
Rewrite rule grammars
with multitape automata

Mans Hulden
Department of Linguistics
University of Colorado, USA

abstract

Keywords:
grammar design,
multitape
automata,
morphology,
phonology,
finite-state
phonology

The majority of computational implementations of phonological and
morphophonological alternations rely on composing together individ-
ual finite state transducers that represent sound changes. Standard
composition algorithms do not maintain the intermediate representa-
tions between the ultimate input and output forms. These intermedi-
ate strings, however, can be very helpful for various tasks: enriching
information (indispensable for models of historical linguistics), pro-
viding new avenues to debugging complex grammars, and offering
explicit alignment information between morphemes, sound segments,
and tags. This paper describes a multitape automaton approach to cre-
ating full models of sequences of sound alternation that implement
phonological and morphological grammars. A model and a practical
implementation of multitape automata is provided together with a
multitape composition algorithm tailored to the representation used in
this paper. Practical use cases of the approach are illustrated through
two common examples: a phonological example of a complex rewrite
rule grammar where multiple rules interact and a diachronic example
of modeling sound change over time.

1 introduction

Finite-state transducer based phonological and morphological mod-
els tend to be built by the composition of individual transducers that
encode morphotactics and morphophonological alternations (Beesley

Journal of Language Modelling Vol 5, No 1 (2017), pp. 107–130

Mans Hulden

and Karttunen 2003). Apart from cases such as nonconcatenative mor-
phologies where augmented techniques tend to be favored (Beesley
and Karttunen 2000; Habash et al. 2005; Hulden 2009d; Kiraz 2001),
this well-established approach is indeed quite successful and stream-
lined in the domain of morphophonology if the goal is to produce a
single transducer that maps underlying forms (parses) to surface forms
and vice versa.

Some types of grammatical information are difficult to include in
such a design, however. In morphological modeling, one may want to
recover the alignment of morphological tags to the actual morphemes;
in phonological modeling, one may want to recover intermediate rep-
resentations that show how a particular phonological alternation tar-
gets specific segments in a word, what order phonological alternations
occur in, and what they were conditioned on. This is particularly im-
portant in developing finite-state models of historical sound change,
where it is imperative to retain intermediate alignment information
so that the model may indicate what sound laws proto-segments are
subject to and in what order changes occur. In some respect, the “in-
termediate representations” in diachronic derivations are more crucial
to the linguist than their counterparts in synchronic models since in
the latter case they are bound to a particular model of phonology. The
ability to model such sequences would make finite-state devices more
attractive for linguistic research, where computational methods could
help streamline the work of lining up large amounts of data and test-
ing hypothetical generalizations; it might therefore increase linguists’
use of finite-state methods, whose potential has to date been underex-
ploited in the linguistics literature (Karttunen 2003).
In this paper, I show that a multitape model constructed by com-

position of individual multitape lexicon or alternation transducers of-
fers a simple framework that addresses the problem of intermediate
forms, while at the same time retaining the straightforward design
of morphology and morphophonology. Apart from expanding the ex-
pressive power of the grammar, the method also offers the grammar
designer the option to re-convert the multitape grammar to a simple
underlying-to-surface transducer, if desired – as may be the case if the
multitape representation is only used for obtaining debugging infor-
mation. Indeed, debugging the alternation rules and lexicon descrip-
tion involved in drafting a morphological grammar becomes much

[108]

Rewrite rule grammars with multitape automata

less burdensome under the multitape model, since information about
each step in the process of mapping from underlying to surface form
is retained and is available for inspection.1
The methods described in this paper are implemented as a stand-

alone library in Python. The library itself is built on top of the
foma library (Hulden 2009b) which provides a backbone implemen-
tation of standard transducer algorithms. The implementation allows
users to develop multitape grammars in standard regular expression
and rewrite-rule notation, automatically and transparently convert-
ing the compiled transducers to multitape equivalents and performing
multitape composition on the components. This enables a relatively
linguist-friendly grammar design procedure that relies on well-known
formalisms and offers the possibility of quick conversion of existing
grammars into a multitape representation where word-forms can be
parsed and generated with a rich intermediate structure.

This paper is structured as follows: first, some background on
rewrite-rule grammars is presented, motivating the need for more
richly structured representations; this is followed by a description of
the multitape encoding with special focus on the composition algo-
rithm for multitape automata; following this, a system for augmenting
the multitape automata with extra annotation (such as rule names) is
presented; two case studies are then provided to illustrate in concrete
terms the possibilities of the multitape formalism.

2 traditional rewriteʿrule grammars

A significant portion of morphological analysis tools are written with
the design described above: (1) a transducer that encodes morpho-
tactics and tag sequences, and (2) a series of transducers that model
morphophonological/orthographic alternation. The latter may be ex-
pressed as Sound Pattern of English-inspired ‘rewrite rules’ (Chom-
sky and Halle 1968) or as two-level parallel constraints (Koskenniemi
1983), the former being arguably the more popular choice at present
due to simplicity of debugging complex rule interactions (Alegria et al.
2010). The result of composing the lexicon transducer and the mor-

1The code and the examples in this article are available at https://
fomafst.github.io/.

[109]

https://fomafst.github.io/
https://fomafst.github.io/

Mans Hulden
Table 1: Interaction of multiple phonological processes in Lardil

tupalan-uõ papi-uõ pulpu-un pulpu kiúikiúi muNkumuNku Underlying form

tupalankuõ /k/-epenthesis
papiwuõ /w/-epenthesis

pulpun Vowel Deletion
pulpa kiúikiúæ muNkumuNka Final Lowering

kiúikiú muNkumuNk Apocope
muNkumuN Cluster Reduction
muNkumu Non-apical Truncation

kiúikiõ Sonorantization

tupalankuõ papiwuõ pulpun pulpa kiúikiõ muNkumu Surface form

Table 1: Interaction of multiple phonological processes in Lardil.

