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We propose a strategy to build the distributional meaning of sentences
mainly based on two types of semantic objects: context vectors as-
sociated with content words and compositional operations driven by
syntactic dependencies. The compositional operations of a syntactic
dependency make use of two input vectors to build two new vec-
tors representing the contextualized sense of the two related words.
Given a sentence, the iterative application of dependencies results in
as many contextualized vectors as content words the sentence con-
tains. At the end of the contextualization process, we do not obtain
a single compositional vector representing the semantic denotation
of the whole sentence (or of the root word), but one contextualized
vector for each constituent word of the sentence. Our method avoids
the troublesome high-order tensor representations of approaches re-
lying on category theory, by defining all words as first-order ten-
sors (i.e. standard vectors). Some corpus-based experiments are per-
formed to both evaluate the quality of the contextualized vectors built
with our strategy, and to compare them to other approaches on dis-
tributional compositional semantics. The experiments show that our
dependency-based method performs as (or even better than) the state-
of-the-art.
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1 introduction

Semantic compositionality is the crucial property of natural lan-
guage according to which the meaning of a complex expression is
a function of the meaning of its constituent parts and of the mode
of their combination (Montague 1970). In the last decade, differ-
ent distributional semantic models endowed with a compositional
component have been proposed. The basic approach to composi-
tion (Mitchell and Lapata 2008, 2009, 2010) is to combine vectors
of two syntactically related words with arithmetic operations: ad-
dition or component-wise multiplication. However, this approach is
not fully compositional because the mode of combining the con-
stituent parts is not considered. This way, two sentences with the
same constituents but with different functions, e.g. cats chase mice and
mice chase cats, are wrongly interepreted with the same flat vector
combination.

To take into account the mode of combination, more recent dis-
tributional approaches (Coecke et al. 2010) follow a strategy aligned
with the formal semantics perspective. Using the abstract mathemati-
cal framework of category theory, they provide the distributional mod-
els of meaning with the elegant mechanism expressed by the prin-
ciple of compositionality, where words interact with each other ac-
cording to their type-logical identities (Kartsaklis 2014; Baroni et al.
2014). The categorial-based approaches define arguments as vectors
while functions taking arguments (e.g., verbs or adjectives that com-
bine with nouns) are n-order tensors, with the number of arguments
determining their order. Function application is the general composi-
tion operation. This is formalized as the tensor contraction which is
nothing more than a generalization of matrix multiplication in higher
dimensions.
Even if the type-logical compostional approach based on category

theory is a very elegant proposal, it has, at least, four important draw-
backs:
1. It results in an information scalability problem, since tensor rep-
resentations grow exponentially (Kartsaklis et al. 2014). For in-
stance, if noun meanings are encoded in vectors of 500 dimen-
sions, adjectives, which are 2-order tensors, become matrices
of 5002 cells, while transitive verbs are described as tensors
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with 5003 dimensions. This situation leads to data sparseness
problems, particularly for less common adjectives and verbs.

2. The use of tensor product for function application does not always
perform as well as basic composition operations on vectors, such
as component-wise multiplication (Mitchell and Lapata 2010).

3. The same word that occurs in different syntactic contexts is as-
signed different semantic types with incomparable representa-
tions (Paperno et al. 2014). For example, verbs like eat can
be used in transitive or intransitive constructions (children eat
meat/children eat), or in passive (meat is eaten). The different uses
of the verb differ in the predicate arity and, then, are encoded
in tensors of different orders. Since each of these tensors must
be learned from examples individually, their obvious relation is
missed. For each word, the creation of as many lexical entries as
the number of its different syntactic uses is a drawback shared by
all grammars based on the category theory.

4. The meaning of a sentence is a single representation and there is
no access to the meaning of the constituents within the context of
the whole sentence. For instance, let us observe the sense of the
pronoun They in the sequence of sentences: children eat meat. They
are fat. By co-reference, this pronoun is linked to children whose
sense is contextualized by the fact that they are eaters of meat.
However, there is no trivial mechanism to infer this specific sense
of children from the meaning of the whole sentence.
Some approaches have tried to solve the issues described in the

aforementioned four points. However, no strategy has been designed
to deal with all of them together. For instance, the first issue has been
addressed by the work reported in Paperno et al. (2014), where the
representation size grows linearly, not exponentially, for higher se-
mantic types, allowing for simpler and more efficient parameter es-
timation, storage, and computation. The third issue is at the center
of the work described in Weir et al. (2016), where the meaning of a
sentence is represented by the contextualized sense of its constituent
words. The final point is addressed by Kruszewski and Baroni (2014),
where the authors have observed that simpler and more economical
models based on multiplication or addition yield better results than
more complex ones.

[ 101 ]



Pablo Gamallo

These drawbacks have already been addressed by Socher et al.
(2012) who proposed a strategy based on recursive neural networks,
and by Paperno et al. (2014) whose proposal, practical lexical function
model, represents each function word by a vector plus an ordered set
of matrices enconding its arguments. We also address the four draw-
backs by proposing a dependency-based framework with transparent
vectors (and not embeddings as in Socher et al. (2012)). Moreover, the
compositional model is different from that reported in Paperno et al.
(2014), since we define all content words as unary-tensors (standard
vectors), while syntactic dependencies are binary functions combining
vectors in an iterative and incremental way. Take again the sentence
“children eat meat”. The subject dependency builds two contextualized
senses: the sense of children as nominal subject of eat and the sense of
eat given children as subject. The two contextualized senses are vectors
that can be involved in further dependencies. Then, the direct object
dependency combines the previously contextualized sense of eat with
the noun meat to build two new contextualized senses: a new contex-
tualization of the sense of verb, on the one hand, and the sense of meat
in the context of “children eat”, on the other. The intrepretation of the
sentence is formalized as an incremental iteration giving rise to three
contextualized senses. So, in this model, the meaning of a sentence
is no more a single meaning, but one (contextualized) sense per con-
tent word, and each sense is represented by means of a word vector.
In the previous example, dependencies have been applied iteratively
from left-to-right: first the subject, and then the direct object. But they
may also be applied from right-to-left: first the direct object and then
the subject. The right-to-left iteration would result in slightly different
contextualized senses. This way, the sense of children would be more
specific since it would be built in the context of “eat meat”.

In our approach, syntactic dependencies are compositional func-
tions that combine vectors to build the contextualized senses of words
(still vectors) in an incremental way. While words are semantically
represented as vectors, dependencies are compositional operations on
them. It means that we operate with only two types of semantic ob-
jects: first-order tensors (or standard vectors) for content words, and
binary functions for syntactic dependencies. This solves the scalabil-
ity problem of high-order tensors (first drawback). In addition, it also
prevents us from giving different categorical representations to verbs
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in different syntactic contexts. A verb is represented as a single vector
which is contextualized as it is combined with its arguments (second
drawback).
Concerning the compositional function, dependencies are opera-

tions that combine first-order vectors using simple arithmetic opera-
tions such as addition andmultiplication, instead of more complex ten-
sor products (third drawback). However, given that our vector space is
enriched with syntactic information, the vectors built by composition
cannot be a simple mixture of the input vectors as in the bag-of-words
approaches (Mitchell and Lapata 2008). Our syntax-based vector rep-
resentation of two related words encodes incompatible information
and there is no direct way of combining the information encoded in
their respective vectors. Vectors of content words (nouns, verbs, adjec-
tives, and adverbs) are in different and incompatible spaces because
they are constituted by different types of syntactic contexts. So, they
cannot be merged. To combine them, on the basis of previous work
(Thater et al. 2010; Erk and Padó 2008), we distinguish between direct
denotation and selectional preferences (or indirect denotation) within
a dependency relation.

The iterative application of the syntactic dependencies found in
a sentence is actually the process of building the contextualized sense
of all the content words constituting that sentence. So, the whole sen-
tence is not assigned only one meaning – which could be the contextu-
alized sense of the root word – but one sense per word, with the mean-
ing of the root being only one such contentualized sense among many.
This allows us to retrieve the contextualized sense of all constituent
words within a sentence. The contextualized sense of any word might
be required in further semantic processes, namely for dealing with co-
reference resolution involving anaphoric pronouns (fourth drawback).

