
Chomsky-Schützenberger parsing
for weighted multiple context-free

languages

Tobias Denkinger
Faculty of Computer Science

Technische Universität Dresden
Germany

abstract

Keywords:
Chomsky-
Schützenberger,
parsing, multiple
context-free
grammars, linear
context-free
rewriting systems

We prove a Chomsky-Schützenberger representation theorem for mul-
tiple context-free languages weighted over complete commutative
strong bimonoids. Using this representation we devise a parsing al-
gorithm for a restricted form of those devices.1

1 introduction

Mildly context-sensitive languages receive much attention in the
natural language processing community since they are able to ex-
press non-projective constituents (Maier and Søgaard 2008) and non-
projective dependencies (Kuhlmann and Satta 2009). Figure 1 shows
an example of a non-projective constituency tree. Figure 2 shows an
example of a non-projective dependency tree. Non-projectivity is evid-
ent from crossings of edges, highlighted by circles. The phenomenon
of non-projectivity occurs frequently in natural language corpora, e.g.
about 28 percent of all sentences in both the NeGra corpus2 and the
TIGER corpus (Brants et al. 2004) contain non-projective constituents

1The CS parser for weighted MCFL (Sections 5 and 6) is original to this work.
Sections 2 to 4 are a substantially revised version of Denkinger (2015).

2http://www.coli.uni-saarland.de/projects/sfb378/
negra-corpus/

Journal of Language Modelling Vol 5, No 1 (2017), pp. 3–55

http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/

Tobias Denkinger
Figure 1:

A non-projective
constituency tree (taken
from Maier and Søgaard

2008, Figure 3)

S

VMFIN
muß

VP
VP

PROAV
Darüber

VVPP
nachgedacht

VAINF
werden

Figure 2:
A non-projective

dependency tree (taken
from Kuhlmann and Satta

2009, Figure 2)
A hearing is scheduled on the issue today

(Maier and Søgaard 2008, Table 6) and about 23 percent of all sen-
tences in the Prague Dependency Treebank3 contain non-projective
dependencies (Kuhlmann and Satta 2009, Section 1).

Multiple context-free grammars describe the language classes in-
duced by many mildly context-sensitive grammar formalisms, e.g.
head grammars (Seki et al. 1991), linear context-free rewriting systems
(Seki et al. 1991), combinatory categorial grammars (Vijay-Shanker
et al. 1986; Weir and Joshi 1988), linear indexed grammars (Vijay-
Shanker 1988), minimalist grammars (Michaelis 2001b,a), and finite-
copying lexical functional grammars (Seki et al. 1993).

Parsing, i.e. the annotation of a sentence with syntactic structure,
is one of the main concerns of natural language processing. Many pars-
ing approaches are known for multiple context-free grammars, e.g.

• Cocke-Younger-Kasami-style parsing (Seki et al. 1991, Proced-
ure MEMBER; and Burden and Ljunglöf 2005, Section 3),

• guided parsing (Barthélemy et al. 2001; Burden and Ljunglöf
2005, Section 4; and van Cranenburgh 2012),

• active parsing (Burden and Ljunglöf 2005, Section 5),
• incremental parsing (Villemonte de la Clergerie 2002; Burden and
Ljunglöf 2005, Section 6; and Angelov 2009), and

• LR-style parsing (Kallmeyer and Maier 2015).
3https://ufal.mff.cuni.cz/pdt/Corpora/PDT_1.0/

[4]

https://ufal.mff.cuni.cz/pdt/Corpora/PDT_1.0/

CS-parsing for weighted MCFL

The Chomsky-Schützenberger (CS) representation for context-free
languages (Chomsky and Schützenberger 1963, Proposition 2) has
been generalised to a variety of unweighted and weighted settings, e.g.
context-free languages weighted with commutative semirings (Salo-
maa and Soittola 1978, Theorem 4.5), tree adjoining languages (Weir
1988, Lemma 3.5.2), multiple context-free languages (Yoshinaka et al.
2010, Theorem 3), context-free languages weighted with unital valu-
ation monoids (Droste and Vogler 2013, Theorem 2), yields of simple
context-free tree languages (Kanazawa 2014, Theorem 8.3), indexed
languages (Duske et al. 1979, Theorems 1 and 2; Fratani and Voundy
2015, Theorem 4; and Fratani and Voundy 2016, Theorem 18), and
automata with storage weighted with unital valuation monoids (Herr-
mann and Vogler 2015, Theorem 11).

We give a generalisation to the case of multiple context-free lan-
guages weighted with a complete commutative strong bimonoid and
apply it to devise a parsing algorithm. Sections 3 to 5 contain the main
contributions of this article.

• In Section 3 we provide a CS representation for weighted multiple
context-free languages by means of a modular proof that first sep-
arates the weights from the given grammar and then employs the
result for the unweighted case (using the same overall idea as in
Droste and Vogler 2013).

• In Section 4 we give a more algebraic variant of multiple Dyck
languages using congruence relations together with a decision
algorithm for membership that is strongly related to those con-
gruence relations. Also we show that congruence multiple Dyck
languages can be used to develop a CS representation of weighted
MCFLs.

• Using the CS representation based on congruence multiple Dyck
languages and given a partial order on the weights, we derive
a parsing algorithm (Section 5) similar to the one described by
Hulden (2011). It employs a regular language and a weight func-
tion to generate output that is then filtered by an acceptor for a
specific congruence multiple Dyck language in order to obtain the
best derivations with respect to the partial order.

• The idea behind the Chomsky-Schützenberger parser presented in
Section 5 is similar to already established approaches. Section 6
relates the known approaches to the one presented in this article.

[5]

Tobias Denkinger

Since our proofs do not require distributivity, we can be slightly
more general than complete commutative semirings: We consider
complete commutative strong bimonoids.

2 preliminaries

In this section we recall formalisms used in this article and fix some
notation: We denote by N the set of natural numbers (including zero),
and by N+ the set N \ {0}. For every n ∈ N we abbreviate {1, . . . , n} by
[n]. Let A be a set. The power set of A is denoted by P (A). Let B be a
finite set. A partition of B is a set P ⊆ P (B) where the elements of P
(called cells) are non-empty, pairwise disjoint, and ∪p∈P p= B.

Let A and B be sets and A′ ⊆ A. The set of functions from A to B
is denoted by A→ B, we still write f : A→ B rather then f ∈ A→ B.
Let f be a function. The domain and codomain of f are denoted by
dom(f) and codom(f), respectively. The restriction of f to A′, denoted
by f |A′ , is a function from A′ to B such that f |A′(a′) = f (a′) for every
a′ ∈ A′. Let g be a function such that codom(f) ⊆ dom(g). We de-
note the function obtained by applying g after f by g ◦ f . Let F be
a set of functions and B ⊆ ∩ f ∈F dom(f). The set { f (B) | f ∈ F} ⊆
P (∪ f ∈F codom(f)) is denoted by F(B). Let G and H be sets of functions
such that ∩g∈G codom(g) ⊆∩h∈H dom(h). The set {h ◦ g | h ∈ H, g ∈ G}
of functions is denoted by H ◦ G.

Let A be a set and ≈ ⊆ A× A a binary relation on A. We call ≈ an
equivalence relation (on A) if it is reflexive, symmetric, and transitive.
Let a ∈ A and ≈ be an equivalence relation. The equivalence class of a
in ≈, denoted by [a]≈, is {b ∈ A | a ≈ b}. Let f : Ak → A be a function.
We say that ≈ respects f if for every (a1, b1), . . . , (ak, bk) ∈ ≈ holds
f (a1, . . . , ak) ≈ f (b1, . . . , bk). Now let A be an algebra with domain A.
We call ≈ a congruence relation (on A) if ≈ is an equivalence relation
on A and respects every operation of A .

Let ⊴ ⊆ A× A be a binary relation on A. We call ⊴ a partial order
(on A) if it is reflexive, antisymmetric, and transitive.
2.1 Sorts
We will use the concept of sorts to formalise restrictions on building
terms (or trees), e.g. derivation trees or terms over functions. One can
think of sorts as data types in a programming language: Every concrete

[6]

CS-parsing for weighted MCFL

value has a sort (type) and every function requires its arguments to be
of fixed sorts (types) and returns a value of some fixed sort (type).

Let S be a countable set (of sorts) and s ∈ S. An S-sorted set is a
tuple (B, sort) where B is a set and sort is a function from B to S. We
denote the preimage of s under sort by Bs and abbreviate (B, sort) by B;
sort will always be clear from the context. Let A be an (S∗ × S)-sorted
set. The set of terms over A, denoted by TA, is the smallest S-sorted
set T where ξ = a(ξ1, . . . ,ξk) ∈ Ts if there are s1, . . . , sk, s ∈ S such that
a ∈ A(s1···sk ,s) and ξi ∈ Tsi

for every i ∈ [k]. Let ξ= a(ξ1, . . . ,ξk) ∈ TA. The
set of positions in ξ is defined as pos(ξ) = {ϵ}∪ {iu | i ∈ [k], u ∈ pos(ξi)}
and for every π ∈ pos(ξ) the symbol in ξ at position π is defined as
ξ(π) = a if π = ϵ and as ξ(π) = ξi(u) if π = iu for some i ∈ [k] and
u ∈ pos(ξi).

2.2 Weight algebras
A monoid is an algebra (A , ·, 1) where · is associative and 1 is neutral
with respect to ·. A bimonoid is an algebra (A ,+, ·, 0, 1)where (A ,+, 0)
and (A , ·, 1) are monoids. We call a bimonoid strong if (A ,+, 0) is com-
mutative and for every a ∈ A we have 0 · a = 0 = a · 0. Intuitively, a
strong bimonoid is a semiring without distributivity. A strong bimon-
oid is called commutative if (A , ·, 1) is commutative. A commutative
strong bimonoid is complete if there is an infinitary sum operation∑ that maps every indexed family of elements of A to A , extends
+, and satisfies infinitary associativity and commutativity laws (cf.
Droste and Vogler 2013, Section 2), i.e. for every countable set I and
every I-indexed family a : I →A it holds that:
(i) ∑i∈∅ a(i) = 0;
(ii) for every j ∈ I :

∑
i∈{ j} a(i) = a(j);

(iii) for every j, k ∈ I with j ̸= k:
∑

i∈{ j,k} a(i) = a(j) + a(k); and
(iv) for every countable set J and family I : J → P (I) with I =∪

j∈J I (j) and for every j, j′ ∈ J with j ̸= j′ =⇒ I (j)∩I (j′) =∅,
we have ∑ j∈J

∑
i∈I (j) a(i) =
∑

i∈I a(i).
For the rest of this article let (A ,+, ·, 0, 1), abbreviated by A , be a
complete commutative strong bimonoid.

[7]

Tobias Denkinger

Example 2.1. We provide a list of complete commutative strong bi-
monoids (cf. Droste et al. 2010, Example 1) some of which are relevant
for natural language processing:

• any complete commutative semiring, e.g.
– the Boolean semiring B= �{0, 1},∨,∧, 0, 1

�,
– the probability semiring Pr=

�
R≥0,+, ·, 0, 1
�,

– the Viterbi semiring �[0,1],max, ·, 0, 1
�,

– the tropical semiring �R∪ {∞},min,+,∞, 0
�,

– the arctic semiring �R∪ {−∞},max,+,−∞, 0
�,

• any complete lattice, e.g.
– any non-empty finite lattice �L,∨,∧, 0, 1

� where L is a non-
empty finite set,

– the lattice (P (A),∪,∩,∅, A) where A is an arbitrary set,
– the lattice (N, lcm,gcd, 1,0),

• the tropical bimonoid �R≥0 ∪ {∞},+,min, 0,∞�,
• the arctic bimonoid �R≥0 ∪ {−∞},+,max, 0,−∞�, and
• the algebras Pr1 = ([0,1],⊕1, ·, 0, 1) and Pr2 = ([0,1],⊕2, ·, 0, 1)
where a ⊕1 b = a + b − a · b and a ⊕2 b = min{a + b, 1} for every
a, b ∈ [0,1].

where R and R≥0 denote the set of reals and the set of non-negative
reals, respectively; +, ·, max, min denote the usual operations; ∨, ∧ de-
note disjunction and conjunction, respectively, for the boolean semir-
ing and join and meet, respectively, for any non-empty finite lattice;
and lcm and gcd are binary functions that calculate the least common
multiple and the greatest common divisor, respectively.

Also, there are some bimonoids that are interesting for natural
language processing but are not complete commutative strong bimon-
oids. E.g.

• the semiring of formal languages �P (Σ∗),∪, ·,∅, {ϵ}� where Σ is an
alphabet and · is language concatenation, i.e. L1 · L2 = {uv | u ∈
L1, v ∈ L2} for every L1, L2 ⊆Σ∗; and

• the semiring �Σ∗ ∪ {∞},∧, ·,∞,ϵ
� where Σ is an alphabet, · is

concatenation, ∧ calculates the longest common prefix of its ar-
guments, and∞ is a new element that is neutral with respect to
∧ and annihilating with respect to · (cf. Mohri 2000).

None of the two examples is commutative. □

[8]

CS-parsing for weighted MCFL

An A -weighted language (over ∆) is a function L:∆∗ → A . The
support of L, denoted by supp(L), is {w ∈∆∗ | L(w) ̸= 0}. If |supp(L)| ≤
1, we call L a monomial. We write µ.w for L if L(w) = µ and for every
w′ ∈∆∗ \ {w} we have L(w′) = 0.
2.3 Recognisable languages
For the many known results concerning finite state automata and reg-
ular languages, we will rely on Hopcroft and Ullman (1969) and Hop-
croft and Ullman (1979). We nevertheless recall the basic definitions:
Definition 2.2. A finite state automaton, for short: FSA, is a tuple
M = (Q,∆, q0, F, T) where ∆ is an alphabet (terminals), Q is a finite
set (states) disjoint from ∆, q0 ∈ Q (initial state), F ⊆ Q (final states),
and T ⊆Q×∆∗ ×Q is a finite set (transitions). □

A run inM is a string κ ∈ (Q∪∆)∗ where for every substring of κ of
the form quq′ (for some q, q′ ∈Q and u ∈∆∗) we have that (q, u, q′) ∈ T ,
the first symbol of κ is q0, and the last symbol of κ is in F . If a run κ
contains a substring of the form quq′ (for some q, q′ ∈ Q and u ∈ ∆∗),
we say that the transition (q, u, q′) occurs in κ. The word corresponding
to κ is obtained by removing the elements of Q from κ. The language
of M is denoted by L(M). The set of recognisable languages, denoted
by REC, is the set of languages L for which there is an FSA M with
L = L(M).
2.4 Weighted string homomorphisms
Let ∆ and Γ be alphabets and g:∆ → (Γ ∗ → A) (i.e. a function that
takes an element of ∆ and returns a function that takes an element
of Γ ∗ and returns an element of A) such that g(δ) is a monomial for
every δ ∈ ∆. We define bg:∆∗ → (Γ ∗ → A) where for every k ∈ N,
δ1, . . . ,δk ∈∆, and v ∈ Γ ∗ we have
bg(δ1 · · ·δk)(v) =

∑
v1,...,vk∈Γ ∗
v=v1···vk

g
�
δ1

��
v1

� · . . . · g�δk

��
vk

�
.

We call bg anA -weighted (string) homomorphism. Since g(δ1), . . . , g(δk)
are monomials for each δ1, . . . ,δk ∈ ∆, there is at most one tuple
(v1, . . . , vk) ∈ (Γ ∗)k such that g(δi)(vi) ̸= 0 for every i ∈ [k]. Hence,
there is at most one v ∈ Γ ∗ with bg(δ1 · · ·δk)(v) ̸= 0 (namely v =
v1 · · · vk). Therefore, bg(u) is a monomial for every u ∈ ∆∗. We call bg

[9]

Tobias Denkinger

alphabetic if there is a function h:∆ → (Γ ∪ {ϵ} → A) with bg = bh. Ifbg(u) = µ.w (recall the end of Section 2.2) for u ∈∆∗, then wewill some-
times say “bg maps u to w” (leaving out the weight µ) or “bg weights
u with µ” (leaving out the word w). Now assume that A = B and we
have |supp(g(δ))| = 1 for every δ ∈ ∆. Then g can be construed as a
function from ∆ to Γ ∗ and bg can be construed as a function from ∆∗
to Γ ∗. In this case we call bg a (string) homomorphism. The sets of all
A -weighted homomorphisms, A -weighted alphabetic homomorph-
isms, homomorphisms, and alphabetic homomorphisms are denoted
by HOM(A), αHOM(A), HOM, and αHOM, respectively.