(Koskenniemi, 1983), the former being the ar-
guably more popular choice at present. The result
of composing the lexicon transducer and the mor-
phophonological transducers is one monolithic
transducer that directly performs the bidirectional
mapping from underlying-to-surface forms (gen-
eration) and vice versa (parsing). The prevalence
of this design is probably partly due to known
algorithms (Kaplan and Kay, 1994; Kempe and
Karttunen, 1996; Mohri and Sproat, 1996; Hulden,
2009a) or software tools designed around this
paradigm (such as Xerox’s lexc/xfst/twol (Beesley
and Karttunen, 2003), foma (Hulden, 2009b), or
Kleene (Beesley, 2012)). In the following, we
shall assume the more common ‘rewrite-rule’
paradigm.

Table 1 illustrates this standard design using
some example words from a grammar of Lardil—
an example language often used to illustrate com-
plex rule ordering and word-final phonology with
rules that are sensitive to ordering. The original
data stems from Hale (1973), and we follow anal-
yses by Kenstowicz and Kisseberth (1979); Hayes
(2011); Round (2011). Due to the rich interaction
of word-final deletion rules, this is a widely used
data set that has been a target of many analyses,
all of which illustrate the difficulty of marshaling
a complex set of phonological alternations. To ex-
plain the workings of the grammar, we show all
the intermediate steps in mapping from lemma-
and-inflection forms to actual surface realizations.
In actuality, if modeled by transducer composi-
tion, all the intermediate forms are lost through
the composition process, which is one of the short-
comings addressed below. That is, a final compos-
ite transducer simply provides mappings between
parse and surface. For phonological analysis, pos-
sible grammar debugging, and perhaps language
documentation purposes, it would be very desir-

able to be able to produce a rich representation
such as the one in table 1 from either an underly-
ing form (morphological information) or the sur-
face form showing all the processes that the word
undergoes step-by-step.

Under the standard composition model, there is
no easy way to do this, save by applying an un-
derlying form to each of the individual transduc-
ers representing the alternation rules in order, sav-
ing the results, and passing them on as input to
the next transducer. However, in the inverse di-
rection, such a strategy is not directly feasible, in
addition to the fact that not composing the trans-
ducers partly defeats the purpose of using a finite-
state model in the first place.

There is no principled reason, however, why the
composition algorithm should destroy the interme-
diate representations if they are desired later. In
other words, when creating a composite transducer
modeling x:z from transducers x:y and y:z, one
can in principle expand the composition algorithm
to yield x:y:z in some representation, retaining all
the intermediate information.

3 Previous work

The importance of the preservation of intermediate
results in composition has been noted and partly
addressed in Kempe et al. (2004), among others.
Our formulation below differs in representation
and algorithms, and also in that it is intended to
be simple and easily implementable without spe-
cial algorithms for multi-tape automata, i.e. only
using established algorithms for single-tape au-
tomata and transducers. We use the representation
of Hulden (2009a) for multi-tape automata. In that
work, conversion from transducers is not consid-
ered, and no composition algorithm is given, as the
assumption is that multi-tape automata are con-
structed through intersections of constraints on co-

phophonological transducers is one monolithic transducer that di-
rectly performs the bidirectional mapping from underlying-to-surface
forms (generation) and vice versa (parsing). The prevalence of this
design is probably partly due to known algorithms (Kaplan and Kay
1994; Kempe and Karttunen 1996; Mohri and Sproat 1996; Hulden
2009c) or software tools designed around this paradigm (such as
lexc/xfst/twol by Xerox (Beesley and Karttunen 2003), foma (Hulden
2009b), or Kleene (Beesley 2012)). In the following, I shall assume the
more common ‘rewrite-rule’ paradigm.

Table 1 illustrates this standard design using some example words
from a grammar of Lardil (iso 639-3: lbz, a Pama-Nyungan language
spoken on Mornington Island in Australia). This is an example lan-
guage often used to illustrate complex rule ordering and word-final
phonology with rules that are sensitive to ordering. The table is laid
out in a manner often employed by phonologists to quickly give an
overview of interacting processes. The original data stems from Hale
(1973), and I follow analyses by Kenstowicz and Kisseberth (1979);
Hayes (2011); Round (2011). Due to the rich interaction of word-final
deletion rules, this is a commonly cited data set that has been a target
of many analyses, all of which illustrate the difficulty of marshaling
a complex set of phonological alternations. In the language, we find
three independently motivated deletion rules (apocope, cluster reduc-
tion, non-apical truncation) which interact in complex ways, some-
times conspiring to elide multiple segments word-finally. The rules in
question are shown here in traditional phonological notation:

[110]

Rewrite rule grammars with multitape automata

apocope V → ; / V C0 V C0 #
cluster reduction C → ; / C #
non-apical truncation C → ; / # (unless C = [-distr.])
To explain the workings of the grammar, the table shows all the

intermediate steps in mapping from lemma-and-inflection forms to ac-
tual surface realizations. In actuality, however, if modeled by trans-
ducer composition, all the intermediate forms are lost through the
composition process, which is one of the shortcomings addressed be-
low. That is, a final composite transducer simply provides mappings
between parse and surface. For phonological analysis, possible gram-
mar debugging, and perhaps language documentation purposes, it
would be very desirable to be able to produce a rich representation
such as any of the columns shown in Table 1 from either an underly-
ing form (morphological information) or the surface form showing all
the processes that the word undergoes step-by-step.

Under the standard composition model, there is no easy way to
do this, save by applying an underlying form to each of the individual
transducers representing the alternation rules in order, saving the re-
sults, and passing them on as input to the next transducer. However,
in the inverse direction, such a strategy is not directly feasible, in ad-
dition to the fact that not composing the transducers partly defeats the
purpose of using a finite-state model in the first place.

There is no principled reason, however, why the composition
algorithm should destroy the intermediate representations. In other
words, when creating a composite transducer modeling x:z from trans-
ducers x:y and y:z, one can in principle expand the composition al-
gorithm to yield x:y:z in some representation, retaining all the inter-
mediate information. As will be seen below, a combination of a mul-
titape design together with a rule-decoration mechanism allows us to
automatically produce rich analyses very much like the ones given
in Table 1.

3 previous work

Multitape automata in general have been proposed as viable models
for morphology and phonology, particular when addressing noncon-
catenative phenomena abundant in Semitic languages such as Arabic,
Hebrew, and Syriac (Altantawy et al. 2010; Kay 1987; Habash et al.