The main contribution of our work is to propose a semantic space
for Dependency Grammar, whose syntactic framework only consists
of lexical units and dependencies (Kahane 2003; Hudson 2003). Our
semantic model is wholly composed of binary operations (dependen-
cies) and first-order vectors (words and selectional preferences). There
is no room for semantic objects associated with composite expressions
such as phrases or sentences. A sentence is interpreted as an iterative
combination of word vectors with selectional preferences by using
component-wise multiplication. This iterative and incremental com-
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positional process may have two directions: from left-to-right and from
right-to-left. These two directions result in slightly different contextu-
alized words as we will show later in the experiments. Another impor-
tant contribution of our work is that it should be seen as a continuation
of Erk and Padó (2009) by allowing contextualized selectional prefer-
ences. Our approach was previously applied to other tasks: composi-
tional translation (Gamallo and Pereira-Fariña 2017) and relational-
based semantics (Gamallo 2017b). The current article is an extension
of a previous conference work (Gamallo 2017c).

This article is organized as follows. In Section 2, our dependency-
based compositional model is described. In Section 3, corpus-based
experiments are performed to build and evaluate the quality of com-
positional/contextualized vectors. Then, in Section 4, several distri-
butional compositional approaches are introduced and discussed. Fi-
nally, relevant conclusions are addressed in Section 5.

2 the compositional model

We first give a quick overview of our vector space (Section 2.1), which
is followed by a technical description of the compositional operations
driven by syntactic dependencies (Section 2.2). We conclude by apply-
ing an incremental interpretation approach to our model (Section 2.3).
2.1 Dependency-based vector representation
Distributional Semantics associates the meaning of a word with the
set of contexts in which it occurs (Firth 1957). Typically, in compu-
tational approaches, the distributional representation for a word is
computed from the occurrences of that word in a given corpus (Grefen-
stette 1995). In distributional semantics models, each word is defined
as a context vector, and each position in the vector represents a spe-
cific context of the word whose value is the frequency (or some statis-
tical weight) of the word in that context. According to recent research,
a vector space can be considered as a semantic model, since vector-
based representations (i.e. distributional features) may be defined as
extensions of logical expressions if they are seen as ideal distributions
(Copestake and Herbelot 2012; Erk 2013).

Our model employs vector representations for words (or lemmas)
based on syntactic contexts. Syntactic contexts are derived from bi-
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nary dependencies, which can be found in a corpus analyzed with
a dependency-based parser. Let’s suppose the composite expression
a horse is running was found in a corpus and is analyzed as the follow-
ing syntactic dependency:

(nsubj, run,horse)
It states that the noun horse (dependent word) is related to the head
verb run by means of the relation nsubj (nominal subject). A depen-
dency is then a triple consisting of a relation, a head, and a depen-
dent word. From this dependency, we can identify two complementary
word contexts:

<nsubj↑, run>,<nsubj↓,horse>
Then, we count co-occurrences between words and contexts. In this
case, the context<nsubj↑, run> is assigned frequency 1 within the vec-
tor of horse, while we add a new occurrence to <nsubj↓,horse> within
the vector of run. The up arrow in nsubj↑ means that the head word
run in the subject relation is expecting a dependent word, while the
down arrow in nsubj↓ means that the dependent noun horse is search-
ing for the head verb. This representation is inspired by Gamallo et al.
(2005) and is similar to that used for distinguishing traditional selec-
tional preferences from inverse selectional preferences (Erk and Padó
2008). To reduce the number of contexts, we apply a technique to fil-
ter out contexts by relevance. The filtering strategy to select the most
relevant contexts consists in selecting, for each word, the R (relevant)
contexts with highest log-likelihood measure. The top R contexts are
considered to be the most relevant and informative for each word. R is
a global, arbitrarily defined constant whose usual values range from
10 to 1000 (Biemann and Riedl 2013; Padró et al. 2014). In short, we
keep at most the Rmost relevant contexts for each target word (where
R = 500 in our experiments). This is an explicit and transparent rep-
resentation giving rise to a non-zero matrix.
2.2 Vector composition
In our approach, composition is modeled by two semantic functions,
head and dependent, that take three arguments each:

head↑(r, x⃗ , y⃗◦)(1)
dep↓(r, x⃗◦, y⃗)(2)
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where head↑ and dep↓ represent the head and dependent functions, re-
spectively, r is the name of the relation (nsubj, dobj, nmod, etc.), and
x⃗ , x⃗◦, y⃗, and y⃗◦ stand for vector variables. On the one hand, x⃗ and y⃗
represent the denotation of the head and dependent words, respec-
tively. They represent standard context distributions which we call
direct vectors. On the other hand, x⃗◦ represents the selectional prefer-
ences imposed by the head, while y⃗◦ stands for the selectional prefer-
ences imposed by the dependent word. Selectional preferences are also
called indirect vectors and the way we build them is described below.

Consider now a specific dependency relation, nominal subject
(nsubj), and two specific words: horse and run. The application of the
two functions consists of multiplying the direct and indirect vectors
by taking into account the nsubj relation:

head↑(nsubj, ⃗run, ⃗horse◦) = ⃗run⊙ ⃗horse◦ = ⃗runnsubj↑(3)
dep↓(nsubj, ⃗run◦, ⃗horse) = ⃗horse⊙ ⃗run◦ = ⃗horsensubj↓(4)
Each multiplicative operation results in a compositional vector

which represents the contextualized sense of one of the two words (ei-
ther the head or the dependent). Component-wise multiplication has
an intersective effect: the selectional preferences restricts the direct
vector by assigning frequency 0 to those contexts that are not shared
by both vectors. Here, ⃗horse◦ and ⃗run◦ are indirect vectors resulting
from the following vector additions:

⃗horse◦ =
∑

w⃗∈ H
w⃗(5)

⃗run◦ =
∑

w⃗∈ R
w⃗(6)

where H is the vector set of those verbs having horse as subject
(except the verb run). More precisely, given the linguistic context
<nsubj↓,horse>, the indirect vector ⃗horse◦ is obtained by adding the
vectors {w⃗|w⃗ ∈ H} of those verbs (eat, jump, etc.) that are combined
with the noun horse in that syntactic context. Component-wise addi-
tion of vectors has an union effect. In more intuitive terms, ⃗horse◦
stands for the inverse selectional preferences imposed by horse on any
verb at the subject position. As this new vector consists of verbal con-
texts, it lives in the same vector space as verbs and, therefore, it can
be combined with the direct vector of run.
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⃗red ⃗white ⃗vague ⃗car◦ ⃗red⊙ ⃗car◦
<amod↑, car> 5 2 0 2 10
<amod↑,pencil> 2 0 0 0 0
<amod↑, idea> 1 0 7 0 0
<amod↑,book> 2 1 2 1 2

Table 1:
Deriving the vector of red
in red car
by dependency-based
compositionality
(dependent function)

⃗run ⃗eat ⃗sleep ⃗horse◦ ⃗horse◦ ⊙ ⃗run

<nsubj↓,horse> 3 5 1 6 18
<dobj↓,program> 5 0 0 0 0
<prep_in↓,prairie> 2 1 1 2 4
<prep_with↓, gas> 3 0 0 0 0

Table 2:
Deriving the vector of run
in horses run
by dependency-based
compositionality
(head function)

On the other hand, R in Equation 6 represents the vector set of
nouns occurring as subjects of run (except the noun horse). Given the
lexico-syntactic context <nsubj↑, run>, the vector ⃗run◦ is obtained by
adding the vectors {w⃗|w⃗ ∈ R} of those nouns (e.g. dog, car, computer,
etc.) that might be at the subject position of the verb run. Indirect vec-
tor ⃗run◦ stands for the selectional preferences imposed by the verb on
any noun at the subject position. It is constituted by nominal contexts
and, therefore, is compatible with the direct vector of horse.
Tables 1 and 2 are toy examples showing how to construct the

compositional vectors of two contextualized words: red in red car (Ta-
ble 1) and run in horses run (Table 2). Vectors are in columns and rows
are dependency-based contexts. Each vector position is filled with the
frequency of the word in the corresponding context. In the two ta-
bles, we represent three direct vectors, one indirect vector (derived
from the direct vectors) and the compositional vector (last column).
In this toy example, words are hypothetical four-dimensional vectors;
whereas in real scenarios extracted from large corpora, vectors may
have hundreds of thousands of dimensions.

