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The challenge of POS tagging and lemmatization in morphologically
rich languages is examined by comparing German and Latin. We start
by defining an NLP evaluation roadmap to model the combination
of tools and resources guiding our experiments. We focus on what a
practitioner can expect when using state-of-the-art solutions. These
solutions are then compared with old(er) methods and implementa-
tions for coarse-grained POS tagging, as well as fine-grained (morpho-
logical) POS tagging (e.g. case, number, mood). We examine to what
degree recent advances in tagger development have improved accu-
racy – and at what cost, in terms of training and processing time. We
also conduct in-domain vs. out-of-domain evaluation. Out-of-domain
evaluation is particularly pertinent because the distribution of data
to be tagged will typically differ from the distribution of data used
to train the tagger. Pipeline tagging is then compared with a tagging
approach that acknowledges dependencies between inflectional cate-
gories. Finally, we evaluate three lemmatization techniques.
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1 introduction

Lemmatization and part-of-speech (POS) tagging are critical prepro-
cessing steps for many natural language processing (NLP) tasks, such
as information retrieval, knowledge extraction, and semantic analy-
sis. In morphologically rich languages such as German and Latin, both
processes are non-trivial due to the variability of lexical forms. This
results in large tagsets for both coarse-grained and fine-grained (mor-
phological) POS tagging – including inflectional categories such as
case, gender, and degree in addition to coarse-grained POS labels
– and a large number of (potentially unseen) forms associated with
each lemma. In this work, we survey tagging and lemmatization tech-
niques for German and Latin, using corpora that allow us to analyse
the effects of NLP between genres (Tiger vs. TGermaCorp), and also
between periods (Capitularies vs. Proiel). Our survey includes both
older tools, such as the TreeTagger (Schmid 1994) and TnT (Brants
2000), and more modern approaches to tagging and lemmatization.
Even though we expect technology to improve steadily over time, it is
not always easy to quantify the gap between older and more modern
approaches, or to rank the most recent generation of systems in order
of efficiency. We test our systems under the following conditions and
requirements:

• We train lemmatization and tagging independently because the
methods studied are designed for separate use.1 We then focus
on the impact of varying parameters, supplementary resources,
and a combination of tools.

• Ideally, we want a learned system to perform well on the data on
which it has been trained (in-domain (ID): a specific text genre,
historical language variant, etc.) but also to perform adequately
on similar corpora (out-of-domain (OD): with similar but different
genres, registers, language varieties, etc.).

• Since coarse-grained POS tagging alone may be insufficient for
linguistic applications and unsatisfactory for practitioners, we ex-
pect a system to perform reasonably well on fine-grained POS
tagging.

1LemmaTag (Kondratyuk et al. 2018) is an exception that natively supports
joint lemmatization and tagging.

[ 2 ]



A practitioner’s view

• As run-times of systems may be of considerable interest for prac-
titioners, we include both training and testing time estimates for
each technique.
Section 2 provides a systematization grid for NLP applications

and their evaluation. This grid is mapped on to our evaluation objec-
tives, thereby offering both a general evaluation model and a roadmap
for the subsequent experimental sections. In Section 3, we describe
three approaches to lemmatization, followed in Section 4 by ten tools
for tagging, which form the basis of our experiments. Section 5 in-
troduces all resources used in the experiments, primarily the corpora
used for training and evaluation, with a discussion of other lexical
resources and methods of computing word embeddings. Section 6 de-
scribes the experiments used to test lemmatization and POS– as well
as fine-grained POS tagging. In Section 7, we discuss our findings,
while Section 8 provides a summary of this study and prospects for
future work.

2 nlp evaluation roadmap
Taggers cannot be compared or even applied in vacuo; the minimum
requirements for NLP taggers are a tagset and a target text of some
natural language. Similar dependencies apply to virtually all NLP ap-
plications. In order to systematize such relationships and make them
transparent for readers of NLP-related work, we provide an interrela-
tionship model in Figure 1. The tree structure on the left-hand side of
the model presents NLP tasks and resources, followed by instantiat-
ing parameters, which are then mapped on to evaluation objectives.
The dashed lines in Figure 1 indicate partial use of a parameter set
with respect to an objective. Thus, the systematization grid explicates
the requirements to be met in order to perform NLP experimentations.
Accuracy values for such experiments assess how adequately relevant
objectives have been attained. These objective-to-accuracy mappings
constitute the right-hand side of Figure 1 (column “A”, values given
in %). We chose the maximum accuracy achieved as target value for
the scale (which usually lies in the range between 96% and 98%). We
also indicate which section presents the relevant evaluation studies.
The systematization grid thus presents a general dependency model of
NLP tasks and resources, as a roadmap for the current paper.
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Figure 1: Roadmap for NLP evaluation. See main text for details. The tree on
the left-hand side provides a systematization of tasks and resources for NLP. The
leaf nodes (“Parameter” column) collect the parameter settings we employ to
instantiate the relevant cells of the systematization grid. Parameters that are not
part of the current paper are shaded in gray. The parameters are mapped in
different ways on to the evaluation objectives, as indicated by connecting lines.
Dashed lines indicate that the parameter instantiation in question is not fully
exhausted by the target evaluation objective. The scale on the right-hand side
depicts the maximum accuracy of the evaluation results for each objective, and
indicates the section where the relevant evaluation study is described
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3 lemmatization

We view lemmatization as the problem of transforming a word form
into its canonical form, or lemma. In a machine-learning context,
lemmatization has sometimes been considered as a character-level
string transduction process (Dreyer et al. 2008; Nicolai et al. 2015;
Eger 2015; Schnober et al. 2016), a prefix and suffix transformation
problem (Juršič et al. 2010; Gesmundo and Samardzic 2012), or as
a pattern-matching task (Durrett and DeNero 2013; Hulden et al.
2014).2 While character-level string transducers may yield excellent
results (Nicolai et al. 2015), particularly when trained and tested on
lists of words randomly extracted from a lexicon (Eger 2015), they
tend to be learned slower, and typically do not lemmatize in con-
text, but consider the lemmatization problem in isolation, ignoring
contextual word-form cues. In addition, we found in preliminary ex-
periments that, for real-world lemmatization, where distribution is
marked by many irregular forms, simpler prefix and suffix transfor-
mation systems may be competitive with more sophisticated string
transducers.

In this work, we experiment with three approaches to lemmati-
zation, two of which are based on prefix and suffix transformations,
and one on neural networks. These experiments are presented in Sec-
tion 6.2. LemmaGen (Juršič et al. 2010) learns ‘ripple down rules’
(Compton and Jansen 1988), that is, tree-like decision structures, from
pairs of strings. Rule conditions are suffixes of word forms, and rule
consequents are transformations that replace the suffix in question by
a new suffix. The second approach we experiment with is the casting
of lemmatization as a classification task (Gesmundo and Samardzic
2012), which we call LAT: lemmatization is viewed here as a 4-tuple
indicating the prefix and suffix transformations involved in the lemma-
tization process. For example (see Figure 2), the transformation of the
German verb form gespielt into its lemma spielen is encoded by the

2Lemmatization can also be implemented with the help of a lexicon. How-
ever, lexicons are hard to acquire, and their performance is comparatively low in
cases where they do not sufficiently discriminate the distributions of polysemous
lemmas in large corpora of real texts. Nevertheless, a lexicon could typically ‘as-
sist’ a learned system, e.g., via features that trigger if a form occurs in the lexicon
(e.g., in a similar manner to that outlined here).
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Figure 2:

Example of how
to represent lemmatization

for gespielt to spielen
as a tuple

g e s p i e l t
1 2 1

s p i e l e n

2− prefix→ ; 1− suffix→ en =⇒ (2,;, 1, en)

tuple (2,;, 1, en), indicating that to derive spielen, the first two charac-
ters of gespielt are replaced by the empty string, and the last character
is replaced by en. This compact encoding considers lemmatization as
a classification problem where the size of the output space is rela-
tively small (some hundreds or thousands of labels, at most). More-
over, lemmatization can then also be treated as a sequence labeling
problem, where dependency between subsequent labels may be taken
into account. One may argue that inflections in German are rich and
that modifications may also include central characters, thus replacing
the entire word in extreme cases. Nonetheless, this approach can be
applied as long as the tagger can handle the output space.

Finally we include LemmaTag (Kondratyuk et al. 2018), which
is based on neural networks. It has primarily been included in experi-
ments for POS tagging (see Section 4), but it is also interesting to work
with as it supports joint lemmatization and tagging.

4 pos tagging

Among the milestones in POS tagging (or sequence labelling) are: in-
cluding dependencies between output labels (as in Markov models such
as HMMs or CRFs); the broad use of lexical features (Ratnaparkhi 1996;
Toutanova et al. 2003); and the concept of the margin introduced in
SVMs. The most recent class of taggers is characterized by several pos-
sibilities: that of including word representations learned from unlabeled
data, that of applying feature-rich models to problems with large out-
put spaces, and that of making use of deep (rather than shallow) models
such as neural networks that can in addition function without hand-
crafted features.

In this work, we consider the following POS tagging systems,
which are listed in order of their year of publication. The TreeTag-
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ger (Schmid 1994), a popular tagging system until recently, is based
on decision trees. As such, it cannot account for dependencies be-
tween output (tag) labels. TnT (Brants 2000) implements a trigram
Hidden Markov tagger with a module for handling unknown words.
It has been shown to perform as well as maximum entropy models.
The Stanford tagger (Toutanova et al. 2003) implements a bidirec-
tional log-linear model that makes broad use of lexical features. The
implementation lets the user specifically activate and deactivate de-
sired features. Lapos (Tsuruoka et al. 2011) is a ‘history-based’ tagging
model (this model class subsumes maximum entropy Markov models)
incorporating a lookahead mechanism into its decision-making pro-
cess. It has been reported to be competitive with globally optimized
models such as CRFs and structured perceptrons. Mate (Bohnet and
Nivre 2012) has been introduced as a transition-based system for joint
POS tagging and dependency parsing. We also include the OpenNLP
tagger, an official Apache project.3 For these systems, we refer to the
original works for more in-depth descriptions.

