
..

ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1.

1

.

Journal of

Language
Modelling

.

volume 3 issue 1
june 2015

.

Institute of Computer Science
Polish Academy of Sciences
Warsaw

Journal of
Language Modelling

volume 3 issue 1
june 2015

Editorials
A word from the editors 1

Adam Przepiórkowski, Elżbieta Hajnicz,
Agnieszka Mykowiecka, Marcin Woliński

High-level methodologies for grammar engineering.
Introduction to the special issue 5
Denys Duchier, Yannick Parmentier

Tools and resources
The CoreGram project: theoretical linguistics,

theory development, and verification 21
Stefan Müller

Articles
A logical approach to grammar description 87
Lionel Clément, Jérôme Kirman, Sylvain Salvati

A syntactic component for Vietnamese language processing 145
Phuong Le-Hong, Azim Roussanaly, Thi Minh Huyen Nguyen

Implementing semantic frames as typed feature structures with XMG 185
Timm Lichte, Simon Petitjean

A type-logical treebank for French 229
Richard Moot

Frigram: a French Interaction Grammar 265
Guy Perrier, Bruno Guillaume

journal of
language modelling

ISSN 2299-8470 (electronic version)
ISSN 2299-856X (printed version)
http://jlm.ipipan.waw.pl/

managing editor
Adam Przepiórkowski ipi pan

section editors
Elżbieta Hajnicz ipi pan

Agnieszka Mykowiecka ipi pan
Marcin Woliński ipi pan

statistics editor
Łukasz Dębowski ipi pan

Published by IPI PAN
Instytut Podstaw Informatyki

Polskiej Akademii Nauk
Institute of Computer Science
Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Circulation: 100 + print on demand
Layout designed by Adam Twardoch.

Typeset in XƎLATEX using the typefaces: Playfair Display
by Claus Eggers Sørensen, Charis SIL by SIL International,

JLM monogram by Łukasz Dziedzic.
All content is licensed under

the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

editorial board

Steven Abney University of Michigan, usa
Ash Asudeh Carleton University, canada;
University of Oxford, united kingdom

Chris Biemann Technische Universität Darmstadt, germany
Igor Boguslavsky Technical University of Madrid, spain;

Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, russia

António Branco University of Lisbon, portugal
David Chiang University of Southern California, Los Angeles, usa

Greville Corbett University of Surrey, united kingdom
Dan Cristea University of Iași, romania

Jan Daciuk Gdańsk University of Technology, poland
Mary Dalrymple University of Oxford, united kingdom

Darja Fišer University of Ljubljana, slovenia
Anette Frank Universität Heidelberg, germany
Claire Gardent cnrs/loria, Nancy, france

Jonathan Ginzburg Université Paris-Diderot, france
Stefan Th. Gries University of California, Santa Barbara, usa

Heiki-Jaan Kaalep University of Tartu, estonia
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, germany

Jong-Bok Kim Kyung Hee University, Seoul, korea
Kimmo Koskenniemi University of Helsinki, finland

Jonas Kuhn Universität Stuttgart, germany
Alessandro Lenci University of Pisa, italy

Ján Mačutek Comenius University in Bratislava, slovakia
Igor Mel’čuk University of Montreal, canada

Glyn Morrill Technical University of Catalonia, Barcelona, spain

Stefan Müller Freie Universität Berlin, germany
Reinhard Muskens Tilburg University, netherlands

Mark-Jan Nederhof University of St Andrews, united kingdom
Petya Osenova Sofia University, bulgaria

David Pesetsky Massachusetts Institute of Technology, usa
Maciej Piasecki Wrocław University of Technology, poland

Christopher Potts Stanford University, usa
Louisa Sadler University of Essex, united kingdom

Ivan A. Sag † Stanford University, usa
Agata Savary Université François Rabelais Tours, france
Sabine Schulte im Walde Universität Stuttgart, germany

Stuart M. Shieber Harvard University, usa
Mark Steedman University of Edinburgh, united kingdom

Stan Szpakowicz School of Electrical Engineering
and Computer Science, University of Ottawa, canada
Shravan Vasishth Universität Potsdam, germany

Zygmunt Vetulani Adam Mickiewicz University, Poznań, poland
Aline Villavicencio Federal University of Rio Grande do Sul,

Porto Alegre, brazil
Veronika Vincze University of Szeged, hungary

Yorick Wilks Florida Institute of Human and Machine Cognition, usa
Shuly Wintner University of Haifa, israel

Zdeněk Žabokrtský Charles University in Prague, czech republic

A word from the editors

Adam Przepiórkowski, Elżbieta Hajnicz,
Agnieszka Mykowiecka, and Marcin Woliński

Institute of Computer Science,
Polish Academy of Sciences,

Warsaw, Poland

Welcome to the sixth issue of the Journal of Language Modelling,
which is the first special issue of JLM. We, the Editors, are very happy
that this first special issue is devoted to grammar engineering, which
is right in the centre of the scope of JLM, as stated on its WWW page:

Journal of Language Modelling is a free (for readers and
authors alike) open-access peer-reviewed journal aiming to
bridge the gap between theoretical linguistics and natural
language processing. Although typical articles are concerned
with linguistic generalisations – either with their applica-
tion in natural language processing, or with their discovery
in language corpora – possible topics range from linguistic
analyses which are sufficiently precise to be implementable
to mathematical models of aspects of language, and further
to computational systems making non-trivial use of linguistic
insights. http://jlm.ipipan.waw.pl/

The scope and content of this issue are described in the introduction by
the Guest Editors: Denys Duchier and Yannick Parmentier. While the
whole issue is devoted to high-level methodologies for grammar engi-
neering, we envisage future “special issues” as possibly taking only a
part of an issue which may also contain regular papers.

So far – apart from Editorials like this one and Acknowledgements
to reviewers – only regular peer-reviewed Articles have been published
in JLM. This issue introduces a new section type, Tools and Resources
(see the contribution by Stefan Müller). Typical papers appearing in
this section will contain descriptions of linguistic tools or resources,
normally authored by their developers. Just as regular articles, such

Journal of Language Modelling Vol 3, No 1 (2015), pp. 1–3

Adam Przepiórkowski et al.

papers will be peer-reviewed, but referees will be asked to evaluate
the linguistic sophistication of the described tool or resource and its
envisaged impact in theoretical, computational or mathematical lin-
guistics, rather than just the theoretical novelty and validity. We in-
vite submissions describing novel formal descriptions of morphologi-
cal systems, linguistically rich syntactic and semantic lexica, corpora
annotated with new linguistic data types, “electronic descriptions of
natural language” (to use the current Guest Editors' preferred term for
implemented grammars), parsers producing syntactic, semantic and
pragmatic representations of utterances, etc. – this list is certainly not
meant to be exhaustive.

Apart from Tools and Resources, three other types of sections are
planned to be added in future issues, all containing peer-reviewed pa-
pers, but with different reviewing criteria. The Overviews section will
consist of articles synthetically describing a given field or area, with
emphasis on recent developments. The Squibs and Discussion section
will contain smaller contributions making a point within the space of
a few pages or briefly responding to a paper previously published in
JLM. Finally, Reviews will contain evaluations of recently published
monographs.

Let us finish this editorial on a historical note and with a plea. In
the inaugural issue 1(0) we wrote:

Launching a new journal is a high-risk business. Many people
have already invested much of their time in this initiative,
and returns are far from certain – the community may or
may not accept it. We, the Managing Editors, are cautiously
optimistic…

Now, five issues later, our optimism is less cautious: JLM has managed
to attract a reasonable number of good submissions, including many
from already well-established researchers, and – apart from such reg-
ular submissions – there are specific plans for two more special issues
with carefully reviewed and selected papers. We also receive a lot of
positive feedback from, both, authors and readers. It seems that JLM
has indeed answered a need of the formal and computational linguis-
tics community.

Despite offers from major scientific publishers, JLM remains in-
dependent, community-driven and free for all – readers and authors

[2]

A word from the editors

alike. We, the Editors, invest our time in this enterprise and we rely
on similarly voluntary help from the reviewers and other people in-
volved in the production of the journal. Of these “other people”, Copy
Editors are undoubtedly most important and most skilled: a good JLM
Copy Editor should not only be a native speaker of English (or perhaps
a near-native graduate of English Philology) with a good command
of the scientific style, but should also know some basics of LATEX or
XƎLATEX and – preferably – have interest in theoretical or computa-
tional linguistics. So far, JLM Copy Editors have been doing an ex-
cellent job; to cite one of the authors of the current issue, the author
of many papers published by more established scientific publishers:
“I never got such a good copy editing in my whole scientific life…”.
So we would like to heartily thank our current and past Copy Editors
for their devotion to the good cause: Jette Viethen, Dave Carter, Filip
Skwarski, Agnieszka Patejuk, Natalia Kocyba, Alina Wróblewska and
Chris M. Fournier.

However, given the increased number of JLM submissions, and
in order to keep the workload of each Copy Editor reasonably small,
we badly need the help of a few more Copy Editors. Hence, the plea:
if you are a PhD student in Linguistics, Natural Language Processing,
or a related field, and you satisfy the above description, please help
us for a year or two (or longer!). Similarly, if you are a professor with
PhD students, please consider encouraging them to help us – it is in
the best interest of the community to keep JLM independent and free
for all.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[3]

High-level methodologies
for grammar engineering.

Introduction to the special issue

Denys Duchier and Yannick Parmentier
Laboratoire d’Informatique Fondamentale d’Orléans,

Université d’Orléans, France

abstract
Keywords:
grammar
engineering,
formal language,
syntax,
semantics

Grammar engineering is the task of designing and implementing lin-
guistically motivated electronic descriptions of natural language (so-
called grammars). These grammars are expressed within well-defined
theoretical frameworks, and offer a fine-grained description of natural
language. While grammars were first used to describe syntax, that is to
say, the relations between constituents in a sentence, they often go be-
yond syntax and include semantic information. Grammar engineering
provides precise descriptions which can be used for natural language
understanding and generation, making these valuable resources for
various natural language applications, including textual entailment,
dialogue systems, or machine translation. The first attempts at design-
ing large-scale resource grammars were costly because of the complex-
ity of the task (Erbach 1990) and of the number of persons that were
needed (see e.g. Doran et al. 1997). Advances in the field have led
to the development of environments for semi-automatic grammar en-
gineering, borrowing ideas from compilation (grammar engineering
is compared with software development) and machine learning. This
special issue reports on new trends in the field, where grammar en-
gineering benefits from elaborate high-level methodologies and tech-
niques, dealing with various issues (both theoretical and practical).

Journal of Language Modelling Vol 3, No 1 (2015), pp. 5–19

Denys Duchier, Yannick Parmentier

1 grammar engineering

Grammar engineering, the task of designing and implementing lin-
guistically motivated electronic grammars, has been an active field
for decades, following seminal work by Chomsky (1957) on formal
languages. The kind of deep structures produced in this field contain
rich information, which makes them a valuable resource for various
NLP applications, including natural language parsing / generation,
textual entailment, or dialogue systems. Among the reasons which
make grammar engineering a complex task, one may cite the variety of
theoretical frameworks that are used to represent linguistic informa-
tion, and the intrinsic complexity coming from interactions between
rules within large grammars.

In this context, the classical model of hand-crafted grammar has
been replaced with more advanced techniques, which we may call
semi-automatic grammar production. These techniques vary depend-
ing on the target formalism, the target language, or the target lin-
guistic dimensions (e.g. syntax, semantics, morphology, etc.). In the
following, we first report on the production of formal grammars (Sec-
tion 1.1). We then report on the main resource grammars that are
available (Section 1.2). We then give a brief overview of the current
issues in grammar engineering (Section 1.3). Finally, in Section 2, we
summarise the contributions of this special issue, and in Section 3, we
conclude about the current status of grammar engineering.
1.1 Semi-automatic production of formal grammars
Over the last decades, several approaches to formally describing nat-
ural language syntax have been proposed, starting with relatively ba-
sic string rewriting systems such as Context-Free Grammar (Chomsky
1956), to continue with more elaborate constraint-based systems such
as Head-driven Phrase Structure Grammar (Sag and Pollard 1987).
These formal grammars differ in terms of expressive power and com-
putational complexity. While theoretical research on formal grammar
addresses the question of what expressive power is needed to describe
natural language syntax (and of what computational cost it implies),1
more practical research is concerned with issues arising from building
large grammars.

1See e.g. Joshi 1985.

[6]

High-level methodologies for grammar engineering

Large grammars often exhibit a high structural redundancy, es-
pecially when using lexicalised formalisms where each grammar rule
is associated with at least one lexical item.2 This high redundancy
heavily affects grammar production and maintenance. Indeed, some
representation choice applies to many grammatical structures. Should
it be modified, a costly revision of the grammar would be required.

In order to facilitate grammar engineering, two main approaches
have been considered. The first approach, which we may call know-
ledge-driven grammar engineering, aims at formally describing the
structures belonging to a grammar (which in turn describes natural
language syntax). Such a formal description is defined by linguists us-
ing a description language.3 Examples of such description languages
include the PATR II (Shieber 1984), the DATR (Evans and Gazdar
1996), and more recently the XMG (Crabbé et al. 2013) languages.

Such languages offer a well-defined syntax and semantics to ex-
press the relations between grammar structures. These relations are
then automatically processed to build a set of structures (i.e., the target
grammar). While working with description languages, grammar engi-
neering becomes similar to software engineering. Indeed, both rely on
developers working together on a source code, which can be processed
to produce some information (e.g. some binary code in one case, or
some syntactic structures in the other case).

The second approach to grammar engineering, which we may call
data-driven, aims at acquiring the structures belonging to a grammar
from annotated corpora (so-called treebanks) (Abeillé 2003). The com-
plexity of grammar engineering is moved from designing grammar
rules to designing learning algorithms. Examples of such grammar
induction include for instance work by Charniak (1994, Chapter 7),
Villavicencio (2002), or Cahill et al. (2005). As is the case with statis-
tical approaches in general, grammar learning suffers from the sensi-
tivity to the corpus used to infer the grammar, not mentioning the fact
that it requires large annotated corpora which may be lacking when

2Such lexicalised formalisms are particularly interesting for the lexicon and
can be seen as a mapping between a word and its various uses in a sentence, and
parsing complexity is reduced since only the grammar rules associated with the
input words need to be considered.

3 In this respect, one may consider that the grammar description itself is a
linguistically motivated description of natural language.

[7]

Denys Duchier, Yannick Parmentier

working on under-resourced languages. Still, data-driven approaches
to grammar learning showed promising results for English, in partic-
ular in terms of coverage (Cahill et al. 2008).

These two approaches can also be seen as complementary. While
knowledge-based methods make it possible to design precision gram-
mars where one can integrate various extra information (e.g. seman-
tic structures), they often hardly scale up so far as describing unre-
stricted text. On the other hand, while data-driven methods allow to
build robust grammars, which can achieve very good results in terms
of coverage, these automatically acquired grammars sometimes fail at
describing linguistic phenomena which are very infrequent.
1.2 Resource grammars
Among the many formalisms which have been proposed to describe
natural language syntax, some have been used in practice to develop
core or large grammars for a wide range of languages. Formalisms for
which there exist available electronic grammars include (by chrono-
logical order of publication): Tree Adjoining Grammar (TAG, Joshi
et al. 1975), Lexical Functional Grammar (LFG, Kaplan and Bresnan
1982), Head-driven Phrase Structure Grammar (HPSG, Sag and Pol-
lard 1987), Combinatory Categorial Grammar (CCG, Steedman 1987),
Interaction Grammar (IG, Perrier 2000), or Property Grammar (PG,
Blache 2005).

Many efficient description-language-based integrated grammar
development environments have been created for these formalisms,
such as XLE (Butt et al. 1999) for LFG, ALE (Carpenter and Penn 1999),
TRALE (Meurers et al. 2002) and LKB (Copestake 2002) for HPSG, or
DotCCG (Baldridge et al. 2007) and GF (Ranta 2011) for CCG. Such
environments made it possible to develop large grammars for several
languages, see Table 1. Such grammars have been used in practical
applications such as machine translation (Lønning and Oepen 2006),
textual adventure games (Benotti 2009), or second language learning
(Perez-Beltrachini et al. 2012).

At the same time, efficient learning algorithms have been devel-
oped to induce large grammars from annotated corpora for some of
these formalisms, see e.g. Xia (1999) for TAG, Cahill et al. (2002) for
LFG, Miyao et al. (2005) for HPSG, or Hockenmaier and Steedman
(2002) for CCG. These automatically learned grammars have been

[8]

High-level methodologies for grammar engineering
Table 1: Available electronic grammars (non-exhaustive)

Type Grammar Reference
TAG XTAG (English) http://www.cis.upenn.edu/~xtag/

XTAG using XMG (English) http://homepages.inf.ed.ac.uk/
s0896251/XMG-basedXTAG/titlepage.html

FrenchTAG https://sourcesup.renater.fr/scm/
viewvc.php/trunk/METAGRAMMARS/
FrenchTAG/?root=xmg

GerTT (German) http://www.sfs.uni-tuebingen.de/emmy/
res-en.html

LFG Parallel Grammar http://pargram.b.uib.no/

(Norwegian, Japanese, etc.)
HunGram (Hungarian) http://hungram.unideb.hu

Urdu ParGram http://ling.uni-konstanz.de/pages/
home/pargram_urdu

POLFIE (Polish) http://zil.ipipan.waw.pl/LFG

HPSG English Resource Grammar http://lingo.stanford.edu/erg.html

GG (German Grammar) http://gg.dfki.de/

JaCY Grammar (Japanese) http://jacy.opendfki.de/

Korean Resource Grammar http://web.khu.ac.kr/~jongbok/
projects/krg.html

Modern Greek
Resource Grammar

http://www.delph-in.net/mgrg/

NorSourceGrammar
(Norwegian)

http://wiki.delph-in.net/moin/
NorsourceTop

Spanish Resource Grammar http://svn.emmtee.net/trunk/upf/srg/

Berligram (German), Danish,
Chinese, Persian

https://hpsg.fu-berlin.de/Software/

CCG openCCG (English) http://www.utcompling.com/wiki/
openccg/openccg-grammar-writing

Grail (French, Dutch) http://www.labri.fr/perso/moot/
Corpus/

GF (29 languages) http://www.grammaticalframework.org/
lib/doc/synopsis.html

IG FriGram http://wikilligramme.loria.fr/doku.
php/frig:frig

PG FrenchPG http://prost.jeanphilippe.free.fr/
resources/grammaireGP13.JPP.these.xml

[9]

Denys Duchier, Yannick Parmentier

evaluated on test suites, and often used in practical applications such
as semantic construction (Bos et al. 2004), dialogue systems (Foster
et al. 2005), or machine translation (Birch et al. 2007).4

1.3 Current issues
As mentioned above, the field of grammar engineering has been active
for several decades. It succeeded in providing the research community
with both large resources for a wide range of languages, and tech-
niques for efficient grammar production. By efficient, it is meant that
knowledge-based approaches now offer expressive and modular de-
scription languages, together with tools for computer-aided grammar
design.5 In the same spirit, data-driven approaches now offer generic
algorithms and frameworks which can be applied to the induction of
grammars for many formalisms and languages (provided there exist
available treebanks for these languages).

Still, the field has a lot more to offer, on-going projects aim at
removing existing barriers in grammar engineering, such as the lack of
enhanced grammar development techniques and tools, which would facili-
tate grammar debugging, grammar evaluation, or collaborative gram-
mar design. Attempts at providing such techniques include work by
Gardent and Kruszewski (2012) on debugging and by Hoetmer (2005)
and Sygal and Wintner (2011) on grammar design.

Another current issue in grammar engineering concerns parsing
efficiency. Indeed parsing complexity depends not only on the length
of the input sentence, but also on the grammar size. In order to parse
sentences using large grammars, several options have been consid-
ered, including the on-line (symbolic or probabilistic) selection of a
sub-part of the grammar (Zhang et al. 2009; Gardent et al. 2014),6 or
parsing using factorised grammars (Carroll et al. 2000; Villemonte De
La Clergerie 2010).

Other challenges include multilingual and cross-framework gram-
mar engineering. While there exist several projects aiming at building

4Some of these automatically acquired grammars are available on-line, see
e.g. http://web.engr.illinois.edu/~juliahmr/CCGlexicon/index.html
for CCG, or http://lfg-demo.computing.dcu.ie/lfgparser.html for LFG.

5See e.g. the Matrix for HPSG (Bender et al. 2010).
6Following seminal work by Bangalore and Joshi (1999), this selection is

often called supertagging.

[10]

High-level methodologies for grammar engineering

parallel grammars (see e.g. Butt et al. 2002; Flickinger et al. 2012),
cross-framework grammar engineering did not (yet) achieve the same
results. One may cite seminal work by Clément and Kinyon (2003)
on the description of parallel TAG-LFG from a common abstract de-
scription (called metagrammar), or more recent work by Crabbé et al.
(2014) on the design of a constraint-based description language which
could be applied to the description of grammars belonging to distinct
formalisms. In the latter, the authors show how to enrich the descrip-
tion language to support several target formalisms, while in the for-
mer the authors show how to project a common description to several
target formalisms (the metagrammar could be seen to some extent
as a universal grammar). Without going as far as designing a univer-
sal grammar, grammar reusability (i.e., sharing information between
grammars) remains an important challenge.

Another interesting topic concerns grammar interfaces. One of the
motivations behind grammar engineering is the possibility to build
rich semantic representations. The definition and implementation of a
syntax / semantics interface within large grammars is an active field
(see e.g. Gardent 2008; Kallmeyer and Osswald 2013), for both theo-
retical (definition / selection of an adequate semantic formalism) and
technical (limited grammar readability and extensibility) reasons.

Describing under-resourced languages is also an active field within
the grammar engineering community. The objective is twofold. Gram-
mar engineering can help to (i) better understand e.g. minority lan-
guages (by implementing linguistic theories and checking how this
implementation compares with field data), and also (ii) provide elec-
tronic grammars (which would make it possible to develop NLP appli-
cations for these languages, and/or build core treebanks, which could
in turn be beneficial to grammar engineering). Recent knowledge-
based attempts at creating linguistic resources for under-resourced
languages include work by Bender (2008) and Duchier et al. (2012).

Last but not least, in order to improve grammar coverage, novel
ideas are needed. As mentioned above, a first step towards a bet-
ter grammar coverage was to automatically learn the grammar from
annotated corpora. In order to get grammars with a better cover-
age while keeping a high precision, hybrid techniques involving both
knowledge-based and data-driven methods are needed. Seminal work
by Baldwin et al. (2005) expresses the same concerns.

[11]

Denys Duchier, Yannick Parmentier

In order to improve grammar coverage, one major issue needs
to be addressed, namely,Multi-Word Expressions. Such expressions are
often ignored when designing core grammars, while they frequently
appear in unrestricted text. Work on MWE detection for enhancing
parsing with HPSG has been done by Zhang et al. (2006), where au-
thors use parsing error mining techniques to detect whether unknown
words belong to some MWE which is in turn included in the lexicon.7
Further work in this field is needed to improve grammar precision and
coverage.8

2 contributions
to this special issue

This special issue contains contributions dealing with several aspects
of grammar engineering, namely description languages (Clément et
al.), grammar extraction (Le-Hong et al.), syntax / semantics interface
(Lichte and Petitjean), grammar coverage (Moot), multilingual gram-
mars (Müller), and grammar development and maintenance (Perrier
and Guillaume).

Clément, Kirman, and Salvati present a logic-based grammar de-
scription formalism. They use this formalism to describe both mildly
context-sensitive grammars and their semantic interpretation. As an
illustration, this formalism is applied to the (syntactic and semantic)
description of several linguistic phenomena related to extraction in
Dutch, English, and German.

Le-Hong, Roussanaly and Nguyen present the development of a
linguistic resource for Vietnamese using the TAG formalism. The au-
thors first show how to semi-automatically extract such a grammar
from a treebank of Vietnamese. In a second step, they use this gram-
mar for deep parsing. In particular, they present a complete pipeline
for parsing Vietnamese sentences to produce constituent and depen-
dency structures.

7As is the case in lexicalised formalisms, the term lexicon is used here to refer
to the grammar entries.

8Better support of MWEs within lexicons, grammars, and applications is
among the topics of the current PARSEME international initiative, EU COST Ac-
tion IC1207, see http://www.parseme.eu.

[12]

High-level methodologies for grammar engineering

Lichte and Petitjean present an extension of the XMG description
language with a new linguistic dimension based on semantic frames.
In their approach, the authors aim at offering a description language,
which can be used to express various constraints on types. They apply
this formalism to the definition of a syntax / semantics interface within
an English TAG.

Moot reports on the development of a type-logical treebank for
French, and its use for wide-coverage syntactic and semantic parsing.
This article contains information about the various tasks involved in
the development of a competitive type-logical parser for French using
an automatically-extracted broad-coverage type-logical grammar.

Müller presents the CoreGram project, which aims at providing
HPSG grammars for various typologically distinct languages. In this
approach, a multilingual grammar is used to represent a common core
shared by these languages. This article gives theoretical linguistic mo-
tivations behind multilingual grammars, along with theoretical gram-
mar development concepts, and information about the concrete im-
plementation of the corresponding HPSG grammars.

Perrier and Guillaume present FriGram, a broad-coverage French
IG, which relies on a modular architecture and can be interfaced with
various lexicons. This article also addresses grammar design andmain-
tenance issues by presenting grammar-consistency principles which
are implemented within FriGram. The authors also report on the cur-
rent status of the grammar (coverage, comparison with other resource
grammars for French, evaluation).

3 conclusion

In this introduction, we gave an overview of past and recent ad-
vances in the field of grammar engineering. We presented the main ap-
proaches for semi-automatic grammar production, namely knowledge-
based approaches, which rely on linguistically motivated descriptions
of formal grammar designed by experts, and data-driven approaches,
which rely on robust broad-coverage grammars extracted from large
annotated corpora.

We also reported on existing available resource grammars for var-
ious languages and grammar formalisms, and summarised current is-
sues in grammar engineering. These issues include the lack of tech-

[13]

Denys Duchier, Yannick Parmentier

niques and tools for easier grammar extension and maintenance (e.g.
debugging facilities), a sometimes low parsing efficiency when deal-
ing with large grammars, the limited coverage of hand-crafted gram-
mars (especially regarding multi-word expressions), the difficulties to
interface syntax with other linguistic dimensions, and a weak reusabil-
ity between grammars belonging to different formalisms or describing
different languages.

We finally gave a brief overview of the contributions to this
special issue, which cover both knowledge-based and data-driven
approaches, along with several grammar formalisms (namely CCG,
HPSG, TAG, IG), several linguistic dimensions (syntax and semantics),
and several languages (including English, Dutch, German, French,
Danish, Persian, etc.).

acknowledgements

As guest editors of this special issue, we would like to thank the mem-
bers of the editorial board and editorial team of the Journal of Lan-
guage Modelling for their work regarding the reviewing, copy-editing,
and typesetting of the articles submitted to this issue. We are also
grateful to the members of the guest editorial board. This issue would
not have been possible without their valuable contribution to the re-
viewing process. Finally, we would like to express our gratitude to
Adam Przepiórkowski and Agnieszka Mykowiecka for their support
throughout the editorial process.

references
Anne Abeillé (2003), Treebanks: Building and Using Parsed Corpora, Text,
Speech and Language Technology, Springer.
Jason Baldridge, Sudipta Chatterjee, Alexis Palmer, and Ben Wing
(2007), DotCCG and VisCCG: Wiki and Programming Paradigms for Improved
Grammar Engineering with OpenCCG, in Tracy Holloway King and Emily M.
Bender, editors, Proceedings of the GEAF07 Workshop, pp. 5–25, Center for the
Study of Language and Information (CSLI), Stanford, California,
http://csli-publications.stanford.edu/GEAF/2007/geaf07-toc.html.
Timothy Baldwin, John Beavers, Emily M. Bender, Dan Flickinger, Ara
Kim, and Stephan Oepen (2005), Beauty and the Beast: What running a
broad-coverage precision grammar over the BNC taught us about the grammar

[14]

High-level methodologies for grammar engineering

— and the corpus, in Stephan Kepser and Marga Reis, editors, Linguistic
Evidence: Empirical, Theoretical, and Computational Perspectives, pp. 49–70,
Mouton de Gruyter, Berlin.
Srinivas Bangalore and Aravind K. Joshi (1999), Supertagging: An
Approach to Almost Parsing, Computational Linguistics, 25(2):237–262.
Emily M. Bender (2008), Evaluating a Crosslinguistic Grammar Resource: A
Case Study of Wambaya, in Proceedings of ACL-08: HLT, pp. 977–985,
Association for Computational Linguistics, Columbus, Ohio.
Emily M. Bender, Scott Drellishak, Antske Fokkens, Michael Wayne
Goodman, Daniel P. Mills, Laurie Poulson, and Safiyyah Saleem (2010),
Grammar Prototyping and Testing with the LinGO Grammar Matrix
Customization System, in Proceedings of the ACL 2010 System Demonstrations,
pp. 1–6, Association for Computational Linguistics, Uppsala, Sweden.
Luciana Benotti (2009), Frolog: an Accommodating Text-Adventure Game, in
Proceedings of the Demonstrations Session at EACL 2009, pp. 1–4, Association for
Computational Linguistics, Athens, Greece.
Alexandra Birch, Miles Osborne, and Philipp Koehn (2007), CCG Supertags
in Factored Statistical Machine Translation, in Proceedings of the Second
Workshop on Statistical Machine Translation, pp. 9–16, Association for
Computational Linguistics, Prague, Czech Republic.
Philippe Blache (2005), Property Grammars: A Fully Constraint-Based Theory,
in Henning Christiansen, Peter Rossen Skadhauge, and Jørgen Villadsen,
editors, Constraint Solving and Language Processing, volume 3438 of Lecture Notes
in Computer Science, pp. 1–16, Springer, Berlin Heidelberg.
Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Julia
Hockenmaier (2004), Wide-coverage Semantic Representations from a CCG
Parser, in Proceedings of the 20th International Conference on Computational
Linguistics, COLING ’04, pp. 1240–1246, Association for Computational
Linguistics, Stroudsburg, PA, USA.
Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and
Christian Rohrer (2002), The Parallel Grammar Project, in Proceedings of
COLING-2002 Workshop on Grammar Engineering and Evaluation, pp. 1–7, Taipei,
Taiwan.
Miriam Butt, Tracy H. King, Marma-Eugenia Niño, and Frédérique Segond
(1999), A Grammar Writer’s Cookbook, Center for the Study of Language and
Information (CSLI), Stanford, California.
Aoife Cahill, Michael Burke, Ruth O’Donovan, Stefan Riezler, Josef van
Genabith, and Andy Way (2008), Wide-Coverage Deep Statistical Parsing
Using Automatic Dependency Structure Annotation, Computational Linguistics,
34(1):81–124.

[15]

Denys Duchier, Yannick Parmentier

Aoife Cahill, Martin Forst, Michael Burke, Mairead McCarthy, Ruth
O’Donovan, Christian Rohrer, Josef van Genabith, and Andy Way
(2005), Treebank-Based Acquisition of Multilingual Unification Grammar
Resources, Journal of Research on Language and Computation; Special Issue on
“Shared Representations in Multilingual Grammar Engineering”, 3(2):247–279.
Aoife Cahill, Mairéad McCarthy, Josef Van Genabith, and Andy Way
(2002), Parsing with PCFGs and automatic f-structure annotation, in Proceedings
of the 7th International Conference on LFG, pp. 76–95, Center for the Study of
Language and Information (CSLI), Palo Alto, California.
Bob Carpenter and Gerald Penn (1999), ALE 3.2 User’s Guide, Technical
Memo CMU-LTI-99-MEMO, Carnegie Mellon Language Technologies Institute.
John Carroll, Nicholas Nicolov, O. Shaumyan, M. Smets, and D. Weir
(2000), Engineering a wide-coverage lexicalized grammar, in Proceedings of the
Fifth International Workshop on Tree Adjoining Grammars and Related Frameworks,
pp. 55–60, Paris, France.
Eugene Charniak (1994), Statistical Language Learning, MIT Press, Cambridge,
Massachusetts.
N. Chomsky (1956), Three models for the description of language, Information
Theory, IEEE Transactions on, 2(3):113–124.
Noam Chomsky (1957), Syntactic Structures, Mouton, The Hague.
Lionel Clément and Alexandra Kinyon (2003), Generating Parallel
Multilingual LFG-TAG Grammars from a MetaGrammar, in Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics, pp. 184–191,
Sapporo, Japan.
Ann Copestake (2002), Implementing Typed Feature Structure Grammars, Center
for the Study of Language and Information (CSLI), Stanford, California.
Benoît Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG : eXtensible MetaGrammar, Computational
Linguistics, 39(3):591–629.
Benoît Crabbé, Denys Duchier, Yannick Parmentier, and Simon
Petitjean (2014), Constraint-driven Grammar Description, in Philippe
Blache, Henning Christiansen, Verónica Dahl, Denys Duchier, and
Jørgen Villadsen, editors, Constraints and Language, pp. 93–121, Cambridge
Scholar Publishing.
Christine Doran, Beth Hockey, Philip Hopely, Joseph Rosenzweig, Anoop
Sarkar, Srinivas Bengalore, Fei Xia, Alexis Nasr, and Owen Rambow
(1997), Maintaining the Forest and Burning out the Underbrush in XTAG, in
Proceedings of the ACL Workshop on Computational Environments for Grammar
Development and Language Engineering (ENVGRAM), pp. 30–37, Madrid, Spain.

[16]

High-level methodologies for grammar engineering

Denys Duchier, Brunelle Magnana Ekoukou, Yannick Parmentier, Simon
Petitjean, and Emmanuel Schang (2012), Describing Morphologically-rich
Languages using Metagrammars: a Look at Verbs in Ikota, in Workshop on
“Language technology for normalisation of less-resourced languages”, 8th SALTMIL
Workshop on Minority Languages and the 4th workshop on African Language
Technology, pp. 55–60, Istanbul, Turkey,
http://aflat.org/files/saltmil8-aflat2012.pdf.
Gregor Erbach (1990), Grammar Engineering: Problems And Prospects, report
on the Saarbrücken Grammar Engineering Workshop.
Roger Evans and Gerald Gazdar (1996), DATR: A Language for Lexical
Knowledge Representation, Computational Linguistics, 22(2):167–213.
Dan Flickinger, Valia Kordoni, Yi Zhang, Ant Branco, K. Simov, Petya
Osenova, Catarina Carvalheiro, Francisco Costa, and S Castro (2012),
ParDeepBank : multiple parallel deep treebanking, in Proceedings of the Eleventh
International Workshop on Treebanks and Linguistic Theories (TLT11), pp. 97–108,
Lisbon, Portugal.
Mary E. Foster, Michael White, Andrea Setzer, and Roberta Catizone
(2005), Multimodal Generation in the COMIC Dialogue System, in Proceedings
of the ACL Interactive Poster and Demonstration Sessions, pp. 45–48, Association
for Computational Linguistics, Ann Arbor, Michigan.
Claire Gardent (2008), Integrating a unification-based semantics in a large
scale Lexicalised Tree Adjoininig Grammar for French, in Proceedings of the
22nd International Conference on Computational Linguistics (COLING’08),
pp. 249–256, Manchester, United Kingdom.
Claire Gardent and German Kruszewski (2012), Generation for Grammar
Engineering, in INLG 2012 Proceedings of the Seventh International Natural
Language Generation Conference, pp. 31–39, Association for Computational
Linguistics, Utica, Illinois.
Claire Gardent, Yannick Parmentier, Guy Perrier, and Sylvain Schmitz
(2014), Lexical Disambiguation in LTAG using Left Context, in Zygmunt
Vetulani and Joseph Mariani, editors, Human Language Technology.
Challenges for Computer Science and Linguistics. 5th Language and Technology
Conference, LTC 2011, Poznan, Poland, November 25-27, 2011, Revised Selected
Papers, volume 8387, pp. 67–79, Springer.
Julia Hockenmaier and Mark Steedman (2002), Generative Models for
Statistical Parsing with Combinatory Categorial Grammar, in Proceedings of 40th
Annual Meeting of the Association for Computational Linguistics, pp. 335–342,
Association for Computational Linguistics, Philadelphia, Pennsylvania.
Kenneth Hoetmer (2005), Higher-Order Types for Grammar Engineering,
Master’s thesis, University of Toronto, Department of Computer Science,
http://www.cs.toronto.edu/~hoetmer/hoetmerthesis.pdf.

[17]

Denys Duchier, Yannick Parmentier

Aravind K. Joshi (1985), Tree Adjoining Grammars: How much Context -
sensitivity is Required to Provide Reasonable Structural Descriptions?, in
David R. Dowty, Lauri Karttunen, and Arnold Zwicky, editors, Natural
Language Parsing, pp. 206–250, Cambridge University Press, Cambridge.
Aravind K. Joshi, Leon S. Levy, and Masako Takahashi (1975), Tree Adjunct
Grammars, Journal of Computer and System Sciences, 10(1):136–163.
Laura Kallmeyer and Rainer Osswald (2013), Syntax-Driven Semantic
Frame Composition in Lexicalized Tree Adjoining Grammars, Journal of
Language Modelling, 1(2):267–330.
Ronald M. Kaplan and Joan Bresnan (1982), Lexical-Functional Grammar:
A Formal System for Grammatical Representations, in The Mental Representation
of Grammatical Relations, pp. 173–281, MIT Press.
Jan Tore Lønning and Stephan Oepen (2006), Re-Usable Tools for Precision
Machine Translation, in Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, pp. 53–56, Association for Computational Linguistics,
Sydney, Australia.
W. Detmar Meurers, Gerald Penn, and Frank Richter (2002), A Web-based
Instructional Platform for Contraint-Based Grammar Formalisms and Parsing, in
Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics, pp. 19–26,
Association for Computational Linguistics, Philadelphia, Pennsylvania, USA.
Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii (2005),
Corpus-Oriented Grammar Development for Acquiring a Head-Driven Phrase
Structure Grammar from the Penn Treebank, in Keh-Yih Su, Jun’ichi Tsujii,
Jong-Hyeok Lee, and OiYee Kwong, editors, Natural Language Processing –
IJCNLP 2004, volume 3248 of Lecture Notes in Computer Science, pp. 684–693,
Springer, Berlin, Heidelberg.
Laura Perez-Beltrachini, Claire Gardent, and German Kruszewski
(2012), Generating Grammar Exercises, in Proceedings of the Seventh Workshop
on Building Educational Applications Using NLP, pp. 147–156, Association for
Computational Linguistics, Montréal, Canada.
Guy Perrier (2000), Interaction Grammars, in Proceedings of the 18th
International Conference on Computational Linguistics (COLING 2000),
pp. 600–606, Saarbruecken, Germany.
Aarne Ranta (2011), Grammatical Framework: Programming with Multilingual
Grammars, Center for the Study of Language and Information (CSLI), Stanford,
California.
Ivan A. Sag and Carl J. Pollard (1987), Head-Driven Phrase Structure
Grammar: An Informal Synopsis, CSLI Report 87–79, Stanford University.

[18]

High-level methodologies for grammar engineering

Stuart M. Shieber (1984), The Design of a Computer Language for Linguistic
Information, in Proceedings of the Tenth International Conference on
Computational Linguistics, pp. 362–366, Stanford, California.
Mark Steedman (1987), Combinatory grammars and parasitic gaps, Natural
Language & Linguistic Theory, 5(3):403–439.
Yael Sygal and Shuly Wintner (2011), Towards Modular Development of
Typed Unification Grammars, Computational Linguistics, 37(1):29–74.
Aline Villavicencio (2002), The acquisition of a unification-based
generalised categorial grammar, Technical Report UCAM-CL-TR-533, Number
533, Computer Laboratory, University of Cambridge.
Éric Villemonte De La Clergerie (2010), Building factorized TAGs with
meta-grammars, in The 10th International Conference on Tree Adjoining Grammars
and Related Formalisms - TAG+10, pp. 111–118, New Haven, Connecticut,
https://hal.inria.fr/inria-00551974.
Fei Xia (1999), Extracting Tree Adjoining Grammars from bracketed corpora,
Proceedings of the 5th Natural Language Processing Pacific Rim Symposium
(NLPRS-99), pp. 398–403.
Yao-zhong Zhang, Takuya Matsuzaki, and Jun’ichi Tsujii (2009), HPSG
Supertagging: A Sequence Labeling View, in Proceedings of the 11th International
Conference on Parsing Technologies (IWPT’09), pp. 210–213, Association for
Computational Linguistics, Paris, France.
Yi Zhang, Valia Kordoni, Aline Villavicencio, and Marco Idiart (2006),
Automated Multiword Expression Prediction for Grammar Engineering, in
Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting
Underlying Properties, pp. 36–44, Association for Computational Linguistics,
Sydney, Australia.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[19]

The CoreGram project:
theoretical linguistics,

theory development, and verification

Stefan Müller
German Grammar Group,

Institut für Deutsche und Niederländische Philologie,
Freie Universität Berlin

abstract
Keywords:
Universal
Grammar,
Head-Driven
Phrase Structure
Grammar,
multilingual
grammar
engineering,
TRALE, HPSG,
theoretical
linguistics

This paper describes the CoreGram project, a multilingual grammar
engineering project that develops HPSG grammars for several typolog-
ically diverse languages that share a common core. The paper provides
a general motivation for doing theoretical linguistics the way it is done
in the CoreGram project, and is therefore not exclusively targeted at
computational linguists. I argue for a constraint-based approach to lan-
guage rather than a generative-enumerative one and discuss issues of
formalization. Recent advantages in language acquisition research are
mentioned and conclusions on how theories should be constructed are
drawn. The paper discusses some of the highlights in the implemented
grammars, gives a brief overview of central theoretical concepts and
their implementation in the TRALE system, and compares the Core-
Gram project with other multilingual grammar engineering projects.

1 overview and motivation

The goal of the CoreGram project is to contribute to a better un-
derstanding of the constraints for specific human languages and of
the constraints holding for human language in general or for certain
language groups. To reach this goal we develop several large-scale
computer-processable grammar fragments of several typologically di-
verse languages using a common core grammar. We believe that lin-

Journal of Language Modelling Vol 3, No 1 (2015), pp. 21–86

Stefan Müller

guistic theories have reached a level of complexity that makes it neces-
sary to implement grammars in order to verify their consistence (Sec-
tion 1.2).
The theoretical framework we use is Head-Driven Phrase Struc-

ture Grammar (HPSG, Pollard and Sag 1994; Sag 1997) in the version
that is described in detail in Müller 2013b. We are currently working
on the following languages:
• German (Müller 2007b, 2009b, 2012; Müller and Ørsnes 2011,
2013a; Müller 2014a, 2015a)
• Danish (Ørsnes 2009; Müller 2009b, 2012; Müller and Ørsnes
2011, 2013a,b, 2015)
• Persian (Müller 2010b; Müller and Ghayoomi 2010; Müller et al.
In Preparation)
• Maltese (Müller 2009a)
• Mandarin Chinese (Lipenkova 2009; Müller and Lipenkova 2009,
2013, In Preparation)
• Yiddish (Müller and Ørsnes 2011)
• English (Müller 2009b, 2012; Müller and Ørsnes 2013a)
• Hindi
• Spanish
• French

These languages belong to diverse language families (Indo-European,
Afro-Asiatic, Sino-Tibetian), and among the Indo-European languages,
the languages belong to different groups (Germanic, Romance, Indo-
Iranian). Figure 1 provides an overview.
For implementation we use the TRALE system (Meurers et al.

2002; Penn 2004), which allows for a rather direct encoding of HPSG
analyses (Melnik 2007). The grammars of German, Danish, Persian,

Figure 1:
Language
families

and groups
of the languages
covered in the
CoreGram
project

Languages

Sino-Tibetian

Sinitic

Mandarin Chinese

Afro-Asiatic

Semitic

Maltese

Indo-European

Indo-Iranian

PersianHindi

Romance

SpanishFrench

Germanic

YiddishGermanEnglishDanish

[22]

The CoreGram project

Maltese, and Mandarin Chinese are of non-trivial size and can be
downloaded at http://hpsg.fu-berlin.de/Projects/CoreGram.
html. They are also part of the next version of the Grammix vir-
tual machine (Müller 2007a). The grammars of Yiddish and English
are toy grammars that are used to verify cross-linguistic analyses of
special phenomena. The grammar of Hindi is also a small fragment.
I developed it together with Shravan Vasishth during a seminar at
the University of Potsdam in 2006. The work on Spanish and French
is part of ongoing work in the Sonderforschungsbereich 632, which
started in 2012. See (Bildhauer 2008) for an implemented grammar
of Spanish that will be converted into the format of the grammars
mentioned above. As of February 2015, the grammars and test suites
have the sizes shown in Table 1.
As is explained in Section 5.2, the grammars share some code.

14,523 lines are shared by at least two grammars. The lexical entries
are those lexical items that are specified by the grammar writer, the
lexical items are the lexical entries plus those lexical items that are
licensed by lexical rules. As the table shows, there is a huge difference
between languages with a rich inflection and clitics on the one hand,
and languages without inflection, such as Mandarin Chinese, on the
other hand. The test suite for the German grammar is the largest; how-
ever, many phenomena that work for German are also implemented
for other languages but are not part of the respective test suites yet.
An example for this is coordination. For Persian we have three test
suites: The first consists of the one hundred sentences used by Bahrani

lexical lexical test
lines entries items items

German 18,060 300 11,150 361
Danish 16,373 120 1,325 231
Persian 17,640 1,981 65,847 100+216+130
Maltese 10,046 95 2,362 134
Mandarin Chinese 10,718 564 855 104
Yiddish 10,383 26 60 34
English 9,955 49 97 23
French 11,831 43 61 20
Hindi 8,907 32 90 46

Table 1:
Sizes of
grammars
and test suits
included in
CoreGram

[23]

Stefan Müller

et al. (2011, p. 405–406) in their GPSG project. 216 sentences com-
prise our main test suite, which mainly contains examples from the
literature, constructed examples, and ungrammatical strings that were
discovered during grammar development. The third test suite contains
130 randomly selected sentences from the Peykare corpus (Bijankhan
2004), a balanced corpus provided by the University of Tehran and
the Higher Council for Informatics of Iran.
We believe that working out large-scale computer-implemented

grammars is the best way to verify the consistency of linguistic the-
ories. Much linguistic work is published in journal articles, but the
underlying assumptions of each article may be different, so that it
is difficult to imagine a coherent view that incorporates all insights.
Even for articles written by the same author there is no guarantee that
basic assumptions are shared between articles, since it can take sev-
eral years for individual papers to be published. Hence, I believe that
books are the best format for describing linguistic theories, and ide-
ally, such theories should be backed up by computer implementations.
The larger fragments of the CoreGram project will be documented in
a series of book publications. The first book in this series was (Müller
2007b), which describes a fragment of German that is implemented in
the grammar BerliGram. Three further books are in preparation and
will be submitted to the series Implemented Grammars by Language
Science Press: one on the Persian Grammar developed in the PerGram
project (Müller et al. In Preparation), one on the Danish Grammar de-
veloped in the DanGram project (Müller and Ørsnes 2015), and one
on the Mandarin Chinese grammar developed in the ChinGram project
(Müller and Lipenkova In Preparation).
The remainder of this paper is structured as follows: the rest of this

section describes desiderata for linguistic theories and discusses the
importance of formalization, with special focus on mainstream theo-
ries and research programs such as GB, Minimalism, and Construction
Grammar. Section 2 discusses the way in which theories of our lin-
guistic knowledge should be constructed. It compares Minimalist ap-
proaches with the more data-driven approach taken in the CoreGram
project. Many Minimalist approaches start with certain assumptions
and then try to show that it is possible to account for all languages
with these fundamental assumptions. Recent evidence from language
acquisition shows that this is not a viable research strategy and that

[24]

The CoreGram project

grammars should be motivated on a language-specific basis. The gen-
erative research tradition was criticized by typologists like Haspel-
math (2010a), Dryer (1997), and Croft (2001, Section 1.4.2–1.4.3),
claiming that the generative methodology was fundamentally flawed
and that descriptive categories should be language-specific. I will show
why the CoreGram project does not run into methodological problems
and suggest a middle way between mainstream generative grammar
and radical views like the one held by Croft. Following the discus-
sion of theory construction in Section 2, Section 3 shows some high-
lights from the various CoreGram grammars. Section 4 discusses basic
theoretical assumptions for the treatment of valence, constituent or-
der, morphology, semantics, and information structure, and Section 5
provides details on how things are implemented in the TRALE sys-
tem. Section 6 compares the CoreGram project with other multilin-
gual projects like ParGram and DELPH-IN. Finally, Section 7 deals
with evaluation, grammar profiling and testing, and Section 8 draws
some conclusions.
1.1 Desiderata for linguistic theories
This section discusses desiderata for linguistic theories and shows that
the framework that is assumed in the CoreGram project, namely HPSG,
fulfils all of them.
1.1.1 Non-transformational, constraint-based approach
While psycholinguistic experiments at first seemed to confirm the
Derivational Theory of Complexity (Miller and McKean 1964; Savin
and Perchonock 1965; Clifton and Odom 1966), so that Chomsky
assumed it to be correct until 1968 (Chomsky 1976, p. 249–250), it
was later shown that the initial experiments were flawed and that
transformations are not psycholinguistically real (Fodor et al. 1974,
p. 324). Since then it has become customary to say that transforma-
tions are metaphors (for instance in Chomsky 2001, Footnote 4). This,
of course, begs the question why one should formulate one’s theories
in metaphors (see also Jackendoff 2011, p. 599). This question is even
more pressing since a lot of Minimalist theorizing is now done under
the label of Biolinguistics and the assumed processes are claimed to be
psycholinguistically real. For instance, Chomsky (2001, p. 11, 12, 15;
2007, p. 3, 12; 2008, p. 138, 145, 146, 155) refers to aspects of pro-

[25]

Stefan Müller

cessing and memory requirements (see also Marantz 2005, p. 440, and
Richards 2015). However, structure building processes that start with
the combination of words and assume later reorderings are highly
implausible from a psycholinguistic point of view. As was pointed out
by Labelle (2007), human short-term memory is simply too limited to
be able to compute complex structure in the way it is envisaged by
current Minimalist theories. Models that crucially rely on the order of
application of combinatorial operations fail, since we neither use our
linguistic knowledge exclusively bottom-up nor exclusively top-down.
Phillips (2003) suggested a theoretical variant that allows for incre-
mental parsing, but first, this is tailored towards parsing and ignores
generation, and second, it is incompatible with much of the rest of the
Minimalist theories.
The way out of all of these problems is a clear separation be-

tween competence and performance and a declarative, constraint-
based statement of linguistic constraints that do not make any claims
about the order of constraint application (Sag and Wasow 2011; Jack-
endoff 2011, p. 600). The order of application is constrained by per-
formance models, which are an important part of a theory about lan-
guage and have to be combined with competence models. Proponents
of usage-based approaches often reject the competence–performance
distinction, but as soon as a grammar contains grammar rules or sche-
mata that can be applied recursively, one has to explain why sentences
have a maximal length, why we cannot do center-embeddings with
more than four levels and so on. An example of such a schema would
be a schema that licences relative clauses. Since relative clauses may
contain NPs, and NPs may in turn contain relative clauses, we have a
recursive grammar that licences infinitely many sentences. (Bannard
et al. 2009, proponents of Construction Grammar, use a context-free
grammar, a kind of grammar that clearly allows for recursive struc-
tures). The limitations with respect to sentence length and embedding
are due to factors such as our short term memory and have to be ex-
plained by a performance model that takes these factors into account
(Gibson 1998).
HPSG is a constraint-based theory which does not make any

claims about the order of application of combinatorial processes.
Theories in this framework are just statements about relations be-
tween linguistic objects or between properties of linguistic objects

[26]

The CoreGram project

and, hence, compatible with psycholinguistic findings and processing
models (Sag and Wasow 2011).
Pullum and Scholz (2001) and Pullum (2007) discuss further ad-

vantages of model-theoretic, and hence constraint-based, proposals:
they allow the construction of partial structures, can deal with graded
grammaticality, and no claims about the infinitude of language are
necessary.
As Pullum and Scholz note we can assign the structure in Figure 2

to the fragment and of the in a sentence like (1):
(1) That cat is afraid of the dog and of the parrot.

PP

PP[coord and]

PP

NP

NDet

the

P

of

Conj

and

PP

Figure 2:
Structure of
the fragment
“and of the”
following Pullum
and Scholz
(2001, p. 32)

If we hear the we know that an N will follow, if we hear of, we will
know that of will head a PP. and usually is part of symmetric coordi-
nations, so we know that the first part of the coordination will be a PP
too. So, the information from lexical items and dominance schemata
licenses a complex structure in constraint-based models, while noth-
ing is generated in generative-enumerative models. and of the is just
not a member of a set of well-formed expressions.
This property of constraint-based approaches also comes in handy

when we want to explain the robustness of human sentence process-
ing. In the case of unknown words, information from syntax and se-
mantics can be used to draw inferences about the material that is miss-
ing. For instance in an utterance like (2), in which information about

[27]

Stefan Müller

XXX is missing, the hearer can infer that XXX must be a verb and that
it must have three arguments. (This argument is also due to Pullum
and Scholz 2001, Section 3.3, who make it in a slightly different form.)
(2) Could you XXX me the salt, please?
Hence, the hearer arrives at a prototypical ditransitive verb, a verb
of change of possession, that is, something like give or pass. In current
Minimalist models nothing would happen since structure building and
movement is triggered by lexical items and their features, but if they
are absent or unknown, the derivation does not start.1
While constraint-based approaches can explain markedness of

structures by the number and strength of constraints that are violated
by a given example, this is not possible in generative-enumerative
approaches. For a discussion of an attempt to incorporate marked-
ness into the picture of generative-enumerative models, see (Chomsky
1975, Chapter 5; Chomsky 1964). For a rejection of these proposals
see (Pullum and Scholz 2001, p. 29).
Finally, constraint-based models do not have to make any claims

about the infinitude of language. While it is usually claimed that lan-
guage is infinite by proponents of generative-enumerative proposals,

1Chomsky (2007, p. 6) writes: A Merge-based system of derivation involves par-
allel operations. Thus if X and Y are merged, each has to be available, possibly con-
structed by (sometimes) iterated Merge. The process has a loose resemblance to early
theories of generalized transformations, abandoned in the early 1960s for good rea-
sons, now resurrected in a far simpler form for better reasons. But a generative system
involves no temporal dimension. In this respect, generation of expressions is similar to
other recursive processes such as construction of formal proofs. Intuitively, the proof
“begins” with axioms and each line is added to earlier lines by rules of inference or
additional axioms. But this implies no temporal ordering. It is simply a description of
the structural properties of the geometrical object “proof.” The actual construction of
a proof may well begin with its last line, involve independently generated lemmas, etc.
The choice of axioms might come last. The same is true of generation vs production of
an expression, a familiar competence–performance distinction. This seems to indicate
a constraint-based position. However, even if a constraint-based view is assumed
in principle, there are lots of unsolved problems with specific Minimalist pro-
posals. For instance, some approaches assume the existence of unvalued features
that acquire a value during a derivation. What happens if the information about
these features is not available to the hearer? According to Minimalist theorizing,
the derivation should crash. But as (2) just shows, it does not crash but results in
partial, underspecified information.

[28]

The CoreGram project

no such claims are necessary in the model-theoretic world. Those who
claim that language is infinite and biologically real are faced with
the paradox that infinitely many members of the infinite set are not
biologically real, that is, they can never be realized because of our lim-
ited resources (Postal 2009). Model-theoretic approaches do not have
to assume infinite sets only to throw away most of them because of
performance considerations; rather, they pair the performance model
with the competence model directly and therefore end up with theo-
ries that are psycholinguistically and biologically plausible.
As I showed in (Müller 2010a, Chapter 3.6.4; 2013c), the combi-

natory operations of Minimalism as defined in (Chomsky 2008) and
(Stabler 2001) correspond to three of the schemata used in HPSG
grammars since at least (Pollard and Sag 1994): Merge corresponds
to the Head-Specifier Schema and the Head-Complement Schema of
HPSG, and Move corresponds to the Head-Filler Schema. So, ideology
and rhetorics aside, what we have here is a constraint-based, declara-
tive formalization of Minimalist proposals. Of course, a lot of questions
have to be asked about current Minimalist analyses; some of them will
be addressed in Section 2.
1.1.2 Sign-based, parallel architecture
As was shown by Marslen-Wilson (1975) in the 1970s and confirmed
later by many studies, we process linguistic and non-linguistic infor-
mation as soon as it is available to us, and there is no ordering of
strictly encapsulated modules of processing. Tanenhaus et al. (1995,
1996) used eye-tracking techniques to establish that we know the ref-
erents of NPs even if we just heard a determiner and an adjective.
The authors showed that stress on the adjective is interpreted imme-
diately as a sign of contrast, leading to right inferences being drawn
and the only possible object in a specific scene being looked at. The
studies demonstrated that constraints from phonology, syntax, and in-
formation structure are evaluated immediately and that information is
processed as soon as it is available. We can use it and draw inferences
even though we may not be able to assign a full syntactic structure to
a certain phrase yet. Such findings are compatible with architectures
that assume that all linguistic levels are accessible simultaneously such
as HPSG, LFG, Construction Grammar and Jackendoff’s Parallel Archi-
tecture (Jackendoff 1999, 2011; Kuhn 2007).

[29]

Stefan Müller

1.1.3 Possibility to include
non-headed and phrasal constructions

I agree with Jackendoff (2008, 2011), Jacobs (2008), Sag (2010), and
others that one needs more than some very general binary-branching
schemata to deal with language in its full richness in non-stipulative
ways. For instance, Jackendoff (2011) pointed out that none of the
elements in N-P-N constructions like (3) can be identified as the head.
Instead of the usual head-argument structures (X or equivalent), Jack-
endoff (2008) suggests that the N, P, and N are combined into an NP
or advP and that the structure as such is unheaded.
(3) student after student

[NP/advP N-P-N]
The sentences in (4), which were mentioned by Jackendoff and Pinker
(2005, p. 220) and whose German equivalent was discussed in detail
by Jacobs (2008), are further examples of a construction that is best
handled as a headless construction.2
(4) a. Off with his head!

b. Into the trunk with you!
Hence, I believe that additional schemata or phrasal constructions in
the sense of Construction Grammar or Simpler Syntax (Culicover and
Jackendoff 2005) are needed. It is an empirical issue to what extent
phrasal constructions are needed and where Merge-like combinations
together with a rich lexicon are sufficient or rather necessary, and
the CoreGram project contributes to this discussion. See, for instance,
(Müller and Lipenkova 2009) for a phrasal treatment of serial verbs
in Mandarin Chinese, and (Ørsnes 2009) for a phrasal treatment of
preposed negation in Danish.
1.1.4 Core–periphery distinction
Given that the name of the project is CoreGram, some words on the
core–periphery distinction are in order.
Chomsky (1981, p. 7–8) suggests dividing languages into a core

part and a periphery. All regular parts belong to the core. The core
2See (Müller 2011) for an account of Jacobs’ data using an empty verbal head

and an abstract antipassive morpheme, and (Müller 2015b, Section 12.11.9.1) for
discussion.

[30]

The CoreGram project

grammar of a language is assumed to be an instance of Universal
Grammar (UG), the genetically determined innate language faculty
of human beings. Idioms and other irregular parts of a language be-
long to the periphery. Critics of Chomsky’s Principle and Parameters
approach have pointed out that a rather large proportion of our lan-
guages consist of, or interact with, irregular constructions, and that
the borders between core and periphery cannot be drawn easily and
are often motivated theory-internally only (Jackendoff 1997, Chap-
ter 7; Culicover 1999; Ginzburg and Sag 2000, p. 5; Newmeyer 2005,
p. 48; Kuhn 2007, p. 619). For instance, Nunberg et al. (1994) pointed
out that many English idioms interact with syntax. See also (Müller
2010a, p. 350) for interactions of idioms with verb placement, V2,
and passive in German.
So, I do not think that it is justified to ignore phenomena that are

claimed to belong to the periphery. Rather, I agree with Bender and
Flickinger (1999) and Bender (2008, p. 20–21) that studying phenom-
ena that are traditionally assigned to the periphery may discriminate
between possible analyses of the alleged core phenomena.
It should be noted however that the methodology described in

Section 2.2 results in a separation of core and periphery: Core con-
straints in the sense of the CoreGram project are those constraints
that are shared by at least two languages. All other constraints are
specific for a single language and constitute the periphery of the re-
spective languages. This notion of periphery is very different from the
Chomskian one: Depending on the version of the theory we look at,
the periphery in the Chomskian sense includes phenomena like Excep-
tional Case Marking (Chomsky 1981, p. 70), which are common in a
lot of languages and are, hence, assigned to the core in our setting. An-
other example is Jackendoff’s student after student construction, which
can be found in several languages (König and Moyse-Faurie 2009) and
which we would count to the core grammar, but which would proba-
bly not be seen as part of the core grammar in the Chomskyan sense.
Please refer to Section 2.2 for details of the organization of CoreGram
and to (Müller 2014c) for a general discussion of the core–periphery
distinction.

[31]

Stefan Müller

1.2 Formalization, computer implementations,
and theory verification

The work of Noam Chomsky pioneered the formalization of linguistic
theories. In his early writings he states that formalization is necessary
for progress in linguistics:
Precisely constructed models for linguistic structure can play
an important role, both negative and positive, in the process
of discovery itself. By pushing a precise but inadequate for-
mulation to an unacceptable conclusion, we can often expose
the exact source of this inadequacy and, consequently, gain a
deeper understanding of the linguistic data. More positively,
a formalized theory may automatically provide solutions for
many problems other than those for which it was explicitly
designed. Obscure and intuition-bound notions can neither
lead to absurd conclusions nor provide new and correct ones,
and hence they fail to be useful in two important respects. I
think that some of those linguists who have questioned the
value of precise and technical development of linguistic the-
ory have failed to recognize the productive potential in the
method of rigorously stating a proposed theory and apply-
ing it strictly to linguistic material with no attempt to avoid
unacceptable conclusions by ad hoc adjustments or loose for-
mulation. (Chomsky 1957, p. 5)
In a book that appeared some years later, Manfred Bierwisch ar-

gued for machine processable implementations of theoretical analyses:
It is therefore very possible that the rules that we have for-
mulated generate sentences which are outside of the set of
grammatical sentences in an unpredicted way; that is, they
violate grammaticality due to properties that we did not de-
liberately exclude from our analysis. This is what is meant by
the statement that a grammar is a hypothesis about the struc-
ture of a language. A systematic examination of the implica-
tions of a grammar that is appropriate for natural languages
surely is a task that cannot be solved manually anymore. This
task could be approached by implementing the grammar as
a calculation task on a computer, so that it can be verified

[32]

The CoreGram project

to which degree the result deviates from the language to be
described. (translated from Bierwisch 1963, p. 1633)

I wholeheartedly agree with Bierwisch’s statement, given that after
the time of his writing enormous headway has been made both em-
pirically and theoretically. For instance, Ross (1967) discovered con-
straints on reordering constituents and non-local dependencies; Perl-
mutter (1978) discovered unaccusative verbs in the 1970s; and the-
ories were developed for dealing with case (Yip et al. 1987; Meurers
1999c; Przepiórkowski 1999), verbal complex formation, and partial
fronting (Evers 1975; Grewendorf 1988; Hinrichs and Nakazawa 1994;
Kiss 1995; G. Müller 1998; Meurers 1999b; Müller 1999, 2002; De
Kuthy 2002). All these phenomena, and a lot more, interact!
To emphasize this point, I give another quotation from Steve Ab-

ney, who worked within the GB framework:
A goal of earlier linguistic work, and one that is still a cen-
tral goal of the linguistic work that goes on in computational
linguistics, is to develop grammars that assign a reasonable
syntactic structure to every sentence of English, or as nearly
every sentence as possible. This is not a goal that is cur-
rently much in fashion in theoretical linguistics. Especially in
Government-Binding theory (GB), the development of large
fragments has long since been abandoned in favor of the pur-
suit of deep principles of grammar. The scope of the prob-
lem of identifying the correct parse cannot be appreciated
by examining behavior on small fragments, however deeply
analyzed. Large fragments are not just small fragments sev-
eral times over—there is a qualitative change when one be-

3Original from (Bierwisch 1963, p. 163): Es ist also sehr wohl möglich, daß mit
den formulierten Regeln Sätze erzeugt werden können, die auch in einer nicht voraus-
gesehenen Weise aus der Menge der grammatisch richtigen Sätze herausfallen, die also
durch Eigenschaften gegen die Grammatikalität verstoßen, die wir nicht wissentlich aus
der Untersuchung ausgeschlossen haben. Das ist der Sinn der Feststellung, daß eine
Grammatik eine Hypothese über die Struktur einer Sprache ist. Eine systematische
Überprüfung der Implikationen einer für natürliche Sprachen angemessenen Gram-
matik ist sicherlich eine mit Hand nicht mehr zu bewältigende Aufgabe. Sie könnte
vorgenommen werden, indem die Grammatik als Rechenprogramm in einem Elektro-
nenrechner realisiert wird, so daß überprüft werden kann, in welchem Maße das Re-
sultat von der zu beschreibenden Sprache abweicht.

[33]

Stefan Müller

gins studying large fragments. As the range of constructions
that the grammar accommodates increases, the number of
undesired parses for sentences increases dramatically. (Ab-
ney 1996, p. 20)

In addition, it is a goal of much current linguistic theorizing to for-
mulate constraints that hold for all languages or at least for certain
classes of languages. As a consequence, it is not sufficient to study the
interaction between phenomena solely on the basis of one language:
Changing the constraints for a certain phenomenon in one language
may be compatible with all phenomena that are relevant for the lan-
guage under discussion, but it may well be the case that unexpected
interactions with other phenomena in another language emerge. Ver-
ifying the consequences of a simple change of a principle therefore
results in a complexity that cannot be handled by human beings. It
is therefore necessary to formalize the theories in a way that makes
them implementable as computer-processable grammars. After check-
ing the grammar for consistency, a computer grammar can be used to
analyze systematically constructed test suites containing thousands of
grammatical sentences and ungrammatical word sequences or large
corpora containing naturally occurring data. Such parses can be used
to verify that the grammar makes the right predictions as far as the em-
pirical facts are concerned (Müller 1999, Chapter 22; Oepen and Flick-
inger 1998; Bender 2008, Müller 2013a, Section 3.7.2; Müller 2015b,
Section 3.7.2). In addition, generators can be used to produce utter-
ances that correspond to a certain meaning. If ill-formed strings are
generated, this is an indicator for missing constraints in the grammar.
After more than 55 years of work in transformational grammar,

one has to note that there are no large-scale implemented fragments
on the basis of transformational analyses. Chomsky made important
contributions to the theory of formal languages that are still relevant
in computer science (Chomsky 1959), but in 1981 he turned his back
on precisely worked-out solutions:
I think that we are, in fact, beginning to approach a grasp
of certain basic principles of grammar at what may be the
appropriate level of abstraction. At the same time, it is nec-
essary to investigate them and determine their empirical ad-
equacy by developing quite specific mechanisms. We should,

[34]

The CoreGram project

then, try to distinguish as clearly as we can between discus-
sion that bears on leading ideas and discussion that bears on
the choice of specific realizations of them. (Chomsky 1981,
p. 2–3)

He made it explicit in a letter to Natural Language and Linguistic Theory:
Even in mathematics, the concept of formalization in our
sense was not developed until a century ago, when it be-
came important for advancing research and understanding. I
know of no reason to suppose that linguistics is so much more
advanced than 19th century mathematics or contemporary
molecular biology that pursuit of Pullum’s injunction would
be helpful, but if that can be shown, fine. For the present,
there is lively interchange and exciting progress without any
sign, to my knowledge, of problems related to the level of
formality of ongoing work. (Chomsky 1990, p. 146)

The consequence of this change is a very large number of publications
in Mainstream Generative Grammar, many of which make incompat-
ible assumptions, so that it is not clear how insights from different
publications can be combined. A case in point are the many different
definitions of the rather central concept of government (see Aoun and
Sportiche 1983 for an overview).
This was repeatedly criticized in the 1980s, for instance by the

practitioners of GPSG (Gazdar et al. 1985, p. 6; Pullum 1985, 1989;
Pullum 1991, p. 48; Kornai and Pullum 1990). The lack in precision,
missing details,4 and frequent changes in the basic assumptions5 re-
sulted in the absence of large-scale computer implementations that
incorporate insights from Mainstream Generative Grammar. There
are some implementations that borrow from GB/MP models or from
ideas from Mainstream Generative Grammar (Petrick 1965; Zwicky
et al. 1965; Friedman 1969; Friedman et al. 1971; Morin 1973; Marcus
1980; Abney and Cole 1986; Kuhns 1986; Correa 1987; Stabler 1987,

4See, for instance, (Kuhns 1986, p. 550), (Crocker and Lewin 1992, p. 508),
(Kolb and Thiersch 1991, p. 262), and (Kolb 1997, p. 3) on precision; and (Freidin
1997, p. 580), (Veenstra 1998, p. 25, 47), (Lappin et al. 2000, p. 888), and (Stabler
2010, p. 397, 399, 400) on missing details.

5See, for instance, (Kolb 1997, p. 4), (Fanselow 2009), and the quote by Sta-
bler on p. 37.

[35]

Stefan Müller

1992, 2001; Kolb and Thiersch 1991; Fong 1991; Crocker and Lewin
1992; Lohnstein 1993; Fordham and Crocker 1994; Nordgård 1994;
Veenstra 1998; Niyogi and Berwick 2005), but these implementations
usually do not employ transformations or deviate in other crucial ways
from theoretical work. See (Kay 2011, p. 10) for discussion of early
transformational systems, and (Müller 2013a, Section 3.7.2; Müller
2015b, Section 3.7.2) for further discussion of GB and Minimalist
systems.
There are two implementations that can be regarded as imple-

mentations of Minimalist ideas. I will comment on them briefly: Sta-
bler (2001) shows how Kayne’s theory of remnant movement can be
formalized and implemented. However, his implementation does not
use transderivational constraints, does not have numerations, has no
Agree (see Fong 2014, p. 132), and so on. Stabler’s grammars are
small-scale fragments that can be considered proofs of concept, but
nothing more. They only deal with syntax; there is no morphology6,
no treatment of multiple agreement (Stabler 2011, Section 27.4.3),
and no semantics; and neither PF nor LF processes are modeled.7 An-
other implementation that uses Minimalist Grammar as a framework
is the one of Niyogi and Berwick (2005). This grammar has 347 lexi-
cal entries and covers a lot of argument alternations. It is probably the
largest implementation of Minimalist ideas. However, it differs from
theoretical proposals in not using numerations, in having six or seven
(if optional merge is counted) rules for combination of material
rather then just internal and external merge, and in not using labelling
but rather a Categorial Grammar-like functor argument approach. In
(Berwick et al. 2011), a later paper that explicitly discusses computer
implementations, this system is not mentioned.

6The test sentences have the form in (i).
(i) a. the king will -s eat

b. the king have -s eat -en
c. the king be -s eat -ing
d. the king -s will -s have been eat -ing the pie

7See, for instance, (Sauerland and Elbourne 2002, p. 285) for suggestions on
PF and LF movement that includes the deletions of parts of copies. The imple-
mentation of such analyses is probably non-trivial.

[36]

The CoreGram project

The grammars and the processing system developed by Sandiway
Fong (Fong and Ginsburg 2012; Fong 2014) have a similar status: The
grammar fragments are small, encode syntactic aspects like Labeling
directly in the phrase structure rules (Fong and Ginsburg 2012, Sec-
tion 4), and hence fall far behind X Theory. The grammars do not have
a morphology component, and Spell-Out is not implemented; there-
fore, this system neither parses nor generates a single sentence from
any natural language.8
The reason for the absence of large-scale fragments in the frame-

work of GB/MP is probably that the basic assumptions that are made
in the Minimalist community are changing very frequently:
In Minimalism, the triggering head is often called a probe,
the moving element is called a goal, and there are various
proposals about the relations among the features that trig-
ger syntactic effects. Chomsky (1995, p. 229) begins with the
assumption that features represent requirements which are
checked and deleted when the requirement is met. The first
assumption is modified almost immediately so that only a
proper subset of the features, namely the ‘formal’, ‘uninter-
pretable’ features are deleted by checking operations in a
successful derivation (Collins, 1997; Chomsky 1995, §4.5).
Another idea is that certain features, in particular the fea-
tures of certain functional categories, may be initially unval-

8The following claim by Berwick et al. (2011, p. 1221) is therefore simply
wrong: But since we have sometimes adverted to computational considerations, as
with the ability to “check” features of a head/label, this raises a legitimate concern
about whether our framework is computationally realizable. So it is worth noting that
the copy conception of movement, along with the locally oriented “search and label-
ing” procedure described above, can be implemented computationally as an efficient
parser; see Fong, 2011, for details. One cannot claim that one has an efficient im-
plementation if the software under consideration does not parse any sentence
at all, since it might be possible that the implementation of the missing parts
is extremely complex and the resulting program would be inefficient. As was
noted above, Fong does not implement Labeling as it was introduced in Chom-
sky’s papers (for instance, Chomsky 2008, 2013), but simply uses definite clause
grammars. In fact, neither of the two Chomsky papers is implementable, since
the description of Labeling is not worked out in detail. Crucial cases are missing
in the 2008 paper and the 2013 paper is vague in some places and inconsistent
in others (Müller 2013c).