In Table 1, the indirect vector ⃗car◦, associated to the noun car
given red as modifier, is obtained by adding the vectors of those ad-
jectives that are also modifiers of car (except red). In this toy example,
only the direct vector of white fulfills such conditions. In Table 2, the
indirect vector ⃗horse◦ is the result of adding the direct vectors of eat
and sleep, since horse also occurs as subject of these verbs.
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It is worth noticing that the contextualized vector of red within
red car (last column in Table 1) has fewer contexts with positive values
than the direct vector of the polysemous adjective red (out of context).
The (inverse) selectional preferences imposed by car are able to select
a more compact and less ambiguous vector of the adjective. This way,
the context activating the ideological sense of red (<amod↑, idea>)
is filtered out as it is multiplied by 0. Similarly, the resulting vec-
tor of run within horses run has fewer positive contexts and then
tends to be less ambiguous than the direct vector of the polysemous
verb run out of context. In Table 2, the contexts (<prep_with↑, gas>,
<dobj↑,program>), which hardly appears with words denoting ani-
mals, are removed (frequency 0) from the new contextualized vector
of run. So, the inverse selectional preferences imposed by horse acti-
vate one specific sense of the verb: physical movement. Notice that
we do not consider prepositions as content words, but as syntactic
dependencies.

In approaches to computational semantics inspired by Combina-
tory Categorial Grammar (Steedman 1996) and Montagovian seman-
tics (Montague 1970), the interpretation process activated by compos-
ite expressions such as dogs chase cats, horses run or red car relies on
rigid function-argument structures. Relational expressions like verbs
and adjectives are used as predicates while nouns and nominals are
their arguments. In the composition process, each word is supposed to
play a rigid and fixed role: the relational word is semantically repre-
sented as a selective function imposing constraints on the denotations
of the words it combines with, while non-relational words are in turn
seen as arguments filling the constraints imposed by the function. For
instance, run and red denote functions while horses and car are their
respective arguments.

By contrast, we do not define verbs and adjectives as functional
artifacts driving the compositional process. In our compositional ap-
proach, dependencies are the active functions that control and rule the
selectional requirements imposed by the two related words. Depen-
dencies, instead of relational words, are then conceived of as the main
functional operations taking part in composition. This way, two syn-
tactically dependent expressions are no longer interpreted as a rigid
“predicate-argument” structure, where the predicate is the active func-
tion imposing the semantic preferences on a passive argument, which
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matches such preferences. On the contrary, each constituent word im-
poses its selectional preferences on the other. This is in accordance
with non-standard linguistic research which assumes that the words
involved in a composite expression impose semantic restrictions on
each other (Pustejovsky 1995; Gamallo 2008; Gamallo et al. 2005).
Not only verbs or adjectives are taken as predicates selecting different
types of nouns, but so too do nouns select for different types of verbs
and adjectives. Following this idea, we propose a co-compositional
approach: in the head function, the dependent element imposes its re-
strictions on the head denotation, and the output is a more specific
and less ambiguous denotation of the head. By contrast, in the depen-
dent function, it is the head that imposes its selectional restrictions
on the dependent denotation to produce a more elaborate and less
ambiguous denotation of the dependent expression.

It means that the semantic space consists of just two types of enti-
ties: word vectors and dependency-based functions. Vectors represent
both word senses (direct vectors) and selectional preferences (indirect
vectors), while head/dependent functions represent compositional op-
erations. A dependency-based function takes as arguments a relation
and a pair of vectors (direct + indirect), and returns a more elaborate
direct vector.
2.3 Dependencies and incremental interpretation
Frameworks such as Discourse Representation Theory (Kamp and
Reyle 1993) and Situation Semantics (Barwise 1987) make two ba-
sic assumptions about interpretation: that the meaning of a sentence
is dependent of the meaning of the previous sentence in the discourse;
and that a sentence modifies in turn the meaning of the following
sentence. Sentence meaning is not isolated from discursive unfolding;
rather, meaning is incrementally constructed at the same time as dis-
course information is processed.

We assume that incrementality is true not only at the inter-
sentence level but also at the inter-word level, i.e., between depen-
dent words. In order for a sentence-level interpretation to be attained,
dependencies must be established between individual constituents as
soon as possible. This claim is assumed by a great variety of research
(Kempson et al. 2001, 1997; Milward 1992; Costa et al. 2001; Schle-
sewsky and Bornkessel 2004). The incremental hypothesis states that
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information is built up on a left-to-right word-by-word basis in the
interpretation process (Kempson et al. 2001). The meaning of an ut-
terance is progressively built up as the words come in. The sense of a
word is provided as part of the context for processing each subsequent
word. Incremental processing assumes that humans interpret language
without reaching the end of the input sentence; that is, they are able to
assign a sense to the initial left fragment of an utterance. This hypoth-
esis has received a large experimental support in the psycholinguistic
community over the years (McRae et al. 1997; Tanenhaus and Carlson
1989; Truswell et al. 1994).

For instance, to interpret the cat chased a mouse, it is required to in-
terpret cat chased as a fragment that restricts the type of nouns that can
appear at the direct object position: mouse, rat, bird, etc.1 In the same
way police chases restricts the entities that can be chased by police
officers: thieves, robbers, and so on. However, a left-to-right interpre-
tation process cannot be easily assumed by a standard compositional
approach. In a Montagovian model, chase is a transitive verb denoting
the binary function λxλy chase(x , y), chased a mouse is an intransitive
verb denoting a unary predicate, while the cat chased a mouse is a sen-
tence denoting a truth value. The standard compositional model does
not provide any interpretation for the cat chased within the sentence
the cat chased a mouse; consequently, it is unable to predict how the
expression the cat chased restricts the type of nouns appearing at the
direct object position.
By contrast, in our left-to-right incremental compositional strat-

egy, the cat chased is a grammatical expression referring to two se-
mantic objects: the compositional vectors of the two related lexical
units.

In our approach, the iterative application of the syntactic depen-
dencies found in a sentence is actually the recursive process of building
the contextualized sense of all the content words which constitute the
sentence. Thus, the whole sentence is not assigned only one meaning
(which could be the contextualized sense of the root word), but one

1We do not consider the compositional meaning of determiners, auxiliary
verbs, or tense affixes. Quantificational issues associated with them are beyond
the scope of this work. An interesting work on determiners in compositional
distributional semantics is reported by Bernardi et al. (2013).
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sense per lemma, where the sense of the root is only one such sense
considered.
This recursive and incremental process may have two directions:

from left-to-right and from right-to-left.
The incremental left-to-right interpretation of the cat chased a

mouse is illustrated in Equation 7 (without considering the meaning
of determiners nor verbal tense):

head↑(nsubj, ⃗chase, ⃗cat◦) = ⃗chasensubj↑
dep↓(nsubj, ⃗chase◦, ⃗cat) = ⃗catnsubj↓
head↑(dobj, ⃗chasensubj↑, ⃗mouse◦) = ⃗chasensubj↑+dobj↑
dep↓(dobj, ⃗chase◦nsubj↓, ⃗mouse) = ⃗mousensubj↓+dobj↓(7)

First, the head and dependent functions are applied on the subject
dependency nsubj to build the compositional vectors ⃗chasensubj↑ and
⃗catnsubj↓. Then, the head function is applied dobj to produce a more
elaborate chasing event, ⃗chasensubj↑+dobj↑, which stands for the full con-
textualized sense of the root verb. In addition, the dependent function
takes dobj to yield a new nominal vector, ⃗mousensubj↓+dobj↓, whose in-
ternal information only can refer to a specific animal: mouse chased
by the cat. In the context of a chasing event, mouse does not refer to a
computer’s device.