Among the most recent generation of taggers, we consider Mar-
MoT (Müller et al. 2013), which implements a higher order CRF with
approximations such that it can deal with large output spaces. In ad-
dition, MarMoT can be trained to fire on the predictions of lexical
resources as well as on word embeddings, real vector-valued represen-
tations of words.4

The RDRPOSTagger (Nguyen et al. 2014) implements an error-
driven approach to POS tagging by constructing a tree of single clas-
sification ripple down rules (SCRDR). It takes a gold standard and
an automatically tagged version thereof as input in order to gener-
ate rules to reflect any differences. By default, RDRPOSTagger uses
a built-in lexicon-based tagger, which by itself is not very accurate,
but learning exception rules from the initial tagging gives promising
results. Note that, since the approach is based on the concept of cor-
recting the output of some initial tagging, the initial tagger is required
for both training and testing/tagging. Nguyen et al. (2016) show that
using an external tagger (e.g. TnT) over the built-in (lexicon-based)

3See https://opennlp.apache.org/.
4Another morphological tagger which is based on conditional random fields

is TLT-CRF (vor der Brück and Mehler 2016) which we could not include due to
time and space constraints.
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tagger yields better results. In this work, we replicate their experi-
ment by optionally using TnT, and extend it by using MarMoT as the
initial tagger. Note that, in order to achieve a tagged version of the
training set for our experiments, we use 10-fold jack-knifing: each fold
is tagged by TnT or MarMoT based on the remaining folds. Taking a
practitioner’s view, we use the built-in tagger for most of our exper-
iments. However, we also examine the benefits of using an external
tagger for POS.

FLORS (Schnabel and Schütze 2014) tags a given word by con-
structing a feature vector representation of its local context and then
classifying this vector by an SVM. The feature vector representation
of each word in a context includes distributional, shape, and suffix
information, and the feature vector for the entire context is the con-
catenation of the word vector representations. Note that the imple-
mentation of FLORS includes language-specific features (for English).
This is expected to decrease its performance on the Latin and German
datasets we consider. In principle, the vector representations of words
are the same for known and unknown words, thus FLORS is poten-
tially very well-suited for OD tasks. In our work, we use online FLORS
(Yin et al. 2015), which incrementally updates word representations
for each new test sentence encountered.

We also wanted to include NonLexNN (Labeau et al. 2015), a
non-lexicalized neural network architecture for POS tagging. By oper-
ating on the subword/character-level, it promises to yield higher per-
formance on OD tasks, similarly to the FLORS tagger. However, we
could not make this tagger perform on-par with the other taggers sur-
veyed. One reason for this was its very lengthy runtime – several days
for a single training fold – so that we could not sufficiently experiment
with its parameters.

A neuronal network approach based on bidirectional long short-
term memory recurrent neural networks (Wang et al. 2015) was im-
plemented using Deeplearning4j. It consists of one Graves Bidirec-
tional Long-Short Term Memory (BLSTM) Layer, and one RNNOutput-
Layer with a Softmax activation function andMultiClass Cross Entropy
(MCXENT) Loss function. The BLSTM Layer uses a TANH activation
function, and we changed the updater to ADAGRAD, to improve learn-
ing for rare POS tags. Following Wang et al. (2015), we represent each
word with its word embedding, and add a three-dimensional binary
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User-def.
features

Large
output spaces

External
resources

Label
dependencies

FLORS ✓ ✓
Lapos ✓
LemmaTag ✓ ✓
MarMoT ✓ ✓ ✓ ✓
Mate ✓ ✓
OpenNLP ✓ ✓
RDRPOSTagger ✓ ✓
Stanford ✓ ✓
TnT ✓ ✓
TreeTagger ✓

Table 1:
Systems
and selected
properties

vector to retain information about capitalization: initial upper case,
all upper case, or all lower case. We add another vector of 3 dimen-
sions to identify the word ending. Note that this approach could not be
fully exploited during our experiments, because of limited hardware
resources and the amount of time needed to train the networks.

Finally, we include LemmaTag (Kondratyuk et al. 2018), a fea-
tureless neural network approach to joint lemma and POS tagging,
based on bidirectional memory recurrent neural networks. It uses
character- and word-level embeddings. LemmaTag is based on Ten-
sorflow, a library for dataflow programming widely used in machine
learning applications. Since it benefits from GPUs, we run LemmaTag
on a GPU workstation so as to run all experiments in reasonable time.

In Table 1, we list some key properties of the taggers in the survey.
While most models make use of features (except for HMMs as TnT is
based on, for which the inclusion of arbitrary features is non-trivial),
not all of them allow users to specify user-defined features. Therefore,
we had to exclude Lapos and Stanford from some experiments (e.g.
joint-tagging) as they do not scale well on large output spaces.

In addition to the list of taggers, we include amajority vote POS
tagger. By examining the results of at least three taggers, we identify
the POS tag for a given token with maximum tagger agreement. In
order to solve ties, taggers are ranked by date of publication. In prac-
tice, tagger accuracy should be estimated on a held-out set, extracted
from the training data, or on a (small) hand-annotated data set. The
majority vote tagger is used to assess whether tagging system errors
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correlate. The assumption is that majority voting does not work when
all systems commit the same types of errors.

5 datasets

In this work, we examine the performance of NLP tools on Latin
and German texts. We distinguish between in-domain (ID) and out-
of-domain (OD) experiments. From a machine learning perspective,
ID experiments are more well-defined, because they are generally
performed on a corpus of texts from the same era and genre. More im-
portantly, the gold standard of such corpora has usually been created
by a closed group of trained annotators who agreed upon a specific
annotation manual. Thus, we can expect a high degree of coherency
in terms of the primary content as well as the annotation.

For ID experiments the data must be partitioned into distinct
training and test sets. In general, we perform a 3-fold random subset
validation, with a 90%/10% split on each corpus for each language. In
contrast, OD experiments involve two corpora, with one corpus used
entirely for training, and the other one for testing. For the LemmaTag
tagging and lemmatization tool, we require an additional develop-
ment set. For these ID experiments, we use a 3-fold 80%/10%/10%
split. For the OD experiments, we use 90% of the entire source corpus
as the training set and the remaining 10% as the development set. As
before, the entire target corpus is used for testing and the 90%/10%-
split is performed three times. Since OD experiments bring together
corpora that may vary in terms of the era in which they were written,
in the genres they cover, and in the standards by which they were
annotated, we expect a significant drop in accuracy when we eval-
uate NLP tools, as has been documented by much previous research
(Müller et al. 2015; McGillivray et al. 2009). Nonetheless, OD scenar-
ios provide a much more realistic perspective on the performance of
lemmatization and POS tagging, since a practitioner usually has to
rely on pre-trained models. This is not primarily because of the tech-
nical skills required to train a model, but rather because of the huge
effort required to construct a training set large enough to accurately
cover the desired genre.

In the following subsections, we describe the corpora as well as
supplementary resources used in this work for German and Latin. Of
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Corpus Language Sentences Tokens
Tiger German 50,472 888,238
TGermaCorp German 8,941 157,210
Capitularies Latin 15,572 481,578
Proiel Latin 1,147 22,280

Table 2:
Statistics of corpora
used in the experiments

the taggers we consider, MarMoT can benefit from additional lexical
resources as well as word embeddings. In order to examine the im-
pact of supplementary data, we evaluate various lexical resources and
different corpora, as well as algorithms to compute word embeddings.

5.1 Corpora
For German, we train and test on the Tiger corpus (Brants et al. 2004),
and on TGermaCorp (Lücking et al. 2016). The Tiger corpus consists of
newspaper articles from the German “Frankfurter Rundschau” which
were semi-automatically lemmatized and tagged for POS and mor-
phology. For Latin, we use the Capitularies corpus (Mehler et al. 2015;
Eger et al. 2015) and the Proiel corpus (Haug and Jøhndal 2008). The
Capitularies corpus is based on the “Capitvlaria regvm Francorvm, ed.
Alfredus Boretius (Hannover 1897)”. The two Latin corpora stem from
different genres and different epochs, making them interesting candi-
dates for OD tagging experiments. The Capitularies consist of instruc-
tions and directives from the Merovingian and Carolingian periods
(600–900 AD), whereas Proiel consists of classical and Christian texts
(100 BC–500 AD). We use a random subset of Proiel, for which tag
labels have been manually synchronized with those of the Capitular-
ies. As the Proiel corpus does not contain punctuation, we expect low
accuracy when it participates in OD scenarios. This problem should
not occur with the Capitularies corpus, which contains punctuation.
Table 2 gives an overview of the corpora used in the experiments.

For this study, the thematic range of TGermaCorp, which is com-
posed of literary texts in standard German, was extended to include
language of science, from a diachronic perspective. Extracts were se-
lected from two texts from the second half of the nineteenth century:
Friedrich Nietzsche’s Der Antichrist (1894), representing humanities,
and Gregor Mendel’s Versuche über Pflanzenhybriden (1866), represent-
ing the natural sciences. Nietzsche’s text was obtained from the Digitale
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Kritische Gesamtausgabe Werke und Briefe.5 Mendel’s text was obtained
from Project Gutenberg.6 The token count for Der Antichrist is 30,652
and for Versuche über Pflanzenhybriden it is 20,129.

