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The paper presents a proof-theoretic semantics account of contex-
tual domain restriction for quantified sentences in a fragment of En-
glish. First, the technique is exemplified in the more familiar first-
order logic, and in its restricted quantification variant. Then, a proof-
theoretic semantics for the NL fragment is reviewed, and extended to
handling contextual domain restriction. The paper addresses both the
descriptive facet of the problem, deriving meaning relative to a con-
text, as well as the fundamental aspect, defining explicitly a context
(suitable for quantifier domain restriction), and specifying what it is
about such a context that brings about the variation of meaning due
to it.

The paper argues for the following principle (the context incorpo-
ration principle, CIP): for every quantified sentence S depending on a
context c, there exists a sentence S′, the meaning of which is inde-
pendent of c, s.t. the contextually restricted meaning of S is equal to
the meaning of S′. Thus, the effect of a context can always be inter-
nalized. The current model-theoretic accounts of contextual domain
restriction do not satisfy CIP, in that they imply intersection of some
extension with an arbitrary subset of the domain, that need not be the
denotation of any NL-expression.
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1 introduction

The problem of context dependence is the problem of ex-
plaining how context contributes to interpretation …

write Stanley and Szabó (2000), who discuss a variety of special cases
of the general problem of meaning variation with context. The pur-
pose of this paper is to provide a proof-theoretic semantics (PTS)1 (see
below) for a special case of the general context dependence problem,
namely quantifier domain restriction (QDR). It may well be the case that
the proof-theoretic interpretation of other kinds of expressions with
contextually varying meanings will require different proof-theoretic
techniques than the one used here. I focus on the QDR-problem as it
fits naturally into the fragment of natural language (NL) for which a
PTS has been proposed before (Francez and Dyckhoff 2010; Francez
et al. 2010; Francez and Ben-Avi 2014). The QDR-problem has a rich
history (see Stanley and Szabó 2000, for references to earlier work), all
carried out under the model-theoretic semantics (MTS) theory of mean-
ing.

Before turning to the main semantic issue itself, I would like to
recapitulate the highlights of the PTS and MTS approaches as theo-
ries of meaning. Proof-theoretic semantics is a challenging way for
defining meaning, an alternative to the prevailing model-theoretic se-
mantics, the latter equating meaning with providing truth conditions
(in arbitrary models).2 The MTS approach has been criticized by sev-
eral philosophers of logic and language (most notably, Dummett 1993,
Prawitz 2006, Brandom 2000, Tennant 1997, and many more) as an
inappropriate theory of meaning. I omit here a more detailed discus-
sion of this criticism, often occupying full books, as justifying the ap-
proach is not the topic here. A more condensed presentation of this
criticism and motivating advantages of PTS can be found in the in-
troduction sections of (Francez and Dyckhoff 2010) and (Francez and

1A general introductory overview of PTS can be found in an entry of The
Stanford Encyclopaedia of Philosophy, http://plato.stanford.edu/entries/
proof-theoretic-semantics/. Concrete references are given in the paper
where appropriate.

2There is also a variant of MTS called Dynamic Semantics, which view mean-
ing as updates of assignments. It also depends on models, entities, reference, ex-
tension, etc.
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Ben-Avi 2014). Initially, since the work of Gentzen (1969), PTS was
conceived as a meaning-theory for logic. Recently, however, PTS has
been advocated also for providing the semantics of (an extensional
fragment of) NL in (Francez and Dyckhoff 2010), (Francez et al. 2010)
and (Francez and Ben-Avi 2014), in contrast to the MTS approach
dominant in NL formal semantics ever since Montague’s seminal work.

I recapitulate the essence of the PTS proposal:
• For (affirmative) sentences, replace the received approach of taking
their meanings as truth conditions (in arbitrary models) by an ap-
proach taking meanings to consist of canonical derivability condi-
tions (from suitable assumptions). This involves a dedicated proof
system in natural deduction (ND) form, on which the derivability
conditions are based (canonicity is explained below). In a sense,
the proof system should reflect the use of the sentences in the frag-
ment, and should allow recovering pre-theoretic properties of the
meanings of these sentences such as entailment and assertabil-
ity conditions. The essentials of such an ND-system are reviewed
below.

• For subsentential phrases, replace taking their denotations (in ar-
bitrary models, extensions) as meaning, by taking their contri-
butions to the meanings (in our explication, derivability condi-
tions) of sentences in which they occur. This adheres to Frege’s
context principle (Frege 1884), made more specific by the incor-
poration into a type-logical grammar (TLG) (see Moortgat 1997),
the assumed underlying syntactic formalism. A detailed exposi-
tion of deriving meanings of subsentential phrases can be found
in (Francez et al. 2010) for natural language, and in (Francez and
Ben-Avi 2011) for logic.

According to the mainstream PTS programme, meaning is determined
via a meaning-conferring natural-deduction proof system. An ND-
system has two families of rules for each defined expression.
Introduction rules (I-rules): These are rules specifying the way a
formula (sentence) having the defined expression as its main oper-
ator, the conclusion of the rule, can be deduced from other formulas,
serving as premises of the rule. Such a deduction is the most direct way
to deduce the conclusion.
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Elimination rules (E-rules): These are rules specifying the way a
consequence can be deduced from a formula (sentence) having the
defined expression as its main operator, the major premise of the rule,
and from some additional minor premises. Such a conclusion is the
most direct conclusion of the major premise.
Both kind of rules can discharge assumptions, usually indicated with
square brackets. Derivability of φ from a collection of assumptions (a
context3) Γ is denoted Γ ⊢ φ. Derivation D of φ from Γ is the usual
recursively defined one. I use the Gentzen-Prawitz tree-like format for
presenting derivations. One of its advantages over linear representa-
tions of ND-derivations, useful in the current discussion, is the con-
venience of representing the composition of derivations, needed for
defining reductions.

An important requirement is that the ND-system should be har-
monious, in that its rules have a certain balance between introduction
and elimination, in order to qualify as conferring meaning. Harmony
is delineated in more detail below.

A standard reference for ND-systems for logic is (Prawitz 1965).
For ND-systems for an extensional ND-fragment, see (Francez and Dy-
ckhoff 2010).

To explain the QDR-problem itself, consider the following exam-
ple sentence from (from Stanley and Szabó 2000).4

every bottle is empty (1.1)

The literal model-theoretic meaning of (1.1), involving quantification
and predication, attributes the property of emptiness to every entity
in a model falling under the extension of bottle.5 This truth condi-
tion is usually expressed as the inclusion of the extension of bottle in
the extension of empty, alluding to the generalized quantifiers theory.
The general consent is, however, that in different circumstances, to
be captured by contexts, the domain of quantification is not over the

3Not to be confused with a DR-context c ∈ C affecting meaning variability,
as defined below.

4All the examples of natural language expressions are depicted in the san-
serif font, and are always mentioned, not used.

5As noted by Glanzberg (2006), it suffices to conduct this study in an exten-
sional fragment of NL, as intentionality seems orthogonal to QDR-problem.
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whole extension of bottle (all bottles in the universe); rather, it is over
a restriction of this extension to one determined by a context, e.g.,
every bottle in a room where some party takes place in one context,
or bottles in some chemistry laboratory in another context. Similarly,

some bottle is empty (1.2)
is taken also to have contextually varying meaning, asserting that
some bottle, determined by a given context, is empty, not that some
bottle in the universe is empty.

A more radical approach, called contextualism, claims that there
is no quantification which is not contextually restricted! Even apparently
unrestricted quantification as expressed by everything or something are
contextually restricted (see, for example, Glanzberg 2006).

Note that MTS in general adheres to a compositional sentential
meaning assembly. The primary carriers of meaning are words, in-
terpreted as having denotations in models (that can be rather com-
plex), and semantic composition generates meanings for phrases until
the meaning of a whole (affirmative) sentence is determined. Accord-
ing to this methodology, (some of) the word denotations are context-
dependent, a dependence propagated to larger phrases as the inter-
pretation process advances. I’ll return to this issue in the sequel.

The general semantic problem faced in an attempt to model the
variance of literal meaning with context has, according to Stanley and
Szabó (2000), two facets.
Descriptive: Deriving the interpretation of some phrase relative to
a context, given prior characterization of which features of a context
have a bearing on the meaning of that phrase.
Fundamental: Specifying the above mentioned characterization,
namely what it is about a context in virtue of which the derivation
of the interpretation yields the correct meaning in that context. This
specification involves some explicit definition of a context.
Thus, for (1.1), the descriptive meaning is the proper derivation of
the restricted domain of quantification given a context, while the fun-
damental issue is what in the structure of a context determines the
appropriate domain restriction.