The contextualized selectional preferences, ⃗chase◦nsubj↓, represent
an indirect vector obtained as follows:
(8) ⃗chase◦nsubj↓ = ⃗catnsubj↓ ⊙

∑
w⃗∈ C

w⃗

where C is the vector set of those nouns that are in the direct ob-
ject role of chase (except the noun mouse). The new vector resulting
by adding the vectors of C is combined by multiplication (intersec-
tion) with the contextualized dependent vector, ⃗catnsubj↓, to build the
contextualized selectional preferences. In more intuitive terms, the se-
lectional preferences built in Equation 8 are constituted by selecting
the contexts of the nouns appearing as direct object of chase, which
are also part of cat after having been contextualized by the verb at the
subject position.

The dependency-by-dependency functional application results
in three contextualized word senses: ⃗catnsubj↓, ⃗chasensubj↑+dobj↑ and
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⃗mousensubj↓+dobj↓. They all together represent the meaning of the sen-
tence in the left-to-right direction. Notice that ⃗catnsubj↓ is not a fully
contextualized vector: it was only contextualized by the verb, but not
by the direct object noun. In order to fully contextualize the subject,
we need to initialize the composition process in the other way around.

In the opposite direction, from right-to-left, the incremental pro-
cess starts with the direct object dependency:

head↑(dobj, ⃗chase, ⃗mouse◦) = ⃗chasedobj↑
dep↓(dobj, ⃗chase◦, ⃗mouse) = ⃗mousedobj↓
head↑(nsubj, ⃗chasedobj↑, ⃗cat◦) = ⃗chasedobj↑+nsubj↑
dep↓(nsubj, ⃗chase◦dobj↓, ⃗cat) = ⃗catdobj↓+nsubj↓(9)

In Equation 9, the verb chase is first restricted by mouse at the di-
rect object position, and then by its subject cat. In addition, this noun
is restricted by the vector ⃗chase

◦
dobj↓, which represents the contextu-

alized selectional preferences built by combining ⃗mousedobj↓ with the
vectors of the nouns that are in the subject position of chase (except
cat). This new compositional vector represents a very contextualized
nominal concept: the cat that chased a mouse. The word cat and its spe-
cific sense can be related to anaphorical expressions by making use
of co-referential relationships at the discourse level: e.g., pronoun it,
other definite expressions (that cat, the cat, ...), and so on. Notice that
this compositional vector might also be used to represent the contextu-
alized sense of a nominal restricted by a relative clause. For this type of
construction, it is worth paying special attention to the work reported
in Sadrzadeh et al. (2013), where the authors describe a tensor-based
method to represent the compositional meaning of relative pronouns.

The meaning of a sentence is ideally represented by the full con-
textualization of its constituent words. Yet, as has been said, not all
words in a sentence can be fully contextualized using left-to-right
combination. For instance, to fully contextualize the noun subject
⃗catdobj↓+nsubj↓ within the subject-verb-object sentence the cat chased a
mouse, the iterative process must follow the right-to-left direction:
first, the noun vector ⃗mouse is combined with chasing preferences on
the object ( ⃗chase◦). Then, the resulting vector of the previous com-
bination is used to generate the restricted verb preferences on the
subject ( ⃗chase◦dobj↓), which are combined with the noun vector ⃗cat to
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eventually return the fully contextualized vector of the subject noun.
As in standard compositional approaches, vectors are combined with
pointwise multiplication. The main difference with regard to standard
vector combination is that our compositional strategy also relies on
vectors representing selection preferences. Both selection preferences
and compositional (contextualized) vectors are generated dynamically
during word combination.
The order of function application is flexible since it is not con-

strained by the type of dependencies or by the arity of function words
(mainly verbs). A particular order may be applied by principles or con-
straints that are independent of the syntactic structure. The constraints
that specify a particular order may be defined by external factors. For
instance, if the objective is to simulate a psycholinguistic notion of in-
crementality, where the meaning of words is gradually elaborated as
they are syntactically integrated into new dependencies, then the best
option is to implement the left-to-right algorithm. However, nothing
prevent us implementing the complementary right-to-left direction in
order to compare the contextualized senses generated by using both
directions (as we will show later in the experimental section). Instead
of applying all possible orders, which has high computational cost,
it would be possible to apply external constraints and principles to
impose a very restricted order. One of these contraints might be, for
instance, to consider the degree of ambiguity of lexical units: we could
apply first those dependencies containing less ambiguous words with
more semantically homogenous vectors; and then use these in a sub-
sequent step to disambiguate more heteregenous word vectors (i.e.,
more ambiguous ones) (Gamallo 2008).
In the sentence the coach drives the team, this contraint should lead

us to interpret drives the team before the coach drives, since team is less
ambiguous than coach. By contrast, in the team hired a coach, the or-
der should be the other way around following the same principle. In a
more complex sentence such as I lost my computer mouse, the same prin-
ciple would force us to interpret first the less ambiguous noun-noun
dependency between computer and mouse before the more ambiguous
relation between lost and mouse. This ambiguity-based constraint may
be seen as a general procedure to word sense discrimination. Yet, the
definition and implementation of specific contraints and principles re-
stricting function application is beyond the scope of the current work.
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Finally, it is worth noticing that the compositional objects we
build using dependencies are not flat representations such as those de-
rived from typical dependency-based analysis. The order of functional
application is meaningful and allows us to build vectors at different
constituency levels in terms of immediate constituent analysis. A crit-
icism of dependency analysis is that it is not able to deal with the dif-
ferent interpretations obtained from expressions like fastest American
runner and American fastest runner. As both expressions are analyzed
with the same flat dependency-based structure (fastest and American
are dependent of runner), it would not be possible to derive differ-
ent semantic entailments from the same syntactic analysis. However,
in our dependency-based model, the order in which the functions are
applied allows us to build several compositional entities, which simu-
late the construction of different constituent units.

3 experiments

We have designed and developed a system, DepFunc, based on the
method described in the previous section. Although the method can
potentially be applied to any sentence, regardless of its syntactic struc-
ture, the limitations of the implementation and the complexity of the
task have led us to apply it only to expressions with a predetermined
and fixed structure: adjective-noun, noun-verb, and noun-verb-noun.

Two different types of experiments were carried out to evaluate
the performance of our system. The specific objective of the first exper-
iment (Section 3.1) is to compare the distributional similarity between
compositional vectors of composite expressions and corpus-observed
vectors of the same composite expressions. If they are similar, our
vectors predicted by compositionality can be considered correct be-
cause they are close to standard vectors built with observed data. We
compared our strategy with the one defined in Baroni and Zamparelli
(2010), which also carried out a similar evaluation. Experiments were
made with ADJ-NOUN (to abbreviate: AN) and NOUN-VERB expressions
(to abbreviate: NV).