Each text was divided into 12 equal chunks which were paired
to form 12 mixed files for annotation. Each annotator had to anno-
tate and occasionally correct the tokenization of a mixed file of 4,831
tokens. Eight annotators performed (coarse-grained) POS tagging and
lemmatization, following STTS annotation guidelines (Schiller et al.
1999) – see Lücking et al. (2016) for further details.

Before annotating the TGermaCorp extension, annotators under-
went a five-week training period, supervised by two linguistically
trained experts. The objective of the training period was to familiar-
ize annotators with the tagset, so as to achieve consistent annotation.
The first part of the training period focused on the rules and labels for
lemmatization, using the annotation manuals and comparing results
with gold-standard annotations (one week). During the second part of
the training period (four weeks), the annotators had to complete two
annotation tasks. Their results were inspected on a sample basis by
the two supervisors. The findings as well as any examples worthy of
discussion encountered by the annotators, were discussed in weekly
meetings, in order to clarify annotation rules or agree on conven-
tions in cases not unequivocally covered by the manuals. Annotators
who successfully completed the training period then annotated the
TGermaCorp extension.7

In order to test annotator self-agreement, 300 tokens from each
text snippet were extracted and added at the end of the annotation file,
so that 600 tokens were annotated twice by each annotator. Intra-rater
agreement was calculated on these two annotations for each annotator
by means of Cohen’s Kappa (Cohen 1960). The results are presented
in Table 3. The perfect agreement for ann7 is due to her recognizing
the double annotation task and reconstructing her previous choices.

An inter-rater agreement study was also carried out. Four anno-
tators annotated a set of 100 tokens from Nietzsche’s Antichrist, while
the other four annotators annotated a set of 100 tokens from Mendel’s

5Provided at http://www.nietzschesource.org (CC BY-NC 3.0).
6http://www.gutenberg.org/cache/epub/40854/pg40854.txt
7Although twelve annotators were trained, only eight successfully completed

the training period.
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Annotator Lemma POS
annotator 1 0.98 0.98
annotator 2 0.99 0.99
annotator 3 0.98 0.96
annotator 4 0.99 0.99
annotator 5 0.98 0.97
annotator 6 0.96 0.94
annotator 7 1.00 1.00
annotator 8 0.97 0.92

Table 3:
Intra-rater agreement:
summary

Level All ann1-gs ann2-gs ann3-gs ann4-gs
lemma 0.92 0.91 0.94 0.97 0.88
POS 0.85 0.96 0.94 0.88 0.85

Table 4:
Inter-rater agreement:
summary for the
Nietzsche extract

Level All ann5-gs ann6-gs ann7-gs ann8-gs
lemma 0.95 0.95 0.85 0.94 0.95
POS 0.91 0.90 0.89 0.89 0.90

Table 5:
Inter-rater agreement:
summary for the
Mendel extract

Versuche über Pflanzenhybriden. These two sets of tokens had previ-
ously been annotated and discussed by two linguistically trained an-
notators, thus providing a gold standard for comparison. Agreement
values for the Nietzsche extract are given in Table 4, and those for the
Mendel extract are given in Table 5. Column ‘all’ presents agreement
values among all four annotators in terms of Fleiss’ generalized Kappa
(Fleiss 1971). The remaining columns provide each annotator’s com-
pliance with the Gold Standard (Cohen’s Kappa). With all agreement
scores exceeding the threshold of 0.81, annotations can be regarded
as ‘sound’ (Krippendorff 1980) or ‘almost perfect’ (Rietveld and van
Hout 1993).

As self-consistency (intra-rater) is even higher than mutual con-
sistency (inter-rater) – although both sets of values are satisfactory
– and as more annotators were involved in annotating the extension
than the original corpus, slightly more diverse annotation values are
expected for the extension. We therefore expect a slight decrease in
tagger performance for the newly added snippets.
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5.2 Tagsets
The choice of a tagset dependsmainly on the language to be annotated.
For German NLP, the Stuttgart-Tübingen TagSet (STTS) is widely rec-
ommended. It is used in the Tiger corpus and has been adopted for the
annotation of TGermaCorp. Consequently, STTS is used in this work
to train and evaluate POS tagging. However, there are some cases in
linguistic studies where for a certain type of word, such as a verb, it is
not relevant to differentiate between sub-groups, such as finite or non-
finite. Another argument in favor of simplification is that training ef-
fort for annotators will be reduced. Instead of simply training our tag-
gers for STTS and grouping results into a more coarse-grained tagset,
we also investigated the potential accuracy of a simplified tagset. We
therefore performed experiments based not only on the STTS but also
on the simplified tagset, sSTTS.

Our experiments on Latin texts are primarily based on the Capit-
ularies corpus, which was tagged using the Computational Historical
Semantics TagSet (CHSTS).8 Compared to STTS, the CHSTS is coarse
grained, and does not distinguish between different types of verbs, ad-
jectives, or pronouns. It does, however, distinguish nouns from named
persons and named entities. We therefore expect further simplification
not to have as great an impact on the accuracy of POS tagging as that
observed with the simplified STTS. Consequently, we also used a sim-
plified tagset sCHSTS in our experiments, which maps nouns (NN),
persons (NP), and named entities (NE) to one single POS tag (N).
Table 6 maps simplified equivalents to STTS and CHSTS.

The tagsets discussed so far encode morphological information to
some extent (e.g. VVFIN vs. VVIMP) but do not explicate morpholog-
ical categories as a whole. We therefore differentiate between coarse-
grained and fine-grained (morphological) POS tagging in our experi-
ments. Table 7 provides an overview of morphological tags. Categories
or tags that are unique either to Latin (·la) or German (·de) corpora are
marked accordingly. The Tiger corpus, the Capitularies and the Proiel
corpus provide annotations of case, (comparison) degree, gender,
mood, number, person and tense. In addition, the Latin texts are an-

8This tagset was developed within the framework of the Computational
Historical Semantics project (http://www.comphistsem.org/) (Jussen et al.
2007).
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Table 6: Mapping simplified tagsets for STTS and CHSTS

sSTTS STTS sCHSTS CHSTS
adjective ADJ ADJA, ADJD ADJ ADJ
adposition AP APPO, APPR, APPRART, APZR AP AP
adverb ADV ADV, PAV ADV ADV
article ART ART
card. num. CARD CARD NUM NUM
conjunction KON KOKOM, KON, KOUI, KOUS CON CON
dist. num. DIST DIST
foreign FM FM FM FM
interjection ITJ ITJ ITJ ITJ
non-word XY XY XY XY
noun N NN, NE N NN, NE, NP
particle PTK PTKZU, PTKNEG, PTKVZ, PTKA, PTKANT PTC PTC
pronoun P PDAT, PDS, PIAT, PIS, PPER, PPOSAT,

PPOSS, PRELAT, PRELS, PRF, PWAT,
PWAV, PWS, PIDAT

PRO PRO

truncation TRUNC TRUNC
verb V VAFIN, VAIMP, VAINF, VAPP, VMFIN,

VMINF, VMPP, VVFIN, VVIMP, VVINF,
VVIZU, VVPP

V V

pun. term. $. $. $. $.
comma $, $, $, $,
other pun. $( $( $( $(

Category Tags
case *de, ablativela, accusative, dative, genitive,

locativela, nominative, vocativela

degree *de, comparative, positive, superlative
gender *de, feminine, masculine, neuter
mood gerundla, gerundivela, imperative, indicative,

infinitivela, participlela, subjunctive, supinela

number *de, plural, singular
person 1, 2, 3
tense futurela, future perfectla, imperfectla, pastde,

perfectla, pluperfectla, present
voicela activela, passivela

Table 7:
Morphological tags used
for fine-grained POS
tagging. The ·la tags are
only used for Latin texts,
whereas ·de tags are only
used for the German Tiger
corpus
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notated with either active or passive voice. Note that tags common
to both corpora can be mapped directly, even if they are not identical
in appearance (e.g. “acc” in Tiger and “accusative” in the Latin texts).
The morphological annotation of the two Latin corpora is much richer
than that of the Tiger corpus.

5.3 Lexicons
For German, we extracted a lexicon from the GermanWiktionary.9 Ex-
tracting lemmas and syntactic words (including all grammatical cate-
gories available) from a Wiktionary instance in a thorough and robust
way is not a trivial task. Even though guidelines and templates exist,
they differ significantly between Wiktionary instances, and also vary
in the way they are used within the same language. Our approach
parses the HTML code of a Wiktionary instance that has been setup
on a local server using the XML-dump from 2015-09-01.10 This is, in
our experience, more accurate than trying to parse MediaWiki sources
directly, and it saves bandwidth on the official Wiktionary servers. We
also used GermaNet version 11.0 (Hamp and Feldweg 1997; Henrich
and Hinrichs 2010) as a lexical resource. In both cases, we are limited
to the simplified STTS tagset, since the lexicons extracted to not have
sufficient information to differentiate between different types of verbs,
as STTS does. Future work may however include an STTS-compliant
extraction and mapping of Wiktionary.

For Latin, we made use of the Frankfurt Latin Lexicon (FLL)
(Mehler et al. 2015). As an equivalent to GermaNet, we included the
lexical resources of a Latin WordNet (Minozzi 2008), available under
an Attribution-ShareAlike 4.0 license.

For MarMoT, we used information about word forms and their
POS. Table 8 gives an overview of the lexical resources used in the
experiment.