[111]

Mans Hulden

2005; Habash and Rambow 2006; Hulden 2009d; Kiraz 2000, 2001).
In these approaches, different phonological tiers are represented by
different tapes in a multitape model. Most of these earlier models
could in fact be called multitape transducer models, since they typ-
ically work akin to transducers, although with an extended symbol
representation where instead of manipulating symbol pairs, as in the
transducer case, transitions are labeled with n-tuples of symbols. Spe-
cialized algorithms are then used to handle this representation and to
enforce symbol correspondences across tapes – Kiraz (2000), for ex-
ample, works with a constraint formalism similar to that of two-level
morphology (Koskenniemi 1983), extended to operate in a multitape
transducer scenario.

By contrast, the current work assumes as a starting point that
regularities across multiple levels of representation will be captured
not by constraints across multiple tapes, but that adjacent tapes will
be constrained by (morpho)phonological rewrite rules. To make this
feasible, the compilation of rewrite rules must be extended to a multi-
tape scenario, and a composition algorithm is required that is able
to join multitape representations together, preserving intermediate
information.

The importance of the preservation of intermediate results in
composition has been noted and partly addressed in Kempe et al.
(2004), among others. The formulation presented below differs from
earlier work in both representation and algorithms, and also in that
it is intended to be simple and easily implementable without special
algorithms for multitape automata, i.e. using only established algo-
rithms for single-tape automata and transducers. The same represen-
tation (without a composition design) has been used earlier for the
construction of Arabic multitape grammars (Hulden 2009a). In that
work, conversion from transducers is not considered, and no composi-
tion algorithm is given, as the assumption is that multitape automata
are constructed through intersections of constraints on co-occurrence
of symbols on the various tapes, analogously to two-level grammars
(Koskenniemi 1983). The multitape representation in this paper uses
the encoding from (Hulden 2009d) and builds upon extensions to it
given in Hulden (2015).

[112]

Rewrite rule grammars with multitape automata

4 notation

In discussing algorithmic aspects, familiarity with standard regular ex-
pression notation to construct automata and transducers is assumed.
For regular languages or automata X and Y , the description below will
make use of the operations union (X ∪Y), concatenation (X Y), Kleene
closure (X ∗), Kleene plus (X+), intersection (X ∩Y), complement (¬X),
and difference (X−Y). The n-ary concatenation of a language X with it-
self is denoted X n. From two languages represented as automata, their
string-wise cross-product and resulting regular relation (representable
as a transducer) is denoted with X :Y . If X and Y are transducers, their
composition is (X ◦ Y). The input and output projections of a rela-
tion/transducer X are denoted domain(X) and range(X). Whenever a
regular language (or automaton) X appears in a transducer context,
it is assumed to represent the identity relation, i.e. a transducer that
simply repeats the set of words accepted by X . In some algorithms
subtraction is performed in a transducer context (X −Y); in such cases
the subtraction refers to transducer path subtraction and not relation
subtraction which regular relations are not closed under, i.e. the result
represents the set of valid sequences of symbol pairs in X but not in
Y . We use the special symbol ? to represent any single symbol.
When describing linguistic grammars, the well-known Xerox reg-

ular expression notation (Beesley and Karttunen 2003) is used in this
paper to define andmanipulate automata and transducers, rewrite rule
transducers in particular; the examples should be directly compilable
with the foma library. The formalism used is summarized in Table 2.
Multitape additions are implemented through a Python interface dis-
cussed in Section 9.

5 a multitape encoding

In the implementations below, a multitape representation is assumed
to be a simple single-tape automaton that either accepts or rejects
a string s in the standard way. However, the strings in question are
intended to represent valid computations of a multitape automaton
where certain positions in s pertain to certain tapes. Which symbol
in the linear string s belongs to which tape is modeled by a simple
“interleaving” encoding where the length of any accepted string s is

[113]

Mans Hulden
Table 2:

Regular expression notation in
xfst/foma

AB Concatenation
A|B Union
A* Kleene Star
˜A Complement
? Any symbol in alphabet
0 The empty string (epsilon)
Aˆk k-ary concatenation
% Escape symbol

[and] Grouping brackets
A:B Cross product
A/B A ignoring intervening B
T.2 Output projection of T

A -> B Rewrite A as B
|| C _ D Context specifier
.#. End or beginning of string

def F(X1,...,Xn) definition of macro
def X definition of language constant

always an even multiple of the number of tapes in the multitape model
it is intended to represent. Informally, the string first encodes the first
column of the legal contents of an n-tape multitape automaton, top-
down, then the second column, etc. etc. Every symbol in position k
in the linear string representation corresponds to – in the case of n
tapes – position ⌊k/n⌋ on tape (k mod n). A special representation
for empty symbols (ε-symbols) in the single-tape model is assumed
whereby they are represented with the symbol □ – a so-called “hard
zero”. A string of length l×n in the single-tape string would correspond
to the multitape representation as follows, where, in parentheses, the
position within a tape is shown first, followed by the tape number in
the multitape representation.

T0 (0,0) (1,0) … (l,0)
…

Tn−1 (0,n− 1) (1,n− 1) … (l, n− 1)
Tn (0,n) (1,n) … (l, n)

For example, if a single-tape representation contains in its lan-
guage the string abcde□, this is assumed to correspond to a valid

[114]

Rewrite rule grammars with multitape automata

configuration a d
b e
c □

seen from the multitape point-of-view (a 3-tape configuration); i.e. a
multitape automaton that accepts the string ad as input, translates it
into be, and then translates this into c (the □-symbol representing the
empty string).

6 conversion from transducers

It is evident that an existing transducer can be converted to this mul-
titape representation – that is, to a 2-tape representation – without
much effort. To convert a standard transducer, where transitions are
encoded as symbol pairs, one simply expands each transition with a
symbol pair x : y to a two-symbol sequence x y in the correspond-
ing n-tape automaton. This operation will be referred to as “flatten-
ing.”2 If the original transducer T maps a string x1 . . . xn to y1 . . . yn

by a sequence of transitions with labels ((x1, y1), . . . , (xn, yn)), then the
automaton flatten(T) accepts a string (x1 y1 . . . xn yn). In the result, ε-
symbols are replaced with the □-symbol. This □-symbol is only used
to mark the alignment of epsilons and need not be specified by the
user in any way, as will be discussed below.