In the second type of experiments (Section 3.2), we use test
datasets to measure the correlation between human similarity judge-
ments and similarity coefficients computed with our compositional
expressions. In Subsection 3.2.2, we measure the quality of composi-
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tional vectors built from NV composite expressions, using as gold stan-
dard the test dataset provided by Mitchell and Lapata and described
in (Mitchell and Lapata 2008). In Subsection 3.2.3, we check the qual-
ity of more complex composite expressions, namely NOUN-VERB-NOUN
constructions (NVN) incrementally composed with nsubj and dobj de-
pendencies.
3.1 Compositional and corpus-observed vectors
As in Baroni and Zamparelli (2010), the experiment consists in com-
paring the distributional similarity between two different types of vec-
tors associated with composite expressions: compositional vectors and
corpus-observed vectors. Compositional vectors are those built follow-
ing the compositional method described in the previous section. They
are thus model-generated vectors constructed according to the corpus-
based observed frequencies of their constituents. Corpus-observed vec-
tors of composite expressions are constructed with the frequencies as-
sociated with the whole expression. They are called holistic vectors
by Turney (2013). We should expect that the compositional and the
holistic vectors built for the same composite expression should be sim-
ilar (Baroni and Zamparelli 2010). More precisely, we expect that
the predicted distribution computed by our compositional approach
should yield similar vectors to those built with real distributions cal-
culated from real-world corpora. For instance, if we build a compo-
sitional vector for red car according to the frequency of its parts in
a compositional way, the resulting vector should be similar to the
vector constructed by just observing the co-occurrences of the com-
posite expression as a whole. Notice that there are exceptions to that,
namely those cases where the meaning of the compound expression
is not compositional (e.g., collocations, frozen expressions, idioms,
and so on).
3.1.1 Corpus and distributional models
In order to build the compositional and holistic (corpus-observed)
vectors, we made two partitions from the English Wikipedia (dump
file of November 2015), with 100M tokens each. The first partition
was used to build the compositional vectors (and to train learning
models) while the second partition was used for extracting corpus-
observed vectors as well as for testing and evaluation. Word vec-
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tors were built by computing their co-occurrences in lexico-syntactic
contexts. We used the dependency parser DepPattern (Gamallo and
Garcia 2018; Gamallo 2015) to perform syntactic analysis. Three dif-
ferent types of vectors were built from the corpus: nominal, verbal,
and adjectival vectors. Then, for each word we filtered out irrelevant
contexts using simple count-based techniques inspired by those de-
scribed in Gamallo (2017a), where matrices are stored in hash ta-
bles with only non-zero values. More precisely, the association be-
tween words and their contexts were weighted with the Dunning’s
likelihood ratio (Dunning 1993) and then, for each word, only the N
contexts with highest likelihood scores were stored in the hash table
(where N = 500). So, the remaining contexts were removed from the
hash (whereas in standard vector/matrix representations, instead of
removing contexts we should assign them zero values). This filtering-
based approach turned out to be more efficient than other strate-
gies based on dimensionality reduction such as Singular Value De-
composition (Gamallo and Bordag 2011). In addition, our approach
requires explicit vector spaces, which are more linguistically trans-
parent than dense representations such as neural-based word embed-
dings.

Not all words were selected for computing similarity; in particu-
lar, we selected those nouns, verbs, and adjectives occurring in more
than 100 different contexts. The experiments were made with lemmas.

Experiments were performed with two types of composite units:
AN expressions in the nominal space and NV in the verbal space. Our
specific task consists of selecting a list of both AN and NV compos-
ites, building their compositional and corpus-observed vectors, and
checking whether each particular compositional vector is similar to
its corresponding corpus-observed vector. To avoid possible bias be-
tween predicted and observed occurrences, corpus-observed vectors
were derived from the second partition of the corpus, while compo-
sitional vectors were built from the first partition. To build composi-
tional vectors, the strategy defined in the previous section was imple-
mented in Perl giving rise to the software DepFunc.
3.1.2 Evaluation
The list of target composites for evaluation was created as follows. In
the second partition with 100M tokens, we selected the composites
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with more than 50 different contexts: 6676 ANs and 3004 NVs. Then,
we filtered out those composites with at least one constituent word
which does not appear in the matrices created from the first corpus
partition (since these constituent words had fewer than 100 lexico-
syntactic contexts in the first partition). Finally, we obtained a test
list of 1,841 ANs and another of 767 NVs, which were subsequently
manually revised in order to filter out ill-formed expressions. We ob-
tained more AN composites than those of NVs because the nominal
space has a higher number of entities and lexico-syntactic contexts
than the verbal space.
Then, we built, on the one hand, the compositional vectors of

the selected 1,841 ANs and 767 NVs using the first corpus partition
and, on the other hand, the corpus-observed vectors of the same com-
posites using the quantitative information of the second partition.
The new vectors are added to both the nominal and verbal matri-
ces. In total, the nominal matrix contains 22,025 single nouns and
1,841×2 AN composites, while the verbal matrix consists of 5,131
single verbs and 767×2 NV composites. Next, all possible pairs were
generated and cosine similarity was computed in each matrix. For
each corpus-observed composite, we created a ranked list of the N
most similar expressions, and finally, we verified whether its corre-
sponding compositional composite is found in the list and recorded its
ranking.

We define hit to mean an instance of finding the compositional
vector of a composite expression in the ranked list of its correspond-
ing corpus-observed vector. For instance, if the compositional vector
of “red car” is in the top N list of similar candidates of the corpus-
observed vector associated to the same expression, we count one hit.

To compare our model with a state-of-the-art system, we used the
software DISSECT (Dinu et al. 2013a)2 The software was used to train
and apply the compositional functions described in Baroni and Zam-
parelli (2010), taking as input the first (part-of-speech tagged) corpus
partition and the lists of test composites introduced above. The train-
ing process was performed by selecting all the adjectives and verbs of
the test list and all their occurrences with those nominal arguments

2http://clic.cimec.unitn.it/composes/toolkit/introduction.
html
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that are not in the test list. To compute word-context co-occurrences,
we defined the contexts of a word as the bag-of-lemmas extracted from
a window of size 5 (two context words both to the left and to the right
of the target word). Co-occurrence matrices were reduced to 300 di-
mensions by making use of Singular Value Decomposition. Similarity
between vectors was computed with the cosine measure. The function
we have used for training the model is LexFunc (Lexical Function),
which gave rise to the best results in the experiments described in
Baroni and Zamparelli (2010) and Dinu et al. (2013b).
The final results are shown in Tables 3 and 4. Each system is

evaluated with regard to different values of K: 10, 50 and 100. For
each value, we count the proportion of hits to compute precision at
K, noted P@K. For instance P@10 is the number of hits within the 10
most similar expressions divided by the total number of evaluated ex-
pressions. The other measure, ranking_average, stands for the average
of the ranking positions of all hits within the ranked list with the 100
most similar expressions. For instance, if 3 hits were found in rankings
25, 50, and 75, the ranking_average is 50. This evaluation is inspired
by standard information retrieval metrics.

Four strategies are compared: what we call lower-bound is just the
by chance probability of finding hits at each K level. The hits found
at K = 100 tend to occur at position 50 on average. The baseline strat-
egy consists in associating the compositional vector to the head vec-
tor. For instance, the baseline compositional vector of “red car” would
be the vector of the head noun car, while the baseline compositional
vector of “horses run” would be the vector of the head verb run. This
is a very reliable and sound baseline because there is a straight se-
mantic relationship between any composite expression and its head:
the concept designated by the head tends to be the direct hypernym
of the concept designated by the composite expression. So, “red car”
(hyponym) must be closely related to car (hypernym). In the experi-
ments described by Baroni and Zamparelli (2010), this baseline was
the third best strategy out of six evaluated systems, outperforming the
approaches introduced by Mitchell and Lapata (2009) and Guevara
(2010). The system denoted LexFunc represents the best compositional
system, known as alm and based on the Lexfunc model, described in
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Baroni and Zamparelli (2010).3 These two systems are compared with
our compositional approach: DepFunc (head). It is worth noting that,
in these experiments, the evaluation is just focused on the contextu-
alized heads of compositional vectors. The reason for this is that the
syntactic contexts of holistic expressions are found in the space of the
heads: AN expressions are nouns and NVs are verbs. So, in order to
compare compositional with holistic expressions, we have to consider
that compositional ANs are contextualized nouns and compositional
NVs are contextualized verbs.

system P@10 P@50 P@100 ranking_average
lower-bound 0% 0.2% 0.4% 50

baseline (noun) 11.74% 31.36% 42.95% 33.90

DepFunc (head) 36.39% 53.01% 60.32% 17.69

LexFunc 21.36% 35.79% 42.87% 22.43

Table 3:
Percentages of hits
(precision at 10, 50 and
100) and ranking average
in the ranked lists of AN
expressions

system P@10 P@50 P@100 ranking_average
random 0.1% 0.7% 1.5% 50

baseline (verb) 6.21% 23.16% 35.02% 37.74

DepFunc (head) 17.51% 37.85% 45.76% 25.64

LexFunc 24.54% 35.24% 39.81% 24.23

Table 4:
Percentages of hits
(precision at 10, 50 and
100) and ranking average
in the ranked lists of NV
expressions

Tables 3 and 4 show the results of AN and NV expressions.
Our compositional approach, DepFunc (head), clearly outperforms the
baseline strategies for both AN and NV. In addition, it also outperforms
LexFunc for AN. However, the differences between LexFunc and Dep-
Func are not so sharp for NV. In fact, DepFunc finds more hits within
larger ranked lists (50 and 100), but those found by LexFunc are in
better ranks, being even more precise at K = 10.