5.4 Embeddings
Besides lexicons, word embeddings can be used as an additional re-
source to train specific taggers like MarMoT. In order to achieve re-
liable representations of word forms in a vector space, large corpora

9http://de.wiktionary.org
10https://dumps.wikimedia.org/dewiktionary/20150901/
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Lexicon Language Tagset Word forms
DE-Wiktionary German sSTTS 381,296
GermaNet German sSTTS 126,392
GermanAll German sSTTS 463,912
FLL Latin CHSTS 3,635,245
FLL Latin sCHSTS 3,631,179
LatinWordNet Latin sCHSTS 9,124
LatinAll Latin sCHSTS 3,631,199

Table 8:
Statistics of lexica used
in the experiments

are required. We considered three corpora: The Gutenberg-DE Edition
13, the German Wikipedia, and the German newspaper “Süddeutsche
Zeitung” (SZ). All corpora were tokenized using the PTBTokenizer con-
tained in StanfordCoreNLP (Manning et al. 2014), lemmatized and
tagged using MarMoT, and dependency parsed using Mate (Bohnet
and Nivre 2012). All these tools and the corresponding processing
pipeline are available (also as web-services) via the TextImager system
(Hemati et al. 2016).

The Gutenberg-DE Edition 13 is a collection of classical German
literature ranging from modern works back to a poem by Walther von
der Vogelweide written in 1198. In contrast, the German Wikipedia
corpus covers articles of the online encyclopedia which were extracted
from a dump dating from 2016-02-03. The articles were parsed using
Sweble (Dohrn and Riehle 2011) and converted into TEI P5. Finally,
the newspaper corpus covers 23 volumes of the “Süddeutsche Zeitung”
between 1992 and 2014. In our experiments, we use each corpus sep-
arately and all corpora combined (German-All).

For Latin, we use texts ranging from the 2nd to the 14th cen-
tury. The documents stem from the Patrologia Latina (PL) corpus, the
Monumenta Germaniae Historica, and the Central European Medieval
Texts Series.11 12 13 Most of the texts are from the 9th to the 12th cen-
tury and were written by clerics. Since the Patrologia Latina does not
contain annotations of dependency structures, it is not suitable for all
the word embedding tools examined in this contribution. In order to
explore the effect of incorporating dependency structure information

11http://patristica.net/latina
12http://www.mgh.de/dmgh
13http:

//www.ceupress.com/books/html/CentralEuropeanMedievalTexts.htm
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into word embedding nonetheless, we included the Index Thomisti-
cus. This corpus contains texts by Thomas Aquinas (1225–1274 AD).
Its size is but a fraction of the Patrologia Latina, but it is annotated
with dependency information (Passarotti 2015).

Table 9 gives an outline of the corpus statistics.

Table 9:
Statistics of supplementary

corpora used in the
experiments

Corpus Language Sentences Tokens
Gutenberg German 24,766,958 440,896,599
Wikipedia German 85,027,606 1,158,005,656
SZ German 42,426,628 725,868,505
German-All German 152,221,192 2,324,770,760
PL Latin 5,598,592 133,158,974
Index Thomisticus Latin 21,931 371,824

In order to compute word embeddings, we incorporate five differ-
ent variants: The Mikolov model (Mikolov et al. 2013) optimizes word
embeddings such that they can predict other context words occurring
in a defined window. The model considers target-context word pairs
inside a window of words to the right and to the left of the target
word. Among other options, the text model chosen can be either the
continuous bag of words model (cbow) or the skip-gram model (skip).
The effect of varying this parameter is examined in the experiments
discussed in Section 6.1.2. FastText (Bojanowski et al. 2017) is a li-
brary and tool to learn word embeddings as well as sentence classi-
fications. Pennington et al. (2014) developed GloVe, which we also
examined as an alternative to learn word embeddings. Levy and Gold-
berg (2014) modified the skip-gram model of Mikolov et al. (2013).
They used dependency contexts instead of a window-based word con-
text. Komninos and Manandhar (2016) introduced a variant of the
skip-gram model that combines Mikolov skip-grams with those de-
rived from dependency trees. Each target word optimizes word em-
beddings such that maximum probabilities of other words within dis-
tance one and two in the dependency tree are calculated. A weighting
according to distance is applied. Words with distance one from the
target word are counted twice. These word-word predictions behave
similar to the window model of Mikolov et al. (2013). Dependency
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parses are also used to filter coincidental co-occurrences (Komninos
and Manandhar 2016).

5.5 Morphological analyzers
This article focuses on standard tools for natural language processing
that are (i) generic, in the sense that they can in principle be applied
to any language and genre, and (ii) produce an unambiguous annota-
tion. However, there are resources and tools developed for a specific
language that provide detailed information on lexical units and are
widely used in the community.

Morphological analyzers provide information about inflected
forms regarding morphology and lemmatization. They may also in-
clude information regarding segmentation (e.g. Lemlat). All of the
following analyzers perform an out-of-context analysis, that is, they
process each inflected form individually and may return multiple re-
sults. Furthermore, these results do not necessarily cover the actual
valid result (when context is considered). Thus we cannot directly
compare these resources to the tagging tools analyzed in our experi-
ments. However, we can perform a coverage analysis in order to get an
overall impression of the potential of the analyzers. For this purpose,
we discard numerals and punctuation. Table 10 summarizes the cov-
erages of the following morphological analyzers. Morpheus is a web
service as part of the Perseus project (Crane 1991), which provides
morphological analyses for Greek and Latin.14 Lemlat 3.0 (Passarotti
et al. 2017) is a morphological analyzer based on a lexical database.
LatMor (Springmann et al. 2016) is a finite-state morphology for Latin,
which, on our corpora, reached the best coverage.

Analyzer Capitularies Proiel
LatMor 99.527 99.426
Lemlat 97.616 99.495
Morpheus 92.371 96.297

Table 10:
Coverage of morphological analyzers
on Latin corpora in percent

14To evaluate the coverage of Morpheus, we used a Python project (https://
github.com/tmallon/morpheus) by Timothy Mallon, which wraps and caches
requests on the Morpheus web service.
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6 experiments

In this section, we evaluate the performance of various NLP tools. We
do not seek to find only one perfect combination of tool and resources
in order to proclaim a winner. To attempt to do so would require
extensive hyperparameter experiments and tuning of each tool. Our
experiments showed that this is almost impossible since some tools
take hours to train a model on our compiled training/test partitions
and have a wide parameter space to explore. And even then the results
would be valid for the examined corpora but might differ significantly
for other corpora. This is because the process of optimizing parameters
to maximize accuracy for a given data set might lead to over-fitting
for that specific task.

So our focus is rather on the practitioner: What accuracy can one
generally expect from a given NLP approach – used off-the-shelf and
using default hyperparameters – and how much time do you need to
invest for training and predicting? Furthermore, we are interested in
how significant the differences are between older and more modern
approaches. Does “old” automatically need to stand for “no longer
relevant”?

We start by examining POS and fine-grained POS tagging, fol-
lowed by lemmatization. Finally, we evaluate what level of accuracy
we can expect when putting the pieces together.

6.1 Tagging
Table 11 shows POS tagging accuracy, achieved without using

any optimization or adding any supplementary resources for training.
LemmaTag performed best on almost all German corpora, followed
by MarMoT and FLORS. The picture becomes more diverse when con-
sidering the results for the Latin texts. While LemmaTag still performs
best on the Capitularies, accuracy drops significantly for Proiel as well
as (to a minor degree) for the two OD scenarios. On average, Mar-
MoT and the tagging veteran TreeTagger are only 1.40% apart. An-
other outlier worth noticing is FLORS, trained on Tiger and tested on
TGermaCorp, which is 0.47% above LemmaTag (second in place for
this setting), followed by Mate and Lapos. As expected, we observed
a significant drop in accuracy for OD experiments, compared to ID
experiments. For example, MarMoT achieves 98.02% accuracy on the
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Tiger corpus (ID). But when Tiger is used as the training corpus to tag
TGermaCorp, results drop by about 9%. The problem becomes even
more apparent when a relatively small corpus such as Proiel is used to
tag a larger corpus like the Capitularies. In this case, accuracy drops
from 95.62% (Proiel ID) to 63.48% (Proiel→Capitularies) when using
Lapos. However, this is partly because Proiel does not contain punc-
tuation, so a model trained on that corpus is bound to produce more
errors when applied to the Capitularies. Since a practitioner is often
limited to using pre-trained models, OD experiments reveal a much
more realistic view of what can be expected. In Section 6.1.2, we will
examine how and to what degree accuracies in OD scenarios can be
improved by supplementary resources. Our results show that given a
specific tagger, accuracy may vary heavily across different resources.
We also observe that the taggers perform quite differently for the same
resource. This finding suggests, that it may be worth the effort to try
more than one tagger on a given POS tagging task.

Taggers may vary considerably in the way they can cope with
words which have not been part of the training set (out-of-vocabulary
items). Table 11 lists the accuracy for out-of-vocabulary items in
italics. Figure 3 shows a visualization of the differences compared
to all tokens as heatmap. The more saturated the cell, the higher the
delta. The maximum delta of 31.88% is reached by Stanford tagger
on the Capitularies. Lapos and MarMoT perform best from the per-
spective of how well they can cope with out-of-vocabulary items. In
contrast Stanford tagger, RDR and TreeTagger mark the other end
of the spectrum. Figure 3 also reveals that the delta for Tiger→TG is
much higher than for TG→Tiger which is in contrast to Capit→Proiel
vs. Proiel→Capit: In the German out-of-domain scenario accuracy
drops significantly more when Tiger, being the much larger corpus, is
used to tag TGermaCorp. For Latin it is the other way around: Accu-
racy drops much more for Proiel being used as training set to tag the
significantly larger Capitularies corpus.