2.5 Weighted multiple context-free languages
We fix a set X = {x j

i | i, j ∈ N+} of variables. Let ∆ be an alphabet. The
set of composition representations over ∆ is the (N∗ ×N)-sorted set RF∆
where for every s1, . . . , sℓ, s ∈ N we define X(s1···sℓ,s) = {x j

i | i ∈ [ℓ], j ∈
[si]} ⊆ X and (RF∆)(s1···sℓ,s) as the set that contains [u1, . . . , us](s1···sℓ,s) for
every u1, . . . , us ∈ (∆ ∪ X(s1···sℓ,s))

∗. We will often write X f instead of
X(s1···sℓ,s). Let f = [u1, . . . , us](s1···sℓ,s) ∈ RF∆. The string function of f , also
denoted by f , is the function from (∆∗)s1 × · · · × (∆∗)sℓ to (∆∗)s such
that f ((w1

1, . . . , ws1
1), . . . , (w1

ℓ
, . . . , wsℓ

ℓ
)) = (u′1, . . . , u′s) where (u′1, . . . , u′s) is

obtained from (u1, . . . , us) by replacing each occurrence of x j
i by w j

i
for every i ∈ [ℓ] and j ∈ [sℓ]. The set of all string functions for some
composition representation over ∆ is denoted by F∆. From here on we
no longer distinguish between composition representations and string
functions. We define the rank of f , denoted by rank(f), and the fan-
out of f , denoted by fan-out(f), as ℓ and s, respectively. Also, we will
denote si by fan-outi(f) for every i ∈ [ℓ]. The string function f is called
linear if in u1 · · ·us every element of X f occurs at most once, f is called
non-deleting if in u1 · · ·us every element of X f occurs at least once, and
f is called terminal-free if u1, . . . , us ∈ X ∗f . The subscript is dropped from
the string function if its sort is clear from the context.

Note that for every s′ ∈ N∗×N, the set of linear terminal-free string
functions of sort s′ is finite.
Definition 2.3. A multiple context-free grammar (over ∆), for short:
MCFG, is a tuple (N ,∆, S, P) where N is a finite N-sorted set (non-
terminals), S ∈ N1 (initial non-terminal), and P ⊆fin

�
(A, f , A1 · · ·Aℓ) ∈

N × F∆ × N ℓ | sort(f) = (sort(A1) · · · sort(Aℓ), sort(A)), f is linear,ℓ ∈ N	
[10]

CS-parsing for weighted MCFL

(productions). We construe P as an (N ∗×N)-sorted set where for every
ρ = (A, f , A1 · · ·Aℓ) ∈ P we have sort(ρ) = (A1 · · ·Aℓ, A). □

Let G = (N ,∆, S, P) be an MCFG and w ∈ ∆∗. A production
(A, f , A1 · · ·Aℓ) ∈ P is usually written as A → f (A1, . . . , Aℓ); it inher-
its rank, fan-out, and fan-out1, . . . , fan-outℓ from f . Also, rank(G) =
maxρ∈P rank(ρ) and fan-out(G) =maxρ∈P fan-out(ρ). MCFGs of fan-out
at most k and rank at most r are called (k, r)-MCFGs.

The function yield: TP →∪maxρ∈P fan-out(ρ)
s=0 (∆∗)s assigns to every tree

d ∈ TP the tuple obtained by projecting every production in d to the
contained function (i.e. the second component) and then evaluating
the resulting term over F∆.

Let A∈ N . The set of subderivations in G from A, denoted by DG(A),
is the set of all terms over P with sort A, i.e. DG(A) = (TP)A. The set of
derivations in G is DG = DG(S). Let w ∈∆∗. The set of derivations of w in
G is DG(w) = {d ∈ DG | yield(d) = w}.4

The language of G is L(G) = {w ∈∆∗ | DG(w) ̸=∅}. A language L is
called multiple context-free if there is an MCFG G with L = L(G). The
set of multiple context-free languages (for which a (k, r)-MCFG exists) is
denoted by MCFL ((k, r)-MCFL, respectively).

The language class (k, r)-MCFL is a substitution-closed full ab-
stract family of languages (Seki et al. 1991, Theorem 3.9). Thus
(k, r)-MCFL is closed under homomorphisms and under intersection
with regular languages.
Definition 2.4. AnA -weighted MCFG (over ∆) is a tuple (N ,∆, S, P,µ)
where (N ,∆, S, P) is an MCFG and µ: P →A \{0} (weight assignment).

□

Let G = (N ,∆, S, P,µ) be an A -weighted MCFG and w ∈ ∆∗. The
set of derivations of w in G is the set of derivations of w in (N ,∆, S, P). G
inherits fan-out and rank from (N ,∆, S, P);A -weighted MCFGs of fan-
out at most k and rank at most r are called A -weighted (k, r)-MCFGs.
We define a function bµ: DG →A that applies µ at every position of a
given derivation and then multiplies the resulting values (in any order,
since · is commutative). The A -weighted language induced by G is the
function ⟦G⟧:∆∗ → A where for every w ∈ ∆∗ we have ⟦G⟧(w) =∑

d∈DG(w)
bµ(d).

4We identify the 1-tuple containing a word w ∈∆∗ with the word w itself.

[11]

Tobias Denkinger

Two (A -weighted) MCFGs are equivalent if they induce the same
(A -weighted) language. AnA -weighted language L is called multiple
context-free if there is an A -weighted MCFG G such that L = ⟦G⟧;
(k, r)-MCFL(A) denotes the set of languages induced by multiple
context-free A -weighted grammars of fan-out at most k and rank at
most r.
Example 2.5. Consider the Pr2-weighted MCFG G =

�
N ,∆, S, P,µ
�

where N1 = {S}, N2 = {A, B}, N = N1 ∪ N2, ∆ = {a, b, c, d}, and P and µ
are given by

P: ρ1 = S→ [x1
1 x1

2 x2
1 x2

2](A, B) µ: µ(ρ1) = 1

ρ2 = A→ [ax1
1 , cx2

1](A) µ(ρ2) = 1/2

ρ3 = B→ [bx1
1 , d x2

1](B) µ(ρ3) = 1/3

ρ4 = A→ [ϵ,ϵ]() µ(ρ4) = 1/2

ρ5 = B→ [ϵ,ϵ]() µ(ρ5) = 2/3 .

Note that G has fan-out 2 and rank 2. We observe that supp(⟦G⟧) =
{am bncmdn | m, n ∈ N} and for every m, n ∈ N we have
⟦G⟧(am bncmdn) = µ(ρ1) ·

�
µ(ρ2)
�m ·µ(ρ4) ·
�
µ(ρ3)
�m ·µ(ρ5)

= 1/(2m · 3n+1).
The derivation d of w = ac and the derivation d̄ of w̄ = aabccd in
G are shown in Figure 3, their weights are 1/(21 · 30+1) = 1/6 and
1/(22 ·31+1) = 1/36, respectively. Since d and d̄ are unique derivations
for w and w̄, we have ⟦G⟧(w) = 1/6 and ⟦G⟧(w̄) = 1/36. □

A non-terminal is called productive in an (A -weighted) MCFG if
there is at least one subderivation starting from this non-terminal. It
is obvious that every (A -weighted) (k, r)-MCFL can be recognised by
an (A -weighted) (k, r)-MCFG that only has productive non-terminals.

Figure 3:
Derivation d

of ac (left) and
derivation d̄
of aabccd

(right) in G
(Example 2.5)

S→ [x1
1 x1

2 x2
1 x2

2](A, B)

A→ [ax1
1 , cx2

1](A)

A→ [ϵ,ϵ]()

B→ [ϵ,ϵ]()

S→ [x1
1 x1

2 x2
1 x2

2](A, B)

A→ [ax1
1 , cx2

1](A)

A→ [ax1
1 , cx2

1](A)

A→ [ϵ,ϵ]()

B→ [bx1
1 , d x2

1](B)

B→ [ϵ,ϵ]()

[12]

CS-parsing for weighted MCFL

Non-deleting normal form
An (A -weighted) MCFG is called non-deleting if the string function in
every production is linear and non-deleting. Non-deleting MCFGs are
also called linear context-free rewriting systems (Vijay-Shanker et al.
1987) in the literature. Seki et al. (1991, Lemma 2.2) proved that for
every (k, r)-MCFG there is an equivalent non-deleting (k, r)-MCFG. We
generalise this to A -weighted MCFGs.
Lemma 2.6. For everyA -weighted (k, r)-MCFG there is an equivalent
non-deleting A -weighted (k, r)-MCFG.
Proof idea. We modify the construction for the unweighted case (Seki
et al. 1991, Lemma 2.2) such that it preserves the structure of deriva-
tions. Then a weight assignment can be defined in an obvious manner.

Proof. Let G = (N ,∆, S, P,µ) be an A -weighted (k, r)-MCFG. We con-
struct the (k, r)-MCFG G′ = (N ′,∆, S〈∅〉, P ′) where N ′ = {A〈Ψ〉 |
A ∈ N ,Ψ ⊆ [sort(A)]}, P ′ = {ρΨ | ρ ∈ P,Ψ ⊆ [fan-out(ρ)]}, and
ρΨ = A〈Ψ〉 → [u j1 , . . . , u jℓ](A1〈Ψ1〉, . . . , Ak〈Ψk〉) for every ρ = A →
[u1, . . . , um](A1, . . . , Ak) ∈ P and Ψ ⊆ [sort(A)] such that
(i) { j1, . . . , jℓ}= [sort(A)] \Ψ with j1 < · · ·< jℓ and
(ii) Ψi = { j ⊆ [sort(Ai)] | x j

i does not occur in u j1 · · ·u jℓ} for each
i ∈ [k].

The construction of G′ here is a slight modification of the original con-
struction (Lemma 2.2 in Seki et al. 1991, step 2 of Procedure 1) where
we dropped the restrictions that Ψ ̸= [sort(A)] and Ψ ̸= [fan-out(ρ)]
in the definitions of N ′ and P ′, respectively.5 Note that for each ρ
and Ψ , the sets Ψ1, . . . ,Ψk are uniquely defined. Let g: P ′ → P such
that g(ρΨ) = ρ and bg: DG′ → DG be the function obtained by applying
g point-wise. We show the following hypothesis by induction on the
structure of subderivations:
Induction hypothesis: For every A∈ N and Ψ ⊆ [sort(A)]: bg is a bijection
between DG′(A〈Ψ〉) and DG(A).
Induction step: Let d ∈ DG(A) and Ψ ⊆ [sort(A)]with d = ρ(d1, . . . , dk) for
some production ρ ∈ P and derivations d1 ∈ DG(A1), . . ., dk ∈ DG(Ak).
By construction, Ψ1 ⊆ [sort(A1)], . . ., Ψk ⊆ [sort(Ak)] and therefore

5This construction may therefore create productions of fan-out 0.

[13]

Tobias Denkinger

ρΨ are uniquely defined for every ρ and Ψ . By the induction hypo-
thesis, we know that there are derivations d ′1, . . . , d ′k which are unique
for (d1,Ψ1), . . . , (dk,Ψk), respectively. Therefore, d ′ = ρ(d ′1, . . . , d ′k) is
unique for d and Ψ . Hence for every Ψ , bg is a bijection between
DG′(A〈Ψ〉) and DG(A).

By construction, the new start symbol is S〈∅〉; hence for the ele-
ments of DG′ , we set Ψ =∅ and by induction hypothesis we obtain thatbg is bijective. Since bg preserves the structure of derivations and is a
bijection, we obtainÖµ ◦ g = bµ◦bg. Hence ⟦(N ′,∆, S〈∅〉, P ′,µ◦g)⟧= ⟦G⟧.
Fan-out and rank are not increased by this construction. ■

3 cs characterisation for weighted mcfls
In this section we generalise the CS characterisation of (unweighted)
MCFLs (Yoshinaka et al. 2010, Theorem 3) to the weighted case. We
prove that an A -weighted MCFL L can be decomposed into an A -
weighted alphabetic homomorphism h, a regular language R and a
multiple Dyck language mD such that L = h(R∩mD).

To show this, we use the proof idea from Droste and Vogler
(2013): We separate the weight from our grammar formalism and
then use the unweighted CS representation on the unweighted part.
The outline of our proof is as follows:
(i) We separate the weights from L (Lemma 3.3), obtaining an MCFL

L′ and a weighted alphabetic homomorphism.
(ii) We use a corollary of the CS representation of (unweighted)

MCFLs (Corollary 3.8) to obtain a CS representation of L′.
(iii) Using the two previous items and Lemma 3.10 for the composi-

tion of weighted and unweighted alphabetic homomorphisms, we
obtain a CS representation of L (Theorem 3.12).
Figure 4 outlines the proof of Theorem 3.12. The boxes represent

sub-diagrams for which the corresponding lemmas prove existence of
the arrows and that the sub-diagram commutes.
3.1 Separating the weights
We split a given weighted MCFG G into an unweighted MCFG GB and
a weighted alphabetic homomorphism weightsG such that ⟦G⟧(w) =∑

u∈L(GB)
weightsG(u)(w) for every w ∈∆∗.

[14]

CS-parsing for weighted MCFL

∆∗→A Γ ∗ ÒΣ∗
L(G) L(GB) R(GB)∩mD(GB)

DG DGB

weightsG homGB

h

weightsG

toDeriv

homGB

fromBrackets
(yield, µ̂)

f

yield toBrackets

⊆⊆∈

Lemma 3.3 Corollaries 3.8 and 3.9

Lemma 3.10 Figure 4:
Outline of the proof of Theorem 3.12

Definition 3.1. Let G = (N ,∆, S, P,µ) be a non-deleting A -weighted
k-MCFG. The unweighted MCFG for G is the non-deleting k-MCFG
GB = (N ,Γ , S, PB) where Γ = ∆ ∪ {ρi | ρ ∈ P, i ∈ [fan-out(ρ)]} and
PB is the smallest set P ′ such that for every production ρ = A →
[u1, . . . , us](A1, . . . , Am) ∈ P there is a production

A→ [ρ1u1, . . . ,ρsus](A1, . . . , Am) ∈ P ′. □

Definition 3.2. Let G = (N ,∆, S, P,µ) be a non-deleting A -weighted
MCFG. The weight homomorphism for G is the A -weighted alphabetic
homomorphism weightsG:Γ ∗ → (∆∗ → A) where weightsG(δ) = 1.δ,
weightsG(ρ

1) = µ(ρ).ϵ, and weightsG(ρ
i) = 1.ϵ for every δ ∈ ∆, ρ ∈ P

and i ∈ {2, . . . , fan-out(ρ)}. □
L(GB) stands in bijection to DG via the function toDeriv given in

Algorithm 1.

Lemma 3.3. (k, r)-MCFL(A) = αHOM(A)�(k, r)-MCFL
�

Proof. (⊆) Let L ∈ (k, r)-MCFL(A). By Lemma 2.6 there is a non-
deletingA -weighted (k, r)-MCFG G = (N ,∆, S, P,µ) such that ⟦G⟧= L.
Let f : P → PB where for every ρ = A→ [u1, . . . , us](A1, . . . , Am) ∈ P we
have f (ρ) = A→ [ρ1u1, . . . ,ρsus](A1, . . . , Am), in other words f repres-
ents the construction of rules in PB from the corresponding rules in
P (see Definition 3.1). We extend f to bf : DG → DGB by position-wise
application, i.e. bf (d) = (f (ρ))(bf (d1), . . . , bf (dk)) for every subderiva-
tion d = ρ(d1, . . . , dk) in G; and we write f instead of bf . For every

[15]

Tobias Denkinger
Algorithm 1:

Function toDeriv
to calculate for
every word in

L(GB) the
corresponding

derivation in DG ,
cf. Lemma 3.3

Input: w ∈ L(GB)
Output: derivation tree t ∈ DG corresponding to w (represented as a

partial function from N∗ to P)
1 function toDeriv(w)
2 let t be the empty function
3 descend(t,ϵ, 1)
4 return t
5 end function
6 procedure descend(t:N∗→ P,π ∈ N∗, j ∈ N)
7 let ρ = A→ [u1, . . . , us](A1, . . . , Ak) ∈ P and u such that ρ ju= w
8 add the assignment π 7→ ρ to t
9 remove ρ j from the beginning of w

10 for every symbol δ′ in u j do
11 if δ′ ∈∆ then
12 remove δ′ from the beginning of w
13 else
14 let i, j′ such that x j′

i = δ
′

15 descend(t,πi, j′)
16 end if
17 end for
18 end procedure

w ∈ L(GB) we can calculate the corresponding derivation t in G (as a
function with domain dom(t) and labelling function t) using toDeriv
(Algorithm 1), hence yield◦ f is bijective. We derive for every w ∈∆∗:

L(w) = ⟦G⟧(w)
=
∑

d∈DG(w)
µ(d)

=
∑

d∈DG
(weightsG ◦ yield◦ f)(d)(w) (by †)

=
∑

d∈DG ,u∈L(GB)
u=(yield◦ f)(d)

weightsG(u)(w)

=
∑

u∈L(GB)
weightsG(u)(w) (L(GB) and DG are in bijection)

= weightsG(L(GB))(w)

For †, one can immediately see from the definitions of f , yield, and
weightsG that for every w ∈ ∆∗ we have (weightsG ◦ yield◦ f)(d)(w) =

[16]

CS-parsing for weighted MCFL

µ(d) if d ∈ DG(w) and (weightsG ◦yield◦ f)(d)(w) = 0 otherwise. Hence
L = weightsG(L(GB)).
(⊇) Let L ∈ (k, r)-MCFL and h:Γ ∗ → (∆∗ → A) be an A -weighted
alphabetic homomorphism. By Seki et al. (1991, Lemma 2.2) there is
a non-deleting (k, r)-MCFG G = (N ,Γ , S, P) such that L(G) = L. We
construct the A -weighted (k, r)-MCFG G′ = (N ,∆, S, P ′,µ) as follows:
We extend h to h′: (Γ ∪ X)∗ → ((∆ ∪ X)∗ → A) where h′(x) = 1.x
for every x ∈ X and h′(γ) = h(γ) for every γ ∈ Γ . We define P ′ as
the smallest set such that for every ρ = A→ [u1, . . . , us](A1, . . . , Am) ∈
P(s1···sm,s) and (u′1, . . . , u′s) ∈ supp(h′(u1))× . . .× supp(h′(us)) we have that
P ′ contains the production ρ′ = A→ [u′1, . . . , u′s](A1, . . . , Am) and µ(ρ′) =
h′(u1)(u′1) · . . . ·h′(us)(u′s). Since · is commutative and G is non-deleting,
we obtain ⟦G′⟧= h(L(G)). ■

By setting k = 1 in the above lemma we reobtain the equivalence
of 1 and 3 in Theorem 2 of Droste and Vogler (2013) for the case of
complete commutative strong bimonoids.
Example 3.4. Recall the Pr2-weighted MCFG G from Example 2.5.
The set of productions and the weight assignment of G are:

P: ρ1 = S→ [x1
1 x1

2 x2
1 x2

2](A, B) µ: µ(ρ1) = 1

ρ2 = A→ [ax1
1 , cx2

1](A) µ(ρ2) = 1/2

ρ3 = B→ [bx1
1 , d x2

1](B) µ(ρ3) = 1/3

ρ4 = A→ [ϵ,ϵ]() µ(ρ4) = 1/2

ρ5 = B→ [ϵ,ϵ]() µ(ρ5) = 2/3 .