The main problem of this evaluation is that it does not allow us to
take advantage of the contextualization of the dependent word. This
will be solved in the following experiments.

3Additive andmultiplicative models implemented in DISSECTwere also eval-
uated, but the results obtained were below the baseline.
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3.2 Correlation with human judgements
In the following experiments, we compare the similarity between pairs
of compositional vectors representing composite expressions with the
similarity given by annotators to those expressions. In this case, we
will compare all contextualized words of the expressions instead of
only considering the word heads.
3.2.1 Corpus and distributional models
In these experiments, our working corpus consists of both the English
Wikipedia (dump file of November 20154) and the British National
Corpus (BNC)5. In total, the corpus contains about 2.5 billion word
tokens, which were analysed with DepPattern.
Word vectors were built by computing their co-occurrences in

syntactic contexts. Two different types of vectors were built from the
corpus: nominal and verbal vectors. Distributional matrices were built
using the same strategy as the one defined for the previous experiment.
This process of matrix reduction resulted in the selection of

330 953 nouns (most of them proper names) with 236,708 different
nominal contexts; and 6,618 verbs with 140,695 different verbal con-
texts. As the contexts of nouns and verbs are not compatible, we cre-
ated two different vector spaces. Words and their contexts were stored
in two hashes, one per vector space, which represent matrices contain-
ing only non-zero values. Cosine similarity was calculated for pairs of
composite expressions.
3.2.2 NV composite expressions
The test dataset by Mitchell and Lapata (2008) comprises a total of
3600 human similarity judgements. Each item consists of an intransi-
tive verb and a subject noun, which are compared to another NV pair
combining the same noun with a synonym of the verb that is chosen
to be either similar or dissimilar to the verb in the context of the given
subject. For instance, child stray is related to child roam, roam being a
synonym of stray. The dataset was constructed by extracting NV com-
posite expressions from the British National Corpus (BNC) and verb
synonyms from WordNet (Miller et al. 1990). To evaluate the results

4https://dumps.wikimedia.org/enwiki/
5http://www.natcorp.ox.ac.uk
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of our systems, Spearman correlation is computed between individual
human similarity scores and the systems’ predictions.
As the objective of the experiment is to compute the similarity

between pairs of NV composite expressions, we are able to compare
the similarity not only between the contextualized heads of two NV
composite expressions, but also between their contextualized depen-
dent expressions. So, we built compositional vectors using not only the
head function, but also the dependent one. For instance, we compute
the similarity between eye flare vs. eye flame by comparing first the
verbs flare and flame when combined with eye in the subject position
(head function), and by comparing how (dis)similar the noun eye is
when combined with both the verbs flare and flame (dependent func-
tion). In addition, as we are provided with two similarities (head and
dep) for each pair of compared expressions, it is possible to compute a
new similarity measure by averaging head and dep, and what we call
head+dep system.

Table 5 shows the Spearman’s correlation values (ρ) obtained by
our compositional strategy (DepFunc). We compare our results to the
Lexfunc algorithm (Baroni and Zamparelli 2010), which is the state-
of-the-art method for this dataset according to the ρ score reported
in Dinu et al. (2013b) using a corpus consisting of approximately
2.8 billion tokens compiled from Wikipedia, BNC and ukWaC (Ba-
roni et al. 2009). In the first row of DepFunc, we show the ρ value
obtained by our combinatorial similarity measure (head+dep). The
ρ score reaches 0.32, which is higher than using only head similarity
(head) or dep similarity (dep). This shows that the similarity obtained
by combining the head and dependent functions is more accurate than
that obtained by using only one type of compositional function. The
head+dep similarity strategy based on DepFunc outperforms the Lex-
func system (0.26). The baseline method we have implemented (first

system ρ size of training corpus
non-compositional (V) 0.11 2.5B tokens: Wiki & BNC
DepFunc (head+dep) 0.32 2.5B tokens: Wiki & BNC
DepFunc (head) 0.27 2.5B tokens: Wiki & BNC
DepFunc (dep) 0.31 2.5B tokens: Wiki & BNC
Lexfunc (Dinu et al. 2013) 0.26 2.8B tokens: Wiki, BNC & ukWaC

Table 5:
Spearman’s
correlation for
intransitive
expressions using
the benchmark
by Mitchell and
Lapata (2008)
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row in Table 5) is a non-compositional strategy just based on the simi-
larity between the head verbs within the NV pairs. In this case, all the
compositional methods clearly outperform this basic strategy. Finally,
the non-compositional similarity between the noun subjects has not
been computed because the nouns of each NV pair are identical in the
current dataset.
3.2.3 NVN composite expressions
The last experiment consists of evaluating the quality of compositional
vectors built by means of the consecutive application of head and de-
pendency functions associated with nominal subject and direct object.
The experiment is performed on the dataset developed in Grefenstette
and Sadrzadeh (2011a). The dataset was built using the same guide-
lines as Mitchell and Lapata (2008), using transitive verbs paired with
subjects and direct objects: NVN composites.

Given our compositional strategy, we are able to composition-
ally build several vectors that somehow represent the meaning of the
whole NVN composite expression. Take the expression the coach runs
the team. If we follow the left-to-right strategy (noted nv-n), at the
end of the compositional process, we obtain two fully contextualized
senses:
nv-n_head The sense of the head run, as a result of being contextual-
ized first by the preferences imposed by the subject and then by
the preferences required by the direct object. We note nv-n_head
the final sense of the head in a NVN composite expression follow-
ing the left-to-right strategy.

nv-n_dep The sense of the object team, as a result of being contextual-
ized by the preferences imposed by run previously combined with
the subject coach. We note nv-n_dep the final sense of the direct
object in a NVN composite expression following the left-to-right
strategy.
If we follow the right-to-left strategy (noted n-vn), at the end of

the compositional process, we obtain two fully contextualized senses:
n-vn_head The sense of the head run as a result of being contextual-

ized first by the preferences imposed by the object and then by
the subject.
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n-vn_dep The sense of the subject coach, as a result of being contex-
tualized by the preferences imposed by run previously combined
with the object team.
Table 6 shows the Spearman’s correlation values (ρ) obtained by

all the different variations built by our system DepFunc. The best score
was achieved by averaging the head and dependent similarity values
derived from the n-vn (right-to-left) strategy. Let us note that, for NVN
composite expressions, the left-to-right strategy seems to build less
reliable compositional vectors than the right-to-left counterpart. Note
too that the broader model (n-vn+nv-n) resulting from combining the
two strategies does not improve the results of the best one (n-vn). This
model, n-vn+nv-n, is computed by averaging the similarities of both
n-vn_head+dep and nv-n_head+dep. More precisely, it is the result of
averaging the four fully contextualized vectors:
• nv-n_head: left-to-right full contextualization of the verb,
• nv-n_dep: left-to-right full contextualization of the object noun,
• n-vn_head: right-to-left full contextualization of the verb,
• n-vn_dep: right-to-left full contextualization of the subject noun.

system ρ

non-compositional (V) 0.27

DepFunc (nv_head) 0.33

DepFunc (nv_dep) 0.19

DepFunc (vn_head) 0.36

DepFunc (vn_dep) 0.38

DepFunc (nv-n_head+dep) 0.35

DepFunc (nv-n_head) 0.33

DepFunc (nv-n_dep) 0.20

DepFunc (n-vn_head+dep) 0.46

DepFunc (n-vn_head) 0.36

DepFunc (n-vn_dep) 0.42

DepFunc (n-vn+nv-n) 0.44

Grefenstette and Sadrzadeh (2011) 0.28

Hashimoto and Tsuruoka (2014) 0.43

Polajnar et al. (2015) 0.35

Table 6:
Spearman’s correlation
for transitive expressions
using the benchmark
by Grefenstette and Sadrzadeh (2011)

[ 123 ]



Pablo Gamallo

It is worth mentioning that the best fully contextualized vec-
tor is the subject noun generated with the right-to-left algorithm
(n-vn_dep = 0.42), which outperforms the two contextualized verb
senses: n-vn_head and nv-n_head. This result was not expected since the
sense of the verb represents the meaning of the syntactic root of the
sentence, which is the best connected word in the syntactic tree and,
by extension, the best positioned word to represent the core mean-
ing of the sentence. However, the fact that the subject noun works
so well is conceptually possible since any fully contextualized vector
may represent the meaning of the whole sentence from a specific point
of view.