What are the main reasons for tagging errors? Figure 4 depicts in
a bipartite graph how often POS-tagging errors have occurred, using
LemmaTag on Tiger. The arrows from the gold-standard (top) to the
test results (bottom) represent the range of variation in POS-tagging
errors, and their relative frequency of occurrence. For better read-
ibility, the figure only shows the ten most frequent nodes for gold
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Figure 4: Depiction of the distribution and extent of erroneous POS tagging,
comparing gold-standard tags (top) with test-results (bottom), using STTS for
LemmaTag on Tiger

standard, and for test results, while arrows indicate at least ten mis-
matches. Percentages represent the ratio of all incoming or outgoing
arrows with respect to the overall total. Apparently, most errors are
caused by named entities recognized as nouns and vice versa. Like-
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Figure 5: Depiction of the distribution and extent of erroneous POS tagging, com-
paring gold-standard tags (top) with test-results (bottom), using STTS for all tag-
gers on Tiger

wise, finite verbs are often erroneously tagged as non-finite verbs and
vice versa. Are these observations specific to LemmaTag or do other
taggers show similar behavior? Compare Figure 4 with Figure 5, which
shows the sum of all mismatches over all taggers combined. Percent-
ages in the upper row code the fraction of errors where the correspond-
ing POS was tagged erroneously; percentages in the lower line code
the fraction of errors where this target POS was chosen. The figure
is based on the same filter criteria. As before discriminating named
entities and nouns as well as finite and non-finite verbs are the main
sources of error.

The POS-tagging accuracy results shown in Table 11 for ID exper-
iments are the average of a three-fold cross-validation. The choice of
how to partition a corpus into a training set and a test set may have
a significant impact, and thus make comparision between POS tag-
ging results from the literature more difficult. The distribution of the
deltas between the minimum and maximum value encountered for
POS tagging in cross-validations (Figure 6) clearly shows that delta
values depend on the size of the corpus. The smaller the corpus to be
partitioned, the higher the probability that the training set will fail to
cover words or patterns that are part of the test set.

In Section 5.2, we introduced a mapping from STTS to a sim-
plified version that abstracts from variants of verbs, pronouns, etc.
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The Latin tagset CHSTS is similar to sSTTS already, but still discrim-
inates nouns from named entities and named persons. Consequently,
we also examined the impact of an abstraction of the Latin tagset,
sCHSTS. As some use cases in computational linguistics do not require
an explicit distinction for verbs, pronouns, and other POS, the ques-
tion is whether this abstraction results in significantly higher accu-
racy. Table 12 contrasts the STTS/CHSTS-based POS results for Tiger
and the Capitularies with the simplified tagsets, sSTTS and sCHSTS.15
All taggers show improvement after the abstraction. On average Tiger
gains 1.09% while accuracy for Capitularies is increased by 0.32%.
Since sCHSTS only abstracts nouns, the improvement is understand-
ably less.

We already noted that mismatches between named entities and
nouns, as well as variants of verbs, are a major source of POS tagging
errors. Shifting to a simplified tagset brings into focus other errors
that were already present in the original tagsets. Figure 7 shows the
percentage of erroneous POS using sSTTS for all taggers on Tiger. As
before, the figure shows only the ten most frequent types for gold
standard and for test results, with arrows to indicate at least ten mis-

15For two out of three train/test partitions of Tiger, Lapos frequently tagged
commas not as “$,” but as “$(”, “V” and other forms. As this error was not ob-
served for other corpora nor other taggers, we presumed that this was an error
in Lapos and therefore explicitly set the correct tag for commas in this specific
case.
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Table 12:

POS accuracy for all tagsets
on Tiger and Capitularies in %

Tiger Tiger Capit Capit
STTS sSTTS CHSTS sCHSTS

FLORS 97.69 98.74 95.44 95.65
Lapos 97.84 98.69 96.08 96.31
LemmaTag 98.58 99.18 96.18 96.51
MarMoT 98.02 98.88 96.10 96.35
Mate 97.88 98.90 95.79 96.09
OpenNLP 96.84 98.11 94.83 95.18
RDRPOSTagger 96.72 97.92 95.43 95.88
Stanford 97.17 98.37 94.83 95.18
TnT 97.23 97.93 95.47 95.74
TreeTagger 97.09 97.86 95.17 95.60
average 97.51 98.46 95.53 95.85
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Figure 7: Percentage of POS tagging errors using sSTTS for all taggers on Tiger

matches. The most dominant errors are adjectives erroneously tagged
as nouns or verbs. Another frequent error stems from pronouns beings
tagged as articles. These errors were present in STTS as well but were
dominated there by the much more frequent problem of distinguishing
nouns from verbs.

So far we have only considered coarse-grained POS tagging. Now,
we shed light on what accuracy can be achieved for fine-grained POS
tagging. Instead of lining up result tables as we did for POS, we pro-
pose a graphical representation to depict tagging accuracy for the
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Fine-grained POS tagging
of the Tiger corpus
(accuracy in %)

Tiger corpus (Figure 8) and for the Capitularies (Figure 9). For both
corpora, results are relatively good for degree, mood, person, and
tense, whereas case, gender, and number appear to be more chal-
lenging. All tools show similar behavior with respect to the accuracy
for a given morphological category. LemmaTag performs exception-
ally well on all categories, while TreeTagger marks the lower end of
the spectrum.

6.1.1 Majority voting
When more than two annotations are generated for the same task, a
majority-vote approach can be applied. Assuming that the majority
is more likely to be right when tagging a specific token, erroneous
outliers can be compensated for, thus leading to better results. We
distinguish three groups of taggers: By “top3” and “top5” we denote
the three or five most recently published (see Section 4): LemmaTag,
FLORS, RDRPOSTagger, MarMoT, and Mate. By “all” we denote the
ten taggers examined in our study. We also rely on (descending) order
of publication of the taggers to resolve tie situations in majority votes.

As Table 13 shows, applying a majority vote improves perfor-
mance in most cases. Unexpectedly, using the three most recently pub-
lished taggers (LemmaTag, FLORS, and RDRPOSTagger, according to
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Figure 9:

Fine-grained POS tagging
of the Capitularies

(accuracy in %)
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Table 13:
Majority vote tagging
of POS (STTS/CHSTS)

(accuracy in %)

Corpora Best Top3 Top5 All
TG 93.44 93.63 93.91 93.86
Tiger 98.58 98.30 98.37 98.29
TG→Tiger 90.69 90.47 91.37 91.39
Tiger→TG 90.59 90.41 90.44 90.08
Capit 96.18 96.20 96.29 96.28
Proiel 95.62 94.70 95.78 96.04
Capit→Proiel 87.73 86.49 87.82 87.92
Proiel→Capit 63.85 63.51 64.61 64.76

our list) cannot be recommended, as it improves accuracy in only two
out of eight cases. However, by adding MarMoT and Mate to this list,
accuracy exceeds the baseline in six out of eight cases. A similar im-
provement is observed when using all taggers.

We then went a step further and evaluated the performance of ma-
jority votes for any combination of taggers, in any possible order (to
solve ties). With 10 taggers available, 9,864,000 combinations were
computed. Table 14 lists the best combinations for fine-grained (STTS)
POS tagging of the Tiger corpus, using a fixed number of taggers. In
this scenario, the best result (98.44%) is achieved when using Lem-
maTag, Mate, TnT, and FLORS (in that order), which is 0.14% above
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# Acc. Taggers (ordered chronologically, most recent first)
3 98.39 LemmaTag, FLORS, Mate
4 98.44 LemmaTag, Mate, TnT, FLORS
5 98.37 LemmaTag, RDRPOSTagger, FLORS, MarMoT, Mate
6 98.41 LemmaTag, RDRPOSTagger, Mate, FLORS, MarMoT,

TreeTagger
7 98.33 LemmaTag, RDRPOSTagger, Mate, TnT, MarMoT,

Lapos, FLORS
8 98.36 LemmaTag, RDRPOSTagger, Mate, Lapos, MarMoT,

TreeTagger, TnT, FLORS
9 98.29 LemmaTag, Mate, MarMoT, TnT, TreeTagger,

FLORS, Stanford, RDRPOSTagger, Lapos
10 98.31 LemmaTag, Mate, FLORS, RDRPOSTagger, Stanford,

MarMoT, TnT, Lapos, TreeTagger, OpenNLP

Table 14:
Best results for
majority vote
POS-tagging
(STTS) of Tiger
by number
of taggers
(accuracy in %)

the best single performer (LemmaTag). Our results suggest that, in
practice, the relatively small gain in performance does not justify the
great effort for training the individual tools in order to use majority
vote tagging.
6.1.2 Supplementary resources
The first experiment presented in this article examined the perfor-
mance of various tools on POS tagging, with no hyperparameter tun-
ing and no additional resources whatsoever. We observed that, even
though all tools produced reasonable results for ID scenarios, switch-
ing to OD settings had a severe impact on accuracy: The training data
cannot cover the morphological and grammatical diversity, or the spe-
cific characteristics of the test domain. This problem becomes even
more severe when only small training corpora are available. Creating
well-annotated corpora as gold standard for tagging is a tedious and
complex task. How can additional resources that are easier to produce
be used to augment models, and what impact can be expected on the
accuracy of our scenarios?

Lexical resources as well as word embeddings can be used with
MarMoT to support the training of POS tags, while FLORS can benefit
from additional unstructured texts. Because of the time required to
train FLORS models, we focused on MarMoT to examine the impact of
different resources on overall performance. We started by examining
POS tagging of Latin corpora, using different combinations of lexicons
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Table 15:

POS (CHSTS)
accuracy in %
using MarMoT,

for different
types of word
embedding,

based on two
Latin corpora

Emb. corp. Corpora No em. Mik. F.Text GloVe Kom. Levy
PL Capit 96.10 96.26 96.23 96.01 – –
Thom. Capit 96.10 96.08 96.09 96.06 96.03 96.01
PL Pro 95.49 96.85 96.75 95.90 – –
Thom. Pro 95.49 95.67 95.56 95.75 95.83 95.78
PL Cp→Pro 87.58 88.68 88.69 86.75 – –
Thom. Cp→Pro 87.58 87.28 87.35 86.40 86.33 86.14
PL Pro→Cp 63.05 69.61 68.77 64.91 – –
Thom. Pro→Cp 63.05 63.65 63.47 62.92 64.25 64.24

and word embeddings. The word-embedding approaches of Komninos
and Levy can only be applied to the Index Thomisticus, because the
Patrologia Latina corpus lacks dependency information.