[37]

Stefan Müller

ued, becoming valued by entering into appropriate structural
configurations with other elements (Chomsky 2008; Hiraiwa,
2005). And some recent work adopts the view that features
are never deleted (Chomsky 2007, p. 11). These issues remain
unsolved. (Stabler 2010, p. 397)

Developing a grammar fragment takes at least three years. Large gram-
mars accumulate the knowledge of several researchers which has crys-
tallized in international cooperations over the course of several years
or even decades. However, such a process is blocked when basic as-
sumptions are changed frequently (see also Fanselow 2009, p. 138).
The same criticism that applies to GB/Minimalism applies to Con-

struction Grammar: The basic notions and key concepts are hardly
ever made explicit with the exception of Sign-Based Construction
Grammar (Sag 2010, 2012), which is an HPSG variant, Embodied
Construction Grammar (Bergen and Chang 2005), which uses feature
value matrices and is equivalent to HPSG (see Müller 2010a, Chap-
ter 9.6, for a discussion of both theories), and Fluid Construction
Grammar (Steels 2011).9

2 the poverty of the stimulus
and motivation of analyses

In this section, I first describe recent advances in research on language
acquisition and then show how the data-driven, bottom-up approach
to theory development that is followed in the CoreGram project works
in detail.
2.1 Language acquisition and linguistic theory
As is argued in (Müller 2010a, Chapter 11.4) and (Müller 2015b,
Chapter 12.4), HPSG is compatible with UG-based models of language
acquisition such as, for instance, the one by Fodor (1998). See (Fodor

9Steels (2013, p. 153) sees Fluid Construction Grammar as a toolkit for the
implementation of various Construction Grammar ideas. So in this view, it would
not be a theory or framework but rather a system such as TRALE or LKB, which
are discussed below. Van Trijp (2013, 2014) sees Fluid Construction Grammar
as a framework and compares it with HPSG. For a detailed discussion of specific
analyses formalized in Fluid Construction Grammar and van Trijp’s core assump-
tions, see (Müller 2015b, Section 9.6.4).

[38]

The CoreGram project

2001, p. 385) for an explicit remark to that end. However, in recent
years evidence has accumulated showing that arguments for innate,
language-specific knowledge are very weak. For instance, Johnson
(2004) showed that Gold’s (1967) proof that natural languages are
not identifiable in the limit by positive data alone is irrelevant for
discussions of human language acquisition. Furthermore, there is ev-
idence that the input that humans have is sufficiently rich to acquire
structures which were thought by Chomsky (1971, p. 29–33; 2013,
p. 39) and others to be impossible to acquire: Bod (2009) showed how
syntactic structures could be derived from an unannotated corpus by
Unsupervised Data-Oriented Parsing. He assumed that language is or-
ganized in chunks, and it has been described how children can acquire
the fact that linguistic expressions are combined from smaller parts
into larger units (see Estigarribia 2009 for acquisition of fragments
starting at the right periphery of utterances). Given this prerequisite,
Bod explained how Chomsky’s auxiliary inversion data can be cap-
tured even if the input does not contain the data that Chomsky claims
to be necessary (see also Eisenberg 1992, Pullum and Scholz 2002, and
Scholz and Pullum 2002 for other Poverty of the Stimulus arguments).
Input-based models of language acquisition in the spirit of Tomasello
(2003) seem highly promising and can, in fact, explain language acqui-
sition data better than previous UG-based models (Freudenthal et al.
2006, 2009). I have argued that the results from language acquisition
research in the Construction Grammar framework can be carried over
to HPSG, even in its lexical variants (Müller 2010a, 2015b; Müller
and Wechsler 2014, Section 9).10 If language acquisition is input-
based and language-specific innate knowledge is minimal, as assumed
by Chomsky (1995) and Hauser et al. (2002), or even non-existing, this
has important consequences for the construction of linguistic theories:
Proposals that assumemore than 400morpho-syntactic categories that
are all innate and that play a role in all languages of the world, even
though they are not directly observable in many languages (Cinque

10 In fact, I believe that a lexical treatment of argument structure is the only
one that is compatible with the basic tenets of theories like Categorial Grammar
(CG), Lexical Functional Grammar (LFG), Construction Grammar, and HPSG that
adhere to lexical integrity (Bresnan and Mchombo 1995). For discussion, see
(Müller 2006), (Müller 2010a, Chapter 11.11), (Müller 2010b), (Müller 2013c),
and (Müller and Wechsler 2014).

[39]

Stefan Müller

and Rizzi 2010, p. 55, 57), have to be rejected right away. Further-
more, one cannot argue for empty functional projections in language X
on the basis of overt morphemes in language Y. This has, for instance,
been done for Topic projections that are assumed for languages with-
out topic morphemes on the basis of the existence of a topic morpheme
in Japanese and Gungbe. Similarly, functional projections for object
agreement (AgrO) have been proposed for languages like English and
German on the basis of Basque data, even though neither English nor
German has object agreement. Since German children do not have
any evidence from Basque, they would not be able to learn that there
are projections for object agreement, and hence this fact would have
to be known in advance. Neither can the existence of postpositions
and agreement in Hungarian be seen as evidence for AgrO projections
and hidden movement processes in English as assumed in the analysis
by Hornstein et al. (2005, p. 124). Such complicated analyses cannot
be motivated language-internally and hence are not acquirable from
input alone. Since there is no theory-external evidence for such pro-
jections, theories that can do without such projections and without
stipulations about UG should be preferred.
However, this does not mean that the search for universals or for

similarities between languages and language classes is fundamentally
misguided, although it may be possible that there is very little that is
truly universal (Evans and Levinson 2009):11 In principle, infinitely
many descriptions of a particular language exist. It is possible to write
a grammar that is descriptively adequate, but the way the grammar is
written does not extend to other languages. So even without making
broad claims about all languages, it is useful to look at several lan-
guages, and the more they differ from each other, the better. What we
try to do in the CoreGram project is the modest version of mainstream
generative grammar: We start with grammars of individual languages
and generalize from there. We think that the framework we are using is
well-suited for capturing generalizations within a language and across
languages, since inheritance hierarchies are ideal tools for this. Note
though that inheritance hierarchies are not the only place in the theory
where generalizations can be captured. This is discussed in more detail

11But see (Harbour 2011) and the responses of authors in the same volume as
Evans and Levinson’s contribution for criticism of this paper.

[40]

The CoreGram project

in Sections 2.2 and 5.1.2 below. Of course, when building grammars,
we can rely on several decades of research in theoretical linguistics
and build on the insights that were gained by researchers working
under UG-oriented assumptions. Without a theory-driven, compara-
tive perspective on language, certain questions would never have been
asked, and it is good that we have such valuable resources at hand.
We nevertheless see some developments rather critically, as should be
clear from the statements I have made above.
2.2 Data-driven, bottom-up theory development
Instead of imposing constraints from one language onto other lan-
guages, a bottom-up approach seems to be more appropriate: Gram-
mars for individual languages should be motivated language-inter-
nally. Grammars that share certain properties can be grouped in
classes. This makes it possible to capture generalizations about groups
of languages and language as such. Let us consider some examples:
German, Dutch, Danish, English and French. If we start developing
grammars for German and Dutch, we find that they share a lot of prop-
erties: both are SOV and V2 languages, both have a verbal complex.
One main difference is the order of elements in the verbal complex.
The situation can be depicted as in Figure 3. There are some proper-
ties that are shared between German and Dutch (Set 3). For instance,
the argument structure, a list containing descriptions of syntactic and
semantic properties of arguments, and the linking of these arguments
to the meaning of the sign is contained in Set 3. In addition, the con-
straints for SOV languages, the verb position in V2 clauses, and the
fronting of a constituent in V2 clauses are contained in Set 3. The re-
spective constraints are shared between the two grammars. When we

Set 3

Set 2Set 1

German Dutch

Arg St
V2
SOV
VC

Figure 3:
Shared
properties
of German
and Dutch

[41]

Stefan Müller
Figure 4:
Shared

Properties of
German, Dutch,

and Danish

Set 5

Set 6

Set 4

Set 2Set 1

German Dutch Danish

Arg Str
V2

SOV
VC

add another language, say Danish, we get further differences. While
German and Dutch are SOV, Danish is an SVO language.
Figure 4 shows the resulting situation: The top-most node repre-

sents constraints that hold for all the languages considered so far (for
instance, the argument structure constraints, linking, and V2), and the
node below it (Set 4) contains constraints that hold for German and
Dutch only. For instance, Set 4 contains constraints regarding verbal
complexes and SOV order. In principle, there could be constraints that
hold for Dutch and Danish but not for German, and for German and
Danish but not for Dutch. These constraints would be removed from
Set 1 and Set 2 respectively and put into another constraint set higher
up in the hierarchy. For clarity, these sets are not illustrated in the
figure, and I keep the names Set 1 and Set 2 from Figure 3 for the
constraint sets for German and Dutch. The union of Set 4 and Set 5 is
Set 3 of Figure 3.
If we add further languages, further constraint sets will be distin-

guished. Figure 5 on the facing page shows the situation that results
when we add English and French. Again, the picture is not complete
since there are constraints that are shared by Danish and English but
not by French, but the general idea should be clear: By systematically
working this way, we should arrive at constraint sets that directly cor-
respond to those that have been established in the typological litera-
ture.
It should be clear from what has been said so far that the goal

of every scientist who works this way is to find generalizations and

[42]

The CoreGram project

Set 8

Set 11

Set 13Set 12

Set 7

Set 6

Set 4

Set 2Set 1

German Dutch Danish English French

Arg Str

V2

SOV
VC

SVO

Figure 5:
Languages and
language classes

to describe a new language in a way that reuses theoretical constructs
that have been found useful for a language already covered. However,
as was explained above, the resulting grammars should be motivated
by data of the respective languages and not by facts from other lan-
guages. In situations where more than one analysis would be compat-
ible with a given dataset for language X, the evidence from language
Y with similar constructs is most welcome and can be used as evi-
dence in favor of one of the two analyses for language X. I call this
approach the bottom-up approach with cheating: Unless there is contra-
dicting evidence, we can reuse analyses that have been developed for
other languages.
Note that this approach is compatible with the rather agnostic

view advocated by Haspelmath (2010a), Dryer (1997), Croft (2001,
Section 1.4.2–1.4.3), and others, who argue that descriptive cate-
gories should be language-specific, that is, the notion of subject for
Tagalog is different from the one for English, the category noun in
English is different from the category noun in Persian, and so on.
Even if one follows such extreme positions, one can still derive gen-
eralizations regarding constituent structure, head-argument relations
and so on. However, I believe that some categories can fruitfully be
used cross-linguistically – if not universally, then at least for language

[43]

Stefan Müller

classes. As Newmeyer (2010, p. 692) notes with regard to the no-
tion of subject: Calling two items subject in one language does not
entail that they have identical properties. The same is true for two
linguistic items from different languages: calling a Persian linguistic
item subject does not entail that it has exactly the same properties
as an English linguistic object that is called subject. The same is, of
course, true for all other categories and relations, for instance, parts
of speech: Persian nouns do not share all properties with English
nouns.12 Haspelmath (2010b, p. 697) writes: Generative linguists try
to use as many crosslinguistic categories in the description of individual
languages as possible, and this often leads to insurmountable problems.
If the assumption of a category results in problems, they have to be
solved. If this is not possible with the given set of categories or fea-
tures, new ones have to be assumed. This is not a drawback of the
methodology, quite the opposite: If we have found something that
does not integrate nicely into what we already have, this is a sign
that we have discovered something new and exciting. If we stick to
language-particular categories and features, it is much harder to no-
tice that a special phenomenon is involved since all categories and
features are specific to one language anyway. Note also that not all
speakers of a language community have exactly the same categories.
If one were to take the idea of language-particular category symbols to
an extreme, one would end up with person-specific category symbols
like Kim-English-noun.

12Note that using labels like Persian Noun and English Noun is somewhat
strange since it implies that both Persian nouns and English nouns are nouns
in some way (see, for instance, Haspelmath 2010a, Section 2, for such a sug-
gestion regarding case, e. g. Russian Dative, Korean Dative, …). Instead of using
the category Persian Noun one could assign objects of the respective class to the
class noun and add a feature language with the value persian. This simple trick
makes it possible to assign both objects of the type Persian Noun and objects of
the type English Noun to the class noun and still maintain the fact that there are
differences. Of course, no theoretical linguist would introduce the language
feature to differentiate between Persian and English nouns, but nouns in the
respective languages have other features that make them differ. So, the part-of-
speech classification as noun is a generalization over nouns in various languages
and the categories Persian Noun and English Noun are feature bundles that contain
further, language-specific information.

[44]

The CoreGram project

After a talk I gave at the MIT in 2013, members of the linguistics
department objected to the approach taken in the CoreGram project
and claimed that it would not make any predictions as far as possible
or impossible languages are concerned. Regarding predictions, two
things must be said: Firstly, predictions are being made on a language-
particular basis. As an example, consider the following sentences from
(Netter 1991):
(5) a. [Versucht,

tried
zu
to
lesen],
read

hat
has
er
he
das
the
Buch
book

nicht.
not

‘He did not try to read the book.’
b. [Versucht,
tried

einen
a

Freund
friend

vorzustellen],
to.introduce

hat
has
er
he
ihr
her
noch
yet

nie.
never
‘He never tried to introduce her to a friend.’

When I first read these sentences, I had no idea about their struc-
ture. I typed them into my computer, and within milliseconds, got
a syntactic analysis. When I studied the results, I realized that these
sentences are combinations of partial verb phrase fronting and the so-
called third construction (Müller 1999, p. 439). I had previously im-
plemented analyses of both phenomena, but had never thought about
the interaction of the two. The grammar predicted that examples like
(5) are grammatical. Similarly, the constraints of the grammar can
interact to rule out certain structures. So, predictions about ungram-
maticality or impossible structures are in fact made as well.
Secondly, the top-most constraint set holds for all languages seen

so far. It can be regarded as a hypothesis about properties that are
shared by all languages. This set contains constraints for the connec-
tion between syntax and information structure, and such constraints
allow for V2 languages but rule out languages with the verb in penul-
timate position. (See Kayne 1994, p. 50, for the claim that such lan-
guages do not exist. Kayne develops a complicated syntactic system
that predicts this.) Of course, if a language is found that puts the verb
in penultimate position for the encoding of sentence types or some
other communicative effect, a more general top-most set has to be de-
fined, but this is parallel for Minimalist theories: If languages are found
that are incompatible with basic assumptions, the basic assumptions

[45]

Stefan Müller

have to be revised. As with the language particular constraints, the
constraints from the top-most set make certain predictions about the
phenomena that can and cannot be found in languages.
Cinque (1999, p. 106) suggested a cascade of functional projec-

tions to account for reoccurring orderings in the languages of the
world. He assumes elaborate tree structures to play a role in the anal-
ysis of all sentences in all languages, even if there is no evidence for
respective morphosyntactic distinctions in a particular language (see
also Cinque and Rizzi 2010, p. 55). In the latter case, Cinque assumes
that the respective tree nodes are empty. Cinque’s results could be
incorporated in the model advocated here. We would define part-of-
speech categories and morpho-syntactic features in the top-most set,
and state linearization constraints that enforce the order that Cinque
encoded directly in his tree structure. In languages in which such cat-
egories are not manifested by lexical material, the constraints would
never apply. Neither empty elements nor elaborate tree structures
would be needed. So, Cinque’s data could be covered in a better way
in an HPSG with a rich UG. However, we refrain from assuming a rich
UG and introducing 400 categories (or features) into the theories of
all languages. Again, I would like to point out that this would be im-
plausible from a genetic point of view, and I wait for other, probably
functional, explanations of the Cinque data.
Frequently discussed examples, such as those languages that form

questions by reversing the order of the words in a string (Musso et al.
2003), need not be ruled out in the grammar since they are ruled
out by language external constraints: We simply do not have enough
working memory to do such complex computations.
After having justified the basic approach taken in the CoreGram

project, I now turn to the coverage of the grammars and discuss some
highlights.

3 coverage and highlights

The computer-processable grammar fragments of German, Persian,
and Danish are relatively big.13 The German grammar (BerliGram)

13A list of covered phenomena accompanied by appropriate grammatical
and ungrammatical test strings is part of the distributions of the grammars and

[46]

The CoreGram project

was the first one to be implemented. It is an extension of the gram-
mars that were developed for the individual chapters of the HPSG
textbook (Müller 2007b). The textbook covers noun phrases with
adjuncts (APs, PPs, relative clauses), determinerless NPs, constituent
order (scrambling, verb position and clause types, nonlocal dependen-
cies for fronting), agreement (subject–verb and NP internal), predicate
complex formation (verbal complexes and adjective–verb complexes,
Oberfeldumstellung, partial fronting), control and raising, case assign-
ment and passive (personal, impersonal, remote passive, attributive
participles, lassen passive, bekommen passive, state passive, modal
infinitives), particle verbs (productive and lexicalized), morphology
(inflectional and derivational, for instance -bar ‘able’ derivation), and
(symmetric) coordination. The Situation Semantics that is used in
the textbook was replaced by a Minimal Recursion Semantics (MRS,
Copestake et al. 2005). MRS allows for underspecification of scope,
so that a sentence like (6) gets one representation from which the
several scopings can be derived. See (Dowty 1979, Section 5.6) for
the discussion of the readings of again in English, and (Egg 1999) for
the explanation of the different readings of (6).
(6) a. dass

that
Max
Max

wieder
again

alle
all
Fenster
windows

öffnete
opened

‘that Max opened all windows again’
b. again′(∀(CAUSE(open′))); repetitive
c. again′(CAUSE(∀(open′))); repetitive
d. CAUSE(again′(∀(open′))); restitutive

Von Stechow (1996, p. 93) develops an analysis in the framework of
Minimalism that assumes an empty VOICE head that contributes the
CAUSE relation and some further functional heads for AgrO and AgrS.
The empty heads were used to derive several readings in a movement-
based analysis. However, as Jäger and Blutner (2003) pointed out, von
Stechow’s analysis cannot derive all readings. We therefore follow Egg
(1999) and treat (6a) as an instance of sublexical scoping: öffnen is lex-
ically decomposed into CAUSE(open′), and the again can scope below
the CAUSE operator although there is no decomposition in syntax. The
can be downloaded at the respective web pages: http://hpsg.fu-berlin.de/
Projects/CoreGram.html.

[47]

Stefan Müller

scope relations are represented in dominance graphs. Egg’s analysis
has been translated into MRS (see Müller 2010a, Section 19.9.2, and
Müller 2015c, Section 3). Since there is no decomposition in syntax,
our analysis avoids empty elements: It is just the words of (6a) that
are combined in an analysis, and only these words contribute to the
interpretation.
In addition to the modification of the semantics component, some

further special phenomena have been implemented. For instance, an
analysis of multiple frontings (Müller 2003a), something that is unique
among existing HPSG implementations. For a discussion of approaches
to constituent order that are incompatible with the multiple frontings
data, see (Müller 2005, 2015a). Furthermore, analyses of depictives
(Müller 2008), left dislocation, copula constructions (Müller 2012),
and positional expletives (Müller and Ørsnes 2011) were added. Some
phenomena that have been covered in my earlier grammars of German
have not yet been transferred to BerliGram.
The Danish grammar is documented in a book of more than 500

pages, which is not complete yet. The grammar covers the NP (def-
inite marking by suffix, bare plurals, adjuncts), verb position (SVO,
but verb inversion in V2 sentences), negation preposing, questions,
predicational constructions, specificational constructions, agreement,
coordination, case assignment, passive, perfect, adverbial phrases,
embedded interrogative clauses, object shift and negation shift, par-
tial fronting, raising and control, passive (personal and impersonal
constructions) and complex passive, adjectival passives, preposition
stranding, and modal verbs. The following examples show in a com-
pact way the interaction of several phenomena: passive with promo-
tion of either the direct object or the indirect object (7a,c), passive
and pronoun shift (7b,d), and partial fronting and object shift (7b,d):

(7) a. Bjarne
Bjarne.nom

bliver
is

ikke
not

anbefalet
recommended

den.
it.acc

‘It is not recommended to Bjarne.’ (lit: ‘Bjarne is not
recommended it.’)

b. ? Anbefalet
recommended

bliver
is

Bjarne
Bjarne.nom

den
it.acc

ikke.
not

‘It is not recommended to Bjarne.’

[48]

The CoreGram project

c. Bogen
book.def.nom

bliver
is

ikke
not

anbefalet
recommended

ham.
him.acc

‘The book is not recommended to him.’
d. ? Anbefalet

recommended
bliver
is

bogen
book.def.nom

ham
him.acc

ikke.
not

‘The book is not recommended to him.’

The examples in (7b,d) are interesting since Danish differs from Ger-
man and Dutch in not allowing incomplete category fronting in gen-
eral. Such partial frontings can only be found if the missing compo-
nents are shifted pronouns, that is, pronouns to the left of the negation
(Holmberg 1999). Due to the complexity of the construction, examples
are marked, but Müller and Ørsnes (2013b) and Müller and Ørsnes
(2015) provide attested data.
The Mandarin Chinese grammar was implemented with the help

of Jia Zhongheng. We used the description in (Li and Thompson 1981)
as the basis for our implementation. Currently, we cover the NP (clas-
sifiers, determiners, attributive phrases with adjectives and relative
clauses), location words and localizer phrases, basic clause structure,
passive (bei construction), the ba construction, adverbials (PPs, ad-
verbs), negation, auxiliaries, aspect marking, reduplication, presenta-
tional constructions, and serial verb constructions. Among the things
that are special are NPs that contain classifiers, as in (8), and change
of part of speech by reduplication, as in (9).

(8) 那
na4
that

辆

liang4
CL

红

hong2
red

的

de
DE

车

che1
car

锈了。

xiu4.le
rust.ASP

‘That red car rusts.’

The adjective 高兴 (gao1xing4, ‘happy’) in (9a) is converted into an
adverb by forming the pattern AABB from the original adjective AB,
that is, both gao1 and xing4 are doubled.

(9) a. 他
ta1
he

很

hen
very

高兴。

gao1xing4
happy

‘he is very happy’

[49]

Stefan Müller

b. 他
ta1
he

高高兴兴

gao1gao1xing4xing4
AABB=happily

游泳。

you3yong3
swims

‘He swims happily.’
The Persian grammar is a larger fragment, which still needs to be

fully documented (Müller et al. In Preparation). A description of some
parts of the grammar can be found in (Müller and Ghayoomi 2010).
The grammar covers various types of light verb constructions, which
are crucial for the analysis of Persian, since Persian has only very few
verbs. The light verb constructions interact with other constructions
like negation, all tenses (periphrastic and synthetic), and cliticization.
All of these interactions are covered. Furthermore, the grammar con-
tains analyses of passive, adjectival passives, the NP structure (ezafe
construction, possessives, adjectives, …), direct object marking, agree-
ment, pro-drop, non-local dependencies including those with resump-
tive pronouns, inflectional and derivational morphology, coordina-
tion, relative clauses including free relative clauses, and questions.
The grammar can be used with Persian script or with a roman-

ized version that is usually used in linguistic texts. The examples in
(10) show light verb constructions, which are an important feature of
the language. (10a) shows that the future auxiliary can interrupt the
preverb–verb sequence of light verbs. (10b) shows an example with
the negation prefix in the middle of the light verb construction and
pro-drop.
(10) a. داد.خواهمانجامراکاراینمن

man
I

in
this
kār
job
rā
dom

anjām
performance

xāh-am
will-1SG

dād.14
gave

‘I will do this work.’
b. نداشت.دوسترامرد
mard
man

rā
dom

dust
friend

na-dāšt.
NEG-had

‘He/she did not love the man.’
The Maltese grammar is an implementation of the description by

Fabri (1993). Fabri works in the framework of Lexical Decomposi-
tion Grammar, which is also a lexical framework, and his analyses are

14Example taken from (Karimi-Doostan 1997, p. 73).

[50]

The CoreGram project

translatable into HPSG without great effort. The grammar covers basic
sentence structure, pro-drop, clitics (with correct spelling and model-
ing of the morphophonological changes, see Section 5.1.5), adjectival
predication (without copula), agreement, NP structure (including ad-
jective order, which depends on the class of adjective), definiteness
marking, and case assignment. The examples in (11) show definite-
ness marking. (11b) shows assimilation and (11c) shows clitics:15

(11) a. Il-komunist
def-communist

xejjer
waves.3m.sg

lil-l-papa.
Case-def-pope.m.sg

‘The communist waves at the pope.’
b. It-terrorist
def-terrorist

bagħat
sent

l-ittr-a
def-letter-F

lil-l-president.
Case-def-president

‘The terrorist sent the president the letter.’
c. It-terrorist
def-terrorist

bagħat=hie=l.
sent.3m.sg=3f.sg=3m.sg

‘The terrorist sent it to him.’
(11c) is ambiguous, as there is a reading with clitic left dislocation.
Both readings are accommodated by the grammar.
The grammars of Yiddish, English, and Hindi are small-scale.

They cover the basic structures of these languages and were imple-
mented in connection with work comparing several languages. For
instance, Yiddish covers V2 in main and embedded clauses, positional
expletives (Müller and Ørsnes 2011), and embedded interrogative
clauses. English covers NP structures, the main clause structure, case
assignment, agreement, auxiliary verb constructions, negation, coor-
dination, and inflectional and derivational morphology (-able deriva-
tion).
Among the basic clause structures, the grammar of Hindi covers

case assignment, agreement, verbal complex formation, nonlocal de-
pendencies, adjunctions, information structure markings, and inflec-
tional morphology.

15The examples are taken from (Fabri 1993, p. 130).

[51]

Stefan Müller

4 basic assumptions

4.1 Valence
In the CoreGram project, we assume that valence is represented in a
uniform way across languages.16 Arguments of a head are represented
in the arg-st list (Pollard and Sag 1994, Chapter 9). They are mapped
to the valence features spr and comps in a language-dependent fash-
ion. For instance, English and Danish map the subject to the spr list
and the other arguments to comps. Danish inserts an expletive in
cases in which there is no element that can be mapped to spr, while
English does not do this (Müller and Ørsnes 2013a). German differs
from both languages in mapping all arguments of finite verbs to the
comps list (Pollard 1996).
The arguments in the arg-st list are ordered according to the

obliqueness hierarchy of Keenan and Comrie (1977), which plays a
role in the analysis of a variety of phenomena (for instance case as-
signment and depictive predicates). The elements of the arg-st list
are linked to the semantic roles that a certain head has to fill. Since the
traditional role labels like agent and patient are problematic, the Core-
Gram grammars adopt Dowty’s proto-role approach (1991). arg1,
arg2, and so on are used as role labels.
4.2 Constituent structure and constituent order
Originally, HPSG camewith very few immediate dominance schemata:
Head-Complement Schema, Head-Specifier Schema, Head-Adjunct
Schema, the Head-Filler Schema for binding off unbounded depen-
dencies, and the Head-Extra Schema for binding off clause-bound
nonlocal dependencies. Since (Sag 1997), many HPSG analyses have
a more constructional flavor, that is, specific subconstructions of these
general schemata are introduced (Sag 2010). In the CoreGram project
we stay within the old tradition of HPSG and continue to use the
rather abstract dominance schemata. However, it is possible to state
further constraints on the respective structures. So, rather than hav-
ing several very specific instances of the Head-Filler Schema, we have

16Koenig and Michelson (2012) argue for an analysis of Oneida (a Northern
Iroquoian language) that does not include a representation of syntactic valence.
If this analysis is correct, syntactic argument structure would not be universal,
but would be characteristic for a large number of languages.

[52]

The CoreGram project

very few (for instance, for verb-second clauses and relative clauses)
and formulate additional implicational constraints that constrain ac-
tual instances of head-filler phrases further if the antecedent of the
implicational constraint is true. An example of such a constraint is the
following one, which was suggested by Bildhauer and Cook (2010,
p. 75):

(12)
�
non-head-dtrs

¬
[head|dsl local]

¶

head-filler-phrase

�
⇒

�
is pres ∨ a-top-com ∨…

�

The constraint says that, for all head-filler phrases that have a non-
head daughter whose dsl value is of type local, the value of the infor-
mation structure feature is has to be pres ∨ a-top-com ∨….17
Since the schemata are rather general, they can be used for all

languages under consideration so far. Of course, the languages dif-
fer in terms of constituent order, but this can be dealt with by using
linearization rules that are sensitive to features whose values are lan-
guage specific. For instance, all heads have a feature initial. The
value is ‘+’, if the head has to be serialized before its complements,
and ‘−’ if it follows its complements. German and Persian verbs are ini-
tial −, while English, Danish, Mandarin Chinese and Maltese verbs
are initial +.
We assume binary branching structures, and hence we get the

structures in (13) for English and the corresponding German example:
(13) a. He [[gave the woman] a book].

b. er
he
[der
the
Frau
woman

[ein
a
Buch
book

gab]]
gave

The LP rules enforce that gave is linearized before the woman and gave
the woman is linearized before a book.
The scrambling of arguments is accounted for by ID schemata that

allow the combination of a head with any of its arguments indepen-
dently of the position an element has in the valence list of its head.
Similar analyses have been suggested in the framework of HPSG by

17 pres is an abbreviation for presentational and a-top-com abbreviates assessed-
topic-comment. For further details see (Bildhauer and Cook 2010).

[53]

Stefan Müller

Gunji (1986) for Japanese and Pollard (1996) for German. Many au-
thors assume a valence set rather than a list. However, the order of the
elements has to be represented somewhere in the grammar, since it is
relevant for various phenomena. The proposal adopted in the Core-
Gram project assumes an ordered list but allows the saturation in an
arbitrary order. For non-HPSG analyses that are similar to the set-
based approaches, see (Fanselow 2001) and (Steedman and Baldridge
2006).
Non-scrambling languages like English combine heads with their

complements in a strict order: The least oblique element is combined
with the head first and then the more oblique complements follow.
Non-scrambling languages with head-final order take the last ele-
ment from the valence list first. Again, see (Steedman and Baldridge
2006) for a similar proposal in the framework of Categorial Gram-
mar.
4.3 Morphology and lexical rules
We follow a lexical rule-based approach to morphology. Lexical rules
are basically unary branching trees that license new lexical items
(Briscoe and Copestake 1999; Meurers 2001).18 A lexical rule can add
to or subtract from the phonology (or, in implementations, the or-
thography) of an input item. For instance, it is possible to analyze the
complex morphological patterns that we observe in Semitic languages
by mapping a root consisting of consonants to a full-fledged stem
or word that has the appropriate vowels inserted. We follow Bresnan
and Mchombo (1995) in assuming the Lexical Integrity Principle. This
means that all morphological combinations have to be done by lexical
rules, that is, fully inflected forms are part of the lexicon, most of them
being licensed by productive lexical rules.
Lexical rules do not have to change the phonology or orthogra-

phy of the item they apply to. For instance, lexical rules can be used to
license further lexical items with extended or reduced valence require-
ments. As was argued in (Müller 2002, 2006) resultative constructions
should be treated lexically. So, there is a lexical rule that maps the
stem fisch- of the intransitive version of the verb fischen (‘to fish’) onto

18Goldberg (2013) calls such lexical rules lexical templates and sets them apart
from lexical rules that relate stored lexical items.

[54]

The CoreGram project

a stem fisch- that selects for a secondary predicate (adjective or PP)
and the subject of this predicate as well.
(14) Er

he
fischt
fishes

den
the
Teich
pond

leer.
empty

4.4 Semantics
All grammars come with a semantics component. We use Minimal Re-
cursion Semantics (Copestake et al. 2005), since it allows for the under-
specification of scope (see Section 3). For instance, the sentence in (15)
has two readings: one in which the existential quantifier outscopes the
universal quantifier and one in which the scopings are reversed.
(15) a. Every dog chased some cat.

b. ∀x(dog(x)→∃y(cat(y)∧ chase(x , y)))

c. ∃y(cat(y)∧∀x(dog(x)→ chase(x , y)))

These readings can be represented compactly in an underspecified way
as in (16):
(16) 〈 h0, {

h1:every(x, h2, h3), h4:dog(x), h5:chase(e, x, y),
h6:some(y, h7, h8), h9:cat(y) }, { h2 =q h4, h7 =q h9 } 〉

Every word that contributes semantically has a referential index (x, y
in (16)) or event variable (e in (16)) and a list of relations that con-
tains elementary predications. Elementary predications come with a
so-called handle (h1, h4, h5, h6, and h9 in (16)) that can be used to
embed the respective elementary predicate under another one. Quan-
tifiers are represented as three-place predicates. They have one slot for
the variable they bind and two further slots for their scope and their
restriction (for instance h7 and h8 in (16)). In addition, it is possible
to specify scope constraints that say which elementary predication has
to be outscoped by a certain quantifier (for instance, (16) says that the
h2 argument of every has to outscope h4, which is the handle of dog).
The MRS in (16) can best be depicted as in Figure 6. h0 stands

for the top element. This is a handle that dominates all other handles
in a dominance graph. The restriction of every dominates dog and the
restriction of some dominates cat. The bodies of both quantifiers domi-
nate chase. The interesting thing is that exact dominance relations are

[55]

Stefan Müller
Figure 6:

Dominance
graph for Every
dog chases some

cat.

h0

h1:every(x, h2, h3) h6:some(y, h7, h8)

h4:dog(x) h9:cat(y)

h5:chase(x,y)

Figure 7:
every(x, dog(x),
some(y, cat(y),
chase(x, y))) ≡

(15b)

h0

h1:every(x, h2, h3) h6:some(y, h7, h8)

h4:dog(x) h9:cat(y)

h5:chase(x,y)

not fixed, which is indicated by the dashed lines in Figure 6. There are
two ways to plug an elementary predication into the open slots of the
quantifiers:
(17) a. Solution one: h0 = h1, h2 = h4, h3 = h5, h7 = h9, and

h8 = h5.
(every dog has wide scope)

b. Solution two: h0 = h6, h7 = h9, h8 = h1, h2 = h4, and
h3 = h5.
(some cat has wide scope)

The solutions are depicted as Figure 7 and Figure 8.
When several linguistic objects are combined, all the elementary

predications and the scope constraints are collected at mother nodes.

[56]

The CoreGram project

h0

h1:every(x, h2, h3) h6:some(y, h7, h8)

h4:dog(x) h9:cat(y)

h5:chase(x,y)

Figure 8:
some(y, cat(y),
every(x, dog(x),
chase(x, y))) ≡
(15c)

This corresponds to traditional compositional semantics. However, it
is also possible to add additional relations and scope constraints in the
computation of the meaning of a certain combination. This makes it
possible to capture the insight from Construction Grammar that some-
times the meaning of a complex combination contains more than is
present in the individual components of the complex object.
See (Copestake et al. 2005) for a full introduction to MRS, and

(Müller 2015c) for a brief one.
4.5 Information structure
The German grammar contains constraints on information structure.
The corresponding theory was developed by Felix Bildhauer and
Philippa Cook and implemented by Felix Bildhauer in Project A6
of the collaborative research centre SFB 632 on information structure
(Bildhauer and Cook 2010; Müller et al. 2012). See also Example (12)
above. Project A6 explored the various contexts for so-called mul-
tiple frontings. It implemented an analysis that refers to syntactic
configurations and assigns the elementary predications from an MRS
representation to topic and focus lists. See (Engdahl and Vallduví
1996) for the general approach.
Elodie Winckel is currently augmenting the French grammar with

an information-structure component. This work is also carried out in
the context of SFB 632, and one goal of this work is to test to what
extent it is possible to explain island constraints with respect to infor-
mation structure (Ambridge and Goldberg 2008).

[57]

Stefan Müller

Bildhauer’s (2008) Spanish grammar also implements a theory of
information structure, and as was mentioned above, this grammar is
currently ported to the CoreGram format.

5 implementation details

5.1 TRALE
The grammars are implemented in TRALE (Meurers et al. 2002; Penn
2004). TRALE implements typed feature descriptions. Every grammar
consists of a signature (a type hierarchy with feature introduction and
appropriateness constraints) and a theory that states constraints on ob-
jects of these types. TRALE is implemented in Prolog and comes with
an implementation of relational constraints that maps the TRALE rela-
tions to Prolog relations. TRALE has two parsers: a standard bottom-up
chart parser and a linearization parser (Suhre 1999). The CoreGram
project uses the standard bottom-up parser. Both parsers use a phrase
structure backbone. TRALE is available as bootable CD-ROM (Müller
2007a). The CD-ROM contains a full installation of all components
that were available in 2007. This includes a chart display for develop-
ing and debugging grammars, Utool for visualizing dominance graphs
from semantic representations and scope resolving (Koller and Thater
2005), and [incr tsdb()] for systematic testing (see Section 7). We hope
to finish a new virtual machine soon that includes a new and much
faster version of TRALE, the most recent versions of the CoreGram
grammars, and Kahina, a powerful debugger for constraint resolution
systems like TRALE (Dellert et al. 2010, 2013). A beta version is al-
ready available.
Compared to other systems such as LKB (Copestake 2002), the

expressive power of the description language is high (see also Melnik
2007). This allows for the rather direct implementation of analyses
that are proposed by theoretical linguists. The following descriptive
devices are used in the theory and are provided by TRALE; the refer-
ences point to papers which argue for such constructs:
• empty elements (Kiss 1995; Meurers 1999a; Levine and Hukari
2006; Bender 2000; Sag et al. 2003, p. 464; Borsley 2004, Sec-
tion 3.3; Müller 2007b, 2014b,d; Haugereid et al. 2013)

[58]

The CoreGram project

• relational constraints (Pollard and Sag 1994; Bouma et al. 2001;
Meurers et al. 2003),
• complex antecedents in implicational constraints (Bonami et al.
1998; Meurers 2000, p. 207; Bonami and Godard 2001, p. 148;
Koenig and Davis 2004, p. 145, 149; Müller 2007b, p. 145, Sec-
tion 10.3; 2014d; Bildhauer and Cook 2010, p. 75; Van Eynde and
Augustinus 2014, p. 166; Alotaibi and Borsley 2013, p. 18),
• cyclic structures (Engdahl and Vallduví 1994, p. 56; Meurers,
2000, p. 2007; 2001, p. 176, Samvelian 2007, p. 638),
• macros, and
• a morphology component that has the expressive power needed
to account for nontrivial morphological phenomena.

5.1.1 Empty elements
All CoreGram grammars use empty elements to account for extrac-
tion phenomena. Auxiliary inversion in English has not yet been im-
plemented, but German and Danish use head-movement analyses to
account for the verb in initial position in questions and V2 clauses.
TRALE has mechanisms to precompile grammars and to eliminate
most of the empty elements (for a discussion, see Müller 2014b).
5.1.2 Complex antecedents
To see how useful implicational constraints with complex antecedents
are both from a theoretical and an implementational perspective, con-
sider the constraint in (12) again. Proposals that do not make use of
such implementational constraints would have to introduce two sub-
types of head-filler-phrase: one for head-filler phrases with the dsl
value local – let us call this type head-filler-phrase-dsl – and one for
head-filler phrases with the dsl value different from local. The infor-
mation structure constraints from (12) will be constraints on structures
of type head-filler-phrase-dsl:
(18) head-filler-phrase-dsl ⇒�

non-head-dtrs
¬
[head|dsl local]

¶

is pres ∨ a-top-com ∨ …

�

Proponents of such a theory would basically make explicit which
daughters could appear in the filler position.

[59]

Stefan Müller

In our setting with implicational constraints, we do not need these
two additional types. We formulate the constraint in (12), and this
constraint applies only to those head-filler phrases that have a non-
head daughter with a dsl value of type local. Therefore, our theory
is simpler and has to be preferred over other approaches that dupli-
cate information about the combinatorics of linguistic objects in type
names.
5.1.3 Relational constraints
The relational constraint that is used most often in HPSG is append
(‘⊕’), which concatenates two lists. While many of the uses of append
can be recoded using difference lists, this is not always the case. See
(Meurers et al. 2003) for some discussion. In the implementation of
scrambling that was sketched in Section 4.2 above, a valence list is
split into three parts. The first is a list of arbitrary length, the sec-
ond is a list containing the element that has to be combined with the
head, and the third is a list of arbitrary length again. This can be im-
plemented directly using append: A ⊕ 〈 XP 〉 ⊕ B.
Another application of relational constraints is the determination

of the last element of a list. For technical reasons the argument struc-
ture and valence lists are represented with the most oblique element
at the beginning (as in Pollard and Sag 1987). If one wants to access
the least oblique element in the arg-st list, one has to find the last
element of this list. In the theory of Heinz and Matiasek (1994), which
follows Haider (1986), transitive and unergative verbs have a desig-
nated argument that is identical to the least oblique argument of the
verb. (19) shows how this can be expressed in TRALE:

(19) (synsem:loc:cat:(head:da:[last(ArgSt)],
arg_st:ArgSt))

ArgSt is the value of the arg-st feature, and last(ArgSt) returns the
last element of this list, which is represented as the element of the list
which is the value of the feature da. Note that this works for lists of
arbitrary length. This is important for verbs like the German lassen (‘to
let’) that raise the arguments of the verbal element that they embed.
TRALE uses a delay mechanism to postpone the execution of relational
constraints until enough information is available. In the case of lassen,

[60]

The CoreGram project

the constraints are delayed until it is combined with the embedded
verb and the actual length of its argument structure list is known.
5.1.4 Macros
Just like types, macros can be organized in hierarchies. The type hi-
erarchies are stated in a signature, but the macro hierarchies are con-
structed by calling other macros in a macro definition. Macros differ
from types in allowing parameters. This makes it possible to repre-
sent the lexicon in a rather compact way. For instance, (20a) shows
the lexical item for work, and (20b) the definition of the macro that is
called.
(20) a. work ---> @intrans_verb(a_ work,agentive).

b. intrans_verb(Relation,Sort) :=
(@strict_intrans_nerg_verb,
rels:[(pred:Relation,

arg1:sort:Sort)]).

5.1.5 Lexical rules and morphology
TRALE uses a special syntax for lexical rules: an identifier is followed
by the keyword ‘lex_rule’, by the input description, the arrow ‘**>’
and the output description. Since we want to be as close as possible to
HPSG analyses, we assume that every lexical rule has a specific type
(definiteness_lr in (24) below). The respective typed feature structure
models a linguistic object with a daughters list. The daughter is the
input of the lexical rule. In addition to this, a lexical rule has to have a
morphs statement that says something about how the orthography of
the input is related to the orthography of the output. (24) shows the
lexical rule that is used to account for definiteness marking in Maltese.
Definiteness is marked with an /l/ at nouns and adjectives in Maltese.
(21) gives an example:19

(21) l-ktieb
def-book

If the noun starts with one of the coronals /d/, /t/, /s/, /z/, /ʃ/, /ts/,
/tʃ/, /n/, or /r/, the /l/ is assimilated. (22) gives an example:

19 (21), (22) and (23b) are underlying forms. If the definite form of book is
used in isolation, an /i/ has to be added.

[61]

Stefan Müller

(22) r-raġel
def-man

The only exception is the coronal /dʒ/, which is exempt from assimi-
lation.
Inner epenthesis can be observed if the word starts with /s/ or

/ʃ/ followed by a consonant:
(23) a. skola

school
b. l-iskola
def-school

If inner epenthesis applies, it prevents assimilation.
The lexical rule splits the input characters into an initial part S

and a part X and tests whether S is [s] or [x] by calling the predicate
s_sh. If this call succeeds, li is appended to the output. If this call does
not succeed, other clauses are tried. If the input starts with a coronal,
the coronal is doubled. Otherwise the input is prefixed with an l.20

(24) definiteness_lr lex_rule
Dtr
**>
(definiteness_lr,
dtrs:[Dtr])
morphs

(S,X) becomes (li,S,X) when s_sh(S), % l-iskola
(C,X) becomes (C,C,X) when coronal(C), % r-raġel
X becomes (l,X). % l-ktieb

s_sh([s]).
s_sh([x]).

coronal([d]).
coronal([t]).

20A reviewer asked whether CoreGram parses sounds or orthographic rep-
resentations. The latter is the case, but since the Maltese spelling is close to the
phonological representation in the relevant area, phonological concepts like coro-
nal can be used in the rules that relate orthographic forms. s_sh/1 and coro-
nal/1 are Prolog predicates.

[62]

The CoreGram project

coronal([s]).
coronal([z]).
coronal([n]).
coronal([r]).

5.2 Setup of CoreGram
The grammars are organized in one directory for every language. The
respective directories contain a subdirectory named Core-Grammar.
This directory contains files that are shared between the grammars.
For instance, the file core-macros.pl contains macros that are or can
be used by all languages. For every language, there is a load file to
fetch the relevant files from the core grammar directory that. So, for
instance english.pl, french.pl, and danish.pl all load nom-acc.pl since
these languages are nominative–accusative languages. These files also
contain code for loading macros and constraints for languages that
do not form a verbal complex, while german.pl does load the files
for cluster-forming languages. These files directly correspond to the
constraint sets that were discussed in Section 2.
The option to specify type constraints makes it possible to state

constraints that hold for a certain construction cross-linguistically in
a file that is loaded by all grammars and restrict structures of this type
further in language-particular files.
Lexical rules are also described by feature descriptions and orga-

nized in type hierarchies (Meurers 2001). Just like other constraints,
the constraints on lexical rules can be shared.

6 comparison to other
multilingual projects

Two other large groups are currently working in the area of multi-
lingual grammar engineering. We will deal with both of them in the
following subsections and will explain in what way the CoreGram
project differs from them. The DELPH-IN consortium21 will be de-
scribed in Section 6.1, and ParGram in Section 6.2.

21DELPH-IN is an abbreviation for Deep Linguistic Processing with HPSG.

[63]

Stefan Müller

6.1 DELPH-IN and the LinGO Grammar Matrix
The DELPH-IN group uses the LKB system (Copestake 2002) for gram-
mar development. The LinGO Grammar Matrix provides a collection
of types for lexical objects and phrasal schemata that can be used by
grammar writers (Bender et al. 2002; Bender and Flickinger 2005).
The Matrix builds on experiences from the development of grammars
for English, German, Japanese, and Spanish. The GrammarMatrix pro-
vides a starter set. This can be modified and extended by individual
grammar writers without any interaction with any other grammars
that were derived from the Matrix. Of course, there is a feedback loop:
Grammar writers can inform the developers of the Grammar Matrix
about their requirements and changes which they believe to be appro-
priate. In the CoreGram project all grammars use the same core files.
If the grammar core is changed because of evidence in, say, Persian,
all other grammars have to be compatible with the change or have to
be adapted. While this increases the complexity of the development
process considerably, the result is a consistent set of grammars with
partly shared constraints for several typologically diverse languages.
Work that is done in the DELPH-IN consortium has a strong focus

on applications. Efficient processing has a high priority. This, among
other causes, led to a reduction of the expressive power of the de-
scription formalism and is also reflected in analyses. See, for instance,
(Crysmann 2003) and the criticism in (Müller 2005, Section 3.6). In
our project, we see processing issues as secondary and want to treat
computationally expensive, but linguistically interesting phenomena
as well as those that can be handled efficiently. Although the devel-
opment of linguistically motivated analyses has the highest priority,
processability is not ignored completely. Since profiling tools (chart
display and the test suite tool [incr tsdb()], see Oepen and Carroll 2000)
are integrated into TRALE, an exact examination of the grammars is
possible, and unnecessary computations of the parser can be detected
and eliminated.
6.2 ParGram
A similar community to the DELPH-IN consortium is working in the
framework of LFG and is organized in the ParGram project (Butt et al.
1999, 2002). The goal of the project is the implementation of parallel

[64]

The CoreGram project

LFG grammars for a set of languages. Currently, there exist grammars
for Arabic, Danish, English, Georgian, German, Hungarian, Japanese,
Malagasy, Norwegian, Polish, Tigrinya, Turkish, Hungarian, Urdu,
Vietnamese, Welsh, and Wolof (see Müller 2015b, Chapter 6, for an
overview and references). These grammars are parallel in that they
produce f-structures that have the same feature geometry and uni-
form analyses of the phenomena. Parallel grammar development is
challenging for developers, since each phenomenon has to be exam-
ined carefully, and it has to be decided whether a cross-linguistic
analysis is feasible at all, whether the phenomenon is idiosyncratic
and language-specific, or whether the feature geometry has to be
changed. The grammars are developed in the X(erox) L(inguistic)
E(nvironment) system (Kaplan et al. 2002; Butt et al. 1999).
The ambitions of our project (and also the Grammar Matrix)

are higher than those of the ParGram project, since HPSG grammars
model the whole range of grammatical properties: Morphology, syn-
tax, semantics, and information structure are described with the same
feature geometry. Dominance schemata for head-argument phrases,
head-adjunct phrases, filler-head phrases, specifier-head phrases, and
so on are specified for all languages or for certain language classes.
In comparison, computational LFG grammars differ enormously in
their c-structures, while morphology is usually taken care of by exter-
nal programs (Finite State Morphology) and is not part of theoretical
considerations. Since, for instance, complex predicate formation in
languages such as German and Persian interacts with derivational
morphology (Müller 2003b, 2010b), we consider it crucial that mor-
phology is dealt with within the grammatical framework, and that the
computational implementation reflects the tight connection between
the two parts of grammar.

7 measuring progress

Much to the frustration of many linguists, the contribution of cer-
tain theoretical approaches to progress in linguistics is rather unclear.
Many proposals do not extend the amount of data that was already
covered by analyses developed during the 1980s in the framework
of GB and other, non-transformational, frameworks. In comparison,
the methodology described in Section 2 leads to grammars with in-

[65]

Stefan Müller

creasing coverage and analyses that are improved by cross-linguistic
considerations.
The TRALE system has been combined with [incr tsdb()], a piece

of software for systematic grammar profiling (Oepen and Flickinger
1998). The grammars are accompanied with a set of example phrases
that can be analyzed by the grammar. In addition, the test suite files
contain ungrammatical word sequences from the literature and un-
grammatical sequences that were discovered during the grammar de-
velopment process. See (Oepen et al. 1997; Müller 2004) on the con-
struction of test suites. Since TRALE has a chart display that makes it
possible to inspect the parse chart, it is possible to inspect all linguis-
tic objects that are licensed by the grammar, even if they do not play
a role in analyzing the particular sentence under consideration. The
result of this careful inspection is a collection of ungrammatical word
sequences that no theoretical linguist would have been able to come
up with, since it is very difficult to find all the possible side effects of
an analysis that is not sufficiently constrained. These negative exam-
ples are distributed with the grammars and book publications and can
help theoretical and computational linguists improve their theories
and implementations.
After changing a grammar, the sentences of the respective test

suite are parsed and the result can be compared to previous results.
This ensures that the coverage of grammars is extended. If constraints
in files that are shared among several grammars are changed, the re-
spective grammars are tested as well. The effects that changes to gram-
mar X cause in grammar Y are often unexpected, and hence it is very
important to do systematic testing.

8 conclusions

I have discussed desiderata for linguistic theories and argued that
linguistic theories have reached a level of complexity that cannot
be handled by humans without help by computers. I have presented
a certain type of UG-based approaches to natural language that as-
sumes that evidence for an entity in a certain language provides
evidence for the presence in other languages as well, even though
the entity might be covert in the latter languages. I have argued
that such lines of argumentation are not appropriate given what we

[66]

The CoreGram project

know about language acquisition today. I have suggested an alter-
native bottom-up method for constructing theories by developing
grammars that are surface-oriented and motivated on a language-
specific basis, without stipulating entities that could not be acquired
from input of the language under consideration alone. Generaliza-
tions regarding language or language classes are derived by extending
the number of languages that are considered and by organizing the
constraints of the languages under consideration into sets of con-
straints that are shared by two or more languages. I have defended
this method against rather agnostic views maintained by some ty-
pologists. Finally, I have provided a brief description of basic as-
sumptions and the basic setup of the CoreGram project and argued
that working in such a general setting makes sure that progress is
made.

9 acknowledgements

I thank Hans-Heinrich Lieb, Antonio Machicao y Priemer and three
reviewers of the Journal of Language Modeling for comments on ear-
lier versions of this paper; Werner Abraham, Peter Eisenberg, Evelina
Fedorenko, Ted Gibson, Matthias Hüning, Tibor Kiss, Jean-Pierre Koe-
nig, Elisabeth Leiss, Bob Levine, Frank Richter, Gerald Penn, Geoffrey
Pullum, Uli Reich, Ivan Sag, Anatol Stefanowitsch and Dieter Wunder-
lich for discussion; and Philippa Cook and Adam Przepiórkowski for
comments and proof-reading.
In 2013, parts of this paper were presented at the MIT Gibson Lab,

Brain and Cognitive Sciences. I also presented this work in Alexander
Koller’s Theoretical Computational Linguistics group at the Univer-
sity of Potsdam in 2014, at the ESSLLI 2013 Workshop on High-level
Methodologies for Grammar Engineering in Düsseldorf, which was or-
ganized by Denys Duchier and Yannick Parmentier, and at the work-
shop Grammatical categories in macro- and microcomparative linguistics,
which was organized by Martin Haspelmath, Andreas Dufter, and Aria
Adli at the annual meeting of the DGfS in Marburg in 2014. I thank
the respective organizers for the invitations/inclusions into workshop
programs, and all the participants for discussion.
The work reported in this paper was supported by grants from

the Deutsche Forschungsgemeinschaft (InfStruk MU 2822/1-1, SFB

[67]

Stefan Müller

632 project A6, DanGram MU 2822/2-1, PerGram MU 2822/3-1, and
ChinGram MU 2822/5-1).
Last but not least, I want to thank the copy editors of the Journal

of Language Modelling. They did a very good job on the manuscript!

references
Steven P. Abney (1996), Statistical methods and linguistics, in Judith L.
Klavans and Philip Resnik, editors, The Balancing Act: Combining Symbolic
and Statistical Approaches to Language, Language, Speech, and Communication,
pp. 1–26, MIT Press.
Steven P. Abney and Jennifer Cole (1986), A government-binding parser,
Proceedings of North Eastern Linguistic Society, 16:1–17.
Mansour Alotaibi and Robert D. Borsley (2013), Gaps and resumptive
pronouns in Modern Standard Arabic, in Proceedings of the 20th International
Conference on Head-Driven Phrase Structure Grammar, pp. 6–26, http:
//cslipublications.stanford.edu/HPSG/2013/alotaibi-borsley.pdf.
Ben Ambridge and Adele E. Goldberg (2008), The island status of clausal
complements: Evidence in favor of an information structure explanation,
Cognitive Linguistics, 19:349–381, http://www.princeton.edu/~adele/
Publications_files/08Ambridge%26Goldberg-islands.pdf.
Joseph Aoun and Dominique Sportiche (1983), On the formal theory of
government, The Linguistic Review, 2(3):211–236.
Mohammad Bahrani, Hossein Sameti, and Mehdi Hafezi Manshadi (2011),
A computational grammar for Persian based on GPSG, Language Resources and
Evaluation, 45(4):387–408.
Colin Bannard, Elena Lieven, and Michael Tomasello (2009), Modeling
children’s early grammatical knowledge, Proceedings of the National Academy of
Sciences, 106(41):17284–17289.
Emily Bender and Daniel P. Flickinger (1999), Peripheral constructions and
core phenomena: Agreement in tag questions, in Gert Webelhuth, Jean-Pierre
Koenig, and Andreas Kathol, editors, Lexical and Constructional Aspects of
Linguistic Explanation, number 1 in Studies in Constraint-Based Lexicalism,
pp. 199–214, CSLI Publications.
Emily M. Bender (2000), Syntactic Variation and Linguistic Competence: The
Case of AAVE Copula Absence, Ph.D. thesis, Stanford University,
http://faculty.washington.edu/ebender/dissertation/.
Emily M. Bender (2008), Grammar engineering for linguistic hypothesis
testing, in Proceedings of the Texas Linguistics Society X Conference: Computational
Linguistics for Less-Studied Languages, pp. 16–36.

[68]

The CoreGram project

Emily M. Bender and Daniel P. Flickinger (2005), Rapid prototyping of
scalable grammars: Towards modularity in extensions to a
language-independent core, in Proceedings of the 2nd International Joint
Conference on Natural Language Processing IJCNLP-05 (Posters/Demos),
http://turing.cs.washington.edu/papers/modules05.pdf.
Emily M. Bender, Daniel P. Flickinger, and Stephan Oepen (2002), The
grammar matrix: An open-source starter-kit for the rapid development of
cross-linguistically consistent broad-coverage precision grammars, in
Proceedings of the Workshop on Grammar Engineering and Evaluation at COLING
2002, pp. 8–14.
Benjamin K. Bergen and Nancy Chang (2005), Embodied Construction
Grammar in simulation-based language understanding, in Jan-Ola Östman and
Mirjam Fried, editors, Construction Grammars: Cognitive Grounding and
Theoretical Extensions, pp. 147–190, John Benjamins Publishing Co.
Robert C. Berwick, Paul Pietroski, Beracah Yankama, and Noam Chomsky
(2011), Poverty of the stimulus revisited, Cognitive Science, 35(7):1207–1242.
Manfred Bierwisch (1963), Grammatik des deutschen Verbs [The Grammar of
the German Verb], number 2 in studia grammatica, Akademie Verlag.
Mahmood Bijankhan (2004), The role of corpora in writing a grammar
[article in Persian], Iranian Journal of Linguistics, 19(2):48–67.
Felix Bildhauer (2008), Representing Information Structure in an HPSG
Grammar of Spanish, Ph.D. thesis, Universität Bremen.
Felix Bildhauer and Philippa Cook (2010), German multiple fronting and
expected topic-hood, in Proceedings of the 17th International Conference on
Head-Driven Phrase Structure Grammar, pp. 68–79.
Rens Bod (2009), From exemplar to grammar: Integrating analogy and
probability in language learning, Cognitive Science, 33(4):752–793,
http://staff.science.uva.nl/~rens/analogy.pdf.
Olivier Bonami and Danièle Godard (2001), Inversion du sujet, constituance
et ordre des mots, in Jean-Marie Marandin, editor, Cahier Jean-Claude Milner,
pp. 117–174, Editions Verdier.
Olivier Bonami, Daniele Godard, and Jean-Marie Marandin (1998), French
subject inversion in extraction contexts, Proceedings of FHCG, 98:101–112.
Robert D. Borsley (2004), An approach to English comparative correlatives,
in Proceedings of the 11th International Conference on Head-Driven Phrase
Structure Grammar, pp. 70–92.
Gosse Bouma, Robert Malouf, and Ivan A. Sag (2001), Satisfying constraints
on extraction and adjunction, Natural Language and Linguistic Theory,
19(1):1–65, http://ftp-linguistics.stanford.edu/sag/bms-nllt.pdf.

[69]

Stefan Müller

Joan Bresnan and Sam A. Mchombo (1995), The lexical integrity principle:
Evidence from Bantu, Natural Language and Linguistic Theory, 13:181–254.
Ted J. Briscoe and Ann Copestake (1999), Lexical rules in constraint-based
grammar, Computational Linguistics, 25(4):487–526,
http://acl.ldc.upenn.edu/J/J99/J99-4002.pdf.
Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and
Christian Rohrer (2002), The parallel grammar project, in Proceedings of the
Workshop on Grammar Engineering and Evaluation at COLING 2002, pp. 1–7.
Miriam Butt, Tracy Holloway King, María-Eugenia Niño, and Frédérique
Segond (1999), A Grammar Writer’s Cookbook, number 95 in CSLI Lecture
Notes, CSLI Publications.
Noam Chomsky (1957), Syntactic Structures, number 4 in Janua Linguarum,
Series Minor, Mouton.
Noam Chomsky (1959), On certain formal properties of grammars, Information
and Control, 2(2):137–167.
Noam Chomsky (1964), Degrees of grammaticalness, in Jerry A. Fodor and
Jerrold J. Katz, editors, The Structure of Language, pp. 384–389, Prentice-Hall.
Noam Chomsky (1968), Language and the mind, Psychology Today,
1(9):48–68, Reprint as: Chomsky 1976.
Noam Chomsky (1971), Problems of Knowledge and Freedom, Fontana.
Noam Chomsky (1975), The Logical Structure of Linguistic Theory, Plenum Press.
Noam Chomsky (1976), Language and the mind, in Diane D. Borstein,
editor, Readings in the Theory of Grammar: From the 17th to the 20th Century,
pp. 241–251, Winthrop, Reprint from: Chomsky 1968.
Noam Chomsky (1981), Lectures on Government and Binding, Foris Publications.
Noam Chomsky (1990), On formalization and formal linguistics, Natural
Language and Linguistic Theory, 8(1):143–147.
Noam Chomsky (1995), The Minimalist Program, number 28 in Current Studies
in Linguistics, MIT Press.
Noam Chomsky (2001), Derivation by phase, in Michael Kenstowicz, editor,
Ken Hale. A Life in Language, pp. 1–52, MIT Press.
Noam Chomsky (2007), Approaching UG from below, in Uli Sauerland and
Hans-Martin Gärtner, editors, Interfaces + Recursion = Language? Chomsky’s
Minimalism and the View from Syntax-Semantics, number 89 in Studies in
Generative Grammar, pp. 1–29, Mouton de Gruyter.
Noam Chomsky (2008), On phases, in Robert Freidin, Carlos P. Otero, and
Maria Luisa Zubizarreta, editors, Foundational Issues in Linguistic Theory.
Essays in Honor of Jean-Roger Vergnaud, pp. 133–166, MIT Press.

[70]

The CoreGram project

Noam Chomsky (2013), Problems of projection, Lingua, 130:33–49.
Guglielmo Cinque (1999), Adverbs and Functional Heads. A Cross-Linguistic
Perspective, Oxford University Press.
Guglielmo Cinque and Luigi Rizzi (2010), The cartography of syntactic
structures, in Bernd Heine and Heiko Narrog, editors, The Oxford Handbook
of Linguistic Analysis, pp. 51–65, Oxford University Press.
Charles Jr. Clifton and Penelope Odom (1966), Similarity relations among
certain English sentence constructions, Psychological Monographs: General and
Applied, 80(5):1–35.
Ann Copestake (2002), Implementing Typed Feature Structure Grammars,
number 110 in CSLI Lecture Notes, CSLI Publications.
Ann Copestake, Daniel P. Flickinger, Carl J. Pollard, and Ivan A. Sag
(2005), Minimal Recursion Semantics: An introduction, Research on Language
and Computation, 4(3):281–332,
http://lingo.stanford.edu/sag/papers/copestake.pdf.
Nelson Correa (1987), An attribute-grammar implementation of
Government-Binding Theory, in Proceedings of the 25th Annual Meeting of the
Association for Computational Linguistics, pp. 45–51,
http://acl.ldc.upenn.edu/P/P87/P87-1007.pdf.
Matthew Walter Crocker and Ian Lewin (1992), Parsing as deduction: Rules
versus principles, in Proceedings of the l0th European Conference on Artificial
Intelligence, pp. 508–512.
William Croft (2001), Radical Construction Grammar: Syntactic Theory in
Typological Perspective, Oxford University Press.
Berthold Crysmann (2003), On the efficient implementation of German verb
placement in HPSG, in Proceedings of RANLP 2003, pp. 112–116.
Peter W. Culicover (1999), Syntactic Nuts: Hard Cases, Syntactic Theory, and
Language Acquisition, volume 1 of Foundations of Syntax, Oxford University
Press.
Peter W. Culicover and Ray S. Jackendoff (2005), Simpler Syntax, Oxford
University Press.
Kordula De Kuthy (2002), Discontinuous NPs in German, number 14 in Studies
in Constraint-Based Lexicalism, CSLI Publications.
Johannes Dellert, Kilian Evang, and Frank Richter (2010), Kahina, a
debugging framework for logic programs and TRALE, presentation at the 17th
International Conference on Head-Driven Phrase Structure Grammar.
Johannes Dellert, Kilian Evang, and Frank Richter (2013), Kahina: A
hybrid trace-based and chart-based debugging system for grammar engineering,
in Proceedings of the Workshop on High-level Methodologies for Grammar
Engineering (HMGE 2013), pp. 75–86.

[71]

Stefan Müller

David R. Dowty (1979), Word Meaning and Montague Grammar, number 7 in
Synthese Language Library, D. Reidel Publishing Company.
David R. Dowty (1991), Thematic proto-roles and argument selection,
Language, 67(3):547–619.
Matthew S. Dryer (1997), Are grammatical relations universal?, in Joan
Bybee, John Haiman, and Sandra Thompson, editors, Essays on Language
Function and Language Type: Dedicated to T. Givon, pp. 115–143, John Benjamins
Publishing Co.
Markus Egg (1999), Derivation and resolution of ambiguities in
wieder-sentences, in Proceedings of the 12th Amsterdam Colloquium, pp. 109–114.
Peter Eisenberg (1992), Platos Problem und die Lernbarkeit der Syntax
[Plato’s problem and the learnability of syntax], in Peter Suchsland, editor,
Biologische und soziale Grundlagen der Sprache, number 280 in Linguistische
Arbeiten, pp. 371–378, Max Niemeyer Verlag.
Elisabet Engdahl and Enric Vallduví (1994), Information packaging and
grammar architecture: A constraint-based approach, in Elisabet Engdahl,
editor, Integrating Information Structure into Constraint-Based and Categorial
Approaches, pp. 39–79, ILLC, DYANA-2 Report R.1.3.B.
Elisabet Engdahl and Enric Vallduví (1996), Information packaging in
HPSG, in Claire Grover and Enric Vallduví, editors, Edinburgh Working
Papers in Cognitive Science, Vol. 12: Studies in HPSG, chapter 1, pp. 1–32, Centre
for Cognitive Science, University of Edinburgh,
ftp://ftp.cogsci.ed.ac.uk/pub/CCS-WPs/wp-12.ps.gz.
Bruno Estigarribia (2009), Facilitation by variation: Right-to-left learning of
English yes/no questions, Cognitive Science, 34(1):68–93.
Nicholas Evans and Stephen C. Levinson (2009), The myth of language
universals: Language diversity and its importance for cognitive science, The
Behavioral and Brain Sciences, 32(5):429–448.
Arnold Evers (1975), The Transformational Cycle in Dutch and German, Ph.D.
thesis, University of Utrecht.
Ray Fabri (1993), Kongruenz und die Grammatik des Maltesischen [Agreement
and the Grammar of Maltese], number 292 in Linguistische Arbeiten, Max
Niemeyer Verlag.
Gisbert Fanselow (2001), Features, θ -roles, and free constituent order,
Linguistic Inquiry, 32(3):405–437.
Gisbert Fanselow (2009), Die (generative) Syntax in den Zeiten der
Empiriediskussion [(Generative) syntax in the times of the empirical evidence
discussion], Zeitschrift für Sprachwissenschaft, 28(1):133–139.
Janet Dean Fodor (1998), Unambiguous triggers, Linguistic Inquiry,
29(1):1–36.

[72]

The CoreGram project

Janet Dean Fodor (2001), Parameters and the periphery: Reflections on
syntactic nuts, Journal of Linguistics, 37:367–392.
Jerry A. Fodor, Thomas G. Bever, and Merrill F. Garrett (1974), The
Psychology of Language: An Introduction to Psycholinguistics and Generative
Grammar, McGraw-Hill Book Co.
Sandiway Fong (1991), Computational Properties of Principle-Based Grammatical
Theories, Ph.D. thesis, MIT Artificial Intelligence Lab,
http://www.neci.nec.com/homepages/sandiway/pappi/index.html.
Sandiway Fong (2014), Unification and efficient computation in the
Minimalist Program, in L. Francis and L. Laurent, editors, Language and
Recursion, pp. 129–138, Springer Verlag.
Sandiway Fong and Jason Ginsburg (2012), Computation with doubling
constituents: Pronouns and antecedents in phase theory, in Anna Maria Di
Sciullo, editor, Towards a Biolinguistic Understanding of Grammar: Essays on
Interfaces, number 194 in Linguistik Aktuell/Linguistics Today, pp. 303–338,
John Benjamins Publishing Co.
Andrew Fordham and Matthew Walter Crocker (1994), Parsing with
principles and probabilities, in Proceedings of the Workshop “The Balancing Act:
Combining Symbolic and Statistical Approaches to Language”, pp. 37–42.
Robert Freidin (1997), Review article: The Minimalist Program, Language,
73(3):571–582.
Daniel Freudenthal, Julian M. Pine, and Fernand Gobet (2006), Modeling
the development of children’s use of optional infinitives in Dutch and English
using MOSAIC, Cognitive Science, 30(2):277–310.
Daniel Freudenthal, Julian M. Pine, and Fernand Gobet (2009), Simulating
the referential properties of Dutch, German, and English root infinitives in
MOSAIC, Language Learning and Development, 5(1):1–29.
Joyce Friedman (1969), Applications of a computer system for
Transformational Grammar, in Proceedings of the International Conference on
Computational Linguistics 1969.
Joyce Friedman, Thomas H. Bredt, Robert W. Doran, Bary W. Pollack,
and Theodore S. Martner (1971), A Computer Model of Transformational
Grammar, number 9 in Mathematical Linguistics and Automatic Language
Processing, Elsevier.
Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag (1985),
Generalized Phrase Structure Grammar, Harvard University Press.
Edward Gibson (1998), Linguistic complexity: Locality of syntactic
dependencies, Cognition, 68(1):1–76.

[73]

Stefan Müller

Jonathan Ginzburg and Ivan A. Sag (2000), Interrogative Investigations: the
Form, Meaning, and Use of English Interrogatives, number 123 in CSLI Lecture
Notes, CSLI Publications.
Mark E. Gold (1967), Language identification in the limit, Information and
Control, 10(5):447–474.
Adele E. Goldberg (2013), Argument structure constructions vs. lexical rules
or derivational verb templates, Mind and Language, 28(4):435–465.
Günther Grewendorf (1988), Aspekte der deutschen Syntax. Eine
Rektions-Bindungs-Analyse [Aspcets of German Syntax. A Govenment and Binding
Analysis], number 33 in Studien zur deutschen Grammatik, originally Gunter
Narr Verlag now Stauffenburg Verlag.
Takao Gunji (1986), Subcategorization and word order, in William J. Poser,
editor, Papers from the Second International Workshop on Japanese Syntax,
pp. 1–21, CSLI Publications.
Hubert Haider (1986), Fehlende Argumente: vom Passiv zu kohärenten
Infinitiven [Missing arguments: from passive to coherent infinitives],
Linguistische Berichte, 101:3–33.
Daniel Harbour (2011), Mythomania? methods and morals from ‘the myth of
language universals’, Lingua, 121(12):1820–1830.
Martin Haspelmath (2010a), Comparative concepts and descriptive
categories in crosslinguistic studies, Language, 86(3):663–687.
Martin Haspelmath (2010b), The interplay between comparative concepts
and descriptive categories (reply to Newmeyer), Language, 86(3):696–699.
Petter Haugereid, Nurit Melnik, and Shuly Wintner (2013), Nonverbal
predicates in Modern Hebrew, in Proceedings of the 20th International Conference
on Head-Driven Phrase Structure Grammar, pp. 69–89,
http://cslipublications.stanford.edu/HPSG/2013/hmw.pdf.
Marc D. Hauser, Noam Chomsky, and W. Tecumseh Fitch (2002), The
faculty of language: What is it, who has it, and how did it evolve?, Science,
298:1569–1579, doi:10.1126/science.298.5598.1569,
http://www.chomsky.info/articles/20021122.pdf.
Wolfgang Heinz and Johannes Matiasek (1994), Argument structure and case
assignment in German, in John Nerbonne, Klaus Netter, and Carl J.
Pollard, editors, German in Head-Driven Phrase Structure Grammar, number 46
in CSLI Lecture Notes, pp. 199–236, CSLI Publications.
Erhard W. Hinrichs and Tsuneko Nakazawa (1994), Linearizing AUXs in
German verbal complexes, in John Nerbonne, Klaus Netter, and Carl J.
Pollard, editors, German in Head-Driven Phrase Structure Grammar, number 46
in CSLI Lecture Notes, pp. 11–38, CSLI Publications.