So-called Unknown symbols – placeholders for future alphabet
expansion in incremental construction of automata – are denoted by
@. These are symbols that match any symbol outside the alphabet of
an automaton. Note that this is different from the semantics of the
?-symbol in regular expressions which represent any single symbol at
all with no reference to an alphabet (Beesley and Karttunen 2003).

Conversion of transducers is particularly convenient since we can
take advantage of existing algorithms for building complex transduc-
ers for NLP use. This includes replacement-rule transducers available
in many toolkits, as well as lexicon transducers constructed through
essentially right-linear grammars. Figure 1 shows a replacement rule
that deletes x-symbols at the end of a string compiled into a trans-
ducer, and the result of subsequently converting that transducer to

2A symmetrical unflattening operation can also be defined.

[115]

Mans Hulden

0

@

1
x:ε

2

x

@

x:ε x 0

1

@

2x

@

3□

4
x

@ x

Σ = {x} Σ = {x,□}

x -> ε || _ .#. flatten(x -> ε || _ .#.)

Figure 1: Illustration of a replacement-rule encoded as a transducer (left) and
subsequently converted to a 2-tape automaton using the encoding presented here

a standard automaton representing a 2-tape layout in the encoding
used here. In other words, we can rely on existing algorithms to build
phonological transducers, and only convert them to 2-tape automata
before multitape composition.

7 multitape composition

The overall usefulness of converting transducers to 2-tape au-
tomata, and then combining a number of individual such 2-tape au-
tomata by composition, is illustrated in Figure 2. By combining the
individual 2-tape representations into a monolithic n-tape represen-

Rewrite rules 2-tape automata n-tape automaton

xyz

xyz

xuz

xuz xuz
xvz xvz

xvz
xvw

xvw

y -> u || x _ z

u -> v || _ z

z -> w || v _

Rewrite rules 2-tape automata n-tape automaton

compose

co
mpose

compose

compile

compile

compile

Figure 2: Workflow for converting rewrite rule specifications to transducers, then
2-tape automata, then n-tape automata

[116]

Rewrite rule grammars with multitape automata

tation, all the intermediate representations which would normally be
destroyed in a series of compositions can be preserved. As will be seen
below, if such a strategy is augmented with the possibility of adding
decoration and comment symbols to the individual tapes, very user-
friendly grammars for parsing and generation can be developed.
Interestingly, a generic multitape composition algorithm in this

representation can be encoded entirely algebraically, which is to say,
as regular expressions. Given two multitape automata, A and B, en-
coded as above, each representing some specified number of tapes m
and n, the core idea is to break down their composed representation
as a two-step process, which yields an m+n−1 tape representation of
the composite. Informally, this multitape composition process for any
m and n-tape automata in the representation at hand can be described
as follows:
1. Force automata A and B to be of the same number of tapes
(m+ n− 1) by alternatively inserting columns of empty (□) sym-
bols followed (in A) or preceded (in B) by arbitrary symbols, or
retaining the original columns in A an B but inserting arbitrary
symbols after each column (in A) or before each column (in B).

2. Call the new automata Aextend and Bextend: now, the result of in-
tersecting the two Aextend ∩ Bextend (using standard automaton in-
tersection) represents their composition A◦M T B, seen from a mul-
titape point of view (with intermediate steps retained).
An illustration of the main logic behind the padding and column

insertion mechanisms is given in Figure 3. The exact algorithm is given
in Algorithm 1.

a
b
c

d
e
□ c

□
x
x

□
z
u
x

□
w
w
w

?
?
?

?
?
?

?
?
?
?
?
?

a
b
c

□
□
□
?
?
?

A

B

epsilon-insertion

padding

padding

c
□
x
x

□
z
u
x

□
w
w
w

a
b
d
e
□

aaaa
bbb
cccc

A

Figure 3:
Illustration of multitape composition: the shaded areas
show possible contents of the original multitape automata
A and B, while the remaining areas show the result of
insertions to coerce the automata to have the same
dimensions and epsilon-behavior before intersection
of A and B

[117]

Mans Hulden
Algorithm 1:
Multitape

Composition

Input: A= FSM with m tapes, B = FSM with n tapes
1 eInsertA ← (ε:□)m

�
(ε:?)n−1 − (ε:□)n−1

�
2 padA ← ?m (ε:?)n−1

3 eInsertB ← �(ε:?)m−1 − (ε:□)m−1
�
(ε:□)n

4 padB ← (ε:?)m−1 ?n

5 ExtendA ← range�A◦ (eInsertA∪ padA)∗�
6 ExtendB ← range�B ◦ (eInsertB∪ padB)∗�
7 Sync ← ?m+n−1

8 X0 ← ?m−1 □n

9 XY ← �?m−1 −□m−1
�
□
�
?n−1 −□n−1
�

10 0Y ← □m ?n−1

11 Filter ← ¬�Sync∗ (0Y(X0∪XY)∪X0(0Y∪XY) ?∗
�

12 Result ← ExtendA∩ ExtendB∩ Filter

7.1 Path filtering
A well known problem of standard composition algorithms for trans-
ducers also carries over to the multitape representation; this is the
problem of producing multiple alternate paths in the resulting trans-
ducer when epsilon-symbols are present (ε-multiplicity). The cause of
this is that there exist many equivalent paths that yield the same trans-
duction: e.g. a:ε ◦ ε:b can be represented as a:b, a sequence a:ε ε:b,
or a sequence ε:b a:ε. Figure 4 illustrates different but equivalent
outputs for the composition of two multitape automata. None of the
multiple paths for describing a relation are incorrect, but the incon-
venience of handling the possibility of multiple equivalent parses or
generations motivates an attempt to provide unambiguous paths for
each composition during the process itself. Furthermore, in a weighted
automaton/transducer scenario – which we will not specifically deal
with here – use of a non-idempotent semiring can yield incorrect re-
sults if multiple paths are not filtered out.