The score value obtained by our n-vn_head+dep right-to-left strat-
egy outperforms the three other systems tested using this dataset:
Grefenstette and Sadrzadeh (2011b) and Polajnar et al. (2015), which
are two works based on the categorical compositional distributional
model of meaning of Coecke et al. (2010), and the neural network
strategy described in Hashimoto and Tsuruoka (2015).
At the top of Table 6, we show the non-contextual baseline we

have created for this dataset: similarity between single verbs. No test
has been made for subject and object nouns since they are identical
in each pair of transitive clauses, as was the case with the subject
nouns in the dataset of intransitive expressions. In the current exper-
iment, the correlation ρ of the non-compositional baseline is much
higher than in Table 5. This might explain why the best correlation
value of the compositional strategy is also much higher for this dataset
(0.46 vs. 0.32). The table also shows four intermediate values resulting
from comparing partial compositional constructions: the noun-verb
(nv_head and nv_dep) and the verb-noun (vn_head and vn_dep) combi-
nations. Two interesting remarks can be made from these values when
they are compared with the full compositional constructions.

First, there is no clear improvement of performance if we compare
the full compositional information of the two transitive constructions
with the partial combinations. On the one hand, the full nv-n construc-
tion does not improve the scores obtained by the partial intransitive
nv. On the other hand, n-vn performs slightly better than vn but only
in the case of the dependent function which makes use of contextu-
alized selectional preferences: n-vn_dep = 0.42 / vn_dep = 0.38. The
low performance at the second level of composition might call into
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question the use of contextualized vectors to build still more contex-
tualized senses. The scarcity problem derived from the recursive com-
bination of contextualized vectors is an important issue which could
be resolved by incorporating more text/additional corpora, and which
we should analyze with more complex evaluation tests.
The second remark is about the difference between the two al-

gorithms: left-to-right and right-to-left. The scores achieved by the
left-to-right algorithm (nv, nv-n) are clearly below those achieved by
right-to-left (vn, n-vn) . This might be due to the weak semantic mo-
tivation of the selectional preferences involved in the subject depen-
dency of transitive constructions in comparison to the direct object. In
fact, right-to-left and left-to-right function application produces sub-
stantially different vectors because each algorithm corresponds to a
particular hierarchy of constituents. Change of constituency implies
different semantic entailments; for example, consider the different lev-
els of constituency of noun modifiers (e.g. fastest American runner ̸=
American fastest runner). Finally, the poor results of nv in this dataset
compared with those obtained in Table 5 is explained because the
subject role is less meaningful in transitive clauses than in intransitive
ones. The subject of intransitive clauses is assigned a complex semantic
role that tends to merge the notions of agent and patient. By contrast,
the subject of transitive constructions tends to be just the agent of an
action with an external patient.

4 related work

Several models for compositionality in vector spaces have been pro-
posed in the last decade, and most of them use bag-of-words as basic
representations of word contexts. As has been said in the introduc-
tion, the basic approach to composition, explored by Mitchell and La-
pata (2008, 2009, 2010), is to combine vectors of two syntactically re-
lated words with arithmetic operations: addition and component-wise
multiplication. The additive model produces a sort of union of word
contexts, whereas multiplication has an intersective effect. According
to Mitchell and Lapata (2008), component-wise multiplication per-
forms better than the additive model. However, in Mitchell and Lapata
(2009, 2010), these authors explore weighted additive models giving
more weight to some constituents in specific word combinations. For
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instance, in a noun-subject-verb combination, the verb is assigned a
higher weight because the whole construction is closer to the verb
than to the noun. Other weighted additive models are described in
Guevara (2010) and Zanzotto et al. (2010). Another work using these
basic composition operations is reported in Reddy et al. (2011). In this
work, the compositional model is enriched with a notion close to our
concept of contextualization, which the authors call dynamic prototype,
but only applied to noun-noun compounds. The model represents each
constituent by a prototype vector which is built dynamically by acti-
vating only the contexts considered to be relevant with regard to the
other constituent. All these models share a common trait: they define
composition operations solely for pairs of words. Their main draw-
back is that they do not propose a more systematic model accounting
for all types of semantic composition. They do not focus on the logical
aspects of the functional approach underlying compositionality.

As has been said before, other distributional approaches develop
sound compositional models of meaning where functional words are
represented as high-dimensional tensors (Coecke et al. 2010; Baroni
and Zamparelli 2010; Grefenstette et al. 2011; Krishnamurthy and
Mitchell 2013; Kartsaklis and Sadrzadeh 2013; Baroni 2013; Baroni
et al. 2014). This idea is mostly based on Combinatory Categorial
Grammar and typed functional application inspired by Montagovian
semantics. The functional approaches relying on Categorial Grammar
distinguish the words denoting atomic types, which are represented
as vectors, from those that denote compositional functions applied to
vectors. By contrast, in our compositional approach, we show that
function application is not associated with predicate words such as ad-
jectives or verbs, but rather with binary dependencies. Our semantic
space does not map the syntactic structure of Combinatory Categorial
Grammar but that of Dependency Grammar. This way, we avoid the
troublesome high-order tensor representations of verbs with n-arity
arguments.

Some of the approaches cited above induce the compositional
meaning of the functional words from examples adopting regression
techniques commonly used in machine learning (Baroni and Zampar-
elli 2010; Krishnamurthy andMitchell 2013; Baroni 2013; Baroni et al.
2014). In our approach, by contrast, functions associated with depen-
dencies are just basic arithmetic operations on vectors, as in the case
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of the arithmetic approaches to composition described above (Mitchell
and Lapata 2008). Arithmetic approaches are easy to implement and
produce high-quality compositional vectors, whichmakes them a good
choice for practical applications (Baroni et al. 2014).
The other compositional approaches based on Categorial Gram-

mar use tensor products for composition (Coecke et al. 2010; Grefen-
stette et al. 2011). As has been said in the introduction, at least two
problems arise with tensor products. First, they result in an informa-
tion scalability problem, since tensor representations grow exponen-
tially as the phrases grow longer (Turney 2013). And second, tensor
products did not perform as well as component-wise multiplication in
the experiments made by Mitchell and Lapata (2010). To improve the
performance of the composition process, the tensor-based approach
reported in Kartsaklis et al. (2014) is provided with an explicit dis-
ambiguation step prior to composition. In Paperno et al. (2014), the
authors try to partially overcome the scalability problem of tensors
by representing a functional word as a vector plus an ordered set of
matrices, with one matrix for each argument the function takes.