[74]

The CoreGram project

Anders Holmberg (1999), Remarks on Holmberg’s generalization, Studia
Linguistica, 53(1):1–39.
Norbert Hornstein, Jairo Nunes, and Kleantes K. Grohmann (2005),
Understanding Minimalism, Cambridge Textbooks in Linguistics, Cambridge
University Press.
Ray S. Jackendoff (1997), The Architecture of the Language Faculty,
number 28 in Linguistic Inquiry Monographs, MIT Press.
Ray S. Jackendoff (1999), Parallel constraint-based generative theories of
language, Trends in Cognitive Science, 3(10):393–400.
Ray S. Jackendoff (2008), Construction after construction and its theoretical
challenges, Language, 84(1):8–28.
Ray S. Jackendoff (2011), What is the human language faculty? Two views,
Language, 87(3):586–624.
Ray S. Jackendoff and Steven Pinker (2005), The nature of the language
faculty and its implications for evolution of language (reply to Fitch, Hauser,
and Chomsky), Cognition, 97(2):211–225.
Joachim Jacobs (2008), Wozu Konstruktionen? [Why constructions?],
Linguistische Berichte, 213:3–44.
Gerhard Jäger and Reinhard Blutner (2003), Competition and
interpretation: The German adverb wieder (“again”), in Ewald Lang, Claudia
Maienborn, and Cathrine Fabricius-Hansen, editors, Modifying Adjuncts,
number 4 in Interface Explorations, pp. 393–416, Mouton de Gruyter.
Kent Johnson (2004), Gold’s theorem and cognitive science, Philosophy of
Science, 71(4):571–592.
Ronald M. Kaplan, Tracy Holloway King, and John T. Maxwell III (2002),
Adapting existing grammars: The XLE approach, in Proceedings of the Workshop
on Grammar Engineering and Evaluation at COLING 2002, pp. 29–35, http:
//www2.parc.com/isl/groups/nltt/pargram/kaplanetal-coling02.pdf.
Gholamhossein Karimi-Doostan (1997), Light Verb Constructions in Persian,
Ph.D. thesis, Department of Language and Linguistics, University of Essex.
Martin Kay (2011), Zipf’s law and L’Arbitraire du Signe, Linguistic Issues in
Language Technology, 6(8): Special Issue on Interaction of Linguistics and
Computational Linguistics,
http://elanguage.net/journals/index.php/lilt/issue/view/330.
Richard S. Kayne (1994), The Antisymmetry of Syntax, number 25 in Linguistic
Inquiry Monographs, MIT Press.
Edward L. Keenan and Bernard Comrie (1977), Noun phrase accessibility and
universal grammar, Linguistic Inquiry, 8(1):63–99.

[75]

Stefan Müller

Tibor Kiss (1995), Infinite Komplementation. Neue Studien zum deutschen Verbum
infinitum [Non-finite Complementation. New Studies on the German Non-Finite
Verb], number 333 in Linguistische Arbeiten, Max Niemeyer Verlag.
Jean-Pierre Koenig and Anthony R. Davis (2004), Raising doubts about
Russian impersonals, in Proceedings of the 11th International Conference on
Head-Driven Phrase Structure Grammar.
Jean-Pierre Koenig and Karin Michelson (2012), The (non)universality of
syntactic selection and functional application, in Empirical Issues in Syntax and
Semantics, volume 9, pp. 185–205.
Hans-Peter Kolb (1997), GB blues: Two essays on procedures and structures in
generative syntax, Arbeitspapiere des SFB 340 No. 110,
Eberhard-Karls-Universität, Tübingen.
Hans-Peter Kolb and Craig L. Thiersch (1991), Levels and empty categories
in a Principles and Parameters based approach to parsing, in Hubert Haider
and Klaus Netter, editors, Representation and Derivation in the Theory of
Grammar, number 22 in Studies in Natural Language and Linguistic Theory,
Kluwer Academic Publishers.
Alexander Koller and Stefan Thater (2005), Efficient solving and
exploration of scope ambiguities, in Proceedings of the ACL Interactive Poster and
Demonstration Sessions, pp. 9–12,
http://acl.ldc.upenn.edu/P/P05/P05-3003.pdf.
Ekkehard König and Claire Moyse-Faurie (2009), Spatial reciprocity:
Between grammar and lexis, in Johannes Helmbrecht, Yoko Nishina,
Yong-Min Shin, Stavros Skopeteas, and Elisabeth Verhoeven, editors, Form
and Function in Language Research: Papers in Honour of Christian Lehmann,
number 210 in Trends in Linguistics. Studies and Monographs, pp. 57–68, de
Gruyter.
András Kornai and Geoffrey K. Pullum (1990), The X-bar Theory of phrase
structure, Language, 66(1):24–50.
Jonas Kuhn (2007), Interfaces in constraint-based theories of grammar, in
Gillian Ramchand and Charles Reiss, editors, The Oxford Handbook of
Linguistic Interfaces, pp. 613–650, Oxford University Press.
Robert J. Kuhns (1986), A PROLOG implementation of Government-Binding
Theory, in Proceedings of the 24th Annual Meeting of the Association for
Computational Linguistics, pp. 546–550.
Marie Labelle (2007), Biolinguistics, the Minimalist Program, and
psycholinguistic reality, Snippets, 14, http://www.ledonline.it/snippets/.
Shalom Lappin, Robert D. Levine, and David E. Johnson (2000), The
revolution confused: A response to our critics, Natural Language and Linguistic
Theory, 18(4):873–890.

[76]

The CoreGram project

Robert D. Levine and Thomas E. Hukari (2006), The Unity of Unbounded
Dependency Constructions, number 166 in CSLI Lecture Notes, CSLI Publications.
Charles N. Li and Sandra A. Thompson (1981), Mandarin Chinese. A Functional
Reference Grammar, University of California Press.
Janna Lipenkova (2009), Serienverbkonstruktionen im Chinesischen und ihre
Analyse im Rahmen von HPSG [Serial Verb Constructions in Chinese and their
Analysis in the Framework of HPSG], Master’s thesis, Institut für Sinologie, Freie
Universität Berlin, http://hpsg.fu-berlin.de/~lipenkov/magister.html.
Horst Lohnstein (1993), Projektion und Linking. Ein prinzipienbasierter Parser
fürs Deutsche [Projection and Linking. A Principle-Based Parser for German],
number 287 in Linguistische Arbeiten, Max Niemeyer Verlag.
Alec Marantz (2005), Generative linguistics within the cognitive
neuroscience of language, The Linguistic Review, 22(2–4):429–445.
Mitchell P. Marcus (1980), A Theory of Syntactic Recognition for Natural
Language, MIT Press.
William Marslen-Wilson (1975), Sentence perception as an interactive
parallel process, Science, 189(4198):226–228.
Nurit Melnik (2007), From “hand-written” to computationally implemented
HPSG theories, Research on Language and Computation, 5(2):199–236.
Walt D. Meurers, Kordula De Kuthy, and Vanessa Metcalf (2003),
Modularity of grammatical constraints in HPSG-based grammar
implementations, in Proceedings of the ESSLLI 2003 Workshop “Ideas and
Strategies for Multilingual Grammar Development”, pp. 83–90, http://www.sfs.
uni-tuebingen.de/~dm/papers/meurers-dekuthy-metcalf-03.html.
Walt Detmar Meurers (1999a), German partial-VP fronting revisited, in Gert
Webelhuth, Jean-Pierre Koenig, and Andreas Kathol, editors, Lexical and
Constructional Aspects of Linguistic Explanation, number 1 in Studies in
Constraint-Based Lexicalism, pp. 129–144, CSLI Publications,
http://www.sfs.uni-tuebingen.de/~dm/papers/hpsg-volume98/
pvp-revisited.html.
Walt Detmar Meurers (1999b), Lexical Generalizations in the Syntax of German
Non-Finite Constructions, Ph.D. thesis, Eberhard-Karls-Universität, Tübingen.
Walt Detmar Meurers (1999c), Raising spirits (and assigning them case),
Groninger Arbeiten zur Germanistischen Linguistik (GAGL), 43:173–226,
http://www.sfs.uni-tuebingen.de/~dm/papers/gagl99.html.
Walt Detmar Meurers (2000), Lexical generalizations in the syntax of German
non-finite constructions, Arbeitspapiere des SFB 340 No. 145,
Eberhard-Karls-Universität, Tübingen,
http://www.sfs.uni-tuebingen.de/~dm/papers/diss.html.

[77]

Stefan Müller

Walt Detmar Meurers (2001), On expressing lexical generalizations in HPSG,
Nordic Journal of Linguistics, 24(2):161–217, http://www.sfs.
uni-tuebingen.de/~dm/papers/lexical-generalizations.html.
Walt Detmar Meurers, Gerald Penn, and Frank Richter (2002), A
web-based instructional platform for constraint-based grammar formalisms and
parsing, in Effective Tools and Methodologies for Teaching NLP and CL, pp. 18–25,
http://www.sfs.uni-tuebingen.de/~dm/papers/acl02.html, proceedings
of the Workshop held at 40th Annual Meeting of the Association for
Computational Linguistics. Philadelphia, PA.
George A. Miller and Kathryn Ojemann McKean (1964), A chronometric
study of some relations between sentences, Quarterly Journal of Experimental
Psychology, 16(4):297–308.
Yves Ch. Morin (1973), A computer tested Transformational Grammar of
French, Linguistics, 116(11):49–114.
Gereon Müller (1998), Incomplete Category Fronting. A Derivational Approach to
Remnant Movement in German, number 42 in Studies in Natural Language and
Linguistic Theory, Kluwer Academic Publishers.
Gereon Müller (2011), Regeln oder Konstruktionen? Von verblosen Direktiven
zur sequentiellen Nominalreduplikation [Rules or constructions? From verbless
directives to sequential nominal reduplication], in Stefan Engelberg, Anke
Holler, and Kristel Proost, editors, Sprachliches Wissen zwischen Lexikon und
Grammatik, Institut für Deutsche Sprache, Jahrbuch 2010, pp. 211–249, de
Gruyter, http://www.uni-leipzig.de/~muellerg/mu242.pdf.
Stefan Müller (1999), Deutsche Syntax deklarativ. Head-Driven Phrase Structure
Grammar für das Deutsche [German Syntax Declarative. Head-Driven Phrase
Structure Grammar for German], number 394 in Linguistische Arbeiten, Max
Niemeyer Verlag, http://hpsg.fu-berlin.de/~stefan/Pub/hpsg.html.
Stefan Müller (2002), Complex Predicates: Verbal Complexes, Resultative
Constructions, and Particle Verbs in German, number 13 in Studies in
Constraint-Based Lexicalism, CSLI Publications,
http://hpsg.fu-berlin.de/~stefan/Pub/complex.html.
Stefan Müller (2003a), Mehrfache Vorfeldbesetzung [Multiple frontings],
Deutsche Sprache, 31(1):29–62,
http://hpsg.fu-berlin.de/~stefan/Pub/mehr-vf-ds.html.
Stefan Müller (2003b), Solving the bracketing paradox: an analysis of the
morphology of German particle verbs, Journal of Linguistics, 39(2):275–325,
http://hpsg.fu-berlin.de/~stefan/Pub/paradox.html.
Stefan Müller (2004), Example sentences and making them useful for
theoretical and computational linguistics, Presentation at the DGfS
Jahrestagung: AG Empirische Fundierung der Modellbildung in der Syntax,

[78]

The CoreGram project

http:
//hpsg.fu-berlin.de/~stefan/PS/b-ger-ts-dgfs-2004-slides.pdf.
Stefan Müller (2005), Zur Analyse der deutschen Satzstruktur [Towards the
analysis of the German sentence structure], Linguistische Berichte, 201:3–39,
http://hpsg.fu-berlin.de/~stefan/Pub/satz-lb.html.
Stefan Müller (2006), Phrasal or lexical constructions?, Language,
82(4):850–883, http://hpsg.fu-berlin.de/~stefan/Pub/phrasal.html.
Stefan Müller (2007a), The Grammix CD Rom: A software collection for
developing typed feature structure grammars, in Tracy Holloway King and
Emily M. Bender, editors, Grammar Engineering across Frameworks 2007,
Studies in Computational Linguistics ONLINE, CSLI Publications.
Stefan Müller (2007b), Head-Driven Phrase Structure Grammar: Eine Einführung,
number 17 in Stauffenburg Einführungen, Stauffenburg Verlag, 1st edition,
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html.
Stefan Müller (2008), Depictive secondary predicates in German and English,
in Christoph Schroeder, Gerd Hentschel, and Winfried Boeder, editors,
Secondary Predicates in Eastern European Languages and Beyond, number 16 in
Studia Slavica Oldenburgensia, pp. 255–273, BIS-Verlag,
http://hpsg.fu-berlin.de/~stefan/Pub/depiktiv-2006.html.
Stefan Müller (2009a), A Head-Driven Phrase Structure Grammar for Maltese,
in Bernard Comrie, Ray Fabri, Beth Hume, Manwel Mifsud, Thomas Stolz,
and Martine Vanhove, editors, Introducing Maltese Linguistics: Papers from the
1st International Conference on Maltese Linguistics, number 113 in Studies in
Language Companion Series, pp. 83–112, John Benjamins Publishing Co.,
http://hpsg.fu-berlin.de/~stefan/Pub/maltese-sketch.html.
Stefan Müller (2009b), On predication, in Proceedings of the 16th International
Conference on Head-Driven Phrase Structure Grammar, pp. 213–233,
http://hpsg.fu-berlin.de/~stefan/Pub/predication.html.
Stefan Müller (2010a), Grammatiktheorie [Grammatical Theory], number 20 in
Stauffenburg Einführungen, Stauffenburg Verlag,
http://hpsg.fu-berlin.de/~stefan/Pub/grammatiktheorie.html.
Stefan Müller (2010b), Persian complex predicates and the limits of
inheritance-based analyses, Journal of Linguistics, 46(3):601–655,
http://hpsg.fu-berlin.de/~stefan/Pub/persian-cp.html.
Stefan Müller (2012), On the copula, specificational constructions and type
shifting, http://hpsg.fu-berlin.de/~stefan/Pub/copula.html, draft,
Freie Universität Berlin.
Stefan Müller (2013a), Grammatiktheorie [Grammatical Theory], number 20 in
Stauffenburg Einführungen, Stauffenburg Verlag, 2nd edition,
http://hpsg.fu-berlin.de/~stefan/Pub/grammatiktheorie.html.

[79]

Stefan Müller

Stefan Müller (2013b), Head-Driven Phrase Structure Grammar: Eine Einführung
[Head-Driven Phrase Structure Grammar: an Introduction], number 17 in
Stauffenburg Einführungen, Stauffenburg Verlag, 3rd edition,
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html.
Stefan Müller (2013c), Unifying everything: Some remarks on Simpler Syntax,
Construction Grammar, Minimalism and HPSG, Language, 89(4):920–950,
http://hpsg.fu-berlin.de/~stefan/Pub/unifying-everything.html.
Stefan Müller (2014a), Artenvielfalt und Head-Driven Phrase Structure
Grammar [Biological diversity and Head-Driven Phrase Structure Grammar], in
Syntaxtheorien: Analysen im Vergleich, number 28 in Stauffenburg Einführungen,
pp. 187–233, Stauffenburg Verlag,
http://hpsg.fu-berlin.de/~stefan/Pub/artenvielfalt.html.
Stefan Müller (2014b), Elliptical constructions, multiple frontings, and
surface-based syntax, in Proceedings of Formal Grammar 2004, pp. 91–109,
http://hpsg.fu-berlin.de/~stefan/Pub/surface.html.
Stefan Müller (2014c), Kernigkeit: Anmerkungen zur
Kern-Peripherie-Unterscheidung [Coriness: Some remarks on the
core–periphery distinction], in Andreas Nolda, Athina Sioupi, and
Antonio Machicao y Priemer, editors, Zwischen Kern und Peripherie, number 76
in studia grammatica, pp. 25–39, de Gruyter,
http://hpsg.fu-berlin.de/~stefan/Pub/kernigkeit.html.
Stefan Müller (2014d), Satztypen: Lexikalisch oder/und phrasal [Sentence
types. Lexically and/or phrasally], in Rita Finkbeiner and Jörg Meibauer,
editors, Satztypen und Konstruktionen im Deutschen, Linguistik – Impulse und
Tendenzen, de Gruyter, To appear.
Stefan Müller (2015a), German Sentence Structure: An Analysis with Special
Consideration of So-Called Multiple Fronting, Empirically Oriented Theoretical
Morphology and Syntax, Language Science Press,
http://hpsg.fu-berlin.de/~stefan/Pub/gs.html, in Preparation.
Stefan Müller (2015b), Grammatical Theory: From Transformational Grammar
to Constraint-Based Approaches, number 1 in Lecture Notes in Language
Sciences, Language Science Press, In Preparation.
Stefan Müller (2015c), HPSG – a synopsis, in Artemis Alexiadou and Tibor
Kiss, editors, Syntax – Theory and Analysis. An International Handbook, number
42.2 in Handbooks of Linguistics and Communication Science, chapter 27,
Walter de Gruyter, 2nd edition,
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-hsk.html, In Print.
Stefan Müller, Felix Bildhauer, and Philippa Cook (2012), Beschränkungen
für die scheinbar mehrfache Vorfeldbesetzung im Deutschen [Constraints on
apparent multiple frontings in German], in Colette Cortès, editor,

[80]

The CoreGram project

Satzeröffnung. Formen, Funktionen, Strategien, number 31 in Eurogermanistik,
pp. 113–128, Stauffenburg Verlag.
Stefan Müller and Masood Ghayoomi (2010), PerGram: A TRALE
implementation of an HPSG fragment of Persian, in Proceedings of the 2010 IEEE
International Multiconference on Computer Science and Information Technology –
Computational Linguistics Applications (CLA’10), volume 5, pp. 461–467,
http://hpsg.fu-berlin.de/~stefan/Pub/pergram.html.
Stefan Müller and Janna Lipenkova (2009), Serial verb constructions in
Chinese: An HPSG account, in Proceedings of the 16th International Conference on
Head-Driven Phrase Structure Grammar, pp. 234–254,
http://hpsg.fu-berlin.de/~stefan/Pub/chinese-svc.html.
Stefan Müller and Janna Lipenkova (2013), ChinGram: A TRALE
implementation of an HPSG fragment of Mandarin Chinese, in Proceedings of the
27th Pacific Asia Conference on Language, Information, and Computation (PACLIC
27), pp. 240–249, Department of English, National Chengchi University.
Stefan Müller and Janna Lipenkova (In Preparation), Mandarin Chinese in
Head-Driven Phrase Structure Grammar, Empirically Oriented Theoretical
Morphology and Syntax, Language Science Press.
Stefan Müller and Bjarne Ørsnes (2011), Positional expletives in Danish,
German, and Yiddish, in Proceedings of the 18th International Conference on
Head-Driven Phrase Structure Grammar, pp. 167–187,
http://hpsg.fu-berlin.de/~stefan/Pub/expletives.html.
Stefan Müller and Bjarne Ørsnes (2013a), Passive in Danish, English, and
German, in Proceedings of the 20th International Conference on Head-Driven
Phrase Structure Grammar, pp. 140–160.
Stefan Müller and Bjarne Ørsnes (2013b), Towards an HPSG analysis of
object shift in Danish, in Glyn Morrill and Mark-Jan Nederhof, editors,
Formal Grammar: 17th and 18th International Conferences, FG 2012/2013,
number 8036 in Lecture Notes in Computer Science, pp. 69–89, Springer
Verlag, http://hpsg.fu-berlin.de/~stefan/Pub/object-shift.html.
Stefan Müller and Bjarne Ørsnes (2015), Danish in Head-Driven Phrase
Structure Grammar, Empirically Oriented Theoretical Morphology and Syntax,
Language Science Press,
http://hpsg.fu-berlin.de/~stefan/Pub/danish.html, In Preparation.
Stefan Müller, Pollet Samvelian, and Olivier Bonami (In Preparation),
Persian in Head-Driven Phrase Structure Grammar, Empirically Oriented
Theoretical Morphology and Syntax, Language Science Press,
http://hpsg.fu-berlin.de/~stefan/Pub/persian.html.
Stefan Müller and Stephen Mark Wechsler (2014), Lexical approaches to
argument structure, Theoretical Linguistics, 40(1–2):1–76,
http://hpsg.fu-berlin.de/~stefan/Pub/arg-st.html.

[81]

Stefan Müller

Mariacristina Musso, Andrea Moro, Volkmar Glauche, Michel Rijntjes,
Jürgen Reichenbach, Christian Büchel, and Cornelius Weiller (2003),
Broca’s area and the language instinct, Nature Neuroscience, 6(7):774–781.
Klaus Netter (1991), Clause union phenomena and complex predicates in
German, in Klaus Netter and Mike Reape, editors, Clause Structure and Word
Order Variation in Germanic, DYANA Report R1.1.B, University of Edinburgh.
Frederick J. Newmeyer (2005), Possible and Probable Languages: A Generative
Perspective on Linguistic Typology, Oxford University Press.
Frederick J. Newmeyer (2010), On comparative concepts and descriptive
categories: A reply to Haspelmath, Language, 86(3):688–695.
Sourabh Niyogi and Robert C. Berwick (2005), A Minimalist implementation
of Hale-Keyser incorporation theory, in Anna Maria Di Sciullo, editor, UG and
External Systems: Language, Brain and Computation, number 75 in Linguistik
Aktuell/Linguistics Today, pp. 269–288, John Benjamins Publishing Co.
Torbjørn Nordgård (1994), E-Parser: An implementation of a deterministic
GB-related parsing system, Computers and the Humanities, 28(4–5):259–272.
Geoffrey Nunberg, Ivan A. Sag, and Thomas Wasow (1994), Idioms,
Language, 70(3):491–538.
Stephan Oepen and John A. Carroll (2000), Parser engineering and
performance profiling, Natural Language Engineering, 6(1):81–97,
http://www.delph-in.net/itsdb/publications/parsing.ps.gz.
Stephan Oepen and Daniel P. Flickinger (1998), Towards systematic
grammar profiling. Test suite technology ten years after, Journal of Computer
Speech and Language, 12(4):411–436,
http://www.delph-in.net/itsdb/publications/profiling.ps.gz,
(Special Issue on Evaluation).
Stephan Oepen, Klaus Netter, and Judith Klein (1997), tsnlp – Test Suites
for Natural Language Processing, in John Nerbonne, editor, Linguistic
Databases, pp. 13–36, CSLI Publications.
Bjarne Ørsnes (2009), Preposed negation in Danish, in Proceedings of the 16th
International Conference on Head-Driven Phrase Structure Grammar, pp. 255–275.
Gerald Penn (2004), Balancing clarity and efficiency in typed feature logic
through delaying, in Proceedings of the 42nd Meeting of the Association for
Computational Linguistics, pp. 239–246.
David M. Perlmutter (1978), Impersonal passives and the Unaccusative
Hypothesis, in Proceedings of the 4th Annual Meeting of the Berkeley Linguistics
Society, pp. 157–189.
Stanley Roy Petrick (1965), A Recognition Procedure for Transformational
Grammars, Ph.D. thesis, Department of Modern Languages, MIT,
http://hdl.handle.net/1721.1/13013.

[82]

The CoreGram project

Colin Phillips (2003), Linear order and constituency, Linguistic Inquiry,
34(1):37–90.
Carl J. Pollard (1996), On head non-movement, in Harry Bunt and Arthur
van Horck, editors, Discontinuous Constituency, number 6 in Natural Language
Processing, pp. 279–305, Mouton de Gruyter, published Master’s thesis from
1990.
Carl J. Pollard and Ivan A. Sag (1987), Information-Based Syntax and
Semantics, number 13 in CSLI Lecture Notes, CSLI Publications.
Carl J. Pollard and Ivan A. Sag (1994), Head-Driven Phrase Structure
Grammar, Studies in Contemporary Linguistics, The University of Chicago Press.
Paul M. Postal (2009), The incoherence of Chomsky’s ‘Biolinguistic’ ontology,
Biolinguistics, 3(1):104–123.
Adam Przepiórkowski (1999), On case assignment and “adjuncts as
complements”, in Gert Webelhuth, Jean-Pierre Koenig, and Andreas
Kathol, editors, Lexical and Constructional Aspects of Linguistic Explanation,
number 1 in Studies in Constraint-Based Lexicalism, pp. 231–245, CSLI
Publications.
Geoffrey K. Pullum (1985), Assuming some version of X-bar Theory, in Papers
from the 21st Annual Meeting of the Chicago Linguistic Society, pp. 323–353.
Geoffrey K. Pullum (1989), Formal linguistics meets the boojum, Natural
Language and Linguistic Theory, 7(1):137–143,
http://dx.doi.org/10.1007/BF00141350.
Geoffrey K. Pullum (1991), The Great Eskimo Vocabulary Hoax and Other
Irreverent Essays on the Study of Language, The University of Chicago Press.
Geoffrey K. Pullum (2007), The evolution of model-theoretic frameworks in
linguistics, in Model-Theoretic Syntax at 10 – Proceedings of the ESSLLI 2007
MTS@10 Workshop, August 13–17, pp. 1–10,
http://cs.earlham.edu/esslli07mts/.
Geoffrey K. Pullum and Barbara C. Scholz (2001), On the distinction
between generative-enumerative and model-theoretic syntactic frameworks, in
Philippe de Groote, Glyn Morrill, and Christian Retor, editors, Logical
Aspects of Computational Linguistics: 4th International Conference, number 2099 in
Lecture Notes in Computer Science, pp. 17–43, Springer Verlag.
Geoffrey K. Pullum and Barbara C. Scholz (2002), Empirical assessment of
stimulus poverty arguments, The Linguistic Review, 19(1–2):9–50.
Marc Richards (2015), Minimalism, in Artemis Alexiadou and Tibor Kiss,
editors, Syntax – Ein internationales Handbuch zeitgenössischer Forschung,
volume 42 of Handbooks of Linguistics and Communication Science, Mouton de
Gruyter, 2nd edition.

[83]

Stefan Müller

John Robert Ross (1967), Constraints on Variables in Syntax, Ph.D. thesis, MIT,
http://www.eric.ed.gov/, reproduced by the Indiana University Linguistics
Club.
Ivan A. Sag (1997), English relative clause constructions, Journal of Linguistics,
33(2):431–484, http://lingo.stanford.edu/sag/papers/rel-pap.pdf.
Ivan A. Sag (2010), English filler-gap constructions, Language, 86(3):486–545,
http://lingo.stanford.edu/sag/papers/xcons.pdf.
Ivan A. Sag (2012), Sign-based construction grammar: An informal synopsis, in
Hans C. Boas and Ivan A. Sag, editors, Sign-based Construction Grammar,
number 193 in CSLI Lecture Notes, pp. 69–202, CSLI Publications,
http://lingo.stanford.edu/sag/papers/theo-syno.pdf.
Ivan A. Sag and Thomas Wasow (2011), Performance-compatible competence
grammar, in Robert Borsley and Kersti Börjars, editors,
Non-Transformational Syntax: Formal and Explicit Models of Grammar: A Guide to
Current Models, pp. 359–377, Blackwell Publishing Ltd.
Ivan A. Sag, Thomas Wasow, and Emily M. Bender (2003), Syntactic Theory:
A Formal Introduction, number 152 in CSLI Lecture Notes, CSLI Publications,
2nd edition.
Pollet Samvelian (2007), A (phrasal) affix analysis of the Persian Ezafe,
Journal of Linguistics, 43:605–645.
Uli Sauerland and Paul Elbourne (2002), Total reconstruction, PF
movement, and derivational order, Linguistic Inquiry, 33(2):283–319.
Harris B. Savin and Ellen Perchonock (1965), Grammatical structure and
the immediate recall of English sentences, Journal of Verbal Learning and Verbal
Behavior, 4(5):348–353.
Barbara C. Scholz and Geoffrey K. Pullum (2002), Searching for arguments
to support linguistic nativism, The Linguistic Review, 19(1–2):185–223.
Edward P. Stabler (1987), Restricting logic grammars with
Government-Binding Theory, Computational Linguistics, 13(1–2):1–10.
Edward P. Stabler (1992), The Logical Approach to Syntax: Foundations,
Specifications, and Implementations of Theories of Government and Binding,
ACL-MIT Press Series in Natural Language Processing, MIT Press.
Edward P. Stabler (2001), Minimalist grammars and recognition, in Christian
Rohrer, Antje Rossdeutscher, and Hans Kamp, editors, Linguistic Form and
its Computation, number 1 in Studies in Computational Linguistics, pp. 327–352,
CSLI Publications.
Edward P. Stabler (2010), After Governement and Binding Theory, in Johan
F. A. K. van Benthem and G. B. Alice ter Meulen, editors, Handbook of
Logic and Language, pp. 395–414, MIT Press, 2nd edition,
http://www.linguistics.ucla.edu/people/stabler/afterGB.pdf.

[84]

The CoreGram project

Edward P. Stabler (2011), Computational perspectives on Minimalism, in
Cedric Boeckx, editor, The Oxford Handbook of Linguistic Minimalism,
chapter 27, pp. 616–641, Oxford University Press, http:
//www.linguistics.ucla.edu/people/stabler/Stabler10-Min.pdf.
Mark J. Steedman and Jason Baldridge (2006), Combinatory Categorial
Grammar, in Keith Brown, editor, Encyclopedia of Language and Linguistics,
pp. 610–621, Elsevier, 2nd edition.
Luc Steels, editor (2011), Design Patterns in Fluid Construction Grammar,
number 11 in Constructional Approaches to Language, John Benjamins
Publishing Co.
Luc Steels (2013), Fluid Construction Grammar, in Thomas Hoffmann and
Graeme Trousdale, editors, The Oxford Handbook of Construction Grammar,
Oxford University Press.
Oliver Suhre (1999), Computational Aspects of a Grammar Formalism for
Languages with Freer Word Order, Master’s thesis, Department of Computer
Science, Eberhard-Karls-Universität Tübingen,
http://www.sfs.uni-tuebingen.de/hpsg/archive/bibliography/
papers/suhre_lsl-thesis.pdf.
Michael K. Tanenhaus, Michael J. Spivey-Knowlton, Kathleen M.
Eberhard, and Julie C. Sedivy (1995), Integration of visual and linguistic
information in spoken language comprehension, Science,
268(5217):1632–1634, http://www.bcs.rochester.edu/people/mtan/
publications/1995Tanenhaus_Sci.pdf.
Michael K. Tanenhaus, Michael J. Spivey-Knowlton, Kathleen M.
Eberhard, and Julie C. Sedivy (1996), Using eye movements to study spoken
language comprehension: Evidence for visually mediated incremental
interpretation, in Toshio Inui and James L. McClelland, editors, Information
Integration in Perception and Communication, number XVI in Attention and
Performance, pp. 457–478, MIT Press.
Michael Tomasello (2003), Constructing a Language: A Usage-Based Theory of
Language Acquisition, Harvard University Press.
Frank Van Eynde and Liesbeth Augustinus (2014), Complement raising,
extraction and adpostion stranding in Dutch, in Proceedings of the 21st
International Conference on Head-Driven Phrase Structure Grammar, University at
Buffalo, pp. 156–175, http://cslipublications.stanford.edu/HPSG/
2014/vaneynde-augustinus.pdf.
Remi van Trijp (2013), A comparison between Fluid Construction Grammar
and Sign-Based Construction Grammar, Constructions and Frames, 5(1):88–116.
Remi van Trijp (2014), Long-distance dependencies without filler−gaps: A
cognitive-functional alternative in Fluid Construction Grammar, Language and
Cognition, pp. 1–29.

[85]

Stefan Müller

Mettina Veenstra (1998), Formalizing the Minimalist Program, Ph.D. thesis,
Rijksuniversiteit Groningen.
Arnim von Stechow (1996), The different readings of wieder “again”: A
structural account, Journal of Semantics, 13(2):87–138.
Moira Yip, Joan Maling, and Ray S. Jackendoff (1987), Case in tiers,
Language, 63(2):217–250.
Arnold M. Zwicky, Joyce Friedman, Barbara C. Hall, and Donald E.
Walker (1965), The MITRE syntactic analysis procedure for Transformational
Grammars, in Proceedings of the FALL Joint Computer Conference, pp. 317–326,
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1965.108.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[86]

A logical approach
to grammar description

Lionel Clément, Jérôme Kirman, and Sylvain Salvati
Université de Bordeaux LaBRI

France

abstract
Keywords:
grammar
description,
logic,
Finite State
Automata,
logical
transduction,
lambda calculus,
Abstract
Categorial
Grammars

In the tradition of Model Theoretic Syntax, we propose a logical ap-
proach to the description of grammars. We combine in one formal-
ism several tools that are used throughout computer science for their
power of abstraction: logic and lambda calculus. We propose then a
high-level formalism for describing mildly context sensitive grammars
and their semantic interpretation. As we rely on the correspondence
between logic and finite state automata, our method combines con-
ciseness with effectivity. We illustrate our approach with a simple
linguistic model of several interleaved linguistic phenomena involv-
ing extraction. The level of abstraction provided by logic and lambda
calculus allows us not only to use this linguistic model for several
languages, namely English, German, and Dutch, but also for semantic
interpretation.

1 introduction

We propose a high-level approach to represent second-order abstract
categorial grammars (2-ACGs) of de Groote (2001). This approach is
close in spirit to the two step approach proposed by Kolb et al. (2003),
and also to Model Theoretic Syntax (Rogers 1996). It is also closely
related to the recent work of Boral and Schmitz (2013) which advo-
cates and subsequently studies the complexity of context-free gram-
mars with constraints on derivations expressed in propositional dy-
namic logic (Kracht 1995).

Journal of Language Modelling Vol 3, No 1 (2015), pp. 87–143

Lionel Clément et al.

The choice of 2-ACGs as a target class of grammars is motivated
by several reasons. First, linear 2-ACGs capture exactly mildly con-
text sensitive languages as shown by de Groote and Pogodalla (2004)
and Salvati (2007). In particular they enjoy polynomial parsing algo-
rithms (Salvati 2005 and Salvati 2009), the parsing problem is actually
in functional LOGCFL (Kanazawa 2011). Secondly, they allow one to
express both syntax and semantics with a very small number of prim-
itives. Thirdly, when dealing with semantics, non-linear 2-ACGs (that
is 2-ACGs with copying) have a decidable parsing problem as shown
by Salvati (2010) (see Kobele and Salvati 2013 for a more general
proof) allowing one to generate text from semantic representation. Fi-
nally, following an idea that can be traced back to Curry (1961), they
offer a neat separation between syntax, that is how constituents form
together a coherent sentence, and word order. Indeed, Abstract cate-
gorial grammars (ACGs) split naturally the definition of a language in
two parts:
1. the abstract language that is meant to represent deep structures,
2. the object language that is meant to represent surface structures.

The mediation between abstract and object languages is made
with a lexicon. Lexicons, in the context of 2-ACGs, are higher-order
homomorphisms mapping each tree of the abstract language to the
element of the object language it denotes. Their abstract language is
made of ranked trees, which are widely used to model the syntactic
structures of languages. They indeed naturally represent the hierar-
chical structure of natural language syntagmas. Another feature of the
ACG approach is that the object language need not consist of strings,
but can also be a language of λ-terms representing truth-conditional
meanings of sentences. More importantly, different grammars may
share the same abstract language, which then serves as a description
of relations between the elements of their object languages. In partic-
ular, this yields a simple and elegant way of modelling the relation be-
tween syntax and semantics, following the work of Montague (1974).
Or even, when languages are sufficiently similar, this gives a natural
way of constructing synchronous grammars.

Thus, our approach is closely following the ACG’s two-level de-
scription so as to model the syntax of a natural language. A first
assumption we take is that syntactic structures need not represent

[88]

A logical approach to grammar description

directly the word order. This assumption leads us to study syntactic
structures as abstract structures that satisfy certain properties. These
abstract structures are defined by means of a regular tree grammar so
as to model the recursive nature of syntax, and are further constrained
with logic. We use unordered trees with labelled edges to represent
abstract structures. This technical choice emphasizes the fact that
syntax and word order are assumed not to be directly connected. The
labels of the tree are used to represent the grammatical functions of
each node with respect to its parent. Moreover, this structure allows
us to define a logical language in which we can describe high-level
linguistic properties. This logical language is at the centre of the defi-
nition of syntactic validity and also of the mechanism of linearization
which associates sentences or meaning representations with abstract
structures. As in the ACG setting, we use λ-calculus as a means to
achieve complex transformations. When compared to ACGs, the orig-
inality of our approach lies in the fact that linearization is guided by
logic in a strong way.

Our goal is to design concise and linguistically informed 2-ACGs.
For this, as we mentioned, we heavily rely on logic. The reason why
we can do so in a computationally effective manner is that suffi-
ciently weak logics can be represented with finite state automata.
Seminal results from formal language theory by Doner (1965) and
Rabin (1969) have had a wealth of applications in computer science
and are still at the root of active research. They also have given rise to
the idea of modelling syntax with logic, championed under the name
of Model Theoretic Syntax in a series of papers: Rogers (1996), Cor-
nell and Rogers (1998), Rogers (1998), Rogers (2003b), Pullum and
Scholz (2001), Pullum and Scholz (2005), Pullum (2007)… One of
the successes of Model Theoretic Syntax is the model (Rogers 1998)
of the most consensual part of the theory of Government and Bind-
ing of Chomsky (1981). It thus showed that this theory could only
model context-free languages and was inadequate to model natural
languages which contain phenomena beyond context-freeness (see
Shieber 1985).

Indeed, the way Model Theoretic Syntax is usually formulated ties
word orders to syntactic structures: syntactic structures take the form
of trees satisfying the axioms of a linguistic theory and the sentences
they represent are simply the sequences of leaves of those trees read

[89]

Lionel Clément et al.

from left to right. This approach has as consequence that only context-
free languages can be represented that way. Rogers (2003a) bypasses
this limitation by using multidimensional trees. Another approach is
the two step approach of Kolb et al. (2003) which is based on macro
tree transducers and logic. Our approach is similar but, as Morawietz
(2003), who proposes to model multiple context-free grammars by
means of logical transduction, it relies on logic in a stronger manner
and it uses λ-calculus instead of the macro mechanism of macro tree
transducers. Indeed, we adapt the notion of logical transductions pro-
posed by Courcelle (1994) (see also Courcelle and Engelfriet 2012)
so as to avoid the use of a finite state transduction. This brings an
interesting descriptive flavour to the linearization mechanism, which
simplifies linguistic descriptions. Thus from the perspective of Model
Theoretic Syntax, we propose an approach that allows one to go be-
yond context-freeness, by relying as much as possible on logic and rep-
resenting complex linearization operation with λ-calculus. We hope
that the separation between abstract language and linearization allows
one to obtain some interesting linguistic generalization that might be
missed by approaches such as Rogers (2003a), which tie the descrip-
tion of the syntactic constraints and linearization.

The formalism we propose provides high-level descriptions of lan-
guages. Indeed, it uses logic as a leverage to model linguistic concepts
in the most direct manner. Moreover, as we carefully chose to use
trees as syntactic structures and a logic that is weak enough to be rep-
resentable by finite state automata, the use of this level of abstraction
does not come at the cost of the computational decidability of the for-
malism. Another advantage of this approach that is related to it in
a high-level way is conciseness. Finally, merging the ACG approach,
Model Theoretic Syntax, and logical transductions allows one to de-
scribe in a flexible and relatively simple manner complex realizations
that depend subtly on the context. Somehow, we could say that, in
our formalization, linearization of abstract structures rely on both a
logical look-around provided by logical transductions and on complex
data flow provided by λ-calculus.

Related work
The paper is related to the work that tries to give concise descriptions
of grammars. It is thus close in spirit to the line of work undertaken

[90]

A logical approach to grammar description

under the name of Metagrammars. This work was initiated by Candito
(1999) and subsequently developed by Thomasset and De La Clerg-
erie (2005) and Crabbé et al. (2013). The main difference between
our approach and the Metagrammar approach is that we try to have
a formal definition of the languages our linguistic descriptions define,
while Metagrammars are defined in a more algorithmic way and tied
to rule descriptions. Instead we specify how syntactic structures should
look like. Our representation of syntactic structures has a lot in com-
mon with f-structures in Lexical Functional Grammars (LFG; Bresnan
2001, Dalrymple 2001), except that we use logic, rather than unifica-
tion, to describe them. This makes our approach very close in spirit
to dependency grammars such as Bröker (1998), Debusmann et al.
(2004), and Foth et al. (2005), property grammars (Blache 2001) and
their model theoretic formalization (Duchier et al. 2009, 2012, 2014).
Most of the fundamental ideas we use in our formalization are similar
to those works, in particular Bröker (1998) also proposes to separate
syntactic description from linearization. The main difference between
LFG, dependency grammars, and our approach is that we try to build
a formalization whose expressive power is limited to the classes of
languages that are mildly context sensitive and which are believed to
be a good fit to the class of natural languages (see Joshi 1985 and
Weir 1988).

Contribution
We propose a logical language for describing tree structures that is
similar to propositional dynamic logic of Kracht (1995). We show how
to use this logic to describe abstract structures and their linearization
while only defining 2-ACGs. We also show that our formalism can
represent in a simple manner various linguistic phenomena in several
languages together with the semantics of phrases.

Organization of the paper
The paper is divided into two parts: first, Section 2 presents the for-
malism, while Section 3 presents a grammatical model that is based
on that formalism. Section 2 is an incremental presentation of the
formalism. We start by explaining how we model abstract structures
in Section 2.1. This section explains how our formalization is articu-
lated with lexicons. It gives a definition of the logical language we use

[91]

Lionel Clément et al.

throughout the paper. We then turn to defining the grammatical for-
malism that combines regular tree grammars and logical constraints
that we use to model the valid abstract structures. This section closes
with the formal definition of the set of valid abstract structures and an
explanation of why this set is a regular set of trees. Then we define the
mechanism that linearizes abstract structures and give its formal se-
mantics. The formal semantics of the linearizationmechanism is rather
complex; moreover, due to space limitations, we need to assume that
the reader is familiar with simply-typed λ-calculus (see Hindley and
Seldin 2008 and Barendregt 1984 for details).

Section 3 illustrates how the formalism can be used to model lan-
guages. It presents a formalization of a fragment of language involving
several overlapping extraction phenomena. We start by defining the
set of abstract structures, then linearization rules are given that pro-
duce from those abstract structures phonological realizations for En-
glish, German, and Dutch, and Montagovian semantic representations.
In order to clarify the behaviour of the formalism, the section finishes
with a detailed example of an intricate sentence involving many of the
phenomena we treat.

The article concludes by summarizing the contributions of the
paper and discussing the approach and future work.

2 formalism

We will now give an exhaustive definition of the formalism and dis-
cuss its underlying linguistic motivations. For the sake of clarity, we
exemplify the definitions by means of a toy grammar.

We are first going to explain how we wish to model the trees that
represent deep structures of languages.
2.1 Abstract structure
Instead of being treated as ranked labelled trees, the abstract struc-
tures will be depicted as labelled trees with labelled edges. From a
formal point of view this causes no real difficulty as the two presenta-
tions of trees can be seen as isomorphic. Nevertheless, from the point
of view of grammar design, it is helpful to handle the argument struc-
ture of a given syntactic construction by means of names that reflect
syntactic functions rather than the relative position of arguments. This

[92]

A logical approach to grammar description

simple choice also makes it more transparent that in ACGs the left-to-
right ordering of arguments in the abstract structure does not reflect
the word order of their realization in the surface structure. As we will
see, for technical convenience, the trees will have two kinds of leaves:
lexical entries and the empty leaf ⊥.

Lexical entries
The set of lexical entries, or vocabulary, is a set of words along with
their properties, as in Table 1. These properties are a set of constants
which will represent either a part-of-speech (POS) that governs how
lexical entries may be used locally, or some additional syntactic infor-
mation (like subcategorization, selection restrictions, etc.) that is used
to restrict the contexts in which lexical entries may be used. Examples
of such properties could be: proper noun, noun, determiner, verb (POS)
or intransitive, transitive. Nevertheless, as long as the lexical entries are
unambiguously determined by the words they specify, we shall use
those very words in place of the lexical entries as a short-hand in the
trees we use as examples. Formally, we fix a finite set of words W and
a finite set of properties P. A vocabulary is then a set of pairs (w,Q)
where w ∈W and Q ⊆ P.

John proper noun
Mary proper noun
man noun

a determiner
walks verb, intransitive
loves verb, transitive

Table 1:
Vocabulary example

In all of our examples, apart from the leaves, the nodes of the
trees will not be labelled; it is nevertheless important to notice that, if
linguistic descriptions require it, the methodology we propose extends
with no difficulty to trees with labelled internal nodes. The relation
between a node and its child shall be labelled; the labels we use in
this example are: head, subj, obj, det. We assume that for every inter-
nal node v of a tree and every label lbl, v has a child u and the edge
between v and u has the label lbl. Nevertheless, when u is a leaf la-
belled ⊥, we shall not draw it in the picture representations of trees.
These technical assumptions are made so as to have a clean treatment
of optional constructions of nodes in regular tree grammars and in

[93]

Lionel Clément et al.

logical constraints. These optional constructions are interesting when
one seeks concision. Figure 1 shows both a complete tree and the way
we draw it.

Figure 1:
Tree logical structure and

tree drawing examples

..•.

walks

.

head
.

John

.

sub
j

.

⊥

.

obj

.

⊥

.
det ..•.

walks

.

hea
d

.

John

. subj

To make it clear that the trees we use are just a variant of the
notation of the ranked trees, we explain how to represent the trees we
use as ranked trees. For this, it suffices to fix an arbitrary total order on
the set of labels and to define term constructors that consist in subsets
S of labels whose arity is the cardinal of S. Then the kth argument of
the constructor S represents the child with the kth label in S according
to the fixed order of labels. For example, fixing a total order where
the label head precedes the label subj, the term representation of the
tree in Figure 1 is {head, subj} walks John.

Formally, given a finite set of edge labels Σ, we define a tree do-
main dom(t) as being a non-empty finite subset of Σ∗, that is prefix-
closed and so that if for a in Σ, ua is in dom(t), then for each b in Σ,
ub is in dom(t). Given a tree domain dom(t), we write dom(t) for the
set of longest strings in dom(t). The elements of dom(t) are the posi-
tions that correspond to leaves in the tree domain. Given a finite set of
labels Λ, a tree t is a pair (dom(t), lbl : dom(t)→ Λ∪ {⊥}).1 The set Λ
of labels shall be the vocabulary, while Σ shall be the set of syntactic
functions.

Logical definition of abstract languages
We have now settled the class of objects that will serve as elements of
our abstract language. We then lay out how the set of valid abstract
structures is defined, that is how we specify which abstract structures
are the syntactically correct ones.

This process will be carried on by logic, in the sense that the set of
valid abstract structures will be the set of all trees that satisfy some log-
ical constraints. Provided that the logic expressing those constraints is

1Of course, we assume that ⊥ is not an element of Λ.

[94]

A logical approach to grammar description

kept simple enough, the resulting abstract language will be both suit-
ably structured and concisely described, while being recognizable by
a finite state automaton.

In order to satisfy this last condition, we shall restrict our atten-
tion to the class of logical languages that only define regular tree lan-
guages. There are several reasons for this. First of all, it is easy to
represent the run of a tree automaton as the abstract language of a
2-ACG, and, therefore, logical constraints that only define regular lan-
guages can be compiled as abstract languages of 2-ACGs. Second, those
logics have decidable satisfiability problems and thus it is in principle
possible to automatically check the coherence of a set of constraints
or check whether valid abstract structures satisfy a given property.
Moreover, neither of those properties are preserved in general when
considering more powerful logics. Finally, it seems that linguistic con-
straints do not need extra logical power. The most expressive and con-
cise logic that is known in this class is Monadic Second-Order Logic
(MSOL), but various kinds of first-order or modal logics may suit very
well the needs of linguistics.

The logical language
We define a first-order logical language that we believe is a good can-
didate for describing the linguistically relevant properties of abstract
structures. The set of well-formed formulae in this logic is defined
in the usual way for first-order logic, with the conventional connec-
tives (¬,∧,∨,⇒,⇔,∃,∀) and first-order variables (x , y, z, . . .) that will
be interpreted as positions in the tree. Then, atomic formulae will be
based on the following predicates and relations.

First, we assume that we have been given a vocabulary such as
the one in Table 1 that uses the finite set of properties P. Each el-
ement p of P (listed on the right in the tables representing vocab-
ularies) will correspond to a unary predicate p(x) in our logic. By
definition, such a predicate p will be true if and only if x is the po-
sition of a leaf in the tree that is labelled by a lexical entry contain-
ing p in its list of properties. From a linguistic point of view, those
predicates allow us to talk about the lexical properties of words and
ensure that the sentence structure is in accordance with those prop-
erties (which can be used to deal with agreement, verb valency, con-
trol, etc.).

[95]

Lionel Clément et al.

Then, we add another predicate noted none(x) which is true if
and only if x is a leaf labelled with ⊥. This will be particularly use-
ful in the case of optional arguments. This predicate will enable us
to condition the presence or the absence of an argument with re-
spect to the context. We shall also write some(x) as a short-hand for
¬none(x).

Since we have decided to leave the internal nodes of the tree
unlabelled, no additional single-argument predicate is required. Had
we chosen to add linguistic information to internal nodes, we could
have introduced a set of corresponding predicates to take this infor-
mation into account when defining the set of valid abstract struc-
tures.

Finally, we add a countable set of binary relations that express
properties about paths between nodes. This set is defined as the set
of all regular expressions over the alphabet of argument labels. If we
assume that the set of argument labels is Σ, then regular expressions
are defined inductively with the following grammar:

reg ::= ϵ | Σ | (reg+ reg) | reg reg | (reg)∗

The language denoted by a regular expression is defined as usual (ϵ
denoting the empty word). We shall also take the liberty of dropping
useless parentheses. Let e be such a regular expression, we write L(e)
for the language defined by e. Then e(x , y) is a well-formed formula
that is true if and only if x is an ancestor of y and the (possibly empty)
sequence of edge labels li on the path between x and y induces a
word w = l1 . . . ln such that w ∈ L(e). This set of relations could also
be obtained indirectly, by using the more usual finite set of successor
relations and either adding a transitive closure operator to first-order
logic or using the full power of Monadic Second-Order Logic. In either
case, this set of relations is intended to enable the description of long-
distance phenomena in sentences (as, for example, wh-movement). In
order to shorten some formulae, we also add the following relation
notation: e1 ↑ e2(x , y) which is true if and only if the lowest common
ancestor z of x and y is such that e1(z, x) and e2(z, y). We also use the
shorthand any to denote any element of Σ. Notice that the relation
e1 ↑ e2(x , y) can indeed be expressed as:
∃z.e1(z, x)∧ e2(z, y)∧∀z′.

�any∗(z′, x)∧ any∗(z′, y)
�⇒ any∗(z′, z)

[96]

A logical approach to grammar description

Formally, given a tree t = (dom(t), lbl), a formula φ, and a val-
uation ν that maps the free variables of φ to elements of dom(t) we
define the validity relation t,ν |= φ by induction on φ:2

• t,ν |= true is always correct,
• t,ν |= p(x) iff ν(x) is in dom(t) and lbl(ν(x)) = (w,Q) with p ∈Q,
• t,ν |= none(x) iff ν(x) is in dom(t) and lbl(ν(x)) =⊥,
• t,ν |= e(x , y) iff ν(x) = w1, ν(y) = w1w2, and w2 ∈ L(e) for some

w1 and w2 in dom(t),
• t,ν |= φ ∨ψ iff t,ν |= φ or t,ν |=ψ,
• t,ν, |= ¬φ iff it is not the case that t,ν |= φ,
• t,ν |= ∃x .φ iff there is u in dom(t) so that t,ν[x ← u] |= φ, where
ν[x ← u] is the valuation that maps every variable y different
from x to ν(y) and maps x to u.

Regular over-approximation of abstract structures
Though we believe that the class of logical formulae described above
constitutes a powerful tool to describe the abstract structures of human
languages, we also think that the recursive shape of these structures
can be expressed by simpler and more concise means. Hence, we sug-
gest to use regular tree grammars to provide an over-approximation of
the intended abstract language, and then refine this sketch by adding
logical constraints on the grammar’s productions to filter out the un-
desired structures. Thus, we gain the ability to model the predicate-
argument structure in a more readable way. In general, the regular
grammar aims at modelling the recursive structure of natural lan-
guages while the constraints are meant to express relations between
constituents and to ensure that these relations satisfy the grammatical
constraints of the language.

This over-approximation is defined by means of a regular tree
grammar. Figure 2 gives such a grammar as an example. Note that
some non-terminals may occur between parentheses in the right-hand
sides of some rules. The intended meaning is that they are optional:
given a non-terminal X , we may think of (X) as a non-terminal that can

2We only treat the connectives ∃, ∨, and ¬ which are sufficient to express all
the other logical connectives.

[97]

Lionel Clément et al.

be rewritten to either X or ⊥. Other non-terminals are simply prop-
erties of lexical entries (one could also use sets of properties), these
non-terminals may be rewritten to any lexical entry which contains
this property in its list of properties.

This over-approximation simply puts in place the definitions of
linguistic syntagmas so as to model the hierarchical structure of lan-
guage constructs. From the perspective of grammatical design, such
an over-approximation should be based on high-level linguistic con-
siderations and only take care of simple local constraints, accounting
for the universals of language, or for the common features of a given
family of languages. In particular, it should only use the broadest and
simplest lexical properties, such as parts-of-speech.

Figure 2:
Over-approximating

regular tree grammar
example

..p1 : S −→ .•.

verb

.

hea
d

.

A

.
subj

.

(A)

.
obj

..p2 : A−→ .•.

noun

.

hea
d

.

determiner

.

det

p3 : A−→ proper noun

Constraining the regular productions
We now describe how the logical language will be used to refine the
regular tree grammar productions that over-approximate the language
of abstract structures.

The general idea is that one or several logical formulae can be
attached to each production rule of the regular grammar. For this,
some nodes on the right-hand sides of rules are tagged with pair-
wise distinct variables (see Figure 3), and the rules are paired with
a set of formulae whose free variables range over the variables that
tag their right-hand sides. Now when a rule is used in the course
of a derivation, the nodes it creates are constrained by the logi-
cal formula paired with the rule. Thus, once a derivation is com-
pleted, the resulting tree is considered valid only when it satisfies
all the constraints that have been introduced in the course of the
derivation.

Let us consider Figure 3 as an example: the first production p1 of
our toy grammar is now tagged with two variables respectively named

[98]

A logical approach to grammar description

..p1 : S −→ .•.

verb : v

.

hea
d

.

A

.

subj

.

(A) : o

.

obj

some(o)⇒ transitive(v)
none(o)⇒ intransitive(v)

Figure 3:
Labelled production rule
with logical guards

v and o and which respectively designate the head and obj arguments
of the root node. These labels are indicated after colons at the position
that they correspond to. Below the rewrite rule is a list of logical con-
straints that deal with verb valency, and the logical formula φ(v, o)
that the final abstract tree must satisfy is implicitly taken to be the
conjunction of those two constraints.

We now give a formal definition of what it means for a tree to be
valid. A derivation is seen as generating a triple (t,ν,φ) where t is a
tree, φ a logical formula, and ν a valuation of the free variables of φ
in dom(t). The rules of the grammar act on these triples as follows:
if (t,ν,φ) is such that at the position u, t has a leaf labelled with
the non-terminal A and if there is a rule that rewrites A into s with
the constraints φ1(x1, . . . , xn), . . . ,φp(x1, . . . , xn), then (t,ν,φ) rewrites
into

(t ′,ν′,φ ∧φ1(x
′
1, . . . , x ′n)∧ · · · ∧φp(x

′
1, . . . , x ′n))

where:
• t ′ is obtained from t by replacing the occurrence of A at the posi-
tion u by s,

• x ′1, . . . , x ′n are fresh variables,
• ν′ is the valuation that maps every variable x distinct from the

x ′i ’s to ν(x) and that maps each variable x ′i , to uui when ui is the
position of the node that is tagged with x i in s.

Now, a tree t that does not contain any occurrence of a non-terminal is
valid when, with ; being the empty valuation and S being the starting
symbol of the regular grammar, (S,;, true) rewrites (in any number of
steps) to (t,ν,φ), so that t,ν |= φ. We shall call language or set of valid

[99]

Lionel Clément et al.

trees the set of trees that are generated by the regular grammar and
satisfy the logical constraints.

Compilation of logical constraints
We are going to show here that the set of valid trees, i.e. the trees
generated by the regular grammar that satisfy the logical constraints,
is also a regular set. Actually, since we restricted ourselves to a logical
language weaker than MSOL, the constraints can be seen as a sort of
regular “look-around” for the regular grammar which explains why
the valid trees form a regular language. We outline here a construc-
tion that defines effectively the language of valid trees as a regular
language. This construction is going to be at a rather high-level and
is mainly meant to convince the reader that the set of valid trees is
indeed regular.

In order to simplify the construction, we first transform the set
of constraints associated with rules that bear on several nodes in the
right-hand side of a rule into a unique constraint that bears on the root
node of the right-hand side. For this, if φ1(x1, . . . , xn), . . . ,φp(x1, . . . , xn)
is the set of constraints that are associated with a production r, then
there is a unique path labelled with the word ei that leads from the
root of the tree in the right-hand side of r to the node labelled x i,
and then, for the nodes labelled x1, . . . , xn, to satisfy the constraints
φ1(x1, . . . , xn), . . . ,φp(x1, . . . , xn) is equivalent to the root satisfying the
unique constraint:

ψr(x) = ∃x1, . . . , xn.e1(x , x1)∧ · · · ∧ en(x , xn)∧
p∧

i=1

φi(x1 . . . , xn)

Thus, for the construction we are going to present, we assume
that each rule has a unique constraint that bears on the root of
its right-hand side. Given such a grammar G, we first remark that
the set F of constraints used in rules is finite. We then construct
a grammar G′ so that each node of G′ is labelled with the set of
constraints included in F that it needs to satisfy. Hence, in the
trees generated by G′, sets of formulae are labels of internal nodes.
We extend our logical language with predicates that reify those la-
bels. Thus, given a set of formulae S included in F we define a
unary predicate [S](x) that holds true on nodes x that are labelled
with S. The predicates used to define the constraint language keep

[100]

A logical approach to grammar description

their former meaning. We can now define a formula valid as fol-
lows:

valid ::=
∧

S ⊆ F

�
∀x .[S](x)⇒

∧
φ(x) ∈ S

φ(x)

�

As valid is a constraint that is definable in the logical language we have
introduced which in turn can be represented in Monadic Second-Order
Logic, the set of trees that satisfy this constraint is regular. Thus, the
set V of trees generated by G′ that satisfy valid, being the intersection
of two regular sets, is also regular. Now, the set of valid trees of G is
precisely the set of trees in V where the labels of internal nodes have
been erased. As regular languages are closed under relabelling, this
explains why the set of valid trees is regular.

Let us now briefly sketch how G′ is constructed. Its non-terminals
are pairs (A, S) so that A is a non-terminal of G and S is included in
F . Each rule r of G of the form A → t with constraint φ(x) on its
root is mapped to a rule (A, S) → t ′ of G′ so that if t is reduced to a
non-terminal B, then t ′ is (B, S ∪ {φ(x)}); if t is not reduced to a non-
terminal, then t ′ is the tree t where the occurrences of non-terminals
B of G are replaced by the non-terminals (B,;) of G′ and the root of t ′

is labelled with the set of formulae S ∪ {φ(x)}. This transformation is
illustrated in Figure 4.

..r : A−→ .• : x.

B1

.

lbl
1

.

. . .

.

...

.

Bn

.

lbln

φ(x)

−→

..r ′ : (A, S) −→ .S ∪ {φ(x)}.

(B1,;)

.

lbl
1

.

. . .

.

...

.

(Bn,;)

.

lbln

Figure 4:
Transformation of a rule
in G into rules of G′

2.2 The linearization process
We are now going to explain how we intend to linearize the accepted
sentences, by describing mappings from the set of valid abstract struc-
tures to various languages of surface realizations, which may either

[101]

Lionel Clément et al.

represent the actual sequence of words, or the semantic interpreta-
tion of the sentence, or any other structure of interest. Since we have
elected to work within the framework of second order ACGs, lineariza-
tions can be seen as high-level specifications of lexicons (in the sense of
abstract categorial grammars), that is to say morphisms from the trees
that belong to the abstract language to simply typed λ-terms of a spe-
cific object language. The signature upon which we build the simply
typed λ-terms of the object language may vary, but we give here some
straightforward examples of target languages for our toy grammar. We
assume that the reader is familiar with simply typed λ-calculus (see
Hindley and Seldin (2008) and Barendregt (1984) for more details),
and contrary to what is usual in ACG, we also use product types, that is
the ability to use typed pairs and the related projections in the calcu-
lus. It is well-known that this does not increase the expressive power
of ACGs, but these constructs are often convenient and intuitive.

Surface structures
When mapping abstract structures to surface structures of a language
(English, German, and Dutch in this paper), we assume that we can
freely handle sequences of words within simply typed λ-calculus (a
canonical encoding of those sequences is given by de Groote (2001)).

When dealing with mapping abstract structures to meaning rep-
resentations, we build an appropriate signature for Montague-style
semantics with atomic types that denote propositions (p) and entities
(e) and a set of constants that include the usual logical connectives
(Lp→p,

Vp→p→p, E(e→p)→p,etc.). We add additional constants for verb
predicates (walkse→p, lovese→e→p) and actual entities (Johne, Marye). No-
tice that to avoid confusion between the logical formula we use for
syntax from the logical formula representing truth-conditions in Mon-
tague semantics, we use a different font for the connectives of the two
logical languages. There are many other choices of signatures and
constants for semantic representation, depending on which theory of
semantic representation one adheres to. Nevertheless, any set of for-
mulae that can be adequately represented by terms of a 2-ACG’s object
language may be used for semantic representation in this formalism.

[102]

A logical approach to grammar description

The linearization process
The mapping between abstract structures and surface structures is de-
fined by associating linearization rules with the production rules of the
regular grammar. This mapping is mediated by the analyses of abstract
structures by the regular grammar. Realizations are indeed associated
to parse trees of abstract structures in the regular grammar. Never-
theless, as we wish to guide the way realizations are computed with
logical constraints over abstract structures, we need to relate nodes
of parse trees to nodes in abstract structures. This relation is as fol-
lows: each node in the parse tree corresponds to the use of a rule.
Such a rule rewrites a non-terminal to a tree that occurs in the ab-
stract structure. As a convention, we associate the root of that tree with
the node in the parse tree. Notice that due to possible ε-rules in the
regular grammar, i.e. rules of the form A → B, where B is another
non-terminal, there may be several nodes in the parse trees that are
related to the same node in the abstract structure; there may also be
nodes in the abstract structure that are not related to any node in the
parse tree by our convention. This is simply because they are inner
nodes of some right-hand side of a rule. Observe also that when a
node in the abstract structure is related to several nodes in the parse
tree, all those nodes form a chain in the parse tree (all of them cor-
respond to an ε-rule) and they are thus totally ordered. Since, once
we have fixed a parse tree, it is convenient to associate realizations
with nodes in the abstract structure, we take the convention that the
realization of a node x ′ in the abstract structure is the realization of
the node x at the highest position in the parse structure that is re-
lated to x ′.

The realization of nodes in the parse tree may depend on several
parameters: (i) the realization of the other non-terminals that occur in
the right-hand side of the production, (ii) the context in which the rule
is used (for example the realization of German or Dutch subordinate
clauses differ from that of the main clause), (iii) the realization of
nodes that appear elsewhere in the abstract structure, typically, this
shall be the case in the presence of wh-movement.

In order to take all those constraints into account, given a rule A→
t of the regular grammar, we tag the non-terminal A with a variable
x0 and assume that the non-terminals that occur in t are labelled with

[103]

Lionel Clément et al.

the variables x1, …, xn. Then the linearization rules are expressed as
a list of the form:

real(x0) ::= φ(x0, x1, . . . , xn, y1, . . . , ym)→
M[real(x1), . . . , real(xn), real(y1), . . . , real(ym)]

where M is a simply typed λ-term that is meant to combine the re-
alizations of the nodes denoted by x0, …, xn, y1, …, ym. The vari-
ables y1, . . . , ym are not tagging any node in the right-hand side of
the rule. The variables y1, . . . , ym represent nodes of a complete ab-
stract structure (i.e. nodes from the context in which the rule is used),
which makes the formula φ(x0, x1, . . . , xn, y1, . . . , ym) true in the ab-
stract structure (here x0 is interpreted as the node in the abstract tree
that is related to the use of the rule, i.e., by our convention, the root of
the subtree generated by the rule). In linearization rules, we shall call
internal variables those variables (the x i ’s) that are tagging the produc-
tion rules, while we shall call the other (the yi ’s) external variables. The
intendedmeaning of such a rule is that given nodes y1, . . . , ym in the ab-
stract structure so that φ(x0, x1, . . . , xn, y1, . . . , ym) holds true, if the re-
alizations of x1, . . . , xn, y1, . . . , ym respectively are real(x1), . . . , real(xn),
real(y1), . . . , real(ym) then the realization real(x0) of x0 is the (simply
typed) λ-term

M[real(x1), . . . , real(xn), real(y1), . . . , real(ym)] .

The realization of lexical entries needs to be explicitly given. For the
particular case of phonological realizations, we assume that each lexi-
cal entry is realized as the very word given by the entry. Then a realiza-
tion of a parse tree is a realization of its root. By extension, a realization
of an abstract structure is a realization of one of its parse trees.

Importantly, two different linearization rules need not use λ-
terms that have the same type. Indeed, depending on the context, a
rule may give rise to realizations that have distinct types. An example
of this is provided by the realizations of Dutch clauses depending on
whether they are relative clauses or main clauses: in the case of main
clauses, the realization is simply a string, while in the case of relative
clauses, the realization is a pair of strings so as to compute the cross
serial placement of arguments and verbs (see Section 3.1).

The use of external variables is motivated by the linguistic notion
of movement in syntax. Indeed, we shall see in Section 3 how to move

[104]

A logical approach to grammar description

a relative pronoun from its canonical place in the abstract structure to
its landing site in front of the linearization of a relative clause.

A priori, linearization rules associate non-deterministically a set
of realizations with a given parse tree of an abstract structure. In-
deed, there are two sources of non-determinism: (i) there may be sev-
eral linearization rules that may apply in a given node of the parse
tree, (ii) there may be several tuples y1, . . . , ym that make the formula
φ(x0, x1, . . . , xn, y1, . . . , ym) true. The use of non-determinism may be
of interest for linguistic models where some surface variation has no
incidence on the syntactic relations between the constituents like for
example the order of circumstantial clauses in French.

..S : c −→ .•.

verb : v

.

hea
d

.

A : s

.

subj

.

(A) : o

.
obj

c :=
transitive(v) −→ s v o

intransitive(v) −→ s v

Figure 5:
Example of a guided
linearization

Figure 5 gives an example of a linearization rule. This rule, as
most of the rules we shall meet later, does not use external variables.
To make the writing of rules shorter, we shall write realizations in the
teletype font, that is, v,s,o instead of real(v), real(s), real(o).

It is worthwhile to notice that the presence of external variables
can be problematic for realizations. Indeed, using this mechanism, it
is not hard to realize two nodes x and y so that the realization of x
depends on that of y and vice versa. In such a case we assume that
the realization is ill-formed and do not consider it. In the linguistic
examples we have considered so far, this situation has never arisen as
the external variables y1, . . . , ym on which the realization of a node x
depends are always strictly dominated by that node x . Nevertheless,
from a theoretical point of view, we show in the discussion at the end
of the section that the situations giving rise to circular definitions can
be filtered out with usual finite state automata techniques.

We now give a formal definition of what it means for an abstract
structure t to be realized by a term M . For the sake of simplicity and
without loss of generality (as we have seen in Section 2.1, page 100),

[105]

Lionel Clément et al.

we assume that the grammars we use have constraints that bear only
on the root of the right-hand sides of rules. Thus, given a constrained
grammar with linearization rules, such a grammar generates 5-tuples
(E, V, t,ν,φ) where:

• t is a tree,
• φ is a logical formula,
• ν is a valuation of some of the free variables of φ in dom(t),
• V is a function from the positions of t which are labelled with
non-terminals to variables that are free in φ,

• E is a deterministic grammar (i.e. each of its non-terminals can be
rewritten with at most one rule) whose non-terminals are the free
variables in φ; the rules of the grammar rewrite non-terminals to
λ-terms (that may contain occurrences of non-terminals). More-
over, the variables occurring in the right-hand sides of rules but
not in the left-hand sides are either variables that are mapped to
a position of a non-terminal in t by V , or which are not in the
domain of ν (i.e. external variables).

As we have defined valid abstract structures, t is the abstract structure
being produced, φ is a logical formula that the completely derived tree
needs to verify. The valuation ν is a bit different from the definition of
valid abstract structures in that it does not map every variable that is
free in φ to a node in t. This is due to the external variables that need
to be found once the derivation is completed.

The other elements of the tuple, namely E and V , are there to
construct a parse tree and maintain the relation between the nodes of
the parse tree and the nodes of t, respecting the convention we spelled
out earlier. The unique derivation of E actually represents the parse
tree being constructed, while its rewriting rules contain the necessary
information to construct the realization. The function V maps the non-
terminals occurring in t to variables that shall later be used in the
construction of E once they are rewritten. The relation between the
nodes in the parse tree and the nodes in the abstract tree is maintained
by ν via the use of variables: a variable x that is a non-terminal in E
represents the use of a rule (i.e. a node in the parse tree) which is
related to the node ν(x) of t. The role of V is to permit the extension
of the relation in the course of the derivation.

[106]

A logical approach to grammar description

Let us now see how this works. A rule of the grammar such as the
one given in Figure 6 can act on such a tuple. Let us consider a tree t
that has an occurrence of the non-terminal A at position u. Then a rule
of the form A→ s can rewrite a tuple (E, V, t,ν,φ) into

(E′, V ′, t ′,ν′,φ ∧ψ(x ′0)∧ψk(x
′
0, . . . , x ′n, y ′1, . . . , y ′m))

where:
• t ′ is obtained from t by replacing the occurrence of A at position

u by s,
• x ′0 = V (u),
• x ′1, …, x ′n, y ′1, …, y ′m are fresh variables,
• ν′ is the valuation that maps every variable x distinct from the

x ′i ’s (i ̸= 0) and the y ′j ’s to ν(x) and that maps each variable x ′i ,
with 1 ≤ i ≤ n, to uli when li is the position of the node that is
tagged with x i in s,

• 1 ≤ k ≤ p, is the index of the possible realization chosen for the
rule; it corresponds to the choice of a formulaψk(x0 . . . xn, y1 . . . ym)
and the corresponding realization Mk,

• V ′ is equal to V for positions different from ul1, …, uln and
V ′(uli) = x ′i for 1≤ i ≤ n,

• E′ is E to which we add the rule x ′0→ M ′k and where M ′k is obtained
from Mk by respectively substituting x ′1, …, x ′n, y ′1, …, y ′m for x1,
…, xn, y1, …, ym.

..A−→ .• : x0

.

A1 : x1

.
l 1

.

. . .

.

...

.

An : xn

.
ln

ψ(x0 . . . xn)

x0 :=

ψ1(x0 . . . xn, y1 . . . ym) −→ M1...
ψp(x0 . . . xn, y1 . . . ym) −→ Mp

(Where the free variables in M1 . . .Mp are x1 . . .xn y1 . . .ym.)

Figure 6:
Constrained production
with its associated
linearization rule

[107]

Lionel Clément et al.

A rule A→ w that rewrites a non-terminal into a lexical entry w, as-
suming that this lexical entry is associated with the realization w, can
rewrite (E, V, t,ν,φ) into (E′, V, t ′,ν,φ) where:

• t ′ is obtained by replacing the occurrence of the non-terminal A
at the position u by w,

• E′ is the grammar obtained from E by adding the rule x → w if
V (u) = x .
A complete derivation is a derivation such that (;, (ϵ, x), S,;, true)

rewrites in several steps into (E, V, t,ν,φ), where t does not contain
any occurrence of a non-terminal. The rules of E define a unique term,
but this term may be not well-typed, or it may contain some free vari-
ables due to the external variables of some rule used in the course of
the derivation. In the first case, we consider the derivation as invalid,
in the second case, we need to give a meaning to the free variables of
the term defined by E.

For this, we need a valuation ν′ that extends ν bymapping the free
variables of φ for which ν is undefined to ν(dom(E)), where dom(E) is
the set of variables that are non-terminals of E. Thus ν′ extends ν by
mapping the external variables to nodes of t which are related to some
node in the parse tree implicitly represented by E. Moreover, ν′ need
to be such that t,ν′ |= φ. Notice that, in particular, this forces t to be
a valid tree of the underlying regular grammar of abstract structures,
as φ contains as one of its conjuncts the formula that t should satisfy
in order to be valid. Now that ν′ is given, we may assign a semantics
to the free variables in the term defined by E. For this, we follow our
convention, by associating with an external variable y the realization
of the node ν(y). Technically, it suffices to remark that, as E is a deter-
ministic grammar, its rules induce a partial order on the non-terminals
of E. Using this partial order, we replace each occurrence of a param-
eter y by the maximal non-terminal x in E so that ν′(x) = ν′(y). If
we do this for each parameter y, we obtain a deterministic grammar
E′; if this grammar defines a finite well-typed term, this term must be
unique and we call it realization of (E, V, t,ν,φ). Nevertheless, E′ may
not define any finite term due to circular definitions, and it may also
define badly typed terms.

Thus, in a nutshell, given the result (E, V, t,ν,φ) of a complete
derivation, its set of realizations M is given by every extension ν′ so that

[108]

A logical approach to grammar description

t,ν′ |= φ, so that the grammar E′ that ν′ induces defines the well-typed
term M ′, whose normal form is M . Notice that, with this definition, a
non-valid tree has an empty set of realizations.