The common solution in the classical transducer domain is to ei-
ther design a separate filter transducer that serves to prefer some spe-
cific order of epsilon-interleaving (Mohri et al. 2002) or to incorporate
this filter mechanism directly into the composition algorithm (Hulden
2009a). In the multitape case, however, this filtering mechanism can
be encoded entirely as a regular language filter which disallows cer-
tain interleavings of epsilon-symbols in the string representation, in

[118]

Rewrite rule grammars with multitape automata

A B a d
b e
c □

c □ □
□ z w
x u w
x x w

A ◦M T B

a d □
b e □
c □ □
□ z w
x u w
x x w

a □ d
b □ e
c □ □
□ z w
x u w
x x w

a d □ □
b e □ □
c □ □ □
□ □ z w
x □ u w
x □ x w

a □ d □
b □ e □
c □ □ □
□ z □ w
x u □ w
x x □ w

a □ □ d
b □ □ e
c □ □ □
□ z w □
x u w □
x x w □

Figure 4: Composition of automata A and B, illustrating different alignments of
epsilon-symbols. This shows composition behavior with respect to two particu-
lar configurations in A and B. A subsequent filter, expressed as an automaton,
removes all the solutions except the upper leftmost one

particular those where an x:□-transition (when automaton A has an
epsilon on the last tape in some position) immediately follows or pre-
cedes a □:y-transition (when automaton B inserts a symbol on its first
pair of tapes). This filter can then be intersected with the output of
the earlier algorithm. As mentioned, this regular expression (Filter)
can simply be intersected with the earlier result to remove redundant
paths in the composition (shown in lines 7-11 in the algorithm).
7.2 Algorithm details
The algorithm in 1 essentially reiterates the above, with a few details
worth mentioning. In lines 1–4, constants that perform the insertion
and padding are declared. Lines 5 and 6 create the transducers Aextend
and Bextend. Lines 7–11 create the filter automaton which is indepen-
dent of A and B, and the three-element intersection at line 12 yields
the result of the final composition.

[119]

Mans Hulden

8 composition in grammars
The composition algorithm is the only extension needed to retain all
the intermediate information in an ordered rewrite-rule grammar. One
can simply convert any individual transducers to a multitape represen-
tation and proceed with the composition, yielding a multitape repre-
sentation of the same grammar. Parsing and generation of a string s
can be performed by creating a padded multitape automaton where
either the underlying representation or the surface representation is in
place, with arbitrary symbols present on the other tapes. This multi-
tape automaton can then be intersected with the grammar G, yielding
a string representation of the set of legal parses or generations, with
their intermediate representations intact.

That is to say, if we have an n-tape automaton grammar G and
want to parse a string s, we can convert the string to an automaton
that accepts that string (ignoring possible intervening blanks □), pad
the automaton to match the number of tapes in G (making sure s is on
the last tape), and then intersect with G. The padding operation may
be performed by the standard method of composing with a transducer
that inserts the right amount of arbitrary symbols, and then extracting
the range of the transducer.

Parse(s, G)
def
= range�s/□ ◦ ((ε:?)n−1 ?)∗

� ∩ G (1)
Likewise, to generate, we may perform the same calculation with

the padding done in such a manner that s is on the first tape:

Generate(s, G)
def
= range�s/□ ◦ ((? ε:?)n−1)∗

� ∩ G (2)
Again, these functions are intended to make the system transpar-

ent to the user so that no knowledge of the actual multitape represen-
tation is needed to design and apply grammars.
8.1 Adding intermediate information
It was hinted above that annotating the effect of various transducers is
a very useful feature (as seen in Table 1) for debugging or phonological
analysis. Incorporating such information can be done separately from
the multitape encoding; that is, one can first incorporate the desired
decorative information in a standard transducer and then perform the
conversion to a multitape representation, retaining the decoration. For

[120]

Rewrite rule grammars with multitape automata

morphophonological processes, it suffices to modify the transducers
that encode the relevant replacement rules in such a way as to add
information about each process. In most cases, this would only entail
naming the process in question. Such an annotation mechanism can
be added separately to each rule transducer before converting it to a
2-tape representation.

8.2 Decoration example
In the examples below, each alternation rule transducer is augmented
with a textual description of that rule. This allows us to pair up rule
descriptions with rules, so that when parsing or generating with a
multitape automaton, informative descriptions will appear for each
rule in a chain of compositions. In essence, this allows for the inclusion
of comments whenever a phonological alternation rule fires, similar
to those given in Table 1.

For example, a rule that deletes the latter of consecutive vowels
can be encoded as follows as a rule-description pair:
(’V -> 0 || V _ ’, ’Vowel Del’)

and would have the following effect on input words (a) papiin and
(b) papi, respectively, when generating words:

(a) (b)
p a p i i n p a p i
p a p i n # Vowel Del p a p i # Vowel Del

making it clear to the user that this particular rule applies at that point
in the derivation.

9 implementation

As the foma tool has existing Python bindings that can be used to call
the underlying standard algorithms for manipulating automata and
transducers, providing an extension to that library becomes a matter
of implementing the above algorithms. The multitape encoding has
been implemented as a standard Python-class that (1) provides a mul-
titape automaton data type MTFSM and (2) can perform composition
together with rule decoration on arbitrary transducers. This allows for

[121]

Mans Hulden

a certain level of transparency in the bookkeeping needed. For exam-
ple, the information about how many tapes are encoded in an FSM is
auxiliary information that it is necessary to store during a composition
process, since the multitape encoding does not inherently contain this
information. The interface to the foma formalism allows for automatic
conversion of transducers to 2-tape automata, which may then be in-
crementally composed to yield representations with multiple tapes.
In effect, designing a complete grammar does not require the user to
possess knowledge about or keep track of the underlying machinery,
such as the number of tapes used, the padding performed, etc. Even
the padding symbols – though helpful for debugging individual rules
– can be omitted from the output as they are only used internally to
produce a consistent alignment of different-length strings.