There are a few works using vector spaces structured with syntac-
tic information which, as in our approach, are not based on n-order
tensors. Thater et al. (2010) distinguish between first-order and second-
order vectors in order to allow two syntactically incompatible vectors
to be combined. Similarly, in Melamud et al. (2015) the second-order
vectors are called “substitute vectors”. The notion of second-order (or
substitute) vector is close to our concept of indirect vector, while their
first-order vector corresponds to our direct vector. However, there are
important differences with regard to our approach. In (Thater et al.
2010), the combination of a first-order with a second-order vector
returns a second-order vector, which can be combined with other
second-order vectors. This could require the resort to third-order (or
n-order) vectors at further levels of vector composition. By contrast,
in our approach, any vector combination always returns a first-order
(i.e. direct) vector, and we only permit compositional combinations
between a direct vector and an indirect one. This simplifies the com-
positional process at any level of analysis.
The work by Thater et al. (2010) is inspired by that described in

Erk and Padó (2008) and Erk and Padó (2009). Erk and Padó (2008)
proposes a method in which the combination of two words, a and b,
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returns two vectors: a vector a’ representing the sense of a given the
selectional preferences imposed by b, and a vector b’ standing for the
sense of b given the (inverse) selectional preferences imposed by a.
The main problem is that this approach does not propose any com-
positional model for sentences. Its objective is to simulate word sense
disambiguation, but not to model semantic composition at any level
of analysis. In Erk and Padó (2009), the authors briefly describe an
extension of their model by proposing a recursive application of the
compositional function. However, they only formalize the recursive
application when the composite expression consists of two dependents
linked to the same head. So, they explain how the head is contextu-
alized by its dependents, but not the other way around. They do not
model the influence of context on the selectional preferences. In other
terms, their recursive model does not make use of contextualized se-
lectional preferences. By contrast, in our approach, selectional prefer-
ence are contextualized recursively. This is formalized in Equation 8
(Section 2.3).
Thater et al. (2010) took up the basic idea from Erk and Padó

(2008) which consists in exploiting selectional preference informa-
tion for contextualization and disambiguation. However, they did not
borrow the idea of splitting the output of a word combination into
two different vectors (one per word). As far as we know, no fully and
coherent compositional approach has been proposed on the basis of
the interesting idea of returning two contextualized vectors per com-
bination. Our approach is an attempt to join the main ideas of these
syntax-based models (namely, selectional preferences as indirect vec-
tors and two returning senses per word combination) into an entirely
compositional model. In sum, we generalize the model introduced by
Erk and Padó (2008) to include dependencies as compositional op-
erations allowing us to interpret any composite expression with any
number of word constituents. Finally, it is important to point out that
there is another relevant difference between our work and that re-
ported in Erk and Padó (2008), Thater et al. (2010), andMelamud et al.
(2015). While they tested their systems on a task of determining word
meaning in context by lexical substitution, to evaluate our system we
performed experiments in the task of measuring phrase similarity.
A very similar work to our compositional approach has been re-

ported in Weir et al. (2016). The authors also state that distributional
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composition is a matter of integrating the meaning of each of the
words in the phrase. The main difference is the type of context they
use to build word vectors. Each word occurrence is modelled by what
they call “anchored packed dependency tree”, which is a dependency-
based graph that captures the full sentential context of the word. The
main drawback of this context approach is its critical tendency to build
very sparse word representations.
Finally, recent works make use of deep learning strategies to

build compositional vectors, such as recursive neural network mod-
els (Socher et al. 2012; Hashimoto and Tsuruoka 2015), which share
with our model the idea that in the composition of two words both
words modify each other’s meaning. Similarly, the bidirectional recur-
sive neural network reported in Irsoy and Cardie (2014) computes a
context vector for each word. It is also worth noting the deep learning
syntax-based compositional version of the C-BOW algorithm (Pham
et al. 2015).

5 conclusions

In this paper, we described a distributional model to contextualize
word meaning in composite expressions based on a syntactically struc-
tured vector space. To avoid the different syntactic environments asso-
ciated with two syntactically dependent words, we proposed to com-
bine direct with indirect vectors, which are compatible and can be
merged into a new direct vector. An indirect vector represents the se-
lectional preferences that one word uses to contextualize the direct
vector of the other word. The combination of two related words gives
rise to two vectors which represent the senses of the two contextual-
ized words. This process can be repeated until no syntactic dependency
is found in the analyzed composite expression. The compositional in-
terpretation of a composite expression builds the sense of each con-
stituent word in a recursive and incremental way.
Syntactic dependencies are endowed with a combinatorial mean-

ing. Characterizing dependencies as compositional devices has impor-
tant consequences on the way in which the process of semantic in-
terpretation is considered. First, dependencies are binary functions on
vectors while all content words are vectors. Vectors of content words
(as well as collocations and idioms) can be constructed from a cor-
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pus directly, while vectors of composite expressions are the result of
composition operations driven by dependencies. Second, the contex-
tualization process is performed in an incremental way dependency
by dependency. It starts with very ambiguous vectors associated with
the constituent words before composition and results in more compact
and less ambiguous vectors associated with the contextualized words.
And third, as syntactic dependencies are conceived here as semantic
operations, syntax becomes a semantic participant involved in the in-
terpretation process (Langacker 1991).
Our compositional model tackles the problem of information scal-

ability. This problem states that the size of semantic representations
should grow in proportion to the amount of information that they are
representing. If the size of the contextualized vectors is fixed, eventu-
ally there will be information loss. Besides, the size of vector repre-
sentations should not grow exponentially. In our approach, even if the
size of the contextualized vectors is fixed, there is no information loss
since each word of the composite expression is associated to a com-
positional vector representing its context-sensitive sense. In addition,
the contextualized vectors do not grow exponentially since their size
is fixed by the vector space: they are all first-order tensors.

Substantial problems still remain unsolved. For instance there is
no clear boundary between compositional and non-compositional ex-
pressions (collocations, compounds, or idioms). It seems to be obvious
that vectors of full compositional units should be built by means of
compositional operations and predictions based on their constituent
vectors. It is also evident that vectors of entirely frozen expressions
should be totally derived from corpus co-occurrences of the whole ex-
pressions without considering internal constituency. However, there
are many expressions, in particular collocations (such as save time, go
mad, heavy rain, etc.) which can be considered as both compositional
and non-compositional. In those cases, it is not clear which is the best
method to build their distributional representation: predicted vectors
by compositionality; or corpus-observed vectors of the whole expres-
sion.

Another problem that has not been considered is how to repre-
sent the semantics of some grammatical words, namely determiners
and auxiliary verbs (i.e., noun and verb specifiers). This might require
a different functional approach, probably closer to the work described
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by Baroni et al. (2014), which defines functions as linear transforma-
tions on vector spaces. A solution might be similarly inspired by Gupta
et al. (2015), where the authors analyze the distributional features as-
sociated with referential expressions.
An obvious drawback of the recursive strategy is the scarcity that

results from the iterative application of several contextualizations to
the same word vector. The more complex the dependency structure,
the fewer occurrences there will be to compute the in-context se-
lectional preferences. This problem also underlies other similar ap-
proaches based on transparent and interpretable distributional mod-
els, such as that reported in Weir et al. (2016). Kober et al. (2016) pro-
posed a solution to this problem. Their proposal involves explicitly
inferring un-observed co-occurrences using the distributional neigh-
borhood. More precisely, in order to transform a sparse word vector
w into a new enriched vector w′, the algorithm iterates over all word
vectors w in a given distributional model M , and adds the vector repre-
sentations of the nearest neighbors, determined by cosine similarity, to
the representation of the new enriched word vector w′. In future work,
we will carry out new experiments by using this strategy on similarity
datasets containing phrases or sentences with more complex syntactic
structures.

Among the most fundamental applications of compositional mod-
els are paraphrasing and textual entailment. For instance, by making
use of sentence similarity, we should be able to infer that the sen-
tence A stadium craze is sweeping the country entails A craze is covering
the nation, but not A craze is brushing the nation (Garrette et al. 2014).
These applications build compositional vectors from co-occurrences
observed in monolingual corpora. However, if the same methodol-
ogy is applied to acquire phrase and sentence similarity from com-
parable corpora, it could be possible to learn translation equivalents
of composite units. This could lead to new machine translation tech-
niques.

In future work, we will try to define more complex semantic
word models by combining relation-based features (from WordNet or
other lexical resources) with distributional-based representations. We
will also explore the link between distributional representations and
model-theoretical objects (entities, events, and so on), by considering
bridging concepts such as ideal distributions.
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The code for DepFunc and the distributional models used in the
experiments are made freely available.6
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