In general, MTS has many difficulties in adequately solving the
foundational aspect of contextual variance of truth conditions. Amajor

[ 253 ]



Nissim Francez

contribution of the current paper is the provision of a solution, within
the PTS programme, of the foundational problem.

In MTS, it is far from clear where to locate contexts with respect
to a model. Stanley and Szabó (2000, p. 222), for example, admit that
they avoid giving a formal characterization of the notion of a con-
text. They just stipulate (for the QDR-problem) a certain marking in
the syntactic tree (the logical form) that interfaces in a certain way
with a context, and provide a description of the way this marking par-
ticipates in meaning derivations (by intersecting the extension of the
head noun with a set “pointed to” by the above mentioned marking).
More specifically, Stanley and Szabó (2000) posit as the lexical entry
of a noun, say man, (in the appropriate leaf of a syntactic tree) the
following compound expression.

〈man, f (i)〉 (1.3)
where man is the usual extension of man (in a model), i is an anchor
for an object to be provided by a context, and f is an anchor to a
function from objects to objects, also to be provided by context. The
rule for computing the extension of man in a given context c is the
following (in a slightly modified notation).

[[〈man, f (i)〉]]c df.
= [[man]]∩ {x | x ∈ c[[ f ]](c[[i]])} (1.4)

For an argument for a different location (in the syntactic tree) of that
marking (and for a rebuttal of the rejection of this location by Stanley
and Szabó 2000), see (Pelletier 2003). There are also views locating
this marker on the determiner node, (e.g., Westerståhl 1985). Note
that in all those approaches, there is no constraint at all imposed on the
set {x | x ∈ c[[ f ]](c[[i]])}. In particular, as is traditional in generalized
quantifier theory, this set need not be the extension (in the model at
hand) of any NL phrase.

I would like to claim that this degree of freedom regarding the
contextual restriction set is a drawback of all the above approaches to
QDR. In general, a context can be seen either as external to the inter-
preted sentence (e,g., a context of utterance), or explicitly contributed
by some phrase in the sentence itself. For example, (1.1) can be seen
as uttered in the context of bottles on some table; however, the loca-
tion of the bottles can be explicitly given in the sentence itself, say by
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means of a preposition phrase, as in

every bottle on the table is empty (1.5)

Furthermore, if the intended context is such that the salient bottles
are bottles of whisky, then this again can be given by an additional
explicit modification of the noun, as in

every whisky bottle on the table is empty (1.6)

I would like to posit the following context incorporation principle
as a characterization of contextually varying meaning (as far as QDR is
concerned). I see this principle as originating from the semantic con-
cept of ‘meaning’ (as far as it relates to contextual meaning variation),
and not from any empirical fact about this variation. One certainly
can conceive of contexts not having any linguistic expression. As I see
it, while such contexts can contribute to other dimensions of language
use, alluding to them is not part of meaning.

The context incorporation principle (CIP): For every quantified
sentence S with a meaning depending on a context c, there exists a (not
necessarily unique) sentence S′, s.t.

[[S]]c = [[S
′]] (1.7)

In other words, the effect of a given external context c in terms of QDR
in S is always expressible by S′, the meaning of which is independent
of c (all in the same language, or fragment thereof). Clearly, (CIP),
while being allowed by (1.4), is not enforced by (1.4).

It is important to realise what is not the semantic problem dis-
cussed here, namely the determination of which is the right context for
any given token of a contextually dependent meaning of a sentence. The
latter issue is always determined by extra-linguistic means, indepen-
dently of whether MTS or PTS are employed as the theory of meaning.
Rather, the issue is how to handle contextual meaning variation once
a context has been determined. Thus, if the intended context for the
above example is bottles of whisky, then an explicit assumption to this
effect has to be added to the given context. Once the whole intended
context has been incorporated, the resulting sentence should be read
as context independent.
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Finally, the consequences that can be drawn from the contextu-
ally varying meaning of an (affirmative) sentence, namely (affirma-
tive) sentences entailed by a sentence with contextually varying mean-
ing, which themselves have meanings varying with context, are hardly
ever considered in MTS-based discussions. I will relate to them in the
proposed PTS via E-rules in the meaning-conferring ND-system.

Note that I adopt here the view expressed in (Stanley and Szabó
2000) that contextual variance of meaning is a semantic phenomenon,
and not a syntactic (ellipsis) or pragmatic (agent related) one. I would
like to stress that I am investigating what (affirmative) sentences mean,
and how this meaning varies with context, and not with what an agent
means by asserting a sentence in a given context; the latter, involv-
ing intentions, plans etc., I do see as pragmatic. Thus, I exclude from
consideration examples such as the following (from Stanley and Szabó
2000)

Fred is a good friend (1.8)
uttered by a speaker in some circumstances to express that Fred is,
actually, a terrible friend. I do not take this interpretation of (1.8) as
a meaning of (1.8) in any sense of ‘meaning’ that semantics is con-
cerned with.

Why adhere to CIP?
• One can see the semantic view of the QDR-phenomenon alluded
above as a (partial) justification of CIP, that relates to linguisti-
cally expressible contexts. In a performative, agent related, use of
a sentence with a contextually varying meaning, it is conceivable
that other kinds of contextual information, not language oriented,
may have an effect. For example, complex visual information in
a common ground of speaker and hearer. This is certainly true
for contextual resolution of deictic elements in a sentence. This
would pertain to context dependence of meaning that fits a more
traditional view of it, as pragmatic, not semantic.

• While I am concerned here with meanings of single (affirmative)
sentences, there is clearly much semantic interest in dialogs, or
discourses, which are multi-sentential linguistic entities. Adhering
to CIP is compatible with identifying context with the contents of
sentences previously asserted by other participants in a dialog, or
preceding sentences in a discourse. Frommy proof-theoretic point
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of view, the PTS for such multi-sentential linguistic constructs is,
at best, in its infancy. Principles like CIP may encourage further
proof-theoretic investigations of such constructs.

The paper contains also a certain proof-theoretic innovation in the
concept of a parametric family of introduction rules (in a natural-
deduction system), which is not directly connected to the NL set-up
aimed at in the paper.

In (Francez and Wieckowski 2014), a similar approach to contex-
tual meaning variation is applied to contextual definiteness, as in

the bottle is empty (1.9)

where the usual existence and uniqueness, traditionally associated
with definiteness, is restricted to given contexts.

In the rest of this paper, I provide a PTS for the QDR-problem,
relating both to its fundamental facet as well as to its descriptive
facet, by providing meaning-conferring ND-systems. I start in Section
2 with casting the solution in a logic setting, its familiarity facilitating
a clearer explication of the proof-theoretic technique involved. Then,
I consider a PTS for the incorporation of the QDR-problem in an ex-
tensional fragment of English, for which a PTS is provided in (Francez
and Dyckhoff 2010). The paper ends with some conclusions.

2 logic with
contextual domain restriction

In this section, I present a version of first-order logic (FOL) in which
quantifiers are interpreted in a contextually dependent way. While
there is not much interest in such a logic per se, it serves as a vehicle
for a clear presentation of the ideas underlying the application of the
approach to natural language. It also provides a natural host for the
novel proof-theoretic concept of a parameterized family of I-rules in the
intended natural-deduction meaning-conferring proof system.
2.1 First-order logic with contextual domain restriction
I assume the usual object language for FOL, with the usual definition
of free/bound variables. For simplicity, a language without constant
or function symbols is considered.
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Definition 2.1 (DR-context) A DR-context (domain restricting con-
text) c is a finite collection Γc of open formulas with one free variable
only; Γc,x is the sub-collection of Γc with x as its free variable. Let C be
the collection of all DR-contexts.
This definition of a DR-context is certainly not the most general one for
a context affecting sentential meanings, but it is intended to capture
contexts as providing restriction on quantifiers, for which purpose this
definition suffices. Let ∧Γc ,x be the conjunction of all open formulas in
Γc,x (that have x free). I use Γc,x and ∧Γc,x

interchangeably. I use Γc,x(y)
or ∧Γc,x

(y) to indicate the application of the condition on x to another
variable, y, resulting in a substitution of y for free occurrences of x .

The main idea, to be captured by the rules below, is that a DR-
context provides an assumption, dischargeable in the case of universal
quantification, restricting the free variable in the premise of the I-rule
of a quantifier. Furthermore, this discharge keeps its contents excorpo-
rated from the formula (recording the context c generating it in ‘⊢c ’).