For example, to simply compose two rules, without any decora-
tion, the user may enter arbitrary regular expressions (in this exam-
ple rewrite rules) which automatically convert to two-tape represen-
tations that can be composed and inspected:
>>> r1 = MTFSM(”x -> y || c _ ”)
>>> r2 = MTFSM(”y -> z || _ d”)
>>> composed = r1 + r2

>>> print composed
States: 35
Transitions: 126
Final states: 7
Deterministic: 1
Minimized: 1
Numtapes: 3

Entire grammars can be compiled through a separate and more
involved mtgrammar module. This module allows for the type of rule
decoration described above, and provides for a method of composing
the different multitape automata in order, as well parsing and gener-
ation functionality:
from mtgrammar import *

G = compilemt([(’b -> x || a _ c’, ’Rule 1’), (’x -> 0 || a _ c’, ’Rule 2’)])
printparses(’ac’, G, dir=’up’)

Here, two rewrite rules are compiled, converted automatically to
multitape automata through the compilemt statement and composed

[122]

Rewrite rule grammars with multitape automata

in the order given. After this, the resulting 3-tape automaton is used to
parse the word ac in the “upward” direction, that is, assuming that the
string is on the output tape. This produces the three aligned outputs:

abc□□ axc□□ ac□□
axc#Rule 1 axc#Rule 1 ac#Rule 1
a□c#Rule 2 a□c#Rule 2 ac#Rule 2
a□c□□ a□c□□ ac□□

Here, we see that there are three ways the two phonological rules
in question could produce the output ac – by starting from the under-
lying forms abc, axc, and ac, respectively. The blanks are automati-
cally positioned in their correct positions without the user having to
specify anything except the input string to be parsed and the direction
of parsing (up= from surface form to underlying form, down= from
underlying form to surface form).
9.1 Illustrative example 1: phonology (Lardil)
Returning now to the original Lardil example: annotating replacement
rules with additional descriptive symbols to be inserted at the ends of
strings every time a rule fires in combination with the multitape com-
position mechanism allows us to essentially automatically replicate
the linguist-friendly representation given in Table 1. The following
snippet illustrates some key points in the design of such grammars:

1 from foma import *
2 from mtgrammar import *
3

4 # Definitions #
5 FST.define(u’{jilijili}|{kiʈikiʈi}|{muŋkumuŋku}’, u’Stems’)
6 FST.define(u’[a | æ | i | u]’, ’Vow’)
7 FST.define(u’[m | n | ɳ | ŋ | ŋ | n̪ | nʲ]’, ’Nasal’)
8 ...
9 # Rules #
10 kEpenthesis = (u’[..] -> k || Nasal _ u ɻ ’, ’k-Epenthesis’)
11 wEpenthesis = (u’[..] -> w || i _ u’ , ’w-Epenthesis’)
12 ...
13 G = compilemt((Lex, kEpenthesis, wEpenthesis, VowelDeletion, FinalLowering,
14 Apocope, ClusterRed, NonApicalDel, Sonorantization))

That is, wemaywrite grammars inmuch the sameway as in estab-
lished formalisms, defining regular expression constants such as Vow
and Nasalwhich are later used in building more complex rewrite rules
such as k-Epenthesis and w-Epenthesis, etc. These decorations are

[123]

Mans Hulden

automatically added to the right end of each tier, as illustrated in two
different parses below:

>>> printparses(u’muŋkumu’, G)

muŋkumuŋku[Uninflected]□□
muŋkumuŋku□#Lexicon Output
muŋkumuŋku□#k-Epenthesis
muŋkumuŋku□#w-Epenthesis
muŋkumuŋku□#Vowel Deletion
muŋkumuŋka□#Final Lowering
muŋkumuŋk□□#Apocope
muŋkumuŋ□□□#Cluster Reduction
muŋkumu□□□□#Non-Apical Deletion
muŋkumu□□□□#Sonorantization
muŋkumu□□□□□□

>>> printparses(u’putu’, G)

putuka[Uninflected]□□
putuka□#Lexicon Output
putuka□#k-Epenthesis
putuka□#w-Epenthesis
putuka□#Vowel Deletion
putuka□#Final Lowering
putuk□□#Apocope
putuk□□#Cluster Reduction
putu□□□#Non-Apical Deletion
putu□□□#Sonorantization
putu□□□□□

In the generation direction, the same procedure applies, and the
library offers an up/down parameter to control for the direction of op-
eration; a command printparses(u’putuka[Uninflected]’, G,
dir=’down’) in the above would have produced the same output as
the example on the right hand side.
9.2 Illustrative example 2: Historical Linguistics

(Proto-Indo-European)
As alluded to above, another scenario where intermediate, possibly
annotated strings provide important information is in the modeling
of historical sound change by finite-state means. In the development
of models of diachronic sound change, this provides the possibility of
providing annotated parses from modern variants to proto-language
forms given hypothesized chronological sound changes. The following
parses show the behavior of an ordered set of rewrite rules in multitape
form that model the path of sound changes from Proto-Indo-European
(PIE) to German and Latin. The relevant rules are implemented as
rewrite transducers as in the Lardil example above.
>>> printparses(u’pátēr’, Latin)

ph2tḗrs□□
ph2tḗrs#*PIE
ph2tḗr□#Szemerényi’s law
pa□tḗr□#*H > a between consonants
pá□tēr□#Proto-Italic stress
pá□tēr□□□

>>> printparses(u’fā́tɐr’, German)

ph2tḗrs□□
ph2tḗrs#*PIE
ph2tḗr□#Szemerényi’s law
pa□tḗr□#*H > a between consonants
fa□tḗr□#Grimm’s Law
fa□dḗr□#Verner’s Law
fá□dēr□#Stress Shift
fá□tēr□#High Germanic Consonant Shift
fā́tēr□#Lengthening
fā́tɐr□#Reduction
fā́tɐr□□□

[124]