More abstractly, we may see the linearization process as a Mo-
nadic Second-Order transduction (MSO-transduction) in the sense of
Courcelle (1994) that turns the parse tree of a valid tree into a Di-
rected Acyclic Graph (DAG) whose nodes are labelled with λ-terms.
Then we take the unfolding of this DAG into a tree which can then
be seen as a λ-term. The final step consists in β-normalizing this term
provided it is well-typed. Courcelle and Engelfriet (1995) (see also
Courcelle and Engelfriet 2012 for a more recent presentation of that
result) showed that the class of languages definable with Hyperedge
Replacement Grammars (HRG) is closed under MSO-transductions. As
regular languages can easily be represented as HRGs, this shows that
the language of DAGs output by the linearization process is definable
by a Hyperedge Replacement Grammar (HRGs). Moreover, as shown
by Engelfriet and Heyker (1992), the tree languages that are unfold-
ings of DAG languages definable with HRGs are output languages of
attribute grammars, which in turn can be seen as almost linear 2-ACGs
as showed by Kanazawa (2011, 2009). Thus, taking another homomor-
phism yields in general a non-linear 2-ACG. Nevertheless, when mod-
elling the phonological realizations, we expect that the language we
obtain is a linear 2-ACG. It is worthwhile to notice that the acyclicity
of a graph is a definable property in MSO, and also that the well-typing
of a tree labelled by λ-terms is MSO definable as well. Moreover, the
translation of the linearization rules into a 2-ACG is such that the ab-
stract syntactic structure can be read from the derivation trees of the
2-ACG we obtain with a simple relabelling. Indeed, when we showed
how to construct a regular grammar recognizing the set of valid ab-
stract structures, the abstract language of the 2-ACG was obtained by
enriching the derivation trees of the regular grammar with informa-
tion about the states of the automata corresponding to the logical for-
mula or to the typing constraints. Therefore, the regular grammar with
constraints and linearization rules can be effectively compiled into a
2-ACG. It is worthwhile to notice that the compiled grammar may be
much larger than the original description.

[109]

Lionel Clément et al.

Handling optional arguments
We have proposed earlier to use (A) in regular tree productions to
denote that an argument A is optional. Such an optional argument is
then taken as a non-terminal that can rewrite into either A or ⊥. When
defining a linearization, the realization of (A) is taken to be that of
the symbol that it rewrites to. We will set some default value as the
realization of ⊥, so that the realization of an empty argument is well
defined.

For instance, in the example described by Figure 5, a sensible
value for ⊥ is the empty string ϵ. With this default value, we may
simply have one linearization rule c := true −→ s v o. Thus, when
the verb is intransitive, the constraints we have put on the valid trees
imply that the obj argument in the tree must be ⊥. Taking the empty
string as a default value, we get s v o = s v, which is the expected
realization of an intransitive verb clause.

We can choose to provide each optional argument with its own
default values, depending on what we consider a sensible realization
of an empty optional argument. We could also conceivably associate
a value with ⊥ that depends on its context in a stronger way, by using
logical formulae. However, we have not found it useful in the mod-
els we have worked on; therefore, the linearization of optional argu-
ments will only be ϵ for phonological linearizations, and a semanti-
cally empty argument when linearizing towards a sentence meaning
representation.

Additional macro syntax
The main goal of our approach is concision. To avoid redundancy in
linearization rules, we introduce a syntactic mechanism that factors
out some redundant constructions. Indeed, the number of lineariza-
tion rules depend on the number of syntactic situations that may have
an influence on the form the linearization takes. This number can be
rather high, and just listing the situations may give the impression
that one misses obvious generalizations, or structural dependencies
between various cases.

The mechanism we propose to cope with this problem tries to give
more structure to linearization rules. Mainly this mechanism is a form
of simply typed λ-calculus designed to manipulate the linearization

[110]

A logical approach to grammar description

rules. This calculus is parametrized with a finite set of variables X
of the syntactic logical language. We write FO[X] as a shorthand for
the set of logical formulae whose set of free variables is included in
X . The set of types of the language is divided into two disjoint sets:
otypes and ωtypes. The set otypes is the set of simple types of the object
language (i.e. the target language of the linearization) and ωtypes are
types of the form A1→ · · · → An→ω, whereω is an atomic type that is
distinct from the atomic types used in otypes and A1, …, An are otypes.
As we have seen, one of the features of the linearization mechanism is
that, depending on the context, the type of the realization may vary.
Thus, in general, linearization rules are objects of the form [φ1 −→
M1, . . . ,φn −→ Mn], where M1, . . . ,Mn are terms that may have different
types. The atomic type ω is meant to type these objects.

The set of terms of the language, TA,X , is thus indexed with two
parameters: A is either an otypes or an ωtypes and X is the set of vari-
ables that are allowed to be free in the logical formula. The sets TA,X

are inductively defined as follows:
• for A in otypes, xA is in TA,X ,
• if M and N are respectively in TA→B,X and in TA,X , then MN is in
TB,X ,

• if M is in TB,X and A is in otypes then λxA.M is in TA→B,X ,
• if M1, . . . , Mn are all in TA,X with A in otypes and φ1, . . . ,φn are all
in FO[X], then [φ1 −→ M1, · · ·φn −→ Mn] is in TA,X ,

• if M1, . . . , Mn are respectively in TA1,X , . . . ,TAn,X with the A1, . . . , An

either being equal to ω or being in otypes, then and φ1, . . . ,φn are
all in FO[X], then [φ1 −→ M1, · · · ,φn −→ Mn] is in Tω,X .

We adopt a call-by-value operational semantics for this language: as
for IO languages (see Kobele and Salvati 2013), the notion of value
coincides with that of the normal form. For this we need the notion
of pure terms, that is λ-terms which contain no construct of the form
[φ1 −→ M1, · · · ,φn −→ Mn]. We shall denote pure terms in β-normal
form with V , possibly with indices. A term is said to be in the normal
form either when it is a pure term in the β-normal form, or when it
is a term of the form [φ1 −→ M1, . . . ,φn −→ Mn], where M1, . . . , Mn

are pure terms in the β-normal form. From now on we shall write W ,
possibly with indices, for terms that are values, that is terms in normal

[111]

Lionel Clément et al.

form. The computational rules of the calculus are as follows (M[V/x]
denotes the capture-avoiding substitution of V for the free occurrences
of x in M):

• (λx .M)V → M[V/x],
• (λx .M)[φ1 −→ V1, . . . ,φn −→ Vn]→

[φ1 −→ M[V1/x], . . . ,φn −→ M[Vn/x]],
• [φ1 −→ M1, . . . ,φn −→ Mn]W → [φ1 −→ M1W, . . . ,φn −→ MnW],
• λx .[φ1 −→ V1, . . . ,φn −→ Vn]→ [φ1 −→ λx .V1, . . . ,φn −→ λx .Vn],
• V [φ1 −→ V1, . . . ,φn −→ Vn]→ [φ1 −→ V V1, . . . ,φn −→ V Vn] when

V is not a λ-abstraction,
• [φ1 −→ M1, . . . ,φk −→ [ψ1 −→ V1, . . . ,ψn −→ Vn],

. . . ,φm −→ Mm]→
[φ1 −→ M1, . . . ,φk ∧ψ1 −→ V1, . . . ,φk ∧ψn −→ Vn, . . . ,φm −→ Mm].

The strong normalization of the simply typed λ-calculus induces the
fact that computations in that calculus are terminating. The subject re-
duction property (the fact that the types of terms are invariant under re-
duction) is also inherited from the simply typed λ-calculus. We adopt
in general a right-most reduction strategy which consists in rewriting
the redex that is at the furthest right position in the term. This imple-
ments a call-by-value semantics for this language.

Finally, in the rest of the paper, we shall adopt some slight vari-
ation on the syntax of the language. In particular, we shall omit the
typing annotations most of the time. We shall also write structures
like [φ1 −→ M1, . . . ,φn −→ Mn] as column vectors in which we omit
the ’,’ comma separator. We may also omit the square brackets or only
put the left one to lighten the notation. We may write M where x1 =
M1 and . . . and xn = Mn in place of (λx1 . . . xn.M)M1 . . . Mn. Another
abbreviation consists in simply writing M for [true −→ M]. Finally
when we write [φ1 −→ M1, . . . ,φn −→ Mn, else −→ M]we mean [φ1 −→
M1, . . . ,φn −→ Mn,¬φ1 ∧ · · · ∧ ¬φn −→ M]. Examples of this notation
are used all along the next section.

[112]

A logical approach to grammar description

3 illustration

3.1 Synchronous grammar
We now illustrate the formalism we have introduced in the previous
section by constructing a more complex grammar. This grammar will
provide a superficial cover of several overlapping phenomena. It cov-
ers verbal clauses with subject, direct object, and complement clause
arguments, taking into account verb valency. It also includes subject
and object control verbs, and modification of noun phrases by rela-
tive clauses, with a wh-movement account of relative pronouns that
takes island constraints into account. It also models a simplistic case
of agreement that only restricts the use of the relative pronoun that
to neuter antecedent. Linearization rules are provided that produce
phonological realizations for English, German, and Dutch, in order to
demonstrate the possibility of parametrizing the word order of real-
izations (including cross-serial ordering). Another set of linearization
rules produces Montague-style λ-terms that represent the meaning of
the covered sentences. Even though we have chosen our example so
as to avoid a complete coverage of agreement, we hope that the treat-
ment of that is illustrative enough to give a flavor of its rather straight-
forward extension to a realistic model of agreement.

Our goal when designing this grammar is to confront the method-
ology described so far against the task of dealing with the modeling
of several interacting phenomena, along with both their syntactic and
semantic linearizations, and evaluate the results in terms of expres-
siveness as well as concision.

Vocabulary
First, we construct a vocabulary for our grammar. The part-of-speech
properties we use are:

proper_noun, noun, pronoun, determiner, verb.
The other lexical properties are:

pro_rel, transitive, ctr_subj, ctr_obj, infinitive, masculine,
feminine, neuter

and designate respectively: relative pronouns, transitive verbs, subject
control, and object control verbs, verbs in infinitive form, and gender
marking.

[113]

Lionel Clément et al.
Table 2:
Excerpt

vocabulary
English German Dutch Semantic type Properties
lets lässt laat e→ e→ p→ p verb; ctr_obj; transitive
help helpen helfen e→ e→ p→ p verb; ctr_obj; transitive; infinitive
want willen wilen e→ p→ p verb; ctr_subj; infinitive
read lesen lezen e→ e→ p verb; transitive; infinitive
that das dat (e→ p)→ p pronoun;pro_rel;neuter
a ein een (e→ p)→ p determiner;neuter

book Buch boek e→ p noun;neuter
John Hans Jan e proper_noun;masculine
Mary Marie Marie e proper_noun; feminine
Ann Anna Anna e proper_noun; feminine

The vocabulary is summed up in Table 2. The table also gives the
expected phonological realizations of the individual lexical entries for
English, German, and Dutch, along with the type of their semantic re-
alization. Semantic types are based on e and p, which denote entities
and propositions (truth values), respectively. Abstract structure leaves
that are lexical entries will be written as their associated English real-
izations; and so will their semantic realizations, with the same type-
setting conventions we used previously: e.g. song (abstract structure
leaf) vs. song (semantic realization).

Regular over-approximation
We now present the regular grammar that over-approximates the set of
valid abstract structures. It contains three non-terminal symbols C , A,
and M . The start symbol C corresponds to independent or subordinate
clauses, A to noun phrases that are an argument of some clause, and
M to modifiers.

The labels used on the edges of abstract structures belong to the
list (head, subj,obj,arg_cl,det,mod) and designate respectively the head
of the (nominal or verbal) phrase, the nominal subject, the nominal
direct object, an additional complement clause of the verbal predicate,
the determiner in a noun phrase, and a modifier.

The production rules of the grammar are given in Figure 7. The
production p1 constructs a clause with a verb as its head, along with its
(optional) arguments; p2 recursively adds a modifier to an argument;
p3 through p5 build an argument as a noun phrase, respectively in the

[114]

A logical approach to grammar description
..p1 : C −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

..p2 : A−→ .•.

A : a

.
hea

d
.

M : m

. mod

..p3 : A−→ .•.

noun : n

.
hea

d
.

determiner : d

.
det

p4 : A−→ proper_noun : pn p5 : A−→ pronoun : p p6 : M −→ C : r

Figure 7:
Regular over-
approximation
of valid
sentences

form of a determiner/noun pair, a proper noun, and a pronoun; and
finally p6 constructs a modifier as a verbal clause. Note that the only
type of modifiers covered in the grammar are verbal clauses (which
we shall restrict to be relative clauses), but other could be added by
adding more productions that rewrite M as an adjective or a genitive
construct.

Defining linguistic notions
We now use the logical language to construct predicates that model
linguistic notions and relations. We shall use these relations both for
constraining the regular grammar and to guide the linearization pro-
cess. The predicates and relations we add are summed up in Table 3.

The first predicate recognizes a control verb which is simply a
verb that has the subject control or object control lexical property:

control_verb(v) := verb(v) ∧ (ctr_subj(v) ∨ ctr_obj(v))
The second predicate defines a clause as a subtree whose head is

a verb:
clause(cl) := ∃v.verb(v) ∧ head(cl, v)

Then, a controlled clause is a clause that serves as an argument
of a control verb:

controlled(ctd) := clause(ctd) ∧
∃ctr.control_verb(ctr) ∧ head ↑ arg_cl(ctr, ctd)

We construct another predicate to identify verbs that expect an
argument clause. In the context of our grammar, this is equivalent to

[115]

Lionel Clément et al.
Table 3:
Logical

predicates
modelling
linguistic
notions

control_verb(v) := verb(v) ∧ (ctr_subj(v) ∨ ctr_obj(v))
clause(vp) := ∃v.verb(v) ∧ head(vp, v)

controlled(ctd) := clause(ctd) ∧ ∃ctr.control_verb(ctr) ∧ head ↑ arg_cl(ctr, ctd)
clause_verb(v) := control_verb(v)

independent(icl) := clause(icl) ∧ ∀cl.clause(cl)⇒¬any+(cl, icl)
subordinate(scl) := clause(scl) ∧ ∃p.(mod+ arg_cl)(p, scl)

relative(rcl) := subordinate(rcl) ∧
∃hd.(noun(hd) ∨ proper_noun(hd)) ∧ head∗ ↑mod(hd, rcl)

ext_path(cl, p) := (subj+ arg_cl∗ obj)(cl, p)

ext_obj(obj) := pro_rel(obj) ∧ ∃cl.obj(cl, obj)

ext_suj(suj) := pro_rel(suj) ∧ ∃cl.subj(cl, suj)

ext_cl(cl) := ∃p.ext_path(cl, p) ∧ pro_rel(p)
gd_agr(x , y) := (masculine(x) ∧ masculine(y))

∨ (feminine(x) ∧ feminine(y))
∨ (neuter(x) ∧ neuter(y))

antecedent(ant,pro) := (noun(ant) ∨ proper_noun(ant)) ∧ pro_rel(pro)

∧ ∃rcl.relative(rcl) ∧ head∗ ↑mod(ant, rcl)

∧ ext_path(rcl, pro)

the verb being a (subject or object) control verb:
clause_verb(v) := control_verb(v)

This predicate could be extended to include verbs that expect other
forms of complement clauses besides the infinitival clauses associated
with control verbs.

The following predicates enable us to distinguish between differ-
ent types of clauses.

First, an independent clause is a clause that is not dominated
(through any non-empty sequence of edges) by any other clause:

independent(icl) := clause(icl) ∧ ∀cl.clause(cl)⇒¬any+(cl, icl)

By contrast, a subordinate clause is a clause that serves as a com-
plement or modifier:

subordinate(scl) := clause(scl) ∧ ∃p.(mod+ arg_cl)(p, scl)

[116]

A logical approach to grammar description

Then, a relative clause is a subordinate clause that modifies a
noun phrase (a subtree whose head is a common or proper noun):

relative(rcl) := subordinate(rcl) ∧
∃hd.(noun(hd) ∨ proper_noun(hd)) ∧
head∗ ↑mod(hd, rcl)

We then add a predicate to identify objects that undergo a wh-
movement (which we call extracted). This covers all relative pronouns
that fill an object role in a clause. We also provide a similar predi-
cate for extracted subjects, following the usual analysis of generative
grammars (Chomsky 1981):

ext_obj(obj) := pro_rel(obj) ∧ ∃cl.obj(cl, obj)

ext_suj(suj) := pro_rel(suj) ∧ ∃cl.subj(cl, suj)

Next, we add a relation that links an insertion site and its corre-
sponding extraction site, taking into account island constraints as de-
fined by Ross (1967). We recall that, in the generative tradition, the
extraction site is the position at which a wh-word would be realized
given its syntactic role according to the canonical word order of a lan-
guage. By contrast, the insertion site corresponds to its actual position
in the sentence. In our grammar, complying with island constraints
means that only arg_cl edges are allowed for traversal before we reach
a distant extracted object:

ext_path(cl, p) := (subj+ arg_cl∗ obj)(cl, p)

Using this relation, we define another predicate, which denotes
that a complement clause contains an extraction of some form; this
corresponds to the clause containing a relative pronoun at the end of
a valid extraction path:

ext_cl(cl) := ∃p.ext_path(cl, p) ∧ pro_rel(p)

Note that the straightforward definition of ext_pathwe have given does
not, purposefully, guarantee that the first position given is an inser-
tion site, nor that the second one is an extraction site. It simply ensures
that island constraints are not violated for long-distance extractions in
the context of our grammar. However, since we are only going to use

[117]

Lionel Clément et al.

it in contexts where both its arguments must satisfy the other prereq-
uisites for wh-movement, this simple definition will be sufficient for
our needs.

We add another relation that verifies gender agreement between
two nodes. This relation is simply true if and only if both of the in-
volved nodes have the same gender property:

gd_agr(x , y) := masculine(x) ∧ masculine(y)
∨ feminine(x) ∧ feminine(y)
∨ neuter(x) ∧ neuter(y)

This relation could be extended so as to account for more agreement
phenomena such as number, case, etc.

Finally, we define one last relation that links a relative pronoun to
its antecedent. This relation is built upon ext_path and links the head
of a noun phrase to the relative pronoun of the relative clause that
modifies it:
antecedent(ant, pro) := (noun(ant) ∨ proper_noun(ant)) ∧ pro_rel(pro)

∧ ∃rcl.relative(rcl) ∧ head∗ ↑mod(ant, rcl) ∧ ext_path(rcl, pro)

This relation will allow us to verify that relative pronouns agree with
their antecedents.

Logical constraints
In order to refine the over-approximation given in Figure 7, we now
add logical constraints to production rules. We recall that only the
abstract structures which satisfy these formulae are considered valid
according to the grammar, thus filtering out many ill-formed struc-
tures.

We first consider p1, for which four additional constraints are
given in Figure 8.

Constraints (1) and (2) deal with verb valency, ensuring that the
produced clause has an object if and only if the head is a transitive
verb, and a complement clause if and only if the head is a verb that
expects one. Constraint (3) equates the lack of an explicit subject ar-
gument with the fact that a clause is controlled. From a syntactic point
of view, our model uses clauses without an explicit subject. We shall
see later how logic allows us to associate its subject with a controlled
clause. Finally, constraint (4) ensures that verbs in controlled clauses

[118]

A logical approach to grammar description
..C −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

transitive(v)⇔ some(o) (1)
clause_verb(v)⇔ some(c) (2)
controlled(t)⇔ none(s) (3)
controlled(t)⇔ infinitive(v) (4)

Figure 8:
Logical constraints
for p1

are in an infinitive form and, since the grammar does not handle other
kinds of infinitive clauses, we assume that all infinitive verbs are con-
trolled.

We now consider the relation between relative clauses and rel-
ative pronouns. We want to ensure that the valid abstract structures
show a one-to-one relation between relative pronouns and the relative
clauses they belong to. These pronouns should also be found at posi-
tions in their relative clause that are consistent with island constraints.
This is guaranteed by a pair of symmetrical constraints on productions
p5 and p6:

p5 : A−→ pronoun : p p6 : M −→ C : r

pro_rel(p)⇒∃!r.relative(r) ∧ ext_path(r, p) ∃!p.pro_rel(p) ∧ ext_path(r, p)

pro_rel(p)⇒
∃ant.antecedent(ant, p) ∧ gd_agr(ant, p)

The production p5 rewrites an argument A as a pronoun. The first
constraint associated with it ensures that, if it is a relative pronoun,
there is a unique relative clause to which this pronoun corresponds.
Conversely, p6 produces a relative clause and ensures that there is a
unique relative pronoun that corresponds to it. Both constraints use
the ext_path relation to make sure that the path between the top of the
relative clause and its corresponding pronoun is valid and does not
violate island constraints.

[119]

Lionel Clément et al.

Then, the second constraint on p5 ensures that a relative pronoun
has an antecedent, and that both of them are in agreement. With this,
we rule out constructs like “Mary that …” in English, “Marie das …” in
German or “Marie dat…” in Dutch. This illustrates how agreement can
be added to the grammar. However, as languages may have different
sets of gender and agreement rules, when dealing with synchronous
grammars, it is better to model agreement by refining a core common
grammar for each target language. We here avoid this complication
for the sake of keeping the illustration of the formalism rather simple.
This is why we only give a simplistic treatment of the neuter gender
that behaves similarly in English, Dutch, and German for the particular
set of sentences we model.

Finally, one last syntactic restriction that we want to add is to
forbid the addition of a modifier to a relative pronoun (which would
be ungrammatical). The corresponding constraint is added to p2 as
shown in Figure 9.

Figure 9:
Logical constraint of p2

..A−→ .•.

A : a

.

hea
d

.

M : m

. mod

¬pro_rel(a)

The added logical constraint simply ensures that a modified ar-
gument a cannot be a relative pronoun.

Phonological linearizations
Finally, we turn to the process of describing four linearizations (to-
wards English, German and Dutch on one hand, and semantics on the
other hand) of the grammar. We will begin with the phonological lin-
earizations, starting with the most straightforward linearization rules,
until we have covered all the productions in the grammar. A com-
plete representation of the grammar, including production rules, logi-
cal constraints, and all the linearization rules, is available in Figures 17
and 18.

First, we consider the phonological linearization rules for produc-
tions p2 through p5, which are given in Figure 10.

The linearization rules are the same for all target languages (i.e.
English, German, and Dutch): p4 and p5, being unary terminal rules,

[120]

A logical approach to grammar description

..A : l −→ .•.

A : a

.

hea
d

.

M : m

. mod

..A : l −→ .•.

determiner : d

.
det

.

noun : n

. head

l := a m l := d n

A : l −→ proper_noun : pn A : l −→ pronoun : p

l := pn l := p

Figure 10:
Phonological linearization
rules for productions p2

through p5

are simply realized with the string value associated with the lexical
entry of the leaf they rewrote into. The linearization of productions
p2 and p3 is obtained by concatenating the string values of the lexical
entries in the expected order, which means that the determiner is fol-
lowed by the noun for p3 and the whole noun phrase is followed by
the relative clause for p2.

We then turn to the linearization of p6:
M : l −→ C : r

l := ext_path(r,p) ∧ pro_rel(p) −→ p r

This production enables us to rewrite a modifier as a relative clause
r. Once again, the linearization remains the same cross-linguistical-
ly. However, it uses an external variable p, which corresponds to the
relative pronoun of this relative clause. Let us recall that this gram-
mar treats relative pronouns as wh-elements which appear in the ab-
stract structure at the position corresponding to their syntactic func-
tion, which means they have to be phonologically realized at a distant
position in the tree in order to precede the rest of the relative clause.
The linearization rule thus calls for the realization of the (unique) rel-
ative pronoun p which satisfies ext_path(r,p), and places it before the
rest of the relative clause in the realization.

Note that the logical constraint given earlier for this production
guarantees that such a pronoun does exist (and that it is unique) in
all valid abstract structure trees. Hence, this linearization rule always
produces a realization.

Finally, we consider the more sophisticated linearization rule as-
sociated with p1, depicted in Figure 11.

[121]

Lionel Clément et al.
Figure 11:

Phonological linearization
rules for p1

..C : e, g, d −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

e := su v ob c

g :=

� independent(t) −→ su v ob c

subordinate(t) −→ su ob c v

d :=

independent(t) ∧ ¬control_verb(v) −→ su v ob c

subordinate(t) ∧ ¬controlled(t) ∧ ¬control_verb(v) −→ su ob c v

subordinate(t) ∧ controlled(t) ∧ ¬control_verb(v) −→ 〈ob c,v〉
subordinate(t) ∧ controlled(t) ∧ control_verb(v) −→ 〈ob c.1,v c.2〉
subordinate(t) ∧ ¬controlled(t) ∧ control_verb(v) −→ su ob c.1 v c.2

independent(t) ∧ control_verb(v) −→ su v ob c.1 c.2

where ob=

� ext_obj(o) −→ ϵ

else −→ o

and su=

� ext_suj(s) −→ ϵ

else −→ s

Having to deal with the linear ordering of the clause arguments,
this production uses different linearization rules for each target lan-
guage. We use different labels e, g, d for each one in the figure, which
stand for English, German, and Dutch, respectively.

First, we take the linearization of empty optional leaves (⊥) to be
the empty string for all non-terminals.

Then, consider the final where statements, which are the same in
all three linearizations (we have only written them once in order to
clear up the figure). They describe two variable constructs (su,ob),
which are slightly more abstract versions of the arguments they cor-
respond to (s,o): these constructs denote the local realizations of the
subject and object arguments which can be either the empty string ϵ, if
the subject or object is a wh-pronoun marked for extraction, or simply
the realization of the argument itself otherwise. We use this abstrac-
tion in place of the actual subject and object variables everywhere else
in the linearization rules.

[122]

A logical approach to grammar description

Now, the linearization rule for English simply concatenates the
verb and its arguments in the usual SVO order, with the complement
clause at the end.

The linearization rule for German, on the other hand, relies on the
context to pick an appropriate word order: when the current clause
is an independent clause, it uses the same SVO word order as En-
glish; however, if it is a subordinate clause, then the verb is rejected at
the end, as expected in German sentences. Note that this linearization
does not account for the scrambling phenomenon that occurs in Ger-
man subordinate clauses. A possibility for modelling this phenomenon
would be to define linearization in the algebra for free word orders
proposed in Kirman and Salvati (2013).

Finally, we turn to the more complex linearization rule for Dutch.
The first two cases, which cover independent or subordinate clauses in
which no control is involved, have the same realization as in German.
The third logical clause builds a realization in the case of a subordi-
nate clause which is controlled by its parent clause. Controlled clauses,
rather than being realized as a string, are realized as a pair of strings so
as to produce the expected cross-serial word order of Dutch. The first
element of the pair accumulates object arguments, while the second
one stacks the verbs. The next logical clause covers the case of a verb
in a subordinate clause which exerts a control while being controlled
itself; this is the “intermediate” step in cross-serial constructions. It
builds up the stack of objects by concatenating its object argument
before the first projection of the realization of its argument clause,
and does the same for verbs on the second projection, producing a
pair of strings similar to the one it received from its argument clause.
Finally, the last two clauses of the linearization complete a cross-serial
construct by concatenating both projections of the pair of strings they
receive in the expected order, according to whether the topmost clause
in the series is an independent or subordinate clause.

As a last remark, note that it is easily verified that the given set of
linearization rules provides a linearization for all valid abstract struc-
tures.

Semantic linearization
We now turn to the semantic linearization rules. Let us recall the se-
mantic types given in the vocabulary from Table 2. We work with

[123]

Lionel Clément et al.
Figure 12:

Semantic linearization
rules for productions p2

through p5

..A : l2 −→ .•.

A : a

.

hea
d

.

M : m

. mod

..A : l3 −→ .•.

determiner : d

.
det

.

noun : n

. head

l2 := λP.a λx. ∧ (m x) (P x) l3 := λP.d λx. ∧ (n x) (P x)

A : l4 −→ proper_noun : pn A : l5 −→ pronoun : p

l4 := λP.P pn l5 := pro_rel(p) −→ λP.P Ωp

simple types built from the basic types e, which denotes entities, and
p which denotes propositions. We add two constants Ωe and Ωp to the
object language, which are empty semantic values for these base types.
We follow a straightforward version of the usual Montague-style in-
terpretations of syntactic categories. We take the semantic value of
nouns and modifiers to have type e→ p, building a proposition from
an entity. The interpretation of proper nouns simply refers directly
to the entity they correspond to (type e). Determiners have the type
of a quantifier (e → p) → p. The type of verbs depends on the type
and number of arguments they expect: they can be either e → p (for
intransitive verbs), e → e → p (transitive), e → p → p (expecting a
complement clause), and e → e→ p → p (both transitive and expect-
ing a complement clause). Finally, the type of a clause can be either
p for an independent clause, e → p for controlled clauses, e → p for
clauses on an extraction path, or e→ e→ p for clauses both controlled
and on an extraction path. These four types account for all the possible
cases of missing arguments; including a missing subject (in the case of
a control or a subject relative clause), or a possibly distant object (in
the case of an object relative clause). These abstracted arguments will
be provided either by the parent (controlling) clause or the antecedent
of the relative clause. Finally, we take the convention that the upper-
case letter variables bound in our semantic λ-terms have type e→ p,
while lower-case letter ones have type e.

We consider first the linearization rules that produce an argu-
ment, that is those depicted in Figure 12. The left-hand side of each
production pi in the figure is labelled with li to help identify them.

[124]

A logical approach to grammar description

First we consider production p4: its linearization constructs an
argument from an element by abstracting the predicate to which it
will eventually be applied, using the type-raising construction usual
in Montague semantics. Production p5, when realizing a relative pro-
noun, produces an “empty” argument with no semantic value. As the
corresponding argument in the clause will have to be linked with the
relative’s antecedent, the corresponding term will be deleted during
the linearization of the clause that dominates l5. Finally, productions
p2 and p3 construct the semantics of noun-phrase using the continua-
tion passing style that is usual in Montague semantics.

Next, we consider the linearization of p6, given below:
M : l −→ C : r

l := r

This linearization rule builds a modifier from a clause. Since a rel-
ative clause must contain exactly one extracted pronoun and cannot
be controlled (as it is not an argument of a controller verb), the result-
ing realization has the type of a predicate. This element will later be
used to modify the meaning of its antecedent with the rule p2.

Last, we consider the linearization rule for p1, given in Figure 13.
This linearization rule takes into account all the possible contexts and
arguments of a clause, and builds a realization accordingly. It relies
on the reification of several concepts that are described separately
using where statements, then plugged together as needed to build the
realization. These constructs are denoted by the variables su, ob, cl; in
addition, the variable fcl is used to avoid repetitions by factorizing a
major part of the term that constitutes the final realization.

First, the variables su and ob correspond respectively to the sub-
ject and object type-raised arguments of the clause. In most cases,
these arguments are simply the realization of the subj and obj argu-
ments of the clause, that is s,o. However, either of them may actually
be a relative pronoun, and the corresponding element should be left
abstract, so as to allow the antecedent to use the relative clause as
a modifier. In such cases (ext_suj, ext_obj), the actual subject or object
element is left as a free variable e; and su or ob are obtained with a
simple type-raising construction, thus behaving exactly as a normal
subject or object argument would. Finally, it may also be that the subj

[125]

Lionel Clément et al.
Figure 13:

Semantic linearization
rule for p1

..C : l −→ .• : t.

verb : v

.

head
.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

l :=

¬ext_cl(t)−→
�¬controlled(t)−→ fcl Ωe Ωe

controlled(t)−→ λs′. fcl s′ Ωe

ext_cl(t)−→
�¬controlled(t)−→ λe. fcl Ωe e

controlled(t)−→ λs′.λe. fcl s′ e

where fcl= λs′.λe.su λx .ob λy.

¬transitive(v)−→
�¬clause_verb(t)−→ v x

clause_verb(t)−→ v x cl

transitive(v)−→
�¬clause_verb(t)−→ v x y

clause_verb(t)−→ v x y cl

where cl=

ext_cl(c)−→

ctr_subj(v)−→ c x e
ctr_obj(v)−→ c y e

else −→ c e

else −→

ctr_subj(v)−→ c x
ctr_obj(v)−→ c y

else −→ c

where su=

ext_suj(s) −→λP.P e
controlled(t)−→λP.P s′

else −→ s

and ob=

�ext_obj(o)−→λP.P e
else −→ o

argument is non-existent when the current clause is controlled. The
construct in this case is the same as for an extracted subject, except
that the free variable corresponding to a controlled subject is, by con-
vention, s′ instead of e.

Then, the cl construct denotes the clause argument of a verb that
requires one (clause_verb). Such verbs expect an argument of type p,
corresponding to a proposition; however, as we have seen, a clause
may have a more abstract type, with one or two missing elements.
There are two independent reasons for a subordinate clause to ex-
pect an element. The first one is if the clause is on an extraction path
(ext_cl). If this is the case, the expected element corresponds to the
missing object at the end of the extraction path, and it is provided

[126]

A logical approach to grammar description

to the argument clause in the form of a free variable e. The sec-
ond reason for subordinate clauses to expect an argument is control
(ctr_subj, ctr_obj): indeed, a controlled clause has a missing subject,
which is identified with the subject or object of the controller clause.
Depending on the type of control, the missing element is supplied as
either x or y, which are free variables denoting respectively the sub-
ject or direct object element of the verb in the current (controlling)
clause. Finally, note that the construction of cl also covers the case
where an argument clause is present without the head of the current
clause being a control verb; this cannot currently be the case in our
valid abstract structures, as we have currently defined that the verbs
which expect a complement clause (clause_verb) are exactly the control
verbs. Nevertheless, we decided to add a default rule (using else) for
the sake of completeness. Should we decide to introduce verbs that
expect other forms of complement clauses in our vocabulary and alter
our definition of clause_verb, this linearization rule would yield the
expected semantics for the corresponding sentences.

Using these three constructs, we can now build fcl, that is the
(factorized) λ-term that represents the meaning of the clause. This
term abstracts the free variables s′ and e that denote a missing subject
(in the case of a control) and an extracted element (in the case of a
relative clause), regardless of whether or not they occur in the term.
The su and ob constructs are then applied to the verb cluster, with
abstracted variables x and y for the subject and object elements; these
constructs behave exactly as normal, type-raised arguments. The verb
cluster itself is constructed according to the valency properties of the
verb (transitive, clause_verb), by applying the verb to its arguments x ,
y, and cl.

Finally, the linearization of the whole clause, depending on
whether there is an ongoing extraction or control (ext_cl, controlled),
provides empty elements to fcl, or abstracts the corresponding vari-
ables again in order to yield the expected type for the realization. The
logical preconditions ensure that the empty elements Ωe are provided
exactly when the term fcl does not depend on that argument. We thus
obtain the intended meaning of a clause.

The semantic linearization of a clause may, at first sight, look
rather involved. However, it still represents a shorter representation
over the mere enumeration of all the possible cases covered by the

[127]

Lionel Clément et al.
Figure 14:

Abstract structure abs
..•.

•

.

book

.

hea
d

.

a

.

det

.
head

.

•

.

lets

.

head

.

John

.

sub
j

.

Mary

.

obj

.

•

.

help

.

hea
d

.

Ann

.

obj

.

•

.

read

.

hea
d

.

that

.
obj

.

arg_cl

.

arg_cl

. mod

linearization. The grammar indeed covers 39 different cases (taking
into account the interactions between valency, relevant classes of con-
text, control, and extraction). Compared to a direct implementation of
all the cases with an actual grammar, this model is arguably simple.
Moreover, the abstraction provided by logic makes the model rather
intuitive.
3.2 Example
We now construct an example sentence for the synchronous grammar
we have just described, and show how the grammar asserts its gram-
maticality and assigns it a realization according to the linearization
rules.

In order to demonstrate the interaction between the different phe-
nomena covered by the grammar, we consider a “worst-case” example
phrase that exhibits long-distancemovement in a relative clause across
a sequence of control verbs. Though its acceptability may be question-
able, it should serve as a good support for describing the inner works
of our formalism.

The abstract structure abs of the example we consider is depicted
in Figure 14. It consists of an argument formed by a common noun
and a determiner modified by a relative clause where the relative ob-
ject pronoun is reached across two nested subordinate clauses. The
antecedent (a book) is thus identified with the object of the last con-
trolled verb (read). The subject of this verb is provided by the object
control verb above (help), which is itself controlled by the head of the
relative clause above (lets).

[128]

A logical approach to grammar description

..A : x0

.

•

.

A : x1

.

•

.

book

.
hea

d
.

a

.

det

.

p3

.

head

.

M : x2

.

C : x3

.

•

.

lets

.

head

.

A : x4

.

John

.

p4

.

sub
j

.

A : x5

.

Mary

.

p4

.

obj

.

C : x6

.

•

.

help

.

head

.

A : x7

.

Ann

.

p4

.

obj

.

C : x8

.

•

.

read

.

hea
d

.

A : x9

.

that

.

p5

.

obj

.

p1

.

arg_cl

.

p1

.

arg_cl

.

p1

.

p6

.

mod

.
p2

Figure 15:
Derivation tree of abs

For the purpose of the example we consider that the starting sym-
bol of the regular over-approximation is A instead of C . Indeed, all the
interesting phenomena we wish to illustrate in the example can arise
in noun-phrases and embedding this noun-phrase example in a com-
plete sentence would only lengthen our explanations with unnecessary
details.

Regular tree grammar derivability
First, we will show that abs is in the language of the regular over-

approximation of our synchronous grammar. The corresponding der-
ivation is depicted in Figure 15. The non-terminals are written as (la-
belled) nodes in the derivation tree, and rewrites are represented as
dashed edges, labelled with the name of the production used to rewrite
the non-terminal. The corresponding right-hand side is then drawn di-
rectly below, without the unused optional nodes. We recall that the

[129]

Lionel Clément et al.

full definition of our synchronous grammar is summed up in Figures 17
and 18.

Note that, though there is only one derivation for this abstract
structure abs, the regular over-approximation of our grammars need
not be unambiguous. Had there been several different derivations that
produced the given abstract structure, we would have considered all
of them.

Satisfaction of logical constraints
To verify that the tree abs is valid, we need to ensure that, in ad-
dition to the regular over-approximation, the abstract structure tree
also satisfies the logical constraints associated with the productions.
Traversing the abs tree in prefix order, we consider the logical condi-
tions associated with each production and instantiate them with the
corresponding positions in the tree.

The first production used in the derivation of abs is p2. It has an
associated logical constraint, stated as:

¬pro_rel(a)

This constraint ensures that the modified noun phrase is not just a rel-
ative pronoun, with a being the head argument of the right-hand side
of the production. As can be seen in Figure 16, the node corresponding
to a is not a lexical entry and hence cannot have the pro_rel property,
so the constraint is satisfied, and the structure remains grammatical.

The production p3 on the left branch has no associated con-
straints, so it is trivially valid. On the right branch, on the other hand,
the first production used in the rewrite is p6, which expects that there
exists a unique relative pronoun p at the end of a valid extraction path
starting at the current position r:

∃!p.pro_rel(p)∧ ext_path(r, p)

Figure 16:
Instantiation of the logical

constraint for p2

..•.

• : a

...
head

[130]

A logical approach to grammar description

..C : e, g, d, s −→ .• : t.

verb : v

.
head

.

(A) : s

.

sub
j

.

(A) : o

.

obj

.

(C) : c

.
arg_cl

transitive(v)⇔ some(o)
clause_verb(v)⇔ some(c)
controlled(t)⇔ none(s)
controlled(t)⇔ infinitive(v)

e := su v ob c

g :=

� independent(t) −→ su v ob c

subordinate(t) −→ su ob c v

d :=

independent(t) ∧ ¬control_verb(v) −→ su v ob c

subordinate(t) ∧ ¬controlled(t) ∧ ¬control_verb(v) −→ su ob c v

subordinate(t) ∧ controlled(t) ∧ ¬control_verb(v) −→ 〈ob c,v〉
subordinate(t) ∧ controlled(t) ∧ control_verb(v) −→ 〈ob c.1,v c.2〉
subordinate(t) ∧ ¬controlled(t) ∧ control_verb(v) −→ su ob c.1 v c.2

independent(t) ∧ control_verb(v) −→ su v ob c.1 c.2

where ob=
�ext_obj(o) −→ ϵ

else −→ o

�
and su=

�ext_suj(s) −→ ϵ

else −→ s

s :=

¬ext_cl(t) −→
�¬controlled(t) −→ fcl Ωe Ωe

controlled(t) −→ fcl s′ Ωe

ext_cl(t) −→
�¬controlled(t) −→ fcl Ωe e

controlled(t) −→ fcl s′ e

where fcl= λs′.λe.su λx .ob λy.

¬transitive(v) −→
�¬clause_verb(t) −→ v x

clause_verb(t) −→ v x cl

transitive(v) −→
�¬clause_verb(t) −→ v x y

clause_verb(t) −→ v x y cl

where cl=

ext_cl(c) −→

ctr_subj(v) −→ c x e
ctr_obj(v) −→ c y e

else −→ c e

¬ext_cl(c) −→

ctr_subj(v) −→ c x
ctr_obj(v) −→ c y

else −→ c

where su=

ext_suj(s) −→ λP.P e
controlled(t) −→ λP.P s′

else −→ s

and ob=

�ext_obj(o) −→ λP.P e
else −→ o

Figure 17:
First part
of the full
synchronous
grammar,
with logical
constraints and
linearizations

[131]

Lionel Clément et al.
Figure 18:

Second part
of the full

synchronous
grammar,

with logical
constraints and
linearizations

..A : e, g, d, s −→ .•.

A : a

.

hea
d

.

M : m

. mod

..A : e, g, d, s −→ .•.

determiner : d

.
det

.

noun : n

. head

¬pro_rel(a) true

e,g,d := a m e,g,d := d n

s := λP.a λx. ∧ (m x) (P x) s := λP.d λx. ∧ (n x) (P x)

A : e, g, d, s −→ proper_noun : pn A : e, g, d, s −→ pronoun : p

true

pro_rel(p)⇒∃!r.relative(r) ∧ ext_path(r, p)

pro_rel(p)⇒
∃ant.antecedent(ant, p) ∧ gd_agr(ant, p)

e,g,d := pn e,g,d := p

s := λP.P pn s := pro_rel(p) −→ λP.P Ωp

M : e, g, d, s −→ C : r

∃!p.pro_rel(p) ∧ ext_path(r, p)

e,g,d := ext_path(r,p) ∧ pro_rel(p) −→ p r

s := r Ωe

Figure 19 shows in solid edges all the paths that link r to another
node x such that ext_path(r, x) is true. Of all these candidate nodes,
only the one labelled with p satisfies pro_rel(x), ensuring its existence
and uniqueness and thus satisfying the constraint.

The next production to occur in the derivation tree is p1. This
production has four constraints:

transitive(v)⇔ some(o)
control_verb(v)⇔ some(c)
controlled(t)⇔ none(s)
controlled(t)⇔ infinitive(v)

[132]

A logical approach to grammar description

...

• : r

.

John

.

sub
j

.

Mary

.

obj

.

•

.

Ann

.

obj

.

•

.

that: p

.

obj

.

arg_cl

.

arg_cl

Figure 19:
Instantiation of the logical
constraint for p6

These four constraints ensure that the verb valency corresponds to
the arguments provided by the abstract structure, and that the con-
trolled verbs are in an infinitive form and have no redundant subject.
As shown in Figure 20, in this case, all three arguments subj, obj, and
arg_cl are present. Looking at the head “lets”, we can check that it has
the properties transitive and ctr_obj, satisfying the two first constraints.
Since the edge above t is labelled with mod, we can infer from the def-
inition of controlled that ¬controlled(t), which verifies the third con-
straint. Finally, since “lets” does not have the property infinitive, the
fourth constraint is also satisfied.

..•.

• : t

.

lets: v

.

head

.

John: s

.

sub
j

.

Mary: o

.

obj

.

• : c

.

arg_cl

.

mod

Figure 20:
Instantiation of the logical
constraints for the first
occurrence of p1

The next two rewrites use the production p4, which has no addi-
tional constraints. Then, the production p1 is used to rewrite the non-
terminal labelled x6, with the same four constraints as before. The
valency constraints are satisfied in the same way (the verb expects –
and gets – its optional arguments obj and arg_cl as it is both transi-
tive and a control verb). On the other hand, the controlled predicate is

[133]

Lionel Clément et al.

true for the node t, and hence the verb must be in the infinitive form
and the subj argument should be ⊥. As both these conditions are veri-
fied, all the constraints are again satisfied. The corresponding subtree
(including the ⊥ leaf for s) is drawn in Figure 21.

Figure 21:
Instantiation of the logical
constraints for the second

occurrence of p1

..•.

lets: ctr

.
hea

d
.

• : t

.

help: v

.

head

.

⊥ : s

.

sub
j

.

Ann: o

.
obj

.

• : c

.

arg_cl

.
arg_cl

The next production, being p4, has no associated constraints. Then
there is one last occurrence of the production p1 which is satisfied in
the same fashion as before, except that the arg_cl argument is absent
as the leaf node v does not satisfy the control_verb predicate. The cor-
responding tree is found in Figure 22.

Figure 22:
Instantiation of the logical

constraints for the last
occurrence of p1

..•.

help: ctr

.
hea

d
.

• : t

.

read: v

.

head

.

⊥ : s

.

sub
j

.

that: o

.

obj

.

⊥ : c

.

arg_cl

. arg_cl

Finally, the last production in the derivation tree is p5 which has
two constraints to satisfy:

pro_rel(p)⇒∃!r.relative(r)∧ ext_path(r, p)

pro_rel(p)⇒∃ant.antecedent(ant, p)∧ gd_agr(ant, p),

where the variable p is instantiated with the leaf “that” which has
the pro_rel property. For the first constraint we consider the candidate
nodes for r along the path described by ext_path, to find that only the
topmost one (labelled r in Figure 23) satisfies the predicate relative

[134]

A logical approach to grammar description

(being a modifier of a noun phrase). Then, for the second constraint,
the node labelled with ant in the figure constitutes a valid candidate
for the existential quantifier, and verifies both relations with p (since
ant and p are both lexical entries that have the neuter property).

..•.

•

.

book: ant

.

hea
d

.
hea

d
.

• : r

.

•

.

•

.

that: p

.

obj

.

arg_cl

.

arg_cl

.

mod

Figure 23:
Instantiation of the logical
constraints for p5

Linearization towards Dutch
Since the constraints of the productions used in the derivation are
satisfied, then abs is a valid abstract structure. We can thus look at the
linearization rules associated with the productions in its derivation,
and construct the realization that our grammar associates with abs.
We consider in this example the phonological linearization towards
Dutch.

We construct the realization bottom-up, describing the realization
associated with the left-hand side of each production by referring to
the labels x i that we have attached to the non-terminals in Figure 15.

We first consider the non-terminal node labelled with x9. It is
rewritten using the production p5, whose attached linearization rule
simply yields the string representation of the terminal lexical entry in
the right-hand side, namely dat. The realization attached to the nodes
x4, x5, and x7 is obtained similarly, considering the linearization rule
attached to the production p4, and yields respectively the realizations
Jan, Marie, and Anna.

Then we consider the non-terminal node labelled with x1, rewrit-
ten with the production p3. The attached linearization rule combines

[135]

Lionel Clément et al.

the realizations of the two resulting lexical entries, with the det argu-
ment first and the head argument next, yielding the string een boek

for x1.
We now describe the linearization of the successive clauses along

the derivation tree. We recall the corresponding production p1 and the
associated linearization rule for Dutch in Figure 24.

Figure 24:
Dutch linearization for

production p1

..C : d −→ .• : t.

verb : v

.
head

.

(A) : s

.

sub
j

.

(A) : o

.
obj

.

(C) : c

.
arg_cl

d :=

independent(t)∧¬control_verb(v) −→ su v ob c

subordinate(t)∧¬controlled(t)∧¬control_verb(v) −→ su ob c v

subordinate(t)∧ controlled(t)∧¬control_verb(v) −→ 〈ob c,v〉
subordinate(t)∧ controlled(t)∧ control_verb(v) −→ 〈ob c.1,v c.2〉
subordinate(t)∧¬controlled(t)∧ control_verb(v) −→ su ob c.1 v c.2

independent(t)∧ control_verb(v) −→ su v ob c.1 c.2

where ob=
�ext_obj(o) −→ ϵ

else −→ o

�
and su=

�ext_suj(s) −→ ϵ

else −→ s

The first clause we consider is the one labelled with x8. Its subj and
arg_cl arguments are missing, as depicted in Figure 22. We consider
the logical preconditions for the linearization, starting with the where
statements. The condition ext_obj(o) is true (since the obj argument of
the current clause has the property pro_rel), while ext_suj(s) is not (the
subj argument of the clause is ⊥). Hence, we get su= s and ob= ϵ.

Looking at the context, the other logical conditions have the fol-
lowing values: independent(t) is false but subordinate(t) is true (there
is another clause directly above in abs); controlled(t) is true (as the
clause above t has the object control verb “help” as its head); and
control_verb(v) is false (the verb “read” does not have the ctr_subj or
ctr_obj property). Hence, the only possible linearization for this clause
is the third one, which yields the pair of strings 〈ob c,v〉. We have seen
that ob= ϵ, and the optional argument c is not present, and therefore
its realization is also taken to be the empty string ϵ. Hence, d has ex-
actly one possible value that satisfies the linearization rule, which is:
〈ϵ,lezen〉.

[136]

A logical approach to grammar description

The next clause, labelled with x6, is rewritten using the same pro-
duction and linearization rule. We recall that its instantiated labels
and its context in abs are depicted in Figure 21.

There is no extraction ext_obj or ext_suj involved, hence ob= o and
su= s. The node t corresponds again to a clause that satisfies both
the subordinate and controlled predicates; however, the head argument
“help” has the ctr_obj property and hence verifies control_verb(v). The
selected linearization will therefore be 〈ob c.1,v c.2〉, where c.1 and
c.2 denote the first and second projection of the pair that constitutes
the realization of c. Building on our previous observations, we have
o= Anna and c= 〈ϵ,lezen〉. Hence, the realization associated with x6

is
Anna,helpen lezen
�.

The last clause, labelled with x3 and depicted in Figure 20, has the
same logical preconditions as x6 except for the fact that it is not con-
trolled (the edge that dominates t is labelled with mod). The selected
realization is then the fourth one in Figure 24, that is: su ob c.1 v c.2,
with su= s and ob= o. The realization associated so far with the
right-hand side non-terminals is such that s= Jan, o= Marie, and
c=

Anna,helpen lezen

�. Thus, the topmost clause in the relative
clause is realized as Jan Marie Anna laat helpen lezen, with the ex-
pected Dutch cross-serial ordering.

To carry on the linearization process, we now establish the real-
ization associated with x2. It is constructed with the following rule:

d := ext_path(r,p)∧ pro_rel(p) −→ p r,

where r corresponds to the clause labelled with x3 that we have just
linearized, and p is any external node that satisfies the given logical
precondition. As imposed by the logical constraint depicted in Fig-
ure 19, there is exactly one candidate node that satisfies this con-
dition, that is the lexical entry “that”, which rewrites x9. Note that
its realization was not used in the construction of the realization of
the node x8. The realization of p is then dat, and the full realiza-
tion associated with x2 is obtained by concatenating p and r, yielding:
dat Jan Marie Anna laat helpen lezen.

Finally, the realization of the whole abs subtree, which does not
depend on the context above x0, is obtained by concatenating those of
the nodes x1 and x2 as demanded by the linearization rule for p2. The
resulting string is: een boek dat Jan Marie Anna laat helpen lezen.

[137]

Lionel Clément et al.

4 conclusion

This paper explores the possibility of designing high-level grammars
by means of Model Theoretic Syntax. We try to anchor high-level de-
scriptions in formal methods and more particularly in logic. This al-
lows us to obtain a precise meaning for the grammatical descriptions.
Moreover, our whole methodology is favoured by the wealth of dif-
ficult results that the literature provides. Indeed, informed by those
results, we have designed a logical language that seems to suit the
needs of linguistic descriptions and that is also weaker than Monadic
Second-Order Logic ensuring that the properties expressed by that log-
ical language can be captured by finite state automata. Moreover, in-
spired by the work of Courcelle (1994), we use the flexibility of logical
transduction so as to obtain an arguably simple model of extraction.
Finally, all these design choices make the languages described with
our system belong to the class of mildly context sensitive languages.
More specifically, the grammars we obtain are 2-ACGs. We chose this
grammatical model for the fact that, in their linear version, they ex-
actly capture mildly context sensitive languages and that they allow
one to model both syntax and semantics with the same set of primi-
tives.

After Rogers (2003a), our methodology offers another way for
Model Theoretic Syntax to describe languages that are outside the
class of context free grammars. It can be seen as a refinement of the
two step approach of Kolb et al. (2003) and Morawietz (2003). More-
over, this methodology can be adapted to define other formalisms: it
is possible not to use a regular approximation and encode recursion
directly in the logic; the logical language can be changed as long as
it is weaker than MSO; and one can use grammars based on other op-
erations and objects (such as graphs or hypergraphs). As an example,
free-word order languages can be modeled within this framework by
using an adapted algebra allowing one to represent free-word ordering
as proposed in Kirman and Salvati (2013).

We illustrate our formalism with a small subset of interleaved
phenomena that deal with extraction. The formalisation is still techni-
cal, but we argue that this technicality is mostly of linguistic nature.
Indeed, the interplay of these phenomena raises a number of particular
cases one eventually needs to describe. The advantage of our approach

[138]

A logical approach to grammar description

is that it reduces the difficulty of describing this set of situations. The
small macro language we have designed to deal with the parts that
are common to various situations seems to be sufficient to provide
linguistic generalisations.

On the semantic side, the traditional continuation passing style
used in the Montagovian approach to semantics makes it hard to ex-
press the semantics in a natural way. Indeed, one would wish to simply
use the logical relations on the abstract structure so as to find the ar-
gument of each predicate. But this would amount to seeing formulae
as graphs and would thus break down an interesting feature of Mon-
tague semantics: the fact that it gives semantics for each constituent of
a sentence. A possible way out could be the result of Kanazawa (2011)
which demonstates a link between hypergraphs and λ-calculus. Tak-
ing into consideration the result of Courcelle and Engelfriet (1995)
that shows that hyperedge replacement grammars are closed under
MSOL transductions, it could be the case that the formulae generated
as graphs could then give rise to a 2-ACG providing a semantics to
each constituent, and thus recovering compositional semantics.

In future work, we shall model larger fragments of natural lan-
guage, by incorporating several phenomena. Moreover, as our formal-
ism seems to adapt well to the description of synchronous grammars,
we shall see how we can refine linguistic descriptions so as to allow
a modular development of those grammars. The case of agreement,
that may greatly vary between languages that otherwise share many
syntactic constructs, as for the languages we have chosen (English,
German, and Dutch) pushes us in that direction. Moreover, another di-
rection is of course to submit our approach to experiments and more
specifically to implement a compiler from high-level descriptions to
actual grammars. It is indeed well-known that the automata verifying
whether some constraints are verified may have a non-elementary size
with respect to the size of the formula. Thus, compiling these gram-
matical descriptions to actual grammars may be quite challenging.
Nevertheless, if these descriptions are realistic, they should be ren-
dered by wide coverage grammars which, even though huge, can be
handled by modern computers.

[139]

Lionel Clément et al.

references
Henk P. Barendregt (1984), The Lambda Calculus: Its Syntax and Semantics,
volume 103, Studies in Logic and the Foundations of Mathematics,
North-Holland Amsterdam, revised edition.
Philippe Blache (2001), Les grammaires de propriétés. Des contraintes pour le
traitement automatique des langues naturelles, number 2-7462-0236-0 in
Technologies et cultures, Hermes Science Publications.
Anudhyan Boral and Sylvain Schmitz (2013), Model-Checking Parse Trees,
in Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’13, pp. 153–162, IEEE Computer Society, Washington,
DC, USA.
Joan Bresnan (2001), Lexical-functional syntax, volume 16 of Blackwell
textbooks in linguistics, Blackwell.
Norbert Bröker (1998), Separating Surface Order and Syntactic Relations in a
Dependency Grammar, in Proceedings of COLING-ACL98, pp. 174–180.
Marie-Hélène Candito (1999), Organisation modulaire et paramétrable de
grammaires électroniques lexicalisées. Application au français et à l’italien., Ph.D.
thesis, Université Paris 7.
Noam Chomsky (1981), Lectures on Government and Binding, in The Pisa
Lectures, Foris Publications, Holland.
Thomas Cornell and James Rogers (1998), Model theoretic syntax, The Glot
International State of the Article Book, 1:101–125.
Bruno Courcelle (1994), Monadic second-order definable graph
transductions: a survey, Theoretical Computer Science, 126:53–75.
Bruno Courcelle and Joost Engelfriet (1995), A Logical Characterization
of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars,
Mathematical Systems Theory, 28(6):515–552.
Bruno Courcelle and Joost Engelfriet (2012), Graph Structure and Monadic
Second-Order Logic, Encyclopedia of Mathematics and its Applications,
Cambridge University Press.
Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):591–629.
Haskell B. Curry (1961), Some Logical Aspects of Grammatical Structure, in
Roman Jakobson, editor, Structure of Language and Its Mathematical Aspects,
pp. 56–68, AMS Bookstore.
Mary Dalrymple (2001), Lexical Functional Grammar, volume 34 of Syntax and
Semantics, Academic Press, New York.

[140]

A logical approach to grammar description

Philippe de Groote (2001), Towards Abstract Categorial Grammars, in
Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, ACL ’01, pp. 252–259, Association for Computational Linguistics,
Stroudsburg, PA, USA, doi:10.3115/1073012.1073045.
Philippe de Groote and Sylvain Pogodalla (2004), On the expressive
power of Abstract Categorial Grammars: Representing context-free formalisms,
Journal of Logic, Language and Information, 13(4):421–438.
Ralph Debusmann, Denys Duchier, and Geert-Jan Kruijff (2004),
Extensible Dependency Grammar: A New Methodology, in Recent Advances in
Dependency Grammars, pp. 78–85.
John Doner (1965), Decidability of the weak second-order theory of two
successors, Notices of the American Mathematical Society, 12:365–468.
Denys Duchier, Thi-Bich-Hanh Dao, and Yannick Parmentier (2014),
Model-theory and implementation of property grammars with features., Journal
of Logic and Computation, 24(2):491–509.
Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, and Willy
Lesaint (2012), Property Grammar Parsing Seen as a Constraint Optimization
Problem., in Philippe de Groote and Mark-Jan Nederhof, editors, Formal
Grammar – 15th and 16th International Conferences, FG 2010–2012, volume
7395, pp. 82–96, Springer.
Denys Duchier, Jean-Philippe Prost, and Thi-Bich-Hanh Dao (2009), A
model-theoretic framework for grammaticality judgements, in Conference on
Formal Grammar (FG 2009), pp. 1–14.
Joost Engelfriet and Linda Heyker (1992), Context-free hypergraph
grammars have the same term-generating power as attribute grammars, Acta
Informatica, 29(2):161–210.
Kilian Foth, Wolfgang Menzel, and Ingo Schröder (2005), Robust parsing
with weighted constraints, Natural Language Engineering, 11(01):1–25.
J. Roger Hindley and Jonathan P. Seldin (2008), Lambda-Calculus and
Combinators, Cambridge University Press.
Aravind K. Joshi (1985), Tree-adjoining grammars: How much context
sensitivity is required to provide reasonable structural descriptions?, in David
Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural Language
Parsing, pp. 206–250, Cambridge University Press.
Makoto Kanazawa (2009), A lambda calculus characterization of MSO
definable tree transductions, The Bulletin of Symbolic Logic, 15(2):250–251.
Makoto Kanazawa (2011), Parsing and Generation as Datalog Query
Evaluation, Technical report, National Institute of Informatics.

[141]

Lionel Clément et al.

Jérôme Kirman and Sylvain Salvati (2013), On the Complexity of Free Word
Orders, in Proceedings of the 17th and 18th International Conferences on Formal
Grammar, FG 2012, Opole, Poland, August 2012, FG 2013, Düsseldorf, Germany,
August 2013, Revised Selected Papers, volume 8036 of Lecture Notes in Computer
Science, pp. 209–224, Springer.
Gregory M. Kobele and Sylvain Salvati (2013), The IO and OI Hierarchies
Revisited, in Proceedings of the International Colloquium on Automata, Languages,
and Programming (ICALP 2013, Part II), volume 7966 of Lecture Notes in
Computer Science, pp. 336–348, Springer.
Hans-Peter Kolb, Jens Michaelis, Uwe Mönnich, and Frank Morawietz
(2003), An operational and denotational approach to non-context-freeness,
Theoretical Computer Science, 293(2):261–289.
Markus Kracht (1995), Syntactic codes and grammar refinement, Journal of
Logic, Language, and Information, 4(1):41–60.
Richard Montague (1974), English as a Formal Language, in Richmond H.
Thomason, editor, Formal philosophy: Selected Papers of Richard Montague, Yale
University Press, New Haven.
Frank Morawietz (2003), Two-Step Approaches to Natural Language Formalism,
number 64 in Studies in Generative Grammar, De Gruyter.
Geoffrey K. Pullum (2007), The evolution of model-theoretic frameworks in
linguistics, in Proceedings of the ESSLLI 2007 Workshop on Model-Theoretic
Syntax, volume 10, pp. 1–10.
Geoffrey K. Pullum and Barbara C. Scholz (2001), On the distinction
between model-theoretic and generative-enumerative syntactic frameworks, in
Proceedings of the International Conference on Logical Aspects of Computational
Linguistics, volume Complete the number of volume of Complete the title of the
series, pp. 17–43, Springer.
Geoffrey K. Pullum and Barbara C. Scholz (2005), Contrasting applications
of logic in natural language syntactic description, in Logic, methodology and
philosophy of science: Proceedings of the twelfth international congress,
pp. 481–503.
Michael O. Rabin (1969), Decidability of Second-Order Theories and Automata
on Infinite Trees, Transaction of the American Mathematical Society, 141:1–35.
James Rogers (1996), A model-theoretic framework for theories of syntax, in
Proceedings of the 34th annual meeting of the Association for Computational
Linguistics, pp. 10–16, Association for Computational Linguistics.
James Rogers (1998), A descriptive approach to language-theoretic complexity,
Studies in Logic, Language & Information, CSLI Publications, distributed by the
University of Chicago Press.

[142]

A logical approach to grammar description

James Rogers (2003a), Syntactic Structures as Multi-Dimensional Trees,
Research on Language and Computation, 1(3–4):265–305.
James Rogers (2003b), wMSO theories as grammar formalisms, Theoretical
Computer Science, 293(2):291–320.
John Robert Ross (1967), Constraints on variables in syntax, Ph.D. thesis,
Massachusetts Institute of Technology.
Sylvain Salvati (2005), Problèmes de filtrage et problèmes d’analyse pour les
grammaires catégorielles abstraites, Ph.D. thesis, Institut National Polytechnique
de Lorraine.
Sylvain Salvati (2007), Encoding second order string ACG with Deterministic
Tree Walking Transducers, in Shuly Wintner, editor, Proceedings of the 11th
Conference on Formal Grammar (FG 2006), FG Online Proceedings, pp. 143–156,
CSLI Publications.
Sylvain Salvati (2009), A Note on the Complexity of Abstract Categorial
Grammars, in Marcus Kracht, Gerald Penn, and Ed Stabler, editors, The
Mathematics of Language, 10th and 11th Biennial Conference, MOL 10, Los
Angeles, CA, USA, July 28–30, 2007, and MOL 11, Bielefeld, Germany, August
20–21, 2009, Revised Selected Papers, pp. 266–271.
Sylvain Salvati (2010), On the membership problem for non-linear ACGs,
Journal of Logic Language and Information, 19(2):163–183.
Stuart M. Shieber (1985), Evidence Against the Context-Freeness of Natural
Language, Linguistics and Philosophy, 8:333–343.
François Thomasset and Éric Villemonte De La Clergerie (2005), Comment
obtenir plus des Méta-Grammaires, in Proceedings of TALN’05, ATALA,
Dourdan, France.
David J. Weir (1988), Characterizing mildly context-sensitive grammar
formalisms, Ph.D. thesis, University of Pennsylvania, Philadephia, PA.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[143]

A syntactic component
for Vietnamese language processing

Phuong Le-Hong1, Azim Roussanaly2, and Thi Minh Huyen Nguyen1

1 VNU University of Science, Hanoi, Vietnam
2 LORIA, Université de Lorraine, Nancy, France

abstract
Keywords:
language,
parsing,
segmentation,
syntactic
component,
tagging,
tree-adjoining
grammar,
Vietnamese

This paper presents the development of a grammar and a syntactic
parser for the Vietnamese language. We first discuss the construction
of a lexicalized tree-adjoining grammar using an automatic extraction
approach. We then present the construction and evaluation of a deep
syntactic parser based on the extracted grammar. This is a complete
system that produces syntactic structures for Vietnamese sentences. A
dependency annotation scheme for Vietnamese and an algorithm for
extracting dependency structures from derivation trees are also pro-
posed. This is the first Vietnamese parsing system capable of produc-
ing both constituency and dependency analyses. It offers encouraging
performance: accuracy of 69.33% and 73.21% for constituency and de-
pendency analysis, respectively.

1 introduction

Natural language processing (NLP) often depends on a syntactic rep-
resentation of text. Software that can generate such a representation
is usually composed of both a grammar and a parser for a given lan-
guage.

For decades, NLP research has mostly concentrated on English
and other well-studied languages. Recently there has been increased
interest in languages for which fewer resources exist, notably because
of their growing presence on the Internet. Vietnamese, which is among
the top 20 most spoken languages (Paul et al. 2014), is one such lan-

Journal of Language Modelling Vol 3, No 1 (2015), pp. 145–184

Phuong Le-Hong et al.

guage attracting increased attention. Obstacles remain, however, for
NLP research in general and grammar development in particular: Viet-
namese does not yet have vast and readily available constructed lin-
guistic resources upon which to build effective statistical models, nor
does it have reference works upon which new ideas may be experi-
mented.

Moreover, most existing NLP research concerning Vietnamese has
been focused on testing the applicability of existing methods and tools
developed for English or other Western languages, under the assump-
tion that their logical or statistical well-foundedness might offer cross-
language validity; whereas assumptions about the structure of a lan-
guage are usually made in such tools, and must be amended to adapt
them to different linguistic phenomena. For an isolating language such
as Vietnamese, techniques developed for inflectional languages cannot
be applied “as is”.

Our goal is to develop a syntactic parser for the Vietnamese lan-
guage. We believe that a wide-coverage grammar that incorporates
rich statistical information would contribute to the development of
basic linguistic resources and tools for automatic processing of Viet-
namese written text.

Syntactic parsing is a fundamental task in natural language pro-
cessing. For Vietnamese, there have been few published works dealing
with this problem. This paper presents the construction and evaluation
of a deep syntactic parser based on Lexicalized Tree-Adjoining Gram-
mars (LTAG) for the Vietnamese language.

The remainder of the paper is organized as follows. The next sec-
tion introduces some preliminary concepts of different types of syn-
tactic representation, a brief introduction of the Vietnamese language
and the tree-adjoining grammar formalism. Section 3 then presents the
construction of a tree-adjoining grammar – the first part of the syntac-
tic component. This grammatical resource is extracted automatically
from the Vietnamese treebank. Next, Section 4 discusses the construc-
tion of a deep parser based on the extracted grammar. The parser is
evaluated in Section 5. Section 6 concludes the paper and suggests
some directions for future work.

[146]

A syntactic component for Vietnamese language processing

2 preliminaries

2.1 Syntactic representation
Constituency structure and dependency structure are two types of syn-
tactic representation of a natural language sentence. While a con-
stituency structure represents a nesting of multi-word constituents,
a dependency structure represents dependencies between individual
words of a sentence. The syntactic dependency represents the fact that
the presence of a word is licensed by another word which is its gov-
ernor. In a typed dependency analysis, grammatical labels are added
to the dependencies to mark their grammatical relations, for example
subject or indirect object.

Recently, there have been many published works on dependency
analysis for well-studied languages, such as English (Kübler et al.
2009) or French (Candito et al. 2009b). The dependency parsers de-
veloped for these languages are usually probabilistic and trained on
corpora available in the language of interest. We can classify the ar-
chitecture of such parsers into two main types:
• parsers that employ a machine learning method on dependency
corpora extracted automatically from treebanks and that directly
produce dependency parses (Nivre 2003, McDonald and Pereira
2006, Johansson and Nugues 2008, Candito et al. 2010);

• parsers that rely on a sequential process where constituency
parses are produced first and then dependency parses are ex-
tracted (Candito et al. 2009b, de Marneffe et al. 2006).
This second type is motivated by the fact that dependency corpora

are not readily available for many languages, as in the case of Viet-
namese. In such an architecture, we need a module which takes as
input constituency parses given by a constituency parser and converts
these parses into typed dependency parses as illustrated in Figure 1
and Figure 2 for the English sentence “A hearing is scheduled on the
issue today” (Nivre and McDonald 2008).
2.2 A brief overview of Vietnamese
In this section we present some general characteristics of the Viet-
namese language; these are adopted from Hạo (2000), Hữu et al.
(1998) and Nguyen et al. (2006).

[147]

Phuong Le-Hong et al.
Figure 1:

Constituency analysis
of an English sentence

S
NP

DT
A

NN
hearing

VP
VPZ
is

VP
VBN

scheduled
PP

IN
on

NP
DT
the

NN
issue

NP
today

Figure 2:
Dependency analysis

of an English sentence

....A ..hearing ..is ..scheduled ..on ..the ..issue ..today.
det

.

nsubjpass

.
auxpass

.

pobj

.
prep

.

root

.
det

.

tmod

Vietnamese belongs to the VietMuong group of the Mon-Khmer
branch, which in turn belongs to the Austro-Asiatic language family.
Vietnamese is also similar to languages in the Tai family. The Viet-
namese vocabulary features a large number of Sino-Vietnamese words
which are derived from Chinese (Alves 1999). This vocabulary was
originally written with Chinese characters that were used in the Viet-
namese writing system, but like all written Vietnamese, is now writ-
ten with the Latin-based Vietnamese alphabet that was adopted in the
early 20th century. Moreover, by being in contact with the French
language, Vietnamese was enriched not only in vocabulary but also in
syntax by the calque (or loan translation) of French grammar. Thus,
for example, the Subject-Verb-Object structure gained prevalence over
the natively more common Theme-Rheme construction.

Vietnamese is an isolating language,1 which means that it is char-
acterized by the following traits:
• it is a monosyllabic language;
• its word forms never change, unlike occidental languages that use
morphological variations (e.g. plural form, conjugation);

1 It is noted that Chinese is also isolating; Chinese is classified in a branch of
Sino-Tibetan language family.

[148]

A syntactic component for Vietnamese language processing

• hence, all grammatical relations are manifested by word order
and function words.
Vietnamese has a special unit called “tiếng” that corresponds at

the same time to a syllable with respect to phonology, a morpheme
with respect to morpho-syntax, and a word with respect to sentence
constituent creation. For convenience, we call these “tiếng” syllables.
The Vietnamese vocabulary contains:
• simple words, which are monosyllabic (e.g. mưa (rainy) nắng
(sunny));

• reduplicated words composed by phonetic reduplication (e.g.
trắng (white) – trăng trắng (whitish))

• compound words composed by semantic coordination (e.g. quần
(trousers), áo (shirt) – quần áo (clothes))

• compound words composed by semantic subordination (e.g. xe
(vehicle), đạp (to pedal) – xe đạp (bicycle));

• some compound words whose syllable combination is no longer
recognizable (e.g. bồ nông (pelican))

• complex words phonetically transcribed from foreign languages
(e.g. cà phê (coffee), from the French café).
The issue of syntactic category classification for Vietnamese is still

in debate in the linguistic community. That lack of consensus is due to
the unclear limit between the grammatical roles or syntactic functions
of many words as well as the very frequent phenomenon of syntactic
category mutation, by which a verb may for example be used as a
noun, or even as a preposition. Vietnamese dictionaries (Hoàng 2002)
use a set of 8 parts of speech proposed by the Vietnam Committee on
Social Sciences (1983).

As for other isolating languages, the most important syntactic in-
formation source in Vietnamese is word order. The basic word order is
Subject–Verb–Object. There are prepositions but no postpositions. In
a noun phrase the main noun precedes the adjectives and the genitive
follows the governing noun. These phenomena are subsumed under
the term “head-initiality”.

The other syntactic means are function words, reduplication, and,
in the case of spoken language, intonation.

[149]

Phuong Le-Hong et al.

From the point of view of functional grammar, the syntactic struc-
ture of Vietnamese follows a topic-comment structure. It belongs to the
class of topic-prominent languages as described by Li and Thompson
(1976). In those languages, topics are coded in the surface structure
and they tend to control co-referentiality (e.g. Cây đó lá to nên tôi không
thích (Tree that leaves big so I not like), which means This tree, its leaves
are big, so I don’t like it); the topic-oriented “double subject” construc-
tion is a basic sentence type (e.g. Tôi tên là Nam, sinh ở Hà Nội (I name
be Nam, born in Hanoi), which means My name is Nam, I was born in
Hanoi), while such subject-oriented constructions as the passive and
“dummy” subject sentences are rare or non-existent (e.g. There is a cat
in the garden should be translated as Có một con mèo trong vườn (exist
one <animal-classifier> cat in garden)).
2.3 Tree-adjoining grammars
In the TAG formalism (Joshi and Schabes 1997), the grammar is de-
fined by a set of elementary trees. A TAG parsing system rewrites
nodes of trees rather than symbols of strings as in context-free gram-
mars (CFG). The nodes of these trees are labelled with nonterminals
and terminals. Starting from the elementary trees, larger trees are de-
rived using composition operations of substitution and adjunction. In
the case of an adjunction, the tree being adjoined has exactly one leaf
node that is marked as the foot node (marked with an asterisk). Such a
tree is called an auxiliary tree. Elementary trees that are not auxiliary
trees are called initial trees. Each derivation starts with an initial tree.
Substituting a tree α in a tree β simply replaces a frontier substitution
node in β with α, under the convention that the non-terminal symbol
of the substitution node is the same as the root node of α. Only initial
trees and derived trees can be substituted in another tree. Adjoining
an auxiliary tree β at some node n of a derived tree γ proceeds as
follows: the sub-tree t of γ rooted by n is removed from γ, and β is
substituted for it instead, where t is substituted in the foot node of β .
In the final derived tree, all leaves must have terminal labels.