By Definitions 3.1 and 3.2 we obtain the MCFG GB =
�
N ,Γ , S, P ′
�

where Γ = {a, b, c, d,ρ1
1 ,ρ1

2 ,ρ2
2 ,ρ1

3 ,ρ2
3 ,ρ1

4 ,ρ2
4 ,ρ1

5 ,ρ2
5} and P ′ is given by

P ′: ρ′1 = S→ [ρ1
1 x1

1 x1
2 x2

1 x2
2](A, B)

ρ′2 = A→ [ρ1
2ax1

1 ,ρ2
2cx2

1](A) ρ′4 = A→ [ρ1
4 ,ρ2

4]()

ρ′3 = B→ [ρ1
3 bx1

1 ,ρ2
3d x2

1](B) ρ′5 = B→ [ρ1
5 ,ρ2

5](),

and theA -weighted alphabetic homomorphism weightsG:Γ ∗→ (∆∗→
A) where weightsG is given for every γ ∈ Γ and ω ∈∆∪ {ϵ} by

[17]

Tobias Denkinger

weightsG(γ)(ω) =


µ(ρi) if γ= ρ1

i and ω= ϵ for 1≤ i ≤ 5

1 if γ= ρ2
i and ω= ϵ for 2≤ i ≤ 5

1 if γ ∈∆ and ω= γ
0 otherwise,

Now recall the derivation d = ρ1

�
ρ2(ρ4),ρ5

� of w= ac. Then
f (d) = ρ′1
�
ρ′2(ρ′4),ρ′5
�

=: d ′,
g(d ′) = ρ1

1 ρ
1
2 a ρ1

4 ρ
1
5 ρ

2
2 c ρ2

4 ρ
2
5 =: w′, and

weightsG(w
′) = (1 · 1/2 · 1 · 1/2 · 2/3 · 1 · 1 · 1 · 1).w = (1/6).w . □

3.2 The unweighted CS characterisation
We recall the definition of multiple Dyck languages (Yoshinaka et al.
2010, Definition 1):
Definition 3.5. Let ∆ be a finite N-sorted set,6 (·) be a bijection
between ∆ and some alphabet ∆, k = maxδ∈∆ sort(δ), and r ≥ k.
The multiple Dyck grammar with respect to ∆ and r is the (k, r)-MCFG
G r
∆ =
�{A1, . . . , Ak}, Ò∆, A1, P

� where Ò∆ = {δ[i], δ̄[i] | δ ∈∆, i ∈ [sort(δ)]},
sort(Ai) = i for every i ∈ [k], and P is the smallest set such that
(i) for every linear non-deleting7 terminal-free string function f ∈
(F∆)(s1···sℓ,s) with ℓ ∈ [r] and s1, . . . , sℓ, s ∈ [k] we have

As→ f (As1
, . . . , Asℓ) ∈ P ,

(ii) for every δ ∈∆ with sort s we have
As→
�
δ[1]x1

1δ̄
[1], . . . ,δ[s]x s

1δ̄
[s]
�
(As) ∈ P , and

(iii) for every s ∈ [k] we have
As→ [u1, . . . , us](As) ∈ P

where ui ∈
�

x i , x iδ
[1]δ̄[1], δ[1]δ̄[1]x i | δ ∈∆1

	 for every i ∈ [s].
6 In Yoshinaka et al. (2010), N-sorted sets are called indexed sets and sort is

denoted as dim.
7We add the restriction “non-deleting” in comparison to the original defini-

tion since the proof of Lemma 1 in Yoshinaka et al. (2010) only uses non-deleting
rules.

[18]

CS-parsing for weighted MCFL

Themultiple Dyck language with respect to∆ and r, denoted bymD(∆, r),
is L(G r

∆). We call maxδ∈∆ sort(δ) the dimension and r the rank of
mD(∆, r). The set of multiple Dyck languages of dimension at most k and
rank at most r is denoted by (k, r)-mDYCK. □

Yoshinaka et al. (2010) define (in Section 3.2) a sorted alphabet
∆, a right-linear regular grammar R, and a homomorphism h for some
given non-deletingMCFG G that has no rule with two or more identical
non-terminals on the right-hand side (this form of G can be assumed
without loss of generality). We recall their construction. To fit our
notation and highlight the connection to G, we will conceive R as an
FSA and call itM (G); also, h will be called homG.
Definition 3.6. Let G = (N ,Γ , S, P) be an MCFG. The generator set with
respect to G is the N-sorted alphabet

Σ = {⟦γ | γ ∈ Γ } ∪ {⟦ρ | ρ ∈ P} ∪ {⟦ρ,i | ρ ∈ P, i ∈ [rank(ρ)]}
where sort(⟦γ) = 1, sort(⟦ρ) = fan-out(ρ), and sort(⟦ρ,i) = fan-outi(ρ)
for every γ ∈ Γ , ρ ∈ P, and i ∈ rank(ρ). The generator alphabet with
respect to G is ÒΣ = {⟦[i]u ,⟧[i]u | ⟦u ∈Σ, i ∈ [sort(σ)]}.
For each u = γ1 · · ·γm ∈ Γ ∗ (with γ1, . . . ,γm ∈ Γ), we will abbreviate⟦[1]γ1
⟧[1]γ1
· · ·⟦[1]γm
⟧[1]γm

by ũ. The generator automaton with respect to G is the
FSAM (G) = (Q, Ò∆, S[1], {T},τ) where Q = {A[k] | A∈ N , k ∈ [sort(A)]}∪
{T} and τ is the smallest set that contains for every production ρ =
A→ [v1, . . . , vs](B1, . . . , Bm) ∈ P and each k ∈ [s] (where vk is of the form
uk,0 x j(j,1)

i(k,1)uk,1 · · · x j(k,pk)
i(k,pk)

uk,pk
with uk,0, . . . , uk,pk

∈ Γ ∗), the transitions
(A[k],⟦[k]ρ ũk,0⟧[k]ρ , T) if pk = 0,
(A[k],⟦[k]ρ ũk,0⟦[j(k,1)]

ρ,i(k,1), B[j(k,1)]
i(k,1)) if pk > 0,

(T,⟧[j(k,ℓ−1)]
ρ,i(k,ℓ−1)ũk,ℓ−1⟦[j(k,ℓ)]

ρ,i(k,ℓ), B[j(k,ℓ)]
i(k,ℓ)) if pk > 0, for every ℓ ∈ [pk],

(T,⟧[j(k,pk)]
ρ,i(k,pk)

ũk,pk
⟧[k]ρ , T) if pk > 0.

The generator language with respect to G is R(G) = L(M (G)). The homo-
morphism homG: Ò∆→ Γ ∗ is given by

homG(σ) =

(
γ if σ = ⟦[1]γ for some γ ∈ Γ
ϵ otherwise. □

[19]

Tobias Denkinger

From the four types of transitions inM (G), it is easy to see that
M (G) is deterministic, i.e. for each given state and input, there is at
most one successor state. We will denote L(Drank(G)

Σ) (cf. Definition 3.5)
by mD(G) to highlight its connection to the MCFG G.
Example 3.7 (Examples 2.5 and 3.4 continued). Figure 5 shows the
FSA M (GB). An edge labelled with a set L of words denotes a set of
transitions each reading a word in L. Note that R(GB) is not finite. □

The following is Theorem 3 of Yoshinaka et al. (2010) where “ho-
momorphism” is replaced by “alphabetic homomorphism”.
Corollary 3.8. Let L be a language, k ∈ N, and r ∈ N+. Then the
following are equivalent:
(i) L ∈ (k, r)-MCFL

(ii) There are an alphabetic homomorphism h2, a regular language
R, and a multiple Dyck language mD of at most dimension k and
rank r with L = h2(R∩mD).

Proof. The construction of the homomorphism in Yoshinaka et al.
(2010, Section 3.2) already satisfies the definition of an alphabetic
homomorphism. ■

Corollary 3.9. For every MCFG G, there is a bijection between DG

and R(G)∩mD(G).
Proof. The constructions in Lemmas 1 and 3 in Yoshinaka et al. (2010)
already hint at the bijection between R(G) ∩mD(G) and DG, we will
merely point out the respective functions toBrackets: DG → R(G) ∩
mD(G) and fromBrackets: R(G)∩mD(G)→ DG here.

Let ∆ be the generator set with respect to G and r = rank(G). We
examine the proof of Lemma 1 in Yoshinaka et al. (2010). They con-
struct for every rule A→ f (B1, . . . , Bk) in G and all tuples τ̄1, . . . , τ̄k that
are generated by B1, . . . , Bk in G, respectively, a tuple ū = (u1, . . . , um)
that is generated from Am in G r

∆. For each i ∈ [m],M (G) recognises ui

on the way from A[i] to T , and f (homG(τ1), . . . , homG(τk)) = homG(ū),
where homG is applied to tuples component-wise. Now we only look
at the initial non-terminal S. Then ū has only one component and
this construction can be conceived as a function toBrackets: DG →
R(G)∩mD(G) such that homG ◦ toBrackets= yield.

[20]

CS-parsing for weighted MCFL

S[1]start A[1]
⟦[1]
ρ′1
ρ̃1

1⟦[1]ρ′1,1 ⟦[1]
ρ′2
ρ̃1

2 ã⟦[1]
ρ′2,1

T

⟦[1]
ρ′4
ρ̃1

4⟧[1]ρ′4 �⟧[2]
ρ′1,2
⟧[1]ρ1

, ⟧[1]
ρ′2,1
⟧[1]
ρ′2

,⟧[2]
ρ′2,1
⟧[2]
ρ′2

, ⟧[1]
ρ′3,1
⟧[1]
ρ′3

, ⟧[2]
ρ′3,1
⟧[2]
ρ′3

	
A[2]

⟦[2]
ρ′4
ρ̃2

4⟧[2]ρ′4
⟧[1]
ρ′1,2
⟦[2]
ρ′1,1

⟦[2]
ρ′2
ρ̃2

2 c̃⟦[2]
ρ′2,1

B[1]

⟦[1]
ρ′5
ρ̃1

5⟧[1]ρ′5 ⟧[1]
ρ′1,1
⟦[1]
ρ′1,2

⟦[1]
ρ′3
ρ̃1

3 b̃⟦[1]
ρ′3,1

B[2]

⟦[2]
ρ′5
ρ̃2

5⟧[2]ρ′5
⟧[2]
ρ′1,1
⟦[2]
ρ′1,2

⟦[2]
ρ′3
ρ̃2

3 d̃⟦[2]
ρ′3,1

Figure 5:
Automaton
M (GB) (cf.
Example 3.7)

In Lemma 3, Yoshinaka et al. (2010) give a construction for the
opposite direction by recursion on the structure of derivations in
G∆. In a similar way as above, we view this construction as a func-
tion fromBrackets: R(G)∩mD(G)→ DG such that yield◦ fromBrackets =
homG. Then we have homG ◦ toBrackets◦ fromBrackets = homG, and
hence toBrackets◦ fromBrackets is the identity on R(G)∩mD(G). ■

3.3 Composing the homomorphisms

Lemma 3.10. αHOM(A) ◦αHOM= αHOM(A)

Proof. (⊆) Let h1:Γ ∗ → (∆∗ → A) be an alphabetic A -weighted
homomorphism and h2:Σ∗ → Γ ∗ be an alphabetic homomorphism.
By the definitions of αHOM(A) and αHOM, there exist h′1:Γ → (∆ ∪
{ϵ} → A) and h′2:Σ → Γ ∪ {ϵ} such that Òh′1 = h1 and Òh′2 = h2. Since
h1(codom(h′2)) ⊆ (∆∪{ϵ} →A) there is some h ∈ αHOM(A) such that
h= h1 ◦ h2; hence h1 ◦ h2 ∈ αHOM(A).

[21]

Tobias Denkinger

(⊇) Let h:Σ → (Γ ∗ → A) be an alphabetic A -weighted homo-
morphism. Clearly i:Σ∗ → Σ∗ with i(w) = w for every w ∈ Σ∗ is an
alphabetic homomorphism. Then we have h ◦ i = h. ■

Example 3.11 (Examples 3.4 and 3.7 continued). The homomorph-
ism h: (Σ ∪ Σ̄)∗→ (∆∗→A) obtained from weightsG:Γ ∗→ (∆∗→A)
and homGB : (Σ ∪ Σ̄)∗→ Γ ∗ by the construction for ⊆ in Lemma 3.10 is
given for every σ ∈Σ and ω ∈∆∪ {ϵ} by

h(σ)(ω) =


µ(ρi) if σ = ⟦[1]ρi

and ω= ϵ for some i ∈ [5]
1 if σ /∈ {⟦[1]ρi

| i ∈ [5]} ∪ {⟦[1]
δ
| δ ∈∆} and ω= ϵ

1 if σ = ⟦[1]
δ

and ω= δ for some δ ∈∆
0 otherwise.

□

3.4 The weighted CS characterisation
Theorem 3.12. Let L be anA -weighted language over Σ, k ∈ N, and
r ∈ N+. The following are equivalent:
(i) L ∈ (k, r)-MCFL(A)
(ii) there are an A -weighted alphabetic homomorphism h, a regular

language R, and an multiple Dyck language mD of dimension at
most k and rank r with L = h(R∩mD).

Proof. (i)⇒ (ii) There are some L′ ∈ (k, r)-MCFL, h, h1 ∈ αHOM(A),
h2 ∈ αHOM, mD ∈ k-mDYCKc, and R ∈ REC such that

L = h1(L
′) (by Lemma 3.3)

= h1(h2(R∩mD)) (by Corollary 3.8)
= h(R∩mD) (by Lemma 3.10)

(ii)⇒ (i) We use Definition 3.5 and Lemma 3.3, and the closure of
(k, r)-MCFG under intersection with regular languages and application
of homomorphisms. ■

Corollary 3.13. For every A -weighted MCFG G, there is a bijection
between DG and R(GB)∩mD(GB).
Proof. There are bijections between DG and L(GB) by claims in the
proof of Lemma 3.3, between L(GB) and DGB by claims in the proof of
Lemma 3.3, and between DGB and R(GB)∩mD(GB) by Corollary 3.9. ■

[22]

CS-parsing for weighted MCFL

4 congruence multiple dyck languages

According to Kanazawa (2014, Section 1) there is no definition of mul-
tiple Dyck languages using a cancellation law. The congruence mul-
tiple Dyck languages (Definition 4.2) close this gap. Even though con-
gruence multiple Dyck languages turn out to be quite different from
the multiple Dyck languages by Yoshinaka et al. (2010) (see Proposi-
tion 4.5 and Observation 4.6), we argue that they are still useful since
they allow a CS representation (Theorem 4.11) and they can be util-
ised more efficiently for CS parsing than multiple Dyck languages (see
Section 5.5).

For the rest of this section let Σ be an alphabet. Also let Σ be a set
(disjoint from Σ) and (·) be a bijection between Σ and Σ. Intuitively
Σ and Σ are sets of opening and closing parentheses and (·) matches
an opening to its closing parenthesis.

