consistent with some HG grammar, the number of errors
is bounded by

(30)
�
ρ(A)
µ(A∪ E)

�2
where ρ(A) is the radius of the training set A and µ(A ∪ E) is the margin
of the training set A extended with the dummy set E.
Proof. By reasoning as in Subsection 3.2, any run of the HG error-
driven learner with the truncated Perceptron reweighing rule on a
training EWC set A can be mimicked with a run of the algorithm with
the original Perceptron reweighing rule on the extended EWC set A∪
E. In fact, suppose that the truncated Perceptron leaves a weight θk

at zero while the original Perceptron demotes it down to, say, −5.
Then, the original Perceptron can be forced to bring it back to zero
by feeding it five times with the EWC in E which has all components
equal to zero but for the kth component which is equal to 1. In other
words, the EWCs in E play the role of the “dummy data” considered
in Subsection 3.2. The worst-case number of errors Ttruncated(A) made
by the truncated Perceptron on the training set A can thus be bounded
as in (31) in terms of the number of errors Toriginal(A∪E) made by the
original Perceptron on the extended training set A∪ E.
(31) Ttruncated(A)≤ Toriginal(A∪ E)

Since the training set A is finite and consistent with some HG grammar,
lemma 1 ensures that it is in particular consistent with a weight vec-
tor θ of strictly positive weights. Since any vector of strictly positive
weights is consistent with the EWCs in E, I conclude that this weight
vector θ is consistent with the extended training set A∪E. The Percep-
tron convergence Theorem 1 thus applies, ensuring that the worst-case
number of errors Toriginal(A ∪ E) made by the original Perceptron on
the extended EWC set A∪E can be bounded in terms of its radius and
margin as in (32).

(32) Toriginal(A∪ E)≤
�
ρ(A∪ E)
µ(A∪ E)

�2
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The radius of the extended training set A∪ E is equal to the radius of
the original training set A, as computed in (33). In the first equality,
I have used the definition (25a) of the radius. In the second equality,
I have used the fact that the vectors e ∈ E are unit vectors, namely
∥e∥ = 1. Finally, in the third equality, I have used the fact that each
EWC a ∈ A has integer components, so that ∥a∥ ≥ 1.
(33) ρ(A∪ E) = max

n
max
a∈A
∥a∥, max

e∈E
∥e∥
o
=max
n

max
a∈A
∥a∥, 1
o

= maxa∈A ||a||= ρ(A)
The claim follows by combining (31), (32), and (33). ■

The identity (33) shows that the radius ρ(A∪ E) of the extended
EWC set A∪ E coincides with the radius ρ(A) of the original EWC set
A. This is not true for the margin: the margin µ(A∪E) of the extended
EWC set can be smaller than the margin µ(A) of the original EWC set.
A.7 Error-bound for the noisy learning setting
Theorem 5 from Subsection 4.2 provides the approximate expression
(22) of the error bound for the HG error-driven learner in the noisy
learning setting. The precise formulation of the error bound is pro-
vided in (34).
Theorem 5. Consider the HG error-driven learner with the deterministic
update condition (24a) and the original Perceptron reweighing rule (24b).
Assume it is trained on a sequence of EWCs sampled from two EWC sets A
and B. The EWCs of A are called pristine because they are consistent with
some HG grammar with margin µ(A). The EWCs of B are called corrupted
because each of them is inconsistent with the EWCs in A. Assume that the
set A of pristine EWCs is finite and that the training sequence contains only
a finite number of corrupted EWCs from B. The number of errors made by
the learner on this training sequence is at most

(34)


ρ(A∪B) +

√√√∑
b∈B

n(b)
�
µ(A) +δ(b)
�2

µ(A)


2

where ρ(A∪B) is the radius of the pristine data A plus the corrupted data
B, µ(A) is the margin of the pristine data A, n(b) is the number of times
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Figure 2:
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Theorem 5
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that the corrupted piece of data b has been fed to the learner in the training
sequence, and δ(b) is the distance of the corrupted piece of data b from
the decision surface corresponding to the weight vector which realizes the
margin of the pristine data.
The theorem can be illustrated as follows. Suppose that there are only
n = 2 constraints and that the set of pristine EWCs is A = {a′,a′′,a′′′}
plotted in Figure 2. The decision line which realizes the margin of
these pristine data is represented by the dashed line. The margin is the
distance µ(A) of the closest EWC a′ from the dashed line. The EWC b is
corrupted because inconsistent with the pristine data (it sits in the op-
posite half plane). The distance of this corrupted piece of data b from
the decision line which realizes the margin is denoted by δ(b). The
“quantity which depends on the corrupted data” mentioned in the ap-
proximate expression (22) of the error bound is thus the square root in
the numerator of (34), namely the square root of the sum of the num-
ber n(b) of times each corrupted piece of data b is fed to the learner,
weighted by (the square of) the distance δ(b) plus the distance µ(A).
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