In TAG, the derived tree does not give enough information to
determine how it was constructed. The derivation tree is an object
that specifies uniquely how a derived tree was constructed. The root
of a derivation tree is labelled by a sentence-type initial tree. All other
nodes in the derivation tree are labelled by auxiliary trees in the case

[150]

A syntactic component for Vietnamese language processing

of adjunction or initial trees in the case of substitution. We use the
following convention when depicting a derivation tree: trees that are
adjoined to their parent tree are linked by a solid line to their parent,
and trees that are substituted are linked by a dashed line.

In order to represent natural languages, TAGs are enriched with
additional linguistic conventions or principles. First, a TAG for natural
languages is lexicalized (Schabes 1990), which means that each ele-
mentary tree has a lexical anchor (usually unique, but in some cases,
there is more than one anchor). Second, the elementary trees of a lex-
icalized TAG (LTAG) represent extended projections of lexical items
(the anchors) and encapsulate all syntactic arguments of the lexical
anchor; that is, they contain slots (nonterminal leaves) for all argu-
ments. Furthermore, elementary trees are minimal in the sense that
only the arguments of the anchor are encapsulated; all recursion is
factored away. This amounts to the condition on elementary tree mini-
mality from Frank (2002).

Because of these principles, in linguistic applications, combining
two elementary trees corresponds to the application of a predicate to
an argument (in case of substitution) or to the addition of modifiers
(in case of adjunction). The derivation tree then reflects the predicate-
argument structure of the sentence. This is why most approaches to
semantics in TAG use the derivation tree as an interface between syn-
tax and semantics.

Figure 3 gives a simple Vietnamese TAG and an analysis of a sen-
tence. The first half of the figure shows the elementary trees of the
grammar and the second half shows the derived tree and its corre-
sponding derivation tree, where the notation <anchor> represents
the elementary tree corresponding to a lexical anchor. A derivation
tree in TAG specifies how a derived tree was constructed.

TAG has several advantages over CFG. First, it provides an ex-
tended domain of locality. Second, the adjunction operation permits us
to model long-distance relationships in single elementary trees due to
the factoring of recursion.2 Third, TAG derivation trees show semantic
dependencies between entities in a sentence, as the tree branches rep-

2These two properties follow from the mathematical properties of TAGs.
TAGs belong to the class of mildly context-sensitive grammars. Context-free lan-
guages form a proper subset of tree-adjoining languages (TALs), which in turn
form a proper subset of context-sensitive languages.

[151]

Phuong Le-Hong et al.

Elementary trees
NP
Np

Giang

S
NP↓ VP
V
cho

NP↓ NP↓

NP
P
tôi

NP
M
một

NP∗
NP
Nu
quả

NP
NP∗ N

cam

Derived tree Derivation tree
S

NP
Np

Giang

VP
V
cho

NP
P
tôi

NP
M
một

NP
NP
Nu
quả

N
cam

<cho>

<Giang> <tôi> <quả>

<một> <cam>

Figure 3: A TAG analysis of the sentence “Giang cho tôi một quả cam” (Giang
gave me an orange)

resent their combination type (dashed or continuous line for substitu-
tion or adjunction, respectively, in Figure 3). In addition, in LTAG, lex-
ical entries naturally capture constraints associated with lexical items,
which is not possible in CFG. TAG and LTAG are formally equivalent;
however, from the linguistic perspective, LTAG is the system we shall
be concerned with in this paper.

3 grammar extraction

Since the development of hand-crafted grammars is a time-consuming
and labour-intensive task, many studies on automatic and semi-auto-
matic grammar development have been carried out during recent
decades. A semi-automatic approach to building a large computational
grammar is to rely on a formal language capable of describing the tar-
get grammar, e.g. a meta-grammar formalism. Many meta-grammar
engineering environments were developed to support the construction

[152]

A syntactic component for Vietnamese language processing

of large computational grammars for natural language. Most of them
were used to build large grammars for occidental languages. A typical
example is the XMG (eXtensible MetaGrammar) system which sup-
ports rapid prototyping of tree-based grammars (Crabbé et al. 2013).
An alternative approach for obtaining grammars is to extract gram-
mars from a treebank containing syntactically annotated sentences.
This is the approach that we chose to rapidly develop a large compu-
tational grammar for Vietnamese.

We present in this section a system that automatically extracts
lexicalized tree adjoining grammars from treebanks. We first discuss in
detail the extraction algorithms and compare them to previous work.
We then report the first results for LTAG extraction for Vietnamese,
using the recently released Vietnamese treebank.
3.1 Extracting grammars from treebanks
There has been much work done on extracting treebank grammars
in general and LTAG grammars in particular from annotated cor-
pora, but all of these works are for common languages. Xia et al.
(2000) and Xia (2001) developed the uniform method of grammar
extraction for English, Chinese and Korean. Chiang (2000) devel-
oped a system for extracting an LTAG grammar from the English
Penn Treebank and used it for statistical parsing with LTAG. Chen
and Vijay-Shanker (2000) and Chen et al. (2006) extracted TAGs
and there are other works based on Chen’s approach such as Jo-
hansen (2004) and Nasr (2004) for French, and Habash and Rambow
(2004) for Arabic. Neumann (2003) extracted lexicalized tree gram-
mars for English from the English Penn Treebank and for German
from the NEGRA treebank. Bäcker and Harbusch (2002) extracted
an LTAG grammar for German – also from the NEGRA corpus – and
used it for supertagging. Kaeshammer (2012) presented a grammar
and a lexicon for PLTAG using the German Tiger corpus. Finally, Park
(2006) extracted LTAG grammars for Korean from Korean Sejong
Treebank.
3.2 Vietnamese treebank
Recently, a group of Vietnamese computational linguists has been in-
volved in developing a treebank for Vietnamese (Nguyen et al. 2009).
This is the treebank we used for our extraction system.

[153]

Phuong Le-Hong et al.
Table 1:

Some Vietnamese treebank tags No. Category Description
1. S simple declarative clause
2. VP verb phrase
3. NP noun phrase
4. PP preposition phrase
5. N common noun
6. V verb
7. P pronoun
8. R adverb
9. E preposition
10. CC coordinating conjunction

The construction of a Vietnamese treebank is a branch project of
a national project which aims to develop basic resources and tools
for Vietnamese language and speech processing.3 The raw texts of
the treebank are collected from the social and political sections of
the Youth online daily newspaper. The corpus is divided into three
sets corresponding to three annotation levels: word-segmented, POS-
tagged and syntax-annotated set. The syntax-annotated corpus, a sub-
set of the POS-tagged set, is currently composed of 10 471 sentences
(225085 tokens). Sentences range from 2 to 105 words, with an av-
erage length of 21.75 words. There are 9314 sentences of length 40
words or less. The tagset of the treebank has 38 syntactic labels (18
part-of-speech tags, 17 syntactic category tags, 3 empty categories)
and 17 function tags. For details, please refer to Nguyen et al. (2009).4
The meanings of the tags that appear in this paper are listed in Table 1.
3.3 Extraction algorithms
In general, our work on extracting an LTAG grammar for Vietnamese
follows closely the method of grammar extraction originally proposed
by Xia (2001). The extraction process has three steps: first, phrase-
structure trees are converted into LTAG derived trees; second, the de-
rived trees are decomposed into a set of elementary trees conforming
to their three predefined prototypes; and third, invalid extracted ele-
mentary trees are filtered out using linguistic knowledge.

3The VLSP project, http://vlsp.vietlp.org:8080/demo/.
4All the resources are available at the website of the VLSP project.

[154]

A syntactic component for Vietnamese language processing

3.3.1 Building LTAG derived trees
The phrase structures in the Vietnamese treebank follow the English
Penn Treebank (PTB) bracketed style format which are not suitable for
LTAG extraction due to two reasons. First, the PTB trees do not distin-
guish heads, arguments and adjuncts as required in derived trees of an
LTAG. Second, for each PTB tree, it is not trivial to recover a derivation
tree generating it if it is not in a proper format of derived tree.

Therefore, we first have to convert the phrase structures of the
treebank into derived trees by augmenting them with additional in-
formation needed for extraction.

In this step, we first classify each node in a phrase-structure tree
as one of three types: head, argument or modifier. We then build a
derived tree by adding intermediate nodes so that at each level of
the tree, the nodes satisfy exactly one of the following relations (Xia
2001):
• predicate-argument relation: there is one (or more) node(s), where
one is the head, and the rest are its arguments;

• modification relation: there are exactly two nodes, where one node
is modified by the other;

• coordination relation: there are exactly three nodes, in which two
nodes are coordinated by a conjunction.
In order to find heads of phrases, we have constructed a head

percolation table (Magerman 1995; Collins 1997) for the Vietnamese
treebank. This table is used to select the head child of a node. In ad-
dition, we have also constructed an argument table to determine the
types of arguments that a head child can take. The argument table
helps explicitly mark each sibling of a head child as either an argu-
ment or an adjunct according to the tag of the sibling, the tag of the
head child, and the position of the sibling with respect to the head
child. Together with the tagset table, these three tables constitute the
Vietnamese treebank-specific information that is required for the ex-
traction algorithms.

Since the conjunction structures are different from the argument
and modifier structures, we first recursively bracket all conjunction
groups of a treebank tree by Algorithm 1 and then build the full de-
rived tree for the resulting tree by Algorithm 2. A conjunction group

[155]

Phuong Le-Hong et al.
Algorithm 1:

ProcessConj(T)
Data: A syntactic tree T .
Result: T whose conjunction groups are processed.
for K ∈ T.children do

if IsPhrasal(K) then
K ← ProcessConj(K);

(C1, . . . ,Ck)← ConjGroups(T.children);
for i = 1 to k do

if ∥Ci∥> 1 then
InsertNode(T,Ci);

if k > 2 then
for i = k downto 3 do
L ←Ci−1 ∪ ci−1 ∪Ci;
T ′← InsertNode(T,L);
Ci−1← T ′;

return T ;

Figure 4:
Transformation of
conjunction groups

T

X1 c1 X2 c2 X3

⇒ T

X1 c1 T ′

X2 c2 X3

is a group of coordinating words or phrases connected by one or more
coordinating conjunction. The form of a conjunction group is either
“A and B” or “A or B”.5 Figure 4 shows a tree with conjunction groups
before and after being processed by Algorithm 1 where ci are coordi-
nating conjunctions and X i are conjunction groups. Figure 5 shows a
realisation of Algorithm 2 where Ai are arguments of the head child
H of T and Mi are modifiers of H. These two algorithms use the func-
tion InsertNode(T,L) to insert an intermediate node between a node
T and a list of its child nodes L . This new node is a child of T , has
the same label as T and has L as the list of its children. The function
IsPhrasal(X) checks whether X is a phrasal node or not.6 The function

5 In the treebank, there are no conjunctions which use the coordinating punc-
tuation; that is, a structure like “A, B and C” is not present.

6A phrasal node is defined to be a node which is not a leaf or a preterminal.
This means that it must have two or more children, or one child that is not a leaf.

[156]

A syntactic component for Vietnamese language processing

Data: A tree T whose conjunction groups have been
processed.

Result: A derived tree whose root is T .
if (not IsPhrasal(T)) then

return T ;
H ← HeadChild(T);
if not IsLeaf(H) then

for K ∈ T.children do
K ← BuildDerivedTree(K);

A ← ArgNodes(H,L);
M ← ModNodes(H,L);
m← ∥M∥;
if m> 0 then
L ← {H} ∪A ;
T ′← InsertNode(T,L);

(M1, M2, . . . , Mm)←M ;
for i← 1 to m− 1 do
L ← {Mi , T ′};
T ′′← InsertNode(T,L);
T ′← T ′′;

return T ;

Algorithm 2:
BuildDerivedTree(T)

T

H A1 A2 M1 M2

⇒ T

T ′

T ′

H A1 A2

M1

M2

Figure 5:
An example of derived
tree realisation

ConjGroups(L) returns k groups of components Ci of L which are
separated by k− 1 conjunctions c1, . . . , ck−1, which have a special POS
tag in the treebank (CC).

Algorithm 2 uses several simple functions. The HeadChild(X)
function selects the head child of a node X according to a head per-
colation table. The function IsLeaf(X) checks whether a node X is a

[157]

Phuong Le-Hong et al.
Figure 6:

A parse tree of
the Vietnamese

treebank

S

NP

P
Họ
They

VP

R
sẽ
will

R
không
not

V
chuyển
deliver

NP

N
hàng
goods

PP

E
xuống
to

NP

N
thuyền
boat

PP

E

vào

NP

N
ngày mai
tomorrow

leaf node or not. The functions ArgNodes(H,L) and ModNodes(H,L)
each return a list of nodes which are arguments and modifiers, respec-
tively, of a node H. The list L contains all sisters of H.

For example, Figure 6 shows the phrase structure of a sentence ex-
tracted from the Vietnamese treebank “Họ sẽ không chuyển hàng xuống
thuyền vào ngày mai.” (They will not deliver the goods to the boat
tomorrow.) The head children of phrases are circled.

The derived tree of the sentence once processed by Algorithm 2
is shown in Figure 7, wherein the inserted nodes are marked by the
quotation mark symbol (’).
3.3.2 Building elementary trees
At this step, each derived tree is decomposed into a set of elemen-
tary trees. The recursive structures of the derived tree are factored
out and will become auxiliary trees, and the remaining non-recursive
structures will be extracted as initial trees.

Extracted elementary trees fall into one of three prototypes as
determined by the relation between the anchor and other nodes, as
shown in Figure 8. The extraction process involves copying nodes
from the derived tree for building elementary trees. The result of
the extraction process is three sets of elementary trees: S contains
spine trees, M contains modifier trees and C contains conjunction
trees.

[158]

A syntactic component for Vietnamese language processing

S

NP

P
Họ
They

VP

R
sẽ
will

VP’

R
không
not

VP’

VP’

V
chuyển
deliver

NP

N
hàng
goods

PP

E
xuống
to

NP

N
thuyền
boat

PP

E

vào

NP

N
ngày mai
tomorrow

Figure 7:
The derived tree of the
treebank tree in Figure 6

X m

Y ↓ X m−1

X 1

X

anchor

Z ↓

W

W ∗ X m

Y ↓ X m−1

X 1

X

anchor

Z ↓

X

X CC

anchor

X ∗

Figure 8:
Prototypes of spine trees
and auxiliary trees

[159]

Phuong Le-Hong et al.
Algorithm 3:

BuildElementaryTrees(T)
Data: T is a derived tree.
Result: Sets S ,M ,C of elementary trees.
if (not IsPhrasal(T)) then

return ;
{H0, H1, . . . , Hn} ← HeadPath(T);
ok← false;
P ← H0;
for j← 1 to n do
L ← Sisters(H j);
if |L |> 0 then

Rel← GetRelation(H j ,L);
if Rel= Coordination then
C ←C∪ BuildConjTree(P);

if Rel= Modification then
M ←M∪ BuildModTree(P);
if j = 1 then
S ←S ∪ BuildSpineTree(P);
ok← true;

if Rel= Argument then
if not ok and not IsLinkNode(P) then
S ←S ∪ BuildSpineTree(P);
ok← true;

else
if not IsLinkNode(P) and IsPhrasal(P) then
S ←S ∪ BuildSpineTree(P) ;

P ← H j;

To build elementary trees from a derived tree T , we first find the
head path7 {H0, H1, . . . , Hn} of T . For each parent P and its head child
H, we get the list L of sisters of H and determine the relation be-
tween H and L . If the relation is coordination, a conjunction tree will

7A head path starting from a node T in a derived tree is the unique path from
T to a leaf node where each node except T is the head child of its parents. Here
H0 ≡ T and H j is the parent of its head child H j+1. A node on the head path is
called a link node if its label is the same as that of its parent.

[160]

A syntactic component for Vietnamese language processing
NP
P
Họ

NP
N

hàng

NP
N

ngày mai

NP
N

thuyền

VP
R
sẽ

VP∗
VP
R

không
VP∗

PP
E

xuống
NP↓

VP
VP∗ PP

E
vào

NP↓

Figure 9:
Extracted
elementary
trees

S

NP VP

VP

V

chuyển

NP PP

⇒ S
NP↓ VP
V

chuyển
NP↓ PP↓

Figure 10:
Merge link
nodes to get
a spine tree

be extracted; if the relation is modification, a modifier tree will be
extracted; otherwise, the relation is predicate-argument and a spine
tree will be extracted. Algorithm 3 shows the complete extraction al-
gorithm. This algorithm uses additional functions as follows:
• BuildSpineTree(T) which creates a spine tree;
• MergeLinkNodes(T) which merges all link nodes of a spine tree
into one node (see Figure 10 for an example);

• BuildModTree(T) which creates a modifier tree;
• BuildConjTree(T) which creates a conjunction tree.
As an example, from the derived tree shown in Figure 7, nine trees

are extracted by algorithms as shown in Figure 9 and Figure 10.
3.3.3 Filtering out invalid trees
Annotation errors may be present in any particular treebank. The er-
rors in parse trees will result in incorrect elementary trees. An ele-
mentary tree is called invalid if it does not satisfy some linguistic re-
quirement. We have constructed some linguistic rules for filtering out
invalid elementary trees. For example, in Vietnamese, an adjective (or
an adjectival phrase) can be an argument of a noun (or a noun phrase);
however, it must always be to the right of the noun. For instance, in

[161]

Phuong Le-Hong et al.

Algorithm 4:
BuildSpineTree(T)

Data: T is a derived tree.
Result: A spine tree.
Tc ← Copy(T);
P ← Tc;
H ← NULL;
repeat

H ← HeadChild(P);
L ← Sisters(H);
if |L |> 0 then

Rel← GetRelation(H,L);
if Rel= Argument then

for A∈ L do
BuildElementaryTrees(A);
A.children← ;;
A.type← Substitution;

else
for A∈ L do

P.children← P.children \ A;

P ← H;
until (H = NULL);
return MergeLinkNodes(Tc);

Algorithm 5:
BuildModTree(T)

Data: T is a derived tree
Result: a modifier tree
Tc ← Copy(T);
H ← HeadChild(Tc);
H.children← ;;
H.type← Foot;
M ← Modifier(H);
T ′← BuildSpineTree(M);
if |M .children|> 1 then

BuildElementaryTrees(M);
M ← T ′;
return Tc;

[162]

A syntactic component for Vietnamese language processing

Data: T is a derived tree.
Result: A conjunction tree.
Tc ← Copy(T);
H ← HeadChild(Tc);
BuildElementaryTrees(H);
K ← Coordinator(H);
BuildElementaryTrees(K);
H.children← ;;
H.type← Foot;
K .children← ;;
K .type← Substitution;
return Tc;

Algorithm 6:
BuildConjTree(T)

the noun phrase cô gái đẹp (beautiful girl), the adjective đẹp (beautiful)
must go after the noun cô gái (girl). Thus if there is an adjective on the
left of a noun of an extracted spine tree, the tree is invalid and it must
be filtered out.
3.4 Comparison with previous work
As mentioned above, our approach for LTAG extraction follows the
uniform method of grammar extraction proposed by Xia (2001). Nev-
ertheless, there are some differences between our design and imple-
mentation of extraction algorithms and that of Xia.

First, in the step in which we build the derived tree, we first re-
cursively bracket all conjunction groups of the tree before fully brack-
eting the arguments and modifiers of the resulting tree. We think that
this approach is easier to understand and implement since conjunc-
tion structures are different from argument and modifier structures.
Second, in the elementary tree decomposition step, we do not split
each node in the derived tree into the top and bottom parts as was
done in Xia’s approach of Xia. In our implementation, the nodes are
directly copied to build extracted trees. Third, the tree extraction pro-
cess is separated into functions; each function builds a particular type
of elementary tree; and these functions can call each other to repeat
the extraction process for the subtrees whose roots are not yet vis-
ited. In spite of using recursive functions, our extraction algorithms
are carefully designed to avoid redundant or repeating function calls:

[163]

Phuong Le-Hong et al.
Table 2:

Some tags in the Vietnamese treebank
tagset are merged into a single tag

Category Original tags Tags in G2

noun phrases NP/WHNP NP
adjective phrases AP/WHAP AP
adverbial phrases RP/WHRP RP
preposition phrases PP/WHPP PP
clauses S/SQ S

Table 3:
Two LTAG grammars extracted from

the Vietnamese treebank
Type # of trees # of templates
G1 46382 2317
Spine trees 24 973 1022

Modifier trees 21 309 1223

Conjunction trees 100 72

G2 46102 2113
Spine trees 24 884 952

Modifier trees 21 121 1093

Conjunction trees 97 68

each node is assured to be visited one time. The “divide and conquer”
approach seems to be reasonably efficient and is easy to optimise.
3.5 An LTAG for Vietnamese
We ran extraction algorithms on the Vietnamese treebank and ex-
tracted two treebank grammars. The first one, G1, uses the original
tagset of the treebank. The second one, G2, uses a reduced tagset,
where some sets of tags in the treebank are consolidated, as shown
in Table 2. The grammar G2 is smaller than G1 and it is presumed that
the sparse data problem is less severe when G2 is used.

We count the number of elementary trees and tree templates. The
sizes of the two grammars are in Table 3. Recall that a template is an
elementary tree without the anchor word.

There are 15 035 unique words in the treebank and the average
number of elementary trees that a word anchors is around 3.07. We
also count the number of context-free rules of the grammars where
the rules are simply read off the templates in an extracted LTAG. The
extracted grammars G1 and G2 have 851 and 727 context-free rules,
respectively.

[164]

A syntactic component for Vietnamese language processing

0 20 40 60 80 100
0

500

1000

1500

2000

2500

percentage of corpus

n
u

m
b

e
r

o
f

tr
e

e
 t

e
m

p
la

te
s

all templates

initial templates

auxiliary templates

Figure 11:
The growth of tree
templates

In order to evaluate the coverage of the Vietnamese treebank,
we count the number of extracted tree templates with respect to the
size of the treebank. Figure 11 shows that the number of templates
converges very slowly as the size of the corpus grows, implying that
there are many unseen templates. This experiment also implies that
the size of the current Vietnamese treebank is not large enough to
cover all the grammatical templates of the Vietnamese language.

We have developed a software package8 that implements the pre-
sented algorithms for extracting an LTAG for Vietnamese. The soft-
ware is written in the Java programming language and is freely dis-
tributed under the GNU/GPL license. The software is very efficient
in term of extraction speed: it takes only 165 seconds to extract the
entire grammar G1 on an ordinary personal computer.9 It should be
straightforward to extend the software in order to extract LTAGs from
treebanks of other languages since the language-specific information
is intentionally factored out of the general framework. In order to use
the software on a treebank of a given language, a user would need to
provide the treebank-specific information for that language: a tagset,
a head percolation table, and an argument table.

8http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnLExtractor
9On an Intel Core 2 Duo CPU U9600 with 4GB RAM.

[165]

Phuong Le-Hong et al.

3.6 Summary
In this section, we have presented a system that automatically extracts
LTAGs from treebanks. The system has been used to extract an LTAG
for the Vietnamese language from the recently released Vietnamese
treebank. The extracted Vietnamese LTAG covers the corpus; that is,
the corpus can be seen as a collection of derived trees for the grammar
and can be used to train statistical LTAG parsers directly.

The number of templates extracted from the current Vietnamese
treebank converges slowly. This implies that there are many new tem-
plates outside the corpus and the current Vietnamese treebank is not
large nor typical enough to cover all the grammatical templates of the
Vietnamese language.

We are currently experimenting with extracting a French LTAG
from a French treebank (Abeillé et al. 2003). We also plan to compare
quantitatively syntactic structures of French and Vietnamese. We be-
lieve that a quantitative comparison of the two grammars may reveal
interesting relations between them.

4 parser construction

We present in this section the construction of a deep syntactic parser
for Vietnamese. Our parser is able to produce both constituency and
dependency analyses for a given sentence.
4.1 Preprocessing pipeline
Before being parsed, a text is fed to a chain of preprocessing modules
including a sentence segmenter, a word tokenizer and a tagger. In
particular, we have integrated the following preprocessing modules
into the parser:

• vnSentDetector – a sentence detector which segments a text into
sentences;

• vnTokenizer – a tokenizer which segments sentences into words
or lexical units (Le-Hong et al. 2008);

• vnTagger – a part-of-speech tagger which tags each word of a
sentence with its most appropriate syntactic category (Le-Hong
et al. 2010).

[166]

A syntactic component for Vietnamese language processing

We have adapted an LTAG parser developed at the LORIA10 labo-
ratory to construct a deep syntactic parser for Vietnamese. This parser
was initially used to parse French text (Roussanaly et al. 2005). Given a
sentence, the parser outputs all possible constituency parses and their
corresponding derivation trees. The most important improvement we
made to the parser is the refactoring and introduction of general inter-
faces and modules for preprocessing tasks (sentence detection, word
segmentation, POS tagging) which naturally depend on specific lan-
guages. We have also enriched the parser by adding a supplementary
module which extracts dependency parses from constituency parses
given by the parser.11 This module implements the dependency anal-
ysis extraction algorithm which will be described in the next subsec-
tions.
4.2 Dependency annotation schema
There exist many schema for dependency annotation. Examples in-
clude the Stanford Dependency (SD) annotation scheme
(de Marneffe et al. 2006), created via an automated conversion of
the English Penn Treebank; the PARC 700 scheme (King et al. 2003),
inspired by functional structures of lexical functional grammars; and
the GR scheme (Caroll et al. 1998) or EASy (Paroubek et al. 2005)
for French. Recently, McDonald et al. (2013) presented a universal
treebank with homogeneous syntactic dependency annotation for six
languages: German, English, Swedish, Spanish, French and Korean.
The multiplicity of these different annotation schema is due to differ-
ent linguistic and practical choices. We prefer defining an annotation
scheme of surface dependency for the Vietnamese language which can
be not only convertible to different standards cited above but also en-
largeable to finer dependency schema if necessary. The current scheme
contains 13 grammatical relations representing principal functional
dependencies between Vietnamese words. All these dependencies use
the syntactic categories defined in the Vietnamese treebank (Nguyen
et al. 2009) and they are divided into three groups.

The first group, arg, represents the relationship between a head
word and its argument. There are two types of arguments: subject

10http://www.loria.fr/
11http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnLTAGParser

[167]

Phuong Le-Hong et al.

(subj) or object (obj). It is worth noting that Vietnamese is a topic-
prominent language where sentences are structured around topics
rather than subjects and objects. In many cases, we cannot identify
the subject and the object of a Vietnamese sentence by their respective
positions. The distinction between subject and object of a Vietnamese
sentence is thus not a trivial task, expecially in an automatic process.
Therefore, at the moment, we do not distinguish the two relations
subj and obj in our evaluations. The second group, mod, represents
modification relations of a word and its head word (or its governor).
According to the syntactic category of the modifier, we distinguish
nine modification relations named modN (nominal modifier), modM
(numeral modifier), modA (adjective modifier), modR (adverbial mod-
ifier), modE (prepositional modifier), modV (verbal modifier), modL
(determinant modifier), modP (pronominal modifier) and modC (sub-
ordinating coordination modifier). The third group, coord, represents
dependencies of each lexical head of two coordinating phrases on the
conjunction.

Having defined a dependency annotation scheme for Vietnamese,
we now propose an algorithm for automatically extracting depen-
dency analyses from TAG derivation trees.
4.3 Dependency relation extraction
It has been shown that the TAG formalism shares many important sim-
ilarities with the dependency grammar formalism (Rambow and Joshi
1994). A derivation tree of TAG can be converted superficially into a
dependency tree in the case of lexicalized grammars (Kallmeyer and
Kuhlmann 2012). The main idea is to transform each derivation op-
eration into a dependency relation. A derivation operation between a
source tree t1 and a target tree t2 results in a dependency relation be-
tween the head word of t1 as governor and the head of t2 as dependent
word.

The dependency analysis corresponding to the analysis in Figure 3
is shown in Figure 12. We see that the derivation tree can be trans-
formed into the dependency tree by a simple transformation in which
each node of the derivation tree (representing an elementary tree) is
replaced with its lexical node. Here, we want to extract typed depen-
dencies where each one is labelled by a grammatical relation following
the annotation scheme defined above. We thus need to consider the

[168]

A syntactic component for Vietnamese language processing

....Giang ..cho ..tôi ..một ..quả ..cam
..Giang ..give ..me ..anorange.

arg

.

arg

.

arg

.

modM

.

modN

.

root
Figure 12:
Dependency tree
corresponding to the
analysis in Figure 3

operation done at each node of the derivation tree. If it is a substi-
tution, a relation of type arg will be created; if it is an adjunction, a
relation of type mod will be created and its label can be determined by
examining the syntactic category of the concerned word at the lexical
node of the derivation tree.

X
Y↓ CC

và
(and)

X∗
X

X∗ CC
hoặc
(or)

Y↓

Figure 13:
Examples of coordination
auxiliary trees

The most difficult case is the construction of coordination rela-
tions where we must consider three related nodes and two combina-
tion operations at the same time since an auxiliary tree for conjunc-
tions in TAG has a specific form having a substitution node and a
foot node, as illustrated in example trees in Figure 13. We propose
an algorithm for the automatic extraction of dependency relations
from a derivation tree given by a constituency parser. The algorithm
ExtractRelations(N) (Algorithm 7) shows the extraction procedure in
detail.

This algorithm uses some supplementary functions as follows. The
function LexicalNode(N) returns the lexical head of a node of an in-
put derivation tree N , while the function POSNode(N) returns the
part-of-speech of a lexical head. The functions IsSubst() and IsAdj()
are called at each node of the derivation tree to verify whether the
node is about a substitution or an adjunction. Finally, the function
NewRelation(type, w1, w2) creates and returns a new relation of type
type between two lexical units w1 and w2.

[169]

Phuong Le-Hong et al.
Algorithm 7:

ExtractRelations(N)
Data: A derivation tree N .
Result: A set R of dependency relations.
wn← LexicalNode(N);
tn← POSNode(N);
for K ∈ N .children do

wk← LexicalNode(K);
tk← POSNode(K);
if K.IsSubst() then

if tn = CC then
R ←R∪ NewRelation(coord, wn, wk);

else
R ←R∪ NewRelation(arg, wn, wk);

else
if K.IsAdj() then

if tk ∈ {A,N,R,V,E,L,M,P,C} then
R ←R∪ NewRelation(modtk, wn, wk);

if tk = CC then
R ←R∪ NewRelation(coord, wk, wn);

// Recursively extract relations from tree K;
ExtractRelations(K);

return R;

For example, the application of this algorithm on the input deriva-
tion tree in Figure 1 results in the following relations: arg(cho,Giang),
arg(cho,tôi), arg(cho,quả), modM(quả,một), modN(quả,cam).

5 parser evaluation

In this section, we evaluate the parser on a test corpus. The parser
performance is considered in two versions, with and without using
part-of-speech (POS) tagging.

The grammar used to evaluate the parser is an LTAG extracted
from the Vietnamese Treebank (Nguyen et al. 2009) containing 10 163
sentences (225 085 words, about 22.14 words per sentence on aver-
age). Figure 14 shows the distribution of the number of sentences ac-

[170]

A syntactic component for Vietnamese language processing

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

sentence length

lo
g
(n

u
m

b
e
r

o
f
s
e
n
te

n
c
e
s
)

Figure 14:
The distribution of the
number of sentences
according to their length

cording to their lengths. We see that most of the sentences have a
length between 5 and 30 words.

We choose a subset of the treebank containing 8808 sentences of
length 30 words or less as an evaluation corpus. This corpus is divided
into two sets: a training set (95% of the corpus, 8367 sentences) and a
test set (5% of the corpus, 441 sentences). We use vnLExtractor to ex-
tract an LTAG for Vietnamese from the training set. This grammar con-
tains 35 655 elementary trees instantiated from 1658 tree templates.
The size of this grammar is shown in Table 4.

Type Number of trees Number of templates
Spine trees 19 708 741

Modifier trees 15 868 860

Conjunction trees 79 57

Total 35655 1658

Table 4:
Size of the LTAG extracted
from the training corpus

To evaluate the parser, we make use of two measures: tree ac-
curacy (or T -accuracy) and dependency accuracy (or D-accuracy).12

12 In computing these scores, unanalyzable sentences and punctuations are not
taken into account.

[171]

Phuong Le-Hong et al.
Table 5:

Performance of the
constituency analysis
without or with POS

tagging

T -accuracy All ≤ 10 words
No POS POS No POS POS

Precision 67.98 69.15 71.28 71.60

Recall 68.40 69.52 71.39 72.30

F -measure 68.19 69.33 71.33 71.95

Complete match 13.00 16.67 17.57 20.69

Average crossing 2.66 2.39 1.80 1.69

No crossing 23.00 27.78 29.73 32.76

Fewer than three crossings 55.00 54.17 68.92 65.52

Tagging accuracy 87.72 95.25 87.34 95.43

Table 6:
Performance of the

dependency analysis
without or with POS

tagging

D-accuracy With type Without type
No POS POS No POS POS

Precision 70.83 71.81 74.02 73.21

Complete match 15.87 20.00 23.37 25.45

When there are multiple parse trees for a sentence (which is very often
the case even with short sentences), we choose one of the derivation
trees whose derived trees have smallest number of nodes because these
parses correspond to the most specific tree.13

5.1 Performance without POS tagging
First, the parser is evaluated without using a POS tagger. That is, the
module vnTagger is not integrated into the parser. In this setting, each
word occurrence of an input sentence is tagged with all possible tags
that have been assigned to it in the training set. Unknown words are
tagged as common nouns (label N). We first evaluate the performance
of the constituency analysis. The results are shown in Table 5.14

In addition to the familiar precision and recall ratios, other mea-
sures are reported to help analyze the results:15

13 In case of equality by this criterion, we take the first result returned by the
parser.

14The presented evaluation results are calculated automatically by EVALB, a
tool used frequently for the evaluation of syntactic constituency analysis which
is distributed freely at http://nlp.cs.nyu.edu/evalb/.

15The F -measure is the harmonic mean of precision and recall and is com-
puted as F = 2 PR

P+R .

[172]

A syntactic component for Vietnamese language processing

• Complete match ratio is the percentage of sentences where recall
and precision are both 100%. About 13% of the test sentences
match completely. The complete match ratio for sentences of 10
words or less is 17.57%.

• The average crossing ratio is the number of constituents crossing
a test constituent divided by the number of sentences of the test
corpus.

• The no crossing ratio is the percentage of sentences which have
zero crossing brackets. There are 23% of the test sentences that do
not have any crossing (29.73% for the sentences of 10 words or
less). There are 55% (respectively 68.92%) of the test sentences
which have fewer than three crossings.

• The tagging accuracy is the percentage of correct POS tags (with-
out punctuations). It is interesting to note that the tagging accu-
racy declines slightly when shorter test sentences are used.
The performance of dependency analysis is evaluated in two ver-

sions: with and without type. In the first version, two typed depen-
dencies type1(u1, v1) and type2(u2, v2) are considered equal if three cor-
responding parts of these dependencies are all equal, that is type1 ≡
type2, u1 ≡ u2, v1 ≡ v2. In the second version, we compare only two
pairs of concerned words without using their dependency types. The
D-accuracy of the two evaluations are given in Table 6.16 Table 7
shows the system’s performance for each dependency type.

We see that the parser works perfectly on coordination structures,
as they are inherently unambiguous in both the grammar and the ex-
traction algorithm. The performance on the dependencies of type ar-
gument is much better than that of type modifier. These results justify a
higher ambiguity of the adjunction operation of the LTAG formalism
(which is related to auxiliary trees) in comparison with the substitu-
tion operation (which is related to initial trees).

We observe that the parser could not parse about 16.6% of the
test corpus. We believe that there may be two main reasons that some
sentences can not be analysed. First, there is an insufficient coverage
of the underlying LTAG grammar used by the parser. That is, the gram-

16Note that when evaluating the accuracy of a dependency analysis, we do
not need to compute precision or recall ratios since they are equal: the number
of relations given by the parser always matches the number of correct relations.

[173]

Phuong Le-Hong et al.
Table 7:

Performance of
dependency

analysis by type
without or with

POS tagging

Type Precision Recall F -measure
No POS POS No POS POS No POS POS

arg 87.57 87.18 79.02 80.95 83.08 83.95

coord 100.00 100.00 100.00 100.00 100.00 100.00

modA 48.57 59.09 62.96 65.00 54.84 61.90

modC 46.67 66.67 43.75 60.00 45.16 63.16

modE 50.00 35.71 56.52 35.71 53.06 35.71

modL 72.73 100.00 47.06 50.00 57.14 66.67

modM 80.00 81.82 53.33 75.00 64.00 78.26

modN 50.00 58.54 66.67 68.57 57.14 63.16

modR 64.10 47.06 60.98 42.11 62.50 44.44

modV 52.63 58.33 62.50 87.50 57.14 70.00

mar extracted from the training corpus does not contain the syntactic
structure (elementary trees) of a given sentence to be parsed. Sec-
ondly, our heuristic choice of tagging all the new words as a common
noun may effectively introduce errors prior to the analysis, which may
result in analysis failures. We have not yet thoroughly investigated
these causes.

The ambiguity and the duration of parsing are strongly dependent
on the length of sentences, as shown in Figure 15. It seems that the
number of parses has an exponential growth with respect to the length
of the sentence.17

5.2 Performance with POS tagging
The results reported in the previous subsection make possible a pre-
liminary evaluation of the grammar and the performance of the parser.
Nevertheless, the condition under which the experimentation is car-
ried out is rather harsh since the parser has to try all possible syn-
tactic categories of each word of an input sentence. The experiments
in this subsection are closer to real use conditions, in that each sen-
tence is first processed by a tagger to remove POS-tagging ambiguity
– each word is assigned a unique tag. We have thus a sole sequence of

17For some considerably long sentences, the parser could not give any result
after a fixed time-out predefined at 3 minutes. We limit the sentence length to
15 words in the experiments with the symbolic parser.

[174]

A syntactic component for Vietnamese language processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

sentence length

lo
g

(n
u

m
b

e
r

o
f

p
a

rs
e

s
)

(a)

maximum

average

4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

sentence length

lo
g

(p
a

rs
in

g
 t

im
e

 i
n

 s
e

c
o

n
d

s
)

(b)

maximum

average

Figure 15: The ambiguity (a) and duration (b) of analysis, average and maximum,
according to the length of sentences

words/tags and it is used as input to the syntactic parser. The tagging
is done by the vnTagger module.

We proceed with the evaluation of this parser version in a similar
way as presented for the previous version without POS tagging. We
first give constituency parsing results, then dependency parsing results
and finally the ambiguity and duration of the parsing.

The T -accuracy of the system is shown in Table 5. By integrating a
POS tagger, the tagging accuracy is greatly improved, from 87.72% to
95.25%.18 This helps improve all the scores of the system, notably the
complete match ratio, from 13.00% to 16.67% (and that for sentences
of length 10 words or less improves to 20.69%).

The dependency analysis performance both with andwithout type
is shown in Table 6 and the performance of particular dependency
types is shown in Table 7.

We see that the performance of the system is improved slightly
in comparison with the system without tagging. However, the most
important benefit of the parser with the integrated tagger is a strong
reduction of analysis ambiguity and time, shown in Figure 16. The tag-

18Recall that the test corpus only contains sentences of 30 words or less.

[175]

Phuong Le-Hong et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

sentence length

lo
g

(n
u

m
b

e
r

o
f

p
a

rs
e

s
)

(a)

maximum

average

4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

sentence length

lo
g

(p
a

rs
in

g
 t

im
e

 i
n

 s
e

c
o

n
d

s
)

(b)

maximum

average

Figure 16: The ambiguity (a) and duration (b) of analysis, average and maximum,
with an integrated tagger

ger helps reduce analysis ambiguity fivefold on average and reduces
analysis duration three times in comparison with the required time
of the parser without prior tagging. Nevertheless, we observe that the
integration of the tagger results in a higher number of sentences that
the parser could not parse, to 40% of the test corpus. This result is to
be expected because in this version the parser uses only a syntactic
category (the most probable POS) given by the tagger for each word.
(We note also that the precision of the tagger at sentence level is about
32% (Le-Hong et al. 2010); that is, the tagger can give correct tags for
all the words of a sentence to be parsed only one third of the time).
5.3 Discussion
In the previous section, we evaluated a syntactic analysis system based
on LTAG for Vietnamese. The best results obtained are 73.21% (de-
pendency accuracy, or D-accuracy) and 69.33% (F -measure of con-
stituency accuracy, or T-accuracy, measured by EVALB) on a test cor-
pus.

It is worth noting that these are the first results of syntactic anal-
ysis of Vietnamese based on LTAG. To our knowledge, to date there

[176]

A syntactic component for Vietnamese language processing

have been few published works on the syntactic analysis of Viet-
namese. The most complete report on parser performance for Viet-
namese is an empirical study of applying probabilistic CFG parsing
models by Collins (2003); its best result on constituency analysis is
78% T -accuracy on a test corpus, while there is no result reported
for dependency analysis. Concerning the constituency parsing result,
their parser is slightly better than ours. However, these results are not
directly comparable since the parsing models are trained and tested
on a different corpus.

Our first results of the syntactic parsing of Vietnamese are rather
good although they are still significantly weaker than parsing re-
sults for well-studied languages like English (whose T -accuracy is
91.10% (Carreras et al. 2008) and whose D-accuracy is 92.93% (Koo
and Collins 2010) on the Penn Treebank) or French (T -accuracy is
86.41% (Candito et al. 2009a) and D-accuracy is 85.55% on a French
treebank (Candito et al. 2010)). However, we can improve our results
by correcting three main sources of errors identified by the experi-
ments; we examine each such type of error presently.

The principal source of parsing errors is the selection of parse.
When there are multiple parses for a sentence, only the parse whose
derivation tree contains the fewest nodes is selected. Although the
returned tree corresponds to the most specific analysis, it is obvi-
ous that this selection method is purely heuristic and fragile. How-
ever, the use of a probabilistic parser does not improve significantly
the parsing accuracy. We think that the parameters of the statisti-
cal parser are currently not optimised for parsing Vietnamese or the
Vietnamese grammar is not large enough in order for the statisti-
cal parser to be effective. Consequently, optimising parameters of
the statistical parsing model could help improve the parsing perfor-
mance.

The second source of parsing errors is the POS tagging. In the
experiments with a tagger integrated, we use only the most confident
prediction generated by vnTagger as input to the parser. We have
seen that the tagger often makes errors at the sentence level; perfectly
tagged sentences are rare. A tagging error may effectively introduce
one or more parsing errors. An improvement in tagging performance
is thus another necessary condition to improve the performance of the
parser.

[177]

Phuong Le-Hong et al.

The third source of parsing errors concerns the coverage of the
grammar used in the experiments. In general, the proportion of test
sentences having at least one word that the grammar does not rec-
ognize is rather high, at about 15%. Consequently, the parser could
not build the correct analysis for these sentences. A straightforward
solution to this problem is to enlarge the coverage of the LTAG gram-
mar, which in turn necessitates an enlargement of the Vietnamese tree-
bank. However, developing such a corpus is an expensive and labour-
intensive task. In addition, this may lead to the typical problem of a
symbolic syntactic parser: the tradeoff between its performance and
its efficiency. This is an interesting problem in itself, which we shall
investigate in future works.

6 conclusion

In this article, we have presented a complete syntactic component for
Vietnamese language processing. The component comprises two es-
sential resources: a lexicalized tree-adjoining grammar for Vietnamese
and a set of software tools that are chained together to produce syn-
tactic structures from Vietnamese raw text. The grammar is extracted
automatically from a treebank by an efficient algorithm. The software
includes necessary modules for detecting sentence boundaries, tok-
enizing word units, part-of-speech tagging and syntactic parsing. This
syntactic component is the first system capable of generating both con-
stituency and dependency analyses for the language with encouraging
performance.

Syntactic dependency representation of natural sentences has
gained a wide interest in the natural language processing community
and has been successfully applied to many problems and applications
such as machine translation (Ding and Palmer 2004), ontology con-
struction (Snow et al. 2005) and automatic question answering (Lin
and Pantel 2001). A primary advantage of dependency representation
is its natural mechanism for representing discontinuous constructions
or long distance dependencies which are common in Vietnamese. We
think that the presence of a good dependency schema and a depen-
dency parser for Vietnamese will be very helpful in a wide range of
tasks for Vietnamese processing.

[178]

A syntactic component for Vietnamese language processing

We have seen in recent years a rapid increase of research on
data-driven dependency parsers, especially the rise of statistical meth-
ods in natural language processing where dependency annotated cor-
pora exist. These parsers use one of two predominant paradigms for
data-driven dependency parsing which are often called graph-based
and transition-based dependency parsing. However, the constituency
parser and dependency parser developed in this work are currently
purely symbolic in that they do not make use of any probabilistic ev-
idence to discriminate good parses from bad ones for a given sen-
tence, regardless of its grammaticality. An initial investigation of sta-
tistical dependency parsing for Vietnamese has shown encouraging re-
sults (Nguyen et al. 2013). We believe that there is room to improve the
performance of dependency parsers in general and of our dependency
parser in particular by employing a hybrid approach: use elementary
trees of an lexicalized tree-adjoining grammar as good syntactic fea-
tures in a statistical dependency parser. This is an interesting problem
that we plan to work on in the future.

acknowledgements

This research is funded by the Vietnam National University, Hanoi
(VNU) under project number QG.15.04. Any opinions, findings and
conclusion expressed in this paper are those of the authors and do not
necessarily reflect the view of VNU.

We are grateful to our three anonymous reviewers for their in-
sightful comments, which helped us improve the quality of the article
in terms of both presentation and content. Finally, we thank the copy
editors of the Journal of Language Modelling for their great job on the
manuscript.

[179]

Phuong Le-Hong et al.

references
Anne Abeillé, Lionel Clément, and François Toussenel (2003), Building a
treebank for French, in Anne Abeillé, editor, Treebanks: Building and Using
Parsed Corpora, volume 20 of Text, Speech and Language Technology,
pp. 165–187, Springer Netherlands.
Mark Alves (1999), What’s so Chinese about Vietnamese?, in Proceedings of the
Ninth Annual Meeting of the Southeast Asian Linguistics Society, pp. 221–224,
University of California, Berkeley, USA.
Jens Bäcker and Karin Harbusch (2002), Hidden Markov model-based
supertagging in a user-initiative dialogue system, in Proceedings of TAG+6,
pp. 269–278, Universita di Venezia, Italy.
Marie Candito, Benoît Crabbé, and Djamé Seddah (2009a), On statistical
parsing of French with supervised and semi-supervised strategies, in Proceedings
of EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical
Inference, pp. 49–57, Athens, Greece.
Marie Candito, Benoît Crabbé, and Pascal Denis (2010), Statistical French
dependency parsing: treebank conversion and first results, in Proceedings of
LREC 2010, pp. 19–21, Valletta, Malta.
Marie Candito, Benoît Crabbé, Pascal Denis, and François Guérin (2009b),
Analyse syntaxique du français : des constituants aux dépendances (Syntactic
Parsing of French: from constituents to dependencies), in Actes de Traitement
Automatique des Langues, pp. 40–49, Senlis, France.
John Caroll, Ted Briscoe, and Antonio Sanfilippo (1998), Parser
evaluation: a survey and a new proposal, in Proceedings of LREC 1998, Granada,
Spain.
Xavier Carreras, Michael Collins, and Terry Koo (2008), TAG, dynamic
programming, and the perceptron for efficient, feature-rich parsing, in
Proceedings of CoNLL 2008, pp. 9–16, Manchester, UK.
John Chen, Srinivas Bangalore, and K. Vijay-Shanker (2006), Automated
extraction of tree-adjoining grammars from treebanks, Natural Language
Engineering, 12(3):251–299.
John Chen and K. Vijay-Shanker (2000), Automated extraction of TAGs
from the Penn treebank, in Proceedings of the Sixth International Workshop on
Parsing Technologies.
David Chiang (2000), Statistical parsing with an automatically extracted tree
adjoining grammar, in Proceedings of ACL, pp. 456–463, Morristown, New
Jersey, USA.
Michael Collins (1997), Three generative, lexicalised models for statistical
parsing, in Proceedings of ACL, pp. 16–23, Association for Computational
Linguistics, Stroudsburg, Pennsylvania, USA.

[180]

A syntactic component for Vietnamese language processing

Michael Collins (2003), Head-driven statistical models for natural language
parsing, Computational Linguistics, 29(4):589–637.
Benoît Crabbé, Denys Duchier, Claire Gardent, Josheph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):591–629.
Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D.
Manning (2006), Generating typed dependency parses from phrase structure
parses, in Proceedings of LREC 2006, pp. 449–454, Genoa, Italy.
Yuan Ding and Martha Palmer (2004), Synchronous dependency insertion
grammars: a grammar formalism for syntax-based statistical machine
translation, in Workshop on Recent Advances in Dependency Grammars,
pp. 90–97, Geneva, Switzerland.
Robert Frank (2002), Phrase structure composition and syntactic dependencies,
MIT Press, Boston, USA.
Nizar Habash and Owen Rambow (2004), Extracting a tree-adjoining
grammar from the Penn Arabic treebank, in Actes de Traitement Automatique des
Langues, pp. 50–55, Fez, Morocco.
Cao Xuân Hạo (2000), Vietnamese – Some Questions on Phonetics, Syntax and
Semantics (in Vietnamese), NXB GD, Hanoi, Vietnam.
Phê Hoàng (2002), Vietnamese Dictionary, NXB DN, Danang, Vietnam.
Đạt Hữu, Trí Dõi Trần, and Thanh Lan Đào (1998), Basis of Vietnamese (in
Vietnamese), NXB GD, Hanoi, Vietnam.
Ane-Dybro Johansen (2004), Extraction des grammaires LTAG à partir d’un
corpus étiquetté syntaxiquement, Master’s thesis, Université Paris 7, Paris, France.
Richard Johansson and Pierre Nugues (2008), Dependency-based
syntactic-semantic analysis with PropBank and NomBank, in CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Language
Learning, pp. 183–187, Manchester, UK.
Aravind K. Joshi and Yves Schabes (1997), Tree Adjoining Grammars, in
Grzegorz Rozenberg and Arto Salomaa, editors, Handbooks of Formal
Languages and Automata, pp. 69–123, Springer-Verlag, New York, USA.
Miriam Kaeshammer (2012), A German treebank and lexicon for tree-adjoining
grammars, Master’s thesis, Universitat des Saarlandes, Saarlandes, Germany.
Laura Kallmeyer and Marco Kuhlmann (2012), A formal model for
plausible dependencies in lexicalized tree adjoining grammar, in Proceedings of
TAG+11, pp. 108–116, Paris, France.
Tracy Holloway King, Richard Crouch, Stefan Riezler, Mary Dalrymple,
and Ronald M. Kaplan (2003), The PARC 700 dependency bank, in Proceedings
of 4th International Workshop on Linguistically Interpreted Corpora, pp. 1–8,
Budapest, Hungary.

[181]

Phuong Le-Hong et al.

Terry Koo and Michael Collins (2010), Efficient third-order dependency
parsers, in Proceedings of ACL, pp. 1–11, Uppsala, Sweden.
Sandra Kübler, Ryan McDonald, and Joakim Nivre (2009), Dependency
parsing, Morgan & Claypool Publishers.
Phuong Le-Hong, Thi Minh Huyen Nguyen, Azim Roussanaly, and
Tuong Vinh Ho (2008), A hybrid approach to word segmentation of
Vietnamese texts, in Proceedings of LATA, LNCS 5196, pp. 240–249, Springer.
Phuong Le-Hong, Azim Roussanaly, Thi Minh Huyen Nguyen, and Mathias
Rossignol (2010), An empirical study of maximum entropy approach for
part-of-speech tagging of Vietnamese texts, in Actes de Traitement Automatique
des Langues, pp. 50–61, Montreal, Canada.
Charles N. Li and Sandra A. Thompson (1976), Subject and topic: a new
typology of language, in Subject and topic, pp. 457–489, London/New York:
Academic Press.
Dekang Lin and Patrick Pantel (2001), Discovery of inference rules for
question answering, Natural Language Engineering, 7(4):343–360.
David M. Magerman (1995), Statistical decision-tree models for parsing, in
Proceedings of ACL, pp. 276–283, Stroudsburg, Pennsylvania, USA.
Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav
Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Nuria Bertomeu Castelló, and
Jungmee Lee (2013), Universal dependency annotation for multilingual
parsing, in Proceedings of ACL, pp. 92–97, Sofia, Bulgaria.
Ryan McDonald and Fernando Pereira (2006), Online learning of
approximate dependency parsing algorithms, in Proceedings of EACL, pp. 81–88,
Trento, Italy.
Alexis Nasr (2004), Analyse syntaxique probabiliste pour grammaires de
dépendances extraites automatiquement, Habilitation à diriger des recherches,
Université Paris 7, Paris, France.
Günter Neumann (2003), A uniform method for automatically extracting
stochastic lexicalized tree grammar from treebank and HPSG, in Anne Abeillé,
editor, Treebanks: Building and Using Parsed Corpora, volume 20 of Text, Speech
and Language Technology, pp. 351–365, Springer Netherlands.
Phuong Thai Nguyen, Luong Vu Xuan, Thi Minh Huyen Nguyen, Van Hiep
Nguyen, and Phuong Le-Hong (2009), Building a large
syntactically-annotated corpus of Vietnamese, in Proceedings of the 3rd Linguistic
Annotation Workshop, ACL-IJCNLP, pp. 182–185, Suntec City, Singapore.
Thi Luong Nguyen, My Linh Ha, Viet Hung Nguyen, Thi Minh Huyen
Nguyen, and Phuong Le-Hong (2013), Building a treebank for Vietnamese
dependency parsing, in The 10th IEEE RIVF, pp. 147–151, IEEE, Hanoi, Vietnam.

[182]

A syntactic component for Vietnamese language processing

Thi Minh Huyen Nguyen, Laurent Romary, Mathias Rossignol, and
Xuan Luong Vu (2006), A lexicon for Vietnamese language processing,
Language Resources and Evaluation, 40(3–4).
Jaokim Nivre and Ryan McDonald (2008), Integrating graph-Based and
transition-Based dependency parsers, in Proceedings of ACL-08, pp. 950–958,
ACL, Columbus, Ohio, USA.
Joakim Nivre (2003), An efficient algorithm for projective dependency
parsing, in Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT 03), pp. 149–160, Nancy, France.
Jungyeul Park (2006), Extraction of tree adjoining grammars from a treebank
for Korean, in Proceedings of COLING-ACL Student Research Workshop,
pp. 73–78, Morristown, New Jersey, USA.
Patrick Paroubek, L. G. Pouillot, I. Robba, and Anne Vilnat (2005),
EASY : Campagne d’évaluation des analyseurs syntaxiques (EASY Evaluation
compagne of syntactic parsers), in Actes de Traitement Automatique des Langues,
pp. 3–12, Dourdan, France.
Lewis M. Paul, Gary F. Simons, and Charles D. Fennig (eds.) (2014),
Ethnologue: Languages of the World, Seventeenth edition, SIL International, Dallas,
Texas, USA.
Owen Rambow and Aravind Joshi (1994), A formal look at dependency
grammars and phrase-structure grammars, with special consideration of
word-order phenomena, in Current Issues in Meaning-Text Theory, pp. 1–20,
Pinter, London, UK.
Azim Roussanaly, Benoît Crabbé, and Jérôme Perrin (2005), Premier bilan
de la participation du LORIA à la campagne d’évaluation EASY, in Actes de
Traitement Automatique des Langues, pp. 49–52, Dourdan, France.
Yves Schabes (1990), Mathematical and computational aspects of lexicalized
grammars, Ph.D. thesis, University of Pennsylvania, Pennsylvania, USA.
Rion Snow, Dan Jurafsky, and Andrew Y. Ng (2005), Learning syntactic
patterns for automatic hypernym discovery, in Advances in Neural Information
Processing Systems, pp. 1297–1304, Vancouver, Canada.
Vietnam Committee on Social Sciences, editor (1983), Vietnamese
Grammar (in Vietnamese), NXB KHXH, Hanoi, Vietnam.
Fei Xia (2001), Automatic grammar generation from two different perspectives,
Ph.D. thesis, University of Pennsylvania, Pennsylvania, USA.
Fei Xia, Martha Palmer, and Aravind Joshi (2000), A uniform method of
grammar extraction and its applications, in Proceedings of the joint SIGDAT
conference on empirical methods in NLP and very large corpora, pp. 53–62,
Morristown, New Jersey, USA.

[183]

Phuong Le-Hong et al.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[184]

Implementing semantic frames
as typed feature structures

with XMG

Timm Lichte1 and Simon Petitjean2
1 University of Düsseldorf, Germany
2 Université d’Orléans, LIFO, France

abstract
Keywords:
metagrammar,
typed feature
structures,
models of type
constraints,
type hierarchy,
unification

This work1 presents results on the integration of frame-based repre-
sentations into the framework of eXtensible MetaGrammar (XMG).
Originally XMG allowed for the description of tree-based syntactic
structures and underspecified representations of predicate-logical for-
mulae, but the representation of frames as a sort of typed feature struc-
ture, particularly type unification, was not supported. Therefore, we
introduce an extension that is capable of handling frame representa-
tions directly by means of a novel <frame>-dimension. The aim is not
only to make possible a straightforward specification of frame descrip-
tions, but also to offer various ways to specify constraints on types, be
it as a connected type hierarchy or a loose set of feature structure con-

1This article is a substantially revised and extended version of Lichte et al.
(2013). It has greatly benefited from discussions with Laura Kallmeyer, Rainer
Osswald, Christof Rumpf and Yulia Zinova. We also thank both the reviewers of
the ESSLLI 2013 workshop on High-level Methodologies in Grammar Engineer-
ing (HMGE) and the the reviewers of the JLM for detailed and helpful comments.
The work presented in this paper was financed by the Deutsche Forschungsge-
meinschaft (DFG) within the CRC 991. It was also financially supported by the
scientific network PARSEME (COST Action IC1207) with a travel grant for Si-
mon Petitjean. When finishing this article we learned with great sadness of the
passing of our friend and colleague Christof Rumpf. We dedicate this article to
his memory.

Journal of Language Modelling Vol 3, No 1 (2015), pp. 185–228

Timm Lichte, Simon Petitjean

straints. The presented extensions to XMG are fully operational in a
new prototype.

1 introduction

Recent work (Kallmeyer and Osswald 2012a,b, 2013; Zinova and
Kallmeyer 2012) has shown increasing interest in coupling a frame-
based semantics with a tree-based syntax such as Tree Adjoining
Grammar (TAG, Joshi and Schabes 1997). While having led to promis-
ing results on the theoretic side, it is still unclear how to imple-
ment these ideas with existing grammar engineering tools, let alone
how to bring them alive in natural language parsing. In this ar-
ticle, we present results on the integration of frame-based repre-
sentations into the framework of eXtensible MetaGrammar (XMG,
Crabbé et al. 2013).2 XMG originally allowed for the description of
tree-based syntactic structures and underspecified representations of
predicate-logical formulae, but the representation of frames as a sort
of typed feature structure, particularly type unification, was not sup-
ported. Therefore we extend XMG by a novel <frame>-dimension,
among other tools, that makes it capable of handling frame repre-
sentations as formalized in Petersen (2007) and Kallmeyer and Os-
swald (2013), i.e. as extended typed feature structures, directly.3
This capability also paves the way for implementing recent work
on morphological decomposition, such as in Zinova and Kallmeyer
(2012), where morphemes are linked to a frame-semantic representa-
tion.

These efforts might seem redundant, given that there exists a mul-
titude of works on dealing with typed feature structures in grammar
implementation and parsing, notably in the framework of HPSG (e.g.
Carpenter 1992; Götz et al. 1997; Malouf et al. 2000; Flickinger 2000;
Copestake 2002; Carpenter et al. 2003). As far as we can see, however,
our approach differs from previous work in several respects: first and

2https://sourcesup.renater.fr/xmg/
3The reviewers suggested to focus more on typed feature structures and less

on semantic frames. While this is a reasonable advice, we consider the applica-
tion to be the driving force of this whole endeavour, which also crucially moti-
vates our choice of a typed feature structure logic that is, from our perspective,
uncommon in linguistic applications.

[186]

Implementing semantic frames with XMG

foremost, it allows for a choice between minimal and maximal mod-
els of type constraints. As a consequence of this, our approach also
allows for anonymous types, hence types that result from the conjunc-
tion of defined types, but that are not defined themselves in the type
signature. We will precisely explicate this distinction in Section 4. Fi-
nally, our work aims at providing the grammar writer with multiple
means of expression, for example, in permitting him/her to make use
of loose type constraints or connected type hierarchies, or both. This
degree of flexibility is often not found in other grammar implemen-
tation frameworks that support typed feature structures. We hypoth-
esize that other frameworks are mainly concerned with the syntactic
component of the grammar, while we focus on the conceptual seman-
tics whose structure (and how it comes about) seems to be much less
predetermined.

The paper proceeds as follows. The next section briefly illustrates
the grammatical objects that we are concerned with, and Section 3
then shows the proposed factorization, which crucially guides the im-
plementation with XMG and also justifies the employment of frame
unification. After this, we explain the formalization of frames as a
sort of typed feature structure in Section 4, and the basic concepts of
XMG in Section 5. This will be essential to understand the usage and
compilation details of the new <frame>-dimension, the presentation
of which follows in Section 6. Finally, Section 7 concludes the article.
Moreover, a complete code example based on analyses from Section 2
and Section 3 is presented in the Appendix.

2 a frame-based semantics for ltag

Wewill use the state-of-the-art work of Kallmeyer and Osswald (2013)
on integrating frame semantics into Lexicalized Tree-Adjoining Gram-
mars (LTAG) as a starting point. One important motivation for devel-
oping a frame-based semantics for LTAG is found in the straightfor-
ward account for the well-established distinction between lexical and
constructional contributions to the overall meaning. An example of
this sort of contrast is displayed in (1):
(1) a. The ball rolled into the goal.

b. John rolled the ball into the goal.

[187]

Timm Lichte, Simon Petitjean

Both sentences involve the same verb of directed motion, rolled, but
the two instances nevertheless differ with respect to the linking of
the subject with the conveyed event semantics. While in (1a) the
subject the ball is the moved object, in (1b) the subject John is caus-
ing the motion rather than undergoing it. The trigger for this se-
mantic shift seems to be the lack or existence of the direct object
(both under the presence of a directional PP), hence the construction
type, as this constitutes the crucial syntactic difference between (1a)
and (1b).

In the framework of Kallmeyer and Osswald (2013), the syntax
of these constructions lies in the scope of the LTAG component. An
LTAG consists of a finite set of phrase structure trees, the elementary
trees, that can be combined (by means of two basic operations, substi-
tution and adjunction) to generate larger trees.4 Since we are dealing
with a lexicalized TAG, each elementary tree must include at least one
non-terminal leaf, the lexical anchor. Furthermore elementary trees are
constrained through the valency properties of their anchors. Usually
each non-terminal leaf corresponds to exactly one syntactic argument,
and vice versa.

The proposed LTAG analyses of (1a) and (1b), shown in Figure 1,
differ with respect to the elementary trees that are associated with the
two instances of rolled, say the intransitive rolledint and the transitive
rolledtr:5 since syntactic arguments are represented as non-terminal
leaves, the elementary tree for rolledint lacks the object NP slot that
the elementary tree for rolledtr has. The difference in meaning is there-
fore attributed to the different elementary trees that a given verb may
anchor.

Since elementary trees, but not the anchoring verbs, are held re-
sponsible for different linking patterns, it is straightforward to abstract
away from the concrete anchor by just considering the yet unanchored
elementary tree, which is commonly called the tree template. An exam-
ple of such a tree template is shown on the left in Figure 2, wherein the
site of lexical insertion, here of rolled, is marked by the ⋄-symbol. The

4Since in the present paper we mainly focus on single elementary trees, we
skip most details of the formalism here. See Joshi and Schabes (1997) or Abeillé
and Rambow (2000a) for comprehensive presentations.

5Note that dashed arrows indicate combinatorial operations, which in this
case only involve substitution, i.e. the rewriting of a leaf node in the target tree.

[188]

Implementing semantic frames with XMG
..

..
NP
...

..
The ball

. ..
S
.....

..
VP
.....

..
PP

.

..

..
VP
...

..
V
...

..
rolledint

.

..

..
NP

.

..
PP
.....

..
NP

.

..

..
P
...

..
into

.

..
NP
...

..
the goal

..

..
NP
...

..
John

.

..
NP
...

..
the ball

. ..
S
.....

..
VP
.....

..
PP

.

..

..
VP
.....

..
NP

.

..

..
V
...

..
rolledtr

.

..

..
NP

.

..
PP
.....

..
NP

.

..

..
P
...

..
into

.

..
NP
...

..
the goal

Figure 1: LTAG derivation for (1a) and (1b) with intransitive versus transitive
rolled

....
S
.....

..
VP[E= 0 ,PATH= 5]

.....

..
PP[I= 3 ,E= 4]

.

..

..
VP[E= 0 ,PATH= 5]

.....

..
NP[I= 2]

.

..

..
V⋄[E= 0]

...

..
rolledtr

.

..

..
NP[I= 1]

0

causation
actor 1

theme 2

goal 3

cause

activity
actor 1

theme 2

effect 4

bounded-translocation
mover 2

goal 3

path 5

Figure 2: Tree template and frame-semantic representation of the transitive
motion construction from Figure 1, taken from Kallmeyer and Osswald (2013,
Fig. 26)

complex node labels will be explained presently. The right side of Fig-
ure 2 shows the event semantic contribution of the tree template in the
format of a typed feature structure, here represented as an attribute
value matrix (AVM). Typed feature structures are a common repre-
sentation format of frames (see Petersen 2007), which, according to

[189]

Timm Lichte, Simon Petitjean

Fillmore (1982), Barsalou (1992) and others, are considered a proper
representation of mental concepts.6 As can be seen from the exam-
ple, features describe semantic participants and components (agent,
theme,…), while feature structures correspond to conceptual objects,
restricted by the type (causation, activity, …) that they are associated
with. The boxed numbers, finally, are base labels which serve to mark
inequalities and correspondences in the syntax-frame interface. Fur-
thermore, they guide the unification of (subparts of) frames, as can be
seen in the next section.

Because tree templates, just as elementary trees, span an ex-
tended domain of locality,7 the linking of positions within the tree
template to positions within the frame-semantic representation can
be achieved rather directly. In Figure 2 it is indicated by co-occurring
boxed numbers. For example, the subject NP-leaf is linked with the ac-
tor role(s) of the frame, eventually causing the unification of the ac-
tor role and the frame of the substituting NP-tree. Note that the nodes
of tree templates carry (non-recursive, non-typed) feature structures,
which include, among others, interface features such as i(ndividual)
and e(vent).8 Following the terminology in Kallmeyer and Osswald
(2013), we call couples of tree template and frame-semantic represen-
tation an elementary construction.

The composition of frame representations is moreover guided by
a globally defined type hierarchy, which determines (i) the unifiability
of types and the resulting type, and (ii) the set of appropriate features

6Note that FrameNet (Fillmore 2007), despite being declared as an imple-
mentation of Fillmore’s frame semantics, deals with flat lexical frame represen-
tations that are generally less expressive (Osswald and Van Valin 2014).

7The extended domain of locality (EDL) is one of the central properties of the
TAG formalism (cf. Joshi et al. 1990). It amounts to the capability of arguments to
immediately attach to the elementary tree of their governor; see again Figure 1.
In connection with TAG, EDL presupposes the availability of the adjunction op-
eration (i.e. the rewriting of inner nodes), in order to account for discontinuity
effects such as long distance dependencies.

8The approach to let the syntax-semantics interface rely on the unification of
interface features can already be found in, e.g., Stone and Doran (1997), Frank
and van Genabith (2001), Gardent and Kallmeyer (2003). The proposal for link-
ing nodes of an elementary tree with positions in some semantic representation,
and thus to derive syntax and semantics in parallel, dates back at least to Shieber
and Schabes (1990).

[190]

Implementing semantic frames with XMG

(and their value types) of a type, the appropriateness conditions. Re-
garding event types, Kallmeyer and Osswald (2013) work with the
partial type hierarchy in Figure 3. It has to be read top-down, with

....
event
.....

..
causation
cause :⊤∧ effect :⊤

.....

..
extended-
causation.

..

..
onset-causation
cause : punctual-event

.

....

..
motion
mover :⊤

...

..
translocation
path :⊤

...

..
bounded-translocation
goal :⊤

.

..

..
activity
actor :⊤

...

..
activity ∧ motion
actor .

= mover

...

..
locomotion

...

..
bounded-locomotion

Figure 3:
Partial
type hierarchy
for event types
proposed in
Kallmeyer and
Osswald (2013,
Fig. 16).

the more general types dominating the more specific types. Note that
the type hierarchy may also contain anonymous types, e.g. activity ∧
motion, which are usually not available in other frameworks. Roughly
speaking, anonymous types make it possible to assign appropriateness
conditions to a conjunction of types rather than just to a single type.
The details will be explained in Section 4.

In this work we are neither concerned with the unification of
frame representations following syntactic composition, nor with the
preceding process of lexical insertion that triggers the unification of
lexical and constructional frame components (see Kallmeyer and Oss-
wald 2013, Fig. 13), but rather with the metagrammatical framework
of XMG. Metagrammars are a tool to describe static elementary con-
structions such as in Figure 2, consisting of a tree template and a fixed
typed feature structure. It might therefore seem unnecessary to employ
all aspects of typed feature structures in metagrammars, particularly
unification. However, this assumption is not warranted. Unification of
types and feature structures is also found in the metagrammatical do-
main once the factorization of elementary constructions of the kind in
Figure 2 is taken into account. This will be shown in the next section.

[191]

Timm Lichte, Simon Petitjean

3 factorization of
tree templates and frames

Richly structured grammatical objects like those in Figure 2 make
necessary some kind of metagrammatical factorization, once a large
coverage grammar gets compiled and maintained (Xia et al. 2010).
Metagrammatical factorization is a process to define recurring sub-
components of grammatical objects, which can then be combined in
at least two ways: in a transformation-based fashion, known as the
metarule approach (Becker 1994, 2000; Prolo 2002), or in a purely
constraint-based, monotonic fashion as is the case in XMG (following
Candito 1996). In addition to the benefit in terms of grammar engi-
neering, however, Kallmeyer and Osswald (2012a,b, 2013) claim that
metagrammar factorization can be also used to reflect constructional
analyses in the spirit of Construction Grammar (Kay 2002; Goldberg
2006). By this perspective, both the lexical material and the “construc-
tions” used contribute meaning.

Taking these two aspects into account, Kallmeyer and Osswald
(2013) propose to factorize the tree template and the frame in Fig-
ure 2 along the lines of Figure 4.9 Boxes stand for the resulting factors
or classes (i.e. classes in the sense of XMG), consisting of descriptions
of a tree and a frame fragment. The inclusion relation between boxes is
to be understood as a representation of inheritance or instantiation, so
that the class of the comprising box inherits from, or instantiates, the
class of the included box. Double edges (indicating identity constraints
over nodes or base labels), dashed edges (non-strict dominance), ≺*
(non-strict precedence), and ∨ (disjunction) are elements of the de-
scription language. Figure 4 then illustrates that the tree-frame cou-
ple in Figure 2 is a model of the class n0Vn1pp(dir), which combines
the classes n0Vn1 and DirPrepObj. Combining two classes essentially
means that all associated information is unified, from which a mini-
mal model is resolved (see Section 5). Note that Figure 4 shows only
a part of the proposed factorization. For example, the class n0Vn1,
also taken from Kallmeyer and Osswald (2013, Fig. 4), results from
combining three other classes (Subj, VSpine, DirObj), as shown in Fig-
ure 5.10 Furthermore note that the class n0Vn1pp(dir) bears a con-

9The boxes-and-pipes notation in Figures 4 and 5 is of our invention.
10Kallmeyer and Osswald (2013) conjecture that class n0V has exactly one

[192]

Implementing semantic frames with XMG

...

class nv0Vn1

..

class DirPrepObj

..

class n0Vn1pp(dir)

.

....
S
.....

..
VP[E= 0]

...

..
VP[E= 0]

.....

..
NP[I= 3].

....

..
≺*.

..

..
V⋄[E= 0]

.

..

..
NP[I= 1]

.

0

event
actor 1

theme 3

∨ 0

event
actor 1

goal 3

.

....
VP[PATH= 3]

.....

..
PP[I= 1 ,E= 0]

.

....

..
≺

.

..

..
VP[PATH= 3]

...

..
V⋄

.

0

bounded-translocation
goal 1

path 3

.