We define≡Σ as the smallest congruence relation on the free mon-
oid (Σ ∪ Σ)∗ where for every σ ∈ Σ the cancellation rule σσ ≡Σ ϵ
holds. The Dyck language with respect to Σ, denoted by D(Σ), is [ϵ]≡Σ .
The set of Dyck languages is denoted by DYCK.
Example 4.1. Let Σ = {(, 〈, [,⟦}. We abbreviate (̄, 〈̄, [̄, and ⟦̄ by), 〉,
], and ⟧, respectively. Then we have for example ⟦()⟧〈〉() ≡Σ ⟦⟧〈〉 ≡Σ⟦⟧≡Σ ϵ and (⟦)⟧〈〉()≡Σ (⟦)⟧()≡Σ (⟦)⟧ ̸≡Σ ϵ. □

Let P be a partition of Σ. We define ≡Σ,P as the smallest congru-
ence relation on the free monoid (Σ ∪Σ)∗ such that if v1 · · · vℓ ≡Σ,P ϵ

with v1, . . . , vℓ ∈ D(Σ), then the cancellation rule

u0σ1v1σ1u1 · · ·σℓvℓσℓuℓ ≡Σ,P u0 · · ·uℓ
holds for every {σ1, . . . ,σℓ} ∈ P and u0, . . . , uℓ ∈ D(Σ). Intuitively,
every cell of P denotes a set of linked opening parentheses, i.e. paren-
theses that must be consumed simultaneously by ≡Σ,P.
Definition 4.2. The congruence multiple Dyck language with respect to
Σ and P, denoted by mDc(Σ,P), is [ϵ]≡Σ,P

. □

Example 4.3. Let Σ = {(, 〈, [,⟦} and P = {p1,p2} where p1 = {(, 〈}
and p2 = {[,⟦}. We abbreviate (̄, 〈̄, [̄, and ⟦̄ by), 〉,], and ⟧, re-
spectively. Then, using the cancellation rule, we have for example⟦()⟧[〈〉] ≡Σ,P ϵ since p2 = {[,⟦} ∈P, ()〈〉 ≡Σ,P ϵ, and u0 = u1 = u2 = ϵ.

[23]

Tobias Denkinger

But ⟦()⟧〈[]〉 ̸≡Σ,P ϵ since when instantiating the cancellation rule with
any of the two cells of P, we can not reduce ⟦()⟧〈[]〉:
(i) If we choose {σ1,σ2} = {⟦, [} then we would need to set u1 = 〈

and u2 = 〉, but they are not in D(Σ), also () ̸≡Σ,P ϵ;
(ii) If we choose {σ1,σ2} = {(, 〈} then we would need to set u0 = ⟦

and u1 = ⟧, but they are not in D(Σ), also [] ̸≡Σ,P ϵ.
Hence ⟦()⟧[〈〉], ()〈〉 ∈mDc(Σ,P) and ⟦()⟧〈[]〉 /∈mDc(Σ,P). □

Observation 4.4. From the definition of ≡Σ,P it is easy to see that for
every u1, . . . , uk ∈ D(Σ) and v1, . . . , vℓ ∈ D(Σ) we have that u1 · · ·uk,
v1 · · · vℓ ∈ mDc(Σ,P) implies that every permutation of u1, . . . , uk,
v1, . . . , vℓ is in mDc(Σ,P). ■

The dimension of mDc(Σ,P) is maxp∈P|p|. The set of congruence
multiple Dyck languages (of at most dimension k) is denoted by mDYCKc
(k-mDYCKc, respectively).
Proposition 4.5. For each mD ∈ (k, r)-mDYCK there is an mDc ∈
k-mDYCKc such that mD ⊆mDc.
Proof idea. We construct a congruence multiple Dyck language mDc of
dimension at most k such that, if a tuple (w1, . . . , wm) can be generated
in G r

∆ from non-terminal Am, then w1, . . . , wm ∈ D(Σ) and w1 · · ·wm ∈
mDe. We prove this by induction on the structure of derivations in G r

∆.

Proof. Let mD ∈ (k, r)-mDYCK. Then there is an N-sorted set ∆ such
that mD = mD(∆, r) and maxδ∈∆ sort(δ) ≤ k. We define pδ = {δ[i] | i ∈
[sort(δ)]} for every δ ∈∆, Σ =∪δ∈∆ pδ, and P= {pδ | δ ∈∆}. Clearly
maxp∈P|p| ≤ k. Thus mDc(Σ,P) ∈ k-mDYCKc. Let Tup(G r

∆, A) denote
the set of tuples generated in G r

∆ when starting with non-terminal A
where A is not necessarily initial. In the following we show that for
every m ∈ [maxδ∈∆ sort(δ)] and w1, . . . , wm ∈ (Σ ∪ Σ̄)∗:

(w1, . . . , wm) ∈ Tup(G r
∆, Am) =⇒ w1 · · ·wm ∈mDc(Σ,P) (∗)

∧w1, . . . , wm ∈ D(Σ) .

It follows from the definitions of Tup and G r
∆ that (w1, . . . , wm) ∈

Tup(G r
∆, Am) implies that there are a rule Am → f (Am1

, . . . , Amℓ) in G r
∆

and tuples u⃗i = (u1
i , . . . , umi

i) ∈ Tup(G r
∆, Ami

) for every i ∈ [ℓ] such

[24]

CS-parsing for weighted MCFL

that f (u⃗1, . . . , u⃗ℓ) = (w1, . . . , wm). By applying the induction hypo-
thesis ℓ times, we also have that u1

1, . . . , um1
1 , . . . , u1

ℓ
, . . . , umℓ

ℓ
∈ D(Σ) and

u1
1 · · ·um1

1 , . . . , u1
ℓ
· · ·umℓ

ℓ
∈ mDc(Σ,P). We distinguish three cases (each

corresponding to one type of rule in G r
∆):

(i) f is linear, non-deleting, and terminal-free. Then we have for
every i ∈ [m] that wi ∈ {u1

1, . . . , um1
1 , . . . , u1

ℓ
, . . . , umℓ

ℓ
}∗ and therefore

also wi ∈ D(Σ). Furthermore, by applying Observation 4.4 (ℓ− 1)
times, we have that w1 · · ·wm ∈mDc(Σ,P).

(ii) f = [δ[1]x1
1δ̄
[1], . . . ,δ[m]xm

1 δ̄
[m]]; then ℓ = 1, m1 = m, and for

every i ∈ [m] we have wi = δ[i]ui
1δ̄
[i] and since ui

1 ∈ D(Σ), also
wi ∈ D(Σ). Furthermore, w1 · · ·wm = δ[1]u1

1δ̄
[1] · · ·δ[m]um

1 δ̄
[m] ∈

mDc(Σ,P) due to the cancellation rule.
(iii) f = [u1, . . . , um] where ui ∈

�
x1

i , x1
i δ
[1]δ̄[1], δ[1]δ̄[1]x1

i | δ ∈ ∆1

	
for every i ∈ [m]; then wi ∈

�
u1

i , u1
i δ
[1]δ̄[1], δ[1]δ̄[1]u1

i | δ ∈ ∆1

	
for every i ∈ [m], ℓ = 1, and m1 = m. Since ≡Σ is a congruence
relation (in particular, ≡Σ respects composition), we have that
w1, . . . , wm ∈ D(Σ). By applying Observation 4.4 m times, we have
that w1 · · ·wm ∈mDc(Σ,P). ■

From the above proof we can easily see that the rank r of a mul-
tiple Dyck language can not be taken into account by a congruence
multiple Dyck language. This leads us to the next observation.
Observation 4.6. Let mD be a multiple Dyck language and mDc be a
congruence multiple Dyck language. Then mD ̸=mDc. ■

Similar to multiple Dyck languages, the congruencemultiple Dyck
languages cover the Dyck languages if we set the dimension to 1. Also
they form a hierarchy with increasing dimension.
Proposition 4.7. DYCK= 1-mDYCKc ⊊ 2-mDYCKc ⊊ . . .

Proof. We have the equality since the dimension of some partition P

of Σ is 1 if and only if P = {{σ} | σ ∈ Σ}. Then we have ≡Σ = ≡Σ,P

and thus D(Σ) = mDc(Σ,P). Hence DYCK = 1-mDYCKc. We get “⊊”
from the definition of k-mDYCKc. ■

4.1 Membership in a congruence multiple Dyck language
We give an algorithm to decide membership in a congruence multiple
Dyck language (Algorithm 2). It is closely related to the cancellation

[25]

Tobias Denkinger
Algorithm 2:

Function
isMember to

decide
membership
in mDc(Σ,P)

Input: Σ, P, and w ∈ (Σ ∪Σ)∗
Output: True if w ∈mDc(Σ,P), False otherwise
1 function isMember(Σ,P, w)
2 if w /∈ D(Σ) then return False end if
3 let (σ1u1σ1, . . . ,σℓuℓσℓ) = split(Σ, w) such that σ1, . . . ,σℓ ∈Σ
4 let I =∅
5 for each I = {i1, . . . , ik} ⊆ [ℓ] with {σi1 , . . . ,σik} ∈P do
6 if isMember(Σ,P, ui1 · · ·uik) then
7 add I as an element to I
8 end if
9 end for

10 for each J ⊆ I do
11 if J is a partition of [ℓ] then return True end if
12 end for
13 return False
14 end function

rule and thus provides an algorithmic view on congruence multiple
Dyck languages. Although the algorithm is at least exponential in a
polynomial of the length of the input word, it becomes quadratic if
we only accept input words of a specific form. The parsing algorithm
presented in Section 5 will only consider words of that form.

Algorithm 2 works roughly as follows: It is a recursive algorithm.
In every call of isMember, it checks if the given word can be re-
duced to ϵ by applications of the cancellation rule. For substrings
σ1v1σ̄1, . . . ,σℓvℓσ̄ℓ to be cancelled, the string v1 · · · vℓ must be an equi-
valence multiple Dyck word; this is checked with a recursive call to
isMember. Note that it suffices to only apply the cancellation rule from
left to right. To account for all possible applications of the cancel-
lation rule, isMember must consider all decompositions of the input
string into Dyck words. For this purpose, recall split (from Section 4)
that splits a given Dyck word into shortest non-empty Dyck words.

Outline of isMember
In the following, all line numbers refer to Algorithm 2. We first

check if w is in D(Σ), e.g. with the context-free grammar in (7.6)
in Salomaa (1973). If w is not in D(Σ), it is also not in mDc(Σ,P)
and we return False. Otherwise, we split w into shortest non-empty

[26]

CS-parsing for weighted MCFL

Dyck words (on line 3), i.e. we compute the tuple (u1, . . . , uℓ) such that
u1, . . . , uℓ ∈ D(Σ) \ {ϵ}, u1 · · ·uℓ = u, and for every i ∈ [ℓ] there are no
u′i , v′i ∈ D(Σ)\{ϵ} with u′i v′i = ui. We denote (u1, . . . , uℓ) by split(u). Note
that split(u) can be calculated in time and space linear in |u| with the
help of a pushdown transducer (Aho and Ullman 1972, Section 3.1.4):
We initially write “(” on the output tape. Whenever we read an ele-
ment ofΣ, we write that element on the output tape and push it on the
stack. Whenever we read an element of Σ, we write that element on
the output tape and pop it from the stack. Upon reaching the bottom
of the stack, we write a “,” on the output tape. Finally, we write “)” on
the output tape. Then the inscription of the output tape is (u1, . . . , uℓ).
Since each of those shortest non-empty Dyck words has the form σuσ
for some σ ∈Σ and u ∈ (Σ∪Σ)∗, we write (σ1u1σ1, . . . ,σℓuℓσℓ) for the
left-hand side of the assignment on line 3. On lines 4 to 9 we calculate
the set I of sets of indices I = {i1, . . . , ik} such that the outer parenteses
of the substrings σi1ui1σi1 , . . . ,σik uikσik of w can be reduced with one
step of the cancellation rule. This reduction is possible if there exists an
appropriate cell inP (checked on line 5) and if ui1 · · ·uik is inmDc(Σ,P)
(checked on line 6). Therefore, at the end of line 9, each element of I
represents one possible application of the cancellation rule. In order
for ≡Σ,P to reduce w to ϵ, each component of (σ1u1σ1, . . . ,σℓuℓσℓ)
needs to be reduced (exactly once) by an application of the cancella-
tion rule. This is equivalent to a subset of I being a partition of [ℓ]
(lines 10 to 12). If no such subset exists, then w can not be reduced
to ϵ and we return False on line 13.
Example 4.8 (Example 4.3 continued). Table 1 shows a run of Al-
gorithm 2 on the word ⟦()⟧[〈〉] where we report return values and a
subset of the variable assignment, when necessary, at the line ending.
The recursive calls to isMember are indented. Table 2 shows the run of
Algorithm 2 on the word ⟦()⟧[]⟦⟧[〈〉]. □

In light of the close link between Algorithm 2 and the relation
≡Σ,P we omit the proof of correctness.

Proof of termination for Algorithm 2. If w = ϵ, then ℓ = 0, the loop on
lines 5 to 9 has no I ’s to consider, the loop on lines 10 to 13 has only
J = ∅ to consider, which is a partition of [ℓ] = ∅, and hence the al-
gorithm terminates on line 11. If w /∈ D(Σ), the algorithm terminates

[27]

Tobias Denkinger
Table 1:

Run of Algorithm 2 on the word ⟦()⟧[〈〉],
cf. Examples 4.3 and 4.8.

isMember(Σ,P,⟦()⟧[〈〉])
line 3: ℓ= 2,σ1 = ⟦,σ2 = [, u1 = (),u2 = 〈〉
line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P, ()〈〉)

line 3: ℓ= 2,σ1 = (,σ2 = 〈, u1 = ϵ = u2

line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P,ϵ)

line 3: ℓ= 0
line 10: J =∅
line 11: return True

line 7: I = �{1, 2}	
line 10: J =∅
line 10: J =
�{1, 2}	

line 11: return True
line 7: I = �{1,2}	
line 10: J =∅
line 10: J =
�{1, 2}	

line 11: return True

on line 2. The loop on lines 5 to 9 considers only finitely many val-
ues I . Thus there are only finitely many calls to isMember on line 6 for
each recursion. In the call of isMember, the length of the third argu-
ment ui1 · · ·uik is strictly smaller then the length of w. Therefore, after
a finite number of recursions, the fourth argument passed to isMember
becomes the empty word and the algorithm terminates. ■

Properties of isMember
Algorithm 2 is at least exponential in a polynomial of the length of
the input word. This is due to the cardinality of I and the for-loop on
lines 10 to 12. Let κ be the number of different cells p ∈P that occur
in σ1 · · ·σℓ, and let each symbol occurs at most r times. Both κ and r
have upper bound ℓ. Let m be the dimension of P. Then there are at
most κ· rm−1 ≤ ℓm values of I considered in the for-loop on lines 5 to 9.
Since ℓ < |w|, we execute this for-loop at most |w|m times. Hence, I
has cardinality at most |w|m. Therefore, the for-loop on lines 10 to 12
considers 2|I | ≤ 2|w|m different values of J in the worst case.

Let us now turn to the modification of isMember we will use in
Section 5. Let u ∈ D(Σ) and (σ1u′1σ1, . . . ,σℓu

′
ℓ
σℓ) = split(u). For every

σ ∈ Σ, we define occσ u = |{i ∈ [ℓ] | σi = σ}|. Furthermore for
every p ∈ P, we define occp u = max{occσ u | σ ∈ p} and we define

[28]

CS-parsing for weighted MCFL
Table 2: Run of Algorithm 2 on the word ⟦()⟧[]⟦⟧[〈〉].
isMember(Σ,P,⟦()⟧[]⟦⟧[〈〉])
line 3: ℓ= 4,σ1 = ⟦= σ3,σ2 = [= σ4, u1 = (),u2 = ϵ = u3,u4 = 〈〉
line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P, ())

line 3: ℓ= 1,σ1 = (,u1 = ϵ
line 9: I =∅
line 10: J =∅
line 13: return False

line 8: I =∅
line 5: k = 2, i1 = 1, i2 = 4
line 6: isMember(Σ,P, ()〈〉)

line 3: ℓ= 2,σ1 = (,σ2 = 〈,u1 = ϵ = u2

line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P,ϵ)

line 3: ℓ= 0
line 9: I =∅
line 10: J =∅
line 11: return True

line 7: I = �{1,2}	
line 10: J =∅
line 10: J =
�{1,2}	

line 13: return True
line 7: I = �{1,4}	
line 5: k = 2, i1 = 2, i2 = 3
line 6: isMember(Σ,P,ϵ)

line 3: ℓ= 0
line 10: I =∅, J =∅
line 11: return True

line 7: I = �{1,4}, {2,3}	
line 5: k = 2, i1 = 3, i2 = 4
line 6: isMember(Σ,P, 〈〉)

line 3: ℓ= 1,σ1 = 〈,u1 = ϵ
line 10: I =∅, J =∅
line 13: return False

line 8: I = �{1,4}, {2,3}	
line 10: J =∅
line 10: J =
�{1,4}	

line 10: J =
�{2,3}	

line 10: J =
�{1,4}, {2,3}	

line 11: return True

[29]

Tobias Denkinger

occP u=
∑

p∈P occp u. We call a word w ∈ (Σ∪Σ)∗ P-simple if w /∈ D(Σ);
or occp w ≤ 1 for each cell p ∈ {p′ ∈ P | |p′| ≥ 2} and v1 · · · vℓ is P-
simple whenever there are u0, . . . , uℓ ∈ D(Σ), v1, . . . , vℓ ∈ D(Σ), and
p= {σ1, . . . ,σℓ} ∈P with w= u0σ1v1σ̄1u1 · · ·σℓvℓσ̄ℓuℓ. In other words,
w is P-simple if, whenever the cancellation rule can be applied to w
to cancel an occurrence of the cell p (where p has more than one ele-
ment), then there is only one such occurrence and the string v1 · · · vℓ
(from the definition of the cancellation rule) is also P-simple.