We used default values for Mikolov, FastText, GloVe, Komninos,
and Levy, while aiming to keep results for the different approaches
comparable. We therefore used a feature vector size of 100 and 5 iter-
ations (Levy used 1 by default, which we changed to 5). As the default
number of iterations for GloVe is 25, we did not limit the number of
iterations to 5. For German, we set the minimum word frequency to
10 in order to compute embeddings within reasonable timeframe. For
Latin, we used a minimum word frequency of 1.

Table 15 shows that using word embeddings based on the Patrolo-
gia Latina improved tagging results. Mikolov performs best in most
cases, followed by FastText and GloVe. The most significant boost in
terms of accuracy is achieved for the OD setting Pro→Cp. In this case,
training POS tags based on the rather small Proiel corpus benefits best
from the additional information provided by word embeddings. In two
cases, GloVe has a negative impact compared to the baseline of using
no word embeddings.

In contrast, the results of using Index Thomisticus as a basis for
word embeddings are rather inconclusive. In about half the cases the
baseline is not met. When Proiel is examined in-domain or out-of-
domain, Komninos yields the best results, but in the other scenarios,
it does not reach baseline accuracy either. Using dependency informa-
tion may therefore have a positive impact, but a great deal depends
on the corpora being processed. The Index Thomisticus consists only
of texts from the 13th century, whereas the Capitularies date from
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Corpora Lexicon Tagset No em. PL skip PL cbow
Capit none CHSTS 96.10 96.26 95.02
Capit FLL CHSTS 96.52 96.60 95.52
Capit none sCHSTS 96.35 96.49 95.44
Capit FLL sCHSTS 96.67 96.69 95.77
Capit La-WN sCHSTS 96.37 96.49 95.45
Capit all sCHSTS 96.68 96.69 95.78
Cp→Pro none CHSTS 87.58 88.68 85.29
Cp→Pro FLL CHSTS 88.59 88.79 86.03
Pro→Cp none CHSTS 63.05 69.61 68.65
Pro→Cp FLL CHSTS 69.88 72.82 71.18

Table 16:
POS accuracy in %, using
MarMoT, for combinations
of lexicons and
Mikolov-embeddings on
Capitularies as well as
OD-settings of Capitularies
and Proiel

the Merovingian and Carolingian periods, while Proiel is based on an-
cient and early Christian Latin. Furthermore, the Index Thomisticus
is rather small, at least compared to the Patrologina Latina. Finally,
the Index Thomisticus treebank is completely set in lower-case, which
may also contribute to the bad overall results.

Table 16 reveals that including lexical resources to train MarMoT
consistently improves accuracy in ID as well as OD experiments. The
most significant improvement can be observed when the relatively
small Proiel corpus is used to tag the Capitularies. By including the
Frankfurt Latin Lexicon (FLL), accuracy can be increased by 6.83% to
69.88%. Even a small lexicon like that extracted from the Latin Word-
Net, which is only a fraction the size of the FLL, has a positive impact
on the results. As already noted, Proiel does not contain punctuation,
and neither do the lexicons: thus the improvements result from the
additional lexical resources, and are not merely a fix for a single short-
coming. Table 16 also shows that skip-gram clearly outperforms the
continuous bag of words (cbow) model when using Mikolov. Finally,
results confirm that using the simplified tagset sCHSTS over CHSTS
also provides better results when supplementary resources are used.
The best improvement can be achieved by incorporating skip-gram
and FLL for the Proiel→Capit scenario, which raises accuracy from
63.05% to 72.82%.

In order to study the impact of supplementary resources on Ger-
man, we rely on two lexica: one extracted from the German Wik-
tionary and the other from GermaNet (see Section 5.3). We used five
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methods (Mikolov, FastText, GloVe, Komninos, and Levy) to com-
pute word embeddings on four different corpora: Gutenberg, Süd-
deutsche Zeitung (SZ), Wikipedia, and a merged corpus thereof (see
Section 5.4). Combined with four different ID and OD scenarios, for
two different tagsets, there are too many options to be shown in detail.
We rather focus on specific aspects, and then describe the whole.

We first examined the impact of different types of word em-
beddings, based on the four corpora available for this experiment.
Table 17 shows the results for POS tagging, using MarMoT, on a se-
lection of ID and OD settings for Tiger and TGermaCorp, using STTS.
As we already saw for Latin, our findings indicate that using word
embeddings can have a positive or negative effect on accuracy, de-
pending on the method used and the parameters applied. Mikolov and
Komninos yielded the best accuracy, even for OD scenarios. FastText
was mostly on a par with Mikolov, whereas using GloVe gave slightly
worse results, but was still better than the baseline of no embeddings
at all. The expected accuracy gain when including dependency infor-
mation for training with Komninos and Levy was much more obvious
in the experiments on German in comparison with the Latin corpora.
However, we assume that this result cannot be generalized to the lan-
guage examined, but rather to the specific characteristics of the Latin
corpus used.

Table 17:
POS (STTS)

accuracy in %
using MarMoT,

for different
types of word
embedding,

based on four
German corpora

Emb. corp. Corpora No em. Mik. F.Text GloVe Kom. Levy
Gutenberg Tiger 98.02 98.12 98.11 98.06 98.19 98.16
SZ Tiger 98.02 98.20 98.20 98.11 98.29 98.22
Wikipedia Tiger 98.02 98.17 98.16 98.05 98.25 98.19
Merged Tiger 98.02 98.22 98.22 98.11 98.32 98.28
Gutenberg Tig→TG 89.10 90.17 90.10 89.88 90.11 90.07
SZ Tig→TG 89.10 89.81 89.67 89.92 89.67 89.54
Wikipedia Tig→TG 89.10 89.79 89.72 89.84 90.07 89.92
Merged Tig→TG 89.10 90.45 90.17 90.21 90.37 90.33
Gutenberg TG→Tig 90.59 91.98 90.72 91.60 91.61 91.62
SZ TG→Tig 90.59 92.51 92.18 91.19 93.10 92.84
Wikipedia TG→Tig 90.59 92.37 92.64 91.54 93.43 93.44
Merged TG→Tig 90.59 92.96 93.02 91.83 93.80 93.44
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Corpora Tagset No em. Mik. F.Text GloVe Kom. Levy
TG STTS 93.34 94.03 94.05 93.64 94.08 93.79
Tiger STTS 98.02 98.22 98.22 98.11 98.32 98.28
TG→Tiger STTS 90.59 92.96 93.02 91.83 93.80 93.44
Tiger→TG STTS 89.10 90.45 90.17 90.21 90.37 90.33
TG sSTTS 96.02 96.51 96.43 96.27 96.47 96.40
Tiger sSTTS 98.88 99.00 98.98 98.90 99.04 99.02
TG→Tiger sSTTS 94.83 95.75 95.55 94.85 96.15 96.13
Tiger→TG sSTTS 92.41 93.22 93.10 93.10 93.35 93.07

Table 18:
POS accuracy
in % using
MarMoT,
for different
types of word
embedding,
based on all
German corpora
(merged)

Do we get a different picture when we consider the simplified
version of STTS, which abstracts from different types of verbs, etc.?
Table 18 presents the results for POS tagging, comparing STTS with
sSTTS. Apart from the general improvement of accuracy by switching
to sSTTS, we observe the same behavior as with plain STTS when
embeddings are introduced. Using embeddings based on Komninos
yields the best results. The accuracy for Tiger reaches the 99% mark.

In Section 4, we mentioned an approach for POS tagging based
on Bidirectional Long Short-TermMemory Recurrent Neural Networks
(BLSTMRNN; Wang et al. (2015)). Because of limited hardware re-
sources and the extensive time needed to train the networks, we did
not fully include it in our experiments. However, we did perform a
POS tagging experiment on Tiger (ID), in order to estimate the per-
formance of this class of taggers compared to others. We include it
in the section discussing supplementary resources because our imple-
mentation strictly requires word embeddings (rather than using them
as an option as MarMoT does). We used Mikolov and the merged Ger-
man corpus for this task. Using BLSTMRNN achieves an accuracy of
98.29%, which is comparable to MarMoT (98.22%), using the same
word embedding.

So far we have only considered word embeddings as a supple-
mentary resource for German POS tagging. In the following, we ex-
amine the impact of the two lexicons based on Wiktionary and Ger-
maNet. Table 19 shows the accuracy for combinations of lexicons
and embeddings on the Tiger corpus. Since we observed that Levy
was outperformed by Komninos based on the merged German corpus,
we only considered one option (Komninos) as word embedding. Wik-
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Table 19:

POS (sSTTS) accuracy in %
for combinations

of German lexica and word
embeddings, using MarMoT

with Komninos, based on
the merged German corpus

None GNet Wikt. AllLex Emb All&Emb
TG 96.02 96.11 96.26 96.24 96.47 96.46
Tiger 98.88 98.90 98.95 98.94 99.04 99.04
TG→Tig 94.83 94.96 95.14 95.16 96.15 96.16
Tig→TG 92.41 92.50 92.56 92.61 93.35 93.33

tionary and, to a lesser extent, GermaNet provided a slight gain in
performance. Merging both resources (AllLex) had no significant ef-
fect. Combining lexical resources and embeddings did not produce the
expected improvement in accuracy. In fact, our findings indicate that,
at least in this setting, using both types of resources may even lead to
a slight drop in accuracy. This scenario suggests that it is better to rely
solely on embeddings rather than lexical resources or a combination
of both.