0

causation
actor 1

theme 2

cause

activity
actor 1

theme 2

effect 4

mover 2

goal 3

Figure 4: Metagrammatical factorization of the elementary construction from
Figure 2. Boxes stand for the resulting factors or classes. Double edges indicate
identity constraints, dashed edges indicate non-strict dominance,≺* is non-strict
precedence, and ∨ is disjunction.

minimal model, which only holds, however, if minimal models are said to consist
of the smallest set of nodes that satisfy the description. In XMG, by contrast,
minimal models just consist of a set of nodes mentioned in the description, and
nothing more. Hence, from point of view of XMG, n0V has two minimal models,
one with one VP node, and one with two VP nodes. In order to resolve only
the former one, one could additionally apply polarization, or “colours” (Crabbé
and Duchier 2005), onto the nodes. Fortunately, the question how many minimal
models there are is irrelevant for the point made here and throughout the article.

[193]

Timm Lichte, Simon Petitjean
Figure 5:

Metagrammatical
factorization for

the transitive
elementary

construction.

...

class Subj

..

class VSpine

..

class DirObj

..

class n0V

..

class n0Vn1

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1] .

....

0

event
actor 1

.
....

VP
...

..
V⋄

.

....
VP[E= 2]

.....

..
NP[I= 3].

....

..
≺*.

..

..
V⋄[E= 2]

.

....

2

event
goal 3

∨ 2

event
theme 3

structional facet: it only contributes to the frame representation, but
no tree descriptions.

Now the question is whether the combination of frame representa-
tions, following the combination of two classes, should be considered
a unification of typed feature structures. It is not hard to see that this
is justified. A particularly good example is found in the combination
of the frame representations of n0Vn1 and n0Vn1pp(dir) in Figure 4.
Even though they have different types, namely event and causation,
the resulting type is supposed to be causation. According to the type
hierarchy in Figure 3, causation is a subtype of event. Hence this is in
line with regular type unification, but exceeds a plain union of feature
structures. Therefore the unification of typed feature structures should
be already supported at the metagrammatical level. The same holds
for the verification of appropriateness conditions, of course. Note that,
as can be seen from Figure 4, the flexibility of frame unification is fos-
tered by base labels when unifying the frame of DirPrepObj with a
subpart of the frame of n0Vn1pp(dir).

The graphic representation of the metagrammatical factorization
in Figure 4 and Figure 5 remains at a rather informal level and the
question arises: how could this be translated into XMG code? Since
the original XMG did not give a satisfying answer due to reasons of
usability and completeness (which we will cover in Section 5) we will

[194]

Implementing semantic frames with XMG

develop and justify a new <frame>-dimension in Section 6. But first
we will review the underlying notions: frames as typed feature struc-
ture with base labels, type hierarchies and unification.

4 base-labelled typed feature structures:
formal definitions

In what follows we largely, but not exclusively, adhere to the defi-
nitions in Kallmeyer and Osswald (2013), while streamlining them
according to our terminology and taste. What is not needed from
Kallmeyer and Osswald (2013), however, are (non-functional) rela-
tions, because they do not appear in the frame representations of ele-
mentary constructions, other than, e.g., in the frame representations
of the anchor lexicon (Kallmeyer and Osswald 2013, Fig. 13).11 So we
will ignore the notion of (non-functional) relations, and instead dwell
on type inference and the minimal and maximal models of feature
structure constraints. It is this choice between minimal and maximal
models, as well as the general availability of anonymous types, which
makes the presented extension to XMG particularly flexible at describ-
ing a type system. And it is this flexibility, among other things, which
sets our extension to XMG apart from current frameworks for HPSG.

Let us start with the building blocks of typed feature structures,
which are settled in the signature:
Definition 1 (Signature) A signature is a tuple 〈A, T, B〉 with a finite set
of attributes (or features) A, a finite set of elementary types T , and an
infinitely countable set of base labels B.
The set of elementary types is accompanied by special types ⊤ and ⊥
that are useful in feature structure descriptions and feature structure
constraints (see below). ⊤ is the most general type, unifiable with
every other type, whereas ⊥ is unifiable with none of them. Within
Boolean expressions,⊤ corresponds to ‘true’ and⊥ to ‘false’. Base labels
are commonly boxed natural numbers, thus B = { 0 , 1 , 2 , . . .}.

Based on a given signature, typed feature structures are defined
as follows:

11Kallmeyer and Osswald (2013) make use of the part-of relation when deal-
ing with directional prepositions such as to, into, and along.

[195]

Timm Lichte, Simon Petitjean

Definition 2 (Base-labelled typed feature structure) Given a signa-
ture 〈A, T, B〉, a base-labelled typed feature structure is a tuple 〈V,δ,τ,β〉
with

• V , a finite set of nodes,
• δ : (V × A)→ V , a partial transition function,
• τ : V → 2T , a total typing function, and
• β : B→ V , a partial base-labelling function.

We call types in 2T , i.e. elements of the powerset of T , conjunctive types
in order to distinguish them from elementary types.

We follow Kallmeyer and Osswald (2013) in that we do not spec-
ify a type hierarchy immediately, but treat it as a model of feature
structure constraints, i.e. generalized feature structure descriptions.12
Therefore the following notations can be directly borrowed from
Kallmeyer and Osswald (2013, (3)), omitting only those parts of their
definition that deal with relations. Note that we extend δ by feature
paths in the usual way.13

Definition 3 (Unlabelled feature structure description) Let 〈V,δ,
τ,β〉 be a feature structure over the signature 〈A, T, B〉 with v, w ∈ V ,
t ∈ 2T and p, q ∈ A+, then the satisfaction relation |= between nodes and
feature structure descriptions is defined as follows:

• v |= t iff t ∈ τ(v)
• v |= p : t iff δ(v, p) |= t

• v |= p
.
= q iff δ(v, p) = δ(v, q)

• 〈v, w〉 |= p ≜ q iff δ(v, p) = δ(w, q)

As such, unlabelled feature structure descriptions apply to nodes of a
feature structure. For example, the root node of the causation frame
in Figure 4 satisfies the following conjunction of descriptions:
(2) causation ∧ actor .

= cause actor ∧ theme .
= cause theme ∧

theme .
= effect mover ∧ cause : activity ∧ effect goal : ⊤

By adding base labels, we can explicitly assign descriptions to nodes
within a feature structure. Therefore, in contrast to unlabelled ones,

12However, XMG also allows one to specify a type signature explicitly; see
Section 6.

13δ(v, p a) with p ∈ A+ and a ∈ A is a shorthand for δ(δ(v, p), a).

[196]

Implementing semantic frames with XMG

the labelled feature structure descriptions are satisfied by feature
structures as a whole:14

Definition 4 (Labelled feature structure description) Let F = 〈V,δ,
τ,β〉 be a feature structure over the signature 〈A, T, B〉 with p, q ∈ A+ and
l, k ∈ B, and let ϕ be an unlabelled feature structure description. The satis-
faction relation |= between feature structures and labelled feature structure
descriptions is defined in the following way:

• F |= l ϕ iff β(l) |= ϕ
• F |= l p ≜ k q iff 〈β(l),β(k)〉 |= p ≜ q

The unlabelled descriptions in (2) can be straightforwardly labelled in
order to be satisfied by the causation frame as a whole:
(3) 0 causation ∧ 0 actor .

= cause actor ∧ 0 theme .
= cause

theme ∧ 0 theme .
= effect mover ∧ 0 cause : activity ∧ 0

effect goal : ⊤

Note that 0 actor .
= cause actor is equivalent with 0 actor ≜

0 cause actor (see Kallmeyer and Osswald 2013, fn. 14). We adopt
the convention to write l instead of l ε for some label l. This allows us
to write 1 ≜ 2 for expressing the value identity of labels 1 and 2 .

Concerning the subsumption relation on feature structures, we
can transfer the fairly standard definition from Kallmeyer and Osswald
(2013), which they extend by base labels.
Definition 5 (Subsumption, ⊑) Given feature structures F1 = 〈V1,δ1,
τ1,β1〉 and F2 = 〈V2,δ2,τ2,β2〉 over the signature 〈A, T, B〉, F1 subsumes
F2, if there is a function h : V1→ V2 so that

• if δ1(v, a) is defined for v ∈ V1 and a ∈ A, then δ2(h(v), a) =
h(δ1(v, a));

• for every v ∈ V1, τ1(v) ⊆ τ2(h(v));
• if β1(l) is defined for l ∈ B, then β2(l) = h(β1(l)).

As usual, the definition of unification builds on subsumption:
14From the general shape of labelled feature structure descriptions it follows

that they can only describe feature structures where every node is reachable from
some labelled node via a (potentially empty) attribute path. In fact, this is why
these labels are called base labels.

[197]

Timm Lichte, Simon Petitjean

Definition 6 (Unification, ⊔) Let F1, F2, F3 be feature structures. F3 is
the result of the unification of F1 and F2, iff F3 is the least specific feature
structure such that F1 ⊑ F3 and F2 ⊑ F3.
The specificity of feature structures is determined by the number of
nodes, the specificity of the assigned types and the size of the base
labelling function. Note that, in cases of unification such as in Fig-
ure 4, feature structures (and corresponding interface variables) are
relabelled beforehand, so that they come with disjoint sets of labels.
The identity of certain labels can then be imposed through additional
identity statements.

Feature structure constraints consist of universally quantified, un-
labelled features structure descriptions, i.e. descriptions that hold for
every node in the feature structure. Kallmeyer and Osswald (2013)
restrict them to Horn clauses for reasons of tractability.15

Definition 7 (Feature structure constraint) Given unlabelled feature
structure descriptions ϕ1, . . . ,ϕn,ψ, a feature structure constraint is ϕ1 ∧
. . .∧ϕn ⪯ψ, which is equivalent to the universally quantified implication
∀(ϕ1∧. . .∧ϕn→ψ) where quantification is over the nodes of the described
feature structure.
The following list shows different kinds of feature structure constraints
(mostly taken from Kallmeyer and Osswald 2013, (12)):16

(4) a. activity ⪯ event
b. causation ⪯ ¬activity ⇔ causation ∧ activity ⪯⊥
c. locomotion ⪯ activity ∧ translocation
⇔ (locomotion ⪯ activity) ∧ (locomotion ⪯ translocation)

d. activity ⪯ actor:⊤
e. agent:⊤⪯ agent .

= actor
The first three feature structure constraints in (4a)–(4c) consist of de-
scriptions over types, which is why we call them type constraints. The
simplest type constraint in (4a) relates two elementary types and cor-

15Horn clauses are disjunctive clauses with at most one non-negative literal,
all others being negative. Hence they are of the form ¬ϕ1 ∨ . . .∨¬ϕn ∨ψ, which
has the implicational equivalent ϕ1 ∧ . . .∧ϕn→ψ.

16Note that⇔ in (4) is not part of the description language but indicates the
equivalence of descriptions.

[198]

Implementing semantic frames with XMG

responds to an ISA-relation, namely activity being also an event. An
ISNOTA-relation can be expressed by type constraints of the kind in
(4b). Note that the use of negation in the consequent is equivalent
to a clause with a conjunctive antecedent and a ‘false’ (⊥) conse-
quent. Not only can the antecedent be complex, but also the conse-
quent, even though this is reducible to a conjunction of simpler im-
plications, as shown in (4c). The last two examples in (4d) and (4e)
contain attribute-value terms. Constraint (4d) represents an appropri-
ateness condition, namely a condition on the type activity concerning
the value type of its attribute actor. Finally, (4e) adds a constraint
about the token identity of the values of the attributes agent and
actor (if agent has a value). Constraints of this sort, where every
conjunct consists of a feature-value description or a path equation, can
be characterized as feature-value constraints.17

A crucial decision concerns the model of feature structure con-
straints, as it can be seen as maximal or minimal. The difference is
made visible in Figure 6 with type hierarchies based on ⪯.

T = {a, b, c}
b ⪯ a

maximal: minimal:
.. ⊤.

a

.

c

.

b

.. .. ⊤.

a

.

c

.

b

Figure 6:
Examples
of a maximal
and a minimal
model of type
constraint

Roughly speaking, a maximal model of type constraints allows
for anonymous types (indicated with dots in Figure 6) as long as they
are not explicitly excluded. With minimal models it is the other way

17Other sorts of feature structure constraints, for example those in (i), are not
discussed in Kallmeyer and Osswald (2013):
(i) a. p : t1 ⪯ t2

b. p : t1 ∧ t2 ⪯ t3

We therefore concentrate on feature structure constraints in the shape of type
constraints, appropriateness conditions and feature-value constraints.

[199]

Timm Lichte, Simon Petitjean

around: anonymous types are forbidden as long as they are not ex-
plicitly allowed. In both cases they could be introduced (or excluded)
by constraints such as in (5a), where the antecedent consists of a con-
junction of elementary types. In Figure 6, a ∧ c and a ∧ b ∧ c are
anonymous types. It is shown in (5b) that these anonymous types can
bear feature-value constraints as well.18

(5) a. a ∧ c ⪯⊤
b. action ∧ motion ⪯ actor .

= mover
(Kallmeyer and Osswald 2013, (12e))

The preceding remarks were concerned with elementary types.
However, as we learned in Definition 2, the typing function τ assigns
sets of elementary types, the conjunctive types. They are included for
good reason, since they help to treat elementary types and anonymous
types in a uniform way, and eventually to facilitate the definition and
implementation of unification.19 In the following, we treat conjunc-
tive types as a model of type constraints, and, on this basis, explicate
what it means to be minimal or maximal.

Definition 8 (Model of type constraints) Given type constraints TC
over a signature 〈A, T, B〉, a set T̂ of conjunctive types over T is a model of
TC , if T̂ satisfies the type constraints from TC in the following way:

• T̂ |= t1 ∧ . . .∧ tn ⪯⊥ iff {t1, . . . , tn} ̸⊆ t̂ for all t̂ ∈ T̂ ;
• T̂ |= t1 ∧ . . .∧ tn ⪯ tm iff if {t1, . . . , tn} ⊆ t̂, then {tm} ⊆ t̂.

The model T̂ of given type constraints is said to be maximal, if T̂ is
the largest set of conjunctive types that satisfies them. On the other

18Note that anonymous types are generally ruled out in major implementation
tools for HPSG such as LKB (Copestake and Flickinger 2000; Copestake 2002) and
TRALE (Götz et al. 1997; Carpenter et al. 2003), fromwhich it follows that models
from type constraints are always minimal.

19Note however that Carpenter (1992, 23–25) defines conjunctive types dif-
ferently as he adds the condition that p, but not q, is included whenever the
relation p ⪯ q is considered. Hence, following his conception, there is no co-
occurrence of elementary types and their elementary subtypes within a conjunc-
tive type. On the other hand, our definition of conjunctive type rather coincides
with the notion of “conjunctive concepts” in Carpenter and Pollard (1991), or
with the notions of “entity types” and “generic entities” in Osswald (2003, 24f).

[200]

Implementing semantic frames with XMG

hand, T̂ is said to be the minimal model, if T̂ includes just those con-
junctive types of the maximal model that correspond (i) to elementary
types, and (ii) to conjunctive types that make up the left side (i.e. the
condition) of a type constraint.

The type hierarchies from Figure 6 for elementary types are re-
peated in Figure 7 for conjunctive types. They are now based on ⊆
rather than ⪯. We say that conjunctive type t̂1 is the subtype of t̂2, if
t̂1 ⊃ t̂2. The definition of the most general common subtype is equally
simple.

T = {a, b, c}
b ⪯ a

maximal: minimal:
.. { }.

{a}

.

{c}

.

{a, b}

.

{a, c}

.

{a, b, c}

.. { }.

{a}

.

{c}

.

{a, b}

Figure 7:
Example
of maximal
and minimal
models of type
constraints over
conjunctive
types

Definition 9 (Most general common subtype) The most general
common subtype of two conjunctive types t̂1, t̂2 ∈ T̂ is the smallest set
t̂3 ∈ T̂ such that t̂1 ∪ t̂2 ⊆ t̂3.
It is easy to see that, whenever type constraints have the shape of
Horn clauses, the maximal model over conjunctive types T̂ forms a
meet semi-lattice (a bounded complete partially ordered set) 〈T̂ ,⊆〉.
Hence, there is a most general common subtype for any two unifiable
types. This does not necessarily hold for minimal models that are con-
fined to elementary and certain anonymous types.20 In order to obtain
uniqueness of the most general common subtype for any two unifiable
types, it can be necessary to add further anonymous types to T̂ (the
Dedekind-McNeille completions). Theses completions are computed
by the compiler that will be described in Section 6.3.2.

20For example, say T = {a, b, c, d}, TC = {c ⪯ a ∧ b, d ⪯ a ∧ b}, then T̂ =
{{}, {a}, {b}, {a, b, c}, {a, b, d}} satisfies TC and only contains the conjunctive types
that correspond to elementary types in T . However, {a} and {b} have more than
one most general common subtype in T̂ , namely {a, b, c} and {a, b, d}.

[201]

Timm Lichte, Simon Petitjean

A conjunctive type t̂ corresponds to an elementary type t, if t̂ is
the smallest set that contains t according to the model. Otherwise, if
there is no t to which t̂ corresponds, t̂ is an anonymous type. Similarly,
t̂ corresponds to some conjunctive type t̂ ′, if t̂ is the smallest set of
a model that contains t̂ ′. Moreover, it can be useful to also express
subtype relations among elementary types t1, t2 ∈ T . We say that t1 is
the subtype of t2, if for t̂1, t̂2 ∈ T̂ that correspond to t1 and t2 it holds
that t̂1 is a subtype of t̂2.

Before proceeding to the next section, two further aspects of
the feature logic used here and in Kallmeyer and Osswald (2013)
should be mentioned. Firstly, it cannot account for reverse type con-
straints, which refer to dominating nodes (Rainer Osswald, personal
communication, July 23, 2014). A case in point is the set of rela-
tional concepts such as the mother example from Petersen and Oss-
wald (2014, Fig. 11.5), where mother is said to constrain the existence
of a dominating node, connected with a mother edge. Hence, if
mother was treated as a type (a subtype of, e.g., person), this con-
straint could not be expressed, at least not as a part of its appro-
priateness conditions. Secondly, what seems to be missing so far
from the definition in Petersen (2007) is the notion of the central
node of a frame, i.e. the node that tells us what the frame “repre-
sents” or “refers to”. We think, however, that the notion of central
nodes is reflected, and generalized, in the present formalization by
the notion of base labels. By reappearing in the interface features
on the syntactic side, they serve to connect frame nodes with lin-
guistic entities, and nothing else seems to be expressed by central
nodes.

5 a brief introduction to xmg

XMG (eXtensible MetaGrammar, Crabbé et al. 2013) stands both for
metagrammatical descriptions and the compiler for these descriptions.
Such descriptions are organized into classes that can be reused (i.e.
“imported” or instantiated) by other classes. Borrowing from object
oriented programming, classes are encapsulated, which means that
each class can handle the scopes of their variables explicitly, by declar-
ing variables and choosing which ones to make accessible for (i.e. to
“export to”) other instantiating classes. The namespace of a class is

[202]

Implementing semantic frames with XMG

...

class Subj

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1]

class Subj
...
<syn>{

node ?S [cat=s];
node ?SUBJ [cat=np,

top=[i=?1]];
node ?VP [cat=vp,bot=[e=?0]];
node ?V (mark=anchor)

[cat=v,top=[e=?0]];
?S->?SUBJ; ?S->?VP; ?VP->*?V;
?SUBJ>>?VP

}
...

Figure 8:
The <syn>-
dimension of
class Subj

then composed of the declared variables and all the variables exported
by the imported classes.

Dimensions are the crucial elements of a class. They can be equip-
ped with specific description languages and are compiled indepen-
dently, thereby enabling the grammar writer to treat the levels of lin-
guistic information separately. The standard dimensions are <syn> for
the syntax, and <sem> for the semantics.21

The <syn>-dimension allows one to describe TAG tree templates
(or fragments thereof). An example is shown in Figure 8 for the <syn>-
dimension of class Subj from Figure 4. It includes two sorts of state-
ments, namely those like ‘node ?S [cat=s]’ that instantiate nodes
of the trees, and those like ‘?S->?SUBJ’ which determine the relative
position of two nodes in the trees by referring to dominance and linear
precedence.22 Note that variable names are prefixed with a question
mark (‘?’). The <sem>-dimension, on the other hand, includes descrip-
tions of a different language, for which a different compiler is used.
Since this could be a candidate for hosting frame descriptions, we will
have a look at <sem>more closely below. Different as they may be, one
crucial commonality of all the dimensions pertains to the joint access

21Crabbé et al. (2013, 601) also mention the fairly technical dimension <dyn>,
more commonly called interface, which helps to express the coreference of vari-
ables from different dimensions. Recently Duchier et al. (2012) have introduced
a dimension for morphology; see also Lichte et al. (2013).

22There is also available a notational alternative with bracket structure.

[203]

Timm Lichte, Simon Petitjean

to local variables declared in the same class. These shared variables
constitute a direct interface between otherwise separated dimensions.

The combination of classes takes place outside the <syn>- and
<sem>-dimensions. Figure 9 shows an example where the two classes
Subj and VSpine are reused by the class n0V. First Subj and VSpine
are instantiated and assigned a variable, then the encapsulated, yet
exported, variables from Subj and VSpine can be accessed via the dot
operator (e.g. to impose identity).

Figure 9:
Example of

the combination
of classes

...

class Subj

..

class VSpine

..

class n0V

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1] .

....
VP
...

..
V⋄

class n0V
...
?Subj = Subj[];
?VSpine = VSpine[];
?Subj.?V = ?VSpine.?V;
...
value n0v

When the metagrammar is compiled, first a set of descriptions for
each class under evaluation (triggered by value statements such as
in Figure 9) is accumulated, and then the accumulated descriptions
are resolved to yield minimal models. In the case of <syn>, the solver
computes tree templates as minimal models, which is to say that only
those nodes that are mentioned in the description are included. The
final result can be explored with a viewer, or exported as an XML file
in order to use it for parsing (e.g. with the TuLiPA parser, Kallmeyer
et al. 2008).

Frame descriptions in the <sem>-dimension?
As mentioned before, the <sem>-dimension is designed to contain
underspecified, flat formulae of predicate logic (borrowing from Bos
1996). In fact, it is rather straightforward to reformulate frame de-
scriptions in first-order predicate logic (Kallmeyer and Osswald 2013,
Sec. 3.3.3). Concerning the signature, attributes can be represented
with two-place predicates, while types can be seen as one-place pred-
icates. The functionality of attributes is imposed by the following
axiom for all a ∈ A, given some signature 〈A, T 〉:

[204]

Implementing semantic frames with XMG

(6) ∀x∀y∀z(a(x , y)∧ a(x , z)→ y = z)
(Kallmeyer and Osswald 2013, (6a))

The reformulation of feature structure descriptions and feature struc-
ture constraints is equally unproblematic:

(7) a. p : t λx∃y(p(x , y)∧ t(y))
b. p

.
= q λx∃y(p(x , y)∧ q(x , y))

c. a p λxλz∃y(a(x , y)∧ q(y, z))
(Kallmeyer and Osswald 2013, (7))

(8) a. t1 ⪯ t2 ∀x(t1(x)→ t2(x))
b. t1 ⪯ p : t2 ∀x∃y(t1(x)→ p(x , y)∧ t2(y))
c. t ⪯ p

.
= q ∀x∃y(t(x)→ p(x , y)∧ q(x , y))

Following this approach, a frame representation such as 0 [actor 1]
would be translated into the two-place predicate actor(?0, ?1), using
regular XMG variables. A more detailed example based on the class
n0Vn1pp(dir) is shown in Figure 10.

While the reformulation of frame descriptions via two-place pred-
icates is straightforward, it is far less obvious how to account for fea-
ture structure constraints and the axiom of functionality. As far as
type constraints and the type hierarchy are concerned, there seems
to be a chance to simulate them with sets of type predicates. This
approach is pursued in Figure 10. The construction of those type sim-
ulating sets (TSSs), as we call them, could proceed as follows: given
a signature 〈A, T 〉 and a type hierarchy T such as the one in Fig-
ure 10, we say that t ∈ T is simulated by the minimal set of predicates
Pt(?X) for some variable ?X , if Pt(?X) is assembled in the following
way: for every t ′ ∈ T , if t ′ reflexively and transitively dominates t in
T , then t ′(?X) ∈ Pt(?X); else if t and t ′ have no common subtype,
then ~t ′(?X) ∈ Pt(?X), where ‘~’ stands for negation. To give an ex-
ample, Plocomotion(?X) for the type locomotion in the type hierarchy of
Figure 10 would be the set {activity(?X), motion(?X),~causation(?X),
locomotion(?X)}. It is easily seen that the size of some Pt(?X) crucially
depends on the position of t in T , and on the size of T . Note that TSSs
do not fully match conjunctive types, due to the insertion of negated
type predicates.

[205]

Timm Lichte, Simon Petitjean

(a)

0

causation
actor 1

theme 2

cause

activity
actor 1

theme 2

effect 4

mover 2

goal 3

(b)
event
.....

..
causation

.

....

..
motion

.

..

..
activity

...

..

.

locomotion

(c)
class n0Vn1pp(dir)
...
<sem>{

actor(?0,?1);
theme(?0,?2);
cause(?0,?5);
actor(?5,?1);
theme(?5,?2);
effect(?0,?4);
goal(?4,?3);

%% causation type
event(?0);

~activity(?0);
~motion(?0);
~locomotion(?0);
causation(?0);

%% activity type
event(?5);
activity(?5);

~causation(?5)
}
...

Figure 10: The feature structure of n0Vn1pp(dir) (repeated from Figure 4),
the global type hierarchy (partially repeated from Figure 2), and its reformu-
lation inside the <sem>-dimension

One basic problem of this approach is that so far XMG does not
interpret the predicates of the <sem>-dimension, but merely accumu-
lates them for later use. Hence XMG allows for, e.g., the coexistence
of predicates theme(x1, x2) and theme(x1, x3) with x2 ̸= x3, which con-
flicts with the required functionality of feature predicates. But even if
XMG was enhanced to verify the functionality of predicates, at least
three disadvantages would remain: (i) TSSs have to be provided by the
grammar writer, (ii) they have to be included in the XMG descriptions
as a whole, and (iii) unifying sister types with a common subtype will
yield a TSS that does not immediately reveal the elementary type of

[206]

Implementing semantic frames with XMG

the common subtype. The latter disadvantage might be more of an
aesthetic kind, but the first and the second one clearly have an impact
on usability. Modifying the type hierarchy in the context of a large
grammar would make necessary a meta-metagrammar, that would au-
tomatically recompute the TSSs and adapt the parts of the XMG de-
scriptions, where TSSs were used. Rather than considerably modifying
and extending the solver of the <sem>-dimension, let alone the avail-
able description language, we present a novel <frame>-dimension in
the next section, which is closely adjusted to the peculiarities of frame
representations and frame composition.

6 the implementation of
typed feature structure descriptions

and constraints

Implementation entails two operations: specification and compilation.
We will deal with the first one in Section 6.2, when introducing spec-
ification languages for feature structure descriptions and constraints.
The compilation of frame models based on these specifications is then
covered in Section 6.3. First, however, the technical prerequisites for
extending the XMG compiler are to be outlined.
6.1 Architecture and extensibility of XMG
The XMG project started in 2003 with the goal of providing a means
to write large scale tree-based grammars, i.e. Tree Adjoining Gram-
mars and Interaction Grammars (Perrier 2000). Originally, the com-
piler was written in Oz/Mozart, a language which is not maintained
anymore. For this reason, and in order to build a compiler more in line
with the project’s ambitions (regarding modularity and extensibility),
it was necessary to restart the implementation from scratch. The new
implementation started in 2010 and is sometimes called XMG-NG or
XMG2.23 The compiler is now written in YAP (Yet Another Prolog)
with bindings to Gecode for solving constraints. The extensibility is
provided by automatic code generation using Python.

With this new version, an XMG compiler can be built from a
combination of elementary compiler units. These elementary units are

23See https://sourcesup.renater.fr/xmg/.

[207]

Timm Lichte, Simon Petitjean

called bricks, and correspond to the set of compiling steps of a meta-
grammatical language. A brick can correspond to a description lan-
guage (e.g. the TAG description language of the <syn>-dimension),
to a subpart thereof (e.g. the feature structure language used by the
<syn>-dimension), or to a solver (e.g. the tree solver used by the same
dimension). Every part of the compiler is a brick, even the control
language allowing one to express conjunction and disjunction, and a
compiler is built by picking bricks and plugging them together. In this
process, the parser for a new metagrammatical language, and all the
other compiling steps, can be automatically assembled according to
the way the bricks are plugged together, to generate a whole com-
piler for this language. The idea is that every brick holds a fragment
of compiler, dedicated to a fragment of language (described by a set
of context-free rules). Whilst combining these language fragments to
build a full language, the compiler fragments are also contributed to
a full compiler.

Hence, when extending XMG by components that are able to han-
dle typed feature structures, we can take advantage of the compiler’s
modularity to add another module, dedicated to this new task. Such a
module, for example a new dimension, can be equipped with a dedi-
cated specification language and compiler.
6.2 Specification languages
The design of the specification languages that we present in the fol-
lowing subsections is guided by certain goals, ideas and examples.
Firstly, we try to adhere to the notation in the definitions in Section 4
as closely as possible. Secondly, we try to remain consistent with the
coding style that already exists in XMG, though being largely unre-
stricted in principle from a technical point of view. Thirdly, and most
importantly, we aim at specification languages that are inherently con-
sistent, lightweight, transparent, and at the same time flexible. In do-
ing so, we share certain elements from specification languages pro-
posed in other work, but, as far as we know, our combination of these
elements has not been presented elsewhere.

A complete code example based on the type hierarchy from Sec-
tion 2 and the factorization from Section 3 is presented in the Ap-
pendix.

[208]

Implementing semantic frames with XMG

6.2.1 Specification of the signature
For the specification of the signature, that is to say attributes, types
and base labels, the global fields frame_types and frame_attri-
butes are available:
frame_types = {event,activity,motion,causation,...}
frame_attributes = {actor,theme,goal,...}

Base labels correspond to XMG variables and do not need to be de-
clared globally.
6.2.2 Specification language for feature structure descriptions
Feature structure descriptions are specified within the <frame>-di-
mension of a class, which comes with a dedicated specification lan-
guage and compiler. The mode of operation of the compiler is detailed
below in Section 6.3.1. We make use of the following description lan-
guage, which is basically a simple bracket notation:24

<frame>{Descriptions;Descriptions;...}
Descriptions ::= var? ’[’ Description (’,’ Description)* ’]’
Description ::= type | PathEquation | AVPair
PathEquation ::= attr+ ’=’ var? attr+ (’:’ Value)?
AVPair ::= attr+ ’:’ Value
Value ::= var | type | Descriptions

Unsurprisingly, type and attr stand for a type and an attribute from
the signature, while var is an XMG variable. Borrowing the notation
from Definition 7, attr:type is an attribute-value pair. Figure 11
then shows the description language in action, while mimicking the
AVM representation of the frame. Note that the order of descriptions
within a pair of brackets is generally unrestricted, as well as the num-
ber of type expressions (in order to fully support conjunctive types).
The specification language furthermore follows the definitions in Sec-
tion 4 in that it allows for the abbreviated specification of paths,
namely as a sequence of attributes separated by whitespaces. Hence,
[cause:[actor:?1]] and [cause actor:?1] have the same mean-
ing. Path equations are similarly constructed using the equality sym-

24 In the following we use a simplified Backus-Naur form to define the syn-
tax of specification languages. Disjunction (|), optionality (?) and the Kleene
operators (*,+) are encoded as usual.

[209]

Timm Lichte, Simon Petitjean
Figure 11:

Specification
of the frame

component of
n0Vn1pp(dir)

0

causation
actor 1

theme 2

cause

activity
actor 1

theme 2

effect 4

mover 2

goal 3

<frame>{
?0[causation,

actor:?1,
theme:?2,
cause:[activity,

actor:?1,
theme:?2],

effect:?4[mover:?2,
goal:?3]

]}

bol =. For example, the meaning of [actor:?1,cause actor:?1]
could also be expressed with [actor=cause actor:?1].25

The use of XMG variables not only enables one to avoid path
equations, and eventually to mimic AVM representations, as we just
demonstrated, but they may also serve to link semantic components
with positions in the syntactic tree, as can be seen from Figure 12,
where the actor role and the NP-slot of the subject are linked in this
way. It shows that XMG variables may play the role of base labels in
labelled feature structure descriptions (see Section 4).

Finally, it might be instructive to compare the specification lan-
guage for feature structure descriptions proposed here with alterna-
tives that are used elsewhere, particularly in grammar development
tools for HPSG. The ALE/TRALE system (Götz et al. 1997; Carpenter
et al. 2003), for example, is rather similar in this respect. The only
major difference is found in the path specification, where attributes
are separated with the colon, which happens to be also the attribute-
value separator. This overloading might be disadvantageous – and in
fact path equations then entail a different way of specifying paths.26

25Note that, in the <syn>-dimension, the symbol = has a different meaning
for historical reasons; there it acts as a attribute-value separator.

26Another case of overloading can be observed in PATR-II (Shieber 1984),
where the operator for path equations and attribute-value pairs coincides. As a
consequence, paths are enclosed by angled brackets to distinguish them from reg-
ular (atomic) values. Nevertheless, the notation of feature structures in Shieber
(1984) bears similarity to our specification language. Indeed, one could say that
we basically merge, and extend, the path and feature structure representations
from PATR-II. See also the PC-PATR manual (McConnel 1995).

[210]

Implementing semantic frames with XMG

...

class Subj

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1] .

....

0

event
actor 1

class Subj
...
<syn>{

node ?S [cat=s];
node ?SUBJ [cat=np,

top=[i=?1]];
node ?VP [cat=vp,bot=[e=?0]];
node ?V (mark=anchor)

[cat=v,top=[e=?0]];
?S->?SUBJ; ?S->?VP; ?VP->*?V;
?SUBJ>>?VP

}
<frame>{
?0[event,

actor:?1]
}
...

Figure 12:
Implementation
of class Subj

In LKB (Copestake 2002), on the other hand, paths are encoded with
dots instead of colons, while the whitespace acts as the separator in
attribute-value pairs. This being merely an alphabetical variant of our
proposal, there are other differences, notably the types being placed
outside the feature structure brackets. Still, these differences seem
rather marginal.
6.2.3 Specification language for feature structure constraints
We have seen in Section 4 that feature structure constraints can be –
and in practice are – specified in different ways, namely either on
the basis of a set of single constraint statements, or on the basis of
a connected type hierarchy. Therefore one important aspect of the
specification language for feature structure constraints is its versatil-
ity. Instead of dictating what direction to follow, the grammar writer
should have several options at hand from which a suitable one may
be chosen on a case-by-case basis.

Concerning the specification of feature structure constraints,
two options are provided: a loose set of constraint statements, or a
type hierarchy. The former are collected in the global field frame_
constraints:

[211]

Timm Lichte, Simon Petitjean

frame_constraints = {Constraint,Constraint,...}
Constraint ::=

%% type constraint
type+ ’->’ type+ |
%% appropriateness condition
type+ ’->’ Descriptions+ |
%% feature-value constraint
(’[’ (AVPair|PathEquation) (’,’ AVPair|’,’ PathEquation)* ’]’)+

’->’ Descriptions+
Descriptions ::= ’[’ Description (’,’ Description)* ’]’
Description ::= type | PathEquation | AVPair
PathEquation ::= attr+ ’=’ attr+ (’:’ Value)?
AVPair ::= attr+ ’:’ Value
Value ::= type | Descriptions

The specification language for constraints largely integrates the spec-
ification language for (unlabelled) descriptions, while it adds -> as
a symbol for generalized implication (⪯ in Definition 7). Similarly,
a distinction is made between type constraints, appropriateness con-
ditions and feature-value constraints, to which we confine ourselves
in the following. An example is provided in Figure 13. Note that the
antecedent and the consequent of -> may consist of more than one
description separated by whitespaces, in which case the descriptions
form a Cartesian product in the following way: t1 t2 -> t3 t4 iff t1 ->
t3, t1 -> t4, t2 -> t3, t2 -> t4. Furthermore it is possible to reverse ->,
hence to use t2 <- t1 instead of t1 -> t2.

The other option is to specify feature structure constraints in the
shape of a connected type hierarchy. For this the field frame_type_
hierarchy is available and should be used in the following way:
frame_type_hierarchy = {Hierarchy,Hierarchy,...}
Hierarchy ::= ’[’ type (’,’ (Description|Hierarchy))* ’]’
Descriptions ::= ’[’ Description (’,’ Description)* ’]’
Description ::= type | PathEquation | AVPair
PathEquation ::= attr+ ’=’ attr+ (’:’ Value)?
AVPair ::= attr+ ’:’ Value
Value ::= type | Descriptions

An example of this way of specifying a type hierarchy was already
included in Figure 13. Similarly to frame_constraints, only unla-
belled feature structure descriptions are admitted, but unlike frame_
constraints, the implication symbol -> is missing. Instead squared

[212]

Implementing semantic frames with XMG
....

event
.....

..
causation

cause :⊤∧ effect :⊤.

....

..
motion

mover :⊤.

..

..
activity

actor :⊤

...

..

.

locomotion

frame_constraints = {
activity -> event, activity -> [actor:+],
motion -> event, motion -> [mover:+],
causation -> event, causation -> [cause:+,effect:+],
locomotion -> activity motion}

frame_type_hierarchy = {
[event, [activity, actor:+, [locomotion]],

[motion, mover:+, [locomotion]],
[causation, cause:+, effect:+]]}

Figure 13: Examples of the specification of feature structure constraints. The
type hierarchy is a fraction of the type hierarchy shown above in Figure 3 from
Kallmeyer and Osswald (2013)

brackets receive a second interpretation where they correspond to
types. In other words, the set of feature structure constraints enclosed
by a pair of brackets constitute the type constraints and appropri-
ateness conditions for exactly one type. If there are several type ex-
pressions, then they form a conjoined type. And if another pair of
type-denoting brackets is embedded, then this is a subtype of the
embedding type. This squared bracket notation is introduced in the
Hierarchy part of the syntax definition of frame_type_hierarchy,
and it is also the only one that is used in the example in Figure 13.

Note here that frame_type_hierarchy can only express a proper
subset of feature structure constraints, since constraints with feature
structures in their antecedents are excluded from this representational
format in general. Fortunately, constraints like these may be specified
in parallel in the frame_constraints field.

Finally, there is the possibility to set a flag to trigger either the
maximal or the minimal model of feature structure constraints:
use hierarchy (maximal|minimal) with dims (frame)

[213]

Timm Lichte, Simon Petitjean

At the time of writing, minimal models are compiled by default.
6.3 Compilation
Within XMG2, the compilation of feature structure descriptions and
constraints leads to representations which are used in the Prolog com-
ponent of the system. Therefore we will be mainly concerned with
Prolog data structures in the following. Note that, other than with
tree descriptions in the <syn>-dimension, no underspecification is
involved, and therefore the compiler for feature structure descrip-
tions and constraints employs no constraint solving in the proper
sense.
6.3.1 Compilation of feature structure descriptions
Typed feature structures are decomposed into two parts during com-
pilation: types are compiled separately from feature structures. For
the latter, we can reuse the XMG module (or brick) for untyped fea-
ture structures, which is already applied to feature structures in the
<syn>-dimension. The module falls back on attributed variables and
association lists, which are predefined data structures in Prolog. At-
tributed variables behave like common variables, the only difference
being that they come with encapsulated attributes that can be accessed
with dedicated commands only, and for which the standard unification
algorithm can be customized. They are basically used here in order to
replace the standard list (or term) unification by type unification and
set union. Association lists, on the other hand, consist of key-value
pairs with unique keys, thereby supporting the functionality of fea-
tures within feature structures.

When a typed feature structure is declared, an attributed variable
with two attributes is created: one attribute for the type and one for the
feature-value pairs. Types are represented by bit vectors, basically Pro-
log lists over {0,1}, that get unified by means of element-wise Boolean
operations (see the next section). A set of feature-value pairs, on the
other hand, is represented by an association list, whose values can
be attributed variables again and thus induce recursion, i.e. feature
structures of arbitrary depth. When two declared feature structures
are unified, the compiler unifies their attributed variables in two dif-
ferent ways, namely with type unification on their type attribute and
with set union on their association lists.

[214]

Implementing semantic frames with XMG

The check on the well-formedness of the generated structures
is performed dynamically during their creation. This includes check-
ing the appropriateness conditions (i.e. for invalid features or specific
types of feature values) and computing type unifications. Contrary to
the <syn>-dimension, the <frame>-dimension does not come with a
description solver.

When the descriptions in the frame dimension are compiled, a
number of instantiations and unifications of attributed variables is ex-
ecuted. It is important to note that the unification has to be explic-
itly specified by means of variable equations. Hence the compilation
result may consist of several unconnected feature structures, as the
compiler does not search for a minimal connected model that satisfies
the processed feature structure descriptions. Furthermore note that,
as unification is deterministic, there is at most one model for each
accumulation.
6.3.2 Compilation of feature structure constraints
We are dealing with conjunctive types in the sense of Definition 8.
Following a widespread approach (Aït-Kaci et al. 1989; Penn 1999;
Kilbury et al. 2006; Skala et al. 2010), conjunctive types are internally
represented by bit vectors (or “bit strings”), more precisely by Prolog
lists over {0,1}. The length of these lists is at least the number of ele-
mentary types in the signature. Every position in a bit vector stands for
the membership of an elementary type in the conjunctive type, which
means that a bit vector composed only of zeros is the most generic
type (the empty set) and a bit vector composed only of ones is the
conjunction of all elementary types.

We will present two methods to determine the set of valid bit vec-
tors for a set of type constraints. The first one is a brute-force method
that basically applies top-down filtering. The second one is based on
subsumption matrices (Aït-Kaci et al. 1989; Penn 1999) and turns out
to be more efficient. In the following let T = {a, b, c, d} be the set of
elementary types and # a bijective positioning function for bit vectors
with #= {(a, 1), (b, 2), (c, 3), (d, 4)}.

The top-down filtering on bit vector representations proceeds in
the following way:
1. Generate the set of virtual (conjunctive) types, namely the bit vec-

tors that represent the powerset of the set of elementary types:

[215]

Timm Lichte, Simon Petitjean

{[1,0,0, 0], [1,1,0, 0], . . .}.
2. Translate type constraints into bit vector patterns of nonvalid

types: a ⪯ b ⇝ [1,0, ,]
a ∧ c ⪯⊥ ⇝ [1, , 1,]
a ∧ b ⪯ d ⇝ [1,1, , 0]

3. Maximal model: Filter the set of bit vectors (representing the vir-
tual types) based on the bit vector patterns in order to identify
the valid types. Consequently, if no constraint is expressed, the
set of valid types is the powerset of elementary types.

To compute the minimal model it needs an extra step:
3′. Minimal model: Translate elementary types and conjunctive types

(on the left side of type constraints) into bit vector patterns of de-
clared types: a ⇝ [1, , ,]

a ∧ b ⪯ d ⇝ [1,1, ,]

Then, for each declared type, determine the set of compatible bit
vectors from the maximal model and select the bit vector with the
fewest 1s. If there is more than one such bit vector, compute the
bitwise AND over all these bit vectors and add the resulting bit
vector to the set of declared types.

4. Assign bit vector patterns to elementary types: a → [1, , ,],
b→ [, 1, ,], …

5. Based on the set of valid bit vectors, unification of two types pro-
ceeds as list unification, after which the set of valid types is fil-
tered with the resulting bit vector pattern. Finally the matching
bit vector with the fewest 1s gets selected.

It is not hard to see that this method gets intractable for larger sets of
elementary types, since the set of virtual types grows exponentially,
namely with 2n where n is the number of elementary types.

Fortunately, methods based on subsumption matrices tend to
be much more space-efficient, although they still come with at least
quadratic growth in terms of the number of elementary types. In the
following, we adapt the procedure of Aït-Kaci et al. (1989) (see also
Penn 1999), and only add to it anonymous types and maximal models:
1. Generate a boolean matrix where rows and columns correspond

to elementary types and anonymous types that are subject to type

[216]

Implementing semantic frames with XMG

constraints. An element ai j in the ith row and the jth column has
value 1 iff t i ⪯ t j is a valid type constraint.27 Otherwise it has
value 0. For example, given type constraints d ⪯ c and a ∧ b ⪯ d,
the following preliminary matrix is generated:

a b c d a ∧ b

a 1 0 0 0 1
b 0 1 0 0 1
c 0 0 1 1 0
d 0 0 0 1 1
a ∧ b 0 0 0 0 1

2. Multiply the matrix by itself until a fixpoint is reached.28 This
ensures that transitive subsumption relations are taken into ac-
count. When applied to the preliminary matrix above, we receive
the following matrix, where c furthermore subsumes a ∧ b:

a b c d a ∧ b

a 1 0 0 0 1
b 0 1 0 0 1
c 0 0 1 1 1
d 0 0 0 1 1
a ∧ b 0 0 0 0 1

3. Each type is assigned two vectors: a subsumption vector taken
from the row, and an ISA vector taken from the column (which
was also used in the previous filtering approach). Hence the bit
vector representation for type a consists of the subsumption vec-
tor [1,0,0, 0,1] and the ISA vector [1, 0, 0, 0, 0]. The difference of
the minimal and maximal model emerges in the use of these vec-
tor pairs.

4. Minimal model: During unification the subsumption vectors are
combined with bitwise AND in order to determine the most gen-
eral common subtype (Aït-Kaci et al. 1989). To give an example,
the unification of the subsumption vectors assigned to a and d
results in the subsumption vector of a ∧ b:

27We tacitly assume that tautologies (e.g. t i ⪯ t i and t i ∧ t j ⪯ t i) are taken
into account.

28According to Aït-Kaci et al. (1989), this takes at most log2n iterations.

[217]

Timm Lichte, Simon Petitjean

a [1,0, 0, 0, 1]
d [0, 0, 0,1, 1]
a ∧ b [0,0, 0, 0, 1]

Otherwise, if the resulting bit vector was not found among the bit
vectors of the matrix, the unification does not necessarily fail. It
only fails if the resulting bit vector only consists of 0s.

4′. Maximal model: During unification, the ISA vectors are combined
with bitwise OR, while the subsumption vectors are ignored.
Hence the unification of a and d yields an ISA vector not found
in the matrix:

a [1,0, 0, 0,0]
d [0,0, 1, 1,0]
(a ∧ d) [1,0,1, 1,0]

In order to account for constraints on anonymous types, further
unification steps can be necessary. For example, upon unifying
the ISA vectors of a and b, the ISA vector of a∧ b has to be added
as well:

a [1,0, 0, 0, 0]
b [0,1, 0, 0, 0]

[1,1, 0, 0, 0]
a ∧ b [1, 1, 1,1, 1]

[1,1, 1, 1, 1]

Types that are explicitly ruled out in the type constraints are ac-
counted for by means of extra filtering. For example, a type con-
straint such as a ∧ d ⪯ ⊥ would give rise to a filter based on the
pattern [1, , , 1,], which would be applied to the resulting ISA
vector after unification.
For each one of the computed valid types, i.e. the assigned ISA

vectors, XMG also computes the set of appropriateness conditions.
Once again, this step uses the technique of vector pattern matching:
when a valid type matches a pattern corresponding to a appropriate-
ness condition, the appropriateness condition is added to the list of
appropriateness conditions for this type. These lists can be used in
other precompilation steps to check for cyclicity in the feature struc-
ture constraints, and for their incompatibility.

[218]

Implementing semantic frames with XMG

At the end of the compilation process, the bit vectors can be easily
mapped back to conjunctive types and the corresponding elementary
type, if it exists.

7 discussion and conclusion

In this article, we presented recent efforts to extend the grammar engi-
neering framework XMG in order to deal with frame representations
in the format of typed feature structures. Because metagrammatical
factorization involves the composition of feature structures and types
along given feature structure constraints, the full power of unification
on typed feature structures is needed in XMG. We showed that the
simulation of typed feature structures within the <sem>-dimension
comes with severe disadvantages concerning the implementation of
types and type unification. Therefore a new toolkit was developed,
including a novel <frame>-dimension, which is adjusted to the pecu-
liarities of typed feature structures and type unification, and which
should eventually reduce the burden for the grammar writer. The ar-
ticle explained the main components of this toolkit: the specification
language, for which a comprehensive code example is included in the
appendix, and the compilation procedure, which uses bit vector en-
codings of types.

While the focus was on the theoretic foundation of the proposed
extension and its proof of concept, aspects of computational complex-
ity and the possibilities for optimization (e.g. regarding the size of bit
vectors) were largely set aside. Undoubtedly, there is room for future
improvements of the compiler. It has to be stressed, however, that
compilation with XMG is not as time-critical as parsing, because XMG
compilation is part of the preprocessing (Kallmeyer and Osswald 2013,
56). Nevertheless it would be interesting to see how compilation time
scales as a function of the size and structure of the type hierarchy,
and whether this is relevant given theoretically justified conceptual
type systems. As no complex examples of the latter kind are known to
us, this remains to be seen.29 We are aware, of course, that the issue
of complexity will become more critical once these resources are used
for parsing. Note that, while the presented extensions to XMG are fully

29 Just for comparison, Skala and Penn (2011) count some 3412 elementary
types in the English Resource Grammar (ERG, Copestake and Flickinger 2000).

[219]

Timm Lichte, Simon Petitjean

operational in a recent prototype, a compatible lexical component as
well as a parser have yet to be implemented.

Regardless of complexity issues, it could be useful to separate
the sources and compilation procedures for global feature structure
constraints on the one hand, and local feature structure descriptions
within the <frame>-dimension on the other hand. The reason is that
at some point the feature structure constraints should stabilize, given
that they represent cognitive concepts, and therefore constant recom-
pilation triggered by changes in other parts of themetagrammar would
be superfluous. At the current stage of research, however, as the devel-
opment of frame representations is still ongoing, we think that meta-
grammars are the right place to implement and to experiment with
feature structure constraints.

Finally it remains to be stressed that the combination of the
<frame>-dimension with the <syn>-dimension is by no means priv-
ileged. The <frame>-dimension can also be used to implement stan-
dalone frames, or to implement recent frame-based accounts to mor-
phological decomposition (e.g. Zinova and Kallmeyer 2012), thereby
considerably widening the scope of XMG.

appendix:
complete code example

The following code example covers the implementation of the type
hierarchy in Figure 3 and the factorization of the prepositional object
construction in Figures 4 and 5.
%%
% HEADER:
%%
type MARK = {subst, nadj, foot, anchor, coanchor, flex, lex}
type CAT = {np,v,vp,s,pp}
type VAR !
property mark : MARK
feature cat : CAT
feature top : VAR
feature bot : VAR
feature i : VAR

[220]

Implementing semantic frames with XMG

feature e : VAR
feature path : VAR

frame_types = {event,activity,motion,causation,translocation,
onset-causation,extended-causation,locomotion,bounded-
translocation,bounded-locomotion}

frame_attributes = {actor,theme,goal,mover,path,cause,effect}
frame_constraints = { activity -> event,

activity -> actor:+,
motion -> event,
motion -> mover:+,
causation -> event,
causation -> cause:+,
causation -> effect:+,
[activity,motion] -> actor=mover,
translocation -> motion,
translocation -> path:+,
bounded-translocation -> translocation,
bounded-translocation -> goal:+,
locomotion -> activity translocation,
bounded-locomotion -> locomotion bounded-translocation

}
%%
% TREE FRAGMENTS:
%%
class VSpine
export ?V
declare ?VP ?V ?X0
{<syn>{

node ?VP [cat=vp] {
node ?V (mark=anchor)[cat=v]

} } }
%%
class Subj
export ?V ?X0
declare ?S ?NP ?VP ?V ?X0 ?X1
{ <syn>{

node ?S [cat = s];
node ?NP (mark=subst)[cat=np,top=[i=?X1]];
node ?VP [cat=vp,bot=[e=?X0]];
node ?V (mark=anchor)[cat=v,top=[e=?X0]];
?S -> ?NP; ?S -> ?VP; ?VP ->* ?V; ?NP >> ?VP

};

[221]

Timm Lichte, Simon Petitjean

<frame> {
?X0[event,

actor:?X1]
} }
%%
class DirObj
export ?V ?X0
declare ?VP ?NP ?V ?X0 ?X2
{ <syn>{
node ?VP [cat = vp,bot=[e=?X0]]{

node ?V [cat=v,top=[e=?X0]]
,,,node ?NP (mark=subst)[cat=np,top=[i=?X2]]

} };
<frame>{
?X0[event,goal:?X2]
|
?X0[event,theme:?X2]

} }
%%
class DirPrepObj
export ?V ?X0
declare ?VP1 ?VP2 ?PP ?V ?X0 ?X1 ?X2 ?X3
{ <syn>{
node ?VP1 [cat = vp,bot=[path=?X3]]{

node ?VP2 [cat = vp,bot=[path=?X3]]{
node ?V (mark=anchor)[cat=v]}

node ?PP (mark=subst)[cat=pp,top=[i=?X1,e=?X0]]
} };
<frame>{
?X0[bounded-translocation,

goal:?X1,
path:?X3]

} }
%%
% TREE TEMPLATES:
%%
class n0V
export ?V ?X0
declare ?V ?SSubj ?Spine ?X0
{
?SSubj = Subj[];
?Spine = VSpine[];
?SSubj.?V = ?V;

[222]

Implementing semantic frames with XMG

?Spine.?V = ?V;
?SSubj.?X0 =?X0

}
%%
class n0Vn1
import n0V[]
declare ?Obj
{

?Obj = DirObj[];
?Obj.?V = ?V

}
%%
class n0Vn1pp-dir
import n0Vn1[]
declare ?PPObj ?X1 ?X2 ?X3 ?X4
{

?PPObj = DirPrepObj[];
?PPObj.?V = ?V;
?PPObj.?X0 = ?X4;
<frame>{
?X0[causation,
actor:?X1,
theme:?X2,
cause:[activity,

actor:?X1,
theme:?X2],

effect:?X4[
mover:?X2,
goal:?X3]

]
} }
%%
% EVALUATION:
%%
value n0V
value n0Vn1
value n0Vn1pp-dir

[223]

Timm Lichte, Simon Petitjean

references
Anne Abeillé and Owen Rambow (2000a), Tree Adjoining Grammar: An
overview, in Abeillé and Rambow (2000b), pp. 1–68.
Anne Abeillé and Owen Rambow, editors (2000b), Tree Adjoining Grammars:
Formalisms, linguistic analyses and processing, number 107 in CSLI Lecture Notes,
CSLI Publications, Stanford, CA.
Hassan Aït-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr (1989),
Efficient implementation of lattice operations, ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(1):115–146.
Lawrence Barsalou (1992), Frames, concepts, and conceptual fields, in
Adrienne Lehrer and Eva Feder Kittey, editors, Frames, fields, and contrasts:
New essays in semantic and lexical organization, pp. 21–74, Lawrence Erlbaum
Associates, Hillsdale, NJ.
Tilman Becker (1994), HyTAG: A new type of Tree Adjoining Grammars for
hybrid syntactic representations of free word order languages, Ph.D. thesis,
Universität des Saarlandes,
http://www.dfki.de/~becker/becker.diss.ps.gz.
Tilman Becker (2000), Patterns in metarules for TAG, in Abeillé and Rambow
(2000b), pp. 331–342.
Johan Bos (1996), Predicate logic unplugged, in Paul Dekker and Martin
Stokhof, editors, Proceedings of the tenth Amsterdam Colloquium, pp. 133–143,
Amsterdam, Netherlands.
Marie-Hélène Candito (1996), A principle-based hierarchical representation
of LTAGs, in Proceedings of the 16th International Conference on Computational
Linguistics (COLING 96), Copenhagen, Denmark,
http://aclweb.org/anthology-new/C/C96/C96-1034.pdf.
Bob Carpenter (1992), The logic of typed feature structures with applications to
unification grammars, logic programs and constraint resolution, number 32 in
Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, Cambridge, UK.
Bob Carpenter, Gerald Penn, and Mohammad Haji-Abdolhosseini
(2003), The Attribute Logic Engine user’s guide with TRALE extensions, version 4.0
beta edition.
Bob Carpenter and Carl Pollard (1991), Inclusion, disjointness and choice:
The logic of linguistic classification, in Proceedings of the 29th annual meeting of
the Association for Computational Linguistics, pp. 9–16, Berkeley, CA,
http://acl.ldc.upenn.edu/P/P91/P91-1002.pdf.
Ann Copestake (2002), Implementing typed feature structure grammars, CSLI
Publications, Stanford, CA.

[224]

Implementing semantic frames with XMG

Ann A. Copestake and Dan Flickinger (2000), An open source grammar
development environment and broad-coverage English grammar using HPSG, in
Proceedings of the second Conference on Language Resources and Evaluation (LREC
2000), Athens, Greece.
Benoit Crabbé and Denys Duchier (2005), Metagrammar redux, in Henning
Christiansen, Peter Rossen Skadhauge, and Jørgen Villadsen, editors,
Constraint solving and language processing, number 3438 in Lecture Notes in
Computer Science, pp. 32–47, Springer, Berlin, Germany.
Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):1–66,
http://hal.archives-ouvertes.fr/hal-00768224/en/.
Denys Duchier, Brunelle Magnana Ekoukou, Yannick Parmentier, Simon
Petitjean, and Emmanuel Schang (2012), Describing morphologically rich
languages using metagrammars: A look at verbs in Ikota, in Workshop on
Language Technology for Normalisation of Less-Resourced Languages (SALTMIL 8 -
AfLaT 2012), pp. 55–59, Istanbul, Turkey, http://www.tshwanedje.com/
publications/SaLTMiL8-AfLaT2012.pdf#page=67.
Charles J. Fillmore (1982), Frame Semantics, in The Linguistic Society of
Korea, editor, Linguistics in the morning calm, pp. 111–137, Hanshin Publishing,
Seoul, South Korea.
Charles J. Fillmore (2007), Valency issues in FrameNet, in Thomas Herbst
and Katrin Götz-Votteler, editors, Valency: Theoretical, descriptive and
cognitive issues, pp. 129–162, Mouton de Gruyter, Berlin, Germany.
Dan Flickinger (2000), On building a more effcient grammar by exploiting
types, Natural Language Engineering, 6(1):15–28.
Anette Frank and Josef van Genabith (2001), GlueTag. Linear Logic based
Semantics for LTAG – and what it teaches us about LFG and LTAG, in Miriam
Butt and Tracy Holloway King, editors, Proceedings of the LFG01 conference,
CSLI Publications, Hong Kong.
Claire Gardent and Laura Kallmeyer (2003), Semantic construction in
Feature-Based TAG, in Proceedings of the 10th meeting of the European Chapter of
the Association for Computational Linguistics, pp. 123–130.
Adele Goldberg (2006), Constructions at work. The nature of generalizations in
language, Oxford University Press, Oxford, UK.
Thilo Götz, Detmar Meurers, and Dale Gerdemann (1997), The ConTroll
manual, Seminar für Sprachwissenschaft, Universität Tübingen, Tübingen,
Germany,
http://www.sfs.uni-tuebingen.de/controll/controll-manual.ps.gz,
draft of 17. September 1997 for ConTroll v.1.0b and XTroll v.5.0b.

[225]

Timm Lichte, Simon Petitjean

Aravind K. Joshi and Yves Schabes (1997), Tree-Adjoining Grammars, in
Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 3, pp. 69–124, Springer, Berlin, Germany.
Aravind K. Joshi, K.Vijay Shanker, and David Weir (1990), The convergence
of mildly context-sensitive grammar formalisms, Technical Report
MS-CIS-90-01, Department of Computer and Information Science, University of
Pennsylvania, http://repository.upenn.edu/cis_reports/539/.
Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier,
Johannes Dellert, and Kilian Evang (2008), TuLiPA: Towards a
multi-formalism parsing environment for grammar engineering, in Proceedings
of the workshop on Grammar Engineering Across Frameworks (GEAF ’08), pp. 1–8,
Manchester, UK.
Laura Kallmeyer and Rainer Osswald (2012a), An analysis of directed
motion expressions with Lexicalized Tree Adjoining Grammars and frame
semantics, in Luke Ong and Ruy de Queiroz, editors, Proceedings of WoLLIC,
number 7456 in Lecture Notes in Computer Science (LNCS), pp. 34–55,
Springer, Berlin, Germany.
Laura Kallmeyer and Rainer Osswald (2012b), A frame-based semantics of
the dative alternation in Lexicalized Tree Adjoining Grammars, in Christopher
Piñón, editor, Empirical Issues in Syntax and Semantics 9, pp. 167–184, Paris,
France.
Laura Kallmeyer and Rainer Osswald (2013), Syntax-driven semantic frame
composition in Lexicalized Tree Adjoining Grammar, Journal of Language
Modelling, 1:267–330.
Paul Kay (2002), An informal sketch of a formal architecture for Construction
Grammar, Grammars, 5:1–19.
James Kilbury, Wiebke Petersen, and Christof Rumpf (2006),
Inheritance-based models of the lexicon, in Dieter Wunderlich, editor,
Advances in the theory of the lexicon, number 13 in Interface Explorations,
pp. 429–478, De Gruyter, Berlin, Germany.
Timm Lichte, Alexander Diez, and Simon Petitjean (2013), Coupling trees,
words and frames through XMG, in Proceedings of the ESSLLI 2013 workshop on
high-level methodologies for grammar engineering, Düsseldorf, Germany.
Robert Malouf, John Carroll, and Ann Copestake. (2000), Efficient
feature structure operations without compilation, Natural Language Engineering,
6(1):29–46.
Stephen McConnel (1995), PC-PATR reference manual,
http://www.sil.org/pcpatr/manual/pcpatr.html, version 0.97a9.
Rainer Osswald (2003), A logic of classification with applications to linguistic
theory, Dissertation, FernUniversität Hagen.

[226]

Implementing semantic frames with XMG

Rainer Osswald and Robert D. Van Valin, Jr. (2014), FrameNet, frame
structure, and the syntax-semantics interface, in Thomas Gamerschlag, Doris
Gerland, Rainer Osswald, and Wiebke Petersen, editors, Frames and
concept types, number 94 in Studies in Linguistics and Philosophy, pp. 125–156,
Springer, Cham, Switzerland.
Gerald Penn (1999), An optimized Prolog encoding of typed feature structures,
Arbeitspapiere des SFB 340 138, University of Tübingen.
Guy Perrier (2000), Interaction Grammars, in Proceedings of the 18th
International Conference on Computational Linguistics (COLING 2000),
pp. 600–606, Saarbrücken, Germany.
Wiebke Petersen (2007), Representation of concepts as frames, The Baltic
International Yearbook of Cognition, Logic and Communication, 2:151–170.
Wiebke Petersen and Tanja Osswald (2014), Concept composition in
frames: Focusing on genitive constructions, in Thomas Gamerschlag, Doris
Gerland, Rainer Osswald, and Wiebke Petersen, editors, Frames and
concept types, number 94 in Studies in Linguistics and Philosophy, pp. 243–266,
Springer, Cham, Switzerland.
Carlos A. Prolo (2002), Generating the XTAG English grammar using
metarules, in Proceedings of the 19th International Conference on Computational
Linguistics (COLING 2002), pp. 814–820, Taipei. Taiwan.
Stuart M. Shieber (1984), The design of a computer language for linguistic
information, in Proceedings of the 10th International Conference on Computational
Linguistics and 22nd annual meeting of the Association for Computational
Linguistics, pp. 362–366, Stanford, CA,
http://www.aclweb.org/anthology/P84-1075.
Stuart M. Shieber and Yves Schabes (1990), Synchronous Tree-Adjoining
Grammars, in Proceedings of the 13th International Conference on Computational
Linguistics (COLING 1990), pp. 253–258, Helsinki, Finland.
Matthew Skala, Victoria Krakovna, János Kramár, and Gerald Penn
(2010), A generalized-zero-preserving method for compact encoding of concept
lattices, in Proceedings of the 48th annual meeting of the Association for
Computational Linguistics, pp. 1512–1521, Uppsala, Sweden.
Matthew Skala and Gerald Penn (2011), Approximate bit vectors for fast
unification, in Makoto Kanazawa, András Kornai, Marcus Kracht, and
Hiroyuki Seki, editors, The mathematics of language, number 6878 in Lecture
Notes in Computer Science, pp. 158–173, Springer, Berlin, Germany.
Matthew Stone and Christine Doran (1997), Sentence planning as
description using Tree Adjoining Grammar, in Proceedings of the eighth
conference of the European Chapter of the Association for Computational Linguistics
(EACL’97), pp. 198–205.

[227]

Timm Lichte, Simon Petitjean

Fei Xia, Martha Palmer, and K. Vijay-Shanker (2010), Developing
Tree-Adjoining Grammars with lexical descriptions, in Srinivas Bangalore
and Aravind K. Joshi, editors, Using complex lexical descriptions in natural
language processing, pp. 73–110, MIT Press, Cambridge, UK.
Yulia Zinova and Laura Kallmeyer (2012), A frame-based semantics of
locative alternation in LTAG, in Proceedings of the 11th international workshop on
Tree Adjoining Grammars and Related Formalisms (TAG+11), pp. 28–36, Paris,
France, http://www.aclweb.org/anthology-new/W/W12/W12-4604.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[228]

A type-logical treebank for French

Richard Moot
CNRS (LaBRI), Bordeaux University

abstract
Keywords:
type-logical
grammar,
categorial
grammar,
semi-automatic
grammar
extraction

This paper describes the TLGbank, a treebank developed in the frame-
work of (multimodal) type-logical grammar. Using the French Tree-
bank as a starting point, a combination of automated and manual
techniques are applied to obtain type-logical derivations (parses) cor-
responding to the phrases of the French Treebank. The TLGbank has
been developped with applications to wide-coverage semantics in
mind. This means that the TLGbank has richer structure than the
original French Treebank, especially where it concerns semantically
relevant information such as passives, coordination, extraction and
gapping.

1 introduction

Categorial grammars have interesting theoretical advantages, most no-
tably their very clean syntax-semantics interface. In the last decade,
research in Combinatory Categorial Grammar has shown that this is
not merely a theoretical advantage, but that, with the appropriate re-
sources and tools – an annotated treebank, the CCGbank (Hocken-
maier and Steedman 2007), a very efficient parser (Clark and Cur-
ran 2004) and a semantic lexicon (Bos et al. 2004) – we can use
categorial grammars for wide-coverage, deep semantic analysis. Ap-
plications of the resulting wide-coverage semantics include natural-
language question-answering (Bos et al. 2007) and recognising textual
entailments (Bos and Markert 2005).
The development of the CCGbank, which has allowed parameter

optimization for the wide-coverage parser and provided a framework

Journal of Language Modelling Vol 3, No 1 (2015), pp. 229–264

Richard Moot

(in types and in derivations) for the semantic applications, has been a
key element for these applications.
Categorial grammars in the logical tradition initiated by Lambek

(1958) (Moortgat 2011; Morrill 2011; Moot and Retoré 2012) have
stayed somewhat behind in terms of their application to large-scale lin-
guistic data. The goal of the current paper is to describe the TLGbank, a
semi-automatically extracted treebank containing type-logical proofs,
created with the explicit goal of making similar wide-coverage parsing
and semantics possible in the type-logical context.
The work described in this paper extends and refines a much ear-

lier version of the TLGbank (Moot 2010b). Lefeuvre et al. (2012) and
Moot (2012) discuss some initial applications of the treebank to wide-
coverage semantics.

2 type-logical grammar

This section is a very short introduction to (multimodal) type-logical
grammars. For more detailed introductions, see Oehrle (2011), Moort-
gat (2011, Section 2.4) or Moot and Retoré (2012, Chapter 5).
Although the treebank is annotated using multimodal type-logical

grammar, the annotation has been chosen in such a way that deriva-
tions in the treebank can easily be translated into derivations of the
Displacement calculus (Morrill et al. 2011) or of first-order linear logic
(Moot and Piazza 2001; Moot 2014). Translations to other versions of
categorial grammar are conceivable, but will probably require signif-
icantly more work.
The atomic formulas are n (for nouns), np (for noun phrases),

ppx (for prepositional phrases, with x the preposition heading the
phrase) and sx for sentences, where we distinguish between several
types of sentences/phrases: smain for main, tensed sentence, swhq for
a wh-question, sq for a sentence introduced by “que” (that) and fur-
ther types for passives spass, infinitives sinf ,1 and past sppart and present
sppres participles; this is inspired by the French Treebank annotation –

1Like prepositions, sinf is further subdivided into categories for infinitive
phrases headed by a preposition: sinf a

, sinfde
, sinf pour

, sinf par
. This allows us to dis-

tinguish, for example, between “finir de” (to finish doing something) and “finir
par” (to end up doing something). The infinitive headed by “pour” occurs in con-
structions like “trop tôt pour ...” (too early to ...).

[230]

A type-logical treebank for French

w ⊢ A Lex x ⊢ A
Hyp

X ⊢ A/B Y ⊢ B
X ◦ Y ⊢ A

/E
X ⊢ B Y ⊢ B\A

X ◦ Y ⊢ A
\E

x ⊢ B....
X ◦ x ⊢ A
X ⊢ A/B

/I

x ⊢ B....
x ◦ X ⊢ A
X ⊢ B\A \I

X [Y] ⊢ B Z ⊢ B\1A
X [Y ◦1 Z] ⊢ A

\1E

x ⊢ B....
X [Y ◦ x] ⊢ A

X [Y] ⊢ A/◊1□1B
/◊1□1 I

Table 1:
Logical rules for
multimodal categorial
grammars

though passives are not annotated as such in this treebank – and
the categorial treatments of Carpenter (1991) and Hockenmaier and
Steedman (2007). The different subtypes of s and pp are implemented
using first-order variables and unification, following Moot (2014) and
Morrill (1994, Section 2.1).
An intransitive verb is assigned np\smain, indicating that it requires

a noun phrase to its left in order to form an inflected sentence. Simi-
larly, transitive verbs are assigned the formula (np\smain)/np, requiring
a noun phrase to their right in order to form an intransitive verb. In
what follows, we will often simply write s instead of smain.
To make this article understandable to the reader not intimately

familiar with modern type-logical grammars, all examples in the text
use the simplified presentation of Table 1. The intrepid reader inter-
ested in the full technical details can find the complete presentation
in Appendix A, with further applications in Appendix B.
We will abbreviate the lexicon rule as w

A . The rule for /E simply
states that whenever we have shown an expression X to be of type A/B
and we have shown an expression Y to be of type B, then the tree with
X as its immediate subtree on the left and Y as its immediate subtree
of the right is of type A (the \E rule is symmetric).
An easy instantiation of the /E rule (with X := the, Y := student,

A := np, B := n) would be the following.

[231]

Richard Moot

the ⊢ np/n student ⊢ n
the ◦ student ⊢ np

/E

The two rules at the bottom row of the table require some special
attention. The \1E rule is an infixation rule. This rule is used for adverbs
(and other VP modifiers) occurring after the verb. Like the \E rule, it
takes a B formula as its argument, but infixes itself to the right of any
subtree Y of X (X [Y] denotes a tree X with a designated subtree Y .
This tree Y can occur at any depth in the tree X [Y], including the root,
i.e. Y can be equal to X [Y].2) An example is shown below for the VP
“impoverishes the CGT dangerously”. The interest of this rule is that it
allows a uniform type assignment for adverbs occurring post-verbally,
regardless of other verb arguments.

appauvrit ⊢ (np\s)/np la ◦ CGT ⊢ np
appauvrit ◦ (la ◦CGT) ⊢ np\s /Edangereusement ⊢ (np\s)\1(np\s)

(appauvrit ◦1 dangereusement) ◦ (la ◦CGT) ⊢ np\s /E

Each occurrence of the introduction rules /I , \I and /◊1□1 uses
a distinct syntactic variable x which is unique to the proof; therefore,
in the case of a proof containing multiple introduction rules, the hy-
pothesis corresponding to an introduction rule can always be uniquely
determined by this variable name (we can use any naming convention
to ensure this; common choices are x0, x1, . . . or, for shorter proofs,
x , y, z).
The /◊1□1 rule is an extraction rule, extracting a B constituent

from any right branch inside an X constituent.3 Comparing the rule
/◊1□1 I to the rule /I , we can see that /I is the special case of /◊1□1 I
where the context X [] is empty (i.e. where X [Y] is equal to Y). From
the point of view of semantics the two rules are the same — both
correspond to abstraction over the semantic variable assigned to the
B formula which is withdrawn by the rule — but the rule /◊1□1 I can

2For adverbs, as here, Y is typically the verb, but in principle infixation is
possible anywhere (an admitted oversimplification, which can be remedied by a
more sophisticated treatment of mode information).

3For readers familiar with the Displacement calculus (Morrill et al. 2011), the
infixation construction A\1B corresponds to B̌ ↓ A and the extraction construction
A/◊1□1B to (̂A ↑ B).