Rewrite rule grammars with multitape automata

Here, we see the parsing of the Latin form for the word “father”,
pátēr as well as the German form fāt́ɐr, using two different grammars
that share part of the rewrite rules (the early sound changes affect-
ing both). Both correspond to the underlying, hypothesized PIE form
ph₂tḗrs. The relevant sound changes in this grammar were modeled fol-
lowing Beekes (2011); Trask (1996). As opposed to synchronic phono-
logical grammars, the chains of sound changes over long periods can
grow quite extensive. For example, the German surface form is sub-
ject to a number of them: first, a sound change called Szemerényi’s law
deleting coda fricatives takes place, followed by a process of laryngeal
vocalization,3 Grimm’s and Verner’s Laws, a stress shift, as well as a
number of processes that affect vowels. The multitape parse in this
case illustrates the value of such a design in checking correctness of
very complex sequences of sound changes. Such sequences could plau-
sibly be generated in the chronological direction through non-finite-
state means, but the direction of interest for the linguist is generally
the inverse one – parsing from surface form to underlying form, which
is what is calculated here.
More advanced usage scenarios can also be explored with the

method through more complex intersections of individual tapes in
multitape representations for different languages. For example, having
postulated a sequence of sound changes that two modern languages
have undergone from the proto-language, we can calculate the set of
possible proto-forms for some modern cognates x and y in two lan-
guages. In the above parses of “father”, only a single parse per cog-
nate is given, since we have included the postulated proto-form in
the grammar. There might, however, exist other plausible PIE-forms
that fit the sequence of sound changes. For example, removing the
proto-form from the grammar yields two plausible parses in the inter-
section of Latin and German, patḗr and patḗrs. Such techniques can be
extended to a larger scale to support the endeavor of verifying consis-
tency of postulated sound changes with the possibility of immediate
feedback when minor changes are made in the various sound laws.

3Laryngeals are abstract segments proposed to have been present in Proto-
Indo-European (De Saussure 1879) but later disappeared, leaving behind differ-
ent vowel qualities and a compensatory lengthening. The laryngeals are com-
monly labeled ∗h1, ∗h2, and ∗h3, and ∗H is used as a cover symbol for all three.

[125]

Mans Hulden

10 conclusion

This paper has presented a general, automatic method for extend-
ing finite-state grammars in the composed rewrite-rule tradition. The
method in effect replaces the use of transducers with multitape au-
tomata, which are shown to have the capacity to provide rich parses
and to support elaborate annotation of intermediate forms. Existing al-
gorithms for constructing transducers from rewrite-rule specifications
can still be used, once converted to multitape representations. We can
also take advantage of specialized string-rewriting and constraint sys-
tems to handle syllabification (Hulden 2006), Semitic interdigitation
(Beesley and Karttunen 2000), and, with some caution, unification
features such as flag diacritics to model long-distance dependencies
(Beesley 1998). Potentially, steps in candidate removal in Optimal-
ity Theoretic grammars could also be implemented by incorporating
proposals to model such processes by finite-state composition (Kart-
tunen 1998; Gerdemann and van Noord 2000; Gerdemann and Hulden
2012).

The model itself assumes little machinery beyond the ability to
compose the resulting multitape automata, but offers a way to produce
rich representations of grammars constructed in this vein. If desired
(for memory efficiency reasons), the resulting multitape automata can
still be re-converted to transducers by eliminating the intermediate
representations. This offers the possibility to only use the multitape
representation for debugging purposes, if the final intent is to produce
a simpler underlying-to-surface mapping or vice versa.

The above techniques may be useful for applications outside stan-
dard designs of morphophonological grammars. In modeling historical
sound changes, for example, ‘debugging’ problems similar to those in
phonology and morphology tend to arise – much exacerbated by the
fact that one is often dealing with multiple languages at the same time.
Keeping track of hundreds of proposed sound laws together with their
effect on lexical items across languages is a task that is well suited for
the type of modeling presented in this paper.

Although the application focus of this paper has been more along
the lines of modeling traditional non-probabilistic grammars, the
methods presented above – the composition algorithm in particular
– are also adaptable to weighted automata.

[126]

Rewrite rule grammars with multitape automata

appendix a ʸ lardil grammar
-*- coding: utf-8 -*-
from foma import *
from mtgrammar import *

Definitions needed for rules
FST.define(u’{papi}|{wiʈæ}|{ŋuku}|{wanka}|{kaɾikaɾi}|{jukaɾpa}|{putuka}|

{jilijili}|{kiʈikiʈi}|{muŋkumuŋku}’, u’Stems’)
FST.define(u’[a | æ | i | u]’, u’Vow’)
FST.define(u’[p | t | ʈ | t̪ | tʲ |k | m | n | ɳ | ŋ | ŋ | n̪ | nʲ| ɾ | l |

w | ɻ | j]’, u’Cons’)
FST.define(u’[t | ʈ | n | ɳ | ɾ | l | ɻ]’, u’Apical’)
FST.define(u’[m | n | ɳ | ŋ | ŋ | n̪ | nʲ]’, u’Nasal’)
FST.define(u’”#”|.#.’, u’E’) # Word edge

Grammar Lexicon + Rules
Lex = (u’Stems [”[Acc. Nonfuture]”:{in} |

”[Acc. Future]”:{uɻ} |
”[Uninflected]”:0]’, u’Lexicon Output’)

kEpenthesis = (u’[..] -> k || Nasal _ u ɻ ’, u’k-Epenthesis’)
wEpenthesis = (u’[..] -> w || i _ u’ , u’w-Epenthesis’)
VowelDeletion = (u’Vow -> 0 || Vow _ ’, u’Vowel Deletion’)
FinalLowering = (u’i -> æ, u -> a || _ E’, u’Final Lowering’)
Apocope = (u’Vow -> 0 || Vow Cons* Vow Cons* _ E’, u’Apocope’)
ClusterRed = (u’Cons -> 0 || Cons _ E’, u’Cluster Reduction’)
NonApicalDel = (u’Cons - Apical -> 0 || _ E’, u’Non-Apical Deletion’)
Sonorantization = (u’ʈ -> ɻ || _ E’, u’Sonorantization’)

Grammar = compilemt((Lex, kEpenthesis, wEpenthesis, VowelDeletion,
FinalLowering, Apocope, ClusterRed, NonApicalDel, Sonorantization))

Parse
mtgrammar.printparses(u’muŋkumu’, Grammar)
mtgrammar.printparses(u’putu’, Grammar)
mtgrammar.printparses(u’ŋukuɻ’, Grammar)

[127]