We therefore conclude that including lexical resources for POS
tagging is consistently beneficial. Incorporating word embeddings
may improve results in many cases, especially in OD scenarios. How-
ever, depending on the corpus being processed, as well the method
and parameters being used to compute the embeddings, the effect may
also be negative, as seen in our Latin experiments. For Mikolov, the
skip model outperforms the continuous bag of words model.
6.1.3 RDR-based POS tagger on external taggers
Our experiments have shown that the RDR-based POS tagging ap-
proach produced only modest results. So far, however, we have sim-
ply applied the out-of-the-box procedure, using the internal, lexicon-
based tagger for initial tagging, as a practitioner will most likely do.
As Nguyen et al. (2016) have demonstrated, using an external tagger
can yield better results.16 They report an accuracy of 96.28 using the
internal tagger for initial tagging and 97.46 using TnT, which consti-
tutes an improvement of 1.18. In our experiment, we measured 96.72
as the baseline when using the internal tagger. By integrating TnT
as the initial tagger, we achieve an accuracy of 97.62, an improve-

16According to personal communication with the authors, the data published
in Nguyen et al. (2016) is not based on 10-fold jack-knifing, which they nonethe-
less recommend to achieve better results. Following their recommendation, we
applied 10-fold jack-knifing in our experiments.
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ment of 0.9 compared to the baseline and 0.39 compared to TnT.
Can this approach also improve the results for the MarMoT tagger,
among the most successful taggers on the Tiger corpus in our experi-
ments, with an accuracy of 98.02? When using MarMoT as the initial
tagger for the RDR-based POS tagging approach, accuracy reaches
98.05, a slight improvement. This shows that the method can signif-
icantly improve the results of mediocre taggers, and may even have
a positive impact on the best performing taggers. However this im-
provement massively increases computation costs in both training
and testing.
6.1.4 Pipeline vs joint tagging
So far, we have examined each category of tagging independently. But
as soon as morphological tagging is included, the question of max-
imum accuracy arises, when all tags have to fit the gold standard.
We examined two different approaches: pipeline-learning and (what
we call) “joint-learning”. In pipeline-learning, we train and test each
category independently. Then we combine all results to compute the
overall accuracy. The advantage of this approach is that it can be per-
formed by virtually any tagger. One of its major disadvantages, how-
ever, is that we cannot integrate any dependencies between categories
into the learning process. Thus, it is theoretically possible for a noun
to be tagged with a tense because each category is learned and tested
independently.

A joint approach (in our sense) integrates all grammatical cate-
gories into one tag, which helps to capture dependencies. However,
the tagset space becomes considerably larger: the Tiger corpus re-
quires 53 STTS tags, but when the tags required to capture morphology
are added, the total rises to 694 joint tags. Likewise, the Capitularies
use 19 CHSTS tags, and 913 joint tags. In our experiments, taggers like
Lapos and Stanford could not handle such a vast tagset space.

Table 20 shows accuracy results for joint and pipeline tagging on
Tiger, Capitularies, and Proiel (ID/OD). As Figures 8 and 9 have al-
ready shown, accuracy varies considerably from category to category.
While results for POS are relatively stable across all taggers, results
for case and gender are significantly worse. The results achieved by
pipeline learning are unlikely to be better than the individual results
for each category.
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It is striking how LemmaTag outclasses other taggers for mor-
phological tagging of the Tiger corpus, reaching 93.72% accuracy for
pipeline tagging, i.e. 6.73% above MarMoT in second place. Results
for Latin corpora (whether ID or OD) are far closer. LemmaTag still
performs reasonably well on the Capitularies, both ID and OD. But
when Proiel is processed in-domain or as training set to tag Capitu-
laries, results for LemmaTag fall to the lower end of the spectrum. An
outlier worth noticing is the RDRPOSTagger, which performs best on
the Proiel→Capit OD setting. As expected, the joint approach outper-
forms pipeline tagging in most cases, and can thus be recommended
when the tagger supports it. LemmaTag can be recommended for Ger-
man and it also performs well on Latin corpora, at least on the Capit-
ularies. When accuracy for the joint approach is averaged, MarMoT
obtains the best results, mainly because of its better performance on
Proiel. This may be due to the fact that Proiel lacks punctuation. Fu-
ture work needs to address in more detail the robustness of taggers on
morphological tagging for OD settings and small corpora.
6.2 Lemmatization
To evaluate lemmatizers, we trained systems on the (form,lemma)
pairs available in the training data. For LAT, we considered lemma-
tization as a tagging task, as described in Gesmundo and Samardzic
(2012). We used the MarMoT tagger for this, without any additional
resources. We could have used any other tagger, but MarMoT has
proven to work well for POS tagging and can deal with large label
spaces. For example, using Tiger as the training corpus for lemmati-
zation results in 2,405 labels. This would not be suitable for Lapos
or Stanford. We found (Table 21) that LemmaTag performs best in
most cases (performing joint POS tagging and lemmatization); LAT is
consistently better than LemmaGen, which corroborates results from
Gesmundo and Samardzic (2012). We also note that ID accuracy on
Tiger is higher than on TGermaCorp, but Tiger is a larger corpus than
TGermaCorp (∼50,000 sentences vs.∼9,000) andmore homogeneous,
while TGermaCorp contains poems, various types of literature, etc.
The OD results seem pretty low, compared to ID results, as was the
case for tagging. We remark that specific lemma conventions differ
between the two datasets. In addition, TGermaCorp contains spelling
mistakes (Widersehen), and historical variants (Capital) that are con-
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Table 21:

Direct lemmatization
accuracy in %

LemmaGen MarMoT-LAT LemmaTag
TG 91.71 91.99 92.11
Tiger 98.07 98.19 98.66
TG→Tiger 87.00 88.57 88.37
Tiger→TG 87.26 88.05 90.34
Capit 95.64 95.81 96.13
Proiel 90.63 90.29 81.85
Capit→Proiel 81.39 81.24 82.25
Proiel→Capit 76.28 76.37 49.61

ventionally lemmatized by their modern lemma forms (Kapital). Such
cases are difficult for trained systems to handle, since they are absent
from Tiger.

As Tables 22 and 23 show for the German TGermaCorp and the
Latin Capitularies, the most frequent lemmatization errors by LAT and
LemmaGen correlate well. Confusing the two variants of the German
conjunction “dass” and “daß” (old) is partly due to the training corpus,
which contains documents from different decades and centuries, and
partly to genuine inconsistencies in the gold standard, which should
be corrected in future editions. The impact on overall accuracy is
still quite minor – normalizing these variants improves accuracy for
TGermaCorp ID by about 0.1%. Table 24 illustrates how the type of
lemmatization error shifts when the model is either trained based on
Proiel (ID) or on the Capitularies (OD), which decreases accuracy by
about 9%.

6.3 Tagging and lemmatization
In Section 6.1.4, we addressed the pros and cons of joint vs pipeline
learning of POS and morphology tags. Here, we complete the pic-
ture by examining accuracy for lemmatization and tagging combined.
Table 25 shows accuracy for LemmaTag (joint fine-grained tagging
and lemmatization), ranging from 92.95% for lemmatization and fine-
grained tagging on Tiger ID to only 30.44% on Proiel→Capit. Like-
wise, the loss of accuracy resulting from the extension of lemmatiza-
tion by POS and morphology ranges from 5.71% on Tiger and 7.6%
Capitularies to 20–25% for Proiel and the two Latin OD settings.
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Table 24: Most frequent lemmatization errors for LAT Proiel ID and Capitularies
→ Proiel OD

LAT Proiel LAT Capit→Proiel
Form Gold Predicted # Form Gold Predicted #
quod qui quod 17 se is sui 630
quam qui quam 8 a ab a 333
minus parum minus 7 ac atque ac 291
una una unus 5 sibi is sui 210
respondit respondeo respondo 5 castra castra castrum 177
oportere oportet oporteo 4 sese is sui 153
tergum tergum tergus 4 quod qui quod 140
coeperunt incipio cobeo 4 uti ut utor 120
actis ago actis 4 castris castra castrum 99
Hi is hic 4 quam qui quam 86
Si si is 4 se se sui 69
progressus progredior progredo 3 minus parum parve 57
magis magis magus 3 copias copia copio 51
primum primus primum 3 Germanos Germani Germanus 51
iuris ius iur 3 Germani Germani Germanus 51
vocibus vox vocis 3 equitatu equitatus equitas 48
reliquit relinquo reliquo 3 equites eques equites 45
plures multus plures 3 Germanorum Germani Germanus 45
pedem pes pedem 3 Haeduis Aedui Haeduis 43
influit influo infelio 3 equitatum equitatus equitas 40

Lemma Lemma
POS

POS
morph

Lemma
POS
morph

TG 92.11 87.44 – –
Tiger 98.66 97.21 93.68 92.95
TG→Tiger 88.37 82.05 – –
Tiger→TG 90.34 83.39 – –
Capit 96.13 94.33 90.03 88.53
Proiel 81.85 78.54 73.10 62.48
Capit→Proiel 82.25 76.22 63.43 57.40
Proiel→Capit 49.61 44.06 38.09 30.44

Table 25:
Accuracy in % for
combined POS tagging,
morphological
joint-tagging,
and lemmatization,
using LemmaGen
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Table 26:
Run-times

for a partition
of Tiger (ID)

POS Joint
FLORS 3h16m26s 3m42s 1d7h39m56s 7m14s
Lapos 6m30s 13s
LemmaTag (GPU) 26m7s 2s 2h23m16s 10s
LemmaTag (CPU) 18h42m57s 1m58s
MarMoT 6m1s 10s 44m47s 38s
Mate 11m57s 21s 3h0m0s 4m4s
OpenNLP 8m10s 4s 1h17m23s 27s
RDR 20m33s 10s 21m5s 1m
Stanford 35m12s 11s
TnT 5s 697ms 13s 2s
TreeTagger 2s 438ms 1m12s 5s

6.4 Computing time
Until now, we have focused on evaluating tools with regard to the
accuracy achieved for tagging and lemmatization. However, when a
parameter space needs to be explored to determine the optimal con-
figuration for training a model, or when large collections of text need
to be tagged, runtime cannot be neglected. Table 26 shows the time
needed to train and test a partition of the Tiger corpus. Here, 45,372
tokens in 799,406 sentences were used for training, and 5,100 tokens
in 88,832 sentences for testing. Please note that these numbers may
vary considerably, depending on the workstation or server the pro-
cesses run on, as well as the machine’s current load. However, they
give a first impression of what to expect. Note also that the time for
testing included the time taken to load the trained files.17 While Tree-
Tagger takes about 2 seconds to train and less than a second to test,
FLORS takes more than 3 hours to train and 3 minutes 42 seconds
to test. When taking accuracy into account, MarMoT appears to be
the best trade-off, as it needs only 12 minutes for training and 10
seconds for testing. Alternatively, if a GPU workstation is available,
LemmaTag is a good choice.18 Without a GPU, training and testing
for LemmaTag can also be done on CPUs. But for CPU-based POS tag-
ging, we measured a training time of over 18 hours, with a test time

17LemmaTag performs training and testing in one process chain, so that the
model files would have already been loaded.