[232]

A type-logical treebank for French

apply in a larger number of syntactic contexts. As an example, in the
following sentence
(1) l’

the
argent
money

dont
for which

elle
she
est
is
responsable
responsible

the relativizer “dont” is assigned the formula (n\n)/(s/◊1□1ppde)mean-
ing it is looking to its right for a sentence missing a prepositional
phrase headed by the preposition “de” (for). The subformula ◊1□1ppde

should be seen as a special type of ppde formula. Unlike a normal ppde

argument, it can occur on any right branch, no matter how deeply
nested (unlike the rules for /I in Table 1, which apply only when the
argument is the immediate right daughter). This means “dont” can
take a phrase such as “elle est responsable” (she is responsible), where
“responsable” is analysed as an adjective which first selects a ppde to
its right, as an argument since we can assign it s/◊1□1ppde as follows.

elle
np Lex

est
(np\smain)/(n\n) Lex

responsable
(n\n)/ppde

Lex
x ⊢ ppde

Hyp

responsable ◦ x ⊢ n\n /E

est ◦ (responsable ◦ x) ⊢ np\smain
/E

elle ◦ (est ◦ (responsable ◦ x)) ⊢ smain
\E

elle ◦ (est ◦ responsable) ⊢ smain/◊1□1ppde
/◊1□1 I

As shown in the proof, the extraction analysis starts by assuming
a ppde hypothesis (corresponding to a ppde gap in a mainstream gener-
ative grammar analysis) then derives a sentence smain using the elimi-
nation rules. Finally, the introduction rule “binds” the gap: it removes
the leaf x corresponding to the ppde hypothesis and binds it semanti-
cally. The proof above also shows why the assignment of the simpler
formula (n\n)/(s/ppde) to the word “dont” doesn’t suffice: in the penul-
timate step of the proof, we have derived elle ◦ (est ◦ (responsable ◦ x))
of type smain, whereas for the /I rule to apply we would need a differ-
ently bracketed structure such as (elle ◦ (est ◦ responsable)) ◦ x , with x
the immediate right daughter of the root node.4 Appendix A gives a

4To be precise, this example only shows the need for a form of associativity,
but slightly more complicated examples like “for which she was responsible in
1992” show that associativity alone is no solution. Examples of this kind have
been a driving force in the development of extensions of the Lambek calculus.

[233]

Richard Moot

detailed treatment of the unabbreviated version of this proof, showing
notably how to derive A from ◊1□1A. To summarize, formulas of the
form ◊1□1A are special types of A formulas that can be extracted from
deeply embedded positions.

3 the french treebank

The French Treebank (FTB, Abeillé et al. 2000) is a set of syntac-
tically annotated news articles from the newspaper Le Monde. The
FTB consists of 12,891 annotated sentences with a total of 383,227
words. The FTB has previously been used to extract phrase struc-
ture grammars (Arun and Keller 2005), dependency grammars (Can-
dito et al. 2009; Guillaume and Perrier 2012), lexical-functional gram-
mars (Schluter and van Genabith 2008), and tree adjoining grammars
(Dybro-Johansen 2004).
For its annotation, the FTB uses simple, rather flat trees with some

functional syntactic annotation (subject, object, infinitival argument,
etc.). Consecutive multiword-expressions have been merged in the an-
notation and neither traces nor discontinuous dependencies have been
annotated.
Consider the following sentence from the French Treebank.

(2) À
at
cette
that

époque,
time,

on
we
avait
had

dénombré
counted

cent_quarante
hundred-forty

candidats
candidates

‘At that time, there were 140 candidates.’
Its FTB annotation is shown in Figure 1. We can see that verb clusters
are treated as constituents (labelled VN) and that the arguments of
the verb occur as sisters of this verbal cluster. For example, the object
noun phrase in Figure 1 is the sister of the VN. However, as we will
see in Section 4.3, we obtain a much neater analysis when we treat
the object as an argument of “dénombré” (counted), which is the past
participle of a transitive verb.

4 grammar extraction

Grammar extraction algorithms for categorial grammars follow a gen-
eral methodology – see, for example, Buszkowski and Penn (1990),

[234]

A type-logical treebank for French

....SENT.....

..NP-OBJ.....

..NC...

..candidats.

..

..DET...

..cent_quarante

.

....

..VN.....

..VPP...

..dénombré.

....

..V...

..avait.

..

..CLS-SUJ...

..on

.

....

..PONCT...

..,

.

..

..PP-MOD.....

..NP.....

..NC...

..époque.

..

..DET...

..cette

.

..

..P...

..À

Figure 1: An example sentence from the French Treebank

Moortgat and Moot (2001), Hockenmaier and Steedman (2007) and
Sandillon-Rezer (2013), shown as item 2 below – with some additional
rules to deal with the quirks of the format of the input treebank. A
high-level description of the grammar extraction algorithm used to
convert the FTB into the TLGbank is given below.
1. split multiword expressions,
2. binarize the tree, keeping track of the distinction between mod-
ifiers and arguments; arguments are assigned formulas based on
their syntactic label (e.g. np for a noun phrase argument, np\sinf

for an infinitival argument, etc.)
3. reattach verb cluster arguments,
4. rearrange coordinations,
5. insert traces in the appropriate places and assign the appropriate
formulas to relative pronouns and clitics.5

All steps are done by a single Prolog tree transformation, then ver-
ified and corrected manually (either by writing an ad hoc tree trans-
formation script or by manually editing the output, then verifying that
the result remains a valid derivation). Since the FTB annotation makes

5Subject clitics are treated as normal np subjects. Object clitics, such as the
object clitic “l” in “Marie l’aime” (Marie him-clitic loves, Marie loves him) are
assigned the formula (np\s)/((np\s)/◊1□1np) following the analysis of Moot and
Retoré (2006). By assigning these higher-order formulas to the clitics, we can
assign a normal transitive verb formula to “aime” (loves). Only the reflexive clitic
“se” and the clitic “y” in the construction “il y a” (there is/are) are treated as
arguments of the verb (with formulas clse and cl y , respectively).

[235]

Richard Moot

the distinction between modifiers and arguments only for certain cat-
egories (sentences, infinitive phrases, present participle phrases, but
not past participle phrases or noun phrases), this information is not
explicitly annotated for many major categories (the extraction script
treats these cases as modifiers for noun phrases and as arguments for
other categories, such as past participle phrases). In addition, all forms
of the verb “être” (to be) with a past participle as argument have been
manually changed to passive whenever this was a passive construc-
tion.6
In Step 4, which harmonizes the annotation of coordinations,

many simple coordinations are treated correctly by the extraction
script. Special care has been taken of the punctuation symbols, which
in many cases are manually given a coordination-like formula assign-
ment, and of gapping, which must be treated manually as well (the
treatment of gapping is presented in detail in Appendix B.4).
Finally, relative pronouns are treated by the extraction script as

arguments of the immediately following verb, which is correct in many
cases but needs to be manually verified for all occurrences.
In sum, after a pass of the extraction script, many constructions

are manually verified and corrected. To give an indication of the
amount of manual cleanup done: simply running the Prolog script on
the treebank results in a lexicon with 5,240 distinct formulas assigned
to the words of the lexicon (Moot 2010b) (note that this is without a
distinction between passives and past participles), but after cleanup
there are 1,101.
From Section 4.1 to Section 4.5, we will treat each of the stages

of the extraction algorithm in turn.
4.1 Splitting multiword expressions
The French Treebank treats many multiword expressions as single
nodes in the annotation. For example, the expression “dépôt de bilan”
(voluntary liquidation) occurs as “dépôt_de_bilan”; similarly, as shown
in Figure 1, numbers such as “cent_quarante” (140) are analysed as

6Not all occurrences of passives are accompanied by a form of “to be”: adjec-
tival uses of passive (e.g. in English “books written by Stephen King”) are treated
automatically, whereas extraposed passive phrases, such as “Elaborated with the
greatest discretion, this project...”, are handled during the manual correction of
coordination/punctuation.

[236]

A type-logical treebank for French

a single word. Though very good solutions exist to detect these auto-
matically in a separate preprocessing step (see, for example, Constant
et al. 2011), we have decided to split all these into their separate words
in order not to have to depend on additional components.
Fortunately, the French Treebank also annotates the internal

structure for many of these complex lexical lemmas, so we can find
that “dépôt de bilan” has the internal structure [noun, preposition,
noun] and use this to automatically annotate the expression accord-
ing to the basic case discussed below, so this step requires little human
intervention.
4.2 The basic case
The heart of the algorithm binarizes the trees from the French Tree-
bank and separates the daughters of a node into functors/heads, argu-
ments, and modifiers. This step is done automatically, using a version
of the classic “head percolation” table (Magerman 1994) similar to the
ones used for other categorial grammar extraction algorithms (Hock-
enmaier and Steedman 2007; Moortgat and Moot 2001; Moot 2010a).
The automated part of the extraction algorithm recursively de-

scends each node and successively performs each of the different trans-
formations described here, as well as the refinements described in Sec-
tions 4.3 to 4.5. Thus, even though these cases are described separately
for ease of exposition, they apply together at each node.
For example, the following sentence

(3) le
the
score
score

correspondait
corresponded

à peine
barely

au
to a
tiers
third

de
of
l’
the
objectif
goal

mensuel
monthly
‘the score barely corresponded to a third of the monthly goal’

has the French Treebank annotation shown in Figure 2. In the figure,
the multiword expression “à peine” (hardly) has already been sepa-
rated into its component words in the previous step of the algorithm.
The binarization step first selects the head of the constituent (the

head percolation table first tries to find a verbal group VN as the head
of a sentence SENT) and then combines it first with the sisters to its
right, then with the sisters to its left, as shown in the figure below.

[237]

Richard Moot
Figure 2:

Initial French
Treebank tree.

....SENT.....

..PP-A_OBJ...

..au tiers de l’objectif mensuel

.

....

..ADV.....

..NC...

..peine.

..

..P...

..à.

....

..VN...

..V...

..correspondait.

..

..NP-SUJ.....

..NC...

..score.

..

..DET...

..le

Figure 3:
The tree of

Figure 2 after
binarization.

....SENT.....

..VN.....

..PP-A_OBJ...

..au tiers de l’objectif mensuel

.

..

..VN.....

..ADV.....

..NC...

..peine.

..

..P...

..à.

..

..VN...

..V...

..correspondait

.

..

..NP-SUJ.....

..NC...

..score.

..

..DET...

..le

The label of the newly created nodes remains the same; VN in this
case. The resulting tree, shown in Figure 3 has only unary and binary
branches.
Next, a similar table of defaults decides for each binary branch

if the pair of nodes concerned are a functor and its argument or a
modifier and a category it modifies. So in the current example ADV is
treated as a modifier whereas PP-A_OBJ is treated as an argument. A
functor and argument are given the formulas F/A and A, if the argu-
ment occurs on the right, or A and A\F if the argument occurs on the
left, where F is the formula assigned to the parent node and A is the for-
mula corresponding to the syntactic label of the argument node (this
is again performed by looking up the values in a table, which indicates
for example, that NP corresponds to np and PP-A_OBJ corresponds to
ppa). For modifiers, the modifier is assigned F/F if it occurs on the
left and F\F if it occurs on the right, where F is the formula assigned
to the parent node; the sister node of the modifier will therefore be
assigned the same formula F as the parent node.

[238]

A type-logical treebank for French

....s.....

..np\s.....

..ppa...

..au ...

.

..

..(np\s)/ppa.....

..((np\s)/ppa)\((np\s)/ppa).....

..n...

..peine.

..

..(((np\s)/ppa)\((np\s)/ppa))/n...

..à.

..

..(np\s)/ppa...

..(np\s)/ppa...

..correspondait

.

..

..np.....

..n...

..score.

..

..np/n...

..le

Figure 4:
First derivation
corresponding to
Figure 3, using
only elimination
rules.

This translates the binarized tree of Figure 3 into the tree shown
in Figure 4. This tree gives a full description of a derivation using
only the elimination rules /E and \E: suppressing the unary modes,
we can label each pair of sisters uniquely with one of these rules by
looking only at their formulas, either F/A and A or A and A\F ; the
distinction between modifiers and other functors is no longer relevant
now, modifiers are simply those formulas where F = A.
So far, the extraction algorithm has followed the classic catego-

rial grammar extraction methodology of Buszkowski and Penn (1990)
andMoortgat andMoot (2001). However, the tree above gives a rather
complicated formula to the modifier “à peine” (hardly). Moreover, this
formula would change with the formula assigned to the verb it mod-
ifies – requiring a different formula for transitive verbs, intransitive
verbs, auxiliary verbs, etc. – resulting in unnecessary duplication of
lexical entries for all adverbs. As we have seen in Section 2 with the
adverb “dangereusement” (dangerously), we can choose an infixation
solution and treat all adverbs as VP modifiers as shown in Figure 5.
From this tree, we can again obtain a complete derivation, this

time using the /E, \E and \1E rules of Table 1, though we now need
the word order of the original sentence to determine the position of the
adverb. The \1E rule essentially plays the role of the crossing compo-
sition rules used for similar situations in the CCGbank (Hockenmaier
and Steedman 2007). This simplification is performed automatically
whenever a complex verb-modifier formula would be assigned to an
adverb.

[239]

Richard Moot
Figure 5:

A version of
the derivation
of Figure 4

using a simpler
lexical entry
for the adverb

“à peine”

....s.....

..np\s.....

..(np\s)\1(np\s).....

..n...

..peine.

..

..((np\s)\1(np\s))/n...

..à

.

..

..np\s.....

..ppa...

..au tiers de ...

.

..

..(np\s)/ppa...

..(np\s)/ppa...

..correspondait

.

..

..np.....

..n...

..score.

..

..np/n...

..le

4.3 Verb clusters
As discussed in Section 3, verb clusters (which include clitics and some
adverbs) and the arguments of verbs are sisters in the FTB annota-
tion trees. While this wasn’t a problem for the simple cases treated in
the previous section, this becomes problematic in the case of a com-
plex verbal group. Figure 6 shows an example corresponding to sen-
tence (4) (Figure 1 back on page 235 requires a similar treatment).
(4) Ils

they
ont
have

déjà
already

pu
been able to

constater
note

que
that

(...)

In a categorial setting, we obtain a much simpler analysis if the VN
arguments are arguments of the embedded verbs instead: in the cur-
rent case, we’d like the infinitival group to be the argument of the
past participle “pu” (past participle of the verb “pouvoir”, can). At the
bottom of Figure 6 we see the rightward branching structure which re-
sults from the corpus transformation. Note also how the adverb “déjà”
(already) is assigned the VP-modifier formula (np\sx)/(np\sx) which is
parametric for the type of sentence (in essence, this is a formula with
an implicit first-order quantifier ranging over the different sentence
types, see Moot 2014 or Moortgat 2011, Section 2.7; in the figure, x is
instantiated to ppart).
The extraction script automatically rebrackets the verb clusters

as indicated above and treats any arguments of the verb cluster as
arguments of the final verb in the cluster. This step requires very few
manual corrections.

[240]

A type-logical treebank for French

4.4 Coordination and punctuation symbols
The sentences below illustrate some of the problems with coordination
which we will discuss in this section.
(5) Elles

they
reprennent
resume

et
and
amplifient
amplify

des programmes
programs

existants
existing

ou
or
en cours d’
currently being

adaptation
adapted

(6) Les
the
lieux
places

où
where

les
the
deux
two

derniers
last

morts
deaths

ont
have

été
been

recensés,
reported,

lundi
Monday

30
30
décembre,
December,

La Yougoslavie
Yugoslavia

et
and
La

Colombie,
Colombia,

(...)

....SENT.....

..VPinf-OBJ.....

..Ssub-OBJ...

..que ...

.

..

..VN...

..VINF...

..constater

.

..

..VN.....

..VPP...

..pu.

....

..ADV...

..déjà.

....

..V...

..ont.

..

..CLS-SUJ...

..Ils

....s.....

..np\s.....

..np\sppart.....

..np\sppart.....

..np\sinf.....

..sq...

..que

..

..(np\sinf)/sq...

..constater

.

..

..(np\sppart)/(np\sinf)...

..pu

.

..

..(np\sx)/(np\sx)...

..déjà

.

..

..(np\s)/(np\sppart)...

..ont

.

..

..np...

..Ils

Figure 6:
Rebracketing a verbal
group and its arguments

[241]

Richard Moot
Figure 7:

CoordinationSENT.....

..NP-OBJ.....

..COORD.....

..PP...

..en cours d’adaptation

.

..

..ou

.

....

..AP...

..ADJ...

..existants

.

....

..NC...

..programmes.

..

..DET...

..des

.

..

..VN.....

..COORD.....

..VN...

..V...

..amplifient

.

..

..CC...

..et

.

....

..V...

..reprennent.

..

..CLS-SUJ...

..Elles

Figure 7 shows the FTB syntactic structure of sentence (5). In catego-
rial grammars, conjunctions like “ou” (or) are generally assigned in-
stances of the formula (X\X)/X (for a contextually appropriate choice
of the formula X). The first conjunction is of the two transitive verbs
(instantiating X with the formula (np\smain)/np) that share both the
subject and the object. For the second coordination it is the adjec-
tive and the prepositional phrase which are conjoined (though this is
not so clear from the annotation only, where it seems to be an unlike
coordination between an np and a pp). As is standard in categorial
grammars, we assign both the adjective and the PP the formula n\n
(this is the standard assignment for a PP modifying a noun), turning
this seemingly unlike coordination into a trivial instance of the general
coordination scheme.
The (somewhat simplified) FTB annotation of sentence (6) of Fig-

ure 8 shows another problem: appositives, which are treated by assign-
ing a coordination-like formula to the punctuation symbol preceding
them (a similar solution is used for parentheticals and for most extra-
positions).7 An additional complication in this example is that we have

7Not all extrapositions can be analysed as coordinations this way. In the
example below
(i) A

to
celà
that

s’ajoute
adds-itself

une
a
considération générale
general consideration

: (...)

“A celà” is assigned s/(s/◊1□1ppa) allowing it to function as a long-distance pp
argument to “s’ajoute”, as we have seen for the s/◊1□1ppde argument of “dont”
in Section 2.

[242]

A type-logical treebank for French

....NP-SUJ.....

..Srel.....

..NP-MOD...

..la Yougoslavie

....

..NP-MOD...

..lundi 30 décembre ,.

..

.....

..où ... recensés ,

.

....

..NC...

..lieux.

..

..DET...

..Les

Figure 8:
Appositives

to distinguish between the NP-MOD temporal adverb, which modifies
the verb “recensés” (reported), and the NP-MOD for the appositive,
which conjoins to “Les lieux” (the places) with the NP containing “la
Yougoslavie” (Yugoslavia).
As the example shows, these cases are difficult to infer from the

information provided by the FTB annotation alone, and therefore must
be annotated manually; in total a bit more than 20% of the punctua-
tion symbols – over ten thousand punctuation symbols – are assigned
coordination-like categories. This complicated treatment of punctua-
tion is not necessary for standard phrase structure parsers but given
that in a categorial grammar analysis we want coordination-like punc-
tuation to behave semantically like coordination, some special treat-
ment of coordination is necessary.
More complex forms of coordination, such as right-node raising

and gapping, require a more sophisticated treatment, which is dis-
cussed in Appendix B.
4.5 Traces and long-distance dependencies
As an example of a simple long-distance dependency in the corpus,
consider the example below.
(7) Premier

first
handicap
handicap

auquel
to which

il
it
convenait
was agreed

de
to
s’attaquer:
attack:

l’inflation
the inflation

Figure 9 shows how the insertion of traces works. In the input struc-
ture on the top of the figure, “auquel” (to which) is assigned a preposi-
tion+pronoun POS-tag and assigned the role of a prepositional object
with the preposition “à” (to). However, this preposition is an argument

[243]

Richard Moot

of the verb “s’attaquer à” (to attack), which occurs much lower in the
annotation tree. Since none of these dependencies are annotated in
the French Treebank, the default automatic treatment assigns them as
arguments of the next occurring verb. Even though this is a reasonable
default, it still produces many errors. In the example above, it would
assign the ppa as argument of the main verb “convenait” (to agree),
which is a possible assignment for this verb but is incorrect in the cur-
rent case. As a consequence all relative pronouns, wh-pronouns, and
clitics – a total of over 3,000 occurrences in the corpus – have been
manually verified and, where necessary, corrected with the appropri-
ate long-distance dependencies. At the bottom of Figure 9, the man-
ually added long-distance dependency is shown (for reasons of hori-
zontal space, the subproof of “de s’attaquer ppa” has been stretched,
as indicated by the dots).

5 analysis

Categorial grammars, much like lexicalized tree adjoining grammars
and other strongly lexicalized formalisms, use very construction-
specific lexical entries. This means, for example, that when a verb
can be used both as transitive and intransitive, it will have (at least)
two distinct lexical entries. For extracted grammars, this generally
means a very high level of lexical ambiguity.
Using the most detailed extraction parameters, the final lexicon

uses 1,101 distinct formulas, though only 800 of these occur more
than once and, 684 more than twice and 570 at least five times. The
lion’s share of these rare formulas are assigned to frequently occurring
words, such as “et” (and) and verbs, appearing in unusual syntactic
constructions.
Using a slightly less detailed extraction (which, for example, dis-

tinguishes only ppde, ppa and pppar and uses simply pp for prepositional
phrases headed by other prepositions) there are 761 different formu-
las used in the lexicon (of which only 684 occur more than once, 546
occur more than twice and 471 occur at least five times).
Even in this second lexicon, many frequent words have a great

number of lexical assignments. The conjunction “et” (and) has 86 dif-
ferent lexical formulas, the comma “,” (which, as we have seen, often
functions much like a conjunction) is assigned 72 distinct formulas,

[244]

A type-logical treebank for French

the adverb “plus” (more) has 44 formulas (in part because of possi-
ble combinations with “que”, than), the prepositions “pour” (for/to),
“en” (in/while) and “de” (of/from) have 43, 42 and 40 formulas re-
spectively, and the verb “est” (is) has 39 formulas.
Although this kind of lexical ambiguity may seem like an impor-

tant problemwhen using the extracted lexicon for parsing, well-known
techniques such as supertagging (Bangalore and Joshi 2011), which as-
sign the contextually most likely set of formulas (supertags) to each
word, can be used to reduce the lexical ambiguity to an acceptable
level. To give an idea of how effective this strategy is in the current
context and with the reduced lexicon of 761 formulas: using the su-
pertagger of Clark and Curran (2004) and assigning only the most

....NP.....

..Srel.....

..VN.....

..VPinf-DE_OBJ.....

..VN.....

..VINF...

..attaquer.

..

..CLR...

..s’

.

..

..P...

..de

.

....

..V...

..convenait.

..

..CLS-SUJ...

..il

.

..

..PP-A_OBJ...

..NP...

..P+PRO...

..auquel

.

....

..NC...

..handicap.

..

..ADJ...

..Premier

auquel
(n\n)/(s/◊1□1ppà)

[Lex]

il
np
[Lex]

convenait
(np\s)/(np\sdi)

[Lex]

de
(np\sdi)/(np\si)

[Lex]
s’
clr
[Lex]

attaquer
(clr\(np\si))/ppà

[Lex] p0 ⊢ ppà
[Hyp]1

a ◦ p0 ⊢ clr\(np\si)
[/E]

s’ ◦ (a ◦ p0) ⊢ np\si
[\E]

de ◦ (s’ ◦ (a ◦ p0)) ⊢ np\si
[/E]

....
de ◦ (s’ ◦ (a ◦ p0)) ⊢ np\si

c ◦ (de ◦ (s’ ◦ (a ◦ p0))) ⊢ np\s [/E]
il ◦ (c ◦ (de ◦ (s’ ◦ (a ◦ p0)))) ⊢ s

[\E]
il ◦ (c ◦ (de ◦ (s’ ◦ a))) ⊢ s/◊1□1ppà

[/I]1
auquel ◦ (il ◦ (c ◦ (de ◦ (s’ ◦ a)))) ⊢ n\n [/E]

Figure 9:
Adding traces to
the output

[245]

Richard Moot

likely formula to each word, 90.6% of the words are assigned the cor-
rect formula. When assigning each word all formulas with probability
greater than 1% of the most likely supertag (for an average of 2.3 for-
mulas per word), the supertagger assigns the correct formula to 98.4%
of all words (for the FTB section of the TLGbank, using ten-fold cross-
validation).
Supertagging does not solve the problem of data sparseness: for

the supertagger, formulas which are seen only once or twice in the
training data are not fundamentally different from formulas which do
not occur at all. However, since these are exceptional cases, this has
little effect on the coverage of the parser: Clark and Curran (2007) use
only categories occurring at least 10 times for their parser based on
the CCGbank and still obtain 99.58% coverage on unseen sentences.
We will discuss the performance of the supertagger in more de-

tail, especially on sentences outside of the French Treebank, while dis-
cussing bootstrapping in Section 7.1.

6 comparison with the ccgbank

Apart from the obvious theoretical differences between CCG and type-
logical grammars and the different treatment of certain linguistic phe-
nomena – such as extraction – that this implies, it is worth spending
some time on some of the less obvious differences between the two
treebanks.
Whereas the CCGbank uses a certain number of rules besides the

standard combinatory schemata – notably for extraposition and coor-
dination,8 but also to transform passives np\spass into adjectives n\n
and (bare) nouns n into noun phrases np – the TLGbank uses no non-
logical rules. As a result, the lexicon of the type-logical treebank does
more of the work. The lexicon is bigger and consequently, the tasks of
the supertagger and the parser are more difficult in comparison with
the CCG supertagger (Clark and Curran 2007). The supertagger’s pre-
cision is similar – 98.4% correct in both cases – though the number

8To give an idea of the form of these rules, there is an extraposition rule
transforming “np” (that is, a noun phrase followed by a comma) into a sentence
modifier s/s and a set of rules transforming constructions like “X and X” (that is,
the word “and” occurring between two expression of the same category X) to X ,
see Section 2.5.5 of Hockenmaier and Steedman (2005) for more details.

[246]

A type-logical treebank for French

of lexical formulas per word is higher – 2.3 for the TLGbank versus
1.7 for the CCGbank. The number of lexical formulas per word is an
important factor for parsing speed.
If we want to reduce the size of the lexicon in a way similar to

the CCGbank, there are two basic options:

1. the first option is to allow non-logical rules of the same style as
those used for the CCGbank,

2. the second option, more in line with the general spirit of type-
logical grammars, is to exploit the derivability relation and to
replace the analysis of passives by a formula F such that F ⊢ n\n
(see Section 4.4.2 of Morrill 2011 for a particularly nice solution).

Since reducing the lexical ambiguity increases parsing speed but
adding rules (as in option 1) or complicating the formulas (as in option
2) will reduce it, a careful evaluation of the benefits should be made.
We leave to future research the transformation of the TLGbank in these
two ways.

7 tools and resources

To facilitate annotation, correction, and parsing, several tools have
been developed, using a combination of Prolog and TclTk. In addition,
several well-known tools have been used for the exploitation of the
corpus: the Stanford Tregex tool (Levy and Andrew 2006) for browsing
and querying the French Treebank (as well as some of its transforma-
tions), Lefff (Sagot 2010) for lemmatizing and related tasks, the C&C
tools (Clark and Curran 2004) for training POS-tag and supertag mod-
els using the annotated corpus, and a chart parser strongly inspired by
Shieber et al. (1995) for parsing with the resulting grammar.
Figure 10 shows a screenshot of the interface to the supertag-

ger and parser. This “horizontal” interface allows the user to type in
sentences and see the resulting semantic output from the parser. The
darker-shaded percentage of the block to the left of the formula gives
a visual indication of the probability assigned to the formula (the ex-
act numbers can be seen by moving the mouse over the corresponding
area). Apart from some configuration options, this interface is not in-
teractive.

[247]

Richard Moot
Figure 10:

Screenshot of
the supertagger

interface

Figure 11 shows a screenshot of the “vertical” interface to the
parser and supertagger. This is an interactive interface, allowing the
user to select (or type in) the desired formula – to help prevent errors,
the current frequency of the chosen formula for the current word is
displayed after a manual choice of the formula – as well as allowing
the user to select the parser rule applications by clicking on one of the
premises for a rule (an additional dialog pops up if the rule choice is
ambiguous, which happens infrequently). The weight column shows
the log-probability of the item.9

7.1 Bootstrapping
Given that the French Treebank is somewhat small compared to other
treebanks and given that the conversion of the FTB to the type-logical
treebank was rather labour-intensive, it makes sense to look at more
efficient ways of increasing the size of the treebank. The tools de-
scribed in the previous section, interfacing with the supertagger and
the parser for the core corpus are useful in this respect.
Currently, slightly over 1,600 additional sentences have been an-

notated (for a total annotated corpus of 14,539 sentences and 421,348
9The current implementation of the parser is not statistical in the sense that

the rule applications do not have a probability assigned to them (the supertags
do, so the parser outputs the first parse found for the most probable combination
of supertags which allows a parse). However, the source code has the required
hooks to add a probability model for the rule applications, whereas the required
probabilities can be estimated from the treebank itself.

[248]

A type-logical treebank for French
Figure 11:
Screenshot of
the interactive
parser

words). Most of these sentences come from the Sequoia treebank (Can-
dito and Seddah 2012) and the French Timebank (Bittar 2010). The
observed accuracy of the supertagger for these sentences from the
L’Est Républicain newspaper is slightly lower than the results reported
in Section 5: in 88.1% of cases, the best supertag is correct, and in
97.6% of cases the correct supertag has probability greater than 1%
of the best supertag (as compared to 90.6% and 98.4% respectively
for the cross-validated results). Part of this difference might be at-
tributable to stylistic differences between the two newspapers (initial
experiments with annotating unseen sentences from Le Monde seem
to confirm this) but it may also be the case that cross-validation gives
a somewhat optimistic picture of actual performance on unseen data
from other sources (the different training and test sets not being com-
pletely independent).
Table 2 shows the accuracy of the Part-of-Speech tagger and of the

supertagger for the different sub-corpora. The columns POS and Super
list the accuracy of the Part-of-Speech tagger and of the supertagger
respectively for the different corpora. Performance degrades grace-
fully for the different newspaper corpora (the French treebank and
more modern articles in Le Monde being presumably the most sim-
ilar, whereas the articles in L’Est Républicain from Sequoia and the
French Timebank have a slightly reduced supertagger performance)
but it shows a somewhat more important reduction for the literary
corpus of travelogues in the Pyrenees of Itipy (Lefeuvre et al. 2012;
Moot 2012).

[249]

Richard Moot
Table 2:

Supertagger and
Part-of-Speech tagger
performance on the
different sections
of the corpus

Corpus POS Super 0.1 0.01 F/w
French Treebank 97.8 90.6 96.4 98.4 2.3
Le Monde 2010 97.3 89.9 95.8 97.9 2.2
L’Est Républicain 97.3 88.1 94.8 97.6 2.4
Itipy/Forbes 95.7 86.7 93.8 97.1 2.6

The 0.1 and 0.01 columns indicate the supertagger’s performance
when all supertags with probability greater than β (=0.1 or 0.01)
times the probability of the most likely supertag have been included.
The column F/w indicates how many supertags this is per word for
β = 0.01 (for β = 0.1 this number is around 1.4). We can see that
even though the supertagger’s performance for the best supertag (in
the Super column) reduces steadily – from 90.6 on the main corpus
to 86.7 on the Itipy corpus, a 3.9 percentage points difference – when
using multiple supertags, this difference is greatly reduced (from 98.4
to 97.1, a 1.3 percentage points difference).
Even in the more difficult context of the Itipy corpus, the par-

ser/supertagger combination (with β = 0.01) finds a complete analy-
sis for 88.6% of the sentences in this subcorpus. We expect this figure
to improve when better search heuristics, such as those described by
Clark and Curran (2007), are used to deal with the increased num-
ber of formulas per word. To give an indication that even the current
parser implementation performs well: the only other parsing statistics
I’ve seen for the Itipy corpus are given by Nguyen (2012), who re-
ports that a total of 18.5% of the sentences in the Itipy corpus were
successfully parsed using an off-the-shelf parser.
7.2 Availability
All the tools and resources are available from the author under the
GNU Lesser General Public License.

http://richardmoot.github.io/TLGbank/

An unfortunate exception to this is the main part of the Type-
logical Treebank itself: being a derived work of the French Treebank,
it is available only to those who have a license for the original treebank
(contact to author for access to the private Git). The Sequoia part of
the treebank and the models derived from the complete treebank are
freely available, however.

[250]

A type-logical treebank for French

8 conclusion

We have shown how the French Treebank has been semi-automatically
transformed into a set of derivations in multimodal type-logical gram-
mars: the TLGbank. This is an important first step in training and eval-
uating wide-coverage type-logical parsers and we hope to see several
competitive type-logical parsers in the future.

acknowledgments

I would like to thank Michael Moortgat and Noémie-Fleur Sandillon-
Rezer for our work together on similar grammar extraction tasks. In
addition, Michael Moortgat’s insights on how to design multimodal
type-logical grammars have deeply influenced all aspects of the design
of the current treebank.
I also thank Yannick Parmentier and Denys Duchier for organiz-

ing the ESSLLI 2013 workshop in Düsseldorf where I presented this
material and all workshop participants for their feedback.
I would also like to thank the anonymous referees for their many

useful comments.
I, of course, take full responsibility for any remaining errors.

appendix

A complete logical rules

Table 3 lists the full set of rules for multimodal categorial grammars.
Binary modes i range over {ε, 1, 2, 3, l, r} – although we will continue
to write X ◦εY as X ◦Y and A/εB as A/B, etc. – and unary modes j range
over {0, 1, l, r}.
A.1 The unary connectives
The rules for ◊ and□may require some additional explanation for peo-
ple unused to multimodal type-logical grammars. Whereas the rules
for •, /, and \ produce binary trees labelled by indices — with the •I ,
/E, and \E rules constructing trees (i.e. combining previously derived
trees X and Y into a single tree X ◦ j Y) and with the •E, /I , and \I
rules removing binary branches — the rules for □ and ◊ produce and
remove unary branches. So the □E rule states that if we have previ-

[251]

Richard Moot
Table 3:

Full set of logical rules
for multimodal type-logical

grammar

w ⊢ A
Lex

x ⊢ A
Hyp

X ⊢ A/i B Y ⊢ B
X ◦i Y ⊢ A

/E
X ⊢ B Y ⊢ B\iA

X ◦i Y ⊢ A
\E

x ⊢ B....
X ◦i x ⊢ A
X ⊢ A/i B

/I

x ⊢ B....
x ◦i X ⊢ A
X ⊢ B\iA

\I

Y ⊢ A•i B

x ⊢ A y ⊢ B....
X [x ◦i y] ⊢ C

X [Y] ⊢ C
•E X ⊢ A Y ⊢ B

X ◦i Y ⊢ A•i B
•I

X ⊢ □ jA

〈X 〉 j ⊢ A
□E

〈X 〉 j ⊢ A
X ⊢ □ jA

□I

Y ⊢ ◊ jA

x ⊢ A....
X [〈x〉 j] ⊢ C

X [Y] ⊢ C
◊E

X ⊢ A
〈X 〉 j ⊢ ◊ jA

◊I

ously derived X to be of type □ jA, then 〈X 〉 j is of type A; we remove
the □ j connective and add a unary branch labelled by the index j.
Symmetrically, the □I rule states that if we have derived 〈X 〉 j (i.e. we
have an initial unary branch labelled j with a daughter subtree X) to
be of type A then the tree X by itself is of type □ jA.
The elimination rules for the product • and the diamond ◊ may

appear a bit odd: they are similar to the disjunction elimination
rule in intuitionistic logic and involve an arbitrary formula C . The
◊E rule gives instructions on how to use a formula ◊ jA once we
have derived it (as the subproof of the left premise of the rule) by
stating that if we can use a formula A labelled with a fresh vari-
able x to derive any tree X (of any formula C) such that this x
corresponding to A occurs as a leaf with a unary branch labelled
j as its immediate parent (as indicated by the tree term X [〈x〉 j]),
then we can conclude that this tree X with the unary branch j and
leaf x replaced by Y (the tree corresponding to ◊ jA) is also a tree

[252]

A type-logical treebank for French

Infixation

V [(X ◦ Y) ◦1 Z] ⊢ C
V [X ◦ (Y ◦1 Z)] ⊢ C

MA
V [(X ◦ Y) ◦1 Z] ⊢ C
V [(X ◦1 Z) ◦ Y] ⊢ C

MC

Extraction

V [X ◦ (Y ◦ 〈Z〉1)] ⊢ C

V [(X ◦ Y) ◦ 〈Z〉1] ⊢ C
MA◊1

V [(X ◦ 〈Z〉1) ◦ Y] ⊢ C

V [(X ◦ Y) ◦ 〈Z〉1] ⊢ C
MC◊1

Left-node raising/right-node raising

V [(〈X 〉0 ◦ Y) ◦ Z] ⊢ C

V [〈X 〉0 ◦ (Y ◦ Z)] ⊢ C
MAl◊0

V [X ◦ (Y ◦ 〈Z〉0)] ⊢ C

V [(X ◦ Y) ◦ 〈Z〉0] ⊢ C
MAr◊0

In situ binding

V [X ◦ 〈Y 〉2] ⊢ C

V [〈X 〉r ◦2 Y] ⊢ C
I2r

V [〈X 〉2 ◦ Y] ⊢ C

V [〈Y 〉l ◦2 X] ⊢ C
I2l

V [X ◦ (Y ◦2 Z)] ⊢ C

V [(X ◦r Y) ◦2 Z] ⊢ C
MA2r

V [(X ◦2 Z) ◦ Y] ⊢ C

V [(X ◦l Y) ◦2 Z] ⊢ C
MC2l

Quoted speech

V [(X ◦3 Y) ◦ Z] ⊢ C
V [X ◦3 (Y ◦ Z)] ⊢ C

MA3
V [Y ◦ (X ◦3 Z)] ⊢ C
V [X ◦3 (Y ◦ Z)] ⊢ C

MC3

Table 4:
Structural rules

of type C . In other words, X [〈x〉 j] becomes X [Y] as indicated in
the rule.
As an example, we show that if a tree Y is of type ◊ j□ jA then this

tree is also of type A (for all formulas A and unary indices j), as already
alluded to in Section 2.

Y ⊢ ◊ j□ jA

x ⊢ □ jA

〈x〉 j ⊢ A
□E

Y ⊢ A
◊E

If Y is of type ◊ j□ jA, then we start the subproof on the right using
the hypothesis x of type □ jA. Then we apply the elimination rule for
□ to produce the tree 〈x〉 j of type A. But now, we are immediately
in the right configuration to apply the ◊E rule (it is the special case

[253]

Richard Moot

where the context X [] is empty) and this allows us to replace 〈x〉 j by
Y , thereby proving that Y is of type A as required.
A.2 The structural rules
Although these patterns of derivability are interesting and can be used
to give accounts of case and other forms of subtyping (Bernardi and
Moot 2003), our interest here lies in the fact that they give access to
structural rules which can rearrange our derived trees in controlled
ways. The structural rules are listed in Table 4. The double line for
the in situ binding rules indicate that these rules can be applied in
both directions: top-to-bottom and bottom-to-top.
Even though this looks like a rather large list, these are principally

instantiations of the well-known universal rule schemata of mixed as-
sociativity and mixed commutativity (see Moortgat 2011 and Moot
and Retoré 2012 for commentary, and Vermaat 2005 for arguments
that these structural rules are truly universal).
For the grammar engineer, the structural rules give us great flexi-

bility andmodularity when designing our grammars (although it could
be argued that there is too much flexibility to this). However, the ac-
count given for different linguistic phenomena follows the conven-
tional wisdom of categorial grammars and, as discussed in the next
subsection, our annotation choices have been designed to be compat-
ible with other modern type-logical grammars. So there has been a
conscious choice not to create the smallest possible lexicon (at the
cost of additional structural rules) but to keep the set of structural
rules to the current set of instantiations of well-known schemata.
The abbreviated proof from Section 2, is repeated below.

appauvrit ⊢ (np\s)/np la ◦ CGT ⊢ np
appauvrit ◦ (la ◦CGT) ⊢ np\s /E dangereusement ⊢ (np\s)\1(np\s)

(appauvrit ◦1 dangereusement) ◦ (la ◦CGT) ⊢ np\s /E

Using the structural rules of Table 4, this proof looks as follows.
appauvrit ⊢ (np\s)/np la ◦ CGT ⊢ np

appauvrit ◦ (la ◦CGT) ⊢ np\s /E dangereusement ⊢ (np\s)\1(np\s)
(appauvrit ◦ (la ◦CGT)) ◦1 dangereusement ⊢ np\s /E

(appauvrit ◦1 dangereusement) ◦ (la ◦CGT) ⊢ np\s MC

[254]

A type-logical treebank for French

Similarly, we can translate proofs which use the /◊1□1 I rule of Table 1
into proofs using a combination of ◊E, □E, /I and the two extraction
rules MA◊1 and MC◊1 as shown below.

y ⊢ ◊1□1ppde
Hyp

elle
np Lex

est
(np\smain)/(n\n) Lex

responsable
(n\n)/ppde

Lex x ⊢ □1ppde
Hyp

〈x〉1 ⊢ ppde
□E

responsable ◦ 〈x〉1 ⊢ n\n /E

est ◦ (responsable ◦ 〈x〉1) ⊢ np\smain
/E

elle ◦ (est ◦ (responsable ◦ 〈x〉1)) ⊢ smain
\E

elle ◦ ((est ◦ responsable) ◦ 〈x〉1) ⊢ smain
MA◊1

(elle ◦ (est ◦ responsable)) ◦ 〈x〉1 ⊢ smain
MA◊1

(elle ◦ (est ◦ responsable)) ◦ y ⊢ smain
◊E

elle ◦ (est ◦ responsable) ⊢ smain/◊1□1ppde
/I

Given that the goal formula is smain/◊1□1ppde, we apply the in-
troduction rule for / to obtain a hypothesis y of type ◊1□1ppde, then
immediately the ◊E rule to obtain a hypothesis x of type □1ppde. Given
this hypothesis we can continue the proof using the elimination rules
for /, \, and □ to derive elle ◦ (est ◦ (responsable ◦ 〈x〉1)) of type smain.
Applying the ◊E rule immediately will cause our derivation to

fail, since it simply substitutes y for 〈x〉1 and for the correct application
of the /I rule, we need y to be the immediate right daughter of the
tree. Our goal is therefore to move the 〈x〉1 subterm to the top of the
tree and then apply the ◊E rule immediately followed by the /I rule.
This is where the structural rule of MA◊1 (mixed associativity) comes
in: each application of the rule moves the 〈x〉1 subterm one step closer
to the top, until we can correctly complete the proof.
A.3 Conversion to other type-logical grammars
As already indicated when justifying the choice for multimodal cate-
gorial grammars for the treebank annotation format in Section 2, the
multimodal annotation has been designed to be compatible with other
modern instantiations of type-logical grammar, such as the Displace-
ment calculus (Morrill et al. 2011) and first-order linear logic (Moot
2014). The phenomena discussed in Section B.1 to Section B.3 can be
imported into these calculi by simply removing the ◊0□0 prefixes since
they operate in an associative base logic, whereas an implementation

[255]

Richard Moot

of the multimodal gapping solution of Hendriks (1995), on which our
analysis of gapping is based, is presented by Morrill et al. (2011).

B additional linguistic phenomena

The full set of rules from Appendix A allows us to treat a number of
additional linguistic phenomena. These analyses, or at least the ideas
behind them, should be relatively unsurprising to people familiar with
linguistic analysis in the tradition of the Lambek calculus and its ex-
tensions (Moortgat 2011).
B.1 Right-node raising
Right-node raising (and its rare variant left-node raising) are instances
of the structural rule of associativity, as is already implicit in the dis-
cussion of the examples by Lambek (1958). We need it to analyse sen-
tences such as the following.
(8) ses

its
bons
good

et
and
ses
its
mauvais
bad

moments
moments

(9) peut
can

et
and
parfois
sometimes

doit
must

accompagner
accompany

...

...
In example (8), we want to analyse both “ses bons” and “ses mau-
vais” (a determiner and an adjective, which we would like to assign
the formulas np/n and n/n respectively) as np/◊0□0n (the reader can
verify that we cannot derive np/n ◦ n/n ⊢ np/n since associativity
is not globally available). Similarly, “peut” and “parfois doit” in ex-
ample (9) should be analysed as (np\s)/◊0□0(np\sinf). We can obtain
the desired derivations for example (8) by assigning “et” the type
((np/◊0□0n)\(np/n))/(np/◊0□0n) and combining it with the following
derivation for “ses bons” (the derivation for “ses mauvais” is similar).

x ⊢ ◊0□0n
Hyp

ses
np/n

Lex
bons
n/n

Lex y ⊢ □n
Hyp

〈y〉0 ⊢ n
□E

bons ◦ 〈y〉0 ⊢ n

ses ◦ (bons ◦ 〈y〉0) ⊢ np
/E

(ses ◦ bons) ◦ 〈y〉0 ⊢ np
MAr◊0

(ses ◦ bons) ◦ x ⊢ np
◊E2

ses ◦ bons ⊢ np/◊0□0n
/I1

[256]

A type-logical treebank for French

B.2 Left-node raising
Very rarely, for a total of nine times in the entire corpus, we need the
symmetric rule of left-node raising. In the example below, we have
a conjunction of two combinations of two noun post-modifiers n\n:
“français Aérospatiale” and “italien Alenia”.
(10) ... des

of the
groupes
groups

français
French

Aérospatiale
Aérospatiale

et
and
italien
Italian

Alenia
Alenia

...

‘of the French group Aérospatiale and Italian (group) Alenia’
By analysing “et” (and) as ((◊0□0n\n)\(n\n))/(◊0□0n\n) we can

use the derivability of n\n, n\n ⊢ ◊0□0n\n (which is derivable given
the structural rule MAl◊0 of Table 4) as follows.

x ⊢ ◊0□0n
Hyp

y ⊢ □0n
Hyp

〈y〉0 ⊢ n
□E italien

n\n Lex
〈y〉0 ◦ italien ⊢ n

\E Alenia
n\n L

(〈y〉0 ◦ italien) ◦Alenia ⊢ n
\E

〈y〉0 ◦ (italien ◦Alenia) ⊢ n
MAl◊0

x ◦ (italien ◦Alenia) ⊢ n
◊E2

italien ◦Alenia ⊢ ◊0□0n\n \I1

B.3 Coordination of multiple arguments
The product rules •E and •I are used for coordination of multiple ar-
guments (as shown in sentence (11) below, where the two verb argu-
ments np and pp are conjoined, see Section 2.4 of Morrill 2011).
(11) augmenter

increase
[np
[np
ses
its
fonds
equity

propres]
]
[pp
[pp
de
by
90
90
millions
million

de

francs
francs

]
]
et
and
[np
[np
les
its
quasi-fonds
quasi-equity

propres]
]
[pp
[pp
de
by
30
30

millions
million

]
]

We can derive these cases by assigning “et” the following formula.
((np • pp)\(np •◊0□0pp))/(np • pp)

Since we can form the np •pp arguments from both combinations
of an np and a pp using the •I rule, we can derive “ses fonds propres

[257]

Richard Moot

de ... et les quasi-fonds propres de ...” (abbreviated as e in the proof
below) as being of type np•◊0□0pp using an application of the /E rule
followed by an application of the \E rule. We can then combine this
np •◊0□0pp constituent with the verb “augmenter” (abbreviated as a)
as follows.

e ⊢ np •◊0□0pp
y ⊢ ◊0□0pp

Hyp

a
((np\s)/pp)/np

Lex
x ⊢ np

Hyp
a ◦ x ⊢ (np\s)/pp

z ⊢ □0pp
Hyp

〈z〉0 ⊢ pp
□E

(a ◦ x) ◦ 〈z〉0 ⊢ np\s /E

a ◦ (x ◦ 〈z〉0) ⊢ np\s MAr◊0

a ◦ (x ◦ y) ⊢ np\s ◊E

a ◦ e ⊢ np\s •E

The ◊0□0pp formula allows us to use the right-node raising rule
of Section B.1. The proof would be slightly simpler if we assigned
the word “augmenter” the formula (np\s)/(np • pp) instead (such an
analysis can also be found on page 19 of Morrill 2011). However,
since we have already found independent motivation for the right-
node raising rules, we have chosen to give the verb the more classical
analysis of ((np\s)/pp)/np.
B.4 Gapping
The extraction/infixation rules are used for the analysis of gapping, as
shown in sentence (12) below, where the transitive verb “atteindre”
is absent from the second clause.
(12) Le

the
salaire
wages

horaire
per hour

atteint
reach

dorénavant
from now on

34,06
34.06

francs
francs

et
and

le
the
SMIC mensual brut
gross minimum monthly wage

[tv
[tv
]
]
5756,14
5756.14

francs.
francs.

‘Hourly wages now reach 34.06 francs and the monthly min-
imum wage 5756.14 francs.’

We use the multimodal approach first proposed by Hendriks (1995)
and then advanced by Moortgat (1996). Schematically, the formulas
for gapping are of the following form

((s/2□2X)\l(s/2X))/(s/◊1□1X)

with X being a formula for a verb, for example X = (np\s)/np for a

[258]

A type-logical treebank for French

transitive verb.10 This formula indicates that first a sentence missing
a transitive verb to its right is selected (this is the extraction scheme
we have seen before, though no longer restricted to right branches),
then a sentence missing a transitive verb to its left, but keeping track
of the position of this missing transitive verb in the sentence – this
is implemented using the l and r modes which indicate whether the
extracted verb is on the left or on the right of the current node. Finally,
we insert a transitive verb at the position of this missing transitive verb
on the left.
Even though this may seem like a rather roundabout way of

achieving the desired sentence – first moving the transitive verb out,
then moving it back into its original place – it has the important advan-
tage of allowing us to get the semantics right; we know the verb from
the first sentence and can therefore use it in the semantics, whereas
a simpler type such as (s\s)/(s/◊1□1X) would not allow us to obtain
the correct semantics.
In addition, abstracting away from the mode information and the

unary connectives, the current analysis is an instantiation of the uni-
versal coordination formula (Y \Y)/Y when we choose Y = s/X , giving
((s/X)\(s/X))/(s/X).
The extraction part of the gapping proof proceeds as shown

below; s abbreviates “le salaire horaire” and f abbreviates “34,06
francs”.

s ⊢ np

z ⊢ □2((np\s)/np)
Hyp

〈z〉2 ⊢ (np\s)/np
□E

f ⊢ np

〈z〉2 ◦ f ⊢ np\s /E

s ◦ (〈z〉2 ◦ f) ⊢ s
\E

s ◦ (〈 f 〉l ◦2 z) ⊢ s
I2l

(s ◦r 〈 f 〉l) ◦2 z ⊢ s
MA2r

s ◦r 〈 f 〉l ⊢ s/2□2((np\s)/np)
/I1

We move the hypothetical □2((np\s)/np) out, but keep track of where
10More precisely, the instantiation of the schema we need is

((s/2□2((np\s)/np))\l(s/2((np\s)/◊0□0np)))/(s/◊1□1((np\s)/np))

with the ◊0□0np permitting right-node raising (associativity) as we have seen it
in Section B.1.

[259]

Richard Moot

we have used it: from the bottom, we started left of f (leaving l as a
unary branch there), then right (r).
Consequently, to get back from the top, we first go right (r) and

finally left (l), ending up between s and f as required: we can then
insert “atteint” of type (np\s)/np, removing the trail of l and r during
the process, as follows.11

(s ◦r 〈 f 〉l) ◦l (et . . .) ⊢ s/2((np\s)/np) a ⊢ (np\s)/np

((s ◦r 〈 f 〉l) ◦l (et . . .)) ◦2 a ⊢ s
/E

((s ◦r 〈 f 〉l) ◦2 a) ◦ (et . . .) ⊢ s
MC−1

2l

(s ◦ (〈 f 〉l ◦2 a)) ◦ (et . . .) ⊢ s
MA−1

2r

s ◦ (〈a〉2 ◦ f) ◦ (et . . .) ⊢ s
I−1
2l

B.5 Quoted speech
We need some special rules to treat past-perfect quoted speech, as
shown in sentence (14) below. The parenthesized sentence is argu-
ment of the past participle “ajouté” and, in addition, this argument is
discontinuous.
(13) [s

[s
L’indice
the index

composite
composite

(...) a
has
baissé
descended

de 0,3%
0.3%

en
in

novembre
November

],
],
a
has
annoncé
announced

mardi
Tuesday

31
31
décembre
December

le
the

département
Department

du
of
commerce.
Commerce.

‘The composite index fell 0.3% in November, announced the
Department of Commerce on Tuesday December 31st.’

(14) [sl
[sl
Les
the
conservateurs],
Conservatives],

a
has
ajouté
added

le
the
premier
Prime

ministre
Minister,

...,

[sr
[sr
“ne
“
sont
are

pas
not
des opportunistes
opportunists

qui
who

virevoltent
flip-flop

d’une
from one

politique
policy

à
to
l’autre
another

]
]

The solution is essentially to analyse the entire verb groupmissing
the s argument “a ajouté np” as smain\3smain, the structural rules the

11The −1 as superscript to the rule names, e.g. in I−1
2l , indicates that we apply

the structural rules from in situ binding section of Table 4 in the “inverse” sense,
i.e. bottom-up.

[260]

A type-logical treebank for French

allow this entire group to move to the required position in the final
string.
To illustrate this basic idea, we show how the structural rules

for quoted speech allow us to derive “a ajouté np” (for some np)
as smain\3smain.

a
(s/np)/(np\sppart)

Lex
x ⊢ s

Hyp ajouté
s\3(np\sppart)

Lex
x ◦3 ajouté ⊢ np\sppart

\E
a ◦ (x ◦3 ajouté) ⊢ s/np

/E
np ⊢ np

(a ◦ (x ◦3 ajouté)) ◦ np ⊢ s
/E

(x ◦3 (a ◦ ajouté)) ◦ np ⊢ s
MC3

x ◦3 ((a ◦ ajouté) ◦ np) ⊢ s
MA3

(a ◦ ajouté) ◦ np ⊢ s\3s
\I

references
Anne Abeillé, Lionel Clément, and Alexandra Kinyon (2000), Building a
treebank for French, in Proceedings of the Second International Language
Resources and Evaluation Conference, pp. 87–94, Athens.
Abhishek Arun and Frank Keller (2005), Lexicalization in crosslinguistic
probabilistic parsing: the case of French, in Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL 2005), pp. 306–313,
Ann Arbor, Michigan.
Srinivas Bangalore and Aravind Joshi (2011), Supertagging: Using Complex
Lexical Descriptions in Natural Language Processing, MIT Press, Cambridge,
Massachusetts.
Raffaella Bernardi and Richard Moot (2003), Generalized quantifiers in
declarative and interrogative sentences, Logic Journal of the IGPL,
11(4):419–434.
André Bittar (2010), Building a TimeBank for French: A Reference Corpus
Annotated According to the ISO-TimeML Standard, Ph.D. thesis, Université Paris
Diderot.
Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Julia
Hockenmaier (2004), Wide-coverage semantic representation from a CCG
parser, in Proceedings of the 20th International Conference on Computational
Linguistics (COLING-2004), pp. 1240–1246, Geneva.
Johan Bos, James R. Curran, and Edoardo Guzzetti (2007), The Pronto QA
system at TREC-2007: harvesting hyponyms, using nominalisation patterns, and
computing answer cardinality, in E. M. Voorhees and L. P. Buckland,

[261]

Richard Moot

editors, The Sixteenth Text REtrieval Conference, TREC 2007, pp. 726–732,
Gaitersburg, Maryland.
Johan Bos and Katja Markert (2005), Recognising textual entailment with
logical inference, in Proceedings of the 2005 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2005), pp. 628–635.
Wojciech Buszkowski and Gerald Penn (1990), Categorial grammars
determined from linguistic data by unification, Studia Logica, 49:431–454.
Marie Candito, Benoît Crabbé, Pascal Denis, and François Guérin (2009),
Analyse syntaxique du français : des constituants aux dépendances, in
Proceedings of Traitement Automatique des Langues Naturelles (TALN), Senlis.
Marie Candito and Djamé Seddah (2012), Le corpus Sequoia : annotation
syntaxique et exploitation pour l’adaptation d’analyseur par pont lexical, in
Proceedings of Traitement Automatique des Langues Naturelles (TALN),
pp. 321–334, Grenoble.
Bob Carpenter (1991), Categorial grammars, lexical rules and the English
predicative, in Robert Levine, editor, Formal Grammar: Theory and Practice,
number 2 in Vancouver Studies in Cognitive Science, pp. 168–242, University
of British Columbia Press, Vancouver.
Stephen Clark and James R. Curran (2004), Parsing the WSJ using CCG and
log-linear models, in Proceedings of the 42nd annual meeting of the Association for
Computational Linguistics (ACL-2004), pp. 104–111, Barcelona.
Stephen Clark and James R. Curran (2007), Wide-coverage efficient
statistical parsing with CCG and log-linear models, Computational Linguistics,
33(4):493–552.
Matthieu Constant, Isabelle Tellier, Denys Duchier, Yoann Dupont,
Anthony Sigogne, and Sylvie Billot (2011), Intégrer des connaissances
linguistiques dans un CRF : application à l’apprentissage d’un
segmenteur-étiqueteur du français, in Proceedings of Traitement Automatique des
Langues Naturelles (TALN), Montpellier.
Ane Dybro-Johansen (2004), Extraction Automatique de Grammaires à Partir
d’un Corpus Français, Master’s thesis, Université Paris 7.
Bruno Guillaume and Guy Perrier (2012), Semantic annotation of the
French Treebank with modular graph rewriting, in Proceedings of the Proceedings
of META-RESEARCH Workshop on Advanced Treebanking (LREC’12), pp. 14–21,
Istanbul.
Petra Hendriks (1995), Ellipsis and multimodal categorial type logic, in Glyn
Morrill and Richard T. Oehrle, editors, Proceedings of Formal Grammar
1995, pp. 107–122, Barcelona.
Julia Hockenmaier and Mark Steedman (2005), CCGbank: users’s manual,
Technical report, Department of Computer and Information Science, University
of Pennsylvania.

[262]

A type-logical treebank for French

Julia Hockenmaier and Mark Steedman (2007), CCGbank, a corpus of CCG
derivations and dependency structures extracted from the Penn Treebank,
Computational Linguistics, 33(3):355–396.
Joachim Lambek (1958), The mathematics of sentence structure, American
Mathematical Monthly, 65:154–170.
Anaïs Lefeuvre, Richard Moot, Christian Retoré, and Noémie-Fleur
Sandillon-Rezer (2012), Traitement automatique sur corpus de récits de
voyages pyrénéens : une analyse syntaxique, sémantique et temporelle, in
Proceedings of Traitement Automatique des Langues Naturelles (TALN), Grenoble.
Roger Levy and Galen Andrew (2006), Tregex and Tsurgeon: tools for
querying and manipulating tree data structures, in 5th International Conference
on Language Resources and Evaluation (LREC 2006), Genoa.
David M. Magerman (1994), Natural Language Parsing as Statistical Pattern
Recognition, Ph.D. thesis, University of Pennsylvania.
Michael Moortgat (1996), In situ binding: a modal analysis, in Paul Dekker
and Martin Stokhof, editors, Proceedings 10th Amsterdam Colloquium,
pp. 539–549, ILLC, Amsterdam.
Michael Moortgat (2011), Categorial type logics, in Johan van Benthem
and Alice ter Meulen, editors, Handbook of Logic and Language, chapter 2,
pp. 95–179, North-Holland Elsevier, Amsterdam.
Michael Moortgat and Richard Moot (2001), CGN to Grail: extracting a
type-logical lexicon from the CGN annotation, Language and Computers,
37(1):126–143.
Richard Moot (2010a), Automated extraction of type-logical supertags from
the Spoken Dutch Corpus, in Srinivas Bangalore and Aravind Joshi, editors,
Complexity of Lexical Descriptions and its Relevance to Natural Language
Processing: A Supertagging Approach, chapter 12, pp. 291–312, MIT Press,
Cambridge, Massachusetts.
Richard Moot (2010b), Semi-automated extraction of a wide-coverage
type-logical grammar for French, in Proceedings of Traitement Automatique des
Langues Naturelles (TALN), Montreal.
Richard Moot (2012), Wide-coverage semantics for spatio-temporal reasoning,
Traitement Automatique des Languages, 53(2):115–142.
Richard Moot (2014), Extended Lambek calculi and first-order linear logic, in
Claudia Casadio, Bob Coecke, Michael Moortgat, and Philip Scott,
editors, Categories and Types in Logic, Language, and Physics: Essays dedicated to
Jim Lambek on the Occasion of this 90th Birthday, number 8222 in Lecture Notes
in Artificial Intelligence, pp. 297–330, Springer, Heidelberg.
Richard Moot and Mario Piazza (2001), Linguistic applications of first order
multiplicative linear logic, Journal of Logic, Language and Information,
10(2):211–232.

[263]

Richard Moot

Richard Moot and Christian Retoré (2006), Les indices pronominaux du
français dans les grammaires catégorielles, Lingvisticae Investigationes,
29(1):137–146.
Richard Moot and Christian Retoré (2012), The Logic of Categorial Grammars:
A Deductive Account of Natural Language Syntax and Semantics, number 6850 in
Lecture Notes in Artificial Intelligence, Springer, Heidelberg.
Glyn Morrill (1994), Type Logical Grammar, Kluwer Academic Publishers,
Dordrecht.
Glyn Morrill (2011), Categorial Grammar: Logical Syntax, Semantics, and
Processing, Oxford University Press, Oxford.
Glyn Morrill, Oriol Valentín, and Mario Fadda (2011), The Displacement
calculus, Journal of Logic, Language and Information, 20(1):1–48.
Van Tien Nguyen (2012), Méthode d’Extraction d’Informations Géographiques à
des fins d’Enrichissement d’une Ontologie de Domaine, Ph.D. thesis, Université de
Pau et des Pays de l’Adour.
Richard T. Oehrle (2011), Multi-modal type-logical grammar, in Robert
Borsley and Kersti Börjars, editors, Non-transformational Syntax: Formal and
Explicit Models of Grammar, chapter 6, pp. 225–267, Wiley-Blackwell.
Benoît Sagot (2010), The Lefff, a freely available and large-coverage
morphological and syntactic lexicon for French, in Proceedings of the Seventh
International Conference on Language Resources and Evaluation (LREC’10),
Valletta.
Noémie-Fleur Sandillon-Rezer (2013), Apprentissage de Grammaires
Catégorielles: Transducteurs d’Arbres et Clustering pour Induction de Grammaires
Catégorielles, Ph.D. thesis, Bordeaux University.
Natalie Schluter and Josef van Genabith (2008), Treebank-based
acquisition of LFG parsing resources for French, in Proceedings of the Sixth
International Language Resources and Evaluation (LREC’08), Marrakech.
Stuart Shieber, Yves Schabes, and Fernando Pereira (1995), Principles and
implementation of deductive parsing, Journal of Logic Programming,
24(1–2):3–36.
Willemijn Vermaat (2005), The Logic of Variation. A Cross-Linguistic Account of
wh-question Formation, Ph.D. thesis, Utrecht Institute of Linguistics OTS, Utrecht
University.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[264]

Frigram:
a French Interaction Grammar

Guy Perrier1 and Bruno Guillaume2
1LORIA, Université de Lorraine, Nancy, France

2LORIA, Inria Nancy Grand-Est

abstract
Keywords:
formal grammar,
model theoretic
syntax,
polarity,
Interaction
Grammar.

We present Frigram, a French grammar with a large coverage, writ-
ten in the formalism of Interaction Grammars. The originality of the
formalism lies in its system of polarities which expresses the resource
sensitivity of natural languages and which is used to guide syntactic
composition. We present the principles underlying grammar design,
highlight its modular architecture and show that the lexicon used is
independent of the grammar formalism. We also introduce the “com-
panion property”, and show that it helps to enforce grammar consis-
tency.

1 introduction

Following the seminal work initiated on Categorial Grammars (CG)
by Lambek (1958), many other grammatical formalisms were pro-
posed to describe the syntax of natural language. Apart from CG, the
most well-known ones are TAG (Joshi et al. 1975), LFG (Bresnan 2001)
and HPSG (Pollard and Sag 1994). These formalisms have several ad-
vantages. First, they allow for a detailed encoding of linguistic knowl-
edge. Second, they can be used to investigate formal properties of nat-
ural language or to study linguistic hypotheses by testing them on real
linguistic utterances. Third, grammars written using these formalisms
can be used in more complete systems where syntax modeling is re-
quired either within a parsing or a generation application.

Journal of Language Modelling Vol 3, No 1 (2015), pp. 265–316

Guy Perrier, Bruno Guillaume

All these formalisms use a finite set of elementary structures and
some mechanisms for composing these elementary structures to pro-
duce syntactic structures for larger utterances of a natural language.
A large coverage system based on these approaches necessarily re-
quires a huge number of elementary structures hence the develop-
ment and the maintenance of such systems is a challenge and requires
a lot of manual work. Among existing works to develop large cover-
age systems, mainly for English but also for some other languages, we
can cite the ParGram (Butt et al. 2002) project (for LFG), the DELPH-
IN (Oepen et al. 2002) project (for HPSG) and XTAG (XTAG Research
Group 2001) (for TAG).

We aim to conduct similar work within the framework of Inter-
action Grammars (IG), a formalism first introduced in Perrier (2000)
and presented in more detail in Guillaume and Perrier (2009). IG com-
bines a flexible view of grammars as constraint systems with the use of
a polarity system to control syntactic composition. This polarity sys-
tem expresses the saturation state of partial syntactic structures and
their ability to combine.

The present paper reports on the construction of a syntactic re-
source for the French language and shows that it is possible to build
a wide coverage IG grammar of French which encodes fine-grained
linguistic knowledge.

In this grammar (called Frigram), the syntax of French sentences
is described by dependency structures which contain the usual surface
syntactic dependencies but also by additional dependency relations
which contain the information needed to produce a deeper syntactic
analysis. These additional relations are: infinitival subjects, participial
subjects and pronoun antecedents that are syntactically predictable.

The main challenge is to guarantee and maintain the consistency
of the grammar while aiming for large coverage. To this end, we resort
to the following means:

• a modular organization of the grammar in a hierarchy of classes
which captures linguistic generalizations,

• well-formedness principles imposed on the elementary structures
of the grammar,

• a strict separation between grammar and lexicon with a lexicon
that is independent of the particular grammatical formalism used,

[266]

Frigram: a French Interaction Grammar

• the use of the companion property to help checking grammar con-
sistency.
The paper is structured as follows. We start with a brief presen-

tation of IG. We then go on to explain the different points just men-
tioned. We conclude with a comparison with other French grammars
and discussion about the evaluation of the grammar.

2 interaction grammars

IG is a grammatical formalism which describes the syntax of natural
language using two notions: tree description and polarity. For a com-
plete presentation of the formalism, the reader is referred to Guillaume
and Perrier (2009).
2.1 Parse trees
In IG, the syntax of sentences is modeled using constituency-based
parse trees. An example of such a parse tree for the sentence montrez-
le ! ‘show it!’ is given in Figure 1.1 Parse trees are totally ordered
trees. Each node represents a constituent and carries a feature struc-
ture which encodes morpho-syntactic properties. All features in parse
trees are written with the ‘:’ symbol like in [f :v] in contrast with
features in tree description that are written with other symbols (see
below). Leaves of parse trees can be either anchors carrying lexical
units (nodes 〈1.2.1〉, 〈1.2.2.1〉, and 〈2.1〉) or empty nodes (〈1.1〉 and
〈1.3〉).

Empty nodes represent constituents that are not directly real-
ized in the syntax. In Frigram, empty nodes are used in several
ways. The empty node 〈1.1〉 is an example of an argument which is
not syntactically realized (feature [empty_type :arg]). This is the
case for infinitival and imperative subjects, as well as for some in-
finitival objects (tough movement). In Figure 1, the node 〈1.1〉 repre-
sents the non-expressed subject of the imperative verb montrez. The
empty node 〈1.3〉 is an example of a trace of an argument which
is moved from its canonical position, this trace is marked (feature
[empty_type :track]). In Figure 1, the node 〈1.3〉 is the trace of

1We suppose that the hyphen in montrez-le ! is removed at the tokenization
stage.

[267]

Guy Perrier, Bruno Guillaume
Figure 1:
Parse tree

representing
the syntax of
the sentence
montrez-le ! �1�

cat : s

funct : head

�1.2�

cat : v

funct : head

�1.1�

cat : np

empty_type : arg

funct : subj

�1.3�

cat : np

empty_type : track

funct : obj

ref : [1]

�2�

cat : punct

funct : punct

�1.2.1�

montrez

cat : v

funct : head

�1.2.2�

cat : pro

funct : void

ref : [1]

�2.1�

!

cat : punct

funct : head

�1.2.2.1�

le

cat : pro

funct : head

�0�

cat : s

funct : void

the object clitic pronoun le;2 the link between the pronoun and the
extracted position is encoded by feature sharing: both constituents
contain the feature [ref :[1]]. This mechanism is used in all cases of
extraction, subject inversion, and cliticization of arguments.
2.2 Tree descriptions
To produce the parse trees described above, IG relies on a model theo-
retic syntax approach of natural languages (Pullum and Scholz 2001).
Parse trees are defined as models of a more general notion of tree de-
scription (introduced by Rogers and Vijay-Shanker 1994). In this view,
the basic objects of the grammar are not trees but properties that are
used to describe them, in other words, tree descriptions. This approach
is flexible and allows expressing elementary properties in independent
ways and combining them freely. A tree description can be viewed ei-

2For consistency, all clitics are treated as moved arguments even if, as in the
short sentence montrez-le !, the clitic le seems to be in a canonical place.

[268]

Frigram: a French Interaction Grammar

V.nS

cat → s

funct ← head

V.nVmax

cat ↔ v

funct ↔ head

V.nSubj

cat ↔ np

empty_type = arg

funct ↔ subj

V.nCompl

cat ← np

funct → obj

V.nVanch

montrez

cat ↔ v

funct ↔ head

C.nS

cat ~ ap|s

funct ~ ?

C.nVmax

cat ~ v

C.nObj

cat → np|n|cs|ap|s

empty_type = track

funct ← obj|subjpred

ref = [1] ?

C.nVclit

cat ~ v

C.nClit

cat ↔ pro

funct ↔ void

ref = [1] ?

C.nClit0

le

cat ↔ pro

funct ↔ head

P.nPunct

cat ↔ punct

funct ↔ punct

P.nPunctSign

!

cat ↔ punct

funct ↔ head

P.nS

cat ↔ s

funct ↔ void

P.nS0

cat ← s

funct → head

Figure 2: Polarized tree description associated with the sentence montrez-le ! by
the grammar Frigram.

ther as an underspecified tree, or as the specification of a tree family,
each tree being a model of this specification.

Figure 2 gives an example of a tree description3 which is asso-
ciated with the sentence montrez-le !. This description is composed of
three connected components associated with the three lexical units
montrez, le, and ! occurring in that sentence.

Formally, a tree description is a finite set of nodes structured by
two kinds of relations: dominance and precedence. Dominance relations
can be immediate or underspecified. In the example, there are only im-
mediate dominance relations represented with solid lines. Precedence
relations can also be immediate or underspecified. They are repre-
sented with arrows; these arrows are solid and black (for immediate
precedence) or dashed and green (for underspecified precedence).

Nodes are labeled with features describing their morpho-syntactic
properties whereby a feature value is either an atom (like in a parse
tree) or a disjunction of atoms. When a feature value is the disjunc-
tion of all elements of a domain, this value is denoted with ”?”.

3Note that the figures are simplified and only display a part of the full feature
structures.

[269]

Guy Perrier, Bruno Guillaume

A co-indexation mechanism between feature values is also available
at the description tree level (a common index [n] is put before their
values). For instance, the ref feature of node C.nObj shares its value
with the ref feature of node C.nClit meaning that both constituents
refer to the same semantic entity.
2.3 Polarities
Polarities are used in tree descriptions to describe the saturation state
of incomplete syntactic trees. The set of features is partitioned into two
subsets: the set of resource sensitive features and the set of neutral fea-
tures. Neutral features are written as [f=v]. For instance, agreement
properties are expressed with neutral features.

Polarities are attached to resource sensitive features that label
description nodes. Given a feature name f and a feature value v (which
may be either an atomic value or a disjunction of atomic values), the
four kinds of polarized features and their meanings are:

• a positive feature [f→v] expresses an available resource which
must be consumed;

• a negative feature [f←v] expresses an expected resource which
must be provided; it is the dual of a positive feature; one negative
feature must match exactly one corresponding positive feature to
be saturated and conversely;

• a saturated feature [f↔v] expresses a linguistic property that
needs no combination to be saturated;

• a virtual feature [f∼v] expresses a linguistic property that needs
to be realized by combining with either a saturated feature or a
pair of a negative and positive features.

In Figure 2, node V.nCompl carries a negative [cat←np] and positive
feature [funct→obj], which represents the expected object noun
phrase for the transitive verb montrez.

The virtual features in the three nodes C.nVclit, C.nVmax, and C.nS
of the second connected component in Figure 2 represent the syntac-
tic context required by the clitic pronoun le, namely, a verb C.nVclit
occurring immediately before the pronoun to build the node C.nVmax
with it.

The descriptions labeled with polarized features are called polar-
ized tree descriptions (PTDs) in the rest of the article.