First, recall the standard I/E rules for the universal and existential
quantifiers in an ND-system for FOL.6

Γ ⊢ φ(x)
Γ ⊢ ∀x .φ(x)

(∀I)
, x /∈ free(Γ )

Γ ⊢ ∀x .φ(x)
Γ ⊢ φ(y) (∀E) (2.10)

Γ ⊢ φ(y)
Γ ⊢ ∃x .φ(x)

(∃I)
Γ ⊢ ∃x .φ(x) Γ , [φ(y)]i ⊢ χ

Γ ⊢ χ (∃E i), y /∈ free(Γ ,χ)

(2.11)

where φ(y) is the result of substituting y for all free occurrences of x
in φ(x). I now introduce a revised ND-system, in which deducibility
is indicated as ‘⊢c ’ (in contrast to ‘⊢’ indicating the deducibility in the
standard system).
Restricting the universal quantifier: Recall that the intuition be-
hind the usual (∀I)-rule is that since x does not occur free in Γ , it can
be seen as standing for an arbitrary value, unrestricted in any way by Γ ,

6 I assume familiarity with standard I/E-rules for the propositional opera-
tors, like conjunction ‘∧’ and implication ‘→’; see (Prawitz 1965) for a standard
presentation.
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hence supporting the universal generalization embodied in the (∀I)-
rule. The idea behind the I-rule below is to restrict the generalization
to those values of x satisfying the contextual restriction imposed by
Γc,x(x) for a given DR-context c. Thereby, the same formula ∀x .φ(x)
is read differently in different DR-contexts. This is achieved by using
Γc,x(x) as a discharged assumption in the premise of the rule.

Γ , [Γc,x(x)]i ⊢c φ(x)
Γ ⊢c ∀x .φ(x)

(∀I i
C), x /∈ free(Γ )

Γ ⊢c ∀x .φ(x) Γ ⊢c ∧Γc,x
(y)

Γ ⊢c φ(y)
(∀EC)

(2.12)

Here ∀IC is a family of I-rules indexed by DR-contexts. Every appli-
cation of this rule is always by appealing to some given DR-context
c ∈ C . In the interesting cases, Γc,x ̸= ; will hold, though there might
be vacuous DR-contexts not affecting the meaning of a universal sen-
tence. Similarly, (∀EC) is a family of E-rules indexed by DR-contexts.
The conclusion drawn from ∀x .φ(x) deduced relative to a DR-context
c is read as ∧Γc,x

(y)→ φ(y), namely that y satisfies both φ(x) and the
contextual restriction ∧Γc,x

(x).
Restricting the existential quantifier: As for existential quantifica-
tion, the contextual rules are presented below.

Γ ⊢c φ(y) Γ ⊢c ∧Γc,x
(y)

Γ ⊢c ∃x .φ(x)
(∃IC)

Γ ⊢c ∃x .φ(x) Γ , [φ(y)]i , [∧Γc,x
(y)] j ⊢c χ

Γ ⊢c χ
(∃E i, j), y /∈ free(Γ ,χ)

(2.13)

The I-rule requires that for some y that satisfies the restrictions im-
posed by Γc,x , φ(y) is derived, in order to deduce that the contextually
restricted (by c) existential conclusion be derived. Recall that, like in
the standard (∃I)-rule, y may, (and in general, will) appear free in Γ .
So, the rule forces y to also fall under the restriction imposed by c.
The E-rule, like the standard (∃E)-rule, allows the derivation of an ar-
bitrary conclusion χ, under the assumption that φ and the contextual
restriction themselves derive χ (for a fresh y).
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Remark: From the above rules, it is evident that (CIP) holds for FOL
with QDR. This is true since Γc,x (and consequently, ∧Γc,x

) consist only
of formulas in the language.
Theorem 2.1 (context incorporation)
1. Γ ⊢c ∀x .φ(x) iff Γ ⊢ ∀x .∧Γc,x

(x)→ φ(x).
2. Γ ⊢c ∃x .φ(x) iff Γ ⊢ ∃x .∧Γc,x

(x)∧φ(x).
Proof:
1. (a) Assume Γ ⊢c ∀x .φ(x) is derived by means of (∀IC). By an in-

ductive argument, the premise of (∀IC), namely Γ , [Γc,x(x)]i ⊢c

φ(x) (with x /∈ free(Γ )), implies that Γ , [Γc,x(x)]i ⊢ φ(x).
Therefore, by using (→ Ii), Γ ⊢ ∧Γc,x (x) → φ(x), and by ap-
plying (∀I) (since x /∈ free(Γ )), we get Γ ⊢ ∀x .∧Γc,x (x)→ φ(x).

(b) Conversely, suppose Γ ⊢ ∀x .∧Γc,x (x)→ φ(x) is derived via (∀I)
with the premise Γ ⊢ ∧Γc,x (x)→ φ(x), where x /∈ free(Γ ). Thus,
also Γ , [Γc,x(x)]i ⊢ φ(x) (due to (→ I)). By an application of
(∀I i

C) the result follows.
2. The argument for existential quantification is similar and omitted.

Here are some examples for the more interesting direction.
1. In the DR-context c, ∀x .φ(x) is read as ∀x .∧Γc,x

(x)→ φ(x). When
φ(x) is itself an implication, say α(x) → β(x), then the result
is equivalent to conjoining the antecedent with the contextual
restriction, ∀x .α(x)∧∧Γc,x

(x)→ β(x).
2. Similarly, in the DR-context c, ∃x .φ(x) is read as ∃x .∧Γc,x

(x)∧φ(x).
Example 2.1 Suppose (1.1) is regimented by the FOL-formula ∀x .B(x)
→ E(x) (with B(x) interpreted as x is a bottle and E(x) as x is empty).
Let croom be a DR-context of some room, with Γcroom,x = {R(x)} (with
R(x) interpreted as x is in the room). Then,

Γ , [R(x)]i ⊢croom
B(x)→ E(x)

Γ ⊢croom
∀x .B(x)→ E(x)

(∀I i
C), x /∈ free(Γ )

allows the derivation of a reading of (1.1) as ∀x .R(x)→ (B(x)→ E(x)),
equivalent to ∀x .B(x)∧R(x)→ E(x); that is, every bottle in the room is
empty. This can be seen as incorporating the DR-context into the sen-
tence. Note that the contextually derived universally quantified sen-
tence does not carry its contextual meaning “on its nose”. To obtain
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the required reading, one has to know the DR-context in which the
sentence was derived (croom in this example), and consult Γcroom,x to ob-
tain this reading. Similarly,

Γ ⊢croom
∀x .B(x)→ E(x) Γ ⊢croom

R(y)

Γ ⊢croom
B(y)→ E(y)

(∀EC)

allows drawing from (1.1) derived in the DR-context croom the conclu-
sion R(y)→ (B(y)→ E(y)), equivalent to B(y)∧R(y)→ E(y); namely
a reading corresponding to if y is a bottle in the room then y is empty,
a correct reading of the conclusion in the context croom.

Example 2.2 Following is another example, establishing

∀x .W (x)∧ I(x)→ S(x),∀y.W (y)∧ S(y)→ B(y)

⊢c ∀z.W (z)→ B(z) (2.14)

in a DR-context c with Γc,z = I(z). I’ll return to this example below.

[W (z)]1

[W (z)]1 [I(z)]2
W (z)∧ I(z)

(∧I)
∀x .W (x)∧ I(x)→ S(x)

W (z)∧ I(z)→ S(z)
(∀E)

S(z)
(→ E)

W (z)∧ S(z)
(∧I)

∀y.W (y)∧ S(y)→ B(y)
W (z)∧ S(z)→ B(z)

(∀E)

B(z)
(→ E)

W (z)→ B(z) (→ I1)

∀z.W (z)→ B(z)
(∀I2

C)

(2.15)
Example 2.3 The next example is of two independent QDRs by a con-
text. It shows why the premises of the IC -rules themselves have to use
‘⊢c ’, and not just ‘⊢’.