Mans Hulden

references
Iñaki Alegria, Izaskun Etxeberria, Mans Hulden, and Montserrat
Maritxalar (2010), Porting Basque morphological grammars to foma, an
open-source tool, 6062:105–113.
Mohamed Altantawy, Nizar Habash, Owen Rambow, and Ibrahim Saleh
(2010), Morphological Analysis and Generation of Arabic Nouns: A Morphemic
Functional Approach, in Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), Valletta, Malta.
Robert S. P. Beekes (2011), Comparative Indo-European Linguistics: an
Introduction, John Benjamins Publishing.
Kenneth R Beesley (1998), Constraining separated morphotactic dependencies
in finite-state grammars, in Proceedings of the International Workshop on Finite
State Methods in Natural Language Processing, pp. 118–127, Association for
Computational Linguistics.
Kenneth R Beesley (2012), Kleene, a Free and Open-Source Language for
Finite-State Programming, in 10th International Workshop on Finite State Methods
and Natural Language Processing (FSMNLP), pp. 50–54.
Kenneth R Beesley and Lauri Karttunen (2000), Finite-state
Non-Concatenative Morphotactics, in Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics.
Kenneth R. Beesley and Lauri Karttunen (2003), Finite State Morphology,
CSLI Publications, Stanford, CA.
Noam Chomsky and Morris Halle (1968), The Sound Pattern of English,
Harper & Row.
Ferdinand De Saussure (1879), Mémoire sur le système primitif des voyelles dans
les langues indo-européennes, B.G. Teubner.
Dale Gerdemann and Mans Hulden (2012), Practical Finite State Optimality
Theory, in Proceedings of the 10th International Workshop on Finite State Methods
and Natural Language Processing, pp. 10–19, Association for Computational
Linguistics, Donostia–San Sebastián.
Dale Gerdemann and Gertjan van Noord (2000), Approximation and
exactness in finite state optimality theory, in Proceedings of the Fifth Workshop of
the ACL Special Interest Group in Computational Phonology.
Nizar Habash and Owen Rambow (2006), MAGEAD: A Morphological
Analyzer and Generator for the Arabic Dialects, in Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pp. 681–688, Association for
Computational Linguistics, Sydney, Australia, doi:10.3115/1220175.1220261,
http://www.aclweb.org/anthology/P06-1086.

[128]

http://www.aclweb.org/anthology/P06-1086

Rewrite rule grammars with multitape automata

Nizar Habash, Owen Rambow, and George Kiraz (2005), Morphological
analysis and generation for Arabic dialects, in Proceedings of the ACL Workshop
on Computational Approaches to Semitic Languages, pp. 17–24, Association for
Computational Linguistics.
Kenneth Hale (1973), Deep-surface canonical disparities in relation to analysis
and change: An Australian example, Current trends in linguistics, 11:401–458.
Bruce Hayes (2011), Introductory Phonology, John Wiley & Sons.
Mans Hulden (2006), Finite-State Syllabification, Lecture Notes in Artificial
Intelligence, 4002:86–96.
Mans Hulden (2009a), Finite-state Machine Construction Methods and Algorithms
for Phonology and Morphology, Ph.D. thesis, University of Arizona.
Mans Hulden (2009b), Foma: a finite-state compiler and library, in Proceedings
of the 12th conference of the European Chapter of the Association for Computational
Linguistics,, pp. 29–32.
Mans Hulden (2009c), Regular Expressions and Predicate Logic in Finite-State
Language Processing, in Jakub Piskorski, Bruce Watson, and Anssi
Yli-Jyrä, editors, Finite-State Methods and Natural Language
Processing—Post-proceedings of the 7th International Workshop FSMNLP 2008,
volume 191 of Frontiers in Artificial Intelligence and Applications, pp. 82–97, IOS
Press.
Mans Hulden (2009d), Revisiting multi-tape automata for Semitic
morphological analysis and generation, Proceedings of the EACL 2009 Workshop
on Computational Approaches to Semitic Languages, pp. 19–26.
Mans Hulden (2015), Grammar design with multi-tape automata and
composition, in Proceedings of the The 12th International Conference on
Finite-State Methods and Natural Language Processing (FSMNLP), Association for
Computational Linguistics.
Ronald M. Kaplan and Martin Kay (1994), Regular models of phonological
rule systems, Computational Linguistics, 20(3):331–378.
Lauri Karttunen (1998), The proper treatment of optimality theory in
computational phonology, in Proceedings of the International Workshop on Finite
State Methods in Natural Language Processing (FSMNLP).
Lauri Karttunen (2003), Computing with realizational morphology, in
Computational Linguistics and Intelligent Text Processing, pp. 203–214, Springer.
Martin Kay (1987), Nonconcatenative Finite-State Morphology, in Proceedings
of EACL 1987.
André Kempe, Franck Guingne, and Florent Nicart (2004), Algorithms for
weighted multi-tape automata, XRCE Research Report 2004/031.

[129]

Mans Hulden

André Kempe and Lauri Karttunen (1996), Parallel replacement in finite
state calculus, in Proceedings of the 34th annual meeting of the Association for
Computational Linguistics.
Michael Kenstowicz and Charles Kisseberth (1979), Generative phonology,
Academic Press.
George Anton Kiraz (2000), Multitiered nonlinear morphology using multitape
finite automata: a case study on Syriac and Arabic, Computational Linguistics,
26(1):77–105.
George Anton Kiraz (2001), Computational nonlinear morphology: with emphasis
on Semitic languages, Cambridge University Press, Cambridge.
Kimmo Koskenniemi (1983), Two-level morphology: A general computational
model for word-form recognition and production, Publication 11, University of
Helsinki, Department of General Linguistics, Helsinki.
Mehryar Mohri, Fernando Pereira, and Michael Riley (2002), Weighted
finite-state transducers in speech recognition, Computer Speech & Language,
16(1):69–88.
Mehryar Mohri and Richard Sproat (1996), An efficient compiler for
weighted rewrite rules, in Proceedings of the 34th annual meeting on Association
for Computational Linguistics, pp. 231–238, Association for Computational
Linguistics.
Erich Round (2011), Word final phonology in Lardil: Implications of an
expanded data set, Australian Journal of Linguistics, 31(3):327–350.
Robert Lawrence Trask (1996), Historical Linguistics, Oxford University Press.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[130]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Traditional rewrite-rule grammars
	Previous work
	Notation
	A multitape encoding
	Conversion from transducers
	multitape composition
	Path filtering
	Algorithm details

	Composition in grammars
	Adding intermediate information
	Decoration example

	Implementation
	Illustrative example 1: phonology (Lardil)
	Illustrative example 2: Historical Linguistics (Proto-Indo-European)

	Conclusion