In order for isMember to recognise w only if it is P-simple, we
check between lines 1 and 2 in the algorithm whether occp w ≤ 1 for
each cell p ∈ {p′ ∈ P | |p′| ≥ 2}. If this is the case, we continue, other-
wise we return False. Let us call the function obtained in this manner
isMember’. Note that the check between lines 1 and 2 can be done in
time linear in the input word. Then the I ’s that Algorithm 2 considers
in the for-loop on lines 5 to 9 are pairwise disjoint. This means that
each ui (for i ∈ [ℓ]) occurs in at most one recursive call on line 6. Then
the elements of I are always pairwise disjoint and we only need to
consider J = I in the for-loop on lines 10 to 12. We can decide in time
O (ℓ) whether I is a partition of [ℓ]. Lines 2 and 3 can be computed
in time O (|w|). Since ℓ < |w|, we know that for each call of isMember,
we have to invest time linear in the length of the third argument. The
maximum depth of recursion is |w|/2 because the third argument in
the call on line 6 has at most length |w|−2. For every recursion depth,
the sum of the lengths of all third arguments is at most |w| because ui

(for i ∈ [ℓ]) occurs in at most one recursive call on line 6. Therefore
isMember’(Σ,P, w) can be calculated in time O (|w|2).
4.2 A CS representation using congruence multiple Dyck languages
Definition 4.9. Let G = (N ,Γ , S, P) be an MCFG. The congruence mul-
tiple Dyck language with respect to G, denoted by mDc(G), is mDc(Σ,P)
where P is the smallest set such that

• pγ = {⟦[1]γ } ∈P for every γ ∈ Γ ,
• pρ = {⟦[j]ρ | j ∈ [fan-out(ρ)]} ∈P for every ρ ∈ P, and
• pρ,i = {⟦[j]ρ,i | j ∈ [fan-outi(ρ)]} ∈ P for every ρ ∈ P and i ∈
[rank(ρ)],

and Σ =∪p∈P p. □

[30]

CS-parsing for weighted MCFL

Lemma 4.10. R(G)∩mD(G) = R(G)∩mDc(G) for each MCFG G.
Proof. It follows from Definitions 3.5 and 4.9 and Proposition 4.5 that
mD(G) ⊆mDc(G) and hence R(G)∩mD(G) ⊆ R(G)∩mDc(G). It remains
to be shown that R(G) ∩mDc(G) ⊆ mD(G). Let G = (N ,Γ , S, P) and Σ
and ∆ be defined as in Definitions 3.5 and 4.9.

We prove the following statement by induction on the length of
w1 · · ·wℓ: If B ∈ N and w1, . . . , wℓ ∈ D(Σ) such that w1 · · ·wℓ ∈mDc and
wκ is recognised along a path from B[κ] to T inM (G) for every κ ∈ [ℓ],
then (w1, . . . , wℓ) can be generated by Aℓ in Grank(G)

∆ .
By setting ℓ= 1 and B = S, this statement implies our claim. Now

let B ∈ N and w1, . . . , wk ∈ D(Σ) such that w1 · · ·wℓ ∈ mDc and wκ is
recognised along a path from B[κ] to T in M (G) for every κ ∈ [ℓ].
By the definitions ofM (G) and mDc(G), we know that there is some
production ρ = B→ f (B1, . . . , Bk) ∈ P with

f = [u1,0 x j(1,1)
i(1,1)u1,1 · · · x j(1,p1)

i(1,p1)
u1,p1

, . . . , uℓ,0 x j(ℓ,1)
i(ℓ,1)uℓ,1 · · · x j(ℓ,pℓ)

i(ℓ,pℓ)
uℓ,pℓ]

such that for every κ ∈ [ℓ] either
(i) wκ = ⟦[κ]ρ euκ,0⟧[κ]ρ or
(ii) wκ = ⟦[κ]ρ euκ,0 ⟦[j(κ,1)]

ρ,i(κ,1) v j(κ,1)
i(κ,1) ⟧[j(κ,1)]

ρ,i(κ,1) euκ,1 · · ·
⟦[j(κ,pκ)]
ρ,i(κ,pκ)

v j(κ,pκ)
i(κ,pκ)
⟧[j(κ,pκ)]
ρ,i(κ,pκ)
euκ,pκ ⟧[κ]ρ ,

and v j
i ∈ D(Σ) is recognised along a path from B[j]i to T inM (G) for

every i ∈ [k] and j ∈ [sort(Bi)], and v1
i · · · vsort(Bi)

i ∈ mDc(G) for every
i ∈ [k]. Then by induction hypothesis (v1

i , . . . , vsort(Bi)
i) can be generated

from Asort(Bi) in Grank(G)
∆ for every i ∈ [k]. Using productions of types (ii)

and (iii) (cf. Definition 3.5), Asort(B1), . . . , Asort(Bk) can generate tuples
that together have exactly the componentseu1,0⟦[j(1,1)]

ρ,i(1,1)v
j(1,1)
i(1,1) ⟧[j(1,1)]

ρ,i(1,1)eu1,1,⟦[j(1,2)]
ρ,i(1,2)v

j(1,2)
i(1,2) ⟧[j(1,2)]

ρ,i(1,2)eu1,2, . . . ,

⟦[j(1,p1)]
ρ,i(1,p1)

v j(1,p1)
i(1,p1)
⟧[j(1,p1)]
ρ,i(1,p1)
eu1,p1

, . . . ,

euℓ,0⟦[j(ℓ,1)]ρ,i(ℓ,1)v
j(ℓ,1)
i(ℓ,1) ⟧[j(ℓ,1)]ρ,i(ℓ,1)euℓ,1,⟦[j(ℓ,2)]

ρ,i(ℓ,2)v
j(ℓ,2)
i(ℓ,2) ⟧[j(ℓ,2)]ρ,i(ℓ,2)euℓ,2, . . . ,

⟦[j(ℓ,pℓ)]
ρ,i(ℓ,pℓ)

v j(ℓ,pℓ)
i(ℓ,pℓ)
⟧[j(ℓ,pℓ)]
ρ,i(ℓ,pℓ)
euℓ,pℓ .

Set w′1, . . . , w′
ℓ
∈ D(Σ) such that wκ = ⟦[κ]ρ w′κ⟧[κ]ρ for every k ∈ [ℓ]. Then

we can derive (w′1, . . . , w′
ℓ
) from Aℓ in Grank(G)

∆ by first using a production

[31]

Tobias Denkinger

of type (i) with rank exactly rank(ρ), and for each κ ∈ [ℓ] where wκ
has the form ⟦[κ]ρ euκ,0⟧[κ]ρ productions of type (iii). Using a production
of type (ii), we finally obtain (w1, . . . , wℓ) from Aℓ in Grank(G)

∆ . ■

Theorem 4.11. For every multiple context-free languages L of fan-out
at most k, there exist a weighted homomorphism h, a regular language
R, and a congruence multiple Dyck language mDc of dimension at most
k such that L = h(R∩mDc).

Proof. This follows immediately from Lemma 4.10 and Theorem 3.12
when taking h= weightsG ◦homGB , R= R(GB), and mDc =mDc(GB). ■

5 nʿbest parsing for weighted mcfgs using
a chomskyʿschützenberger

representation

In this section we describe an n-best parsing algorithm (cf. Huang and
Chiang 2005; Büchse et al. 2010) for a subset of weighted MCFGs, i.e.
we want to find the best parses of a given word in a weighted MCFG.
In our case, “parse” refers to a derivation in the weighted MCFG. We
formalise our intuition of when a derivation is “better” than another
derivation by means of a partial order ⊴ on the weights. That is, if
we have two derivations d1 and d2 with weights µ1 and µ2, respect-
ively, we call d1 “not worse than” d2 if µ1 ⊴ µ2. Note that we think of
weights as costs here, i.e. better derivations will get a smaller weight
with respect to ⊴. We define the irreflexive relation with respect to ⊴ as
Ã = ⊴ \ {(a, a) | a ∈ A} ⊆ A× A. We say that A respects ⊴ if · has the
following three properties:
(i) it is (strictly) increasing, i.e. a Ã a · b for every a, b ∈A \ {0,1},
(ii) it has arbitrarily large powers, i.e. for every a, b ∈ A \ {0,1} there

is a k ∈ N with b ⊴ ak where ak = ak−1 · a for k ≥ 1 and a0 = 1,
and

(iii) it is monotone, i.e. a ⊴ b implies a · c ⊴ b · c for every a, b, c ∈A .
For the rest of this section let argmin⊴ be a function that assigns

for every family f : B →A a value b̄ ∈ B such that there is no b′ ∈ B
with f (b′)Ã b̄; we write argmin⊴b∈B(f (b)) for b̄.

[32]

CS-parsing for weighted MCFL

Note that we only need multiplication to obtain the weight of a
derivation and therefore the sum operation of our complete commut-
ative strong bimonoid becomes irrelevant within this section.
5.1 n-best parsing
We will take the n best parses from the possibly infinite sequence of
derivations for some word in an MCFG. We therefore need a notion of
infinite strings.
Definition 5.1. Let B be a set. The set of infinite strings over B, denoted
by Bω, is the set of partial functions u:N \ {0} → B where the fact
that u(n) is defined implies that u(n− 1) is defined as well, for every
n> 1. □

Every element u of B∗ can be construed as an element of Bω where
dom(u) is finite. Let u ∈ B∗ and v ∈ Bω. The concatenation of u and v,
denoted by u ·ω v, is given by

(u ·ω v)(n) =

(
u(n) if n≤ |u|
v(n− |u|) otherwise.

To work with infinite strings, we define the following functions:
map applies a function to every element in an infinite list.

map: (B→ C)→ (Bω→ Cω)

map(f)(bu) = f (b) ·ωmap(f)(u) (if b ∈ B)
map(f)(ϵ) = ϵ

take returns a finite prefix of a given infinite list.
take:N→ (Bω→ B∗)

take(n)(bu) = b ·ω take(n− 1)(u′) (if n> 0 and b ∈ B)
take(n)(u) = ϵ (if n= 0 or u= ϵ)

filter removes elements that are not in a given set from an infinite list.
filter:P (B)→ (Bω→ Bω)

filter(B′)(b′u) = b′ ·ω filter(B′)(u) (if b′ ∈ B′)
filter(B′)(bu) = filter(B′)(u) (if b /∈ B′)

filter(B′)(ϵ) = ϵ

[33]

Tobias Denkinger

sort returns an infinite list that contains each element of a given set
exactly once in an order that respects ⊴.

sort: (B→A)×P (A ×A)→ (P (B)→ Bω)

sort(f ,⊴)(B′) = argmin⊴b∈B′(f (b))

·ω sort(f ,⊴)(B′ \ argmin⊴b∈B′(f (b))) (if B′ ̸=∅)
sort(f ,⊴)(∅) = ϵ

Definition 5.2. Let B be a set, f : B → A , n ∈ N, and ⊴ be a partial
order on A . We define the n-best function with respect to f and ⊴ as a
function n -best(f ,⊴):P (B)→P (B∗) where for every B′ ⊆ B we have
that (b1, . . . , bk) ∈ n -best(f ,⊴)(B′) if the following conditions hold
(i) k =min{n, |B′|},
(ii) b1, . . . , bk ∈ B′ are pairwise different,
(iii) f (b1)⊴ f (b2)⊴ . . .⊴ f (bk), and
(iv) there is no b ∈ B′ \ {b1, . . . , bk} with f (b)Ã f (bk). □

Note that |n -best(f ,⊴)(B′)|= 1 if n≤ |B′|.
Definition 5.3. The parsing problem for A -weighted MCFG is:
given an A -weighted MCFG G = (N ,Σ, S, P,µ), a partial order ⊴ on
A , a word w ∈Σ∗, and an integer n ∈ N,

output an element of n -best(µ̂,⊴)(DG(w)). □
The following observation is apparent from the definitions of sort,

take, and n -best.
Observation 5.4. take(n) ◦ sort(f ,⊴)

�
B′
� ∈ n -best(f ,⊴)(B′)

for every set B, subset B′ ⊆ B, function f : B → B , n ∈ N, and partial
order ⊴ on B . ■

5.2 Specification of the CS parser
Given an A -weighted MCFG G, we construct the regular language
R(GB), the A -weighted homomorphism h= weightsG ◦homGB , and the
congruence multiple Dyck language mDc(GB). Then L(G) = h

�
R(GB)∩

mDc(GB)
�. In a more procedural view on this representation of G, we

might say that one obtains words (with weights) in L(G) by (i) gen-
erating words in R(GB) (called candidates), (ii) discarding the candid-
ates that are not in mDc(GB), and (iii) applying h to the remaining
candidates.

[34]

CS-parsing for weighted MCFL

Recall that there is a bijection between DG and R(GB) ∩mDc(GB)
(Corollary 3.13). Now let w be the word we want to parse. Further-
more, let Rh,w be the set of words that hmaps to w. Then there is a bijec-
tion between Rh,w ∩ R(GB)∩mDc(GB) and DG(w). Our strategy to com-
pute the n best derivations is to enumerate the words in Rh,w∩R(GB) in
the order given by the weights defined by the homomorphism h and
then checking whether each word is in mDc(GB) until we have found
n words. However, this approach will have to be refined to ensure
termination of the parsing algorithm.

First we show that the set Rh,w of words mapped by h to w is
regular.
Definition 5.5. Let h:Σ∗ → (Γ ∗ →A) be an A -weighted alphabetic
homomorphism and γ1, . . . ,γn ∈ Γ . Furthermore, let Σϵ = {σ ∈ Σ |
h(σ) = µ.ϵ for some µ ∈A}, and for every γ ∈ Γ , define σγ ∈ Σ such
that h(σγ) = µ.γ for some µ ∈A . The domain language of h with respect
to γ1 · · ·γn, is the language

Rh,γ1···γn
= {u0σγ1

u1 · · ·σγn
un | u0, . . . , un ∈Σ∗ϵ}. □

Lemma 5.6. Rh,w is a regular language for every A -weighted alpha-
betic homomorphism h:Σ∗→ (Γ ∗→A) and word w ∈ Γ ∗.
Proof. Since {σγ1

}, . . . , {σγn
}, and Σϵ are finite sets, Rh,w = Σ∗ϵ · {σγ1

} ·
Σ∗ϵ ·. . .·{σγn

}·Σ∗ϵ , and because finite sets are recognisable (Hopcroft and
Ullman 1969, Theorem 3.7) and recognisable languages are closed un-
der language concatenation (Hopcroft and Ullman 1969, Theorem 3.8)
and Kleene-star (Hopcroft and Ullman 1969, Theorem 3.9), we have
that Rh,w is regular. ■

Example 5.7 (Examples 3.7 and 3.11 continued). Figure 6 shows a
deterministic FSAMh,ac that recognises Rh,ac. □

0start

Σϵ

1
⟦[1]a

Σϵ

2
⟦[1]c

Σϵ Figure 6:
Deterministic FSAMh,ac that recognises Rh,ac

(cf. Example 5.7)

[35]

Tobias Denkinger

5.3 Problems and restrictions
Definition 5.8. LetM = (Q,∆, qi, F, T) be an FSA and h:∆∗ → (Γ ∗ →
A) be an A -weighted homomorphism. The set of harmful loops inM
with respect to h is the set of all runs q0u1q1 · · ·ukqk inM where q1, . . . , qk

are pairwise disjoint elements ofQ, q0 = qk, u1, . . . , uk ∈∆∗, and h(u1) =
. . .= h(uk) = 1.ϵ. □

When examining Example 3.11 and Figure 5, we see that there
are seven harmful loops in M (GB) with respect to h: the five self-
loops of T , the loop between T and A[2], and the loop between T and
B[2]. Harmful loops are problematic for the termination of a parsing
algorithm since they cause an infinite set of candidates that are not dis-
tinguishable by their image under h. When generating the sequence of
candidates for our parsing algorithm, such a situation creates the con-
tingency of never producing a candidate that is accepted by mDc(GB)
even if one exists. To allow our parsing algorithm to solve the above
problem, we will
(i) only admit a restricted form of weighted MCFGs and
(ii) require each value in the domain of A (except 0 and 1) to be

viewed as a product of arbitrarily many smaller values from the
domain of A .