∀x∀y.M(x)∧ Y (x)∧W (y)∧ S(y)→ L(x , y),

∀z.W (z)∧ I(z)→ S(z)

⊢c ∀x∀y.M(x)∧W (y)→ L(x , y) (2.16)

where Γc,x = Y (x), Γc,y = I(y). Let I, II abbreviate, respectively, the
two premises. I treat ‘∧’ as having arbitrary arity.
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I
M(x)∧ Y (x)∧W (y)∧ S(y)→ L(x , y)

(∀E)× 2

[M(x)∧W (y)]3
M(x)

(∧E)
[Y (x)]1

[M(x)∧W (y)]3
W (y)

(∧E)

II
W (y)∧ I(y)→ S(y)

(∀E)

[M(x)∧W (y)]3
W (y)

(∧E)
[I(y)]2

W (y)∧ I(y)
(∧I)

S(y)
(→ E)

M(x)∧ Y (x)∧W (y)∧ S(y)
(∧I)

L(x , y)
(→ E)

M(x)∧W (y)→ L(x , y) (→ I3)

∀y.M(x)∧W (y)→ L(x , y)
(∀I2

C)

∀x∀y.M(x)∧W (y)→ L(x , y)
(∀I1

C)

(2.17)
The following proposition expresses a property of the QDR-rules that
will be useful below. It says that it does not matter which variable is
used to express the contextual restriction, as long as it is amenable to
universal generalization.
Proposition 2.1 If Γ , [Γc,x(x)]i ⊢c φ(x) and y /∈ free(Γ ), then also
Γ , [Γc,x(y)]i ⊢c φ(y).

Next, consider the definition of the (reified) contextually varying
sentential meanings, following the ideas in (Francez 2014c).
Definition 2.2 (canonical derivation) A derivation D for Γ ⊢ ψ is
canonical iff it satisfies one of the following two conditions.

• The last rule applied in D is an I-rule (for the main operator of
ψ).

• The last rule applied in D is an assumption-discharging E-rule,
the major premise of which is some φ in Γ , and its encompassed
sub-derivations D1, · · · ,Dn are all canonical derivations of ψ.

Canonical derivations constitute the most direct derivations of their
conclusion (though not necessarily always the shortest), and are
viewed by PTS to underlie and determine meaning. Let [[φ]]cΓ de-
note the (possibly empty) collection of all canonical derivations of φ
from Γ .7

Definition 2.3 (reified meanings) The (reified) meaning of φ is given
by

[[φ]]
df.
= λΓ .[[φ]]cΓ (2.18)

To realize the role of canonicity in the definition of reified proof-
theoretic meanings, consider the following example derivation in

7The superscript ‘c’ here relates to canonicity, and should not be confused
with a DR-context, the latter indicated by a subscript c.

[ 262 ]



A proof-theoretic semantics for domain restriction

propositional logic.
α (α→ (φ ∧ψ))

φ ∧ψ (→ E) (2.19)

This is a derivation of a conjunction – but not a canonical one, as it
does not end with an application of (∧I). Thus, the conjunction here
was not derived according to its meaning! As far as this derivation
is concerned, it could mean anything, for example, disjunction. On
the other hand, the following example derivation, being canonical, is
according to the conjunction’s meaning.

α α→ φ
φ (→ E)

β β →ψ
ψ

(→ E)

φ ∧ψ (∧I) (2.20)

Similar examples can be found in natural language.
We can now see the difference between ordinary meanings and

their contextually varying counterpart. For the context-independent
meaning of ∀x .φ(x), all the canonical derivations end with an ap-
plication of the same (∀I)-rule, while for the meaning of ∀x .φ(x) in
a DR-context c, all canonical derivations end with an application of
(∀IC), varying with c.

As was already observed in (Francez 2014a), this reified mean-
ing is very fine-grained,8 and a certain relaxation of it is found useful.
Note that the CIP requires (strict) sameness of meaning between a con-
textually restricted quantified sentence and its context incorporated
counterpart. However, while the relationship of canonical derivations
of both are very similar – the former ending with application of (∀IC)
(in the universal case) whenever the latter ends with (→ I) immedi-
ately followed by (∀I), they are strictly not the same! We can obtain
a natural coarsening fitting also the current needs (for the CIP), still
fine enough as to not identify the meanings of logically equivalent
sentences as done in MTS, by introducing grounds (for assertion) for
sentences (see Francez and Dyckhoff 2010 and Francez 2014c for a
discussion of the role of those grounds in the PTS programme).

8For example, it is shown in (Francez 2014a) that [[φ∧(ψ∧χ)]] ̸= [[(φ∧ψ)∧
χ]].
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Definition 2.4 (grounds for assertion) The grounds for assertion of
φ, denoted by G[[φ]], are given by

G[[φ]]
df.
= {Γ | Γ ⊢c φ} (2.21)

In other words, any Γ from which there is a canonical derivation of φ
serves as a ground for asserting φ.

I now introduce an equivalence relation on meaning based on
sameness of grounds (for assertion), that captures the CIP requirement
in a natural way.
Definition 2.5 (grounds equivalence)

φ ≡G ψ iff G[[φ]] = G[[ψ]] (2.22)

Obviously, ‘≡G ’ is an equivalence relation on meanings. An easy in-
spection of the proof of the context incorporation theorem shows that
the meanings of the context-incorporated counterparts of contextually
restricted quantified sentences are grounds equivalent.
2.2 Harmony of the contextual domain restriction rules
Prior’s famous attack on the PTS-programme in (Prior 1960) produced
a connective with an I-rule of disjunction and an E-rule of conjunc-
tion, that trivialized ‘⊢’ so that φ ⊢ ψ for every φ and ψ. As became
evident since that attack, not every set of I/E-rules may qualify as
conferring meaning. One of the prevailing criteria for an ND-system to
qualify as conferring meaning is that of harmony, advocated by Dum-
mett, Prawitz, Tennant and many others, requiring a balance between
the I-rules and E-rules of every connective, in that neither group is
either too weak or too strong w.r.t. the other group. Clearly, Prior’s
connective fails this condition. Two main ways to capture the informal
notion of harmony were proposed in the literature.
Intrinsic harmony: According to this view of harmony, there is a re-
quirement that every maximal formula φ in a derivation, one that is a
conclusion of an I-rule and the major premise of an E-rule (both of the
main operator of φ), be eliminable, producing an equivalent deriva-
tion (with the same assumptions and same conclusion). The process
of eliminating such a maximal formula is known as (proof) reduction,
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and underlies Prawitz’s normalization procedure (Prawitz 1965).9 Re-
ductions show that nothing is gained by introducing and immediately
eliminating. The gain here does not refer to efficiency (mostly lengths)
of derivations, but to the ability to draw additional conclusion.10 In
a balanced system, any conclusion drawn by means of a maximal for-
mula can be drawn without it, as shown by the reduction. Failing this
condition shows that the I-rule is too strong (or the E-rule too weak).
The second facet of the balance between I/E-rules is that of stability,
excluding a situation in which the E-rules are too weak w.r.t. the I-
rules. I will ignore this issue here.
Harmony in form: Under this view of harmony, the E-rules are re-
quired to have a specific form, known as general elimination (GE), al-
lowing the derivation of an arbitrary conclusion using the premises of
the I-rules as discharged assumptions. The standard rules (∨E) and
(∃E) are of this form. GE-rules emerged independently of harmony,
allowing a better correspondence between normal ND-derivations and
CUT-free derivations in sequent-calculi (see, for example, Schroeder-
Heister 1984; von Plato 2000, 2001). In (Francez and Dyckhoff 2012)
a general procedure11 is presented for deriving harmoniously induced
GE-rules from given I-rules, ensuring the availability of the reductions
required by intrinsic harmony.
Below, I show the reductions for the rules for ‘⊢c ’.
Universal contextually restricted quantification:

Γ , [Γc,x(x)]i ⊢c φ(x)
Γ ⊢c ∀x .φ(x)

(∀I i
C) Γ ⊢c ∧Γc,x

(y)

Γ ⊢c φ(y)
(∀EC)

⇝r Γ [x := y], [Γc,x(y)]i ⊢c φ(y) (2.23)
9Note that the presence of a reduction is less demanding than normalisation.

The latter requires the finiteness of reduction sequences.
10Often, efficient derivation are not according to the meaning determined

by I-rules. For example, if one first proves ∀x .φ(x), and then derives (via ∀E)
φ(a),φ(b) etc., the derivations of the latter are shorter, but not according to
meaning.