18We conducted our experiments on a workstation equipped with one NVidia
GTX1080 and one GTX1060.
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of about 2 minutes. So even if a GPU is used for training, testing on
a CPU is still not a good option with large corpora. In order to tag
large amounts of text, we recommend splitting the corpus into chunks
and processing them separately – either by separate processes or by
multi-threading within one application. In this regard all taggers (to
our knowledge) suffer from the problem of not being thread-safe, such
that multiple instances cannot share the same model file in memory.
This means that each instance needs to load its own representation of
the trained model. So, depending on the hardware available for tag-
ging, a bottle-neck may be caused by short memory rather than by
CPU issues.

Finally, we examine the time needed to train and test lemmatiza-
tion based on Tiger. LemmaGen takes 6 seconds for training and less
than 1 second for testing, while LAT based on MarMoT takes 2h29m9s
for training and 1m47s for testing. Since accuracy results for Lemma-
Gen and MarMoT-LAT differ only marginally, LemmaGen has a much
better performance-runtime trade-off than MarMoT-LAT. LemmaTag
takes 26m7s for training and 2s for testing – the same time as it takes
for POS tagging, since it performs both tasks in one sweep.

7 discussion

In terms of accuracy, MarMoT, FLORS, Lapos, Mate, and particularly
LemmaTag are the methods of choice when (especially) fine-grained
morphological tagging is the goal. LemmaTag performs exceptionally
well on German corpora but its results for Latin, especially on Proiel
and Latin OD, show that it is not the unique solution that fits all cases.
For POS tagging, MarMoT proves to be competitive. When trained
with embeddings as a supplementary resource, it reaches up to 98.32%
on Tiger, while LemmaTag achieved 98.58%. Moreover, the lexical re-
sources as well as the word embeddings derived from unlabeled data
that can be fed into MarMoT (and FLORS) make the systems more
robust to change of domain, which is an immensely important as-
pect of real-world POS tagging. With respect to word embeddings, we
note that the approach (FastText, GloVe, Mikolov, Komninos or Levy)
and its parameters play an important role. The choice of parameters
to compute embeddings can either improve or degrade accuracy, as
shown in Table 16. In our settings, Mikolov and FastText outperform
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GloVe. When dependency parsing information is available, Komninos
yields better results than Levy. The question as to whether Komninos
is better than Mikolov cannot be answered unambiguously, as the re-
sults are somewhat similar, depending on language and corpus. Our
experiments on German corpora indicate that Komninos should be pre-
ferred over Mikolov, as long as enough parsed corpora are available
to compute the embeddings.

Accuracy aside, it is also interesting to take a closer look at the
time needed for training and testing (see Table 26).19 Various as-
pects may have an impact on run-time. First, time depends linearly
on the hardware being used. Second, processing times depend on
the configuration of the taggers – especially with regard to train-
ing a new model. Finally, the taggers evaluated are implemented
in different programming languages, and the implementations are
not necessarily optimized for everyday field-use but for high accu-
racy. This means that even though the computational complexity
of a given approach cannot be changed, a great deal of time can
be saved by using efficient programming techniques, with exten-
sive use of multi-threading. Both FLORS and the Stanford tagger
can take hours or even days to train a model, depending on the
size of the corpora and the parameters. In contrast, TnT and Tree-
Tagger, while typically performing less well – sometimes badly – in
terms of accuracy, take only a fraction of the training and testing
time of the more recent generation. For a practitioner, computing
time can be a critical issue. For example, when it comes to tag-
ging large corpora, such as the entire Wikipedia, even a few sec-
onds more per processed text can make a huge difference. So, de-
pending on the task at hand, even the older approaches may still be
attractive.

In this respect, TnT is particularly interesting: it is about as fast
as TreeTagger, and its fine-grained tagging accuracy is often only
marginally below that of MarMoT. For example, with only one excep-
tion, TnT is within ∼1% point of the (joint) fine-grained POS tagging
accuracy of MarMoT (used without additional resources), while the
TreeTagger is between 3% and 8% below MarMoT with respect to

19Please note that the computation times can only give a general impression,
and include the time to load/save model files.
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fine-grained tagging. At the same time, training time on Tiger (ID)
for joint fine-grained tagging is 13s for TnT vs. 44m for MarMoT and
above 1m for TreeTagger. The good results of LemmaTag on German
corpora confirm the success of neural network approaches – at the
cost of extensive computation time when no GPUs are available. This
suggests that, in near future, tagging large corpora such as Wikipedia
will require a solid GPU workstation or even a cluster.

Regarding the drop of performance in OD experiments, we note
that OD experiments actually constitute a lower bound on performance,
while ID experiments constitute an (ideal case) upper bound. The rea-
son why ID experiments are not entirely reliable, for a practitioner, is
that it is assumed that the test data will have the same distributional
properties as the data on which a machine-learning system has been
trained. This is implausible in almost all practical scenarios. On the
other hand we also note that OD experiments often indicate errors that
are, from a linguistic perspective, not errors at all but correspond, for
example, to different conventions according to which different datasets
have been annotated.

Similar to POS tagging, we can observe a trade-off between ac-
curacy and run-time for lemmatization. In most cases, LemmaTag
performs best, followed by MarMoT-LAT, and LemmaGen. Thus Lem-
maTag is the best solution if GPUs are available and processing time
is less of an issue. When having to decide between LemmaGen and
MarMoT-LAT, the latter appears to be the best choice. But for in-
domain settings the difference is only marginal – the largest gap
of 1.57% can be observed when TGermaCorp is used to train a model
for lemmatization of Tiger. On the other hand, MarMoT-LAT takes
107 seconds for lemmatization of Tiger (ID), whereas LemmaGen
takes only 5 seconds. So the choice of lemmatizer depends on the use-
case. If processing time is not an issue or if there is enough hardware
to scale on, MarMoT-LAT would be a good choice. Since LemmaGen’s
accuracy is at a similar level, even outperforming LAT in some cases,
it can be considered a good option to lemmatize large corpora.

In a nutshell, we conclude that the performance of taggers can
be raised by including distributional information (about paradigmatic
word associations), as computed by word embeddings or by means of
(still mostly handcrafted) lexicons. It is no surprise that this relates es-
pecially to OD scenarios. However, it also means that, especially in the
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case of low-resource languages, for which lexicons are rarely available,
neural network models are the first choice when trying to improve tag-
ging results. In scenarios of processing historical texts, either lexical
or procedural information about alternative spellings would be an al-
ternative informational resource that may also help computing word
embeddings at a more abstract level (of super-lemmas instead of lem-
mas alone).

Our study has also demonstrated the computational effort nec-
essary to train and to evaluate new taggers – especially in the light
of the ever-increasing size of annotated corpora that can be used for
training and testing. In order to capture this effort, one may think
of a meta-learner that takes as input (1) taggers, (2) learning scenarios
(e.g., fine-grained/coarse-grained), (3) annotated corpora, and (4) ad-
ditional resources (embeddings or lexica), in order to update the de-
sired evaluation. One may think of a toolbox for building large-scale
evaluation studies allowing for laborious (hyper-)parameter studies in
terms of big data-experiments. Ideally, this would function out of the
box so that newly available annotation data could be rapidly used to
retrain taggers. Currently, comparative studies are still very laborious
rather than being easily manageable.

8 conclusion

We conducted a study of tagging for German and (classical as well as
medieval) Latin texts by examining a range of older taggers in compar-
ison with more recent ones. We experimented with coarse-grained as
well as fine-grained POS tagging, and with lemmatization. Our find-
ings highlight the improvements achieved by the most recent tagger
developments. LemmaTag, in particular, performed best in most of
the tasks considered here. We also show that out-of-domain (OD) tag-
ging leads to a considerable loss in tagging accuracy. The same is true
when we consider pipeline learning of inflectional categories. These
findings hint at the need to further develop taggers, possibly by ex-
tending feature space (e.g., by morphological, syntactic, or even se-
mantic features). However, our experiments also show that such an
extension may lead to a considerable increase in training and oper-
ating time, and thus may be problematic in the case of time-critical
scenarios. Last but not least, we evaluated three lemmatizers. Here
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also, LemmaTag performs best in most cases, followed by LAT. Our
experiments show once more that accuracy drops significantly if the
lemmatizer is applied OD. As before, this is a good argument for fur-
ther developments in this area of NLP, in particular, to address domain
adaptation.

open source

Models for taggers evaluated here are available online.20 This includes
all annotated corpora, as far as license terms allow.
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