Restricted weighted MCFG
Definition 5.9. An A -weighted MCFG G = (N ,∆, S, P,µ) is called
restricted if there do not exist a subderivation d in G and a posi-
tion π = n1 · · ·nk ∈ pos(d) (where n1, . . . , nk ∈ N) such that d(ϵ) =
d(π), d(ϵ), d(n1), d(n1n2), . . . , d(n1 · · ·nk) are pairwise different, and
µ(d(ϵ)) = µ(d(n1)) = µ(d(n1n2)) = . . .= µ(d(n1 · · ·nk)) = 1. □

Restricted weighted MCFG are strictly less powerful than (unres-
tricted) weighted MCFG, as the next example shows.
Example 5.10. Let us consider an arbitrary B-weighted MCFG G and
let m be the number of rules in G. Assume that L(G) is not finite. Then
there are subderivations in G of arbitrary height. It is clear that every
subderivation d in G with a height greater than m + 1 must have a
position π ∈ pos(d) such that d(ϵ) = d(π). Then, since G has weights
from B, we know that 1 is assigned to every production in G and thus
G is not restricted. □

[36]

CS-parsing for weighted MCFL

Restricted weighted MCFGs are still useful in practice, as the fol-
lowing two observations show.
Definition 5.11. An A -weighted MCFL is called proper if A is the
probability semiring, the Viterbi semiring, or one of the algebras Pr1

or Pr2 (cf. Example 2.1) and for each non-terminal A the sum (using the
usual addition in R) of the weights of all productions with left-hand
side A is 1. □

Observation 5.12. Every proper weighted MCFG is restricted.
Proof. Assume that G is proper but not restricted. Then there is a sub-
derivation d in G and a position π ∈ pos(d) such that the weights of
all productions along the path from the root to position π in d are 1
and d(ϵ) = d(π) = ρ. All productions along the path from the root to
position π are unique for their respective left-hand side non-terminals
since G is probabilistic. This means that every subderivation d ′ start-
ing from ρ has the position π and ρ = d ′(ϵ) = d ′(π) = d(ϵ) = d(π).
But then {ϵ,π,ππ,πππ, . . .} ⊆ pos(d) and hence d is not a (finite) term,
which contradicts our definition of a subderivation. ■

If we extract a weighted MCFG from a corpus and assign the
weights by maximum-likelihood estimation (as for example in Kall-
meyer and Maier 2013, p. 107), then we will get a weighted MCFG
that is proper and therefore restricted.

The next observation allows us to enrich the weight structure of
a B-weighted MCFG to make it suitable for CS-parsing.
Observation 5.13. For every B-weighted MCFG G, there is a restric-
ted weighted MCFG G′ such that supp(L(G)) = supp(L(G′)).
Proof. This can be done by assigning to every w ∈ supp(G), the size (i.e.
number of productions) of its smallest derivation. To achieve that, we
choose the tropical semiring as weight algebra for G′, use the produc-
tions from G, and give every production the weight 1. Then no pro-
duction in G′ has the semiring-1 (which is 0 for the tropical semiring)
as its weight and G′ is restricted. ■

Factorisable weight structures
Definition 5.14. LetA be a complete commutative strong bimonoid
and ⊴ be a partial order on A . We say that A is ⊴-factorisable if for

[37]

Tobias Denkinger

every a ∈ A \ {0,1} and natural number k ≥ 2, there are a1, . . . , ak ∈
A \ {0,1} such that a1 Ã a, . . . , ak Ã a and a1 · . . . · ak = a. We then call
a1 · . . . · ak a (⊴, k)-factorisation of a. □

Some of the complete commutative strong bimonoids mentioned
in Example 2.1 are ⊴-factorisable for some suitable partial order ⊴,
as Table 3 shows. The examples where multiplication is idempotent,
however, have no suitable partial order since a · a = a contradicts ·
being increasing (in particular a Ã a · a).

Table 3:
List of some complete
commutative strong
bimonoids A from

Example 2.1 together with
a partial order ⊴ that A

respects and a
(⊴, k)-factorisation.

example algebra partial order (⊴, k)-factorisation
(A ,+, ·, 0, 1) ⊴ of a ∈A \ {0, 1}

Viterbi semiring ≥
kpa · . . . · kpa︸ ︷︷ ︸

k times([0,1],max, ·, 0, 1)

tropical semiring ≤ a/k+ . . .+ a/k︸ ︷︷ ︸
k times(R≥0 ∪ {∞},min,+,∞, 0)

arctic semiring ≤ a/k+ . . .+ a/k︸ ︷︷ ︸
k times(R≥0 ∪ {−∞}, max,+,−∞, 0)

Pr1 = ([0,1],⊕1, ·, 0, 1) and ≥
kpa · . . . · kpa︸ ︷︷ ︸

k timesPr2 = ([0,1],⊕2, ·, 0, 1)

For the probability semiring Pr= (R≥0,+, ·, 0, 1)monotonicity and
increasingness contradict each other. To show this we first assume that
Prwould respect some partial order⊴. From 1/2·1/2= 1/4 and 2·2= 4
follows 1/2Ã 1/4 and 2Ã 4 since · is increasing. By monotonicity then
follows 2 ·1/2⊴ 4 ·1/2⊴ 4 ·1/4 and hence 1⊴ 2⊴ 1. But ⊴ is a partial
order and thus antisymmetric.

5.4 A CS parsing algorithm
For the remainder of this article let A be a complete commutative
strong bimonoid and ⊴ be a partial order on A such that A respects
⊴ and is ⊴-factorisable. Also, we will require our weighted MCFGs to
be restricted.

To solve the problem stated in the beginning of Section 5.3, we
define a modified generator language and a modified weight function
to replace R and h from the CS-theorem (cf. Theorem 3.12).

[38]

CS-parsing for weighted MCFL

The modified generator language
Consider an MCFG G with non-terminals N . Then, intuitively, M (G)
has two kinds of states:
(i) For every non-terminal A∈ N and every j ∈ [fan-out(A)] there is a

state A[j] that signifies that the automaton is about to process the
j-th component of a string tuple generated by G with A.

(ii) There is a state T that signifies that the automaton just finished
processing some component of a string tuple generated by G with
some non-terminal.

We split state T fromM (G) up to formalise the following intuition:
(ii’) For every non-terminal A∈ N and every j ∈ [fan-out(A)] there is a

state Ā[j] that signifies that the automaton just finished processing
the j-th component of a string tuple generated by G with A.

Definition 5.15. Let G = (N ,∆, S, R) be an MCFG. The modified
generator automaton with respect to G, denoted by M ′(G), is the fi-
nite state automaton (Q ∪ Q̄,Σ, S[1], {S̄[1]},τ) where Σ is the gener-
ator alphabet with respect to G, Q = {A[j] | A ∈ N , j ∈ [fan-out(A)]},
Q̄ = {Ā[j] | A ∈ N , j ∈ [fan-out(A)]}, and τ is the smallest set such that
for every rule

ρ = A→ [u0
1 y1

1 u1
1 · · · yn1

1 un1
1 , . . . , u0

s y1
s u1

s · · · yns
s uns

s](B1, . . . , Bm)

in R we have that
(i) �A[j], ⟦[j]ρ ũ0

j ⟧[j]ρ , Ā[j]
� ∈ τ for every j ∈ [s] with n j = 0,

(ii) �A[j], ⟦[j]ρ ũ0
j ⟦[ℓ]ρ,i , B[ℓ]i

� ∈ τ for every i ∈ [m], j ∈ [s], and ℓ ∈
[fan-out(Bi)] with n j ̸= 0 and y1

j = xℓi ,
(iii) �B̄[ℓ]i , ⟧[ℓ]ρ,i ũ

κ−1
j ⟦[ℓ′]ρ,i′ , B[ℓ

′]
i′
� ∈ τ for every i, i′ ∈ [m], j ∈ [s], κ ∈ [n j],

ℓ ∈ [fan-out(Bi)], ℓ′ ∈ [fan-out(Bi′)] with n j ̸= 0, yκ−1
j = xℓi , yκj =

xℓ
′

i′ , and
(iv) �B̄[ℓ]i , ⟧[ℓ]ρ,i ũ

n j

j ⟧[j]ρ , Ā[j]
� ∈ τ for every i ∈ [m], j ∈ [s], and ℓ ∈

[fan-out(Bi)] with n j ̸= 0 and y
n j

j = xℓi .
The modified generator language with respect to G is R′(G) = L(M ′(G)).

□

[39]

Tobias Denkinger

S[1]

start

A[1]
⟦[1]
ρ′1
ρ̃1

1⟦[1]ρ′1,1

⟦[1]
ρ′2
ρ̃1

2 ã⟦[1]
ρ′2,1

Ā[1]
⟦[1]
ρ′4
ρ̃1

4⟧[1]ρ′4
⟧[1]
ρ′2,1
⟧[1]
ρ′2

B[1]
⟧[1]
ρ′1,1
⟦[1]
ρ′1,2

⟦[1]
ρ′3
ρ̃1

3 b̃⟦[1]
ρ′3,1

B̄[1]
⟦[1]
ρ′5
ρ̃1

5⟧[1]ρ′5
⟧[1]
ρ′3,1
⟧[1]
ρ′3

A[2]

⟧[1]
ρ′1,2
⟦[2]
ρ′1,1

⟦[2]
ρ′2
ρ̃2

2 c̃⟦[2]
ρ′2,1

Ā[2] ⟦[2]
ρ′4
ρ̃2

4⟧[2]ρ′4
⟧[2]
ρ′2,1
⟧[2]
ρ′2

B[2] ⟧[2]
ρ′1,1
⟦[2]
ρ′1,2

⟦[2]
ρ′3
ρ̃2

3 d̃⟦[2]
ρ′3,1

B̄[2] ⟦[2]
ρ′5
ρ̃2

5⟧[2]ρ′5
⟧[2]
ρ′3,1
⟧[2]
ρ′3

S̄[1] ⟧[2]
ρ′1,2
⟧[1]
ρ′1

Figure 7: Modified generator automaton M ′(G′) with respect to G′ from
Example 3.4

Lemma 5.16. R(G)∩mDc(G) = R′(G)∩mDc(G) for every MCFG G.
Proof. Let G = (N ,∆, S, P) and Σ be the generator alphabet with re-
spect to G.
(⊇) For this we show that R(G) ⊇ R′(G). Let q0u1q1 · · ·umqm be a suc-
cessful run inM ′(G). We define the string v = t(q0)u1 t(q1) · · ·um t(qm)
where

t(q) =

(
q if q = A[j] ∈Q for some A∈ N and j ∈ fan-out(A)

T otherwise.
Clearly for every transition (q, u, q′) in M ′(G), there is a transition
(t(q), u, t(q′)) inM (G). Since S̄[1] is the final state inM ′(G) and t(S̄[1])
is a final state inM (G), we have that v is a successful run inM (G).
(⊆) Since R(G) ∩mDc(G) is in bijection with DG (Corollary 3.9), it
suffices to show that yield(DG) ⊇ homG(R′(G)). We prove the following
for every A∈ N and d ∈ DG(A) by induction on d:

Let yield(d) = (u1, . . . , um). There are v1, . . . , vm ∈Σ∗ such that
M ′(G) recognises vi from A[i] to Ā[i] and homG(vi) = ui for
every i ∈ [m].

This statement implies the claim.
Induction base: Let d = ρ = A → [u1, . . . , um]() ∈ P. Then for every
i ∈ [m], there is a transition (A[i],⟦[i]ρ ũi⟧[i]ρ , Ā[i]) in M ′(G). Clearly,
homG(⟦[i]ρ ũi⟧[i]ρ) = ui andM ′(G) recognises ⟦[i]ρ ũi⟧[i]ρ from A[i] to Ā[i].

[40]

CS-parsing for weighted MCFL

Step: Let d = ρ(d1, . . . , dk) with ρ = A → [u1, . . . , um](B1, . . . , Bk) and
mi = fan-out(Bi) for every i ∈ [k]. By induction hypothesis there
are v i

1, . . . , v i
mi

for every i ∈ [k] such that (homG(v i
1), . . . , homG(v i

mi
)) =

yield(di) and M ′(G) recognises v i
j from B[j]i to B̄[j]i for every j ∈ [m].

By the existence of ρ in P and Definition 5.15, we can construct runs
in M ′(G) from A[1] to Ā[1], …, A[m] to Ā[m], recognising v1, . . . , vm, re-
spectively such that (homG(v1), . . . , homG(vm)) = yield(d). ■

The modified weight function
ExaminingM ′(GB) from Figure 7 together with h from Example 3.11
we notice that there are still four harmful loops: the self-loops of A[1],
B[1], A[2], and B[2]. Therefore, we will define a function wtG,⊴ from
strings of parentheses to A that assigns a weight different from 1 to
the labels along those loops, but still computes the same weights as h
on the subset mDc(GB). Intuitively, we take the weight attached to a
symbol ⟦[1]ρ (for some rule ρ of fan-out s) and distribute it along the 2·s
symbols ⟦[1]ρ ,⟧[1]ρ , . . . ,⟦[s]ρ ,⟧[s]ρ using the fact that A is ⊴-factorisable.
Definition 5.17. LetA be a complete commutative strong bimonoid,
⊴ be a partial order onA ,A be ⊴-factorisable, and G = (N ,∆, S, P,µ)
be an A -weighted k-MCFG. Furthermore, let Σ be the generator al-
phabet with respect to G. For every ρ = A→ [u1, . . . , us](B1, . . . , Bk) ∈ P,
we set ρ′ = A→ [ρ1u1, . . . ,ρsus](B1, . . . , Bk) and fix values aρ1 , . . . , aρ2·s ∈A \ {0} such that

• if µ(ρ) ̸= 1 then aρ1 , . . . , aρ2·s are not 1, are smaller or equal to µ(ρ)
with respect to ⊴, and aρ1 · . . . · aρ2·s = µ(ρ); or

• if µ(ρ) = 1 then aρ1 = . . .= aρ2·s = 1.
The weight function with respect to G and ⊴ is the function wtG,⊴:Σ∗→
A defined for every u1, . . . , uk ∈Σ by

wtG,⊴(u1 · · ·uk) = wt′G,⊴(u1) · . . . ·wt′G,⊴(uk)

where wt′G,⊴:Σ→A is given by

wt′G,⊴(σ) =


aρ2·i−1 if σ is of the form ⟦[i]ρ
aρ2·i if σ is of the form ⟧[i]ρ
1 otherwise.

□

[41]

Tobias Denkinger

Example 5.18 (Example 2.5 continued). First, we calculate factorisa-
tions of the weights in G as shown in Table 3 for Pr2:

for ρ2 and ρ4: 1/2= 4
Æ

1/2 · 4
Æ

1/2 · 4
Æ

1/2 · 4
Æ

1/2

for ρ3: 1/3= 4
Æ

1/3 · 4
Æ

1/3 · 4
Æ

1/3 · 4
Æ

1/3

for ρ5: 2/3= 4
Æ

2/3 · 4
Æ

2/3 · 4
Æ

2/3 · 4
Æ

2/3

Then wtG,⊴ is given as follows:

wtG,≥(σ) =



4
p

1/2 if σ ∈ {⟦[j]ρ′ ,⟧[j]ρ′ | ρ′ ∈ {ρ′2,ρ′4}, j ∈ [2]},
4
p

1/3 if σ ∈ {⟦[j]
ρ′3

,⟧[j]
ρ′3
| j ∈ [2]},

4
p

2/3 if σ ∈ {⟦[j]
ρ′5

,⟧[j]
ρ′5
| j ∈ [2]},

1 otherwise.

□

Now we examine the FSA M ′(GB) from Figure 7 again, but this
time we use the weight function wtG,⊴ from Example 5.18 instead
of the weights given by the homomorphism h in Example 3.11. For
this let h′: (Σ ∪ Σ̄)∗ → (∆∗ → A) be the A -weighted homomorph-
ism defined by h′(σ) = wtG,⊴(σ).uσ where h(σ) = µσ.uσ for every
σ ∈ Σ ∪ Σ̄. Then there are no more harmful loops in M ′(GB) with
respect to h′.
Lemma 5.19. Let G = (N ,∆, S, P,µ) be a restrictedA -weighted MCFG
that only has productive non-terminals and ⊴ be a partial order on
A such that A is ⊴-factorisable. Furthermore, let h′: (Σ ∪ Σ̄)∗ →
(∆∗ → A) be the A -weighted homomorphism defined by h′(σ) =
wtG,⊴(σ).uσ where (weightsG ◦homGB)(σ) = µσ.uσ for every σ ∈Σ∪ Σ̄.
ThenM ′(GB) has no harmful loops with respect to h′.
Proof. We show the claim by contradiction. For this assume that
q0u1q1 · · ·ukqk is a harmful loop in M ′(GB) with respect to h′ where
q0, . . . , qk are states and u1, . . . , uk ∈ (Σ ∪ Σ̄)∗. Then q0 = qk and
wtG,⊴(u1) = . . .= wtG,⊴(uk) = 1. We now distinguish two cases:
(Case 1) Let q0 = qk ∈ Q and I = {i0, . . . , im} be the maximal subset
of {0, . . . , k} (with i0 < · · ·< im) such that
(i) i0 = 0 and im = k,
(ii) for every i ∈ I we have that qi is of the form B[ji]i for some Bi ∈ N

and ji ∈ [fan-out(Bi)], and

[42]

CS-parsing for weighted MCFL

(iii) for every κ ∈ [m] we have that Biκ occurs on the right-hand side
of ρiκ−1

where ⟦[jiκ−1
]

ρiκ−1
is read in the transition that leaves qiκ−1

.
Since every non-terminal in G is productive there is a derivation d and
a position π = n1 · · ·nm in d such that n1, . . . , nm ∈ N and d(ϵ) = ρi1 ,
d(n1) = ρi2 , …, d(n1 · · ·nm−1) = ρim , and d(n1 · · ·nm) = ρi1 . For every i ∈
I we know that µ(ρi) = 1 since wtG,⊴(⟦[ji]ρi

) = 1 and by Definition 5.17.
This contradicts G being restricted.
(Case 2) Let q0 = qk ∈ Q̄ and I = {i0, . . . , im} be the maximal subset
of {0, . . . , k} (with im < · · ·< i0) such that
(i) im = 0 and i0 = k,
(ii) for every i ∈ I we have that qi is of the form B̄[ji]i for some Bi ∈ N

and ji ∈ [fan-out(Bi)], and
(iii) for every κ ∈ [m] we have that Biκ occurs on the right-hand side

of ρiκ−1
where ⟧[jiκ−1

]
ρiκ−1

is read in the transition that reaches qiκ−1
.