11Recently, some restrictions on the domain of applicability of this procedure
have been realized, but they do not affect the current set-up.
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Note that since x /∈ free(Γ ), Γ [x := y] = Γ . The result follows by Propo-
sition 2.1. A clearer depiction of the reduction uses Ds.
[∧Γc,x

(x)]i
D

∀x .φ(x)
(∀I i

C) D ′∧Γc,x
(y)

φ(y)
(∀EC) ⇝r

D[∧Γc,x
(y) :=

D ′∧Γc,x
(y)]

φ(y) (2.24)

where the substitution ∧Γc,x
(y) :=

D ′∧Γc,x
(y) is the usual way composition

of derivations is obtained, by replacing an assumption ∧Γc (y) (a leaf
in D) with its given derivation in the second premise of (∀EC).
The harmoniously induced (∀GEC) is given below.
Γ ⊢c ∀x .φ(x) Γ ⊢c ∧Γc,x

(y) Γ , [φ(y)]i ⊢c χ

Γ ⊢c χ
(∀GE i

C), y fresh (2.25)
Existential contextually restricted quantification: The reduction
is the following.
D1
φ(y)

D2∧Γc,x
(y)

∃x .φ(x)
(∃IC)

[φ(z)]i , [∧Γc,x
(z)] j

D
χ

χ (∃E i, j
C )

⇝r

D[φ(z) :=
D1[y := z]
φ(z) , ∧Γc,x

(z) :=
D2[y := z]
∧Γc,x
(z) ]

χ (2.26)
The (∃EC)-rule is in the GE-form to start with, thus harmonious in form
too.
2.3 Quantifier domain restriction in restricted quantification
In order to make the subsequent presentation of QDR in NL more com-
prehensible, I exemplify the proof-theoretic approach by applying it
first to a fragment FOLrq of FOL that comes closer to the NL-fragment
to be considered. The fragment is known as having restricted quantifi-
cation (not to be confused with contextually restricted quantification,
which is added on top of this). Quantified formulas in this fragment
have the following form:

∀x .φ(x)→ψ(x), ∃x .φ(x)∧ψ(x) (2.27)
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Γ ,ξ ⊢ ξ (Ax)

Γ , [φ(y)]i ⊢ ψ(y)
Γ ⊢ ∀x .φ(x)→ψ(x) (∀I i)

Γ ⊢ φ(y) Γ ⊢ψ(y)
Γ ⊢ ∃x .φ(x)∧ψ(x) (∃I)

y fresh for Γ in (∀I).

Γ ⊢ ∀x .φ(x)→ψ(x) Γ ⊢ φ(y)
Γ ⊢ψ(y) (∀E)

Γ ⊢ ∃x .φ(x)∧ψ(x) Γ , [φ(y)]i , [ψ(y)] j ⊢ ξ
Γ ⊢ ξ (∃E i, j)

y fresh for Γ ,ξ in (∃E).
Figure 1: A natural-deduction proof system Nrq for restricted quantification

The universal quantification can be read as ‘everything which is φ
is ψ’, and the existential quantification can be read as ‘there exists
something which is φ that is ψ’. That is, quantification is restricted
to entities satisfying φ, to be called the restrictor. A more transparent
syntax, closer to the natural language expression of quantification,
would be

∀x : φ(x).ψ(x), ∃x : φ(x).ψ(x) (2.28)
The expression of (2.28) as (2.27) is known as Frege’s translation, that
has drawn criticism as a way to capture natural language quantifica-
tion. For example, see (Ben-Yami 2006) and (Francez 2014b) for such
a criticism. As I show in the next section, FOLrq-quantification reflects
more directly natural language quantification.

The proof system is presented in Figure 1. I use Γ ⊢ φ in this
subsection to indicate derivability of φ from Γ (in Nrq). A GE-rule for
the universal quantifier, exhibiting harmony in form, is

Γ ⊢ ∀x .φ(x)→ψ(x) Γ ⊢ φ(y) Γ , [ψ(y)]i ⊢ ξ
Γ ⊢ ξ (∀GE i)

y fresh
(2.29)

Next, I consider QDR in FOLrq. The observation is that the restrictor
can be interpreted differently in different DR-contexts. Thus, the nat-
ural regimentation of (1.1) (cf. Example (2.1)) would again be

∀x .B(x)→ E(x) (2.30)
where ‘B(x)’ expresses x is a bottle and ‘E(x)’ expresses x is empty.
Here, the restrictor B(x) can have a contextually varying interpreta-
tion.
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The idea for the proof-theoretic representation of contextual
meaning variation is as before, where for universal quantification
a DR-context c provides a contextual discharged assumption. The gen-
erated contextual restriction strengthens the restriction already present
in the formula. The rules are shown below.12

Γ , [φ(x)] j , [Γc,x(x)]i ⊢c ψ(x)

Γ ⊢c ∀x .φ(x)→ψ(x) (∀I i, j
C ), x /∈ free(Γ )

Γ ⊢c ∀x .φ(x)→ψ(x) Γ ⊢c φ(y)∧∧Γc,x
(y)

Γ ⊢c ψ(y)
(∀EC)

(2.31)

Γ ⊢c φ(y) Γ ⊢c Γc,x(y) Γ ⊢ψ(y)
Γ ⊢c ∃x .φ(x)∧ψ(x) (∃I i

C)

Γ ⊢c ∃x .φ(x)∧ψ(x) Γ , [(φ ∧∧Γc,x
∧ψ)(y)]i ⊢c χ

Γ ⊢c χ
(∃E i)

(2.32)

where y /∈ free(Γ ,χ) in (∃E).
The same considerations as those for FOL show that (CIP) holds

also for FOLrq.

3 proof-theoretic semantics
for quantifier domain restriction

in a fragment of english

In this section, I present a PTS for QDR in its more natural setting,
within an extensional fragment of English. A PTS for such a frag-
ment (without considering QDR) is provided in (Francez and Dyckhoff
2010).

For self-containment of the paper, this semantics is reviewed be-
low.
3.1 Review of the proof-theoretic semantics for sentences
I present the fragment and its associated proof system in two stages.
First, a core fragment is presented, extended in a second stage with
relative clauses and intersective adjectives.

12The notation φ(y) ∧ ∧Γc,x
(y) means the conjunction of φ(y) with the con-

junction of the context formulas in Γc,x applied to y.
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3.1.1 The core fragment and proof system
The core fragment E+0 of English consists of sentences headed by (ex-
tensional) intransitive and transitive verbs, and determiner phrases
(dp) with a (singular, count) noun and a determiner. In addition, there
is the copula. This is a typical fragment of many NLs, syntactically fo-
cusing on subcategorization, and semantically focusing on predication
and quantification. Some typical sentences are listed below.

every/some girl smiles/is a student/loves some boy (3.33)

I omit here proper names that do appear in the detailed presentation of
sentential meanings (Francez and Dyckhoff 2010). Note the absence
of negative determiners like no (hence the superscript ‘+’), which are
treated in (Francez and Ben-Avi 2014), involving technicalities orthog-
onal to QDR. Expressions such as every girl, some boy are dps.

The PTS is based on a core dedicated, meaning-conferring natural-
deduction proof system N+0 with I/E-rules presented in Figure 2. The
proof system is formulated over the language L+0 , slightly extending E+0
and disambiguating ambiguous E+0 sentences. Meta-variables X schema-
tize nouns, P over intransitive verbs and R over transitive verbs. Meta-
variable S ranges over sentences, and boldface lower-case j, k, etc.,
range over P , a denumerable set of (individual) parameters, artefacts
of the proof system (not used to make assertions). Syntactically, a pa-
rameter in L+0 is also regarded as a dp. If a parameter occurs in S in
some position, S is a pseudo-sentence, and if all dps in S are parameters,
the pseudo-sentence S is ground. The ground pseudo-sentences play the
role of atomic sentences, and their meaning is assumed given, exter-
nally to the ND proof system. The latter defines sentential meanings of
non-ground pseudo-sentences (and, in particular, E+0 -sentences), rela-
tive to the given meanings of ground pseudo-sentences.

In contrast to logic, where the introduced operator by an I-rule
is always the (unique) main operator, in E+0 sentences there is no such
main operator: every position that can be filled with a dp is a locus of
introduction (of the quantifier corresponding to the determiner of the
introduced dp). This is a major source of ambiguity in E+0 , known as
quantifier-scope ambiguity. The way ambiguity is treated is recapit-
ulated briefly below. For any dp-expression D having a quantifier, I
use the notation S[(D)n] to refer to a sentence S having a designated
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Figure 2:

The meta-rules
for N+0

Γ , S ⊢ S (Ax)

Γ , [j isa X ]i ⊢ S[j]
Γ ⊢ S[(every X )r(S[j])+1]

(eI i)

Γ ⊢ j isa X Γ ⊢ S[j]
Γ ⊢ S[(some X )r(S[j])+1]

(sI)

Γ ⊢ S[(every X )r(S[j])+1] Γ ⊢ j isa X Γ , [S[j]]i ⊢ S′

Γ ⊢ S′ (eE i)

Γ ⊢ S[(some X )r(S[j])+1] Γ , [j isa X ] j , [S[j]]i ⊢ S′

Γ ⊢ S′ (sE i, j)

where j is fresh for Γ , S[every X ] in (eI), and for Γ ,S[some X ], S′ in (sE).

position filled by D, where n is the scope level (sl) of the quantifier
in D. In case D has no quantifier (i.e., it is a parameter), sl = 0. The
higher sl, the higher the scope. For example, S[(every X )1] schema-
tizes a sentence S with a designated occurrence of every X of the
lowest scope. An example of a higher scope is S[(some X )2], having
some X in the higher scope, like in the object wide-scope reading of
(every X )1 loves (some Y )2. I use the conventions that within a rule,
both S[D1] and S[D2] refer to the same designated position in S, and
when the sl can be unambiguously determined it is omitted. I use r(S)
to indicate the rank of S, the highest sl on a dp within S. Note that for
a ground S, r(S) = 0.