Since every non-terminal in G is productive there is a derivation d and
a position π = n1 · · ·nm in d such that n1, . . . , nm ∈ N and d(ϵ) = ρim ,
d(n1) = ρim−1

, …, d(n1 · · ·nm−1) = ρi1 , and d(n1 · · ·nm) = ρim . For every
i ∈ I we know that µ(ρi) = 1 since wtG,⊴(⟧[ji]ρi

) = 1 and by Defini-
tion 5.17. This contradicts G being restricted. ■

Lemma 5.20. Let G = (N ,∆, S, P,µ) be anA -weighted MCFG and ⊴ a
partial order onA . Then h= weightsG◦homGB assigns the same weight
to each word in mDc(GB)∩ R′(GB) as wtG,⊴.

Proof. Let ρ ∈ P be an arbitrary production, m = fan-out(ρ), and
wtG,⊴(⟦[1]ρ) = a2·i−1 and wtG,⊴(⟧[1]ρ) = a2·i for every i ∈ [m]. By the defin-
ition of R′(GB), we know that symbols of the forms ⟦[i]ρ , ⟦[1]ρi , and ⟦[1]ρi

occur only as a sequence ⟦[i]ρ ⟦[1]ρi ⟧[1]ρi (see the construction in Lemma 3.3
and items (i) and (ii) in Definition 5.15). By the definition of the can-
cellation rule, we also know that for every symbol ⟦[i]ρ there must occur
corresponding symbols ⟦[1]ρ , . . . ,⟦[i−1]

ρ ,⟦[i+1]
ρ , . . . ,⟦[m]ρ and ⟧[1]ρ , . . . ,⟧[m]ρ in

mDc(GB). Thus in the set mDc(GB) ∩ R′(GB) we have that ⟦[1]ρ occurs
iff all the corresponding symbols ⟦[2]ρ , . . . ,⟦[m]ρ and ⟧[1]ρ , . . . ,⟧[m]ρ occur.

[43]

Tobias Denkinger

Then by the construction of wtG,⊴ it follows that

wtG,⊴(⟦[1]ρ)︸ ︷︷ ︸
=a1

·wtG,⊴(⟦[1]ρ1 ⟧[1]ρ1)︸ ︷︷ ︸
=1

·wtG,⊴(⟧[1]ρ)︸ ︷︷ ︸
=a2

· . . . ·wtG,⊴(⟦[m]ρ)︸ ︷︷ ︸
=a2m−1

·wtG,⊴(⟧[m]ρ)︸ ︷︷ ︸
=a2m

is µ(ρ) and thus exactly the weight assigned to those symbols by h. ■
The parser

Definition 5.21. Let G be an A -weighted MCFG over ∆, n ∈ N, and
⊴ be a partial order onA . The n-best CS parser with respect to G and ⊴,
denoted by CS-parse(G, n,⊴), is a function from ∆∗ to D∗G that assigns
for every w ∈∆∗ the value

take(n) ◦map(toDeriv ◦ homGB) ◦ filter(mDc(GB))

◦ sort(wtG,⊴,⊴)
�
R′(GB)∩ Rh,w

�
where h= weightsG ◦ homGB . □

Theorem 5.22. CS-parse(G, n,⊴)(w) ∈ n -best(µ̂,⊴)(DG(w))
for every A -weighted MCFG G = (N ,∆, S, P,µ), n ∈ N, partial order ⊴
that respects A , and word w ∈∆∗.
Proof. Let h = weightsG ◦ homGB . We prove the claim by verifying the
four conditions from Definition 5.2.
(i) This follows from the definition of sort and the bijection between
R(GB)∩mDc(GB) and DG (Corollary 3.13).
(ii) d1, . . . , dk are pairwise different since u1, . . . , uk are pairwise dif-
ferent and R(GB)∩mDc(GB) and DG stand in bijection (Corollary 3.13).
(iii) Let (d1, . . . , dk) = CS-parse(G, n,⊴)(w) and (u1, . . . , uk) be a prefix
of filter(mDc(GB)) ◦ sort(wtG,⊴,⊴)

�
R(GB) ∩ Rh,w

�. Due to the definition
of filter, there must be a natural number m such that (v1, . . . , vm) is
a prefix of sort(wtG,⊴,⊴)

�
R(GB) ∩ Rh,w

� for some v1, . . . , vm ∈ (Σ ∪ Σ̄)∗
and u1, . . . , uk occur in that order in v1, . . . , vm. By the definition of
sort, we have that wtG,⊴(v1) ⊴ . . . ⊴ wtG,⊴(vm). Since u1, . . . , uk occur
in that order in v1, . . . , vm, it follows that wtG,⊴(u1) ⊴ . . . ⊴ wtG,⊴(uk).
By Lemma 5.20 we obtain bµ ◦ toDeriv ◦ homGB(u1) ⊴ . . . ⊴ bµ ◦ toDeriv ◦
homGB(uk) and by the definition of map we get bµ(d1)⊴ . . .⊴ bµ(dk).
(iv) There is no d ∈ DG(w) with bµ(d) Ã bµ(dk) since, by definition of
sort, there is no u ∈ R(GB)∩mDc(GB) with wtG,⊴(u)Ã wtG,⊴(uk). ■

[44]

CS-parsing for weighted MCFL

In addition to just implementing CS-parse(G, n,⊴), we add a
threshold θ for the weight of the found derivations. Then our al-
gorithm will only consider the candidates whose weight is less than
or equal to θ . Without such a threshold, the parsing algorithm would
not terminate if the intersection of R′(GB) and Rh,w had an infinite lan-
guage and w had less than n derivations in G. On the other hand, if w
has a derivation in G with a weight above the threshold, our algorithm
will not find it, however large we choose n. Thus the algorithm only
approximates CS-parse(G, n,⊴).

Input: a restricted A -weighted MCFG G = (N ,∆, S, P,µ), a number
n ∈ N, a partial order ⊴ on A where ⊴ respects A and A is
⊴-factorisable, a threshold θ ∈A with 0⊴ θ , and a word w ∈∆∗

Output: the subsequence of derivations d in CS-parse(G, n,⊴)(w)
with µ(d)⊴ θ

1 function CS-Parse(G, n, ⊴, θ , w)
2 let mDc(Σ,P) =mDc(GB)
3 let h= weightsG ◦ homGB
4 let parses= ϵ
5 while hasNextCandicate∧ |parses|< n do
6 let u= nextCandidate
7 if isMember(Σ,P, u) then
8 append toDeriv(u) to the end of parses
9 end if

10 end while
11 return parses
12 end function
13 procedure hasNextCandicate
14 return whether some u ∈ R′(GB)∩ Rh,w with wtG,⊴(u)⊴ θ was

not yet considered
15 end procedure
16 procedure nextCandidate
17 from the elements of R′(GB)∩ Rh,w previously not considered,

return an element whose image under wtG,⊴ is smallest with
respect to ⊴

18 end procedure

Algorithm 3:
Approximation
of CS-parse using
a threshold θ

[45]

Tobias Denkinger

To achieve that our algorithm terminates, we require for our input
that G is restricted and that A is ⊴-factorisable. Let us take a closer
look at how Algorithm 3 works. Since sort(wtG,⊴,⊴) returns an infin-
ite list, we have a procedure nextCandidate that computes only the
next element in that list, hasNextCandicate returns whether there is
such a next element. We utilise those two procedures to only compute
the prefix of sort(wtG,⊴,⊴)(R′(GB) ∩ Rh,w) we need to obtain the first
n parses. Since there are deterministic FSA to recognise both R′(GB)
and Rh,w, the computation of sort(wtG,⊴,⊴)(R′(GB) ∩ Rh,w) amounts to
enumerating the paths in a weighted labelled graph ordered by their
weights8 and then replacing each path by the unique word recognised
along it, where we take the graph with its labels from a deterministic
FSA recognising R′(GB)∩ Rh,w and the weights from wtG,⊴.

Proof of termination for Algorithm 3. Let h= weightsG◦homGB and M be
the set of all weights assigned by wtG,⊴ to each of the words read in the
transitions along one pass of every loop in the product ofM ′(GB) and
Mh,w. Then M contains neither 0 nor 1 becauseM ′(GB) has no harmful
loops. Since · has arbitrarily large powers, we know that for every
element a ∈ M , there is a natural number k such that θ ⊴ ak. Let k̂ be
the maximum of all such k’s. There are only finitely many runs in the
product ofM ′(GB) andMh,w that contain every loop less than k̂ times.
Hence hasNextCandicate is false after a finite number of iterations of
the while-loop (lines 6 to 11), and Algorithm 3 terminates. ■

Example 5.23 (Examples 2.5, 3.7, and 5.7 continued). Consider the
word w = ac. The product of M ′(GB) and Mh,w together with wtG,⊴
is shown in Figure 8 (for the product construction see Hopcroft and
Ullman 1979, after Theorem 3.3). It suffices to consider at most 8 can-
didates to find the (only) derivation of w in G, as is shown in Table 4.
The candidates themselves are not shown, instead we see their weight,
their corresponding path in the graphical representation of the product
of M ′(GB) and Mh,w, and whether they are in mDc(GB). Candidate 7
is exactly toBrackets(ρ′1(ρ′2(ρ′4),ρ′5)). □

8This is described for example in Hoffman and Pavley 1959 for graphs with
edge weights from the real numbers. However, their algorithm works also for
complete commutative strong bimonoids A with a partial order on A that re-
spects A .

[46]

CS-parsing for weighted MCFL

S[1]
0

start

A[1]0
⟦[1]
ρ′1
ρ̃1

1⟦[1]ρ′1,1

1
A[1]1

⟦[1]
ρ′2
ρ̃1

2 ã⟦[1]
ρ′2,1

4
p

1/2
Ā[1]1

⟦[1]
ρ′4
ρ̃1

4⟧[1]ρ′4
2
p

1/2

⟧[1]
ρ′2,1
⟧[1]
ρ′2

4
p

1/2

B[1]1

⟧[1]
ρ′1,1
⟦[1]
ρ′1,2 1

B̄[1]1
⟦[1]
ρ′5
ρ̃1

5⟧[1]ρ′5
2
p

2/3

⟧[1]
ρ′3,1
⟧[1]
ρ′3

4
p

1/3

A[2]1
⟧[1]
ρ′1,2
⟦[2]
ρ′1,1

1
A[2]2
⟦[2]
ρ′2
ρ̃2

2 c̃⟦[2]
ρ′2,1

4
p

1/2

Ā[2]2

⟦[2]
ρ′4
ρ̃2

4⟧[2]ρ′4 2
p

1/2

⟧[2]
ρ′2,1
⟧[2]
ρ′2

4
p

1/2

B[2]2
⟧[2]
ρ′1,1
⟦[2]
ρ′1,2

1
B̄[2]2

⟦[2]
ρ′5
ρ̃2

5⟧[2]ρ′5
2
p

2/3 ⟧[2]
ρ′3,1
⟧[2]
ρ′3

4
p

1/3

S̄[1]
2

⟧[2]
ρ′1,2
⟧[1]
ρ′1

1

Figure 8: Product ofM ′(GB) andMh,w with the weight assigned by wtG,⊴ to words
read in each transition

Table 4: First eight paths (sorted by their image under wtG,⊴) in the product of
M ′(GB) andMh,w and whether the corresponding candidate ui is in mDc(GB)

i wtG,⊴(ui) path corresponding to ui ui ∈mDc(GB)?

1 1

3
p

2
without using any loops no

2 1

3 4p8

use the loop of (Ā[1], 1) no
3 use the loop of (Ā[2], 2) no
4 1

3 4p12

use the loop of (B̄[1], 1) no
5 use the loop of (B̄[2], 2) no
6

1
6

use the loop of (Ā[1], 1) twice no
7 use the loops of (Ā[1], 1) and (Ā[2], 2) yes
8 use the loop of (Ā[2], 2) twice no

[47]

Tobias Denkinger

5.5 Analysis of CS-Parse
From the proof of termination of Algorithm 3 we can gather that the
complexity of the algorithm depends on howmany candidates are con-
sidered. The upper bound for the number of considered candidates is
determined by n, θ , and the numberbk. In particular, it does not depend
on the input word w. Therefore we cannot expect to get a meaningful
time complexity for Algorithm 3.

Instead we will only determine the time complexity of the evalu-
ation of isMember on line 7.
Lemma 5.24. Let G be an MCFG and mDc(Σ,P) =mDc(G). The every
element of R′(G)∩mDc is P-simple.
Proof. Let G = (N ,Γ , S, P) and Σ andP be defined as in Definition 4.9.

We prove the following statement by induction on the length of
w1 · · ·wℓ: If B ∈ N and w1, . . . , wℓ ∈ D(Σ) such that w1 · · ·wℓ ∈mDc and
wκ is recognised along a path from B[κ] to B

[κ] in M ′(G) for every
κ ∈ [ℓ], then w1 · · ·wℓ is P-simple.

By setting ℓ= 1 and B = S, this statement implies our claim. Now
let B ∈ N and w1, . . . , wk ∈ D(Σ) such that w1 · · ·wℓ ∈ mDc and wκ is
recognised along a path from B[κ] to B

[κ] inM ′(G) for every κ ∈ [ℓ].
By the definitions ofM ′(G) and mDc(G), we know that there is some
production ρ = B→ f (B1, . . . , Bk) ∈ P with

f = [u1,0 x j(1,1)
i(1,1)u1,1 · · · x j(1,p1)

i(1,p1)
u1,p1

, . . . , uℓ,0 x j(ℓ,1)
i(ℓ,1)uℓ,1 · · · x j(ℓ,pℓ)

i(ℓ,pℓ)
uℓ,pℓ]

such that for every κ ∈ [ℓ] either
(i) wκ = ⟦[κ]ρ euκ,0⟧[κ]ρ or
(ii) wκ = ⟦[κ]ρ euκ,0 ⟦[j(κ,1)]

ρ,i(κ,1) v j(κ,1)
i(κ,1) ⟧[j(κ,1)]

ρ,i(κ,1) euκ,1 · · ·
⟦[j(κ,pκ)]
ρ,i(κ,pκ)

v j(κ,pκ)
i(κ,pκ)
⟧[j(κ,pκ)]
ρ,i(κ,pκ)
euκ,pκ ⟧[κ]ρ ,

and v j
i ∈ D(Σ) is recognised along a path from B[j]i to B

[j]
i in M ′(G)

for every i ∈ [k] and j ∈ [sort(Bi)], and v1
i · · · vsort(Bi)

i ∈ mDc(G) for
every i ∈ [k]. Set w′1, . . . , w′

ℓ
∈ D(Σ) such that wκ = ⟦[κ]ρ w′κ⟧[κ]ρ for each

κ ∈ [ℓ]. Then by induction hypothesis the string v1
i · · · vsort(Bi)

i is P-
simple for every i ∈ [k]. By analysing the form of wκ for each κ ∈ [ℓ],
we observe that occp w′1 · · ·w′ℓ ≤ 1 and occp w1 · · ·wℓ ≤ 1 for each cell
p ∈ {p′ ∈P | |p′| ≥ 2}. Hence, w1 · · ·wℓ is P-simple. ■

[48]

CS-parsing for weighted MCFL

Let G be an MCFG and mDc(Σ,P = mDc(G). Since every element
of R′(G)∩mDc(G) is P-simple, we can use isMember’ on line 7 instead
of isMember. Then line 7 can be done in time quadratic in the length
of the candidate u.

6 related parsing approaches
An established approach to speed up the parsing of MCFGs for prac-
tical applications is to use a formalism with lower parsing complexity
than MCFGs to guide the exploration of the search space. In the fol-
lowing, we will focus on four such approaches.

The parsers in Barthélemy et al. (2001); Burden and Ljunglöf
(2005); van Cranenburgh (2012) work as follows: Suppose that we
want to parse a given word w with a grammar G of a formalism A.
We first construct a grammar (or automaton) G′ in a formalism B that
has a lower parsing complexity than A. This can be done offline. Then,
we parse w with G′. Lastly, we parse w with G, but while doing so,
we consult the parses of w in G′ to guide the exploration of the search
space (of possible parses). The three papers differ in their choice of
formalisms for G and G′, and in their use of the parses of w in G′ while
parsing w in G:
(i) Barthélemy et al. (2001) have a positive range concatenation

grammar (short: PRCG) (Boullier 1998) of arbitrary arity for G
and use a PRCG of arity 1 for G′. They extract from the parse
forest F of w in G′ a so-called guiding structure and query this struc-
ture while parsing w in G. The guiding structure can range from a
set of instantiated clauses that occur in F to F itself. In their exper-
iments they used as a guiding structure the function that assigns
for each instantiated clause the number of its occurrences in F .

(ii) Burden and Ljunglöf (2005, Section 4) have a linear context-free
rewriting system (short: LCFRS) (Vijay-Shanker et al. 1987) for G
and a context-free grammar for G′. They use deductive parsing.
The parse chart C ′ of w in G′ is created. While creating the parse
chart of w in G, only items are created that are consistent with the
items in C ′. The algorithm is therefore an instance of coarse-to-fine
parsing (Charniak et al. 2006).

(iii) Van Cranenburgh (2012) has a probabilistic LCFRS (of arbitrary
fan-out) for G and a probabilistic LCFRS of fan-out 1 for G′. As

[49]

Tobias Denkinger

Burden and Ljunglöf (2005), he uses deductive parsing: First, a
parse chart C ′ of w in G′ is created. Then the probabilities of G′
are used to restrict C ′ to the n best parses, obtaining a new parse
chart bC , this step is called pruning. A value of n = 50 was used
in the experiments. Then, while creating the parse chart of w in
G, only items are created that are consistent with the items in bC .
The algorithm is an instance of coarse-to-fine parsing.

Kallmeyer and Maier (2015) present a different approach:
(iv) They construct an FSA G′ as the predict/resume-closure of thread

automaton thread stores (Villemonte de la Clergerie 2002) where
the corresponding thread automaton is constructed from the
given LCFRS G. The addresses in the thread stores are represented
by regular expressions to keep the set of states of G′ finite. Then,
a parse table is read off of G′. As opposed to Items (i) to (iii), w
is not parsed with G′. Instead, while parsing w with G using a
shift-reduce parser, the parse table is consulted directly at each
shift or reduce operation to determine the successor state. Their
algorithm is an instance of LR-parsing.
With the Chomsky-Schützenberger parsing presented in this art-

icle, we construct from the given weighted LCFRS G three devices
(instead of just one): the deterministic FSA M ′(GB) together with
the weight assignment wtG,⊴, the congruence multiple Dyck language
mDc(GB), and the alphabetic homomorphism homGB . For the given
word w we construct a deterministic FSA, let us call it M , that re-
cognises hom−1

GB
(w) ∩ L(M ′GB). Constructing M is an additional pre-

processing step in comparison to Items (i) to (iv). In contrast to
Item (iii), we do not use the weight assignment wtG,⊴ for pruning. We
instead use it to enumerate the elements of L(M) in increasing order
of their costs. Finally, we filter the list of those elements with mDc(GB).
Note that w is never actually parsed with G as in Items (i) to (iv).

7 conclusion and outlook
We obtained a weighted version of the Chomsky-Schützenberger char-
acterisation of MCFLs for complete commutative strong bimonoids
(Theorem 3.12) by separating the weights from the weighted MCFG
and using Yoshinaka et al. (2010, Theorem 3) for the unweighted part.

[50]

CS-parsing for weighted MCFL

We defined a variant of multiple Dyck languages that uses congru-
ence relations (Definition 4.2), gave an algorithm to decide whether a
word is in a given congruence multiple Dyck language in Algorithm 2,
and derived a CS representation using congruence multiple Dyck lan-
guages.

Following the idea of Hulden (2011), we used this CS representa-
tion for weighted MCFL to describe a parsing algorithm (Algorithm 3)
that approximates n-best parsing for restricted weighted MCFGs with
a weight structure that is partially ordered and factorisable.

The utility of Algorithm 3 can not be judged based on theoretical
considerations alone. The author therefore plans to implement it and
evaluate it empirically.

acknowledgements

The author is very grateful to the anonymous reviewers, as well as
Mark-Jan Nederhof and Toni Dietze for their insightful comments,
which helped improve this article.

references
Alfred Vaino Aho and Jeffrey D. Ullman (1972), The Theory of Parsing,
Translation, and Compiling, Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
ISBN 0-13-914556-7,
http://dl.acm.org/citation.cfm?id=SERIES11430.578789.
Krasimir Angelov (2009), Incremental parsing with parallel multiple
context-free grammars, in Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 69–76, Association for
Computational Linguistics, http://dl.acm.org/citation.cfm?id=1609074.
François Barthélemy, Pierre Boullier, Philippe Deschamp, and Éric de la
Clergerie (2001), Guided parsing of range concatenation languages, in
Proceedings of the 39th Annual Meeting on Association for Computational Linguistics
- ACL ’01, Association for Computational Linguistics (ACL),
doi:10.3115/1073012.1073019.
Pierre Boullier (1998), A generalization of mildly context-sensitive
formalisms, in Proceedings of the Fourth International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+ 4), pp. 17–20, Citeseer.
Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra,
Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans

[51]

http://dl.acm.org/citation.cfm?id=SERIES11430.578789
http://dl.acm.org/citation.cfm?id=1609074

Tobias Denkinger

Uszkoreit (2004), TIGER: Linguistic Interpretation of a German Corpus,
Research on Language and Computation, 2(4):597–620,
doi:10.1007/s11168-004-7431-3.
Håkan Burden and Peter Ljunglöf (2005), Parsing Linear Context-free
Rewriting Systems, in Harry Bunt, Robert Malouf, and Alon Lavie, editors,
Proceedings of the Ninth International Workshop on Parsing Technology, Parsing
’05, pp. 11–17, Association for Computational Linguistics, Stroudsburg, PA,
USA, http://dl.acm.org/citation.cfm?id=1654494.1654496.
Matthias Büchse, Daniel Geisler, Torsten Stüber, and Heiko Vogler
(2010), n-Best Parsing Revisited, in Frank Drewes and Marco Kuhlmann,
editors, Proceedings of the 2010 Workshop on Applications of Tree Automata in
Natural Language Processing, pp. 46–54, Association for Computational
Linguistics, http://www.aclweb.org/anthology/W10-2506.
Eugene Charniak, Michael Pozar, Theresa Vu, Mark Johnson, Micha
Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Catherine Hill,
R. Shrivaths, and Jeremy Moore (2006), Multilevel coarse-to-fine PCFG
parsing, in Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational
Linguistics -, Association for Computational Linguistics (ACL),
doi:10.3115/1220835.1220857.
Noam Chomsky and Marcel Paul Schützenberger (1963), The algebraic
theory of context-free languages, pp. 118–161,
doi:10.1016/S0049-237X(09)70104-1.
Tobias Denkinger (2015), A Chomsky-Schützenberger representation for
weighted multiple context-free languages, in Proceedings of the 12th International
Conference on Finite-State Methods and Natural Language Processing (FSMNLP
2015), http://aclweb.org/anthology/W15-4803.
Manfred Droste, Torsten Stüber, and Heiko Vogler (2010), Weighted finite
automata over strong bimonoids, Information Sciences, 180(1):156–166,
doi:10.1016/j.ins.2009.09.003.
Manfred Droste and Heiko Vogler (2013), The Chomsky-Schützenberger
Theorem for Quantitative Context-Free Languages, in Marie-Pierre Béal and
Olivier Carton, editors, Developments in Language Theory, volume 7907 of
Lecture Notes in Computer Science, pp. 203–214, Springer Berlin Heidelberg,
ISBN 978-3-642-38770-8, doi:10.1007/978-3-642-38771-5_19.
Jürgen Duske, Rainer Parchmann, and Johann Specht (1979), A
Homomorphic Characterization of Indexed Languages, 15(4):187–195.
Séverine Fratani and El Makki Voundy (2015), Context-free characterization
of Indexed Languages, abs/1409.6112, http://arxiv.org/abs/1409.6112.
Séverine Fratani and El Makki Voundy (2016), Homomorphic
Characterizations of Indexed Languages, in Adrian-Horia Dediu, Jan

[52]

http://dl.acm.org/citation.cfm?id=1654494.1654496
http://www.aclweb.org/anthology/W10-2506
http://aclweb.org/anthology/W15-4803
http://arxiv.org/abs/1409.6112

CS-parsing for weighted MCFL

Janoušek, Carlos Martín-Vide, and Bianca Truthe, editors, Proceedings of
the 10th International Conference on Language and Automata Theory and
Applications (LATA 2015), pp. 359–370, Springer Science + Business Media,
doi:10.1007/978-3-319-30000-9_28.
Luisa Herrmann and Heiko Vogler (2015), A Chomsky-Schützenberger
Theorem for Weighted Automata with Storage, in Andreas Maletti, editor,
Proceedings of the 6th International Conference on Algebraic Informatics (CAI
2015), volume 9270, pp. 90–102, Springer International Publishing, ISBN
978-3-319-23021-4, doi:10.1007/978-3-319-23021-4_11.
Walter Hoffman and Richard Pavley (1959), A Method for the Solution of
the Nth Best Path Problem, 6(4):506–514, doi:10.1145/320998.321004.
John Edward Hopcroft and Jeffrey David Ullman (1969), Formal languages
and their relation to automata, Addison-Wesley Longman Publishing Co., Inc.
John Edward Hopcroft and Jeffrey David Ullman (1979), Introduction to
Automata Theory, Languages and Computation, Addison-Wesley, 1st edition.
Liang Huang and David Chiang (2005), Better k-best Parsing, in Proceedings
of the Ninth International Workshop on Parsing Technology, Parsing ’05,
pp. 53–64, Association for Computational Linguistics, Stroudsburg, PA, USA,
http://dl.acm.org/citation.cfm?id=1654494.1654500.
Mans Hulden (2011), Parsing CFGs and PCFGs with a
Chomsky-Schützenberger Representation, in Zygmunt Vetulani, editor,
Human Language Technology. Challenges for Computer Science and Linguistics,
volume 6562 of Lecture Notes in Computer Science, pp. 151–160, Springer Berlin
Heidelberg, ISBN 978-3-642-20094-6, doi:10.1007/978-3-642-20095-3_14.
Laura Kallmeyer and Wolfgang Maier (2013), Data-driven parsing using
probabilistic linear context-free rewriting systems, Computational Linguistics,
39(1):87–119, doi:10.1162/COLI_a_00136.
Laura Kallmeyer and Wolfgang Maier (2015), LR Parsing for LCFRS, in
Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics (ACL), doi:10.3115/v1/n15-1134.
Makoto Kanazawa (2014), Multidimensional trees and a
Chomsky-Schützenberger-Weir representation theorem for simple context-free
tree grammars, ISSN 1465-363X, doi:10.1093/logcom/exu043.
Marco Kuhlmann and Giorgio Satta (2009), Treebank Grammar Techniques
for Non-projective Dependency Parsing, in Proceedings of the 12th Conference of
the European Chapter of the Association for Computational Linguistics, EACL ’09,
pp. 478–486, Association for Computational Linguistics, Stroudsburg, PA, USA,
http://dl.acm.org/citation.cfm?id=1609067.1609120.

[53]

http://dl.acm.org/citation.cfm?id=1654494.1654500
http://dl.acm.org/citation.cfm?id=1609067.1609120

Tobias Denkinger

Wolfgang Maier and Anders Søgaard (2008), Treebanks and mild
context-sensitivity, in Proceedings of Formal Grammar, p. 61,
http://web.stanford.edu/group/cslipublications/cslipublications/
FG/2008/maier.pdf.
Jens Michaelis (2001a), Derivational Minimalism Is Mildly Context-Sensitive,
in Michael Moortgat, editor, Logical Aspects of Computational Linguistics,
volume 2014 of Lecture Notes in Computer Science, pp. 179–198, Springer Berlin
Heidelberg, ISBN 978-3-540-42251-8, doi:10.1007/3-540-45738-0_11.
Jens Michaelis (2001b), Transforming Linear Context-Free Rewriting Systems
into Minimalist Grammars, in Philippe Groote, Glyn Morrill, and Christian
Retoré, editors, Logical Aspects of Computational Linguistics, volume 2099 of
Lecture Notes in Computer Science, pp. 228–244, Springer Berlin Heidelberg,
ISBN 978-3-540-42273-0, doi:10.1007/3-540-48199-0_14.
Mehryar Mohri (2000), Minimization algorithms for sequential transducers,
234(1–2):177–201, ISSN 0304-3975, doi:10.1016/s0304-3975(98)00115-7.
Arto Salomaa (1973), Formal languages, Academic Press, ISBN
978-0126157505.
Arto Salomaa and Matti Soittola (1978), Automata-Theoretic Aspects of
Formal Power Series, Springer New York, ISBN 978-1-4612-6266-4,
doi:10.1007/978-1-4612-6264-0.
Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami
(1991), On multiple context-free grammars, 88(2):191–229, ISSN 0304-3975,
doi:10.1016/0304-3975(91)90374-B.
Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando, and Tadao
Kasami (1993), Parallel Multiple Context-free Grammars, Finite-state
Translation Systems, and Polynomial-time Recognizable Subclasses of
Lexical-functional Grammars, in Proceedings of the 31st Annual Meeting on
Association for Computational Linguistics, ACL ’93, pp. 130–139, Association for
Computational Linguistics, Stroudsburg, PA, USA, doi:10.3115/981574.981592.
Andreas van Cranenburgh (2012), Efficient Parsing with Linear
Context-free Rewriting Systems, in Walter Daelemans, editor, Proceedings of
the 13th Conference of the European Chapter of the Association for Computational
Linguistics, EACL ’12, pp. 460–470, Association for Computational Linguistics,
Stroudsburg, PA, USA, ISBN 978-1-937284-19-0,
http://dl.acm.org/citation.cfm?id=2380816.2380873.
Krishnamurti Vijay-Shanker (1988), A study of tree adjoining grammars, Ph.D.
thesis, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
401.1695&rep=rep1&type=pdf.
Krishnamurti Vijay-Shanker, David Jeremy Weir, and Aravind K. Joshi
(1986), Tree adjoining and head wrapping, in Proceedings of the 11th Conference

[54]

http://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
http://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
http://dl.acm.org/citation.cfm?id=2380816.2380873
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.401.1695&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.401.1695&rep=rep1&type=pdf

CS-parsing for weighted MCFL

on Computational Linguistics, pp. 202–207, Association for Computational
Linguistics, doi:10.3115/991365.991425.
Krishnamurti Vijay-Shanker, David Jeremy Weir, and Aravind K. Joshi
(1987), Characterizing Structural Descriptions Produced by Various
Grammatical Formalisms, in Proceedings of the 25th Annual Meeting on
Association for Computational Linguistics, ACL ’87, pp. 104–111, Association for
Computational Linguistics, Stroudsburg, PA, USA, doi:10.3115/981175.981190.
Éric Villemonte de la Clergerie (2002), Parsing Mildly Context-Sensitive
Languages with Thread Automata, in Proceedings of the 19th International
Conference on Computational Linguistics (COLING ’02), volume 1, pp. 1–7,
Association for Computational Linguistics, Stroudsburg, PA, USA,
doi:10.3115/1072228.1072256.
David Jeremy Weir (1988), Characterizing mildly context-sensitive grammar
formalisms, Ph.D. thesis,
http://repository.upenn.edu/dissertations/AAI8908403.
David Jeremy Weir and Aravind K. Joshi (1988), Combinatory categorial
grammars: Generative power and relationship to linear context-free rewriting
systems, in Proceedings of the 26th annual meeting on Association for
Computational Linguistics, pp. 278–285, Association for Computational
Linguistics, doi:10.3115/982023.982057.
Ryo Yoshinaka, Yuichi Kaji, and Hiroyuki Seki (2010),
Chomsky-Schützenberger-type characterization of multiple context-free
languages, in Adrian-Horia Dediu, Henning Fernau, and Carlos
Martín-Vide, editors, Language and Automata Theory and Applications,
pp. 596–607, Springer, ISBN 978-3-642-13088-5,
doi:10.1007/978-3-642-13089-2_50.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[55]

http://repository.upenn.edu/dissertations/AAI8908403
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Preliminaries
	Sorts
	Weight algebras
	Recognisable languages
	Weighted string homomorphisms
	Weighted multiple context-free languages

	CS characterisation for weighted MCFLs
	Separating the weights
	The unweighted CS characterisation
	Composing the homomorphisms
	The weighted CS characterisation

	Congruence multiple Dyck languages
	Membership in a congruence multiple Dyck language
	A CS representation using congruence multiple Dyck languages

	n-best parsing for weighted MCFGs usinga Chomsky-Schützenberger representation
	n-best parsing
	Specification of the CS parser
	Problems and restrictions
	A CS parsing algorithm
	Analysis of CS-Parse

	Related parsing approaches
	Conclusion and outlook