Recall that in a rule, the notation [· · · ]i indicates an assumption
discharged by an application of that rule. The indices of the assump-
tions discharged by a rule appear as superscripts on the rule name.
The usual notion of (tree-shaped) derivation is assumed. I again use
D to range over derivations, where DΓ⊢S is a derivation of sentence
S from assumptions Γ . I use Γ , S for extending Γ with a sentence S.
A more detailed explanation of the rules is presented in (Francez and
Dyckhoff 2010). However, it is evident that all quantification in the
fragment is restricted. In addition to this restriction I will add QDR in
the next section.

The following is a convenient derived E-rule, that will be used to
shorten derivations.

Γ ⊢ S[(every X )r(S[j])+1] Γ ⊢ j isa X

Γ ⊢ S[j] (eÊ)
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Below is an example derivation establishing
some U isa X , (every X )2 R (some Y )1, every Y isa Z ⊢ (some U)1 R (some Z)2.

Let
D1

(some U)2 R (some Z)1 and
D2

(some U)1 R (some Y )2 be the following
two sub-derivations.

D1 :
some U isa X

[r isa U]1

(every X )2 R (some Y )1 [r isa X ]2
r R some Y (eÊ)

(some U)2 R (some Y )1
(sI)

(some U)2 R (some Y )1
(sE1,2)

D2 :
[some U R j]3

every Y isa Z [j isa Y ]4
j isa Z (eÊ)

(some U)1 R (some Z)2
(sI)

The whole derivation combines the two sub-derivations by
D1

(some U)2 R (some Y )1
D2

(some U)1 R (some Z)2
(some U)1 R (some Z)2

(sE3,4)

For a derivation D of S, its root is given by ρ(D) = S. This function
is extended to collections of derivations ∆ by ρ(∆) = {ρ(D) | D ∈
∆}, and further extended to contextualized functions F by ρ(F ) =
∪Γρ(F (Γ )).

In order to understand better the PTS of E+0 , consider one of
its well-known features: quantifier scope ambiguity. The following E+0
sentences are usually attributed to two readings each, with the fol-
lowing FOL-expressions of their respective truth-conditions in model-
theoretic semantics.

Every girl loves some boy (3.34)
Some girl loves every boy (3.35)

Consider sentence (3.34).
Subject wide-scope (sws): ∀x .girl(x)→∃y.boy(y)∧ love(x , y)

Subject narrow-scope (sns): ∃y.boy(y)∧∀x .girl(x)→ love(x , y)

In the proposed PTS, the difference in meanings reflects itself by the
two readings having different uses of the grounds for assertion. This is
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manifested in derivations by different orders of introduction of the sub-
ject and object dps. Following Moss (2010), I disambiguate ambiguous
sentences taking part in derivations.
Subject wide-scope (sws):

[r isa girl]i
D1

r loves j
D2

j isa boy

r loves (some boy)1
(sI)

(every girl)2 loves (some boy)1
(eI i) (3.36)

Subject narrow-scope (sns):
[r isa girl]i
D1

r loves j
(every girl)1 loves j

(eI i)
D2

j isa boy

(every girl)1 loves (some boy)2
(sI) (3.37)

Note that there is no way to introduce a dpwith a narrow-scope where
the dp with the wider-scope has already been introduced. In the N+0
calculus, only disambiguated sentences participate.
3.1.2 Relative clauses and intersective adjectives
I next add relative clauses to the fragment, followed by intersective
adjectives. This fragment transcends the locality of subcategorization
in E+0 , in having long-distance dependencies. It also has unbounded num-
ber of adjectival modifications. I refer to this (still positive) fragment
as E+1 . Note that, in contrast to E+0 , E+1 is infinite. Typical sentences
include the following.

every some/boy loves every/some girl

who(m) smiles/loves every/some flower/whom some girl loves
(3.38)

every/some girl is a girl who loves every/some boy (3.39)
some boy loves every/some girl who loves every boy who smiles

(nested relative clause)
(3.40)

So, girl who smiles and girl who loves every boy are compound nouns. I
treat somewhat loosely the issue of the case of the relative pronoun,
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in the form of who(m), abbreviating either who or whom, as the case
requires. I extend the notation with S[−], which denotes, for S includ-
ing a parameter in some distinguished position, the result of removing
that parameter, leaving that position unoccupied. Examples are loves
every girl (a parameter removed from subject position in j loves every
girl), and every girl loves (a parameter removed from object position in
every girl loves k).

The corresponding ND-system N+1 extends N+0 by adding the fol-
lowing I/E-rules.

Γ ⊢ j isa X Γ ⊢ S[j]
Γ ⊢ j isa X who S[−] (relI)

Γ ⊢ j isa X who S[−] Γ , [j isa X ]i , [S[j]] j ⊢ S′

Γ ⊢ S′ (relE i, j)

(3.41)

The simplified derived E-rules are:
Γ ⊢ j isa X who S[−]

Γ ⊢ j isa X (relÊ)1
Γ ⊢ j isa X who S[−]

Γ ⊢ S[j] (relÊ)2 (3.42)
The familiar conjunctive behavior of relative clauses is exhibited here
by its rules, resembling the rules for logical conjunction.

As an example of a derivation in this fragment, consider
some girl who smiles sings ⊢N+1

some girl sings (3.43)
exhibiting the upward monotonicity of some in its first argument.

some X who P1 P2

[r isa X who P1]1
r isa X (relÊ)1 [r P2]2

some X P2
(sI)

some X P2
(sE1,2) (3.44)

Finally, I augment E+1 with sentences containing adjectives, schema-
tized by A. I consider here only what is known in model-theoretic se-
mantics as intersective adjectives. Typical sentences are:
Some girl is a beautiful girl/clever beautiful girl/clever beautiful

red-headed girl
(3.45)

every/some beautiful girl smiles (3.46)
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every/some beautiful girl loves every/some clever boy (3.47)
A noun preceded by an adjective is again a (compound) noun (the
syntax is treated more precisely once the grammar is presented, as in
Francez et al. 2010). Denote this extension still by E+1 . Recall that in
the N+1 rules, the noun schematization should be taken over compound
nouns too. Note that I augment N+1 with the following ND-rules for
adjectives.

Γ ⊢ j isa X Γ ⊢ j is A
Γ ⊢ j isa A X

(adjI)

Γ ⊢ j isa A X Γ , [j isa X ]1, [j is A]2 ⊢ S′
Γ ⊢ S′ (adjE1,2)

(3.48)

Again, the following derived E-rules are used to shorten presenta-
tions of example derivations.

Γ ⊢ j isa A X
Γ ⊢ j isa X (adjÊ1)

Γ ⊢ j isa A X
Γ ⊢ j is A (adjÊ2) (3.49)

Note that the intersectivity here is manifested by the rules themselves
(embodying an invisible conjunctive operator) at the sentential level.
These rules induce intersectivity as a lexical property of (some) adjec-
tives by the way lexical meanings are extracted from sentential mean-
ings, as shown in (Francez et al. 2010).

The following sequent, the corresponding entailment of which is
often taken as the definition of intersective adjectives, is derivable
in N+1 :

j isa A X , j isa Y ⊢ j isa A Y (3.50)
as shown by

j isa Y
j isa A X

j is A (adjÊ2)

j isa A Y
(adjI) (3.51)

As an example of derivations using the rules for adjectives, consider
the following derivation for

j loves every girl ⊢ j loves every beautiful girl (3.52)
In model-theoretic semantics terminology, the corresponding entail-
ment is a witness to the downward monotonicity of the meaning of every
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in its second argument. I use an obvious schematization.

j R every Y
[r isa A Y ]1

r isa Y (adjÊ)

j R r (eÊ)

j R every A Y (eI1) (3.53)
Under this definition of the meaning of intersective adjectives, such
adjectives are also extensional, in the sense of satisfying the following
entailment:

every X isa Y ⊢ every A X isa A Y (3.54)
as shown by the following derivation:

every X isa Y
[j isa A X ]1

j isa X (adjÊ1)

j isa Y (eÊ)
[j isa A X ]1

j is A (adjÊ2)

j isa A Y
(adjI)

every A X isa A Y (eI1) (3.55)
The proof of harmony of N+1 can be found in (Francez and Dyckhoff
2010) and is not repeated here.
3.1.3 Sentential meanings
Again, a derivation is canonical if it essentially ends with an applica-
tion of an I-rule; I use ⊢c for canonical derivability, denote by [[S]]cΓ
the collection of canonical derivations of S from Γ , and by [[S]]∗Γ the
collection of all derivations of S from Γ .
Those proof-theoretic collections are used to define meanings. Note
that these are strictly proof-theoretic denotations, independent from
any notion of a model, entities, and the like.
Definition 3.6 (PTS-meaning, semantic values)
1. For a non-ground S ∈ L+1 , its (reified) meaning (also referred to

as its contributed semantic value) is given by [[S]] df.
= λΓ .[[S]]cΓ [=

λΓ .{DΓ⊢cS}].
Recall that for a ground S, [[S]] is assumed given. The meaning
of non-ground pseudo-sentences (and E+0 -sentences in particu-
lar) is defined relative to the given meanings of ground pseudo-
sentences.
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2. For an arbirary S ∈ L+1 , its contributing semantic value is given by
[[S]]∗ df.

= λΓ .[[S]]∗Γ .
This distinction corresponds to the one that Dummett (1993, p. 48)
introduced between assertoric content and ingredient sense. The content
of an (affirmative) sentence S is the meaning of S in isolation, on its
own. The ingredient sense of S is what S contributes to the meaning
of any S′ in which S occurs as a sub-expression, a component. This
distinction is propagated to sub-sentential phrases as well. I will be
concerned here with the contents of sentences only.

The main characteristic of this definition of (proof-theoretic)
meaning is the notion of entailment it induces. A more comprehensive
discussion can be found in (Francez 2014c).

By defining sentential meanings in this way, I do not allude to any
logical form of the sentence differing from its surface form. In accor-
dance with many views in philosophy of language, every derivation in
the meaning of a sentence S can be viewed as providing G[[S]], grounds
for asserting S. Definition (2.4) is adapted to the current fragment.
Definition 3.7 (grounds for assertion – NL) For S ∈ E+1 , G[[S]]

df.
=

{Γ | Γ ⊢c S}, where Γ consists of E+1 -sentences only. Parameters are not
observable in grounds of assertion.
The refinement of the (reified) sentential meanings via ‘≡G ’ is used
here too, for the CIP (see below). A more comprehensive discussion
of extensions of the fragment and some technicalities accompany the
original presentation of the PTS in (Francez and Dyckhoff 2010).
3.2 Quantifier domain restriction
In this section, I develop the proof-theoretic semantics for QDR in set-
ting of the natural language fragment E+1 . This setting is more suitable
for that task than that of FOL and FOLrq, that were considered for ease
of presentation of the approach, being more familiar to most readers
than the dedicated N+1 .
Definition 3.8 (NLDR-context) An NLDR-context (NL domain re-
stricting context) c is a finite collection Γc of pseudo-sentences with
one parameter only, where Γc,j is the sub-collection with the parame-
ter j.13 Let CNL (NL contexts) be the collection of all NLDR-contexts.

13For simplicity, I assume this sub-collection is a singleton.
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The NLDR-contexts Γc,j(j) can be of one of the following forms: j isa X
(X is a noun), j is A (where A is an adjective) or j P (where P is a verb
phrase). Note that compound contextual restrictions can also be im-
posed, as, for example, in Γc,j = j isa man whom every girl loves. Since
the fragment E+1 has only modification by means of (intersective) ad-
jectives and relative clauses, all the examples will be restricted to
such modification. Extensions, for example, to incorporate preposition
phrases, are not an obstacle in principle, but none have been proposed
yet.

Restricting universal quantification: Again, an NLDR-context c pro-
vides a discharged assumption for imposing its restriction.

Γ , [j isa X ]i , [Γc,j(j)] j ⊢c S[j]

Γ ⊢c S[(every X )r(S[j])+1]
(eI i, j

CN L), j fresh for Γ (3.56)

Γ ⊢c S[(every X )r(S[j])+1] Γ ⊢c k isa X Γ ⊢c Γc,j(k) Γ , [S[k]]i ⊢c S′

Γ ⊢c S′
(eE i

CN L)

k fresh (3.57)

Again, a family of I/E-rules is employed, for all possible NLDR-
contexts.

Example 3.4 Below is a derivation establishing

every Italian woman smiles,every woman who smiles is beautiful

⊢c every woman is beautiful
(3.58)

in an NLDR-context c with Γc,k(k) = k is Italian, intended to restrict
the universal quantification on women to a universal quantification
on Italian women. The observant reader will notice that Example 2.2
is a regimentation of this example in FOL. Since there is no quantifier
scope ambiguity involved in this example, I omit in the derivation the
scope level indicator to avoid notational clutter. Also, for typographi-
cal reasons, I abbreviate in the derivationWoman, Italian, Beautiful and
Smiles to W, I, B and S, respectively.
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[k isa W]1

[k is I]2 [k isa W]1
k isa I W

(adjI)
every I W S

k S
(eÊ)

k isa W who S
(relI)

every W who S is B

k is B
(eÊ)

every W is B
(eI1,2

CN L) (3.59)
It is interesting to note that QDR holds, no matter which scope level
the restricted quantifier is in.
Example 3.5 Consider the following scope variants of

some man admires every actress (3.60)

In the NLDR-context c with Γc,k = k is Italian, intended to restrict the
universal quantification on actresses to universal quantification on
Italian actresses. I use the abbreviations P for philosopher, M for man,
I for Italian, A for actress, adm for admires and S for smart, to show
that

some P isa M ,every P is S,every S M adm every I A

⊢c some M adm every A
(3.61)

under both scope variants of the conclusion. For typographical rea-
sons, the derivations are presented with a common sub-derivation D
factored out.

D =
[j isa M]1

[j isa P]2 every P is S
j is S

(eÊ)

j isa S M
(adjI)

every S M adm every I A
j adm every I A

(eÊ)

(3.62)
Subject wide scope: The derivation is (with obvious abbreviations
and Γ omitted):

some P isa M
[j isa M]1

[k is I]3 [k isa A]4
k isa I A

(adjI) D
j adm every I A

j adm k
(eÊ)

j adm (every A)1
(eI3,4

CN L)

(some M)2 adm (every A)1
(sI)

(some M)2 adm (every A)1
(sE1,2)

(3.63)
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Object wide scope: The derivation is

some P isa M
[j isa M]1

[k is I]3 [k isa A]4
k isa I A

(adjI) D
j adm every I A

j adm k
(eÊ)

(some M)1 adm k
(sI)

(some M)1 adm k
(sE1,2)

(some M)1 adm (every A)2
(eI3,4

CN L)

(3.64)
Example 3.6 The following example from (Stanley and Szabó 2000)
is pointed out as being difficult for MTS-handling, as it seemingly re-
quires context-shift during meaning evaluation.

every sailor waved to every sailor (3.65)
where the context imposes the restriction that the quantification in the
subject is restricted to one kind of sailors, say sailors on the ship, while
the object quantification is restricted, say, to sailors on the shore. Un-
der the current approach, such examples pose no problem whatsoever.
Suppose that j is the parameter used to introduce every sailor in the
subject, while k is the parameter used to introduce every sailor in the
object (where both scope relations are equivalent). Then, all we have
to do is consider a context csailors, with Γcsailors , j = j is− on− the− ship,
and Γcsailors ,k = k is− on− the− shore. No context shift is involved. As a
full derivation is somewhat lengthy, I skip the details.
Restricting existential quantification:

Γ ⊢ j isa X Γ ⊢ Γc,j(j) Γ ⊢ S[j]

Γ ⊢c S[(some X )r(S[j])+1]
(sICN L) (3.66)

Γ ⊢ S[(some X )r(S[j])+1] Γ , [k isa X ]i , [Γc,j(k)] j , [S[k]]k ⊢ S′

Γ ⊢ S′ (sE i, j,k
CN L)

(3.67)
where k is fresh for Γ , S[some X ], S′ in (sECN L).
The reductions needed to show the harmony of the CNL-rules are very
similar to those for the regular rules (shown in Francez and Dyckhoff
2010) and are omitted.

Next, I show how the CIP is satisfied for E+1 . Note that the fragment
includes neither implication nor conjunction (on the sentential level).
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To express the CIP effect, I use the following notation. For S[(q X )]
(with q either every or some), let SΓc,j

be defined as

SΓc,j
=


S[(q X who isa Y )] Γc,j(j) = j isa Y

S[(q A X )] Γc,j(j) = j is A
S[(q X who P)] Γc,j(j) = j P

(3.68)

Theorem 3.2 (E+1 context incorporation)

Γ ⊢c S[(q X )] iff Γ ⊢ SΓc,j
(3.69)

Proof: I will show only the proof of the first case, for q = every; all
other cases are similar. To simplify, I also omit the scope indications.
1. Asume Γ ⊢c S[(every X )], where Γc,j = j isa Y . So, the derivation

ends with (omitting scope indication)
Γ , [j isa X ]i , [j isa Y ] j ⊢c S[j]

Γ ⊢c S[(every X )] (eI i, j
CN L), j fresh for Γ (3.70)

Therefore, the following derivation can be formed, where the in-
duction hypothesis on the premise uses ‘⊢’ instead of ‘⊢c ’.
Γ , [j isa X who isa Y ]i

Γ ⊢ j isa X
(relE)

Γ , [j isa X who isa Y ]i
Γ ⊢ j isa Y

(relE)

Γ ⊢ S[j]
(ass.)

S[(every X who isa Y )] (eI i)

(3.71)
2. Assume Γ ⊢ S[(every X who isa Y)]. The derivation (again, omit-

ting scope indication) ends with
Γ , [j isa X who isa Y ]i ⊢ S[j]
Γ ⊢ S[(every X who isa Y)] (eI i) (3.72)

Let Γc,j = j isa Y . Therefore, the following derivation can be
formed:

[Γ ⊢ j isaX ]i [Γ ⊢ j isaY ] j

Γ ⊢ j isa X who isa Y
(relI)

S[j]
(ass.)

Γ ⊢c S[(every X )] (eI i, j
CN L) (3.73)
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Once again, by inspecting the rules, we obtain that
[[S[(q X )]]]c = [[SΓc,j

]] (3.74)
validating the CIP. Note again the correspondence between deriva-
tions, where a use of (qIN LC) is associated with (qI) followed by (rel I)
(or by (Adj I) in some of the cases), and similarly for the E-rules.

4 conclusions

The paper introduces proof-theoretic semantics for contextual domain
restriction as an alternative to the model-theoretic meaning generally
found in the literature. In addition to providing yet another example
for the feasibility of PTS for natural language meanings, the paper
points to an advantage (in my opinion) of the PTS approach to QDR
over the MTS approach; namely, the CIP principle, by which every
contextually restricted quantified sentence has the same meaning as
a context-independent variant thereof, where the contextual restric-
tion is incorporated as a phrase in the sentence. Thus, no equivalent
of intersection with arbitrary subsets of the quantification domain, not
being the denotation (in the model) of any NL expression, is involved.
Some other advantages related to multiple quantification have also
been shown. In particular, both facets of the QDR-problem pointed out
by Stanley and Szabó (2000), namely the descriptive and the funda-
mental, are treated, in contrast to the MTS discussion in the literature,
which usually evades the latter.

As observed by one of the referees of this paper, an important phe-
nomenon related to contextual meaning variation, namely, pronom-
inal binding, is not covered by the proposed PTS. The reason is that
currently the fragment for which a PTS has been proposed does not
include pronouns at all. I consider this to be a topic of further work,
both extending the fragment with pronouns and investigating the im-
pact of such an extension of the general contextual QDR-problem.

The approach was also exemplified in two variants of FOL (first-
order logic). The current interface between the contextual restriction
and the sentential derivation is through the name of the variable in-
volved (or in the NL case, through the parameter). This might seem
somewhat ad hoc, and a more transparent binding of contextual re-
strictions and the corresponding quantifiers should be sought.

[ 281 ]



Nissim Francez

references
Hanoch Ben-Yami (2006), A critique of Frege on common nouns, Ratio,
19(2):148–155.
Robert B. Brandom (2000), Articulating reasons, Harvard University Press,
Cambridge, MA.
Michael Dummett (1993), The logical basis of metaphysics, Harvard University
Press, Cambridge, MA, USA, hard copy 1991.
Nissim Francez (2014a), The granularity of meaning in proof-theoretic
semantics, in Nicholas Asher and Sergei Soloview, editors, Proceedings of the
8th International Conference on Logical Aspects of Computational Linguistics
(LACL), Toulouse, France, June 2014, volume 8535 of LNCS, pp. 96–106,
Springer Verlag, Berlin/Heidelberg, Germany.
Nissim Francez (2014b), A logic inspired by natural language: quantifiers as
subnectors, Journal of Philosophical Logic, doi:10.1007/s10992-014-9312-z.
Nissim Francez (2014c), Views of proof-theoretic semantics: Reified
proof-theoretic meanings, Journal of Computational Logic, special issue in
honour of Roy Dyckhoff, doi:10.1093/logcom/exu035.
Nissim Francez and Gilad Ben-Avi (2011), Proof-theoretic semantic values
for logical operators, Review of Symbolic Logic, 4(3):337–485.
Nissim Francez and Gilad Ben-Avi (2014), A proof-theoretic reconstruction
of generalized quantifiers, Journal of Semantics, doi:10.1093/jos/ffu001.
Nissim Francez and Roy Dyckhoff (2010), Proof-theoretic semantics for a
natural language fragment, Linguistics and Philosophy, 33(6):447–477.
Nissim Francez and Roy Dyckhoff (2012), A note on harmony, Journal of
Philosophical Logic, 41(3):613–628.
Nissim Francez, Roy Dyckhoff, and Gilad Ben-Avi (2010), Proof-theoretic
semantics for subsentential phrases, Studia Logica 94, pp. 381–401.
Nissim Francez and Bartosz Wieckowski (2014), A proof-theoretic semantics
for contextual definiteness, in Enrico Moriconi and Laura Tesconi, editors,
Second Pisa Colloquium in Logic, Language and Epistemology, ETS, Pisa, Italy.
Gottlob Frege (1884), Die Grundlagen der Arithmetik [The basic laws of
arithmetics], Georg Olms, Hildesheim, Germany.
Gerhard Gentzen (1969), Investigations into logical deduction, in M.E. Szabo,
editor, The collected papers of Gerhard Gentzen, pp. 68–131, North-Holland,
Amsterdam, Netherlands, English translation of the 1935 paper in German.
Michael Glanzberg (2006), Context and unrestricted quantification, in
Augustìne Rayo and Gabriel Uzquiano, editors, Absolute Generality,
Clarendon Press, Oxford, UK.

[ 282 ]



A proof-theoretic semantics for domain restriction

Michael Moortgat (1997), Categorial type logics, in Johan van Benthem
and Alice ter Meulen, editors, Handbook of Logic and Language, pp. 93–178,
North-Holland, Amsterdam, Netherlands.
Lawrence Moss (2010), Syllogistic logics with verbs, Journal of Logic and
Computation, 20(4):947–967.
Francis Jeffrey Pelletier (2003), Context dependence and compositionality,
Mind & Language, 18(2):148–161.
Dag Prawitz (1965), Natural deduction: A proof-theoretical study, Almqvist and
Wicksell, Stockholm, Sweden, soft cover edition by Dover, 2006.
Dag Prawitz (2006), Meaning approached via proofs, Synthese, 148:507–524.
Arthur N. Prior (1960), The runabout inference-ticket, Analysis, 21:38–39.
Peter Schroeder-Heister (1984), A natural extension of natural deduction,
Journal of Symbolic Logic, 49:1284–1300.
Jason Stanley and Zoltán Gendler Szabó (2000), On quantifier domain
restriction, Mind & Language, 2-3:219–261.
Neil Tennant (1997), The taming of the true, Oxford University Press, Oxford,
UK.
Jan von Plato (2000), A problem with normal form in natural deduction,
Mathematical Logic Quarterly, 46:121–124.
Jan von Plato (2001), Natural deduction with general elimination rules,
Archive for Mathematical Logic, 40:541–567.
Dag Westerståhl (1985), Determiners and context sets, in Johan van
Benthem and Alice ter Meulen, editors, Generalized Quantifiers in Natural
Language, Foris, Dordrecht, Netherlands.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[ 283 ]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Logic with contextual domain restriction
	First-order logic with contextual domain restriction
	Harmony of the contextual domain restriction rules
	Quantifier domain restriction in restricted quantification

	Proof-theoretic semantics for quantifier domain restriction in a fragment of English
	Review of the proof-theoretic semantics for sentences
	The core fragment and proof system
	Relative clauses and intersective adjectives
	Sentential meanings

	Quantifier domain restriction

	Conclusions