[270]

Frigram: a French Interaction Grammar

2.4 Grammars as constraint systems
An interaction grammar is defined by a finite set of PTDs, named El-
ementary PTDs (EPTDs) and generates a tree language. A parse tree
(as defined in Section 2.1) belongs to the language if it is a model of a
finite list of EPTDs in the sense given in Guillaume and Perrier (2009).
Each node of the list of EPTDs is mapped to a node of the tree model
through an interpretation function. When two nodes of EPTDs have
the same image by the interpretation function, we say that they are
merged. We also say that the features labeling these nodes are merged.
Models can be saturated and/or minimal:

• A tree model is saturated if every positive feature [f→v] is
merged with a dual feature [f←v] (and vice versa) and if every
virtual feature is merged with either a saturated feature or a pair
of a positive and a negative feature. Merging a positive (resp.
negative) polarity with a saturated polarity or with another posi-
tive (resp. negative) polarity is forbidden. There is no saturation
constraint on neutral features.

• A tree model is minimal if a minimum of information is added
to the input EPTDs (no node, immediate dominance relation or
feature that does not exist in the initial descriptions is added).
Parsing a sentence with a grammar G consists first of all in select-

ing an appropriate list of EPTDs from G. This selection step is easier
if G is lexicalized. In that case, each EPTD has an anchor associated
with a lexical unit of the language. This strongly reduces the search
space for the EPTDs.

Then, the parsing process itself reduces to the resolution of a con-
straint system. It consists in building all models of the selected lists of
EPTDs that respect the linear order of the words in the input sentence.

Figure 2 represented one of the possible selections of EPTDs from
Frigram for the sentence montrez-le !. The selection includes three
EPTDs4 which are considered as one single PTD with three connected
components. Figure 3 shows the unique minimal and saturated model
of the PTD. The parse tree of Figure 3 is the same as the one of Figure 1

4The three EPTDs are identified by a short name: in the order of their ap-
pearance in the sentence, V for the verb, C for the clitic pronoun, P for the punc-
tuation. Nodes are then named with a prefixed notation like C.nS.

[271]

Guy Perrier, Bruno Guillaume
Figure 3:

Tree model of
the PTD shown

in Figure 2
representing
the syntax of
the sentence
montrez-le !

P.nS0�C.nS�V.nS

cat : s

funct : head

C.nVmax�V.nVmax

cat : v

funct : head

V.nSubj

cat : np

empty_type : arg

funct : subj

C.nObj�V.nCompl

cat : np

empty_type : track

funct : obj

P.nPunct

cat : punct

funct : punct

C.nVclit�V.nVanch

montrez

cat : v

funct : head

C.nClit

cat : pro

funct : void

P.nPunctSign

!

cat : punct

funct : head

C.nClit0

le

cat : pro

funct : head

P.nS

cat : s

funct : void

but with information about the interpretation function used to build
the model: the set of nodes of the PTD of Figure 2 that are interpreted
in the given node of the model is given in the first line of each node.
For instance, the anchor montrez is the interpretation of the two nodes
C.nVclit and V.nVanch of the PTD of Figure 2.

It can be checked that all features in the model are saturated. For
instance, the feature cat of the node P.nS0/C.nS/V.nS is saturated be-
cause the feature [cat→s] of node V.nS is merged with the negative
feature [cat←s] of node P.nS0 and the virtual feature [cat∼ap|s]
of node G.nS is merged with the feature [cat→s] of node V.nS.

Other kinds on constraints are possible in PTDs. A node can be
declared as empty (graphically represented with a white background,
like nodes V.nSubj and C.nObj in Figure 2). It is then required that
the image has an empty phonological projection, i.e., all leaves of the
corresponding subtree are empty nodes. A node can be declared as
full (graphically represented with a yellow background, like nodes
V.nS and C.nS in Figure 2); it is then required that the image has a
nonempty phonological projection: there is at least one anchor node

[272]

Frigram: a French Interaction Grammar

in the corresponding subtree in the model. Finally, a node can be de-
clared to be closed (represented with a double rectangle, like nodes
C.nObj and P.PunctSign) meaning that the set of its daughters is fixed.
In the model, the node cannot have daughters that are not already
present in the PTD.
2.5 Parsing as a process of node merging controlled by polarities
In an operational view of parsing, the building of a saturated and min-
imal model is performed step by step by refining the initial PTD with
a merging operation between nodes, guided by one of the following
constraints:

• neutralize a positive feature with a negative feature having the
same name and carrying a value unifiable with the value of the
positive feature;

• realize a virtual feature by combining it with a positive or satu-
rated feature having the same name and carrying a value unifiable
with the value of that virtual feature.

The constraints of the description interact with node merging to entail
a partial superposition of their contexts represented by the tree frag-
ments in which they occur. Let us illustrate this phenomenon with the
parsing of the sentence montrez-le !, starting from PTD of Figure 2.

First, we try to saturate the virtual feature [cat∼v] of the
C.nVclit node by merging it with the V.nVanch node. The final tar-
get model is a tree and thus, every node has one mother node at most.
As a consequence, in the PTD, merging propagates to the ancestors
of the two nodes C.nVclit and V.nVanch: nodes C.nVmax and V.nVmax
and again propagates to nodes C.nS and V.nS. Figure 4 shows the
resulting PTD.

In a second step, nodes V.nCompl and C.nObj are merged to sat-
urate their polarities [cat←np] and [cat→np|n|cs|ap|s] respec-
tively. Figure 5 shows the PTD resulting from this second merging.

In a last step, the root of the left tree and the P.nS0 node of the
right tree merge to build a unique tree in which all polarities are satu-
rated. There remains a precedence relation which is not fully specified.
Specifying it leads to the model shown in Figure 3.

Unlike in LFG or HPSG, in IG, feature structures are not recursive
(feature values are atomic). This restriction is partly balanced by the

[273]

Guy Perrier, Bruno Guillaume

C.nS�V.nS

cat → s

funct ← head

C.nVmax�V.nVmax

cat ↔ v

funct ↔ head

V.nSubj

cat ↔ np

empty_type = arg

funct ↔ subj

V.nCompl

cat ← np

funct → obj

C.nObj

cat → np|n|cs|ap|s

empty_type = track

funct ← obj|subjpred

ref = [1] ?

C.nVclit�V.nVanch

montrez

cat ↔ v

funct ↔ head

C.nClit

cat ↔ pro

funct ↔ void

ref = [1] ?

C.nClit0

le

cat ↔ pro

funct ↔ head

P.nPunct

cat ↔ punct

funct ↔ punct

P.nPunctSign

!

cat ↔ punct

funct ↔ head

P.nS

cat ↔ s

funct ↔ void

P.nS0

cat ← s

funct → head

Figure 4: PTD after a first merging step in the parsing of the sentence montrez-le !

C.nS�V.nS

cat → s

funct ← head

C.nVmax�V.nVmax

cat ↔ v

funct ↔ head

V.nSubj

cat ↔ np

empty_type = arg

funct ↔ subj

C.nObj�V.nCompl

cat ↔ np

empty_type = track

funct ↔ obj

ref = [1] ?

C.nVclit�V.nVanch

montrez

cat ↔ v

funct ↔ head

C.nClit

cat ↔ pro

funct ↔ void

ref = [1] ?

C.nClit0

le

cat ↔ pro

funct ↔ head

P.nPunct

cat ↔ punct

funct ↔ punct

P.nPunctSign

!

cat ↔ punct

funct ↔ head

P.nS

cat ↔ s

funct ↔ void

P.nS0

cat ← s

funct → head

Figure 5: PTD after a second merging step in the parsing of the sentence montrez-
le !

[274]

Frigram: a French Interaction Grammar

ability of IG to superpose tree structures. Using virtual polarities to
enforce superposition, one can, for instance, impose restriction on the
features of a subconstituent as is done by feature equations in LFG.

To summarize, IG combines the strong points of two families of
formalisms: the flexibility of Unification Grammars and the saturation
control of Categorial Grammars.

3 the principles
of the grammar frigram

The formalism of IG is very general and does not impose any linguis-
tic choice apart from the phrase structure tree representation of the
syntax of sentences. When specifying a grammar, however, a number
of linguistic decisions must be taken such as, for instance, how the
notion of a constituent head should be defined and whether VP con-
stituents should be used or not. In Frigram parse trees, each node is
a constituent linked to a leaf (either an anchor or an empty node) of
its subtree called its head.

These choices are reflected in the EPTDs of the grammar through
principles. In this section, we present the principles used in the de-
sign of Frigram. These principles are not specific to the French lan-
guage, however, and can be used or easily adapted to other languages.
Frigram, like other grammars with a large coverage, is a large re-
source and maintaining its consistency is a challenge. The principles
facilitate the checking of this consistency. Principles are also heavily
used in the conversion from constituent based parse trees to depen-
dency trees discussed in the next section.

The first decision remains the feature domain: the choice of the set
of feature names and of the possible feature values for each feature
name. In Frigram, cat is a resource sensitive feature used to encode
the category of a constituent.
Principle 1 (cat). In an EPTD, every node has a cat feature.

This feature is used to make a partition on the set of description
nodes into two sets: concrete and abstract nodes.
Definition 1. A node with a positive or saturated cat feature is called a
concrete node. A node with a virtual or negative cat feature is called an
abstract node.

[275]

Guy Perrier, Bruno Guillaume

Another resource sensitive feature called funct is used to encode
information about lexical heads and grammatical functions.
Principle 2 (funct). In an EPTD, every concrete node has a funct fea-
ture.

For lexical head nodes, the special head value is used for feature
funct. For other nodes, the value of the funct feature (subj, obj, …)
encodes the syntactic function of the constituent. There are exceptions
(main sentences, moved constituents5) and for these exceptions, the
funct feature carries the special value void.
Corollary 1. From these first two principles, we can infer that:
1. each node in a parse tree has a cat feature;
2. each node in a parse tree is the image of exactly one concrete node of

the starting PTD;
3. each node in a parse tree has a funct feature.

Proof. Point 1 follows from the minimality of models: each model
node is the image of at least one description node. Point 2 is a conse-
quence of the polarity composition rule: a model node N is either the
image of a node with a positive cat feature, a node with a negative
cat feature, and any number of nodes with a virtual cat feature or
the image of a node with a saturated cat feature and any number of
nodes with a virtual cat feature; in the first (resp. second) case, the
node with the positive (resp. saturated) cat feature is the only con-
crete node whose image is the given node N . Point 3 naturally follows
from the previous principle and Principle 2.

The third principle does not refer to linguistic properties but
rather to a particular way of attaching linguistic phenomena to words.
Principle 3 (strict lexicalization). Every EPTD has exactly one anchor
node. This anchor node has a saturated cat feature with an atomic feature
value.

The lexicalization of the grammar is mainly motivated by imple-
mentation aspects. Parsing with a lexicalized grammar is guided by

5 In this case, there are traces of the moved constituents and these traces carry
the funct feature expressing the syntactic function of the constituent.

[276]

Frigram: a French Interaction Grammar

the set of lexical units in the input sentences. In IG, as in the TAG
formalism, the drawback is that each element of the final tree must
be linked to one of the words of the sentence. However, in the case
of IG, this is less problematic because of the superposition mechanism
which makes it possible to freely split contributions to the final tree
among several lexical units.

The last principle relies on the linguistic notions of head and pro-
jection which are required to define the concept of spine.
Definition 2. A spine in an EPTD is a list of nodes N1, N2, . . . , Np such
that:

• for all i such that 1< i ≤ p, node Ni is a daughter node of Ni−1;
• for all i such that 1< i ≤ p, node Ni has a saturated feature cat and
a feature [funct↔head];

• node N1 is a concrete node and its feature funct has a value different
from head; it is called the maximal projection of all nodes belonging
to the spine;

• node Np is either an anchor or an empty leaf; in the first case, the
spine is called a main spine; in the second case, it is called an empty
spine; in both cases, node Np is called the lexical head of all nodes
belonging to the spine.

Principle 4 (spine). Every concrete node of an EPTD belongs to exactly
one spine.

This principle means that every concrete node in an EPTD belongs
to a continuous chain of concrete projections of a unique head leaf
which may be empty.
Corollary 2. From the strict lexicalization principle and the spine principle
we can deduce the following facts:
1. every EPTD has exactly one main spine;
2. every node N of a tree model has exactly one lexical head in this

model, denoted head(N) and defined as follows: the concrete an-
tecedent N j of N in the initial PTD belongs to exactly one spine
N1, N2, . . . , Np and head(N) is the interpretation in the model of the
leaf Np ending that spine;

3. every node N in a tree model which is not a leaf has exactly one
daughter node with the feature [funct :head] (recursively by fol-

[277]

Guy Perrier, Bruno Guillaume

lowing all nodes with feature [funct :head], we have an equivalent
way of finding the lexical head head(N) of every node in the model);

4. each EPTD node with a positive feature cat is the maximal projection
of some spine.

Proof. Points 1, 2, and 4 are obvious from definitions and principles.
Point 3: N has at least one daughter with the feature [funct :head]
because its concrete antecedent is on some spine and so it has a daugh-
ter node with [funct :head]; N has at most one such daughter: by
contradiction, suppose that there are two such daughters M and M ′,
then the concrete antecedents Ni of M and N ′j of M ′ are on two spines
N1, N2, . . . , Np and N ′1, N ′2, . . . , N ′q; hence N is the image of Ni−1 and
N ′j−1 which are two concrete nodes but two concrete nodes cannot be
merged.

To illustrate the concept of a spine, let us consider the EPTDs
of Figure 2. The EPTD associated with the verb montrez has two
spines: the main spine V.nS, V.nVmax, V.nVanch with its lexical head
V.nVanch, and an empty spine reduced to a single node V.nSubj. In
the EPTD associated with the clitic le, there are two spines: the main
spine C.nClit, C.nClit0, and an empty spine reduced to node C.nObj.

4 the transformation of phrase structure
syntax into dependency syntax

The IG formalism is based on the constituency approach to syntax,
as opposed to the dependency approach but the principles introduced
in the previous section allow for an automatic transformation of IG
constituency parses into dependency structures.

There is a large literature about this kind of transformation (see
for example Choi and Palmer 2010). Some of the difficult aspects of
this transformation include (i) deciding, for each node of the con-
stituency tree, which of its daughters is the linguistic head and (ii)
deciding, for each dependency edge, the grammatical function with
which it should be labeled.

In previous versions of Frigram, this transformation relied on
the trace of the parsing construction (in IG these traces are the record
of the polarities composition but this corresponds to the notion of

[278]

Frigram: a French Interaction Grammar

derivation tree in TAG). With the most recent version of Frigram,
it is not necessary to refer to the parsing construction and the two dif-
ficulties mentioned above were taken into account during the gram-
mar building. Thanks to the principles described above, constituency
trees contain systematic and precise information about heads of con-
stituents and about their grammatical functions. In consequence, there
is a canonical way to derive a dependency tree from the constituency
tree.

The transformation is done in two steps. In the first step, all leaves
of the model are items of the dependency structure and each node of
the constituency tree with a feature funct with a value f different
from head or void yields a dependency relation from the head of the
mother of the node label with f to its own head. Applied to Figure 1,
this gives:

• Node 〈1.1〉 produces a dependency relation labeled subj from the
head of its mother 〈1.2.1〉 to leaf 〈1.1〉;

• Node 〈1.3〉 produces a dependency relation labeled obj from the
head of its mother 〈1.2.1〉 to leaf 〈1.3〉;

• Node 〈2〉 produces a dependency relation labeled punct from the
head of its mother 〈1.2.1〉 to leaf 〈2.1〉.

A relation ANT is used to keep track of the link encoded by the ref
feature between an empty node and the extracted position.

In the second step, to produce more standard dependency struc-
tures devoid of ε, empty words are removed and their incident depen-
dencies are transferred to their full antecedent, when it exists. Figure 6
(right) shows the effect of empty node removal on the dependency
structure obtained above (left).

ε_a
np

montrez
v

le
pro

ε_t
np

!
punct

subj obj

punct

ANT

montrez
v

le
pro

!
punct

obj

punct Figure 6:
Dependency graphs
representing the syntax of
the sentence montrez-le !

The systematic usage of empty nodes to describe constructions
where some constituents are extracted allows for a uniform conversion
process. Even for some problematic cases that require non-projective
dependency representation like sentence (1), a projective structure is

[279]

Guy Perrier, Bruno Guillaume

produced in the first step and the non-projective one is obtained with
the second step (see Figure 7).
(1) Jean

Jean
en
of it

voit
sees

la
the

fin.
end

‘Jean sees the end of it.’

Figure 7:
Examples of

non-projective
dependency

structure

Jean
n

en
pro

voit
v

la
det

fin
n

ε_t
np

det modsubj

obj

ANT

Jean
n

en
pro

voit
v

la
det

fin
n

detsubj

obj

mod

In our very simple example, the resulting dependency graph re-
duces to a tree but in more complex sentences, the dependency graph
may contain nodes with several governors or even cycles. In Figure 8,
two other examples are given; the first one is a DAG (Tom décide de
venir ‘Tom decides to come’), the second one contains cycles (un livre
difficile à lire ‘a book which is difficult to read’).

Figure 8:
Examples of
dependency
structures

produced by
Frigram

Tom
n

décide
v

de
cpl

venir
v

subj obj obj_cpl

subj

un
det

livre
n

difficile
adj

à
prep

lire
v

det mod iobj obj_prep

subj

obj

As pointed out in Ivanova et al. (2012), different linguistic choice
bring incompatible structures. It is the case here, and the structure
given by Frigram requires further transformation to match a corpus
like Sequoia (Candito and Seddah 2012) for instance.

5 the architecture of the grammar

A lexicalized grammar for French with a large coverage necessarily
has an enormous size: the number of EPTDs in the grammar is the
product of the number of entries in the lexicon of inflected words by
the average of the number of ETPDs anchored by each inflected word.
Now, a lot of these EPTDs are only different at the morphological and
phonological level; to factorize these similarities, we use the notion
of EPTD template. An EPTD template is an EPTD whose anchor is not
attached to a particular word. A set of EPTD templates is called an
unanchored grammar.

[280]

Frigram: a French Interaction Grammar

The lexicalized grammar is then produced as a combination of
an unanchored grammar with a lexicon. Only the much smaller unan-
chored grammar is stored and the EPTDs are built on the fly during
the parsing process. In our case, the unanchored grammar considered
is called Frigram.

Another interest of dissociating the lexicon from the grammar is
that the lexicon may be written in a way that is totally independent
of the grammatical formalism, so that it is reusable with grammars in
other formalisms.

This independence of the lexicon with respect to the grammar is
also used by FRMG for the formalism of TAG (Villemonte De La Clerg-
erie 2010). It is an advantage with respect to systems in which the
lexicon depends more or less strictly on the formalism used for writ-
ing the grammar:

• in LKB (Copestake and Flickinger 2000), the lexicon is totally in-
tegrated in the typed feature system of the grammar;

• in DotCCG (Baldridge et al. 2007), the dependency of the lexicon
on the grammar is expressed through the notion of family; a lex-
ical entry is associated with a family, which is a set of syntactic
types having a linguistic unity;

• the same notion of family is used in XTAG (XTAG Research Group
2001) for TAG, but here, a family is a set of tree schemas.

5.1 The modular organisation of the grammar
It is unthinkable to manually build a grammar with about 4,000

EPTD templates, considering each one individually. Even if it were
possible, it would be intractable to maintain the consistency of such a
grammar.

Now, the EPTD templates of Frigram share a lot of fragments
and it is possible to organize the grammar as a class hierarchy. The
structuration of a grammar on the basis of a hierarchy is not new:
HPSG uses a hierarchy of typed feature structures via an inheritance
relation (Pollard and Sag 1994). Systems where built to help the de-
velopment of HPSG-based grammars: LKB (Copestake and Flickinger
2000) or TRALE.

IG uses the more generic tool XMG (Crabbé et al. 2013). XMG can
be used for various formalisms. It was already used for TAG (Crabbé

[281]

Guy Perrier, Bruno Guillaume
Figure 9:
Hierarchy

of classes used
to define the

NP0_V_NP1_PP2
class of transitive

verbs with
an indirect

complement

BasicVerb

ActiveInflectionVerb

InfiniteVerb FiniteVerb

ParticipialVerbOR

ImperativeVerb NonImperativeVerb

PastParticipialVerbPresentParticipialVerbActiveInflectionClauseVerb

OR

NonReflexiveActiveMorphology

ActiveMorphology

NP_Vactive

AND

NP_Vactive_NP

PredicateCompl

DirectObject

IndirectObject NominalDirectObject

NominalIndirectObject

AND

NP0_V_NP1_PP2

NP0_V_NP1

[282]

Frigram: a French Interaction Grammar

2005) and IG. XMG provides a language to define a grammar as a set
of classes. A class can be defined directly but also from other classes
by means of two composition operations: conjunction (represented as
diamond nodes labeled AND in Figure 9) and disjunction (represented
as diamond nodes labeled OR).

Each class is structured according to several dimensions. Frigram
uses two dimensions: the first one is the syntactic dimension, where
objects are EPTD templates, and the second one is the dimension of
the interface with the lexicon, where objects are feature structures.

Defining the conjunction of two classes requires a specification of
how the components are combined for each dimension: for the syn-
tactic dimension, PTD union is performed; for the dimension of the
interface with the lexicon, it is realized as unification between feature
structures.

The terminal classes of the hierarchy define the EPTD templates of
the grammar that are computed by the XMG compiler. Figure 9 gives
the example of a terminal class, the NP0_V_NP1_PP2 class of transitive
verbs with an indirect complement, with the hierarchy of classes used
to define it. The compiler accumulates the information given by all
classes from the top to the bottom of the hierarchy, taking into account
the two manners of composing classes. In this way, the compilation of
the NP0_V_NP1_PP2 class produces 40 EPTD templates.

For TAG, the compiler also produces tree descriptions, but these
are not polarized, and after the compiler, a solver generates the ele-
mentary trees that are models of tree descriptions.

The source grammar is the set of all classes. In our case, the cur-
rent source grammar frigramS is composed of 425 classes, including
175 terminal ones. The object grammar is the set of EPTD templates
produced by the compilation of the terminal classes. In our case, the
object grammar, frigramO, produced from frigramS, is composed
of 3,890 EPTD templates.6

Of course, some general classes can be used in several different
contexts. For instance, the classes related to complements of predica-
tive structures are used as subclasses for the classes related to adjec-
tives, nouns, and verbs requiring complements. For the sake of read-

6The grammar is systematically described in 280 pages of documenta-
tion (Perrier 2014).

[283]

Guy Perrier, Bruno Guillaume

ability, the set of classes is organized in a module hierarchy. Here is the
list of all modules in the alphabetic order, with the number of classes
by module between parentheses and a brief characterization of these
classes:

• adjective (16): adjectives,
• adverb (37): adverbs,
• complement (24): complements required by verbs, nouns, or
adjectives,

• complementizer (7): complementizers,7
• coordination (12): coordination,
• determiner (12): determiners, except interrogative determin-
ers,

• extractGramWord (18): extraction (from relative, interroga-
tive, and cleft clauses),

• interrogative (17): interrogative pronouns, adverbs, and de-
terminers,

• noun (21): common and proper nouns,
• preposition (13): prepositions,
• proclitic (26): clitic pronouns,
• pronoun (21): disjoint pronouns, except interrogative and rela-
tive pronouns,

• punctuation (24): punctuation marks,
• relative (11): relative pronouns,
• verb (72): different families of verbs according to their subcate-
gorization frame and specific verbs such as presentatives, modal
and causative verbs,

• verbImpersonalDiatheses (25): different diatheses, active,
passive and middle, with an impersonal subject,

• verbKernel (28): classes defining the common verbal kernel of
all verbs with the morphology and its interaction with the form
of the subject, the syntactic function of the verb, and its voice,

• verbPersonalDiatheses (40): different diatheses, active, pas-
sive, and middle, with a personal subject,

7The prepositions à and de introducing direct object infinitives are consid-
ered as complementizers, following Huot (1982).

[284]

Frigram: a French Interaction Grammar

����������

������ ��������� ����

����

��������������������� �����������������������

���������� ������������������

Figure 10: Hierarchy of modules grouping the classes of frigramS concerning
verbs, nouns, adjectives, and adverbs

���������������

�������������� ������������� ��������

Figure 11: Hierarchy of modules grouping the classes of frigramS concerning
extraction

• verbSubjectControl (1): control of subjects of infinitives by
arguments of the verb governing the infinitive.

The number of classes by module is not proportional to the number of
words the module pertains to but also depends on the number and the
complexity of the phenomena anchored by these words. For instance,
there are few clitic pronouns but they contribute to various syntactic
constructions.

Some classes of one module are defined from classes of another
module. We can represent this property with a graph where an edge
means that some classes of the target module are defined from classes
of the source module. Figure 10 shows these dependencies for the
modules concerning verbs, nouns, and adjectives.

Figure 11 shows these dependencies for the modules modeling
extraction from relative, interrogative, and cleft clauses. The modules

[285]

Guy Perrier, Bruno Guillaume

absent in Figure 10 and Figure 11 are isolated ones, without external
dependencies.

A natural question arises: since XMG can be used for various for-
malisms, TAG and IG in particular, is it possible to re-use a gram-
mar constructed in one formalism to build a new grammar in another
formalism? The problem is that the organization of a grammar con-
structed with XMG is very close to the formalism, especially to the
operation modeling syntactic composition. In TAG, this operation is
adjunction, so that grammatical information tends to be anchored at
verbs. In IG, this operation is merging of PTDs, which is more flexible,
so that it is possible to anchor information at grammatical words.
5.2 The link with a lexicon independent of the formalism
The full grammar is produced from frigramO and a lexicon. Each
EPTD template from frigramO is associated with a feature structure,
called its interface, which describes a syntactic frame corresponding
to lexical units able to anchor it. Lexicon entries are also described
through feature structures. The set of features used in the interfaces
differs from the one used in EPTDs because they do not play the same
role: they do not aim at describing syntactic structures but are used
for describing the morpho-syntactic properties of the words of the lan-
guage anchoring the EPTDs in a way independent of the formalism.

Figure 12 shows an EPTD generated by the NP0_V_NP1_PP2 class
with its interface above. The interface appears as a two-level feature
structure. Features at the first level give the constituents of the frame
associated with the EPTD. In our example, the head feature represents
the verb. The subj, obj, and iobj1 features respectively represent the
subject, the direct object and the indirect object of the verb.

The second level describes the properties of each constituent of
the frame. For instance, the value of the head feature is a feature struc-
ture describing some morpho-syntactic properties of the verb. Among
the features present in this structure, [impers :maybe|never] says
that the verb is either a verb that accepts a personal and impersonal
construction of its subject or a verb with only a personal construction.
The feature [pronominal :maybe|never] says that the verb may ac-
cept a reflexive object or it does not admit a reflexive clitic.

In the lexicon, the entries are pairs of an inflected word and fea-
ture structure. The feature structure has exactly the same format as

[286]

Frigram: a French Interaction Grammar

head =

aff : voidaff

aux : [1]?

cat : v

funct : void

impers : maybe|never

lemma : [2]?

mood : imp

num : [3]?

pers : [4]1|2

pronominal : [5]maybe|never

tense : [6]?

trans : true

verb_type : standard

iobj1 =

cat : np

funct : iobj

prep : [7]?

obj =
cat : np

funct : obj

subj =
cat : np

funct : subj

nS

cat → s

funct ← head

mood ↔ imp

sent_type → imper

tense = [6]?

voice = active

nVmax

aux ↔ [1]?

cat ↔ v

funct ↔ head

lemma ↔ [2]?

mood ↔ imp

num = [3]?

pers = [4]1|2

tense = [6]?

trans = true

verb_type = standard

nSubj

cat ↔ np

empty_type = arg

funct ↔ subj

num = [3]?

pers = [4]1|2

sem = full

nObj

cat ← np

funct → obj

nCompl

cat ← pp

funct → iobj

prep ← [7]?

nVanch

aux ↔ [1]?

cat ↔ v

funct ↔ head

lemma ↔ [2]?

mood ↔ imp

num = [3]?

pers = [4]1|2

pronominal = [5]maybe|never

tense = [6]?

verb_type = standard

nNp

cat ~ adv|np

funct ~ head|obj_prep

Figure 12: One of the EPTDs generated by the NP0_V_NP1_PP2 class

the interfaces of the grammar. For instance, Figure 13 shows a lexical
entry for the verb montrez used with a direct and indirect object, like
in the sentence montrez-le moi ! ‘show it to me!’.8

The anchoring of an EPTD template is performed by unifying its
interface with the entries of the lexicon. At the first level, interfaces
and lexical entries are viewed as closed structures: they unify if they
have exactly the same set of features. At the second level, they are
viewed as open structures: for a given feature of the first level, its
value in the interface unifies with its value in the lexicon entry in the
sense usually given to the operation of unification, which may entail
the addition of second level features to the interface not present ini-
tially. For instance, the interface of the EPTD template presented in

8The question mark after the name of feature iobj1 expresses that this fea-
ture is optional.

[287]

Guy Perrier, Bruno Guillaume
Figure 13:

Entry of the verb montrez
in the lexicon

head =

aff : voidaff

aux : avoir

cat : v

impers : never

lemma : «montrer»

mood : imp|ind

num : pl

passiv : total

pers : 2

pronominal : maybe

tense : pres

trans : true

iobj1? =
cat : np

prep : «dat»

obj = cat : np

subj = cat : np

Figure 12 succeeds in the unification with the lexical entry presented
in Figure 13. At the first level, they have exactly the same set of fea-
tures: head, iobj1, obj, and subj. At the second level, the values of
the first level features unify in a standard way.

Since there is a co-indexation between features of the EPTD tem-
plate and features of the interface, some feature values of the EPTD
may be instantiated during anchoring. Figure 14 shows the anchored
EPTD resulting from the unification between the interface of the EPTD
template from Figure 12 and the lexical entry from Figure 13. As a
side effect of anchoring the values of features aux, lemma, num, pers,
tense, and prep have been instantiated.

The lexicon used to anchor frigramO (called Frilex) com-
bines morphological information extracted from ABU9 and from Mor-
phalou (Romary et al. 2004) with syntactic information for verbs ex-
tracted from Dicovalence (Van den Eynde and Mertens 2003). Frilex
contains 530,000 entries. To avoid size explosion, the required EPTDs
of the grammar are built on the fly during parsing.

6 the companion property and
the consistency of the grammar

Our ambition is to build a large coverage grammar for French syn-
tax. Even if the hierarchical structure of the grammar makes it more
compact and facilitates maintenance, the size of the grammar may be

9http://abu.cnam.fr/DICO/mots-communs.html

[288]

Frigram: a French Interaction Grammar

head =

aff : voidaff

aux : [1]avoir

cat : v

funct : void

impers : never

lemma : [2]«montrer»

mood : imp

num : [3]pl

pers : [4]2

pronominal : [5]maybe

tense : [6]pres

trans : true

verb_type : standard

iobj1 =

cat : np

funct : iobj

prep : [7]«dat»

obj =
cat : np

funct : obj

subj =
cat : np

funct : subj

nS

cat → s

funct ← head

mood ↔ imp

sent_type → imper

tense = [6]pres

voice = active

nVmax

aux ↔ [1]avoir

cat ↔ v

funct ↔ head

lemma ↔ [2]«montrer»

mood ↔ imp

num = [3]pl

pers = [4]2

tense = [6]pres

trans = true

verb_type = standard

nSubj

cat ↔ np

empty_type = arg

funct ↔ subj

num = [3]pl

pers = [4]2

sem = full

nObj

cat ← np

funct → obj

nCompl

cat ← pp

funct → iobj

prep ← [7]«dat»

nVanch

montrez

aux ↔ [1]avoir

cat ↔ v

funct ↔ head

lemma ↔ [2]«montrer»

mood ↔ imp

num = [3]pl

pers = [4]2

pronominal = [5]maybe

tense = [6]pres

verb_type = standard

nNp

cat ~ adv|np

funct ~ head|obj_prep

Figure 14: Anchored EPTD for the verb montrez

important and global consistency is difficult to maintain. The problem
is that the different classes of the grammar source, even if they are not
linked in the hierarchy, are generally not independent because EPTDs
interact through the process of syntactic composition. For instance,
in the parsing of the sentence montrez-le !, the EPTD anchored by the
verb montrez interacts with the EPTD anchored by the clitic pronoun
le, though the corresponding classes in the source grammar are to-
tally independent. It is essential to check that this interaction works
correctly.

A standard way to check global consistency of the grammar is
to parse real sentences from test suites or corpora. However, the IG
formalism provides another mechanism, complementary to the pars-
ing of real sentences, to help checking the consistency of a grammar
in a static way based on the EPTDs of the grammar without using

[289]

Guy Perrier, Bruno Guillaume

parsing. This mechanism uses the Companion Property. Originally, this
property was introduced by Bonfante et al. (2009) to perform lexical
disambiguation with IG.

Let us consider an interaction grammar.
Definition 3. A companion of an unsaturated polarized feature in an
EPTD of the grammar is another polarized feature of an EPTD such that
the first feature is saturated by the second one: a merging of their respective
nodes leads to a consistent PTD.

A PTD is called consistent when it does not contain any unsatis-
fiable constraint; in other words, there exists some context in which
the PTD can produce a model.

For instance, consider the EPTD associated with the verb mon-
trez in Figure 2. A companion of the positive feature [funct→obj]
is the negative feature [funct←obj|subjpred] of the EPTD asso-
ciated with the clitic pronoun le. The notion of companion can be
expressed at the template level: if a template EPTD contains an un-
saturated polarized feature, it requires to be saturated by some other
complementary feature and we can search for companions (polarized
features in a template EPTD) that are able to saturate it. Thanks to the
medium size of frigramO, it is possible to exhaustively compute the
set of companions of all polarized features of the EPTDs templates of
grammar frigramO.

For instance, consider the EPTD template (noted E0) correspond-
ing to the EPTD anchored with montrez in Figure 2. It contains a posi-
tive feature [funct→obj]; scanning frigramO, we find 107 com-
panions. Moreover, for 95 companions (out of the 107), we know
that they necessarily are companions coming from EPTD templates
for which the anchor is on the right of the anchor of E0 after merging.
The remaining 12 cases do not imply any order constraint on anchors.

As already said, companions are used for lexical disambiguation:
when parsing a sentence, if an unsaturated feature of an EPTD E fails
to find a companion in the EPTDs of the other lexical units of the sen-
tence, E cannot be used in the parsing and so it can be removed. But
companions can also be useful to help grammar development. The first
diagnostic is when a polarized feature has an empty companion set:
this means that the corresponding EPTD cannot be used in any gram-
matical parse; in this case this EPTD can be removed from the grammar

[290]

Frigram: a French Interaction Grammar

or there is some mistake in its definition. Other kinds of observations
can be used by the expert: if a polarized feature has companions only
on the left or on the right, it can be checked whether this corresponds
to linguistic intuition. The full grammar contains 56,462 unsaturated
polarities waiting for a companion: 21.2% have companions only on
the right and 11.1% have companions only on the left.

During the Frigram development, many inconsistencies were
discovered using information about companion sets. In particular,
some verbs requiring complements were found to have no compan-
ion because of the incompatibility between features or polarities of
the expected complements and those of the EPTDs attached at the
potential complements. It greatly helped to correct more or less deep
defects and errors of Frigram.

7 coverage of the grammar

Frigram covers a lot of syntactic phenomena: the different verb
diatheses (active, passive, middle, causative, and impersonal diathe-
ses), raising and control verbs, different types of sentences (declar-
ative, interrogative, exclamative, imperative), extraction from inter-
rogative, relative, cleft and dislocated clauses, noun complement clitic
pronouns, quantifier pronouns, tough movement, coordination, and
others. Within the limits of this article, it is not possible to describe
all phenomena covered by Frigram in an exhaustive way, but the
reader can find a more complete information in the documentation of
Frigram (Perrier 2014).

In this section, we have chosen to present some of the most
complex syntactic phenomena in French: causative constructions,
negation, comparative, and consecutive constructions, extraction with
pied-piping. Some of these have been little studied, especially com-
parative and consecutive constructions.

The modeling of these phenomena is constrained on the one hand
by the formalism of IG and on the other hand by the rules of the
French grammar. For the latter, our guide is the grammar of Riegel
et al. (1999).

For every phenomenon, we compare the modeling in IG with the
modeling in other formalisms, but most publications presenting such
works are theoretical without any implementation and we know that

[291]

Guy Perrier, Bruno Guillaume

from a theoretical idea to its implementation in a grammar with a
large coverage there is a long way which may be fraught with pit-
falls (Bender 2008).
7.1 Causative constructions
In a causative construction, a causative verb (faire or laisser10 in
French) combines with an infinitive in the active voice. Here are ex-
amples illustrating this construction. For every sentence, the causative
auxiliary and the complement infinitive are in bold.
(2) Jean

Jean
le
it

fait
makes

remplir.
fill

‘Jean makes someone fill it.’
(3) Jean

Jean
fait
makes

se rencontrer
meet

les
the

ingénieurs
engineers

aujourd’hui.
today

‘Jean makes the engineers meet today.’
(4) Jean

Jean
s’
himself

est
has

fait
made

contrôler.
control

‘Jean has been controlled.’
(5) Que

That
Marie
Marie

mange
eats

beaucoup
a lot

la
her

fait
makes

dormir.
sleep

‘That Marie eats a lot makes her sleep.’
(6) Jean

Jean
fait
asks

prendre
to take

par
by

Marie
Marie

son
his

billet
ticket

de
of

train.
train

‘Jean asks Marie to take his train ticket.’
(7) Jean

Jean
fait
asks

balayer
to sweep

la
the

cour
yard

à
to

Marie.
Marie

‘Jean asks Marie to sweep the yard.’
All these sentences are parsed with Frigram. Sentence (2) illustrates
clitic climbing in causative constructions: the clitic pronoun le is the
direct object of remplir but it is attached at the causative verb fait.

Sentence (3) shows that clitic climbing is not performed if the
clitic is a reflexive pronoun, se in the example that refers to the object
les ingénieurs in the example.

However, in Sentence (4), the reflexive pronoun se refers to the
subject of the causative verb Jean, while being the object of contrôler.

10The verb laisser can be only partially considered as a causative verb (Abeillé
et al. 1997).

[292]

Frigram: a French Interaction Grammar

nS

cat → s

funct ← [2]objpred|obj_cpl|obj|mod_rel|mod_cleft|head

nVmax

cat ↔ v

funct ↔ head

verb_type = caus

nSubj

cat ← cs

cpl ← «de|que»

funct → subj

nCaus

cat ← s

funct → caus

nVanch

fait

cat ↔ v

funct ↔ head

verb_type = caus

nCausV

cat ~ v

funct ~ head

trans = false

nCausSubj

cat ~ np

empty_type = arg

funct ~ subj

ref = [[8]]?

nObj

cat ← np

funct → obj

ref = [[8]]?

Figure 15:
Anchored EPTD for the
verb fait used as a causative
verb with a specific object
representing the subject of
an intransitive caused verb

In this case, it climbs. Moreover, in this example, if the construction
is a causative from a syntactic point of view, it is not the case from
a semantic point of view, because Jean is not the causer of the action
contrôler.

Sentence (5) shows a sentence where the causer is a complete
clause: Que Marie mange beaucoup.

Sentences (6) and (7) illustrate the following rule: if the caused
verb is transitive, its subject is expressed as an agent complement or
indirect object.

In Frigram, causative verbs are considered as special full verbs,
as Figure 15 illustrates. The EPTD, shown in this figure, is attached at
the verb fait used as a causative verb, with an intransitive caused verb.
The caused verb is the head of an infinitive represented with the node
nCaus. A specific complement, representing the subject of the caused
verb introduced by the causative verb is considered a sub-constituent
of the infinitive clause headed by the caused verb. In the EPTD, it is
represented by the node nObj with the function object. A co-indexed
feature ref indicates that it refers to the same entity as the empty
subject of the infinitive represented by the node nCausSubj.

The question arises: why have we chosen to put this node nObj as
a sub-constituent of nCaus and not of nS? The reason is that it is possi-
ble to insert specific complements linked to the causative construction
between the caused verb and its own complements. Sentence (6) illus-
trates this problem: the agent complement par Marie, depending on the
causative construction, comes between the caused verb prendre and its

[293]

Guy Perrier, Bruno Guillaume

object son billet de train. As a consequence, it must be put in the same
constituent.

An alternative way of modeling causative constructions would be
to consider causative verbs as auxiliaries, like tense or passive auxil-
iaries. It would require adding a specific entry in the grammar for all
infinitives likely to take a causative auxiliary, which would increase
the size of the grammar and lexical ambiguity in parsing. Another
drawback comes from the flat representation that this entails. Let us
consider Sentence (3). If we consider fait as a usual auxiliary of the
verb rencontrer, node nS representing the whole sentence will have
two daughter nodes as sub-constituents with the same function ob-
ject: the own object of rencontrer, the clitic pronoun se, represented
by its trace, and a specific object, les ingénieurs, introduced by the
causative construction. Thus, if we want to attach every object at its
verb, we need additional information to knowwhich object is attached
at which verb. We have the same problems for dative complements:
in a flat structure, we can have two dative complements at the same
level, one that is attached at the causative verb and another one that
is attached at the infinitive.

Now, how to model constraints on clitic climbing, as they are
expressed in the previous examples? In order to limit the ambiguity
of the grammar, they are not attached at the causative verb but at
the clitic pronouns. Figure 16 shows an EPTD for a reflexive clitic
that is an object of the caused verb and that refers to the subject of
the causative verb. Such a clitic must climb to the causative verb,
as Sentence(4) illustrates. A node nConst represents the trace of this
object at the canonical object position in the clause nS0 headed by
the caused verb, contrôler in our example. The clitic se, represented
by the node nClit, is attached at the auxiliary est of the causative verb
fait, represented by the node nVclit. Finally, the feature [ref=[[8]]
?] indicates a co-reference with the subject Jean. There is another
lexical entry for se when it does not climb in a causative construction,
as Sentence (3) illustrates. For non-reflexive clitic pronouns, there is
only one lexical entry which forces climbing.

There are in-depth studies of French causative constructions in
two other formalisms, HPSG and LFG. In all studies, the discussion
is about the choice between the flat and the biclausal representation,
which relates to a linguistic choice: to see a causative verb as any

[294]

Frigram: a French Interaction Grammar

nS

cat ~ ap|s

nVmax

cat ~ v

nS0

cat ~ s

funct ~ caus

nSubj

funct ~ subj

ref = [[8]]?

nVclit

cat ~ v

nClit

cat ↔ pro

funct ↔ void

ref = [[8]]?

nConst

cat → np|n|cs|ap|s

empty_type = track

funct ← [2]obj

ref = [[8]]?

nClit0

se

cat ↔ pro

funct ↔ head

Figure 16:
Anchored EPTD for the
clitic pronoun se used as
an object of a caused verb
referring to the subject
of the causative verb

control verb or to see it as constituting a complex verb with its object
infinitive.

Abeillé et al. (1997) do not choose any of the options but dedicate
a specific representation to each case: the biclausal representation is
used when the causee is an object clitic and when there is no clitic
climbing; the flat representation is used in other cases. The two cases
are not completely disjunct, so that the two representations can be
used when the caused verb is intransitive and the causee is an object
clitic as in Sentence (5), whereas Frigram provides a unique parse
in this case. On the other hand, Abeillé et al. (1997) accept very rare
constructions which are rejected by Frigram. Here are examples il-
lustrating these cases.
(8) Jean

Jean
le
him

fait
makes

remplir
fill

la
the

citerne.
cistern

‘Jean makes him fill the cistern.’
(9) Jean

Jean
le
him

fait
makes

lui
him

téléphoner.
call

‘Jean makes him call him.’
In Sentence (8), the causee is an object clitic, though the caused verb
has a direct object. In Sentence (9), the clitic lui has not climbed. It is

[295]

Guy Perrier, Bruno Guillaume

possible to take these cases into account in Frigram, but the interest
is not obvious, because of the rarity of their occurrences.11

Both in Frigram and in the proposal of Abeillé et al. (1997),
not all the constraints on the cliticization of the arguments for the
causative verb and infinitive are taken into account. For instance, the
following ungrammatical sentence, taken from Yates (2002), is ac-
cepted.
(10)∗Pierre

Pierre
lui
him

a fait
made

téléphoner
call

Marie
Marie

‘Pierre made Marie call him.’
Yates (2002) uses the potentiality of LFG to represent the complex

constraints on cliticization in causative constructions illustrated by
Sentence (10). At the constituent level, the c-structure expresses a flat
representation, whereas at the functional level, the f-structure allows
a sharing between arguments of the infinitive and the causative verb.
He shows that his ideas can be transposed in HPSG.

To transpose them in IG would entail substantial changes in the
grammar. Putting the caused verb and its complement in a flat struc-
ture at the same level as the causative verb requires a specific entry in
the grammar for the caused verb. The usual entries for infinitives no
longer work because the mood of the clause is given by the causative
verb. This addition of a new entry must be repeated for all subcatego-
rization frames of infinitives at the active voice. This would increase
the size and ambiguity of the grammar.
7.2 Negation
In French, negation is most often expressed with the clitic ne paired
with a negative grammatical word which can be an adverb (pas,
guère. . .), a pronoun (personne, nul. . .), or a determiner (aucun. . .).
To name all these words in a unique manner, we use a non-standard
term, negative satellites, which expresses that the words must be paired
with ne. The following examples illustrate different cases of negative
satellites. The clitic ne and its satellites are in bold.
(11) Jean

Jean
ne mange

eats
pas
not

de pommes.
apples

‘Jean does not eat apples.’
11No occurrence of these constructions exists either in Sequoia or in the FTB.

[296]

Frigram: a French Interaction Grammar

(12) Marie
Marie

ne pense
think

connaître
to know

la
the

femme
wife

d’
of

aucun
any

ingénieur.
engineer

‘Marie thinks to know the wife of no engineer.’
(13) Jean

Jean
ne travaille

works
avec
with

l’
the

appui
support

de
of

personne.
nobody

‘Jean works with the support of nobody.’
(14) Jean

Jean
ne pense

thinks
pouvoir
to be able

travailler
to work

que
only

dans
in

sa
his

chambre.
room

‘Jean thinks to be able to work only in his room.’
The pairing of ne with one negative satellite is expressed in

Frigram with a polarized feature neg which is attached at the clause
constituting the scope of the negation. Particle ne provides the pos-
itive feature [neg→true] to neutralize the dual negative feature
[neg←true] given by the negative satellite.

Figure 17 shows the EPTD attached at the clitic ne on its left. The
node nS represents the sentence that is the scope of the negation. It
carries the positive feature [neg→true]. The particle ne appears as
a clitic put before the verb represented by the node nV. The maximal
projection of the clitic represented by the node nAdvmax cannot re-
ceive any modifiers, which is indicated by the fact that the node is
closed (double rectangle on the figure).

A difficulty comes from the fact that the negative satellite paired
with ne can be situated in a constituent that is embedded more or less
deeply in the clause that is the scope of the negation. This property
applies only to some satellites. In particular, it is true for aucun and
personne, as Sentences (12) and (13) show it. The satellites are situ-
ated in noun phrases: aucun ingénieur in Sentence (12) and personne in
Sentence (13). If these noun phrases are noun complements, as in the
examples, they can be embedded more or less deeply in a clause and,
moreover, this clause can itself be embedded in the clause that is the
scope of the negation.

That is the case for Sentence (12): from the satellite word aucun to
the scope of the negation, there is chain of constituents: a noun phrase
aucun ingénieur, a prepositional phrase d’aucun ingénieur, another noun
phrase la femme d’aucun ingénieur, and an infinitive connaître la femme
d’aucun ingénieur.

Figure 17 (on the right) shows the EPTD anchored by aucun and
used in the parsing of Sentence (12). In this EPTD, the node nS repre-

[297]

Guy Perrier, Bruno Guillaume
Figure 17:

EPTD attached
at the clitic ne
and an EPTD

attached at the
negative satellite

aucun

nAdv

ne

adv_type = neg

cat ↔ adv

funct ↔ head

lemma ↔ «ne»

nAdvmax

cat ↔ adv

funct ↔ mod

nV

cat ~ v

mood ~ [1]presp|inf|ind|imp|cond|subj

nConst

cat ~ v

mood ~ [1]presp|inf|ind|imp|cond|subj

nS

cat ~ ap|s

neg → true

nNp

cat ~ np

pers = 3

nN

cat ~ n

funct ~ head

nDetmax

cat → det

det_type = neg

funct ← det

nDet

aucun

cat ↔ det

det_type = neg

funct ↔ head

nCompl

cat ~ np|pp

 cat:np|pp

nS

cat ~ ap|s

neg ← true

nS1

cat ~ s

funct ~ obj|caus|obj_modal

nS0

cat ~ s

funct ~ obj|caus|obj_modal

cat : s
 funct : obj|obj_modal|caus

mood : inf

sents the clause that is the scope of the negation. It is labeled with the
negative feature [neg←true].

The node nS1 represents the immediate sub-constituent of nS that
is the clause including aucun. The clause nS0 that is the location of au-
cun can be embedded more or less deeply in nS1, which is expressed
with an underspecified dominance relation from nS1 to nS0. In Sen-
tence (12), the nodes nS0 and nS1 are merged and they represent the
clause connaître la femme d’aucun ingénieur.

[298]

Frigram: a French Interaction Grammar

The node nCompl represents the complement that is a sub-con-
stituent of nS0 and that is the location of aucun, la femme d’aucun
ingénieur in the example. The node nNp represents the noun phrase
that is the location of aucun, aucun ingénieur in the example. Another
underspecified dominance relation from nCompl to nNp expresses the
possibility for nNp to be embedded more or less deeply in nCompl.

Now, even if the location of a satellite word like aucun is relatively
free, it is not completely free. Here are examples of unacceptable sen-
tences in French.
(15)∗Jean

Jean
ne vient

is coming
parce qu’
because

il
he

connaît
knows

aucun
no

invité.
guest

‘Jean does not comes because he doesn’t knows any guest.’ (intended)
(16)∗Marie

Marie
ne pense

thinks
connaître
to know

une
a

fille
girl

qui
who

ait
has

aucun
no

défaut.
defect

‘Marie does not think that she knows a girl without any default.’ (intended)
Sentence (15) illustrates the fact that aucun cannot be located in-

side an adjunct clause depending on the clause including the particle
ne. In IG, such a constraint is expressed on underspecified dominance
relations with feature structures. In the EPTD on the right of Figure 17,
the following feature structure labels the underspecified dominance
relation from nS1 to nS0: {[cat :s], [funct :obj|obj_modal|caus],
[mood :inf]}. This feature structure means that each node of the
model that is between the nodes nS1 and nS0 must be labeled with
[cat :s], [mood :inf], and [funct :obj] or [funct :obj_modal]
or [funct :caus]. In other words, the clause where aucun is located
must be embedded in a sequence of infinitive clauses that are object
of transitive verbs, causative verbs, or modal auxiliaries.

Sentence (16) illustrates a constraint on another underspecified
dominance relation in the EPTD of Figure 17 on the right: from
nCompl to nNp. This relation is constrained by the feature structure
{[cat :np|pp]}. Such a constraint means that between nCompl and
nNp there may be only a sequence of noun or prepositional phrases.
This entails the failure of parsing Sentence (16). In this sentence, from
nNp to nCompl there is the following sequence of constituents: a noun
phrase aucun défaut, a relative clause, qui ait aucun défaut, and another
noun phrase, une femme qui ait aucun défaut. The second constituent of
this sequence violates the constraint on the underspecified dominance
relation from nCompl to nNp.

[299]

Guy Perrier, Bruno Guillaume

Sentences (13) and (14) show that personne and que behave in a
similar manner as aucun, which is modeled in Frigram with a similar
EPTD. For que, there is a difference: there is only one underspecified
dominance relation, between nS1 and nS0.

Another difficulty comes from the fact that one clitic ne can be
paired with several negative satellites, as Sentence (17) shows. In this
sentence, there are two satellite adverbs: pas and que.
(17) Jean

Jean
ne
does not

mange
eat

pas que
only

des pommes.
apples

‘Jean does not eat only apples.’
In the IG formalism, one positive feature [neg→true] must be

saturated by exactly one negative feature [neg←true]. Our solution
is to distinguish between the main and secondary satellite word. The
main satellite word brings the negative feature [neg←true] and the
secondary satellite word brings a virtual feature [neg∼true].

All negative satellites can play the role of main satellites. How
should the negative satellites that can also play the role of secondary
satellites be determined? We have chosen a pragmatic criterion: if a
negative satellite can occur simultaneously with a lot of other negative
satellites, we consider it a potential secondary satellite. It is not com-
pletely satisfactory because it ignores some cases. For instance, que
can co-occur with rien, guère, jamais, pas, plus, whereas pas can only
co-occur with que. As a consequence, que is considered a secondary
satellite, while pas is considered only a main satellite.

Regarding the specific studies about the formalization of the nega-
tion syntax in French, we propose to start the comparison with work
that is related to the study of the phenomenon from a strictly syntac-
tic point of view. Following Abeillé and Godard (1997), Kim and Sag
(2002) propose to model French and English negative adverbs in the
framework of HPSG. For French, they restrict the study to the adverbs
behaving as pas, that is with a very constrained position: guère, jamais,
plus. . . They do not consider que which has a more free position.

Their work focuses on the possible positions of the negative ad-
verb in the constituent tree of the sentence, according to the mood of
the head verb. They conclude that with non-finite verbs it is a pre-
verbal VP-adjunct, and with finite verbs it is taken as a postverbal
complement sister of the other complements in the VP. Ne pas put be-

[300]

Frigram: a French Interaction Grammar

fore an infinitive is considered a VP-modifier. Ne put before a finite
verb is considered an affix and a lexical rule transforms the lexical
entry of the finite verb into a negated entry where a slot for the nega-
tive adverb is added to the subcategorization frame of the verb. In this
way, the number of negation adverbs that it is possible to put after a
finite verb is controlled by the subcategorization frame.

In IG, the notion of a verb phrase does not exist, so that nega-
tive adverbs are considered verb modifiers. The constraints about the
linear order between the verb and negative adverb according to the
mood of the verb are expressed with two different EPTDs correspond-
ing to the two positions. For the preverbal position, the modeling of
the negative adverb as a verb modifier entails a small limitation: it
is not possible to reflect wide scope of ne pas over a conjunction of
coordination, as in the following example extracted from Abeillé and
Godard (1997).
(18) Paul

Paul
promettait
promised

de ne pas
not

lire
to read

le
the

journal
newspaper

ou
or

regarder
watch

la

télévision
television.
‘Paul promised not to read the newspaper or watch television.’
To take this phenomenon into account, it is sufficient to add a

unique EPTD anchored by ne pas which has the function of infinitive
modifier besides the EPTDs used for ne and pas with other moods.

In the restricted context chosen by Kim and Sag (2002), the de-
pendency between the clitic ne and the negative satellite is relatively
simple. Godard (2004) studies this dependency in depth in a general
context, where it is more complex. Moreover, she also considers the
semantic dimension: the satellite is considered as a quantifier and the
clitic ne marks the scope of this quantifier. She proposes a model of
the dependency in the framework of HPSG. This dependency is distant.
Whereas IG uses its system of polarities combined with the relation of
underspecified dominance to express distant dependencies, HPSG uses
the propagation of features in the syntactic tree from node to node.
7.3 Comparative and consecutive constructions
Some adverbs, while acting as modifiers, are correlated with conjunc-
tions or prepositions introducing a clause in a comparative or consec-

[301]

Guy Perrier, Bruno Guillaume

utive construction, as the following examples show. The adverbs and
their correlated grammatical words are in bold.
(19) Il

He
connaît
knows

les
the

parents
parents

de
of

trop
too many

d’élèves
students

pour
to

ne pas
not

venir.
come

‘He knows the parents of too many students to not come.’
(20) Jean

Jean
a
has

tellement
so much

travaillé
worked

qu’il
that he

peut
may

se reposer.
have a rest

‘Jean has worked so much that he may have a rest.’
(21) Le

The
paysage
landscape

est
is

plus
more

ensoleillé
sunny

qu’
than

il
it

ne l’ est
is

en
in

hiver.
winter

‘The landscape is more sunny than it is in winter.’
(22) Le

The
paysage
landscape

est
is

plus
more

ensoleillé
sunny

maintenant
now

qu’
than

en
in

hiver.
winter

‘The landscape is more sunny now than in winter.’
The first two examples illustrate the consecutive construction and the
last two illustrate the comparative construction. Like negation, the
two constructions use a correlation between two distant grammati-
cal words. This correlation was analyzed from a linguistic point of
view either in general French grammars (Grevisse and Goosse 2008;
Riegel et al. 1999), or in specific studies for the comparative construc-
tion (Fuchs et al. 2008), but, to our knowledge, there is no specific
study of their modeling in grammatical formalisms.

As for negation, the modeling in IG of the correlation between the
adverb and conjunction in both constructions uses the system of po-
larities. We propose to develop on how the comparative construction
of Sentence (22) is modeled within Frigram.

Figure 18 represents the EPTDs used for plus and que in the parsing
of Sentence (22). The correlation between the two words is expressed
with polarized features, here the features cat, funct, and sent_type
of the nodes nCompl0 and nCs.

In the EPTD of plus, the node nConst represents the word after its
modification by plus, plus ensoleillé in our example. The node nC rep-
resents the expression that is the scope of the construction; in our ex-
ample, it is the adjectival phrase plus ensoleillé maintenant qu’en hiver.

In the EPTD of que, the node nCs represents the clause comple-
mented by quewhich is an argument of the adverb triggering the com-
parison. The node nS represents the clause without its complemen-
tizer. In our example, as in most cases, the clause includes an ellipsis.

[302]

Frigram: a French Interaction Grammar

nC

cat ~ s|pp|n|ap|v

nCompl0

cat ← cs

cpl ← «que»

funct → arg

sent_type ← decl

nConst

cat ~ [1]adj|adv

nAdvmax

cat ↔ adv

funct ↔ mod

nAdv

plus

adv_type = stand

cat ↔ adv

funct ↔ head

lemma ↔ [2]«plus»

nS

cat ↔ s

funct ↔ obj_cpl

mood ↔ voidmood

sent_type ↔ decl

nVmax

cat ↔ v

empty_type = ellipsis

funct ↔ head

nC

cat ~ cs|pp

funct ~ mod

nCpl

cat ↔ cpl

funct ↔ head

lemma ↔ «que»

nCplAnch

que

cat ↔ cpl

funct ↔ head

lemma ↔ «que»

nCs

cat → cs

cpl → «que»

funct ← arg

mood ↔ voidmood

sent_type → decl

Figure 18: EPTDs anchored by plus and que for the parsing of Sentence (22)

It reduces to the prepositional phrase en hiver and the complete clause
would be il ne l’est en hiver. The elided verb is represented by the node
nVmax and the node nC represents the complement en hiver.

The modeling is similar for the other examples, except for Sen-
tence (19), where trop d’élèves is embedded in a constituent which is
not at the same level as the clause expressing the consequence pour
ne pas venir. In Frigram, it is expressed in the EPTD of trop with an
underspecified dominance relation from the constituent representing
the scope of the construction, the whole sentence in our example, to
the noun phrase determined by trop de, trop d’élèves (see Figure 19).
7.4 Extraction with pied-piping
All relative, cleft, and interrogative clauses with partial interrogation
give rise to extraction of constituents. These constituents are put at
the beginning of the clause from which they are extracted, and in our
approach an empty constituent remains at the initial place as a trace.

Extraction is one of the syntactic phenomena in French that are
the most difficult to formalize because it interacts with other phenom-
ena, especially subject inversion and pied-piping. In the limits of this
article we propose to focus on pied-piping.

[303]

Guy Perrier, Bruno Guillaume

nC

cat ~ ap|s

nCompl0

cat ← pp

funct → arg

prep ← «pour»

nArg

cat ~ np|pp

nConst

cat → np

funct ← [2]obj_prep|obj|subj

sem = full

nAdv

trop

adv_type = [1]stand

cat ↔ adv

funct ↔ head

lemma ↔ [3]«trop»

nAdvmax

cat ↔ adv

funct ↔ head

nCompl

cat ← pp

funct → iobj

prep ← «de»

nNp

cat ~ np

det_type = [4]voiddet

funct ~ head|obj_prep

nC

cat ~ pp|np|n|cs|ap|s

nPp

cat → pp

funct ← [1]arg|obj_cpl

prep → [3]«pour»

nCompl

cat ← s

funct → obj_prep

mood ~ [4]inf

sent_type ↔ decl

nPrep

cat ↔ prep

funct ↔ head

lemma ↔ [2]«pour»

prep ↔ [3]«pour»

nPrep0

pour

cat ↔ prep

funct ↔ head

lemma ↔ [2]«pour»

prep ↔ [3]«pour»

Figure 19: EPTDs anchored by trop and pour for the parsing of Sentence (19)

The three sentences below illustrate the phenomenon. In each
example, the extracted constituent is put in square brackets and the
grammatical word triggering extraction, called wh-word in the follow-
ing, is displayed in bold type. The trace of the extracted constituent is
marked with the symbol □.
(23) Marie

Mary
connaît
knows

Jean
John

[dans
in

l’
the

entreprise
company

de
of

qui]
whom

elle
she

pense
believes

travailler
to work

bientôt
soon

□.

‘Mary knows John, in whose company she believes to work soon.’
(24) [Au

to the
patron
boss

de
of

quelle
which

entreprise]
company

Sue
Sue

veut
wants

-elle parler
to-speak

□ ?

‘Which company does Sue want to speak to the director of?’
(25) [Au

to the
directeur
director

de
of

laquelle]
which-one

Marie
Mary

veut
wants

-elle parler
to-speak

□ ?

‘Which one does Mary want to speak to the director of?’

[304]

Frigram: a French Interaction Grammar

nS

cat ← s

funct → mod_rel

mood ~ [1]ind|cond|subj

nExtract

cat ← pp

funct → void

prep ← [6]?

ref = [[7]]?

nSubj

cat ~ np|cs|s

funct ~ subj

nS1

cat ~ cs|s

funct ~ obj|caus|obj_modal

nWh

cat → np

funct ← obj_prep

ref = [[8]]?

nS0

cat ~ s

mood ~ inf|ind|cond|subj

nTrace

cat ↔ pp

funct ↔ mod

prep ↔ [6]?

ref = [[7]]?

nTraceHead

cat ↔ np

empty_type = track

funct ↔ head

nSubj0

cat ~ np|cs|s

funct ~ subj

nVmax0

cat ~ v

funct ~ head

nPro

qui

cat ↔ pro

funct ↔ head

nNp

cat ~ np

ref = [[8]]?

nNp0

cat ~ np|n|adv|pro

Figure 20:
EPTD anchored
by the relative
pronoun qui and
used in the
parsing of
Sentence (23)

Extraction gives rise to an unbounded dependency but in the case
of pied-piping, a second unbounded dependency is introduced. Only
the pronouns qui, quoi and lequel and the determiner quel allow pied-
piping. Pied-piping means that the extracted constituent does not nec-
essarily identify with the wh-word but it may concern a larger expres-
sion including this word.

In Sentence (23), the extracted constituent is dans l’ entreprise
de qui and the extraction is triggered by the relative pronoun qui. In
this case, the relative pronoun represents a noun phrase more or less
deeply embedded in the extracted constituent. Hence, there is a sec-
ond unbounded dependency between the wh-word and the head of
the extracted constituent.

[305]

Guy Perrier, Bruno Guillaume

Figure 20 shows the EPTD associated with the relative pronoun
qui in the parsing of Sentence (23). The node nNp represents the noun
phrase resulting from the modification of Jean, represented by the
node nNp0, by the relative clause dans l’entreprise de qui elle pense tra-
vailler bientôt.

The extracted constituent dans l’entreprise de qui is represented
by the node nExtract. This node shares the features cat, prep, and
ref with nTrace but with different polarities.The node nWh represents
a noun phrase reducing to the wh-word qui which may be embed-
ded more or less deeply in the extracted constituent expressed with
an underspecified dominance relation from nExtract to nWh. In Sen-
tence (23), the chain of embedded constituents from nWh to nEx-
tract contains a noun phrase (qui), a prepositional phrase (de qui),
another noun phrase (l’entreprise de qui), and finally another prepo-
sitional phrase (dans l’entreprise de qui). Again, to restrict the possible
chain to noun or prepositional phrases, a constraint is associated with
the dominance relation from nExtract to nWh, in the form of the fea-
ture structure {[cat :np|pp]}.

A second underspecified dominance relation expresses that the
trace of the extracted constituent may be embedded more or less
deeply in a sequence of object clauses inside the relative clause. The
most external object clause is represented by the node nS1 and the
most internal clause is represented by the node nS0. From the node
nS1 to the node nS0, there is an underspecified dominance relation.
The following feature structure labels the underspecified dominance
relation from nS1 to nS0, to impose constraints on intermediate nodes:
{[cat :s|cs], [funct :obj|obj_modal|obj_cpl|caus]}. In our ex-
ample, nS1 and nS0 are merged in the representation of the object
clause travailler bientôt.

The phenomenon of extraction with pied-piping is not specific
to French. For instance, it is also present in English, with the same
difficulties. That is why the study of related work is not restricted to
French. Analyses of this phenomenon were proposed within various
formalisms. Categorial Grammar (CG) uses the paradigm of parsing
as deduction (Moot and Retoré 2012): grammars are lexicalized and
the elementary units attached at words are logical types; then, parsing
amounts to a proof in a logical framework. The information necessary
to realize extraction is attached at wh-words, in the same way as in IG.

[306]

Frigram: a French Interaction Grammar

Instead of an underspecified dominance relation in an EPTD, it is rep-
resented by a third order logical type. In the parsing process, which
takes the form of a deduction, an additional hypothesis representing
a trace of the extracted constituent is introduced and it will be dis-
charged when the extracted constituent will be composed with the rest
of the clause that follows. The standard logical kernel, the Lambek Cal-
culus (Lambek 1958), is too rigid to express complex phenomena like
middle extraction or islands to extraction. One solution is to enrich
the logical framework with modal operators (Morrill 1994; Moortgat
1996). Another solution is to add new deduction rules to the restricted
logical framework of AB-grammars (Steedman 2000).

HPSG uses feature structure unification to model the two un-
bounded dependencies present in extraction with pied-piping (Sag
et al. 2003). Unlike IG and CG, the information is not only anchored
at the wh-word: a non-local feature slash expresses that an argu-
ment or an adjunct of a word is lacking; a dual feature is introduced
by the wh-word. Then, the two features are propagated up inside the
constituency structure, and they meet at the top through a filler-gap
mechanism.

In LFG, Kaplan and Zaenen (1995) use the mechanism of func-
tional uncertainty to express long distance dependencies in construc-
tions with extraction and pied-piping. In the c-structure, the rule rep-
resenting the concatenation of the extracted constituent with the rest
of the clause is associated with an equation expressing a sharing be-
tween two features in the f-structure: the first feature is attached at the
extracted constituent and the second feature is represented by its path
from the top to a deep level in the f-structure. The underspecification
of this path, its uncertainty, is represented with a regular expression
using the Kleene closure operator. The principle of functional uncer-
tainty must be related to the underspecified dominance relations of IG
and possibility of constraining them with feature structures, even if it
is less general.

In TAG (Joshi and Schabes 1997), the adjunction operation makes
it possible to represent the dependency of an extracted constituent
from a distant predicative expression, but since it is more rigid than
the mechanism of PTD superposition, it requires that information must
be attached to the verb governing the clause at the source of the extrac-
tion. This contributes to the concentration of grammatical information

[307]

Guy Perrier, Bruno Guillaume

in verb entries. Moreover, taking pied-piping into account needs an ad
hoc mechanism.

8 comparison
with other french grammars
and evaluation of the grammar

There is very little work on the construction of French computational
grammars from linguistic knowledge using semi-automatic tools. His-
torically, a very fruitful work was the PhD thesis of Candito (Candito
1999) about the modular organization of TAGs, with an application
to French and Italian. This thesis was a source of inspiration for the
development of several French grammars.

A first grammar produced according to this approach and able
to parse large corpora was FRMG (Villemonte De La Clergerie 2010).
FRMG falls within the TAG formalism and its originality lies in the use
of specific operators on nodes to factorize trees: disjunction, guards,
repetition, and shuffling. As a consequence, the grammar is very com-
pact with only 207 trees. Moreover, these trees are not written by hand
but they are automatically produced from a multiple inheritance hier-
archy of classes (using a mechanism which is similar to the one used
in XMG).

Another French grammar inspired by Candito (1999) is the French
TAG grammar developed by Crabbé (2005). Like Frigram, this gram-
mar was written with XMG. Unlike FRMG, it is constituted of classical
TAG elementary trees, hence its more extensive form: it includes 4,200
trees and essentially covers verbs. It was a purely syntactic grammar
and it was later extended in the semantic dimension by Gardent and
Parmentier (2007) for generation.

Evaluation of parsers is known to be a difficult task in gen-
eral (Rimell and Clark 2008), mainly because each parser and each
treebank is based on a large set of linguistic decisions ranging from
the choice of category names and their definition to the choice of the
head of constituents. Comparing a parsing result with a gold stan-
dard corpus requires conversion from one format to another and this
conversion may induce biases.

In the case of Frigram, to evaluate the accuracy and cover-
age is even more problematic for two reasons. First, when building

[308]

Frigram: a French Interaction Grammar

Frigram, we decide to focus on a set of linguistic phenomena and
cover them in an exhaustive way. At the same time, we also decide not
to take into account (at least in this version of the grammar) several
kinds of phenomena. We think that a fully lexicalized grammar is not
the most efficient way of modeling some phenomena that break the ba-
sic structure of natural language sentences; for instance, dislocation,
non-constituents coordination, parenthetical clauses, parenthesis, or
direct reported speech are not taken into account. In Dufour-Lussier
et al. (2014), we develop further this idea and explain how we plan to
use an external and complementary tool, either as a preprocessing or
postprocessing step to deal with these phenomena.

The second reason is that there is no robust parser able to deal
with IG. The tool developed so far (Leopar; Guillaume et al. 2008)
was designed to experiment with, test and help in grammar develop-
ment. It was later enriched with filtering algorithms to improve the
supertagging stages of the parsing process. Nevertheless, it does not
have any robust mechanism to deal with sentences that are not com-
pletely covered by the grammar. After filtering steps, deep parsing
relies on an exhaustive search of tree description models, which is an
NP-hard task. As a consequence, Leopar can be used to parse sen-
tences of length up to 15 words.

For the reasons given above, evaluation on treebanks is difficult
and will need further experiments with a robust parsing algorithm
and processing dedicated to phenomena not covered by the grammar.
The French TreeBank (FTB; Abeillé et al. 2003) contains 12,351 sen-
tences; 2,769 of these sentences have the length lower than 15. The
parser Leopar with the Frigram resource is able to parse 44.35% of
the 2,769 sentences considered. More recently, a new French corpus,
Sequoia (Candito and Seddah 2012), has been built and is freely avail-
able; it contains 3,099 sentences taken from different kinds of sources.
Again, out of the 1,307 sentences of the length lower than 15, 52.8%
are parsed. Unparsed sentences are mainly due to the lack of robust-
ness or phenomena that Frigram does not take into account (unusual
coordination, incomplete negation or frozen expression for instance).
In the case of the parsed sentences, due to the full search of solutions,
the ambiguity can sometimes be high. In Figure 21, we can see that
most of the parsed sentences have one or two solutions, but this num-
ber can grow up to 200 for some rare cases. In can be observed that

[309]

Guy Perrier, Bruno Guillaume
Figure 21:

Frequency of
sentences by
number of
solutions

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 28 29 30 32 34 35 36 42 46 47 48 50 52 55 56 58 60 71 80 88 91 10
2

10
3

11
2

12
6

12
8

14
0

15
2

16
8

20
1

most of the ambiguities are due to the PP-attachment; as we do not
use semantic or statistical information so far, it is difficult to decide
correctly for a PP-attachment in case of ambiguity.

To deal with this ambiguity, we have designed a set of rules that
assign a weight to each dependency structure that is produced. It is
then possible to estimate the accuracy of the grammar, comparing the
best weighted parsing and the gold standard, by giving the labeled and
the unlabeled attachment scores. Some preliminary work on ranking
based on training on a corpus were conducted but it does not give a sig-
nificant improvement with respect to hand-crafted rules. The labeled
attachment score (LAS) is the proportion of dependency links that are
correctly predicted by the grammar, whereas the unlabeled attach-
ment score (UAS) is the proportion of dependency links that have the
correct head disregarding the link label. We used Sequoia as the gold
standard. On the successfully parsed sentences of Sequoia, the LAS is
81.6% and the UAS is 84.0%. Again, many errors are linked to PP-
attachments not correctly ranked by our rules. Recently, partially su-
pervised learning techniques were used to improve the performances
of FRMG (Villemonte De La Clergerie 2013); with this hybridization
technique, the LAS score of FRMG on Sequoia is 85.21%.

All results on freely available data can be found on the Frigram
web page.12

12http://frig.loria.fr

[310]

Frigram: a French Interaction Grammar

Raw corpora are useful to check for the robustness of a pars-
ing system but they have some limitations concerning the coverage
of the grammar. Test suites are built to overcome this limitation and
give examples of a wider spectrum of grammatical phenomena. Such
suites may include not only positive examples but also negative ex-
amples to test the overgeneration of the grammar. There exists such
a suite for French, the TSNLP (Lehmann et al. 1996). On the set of
grammatical sentences of the TSNLP, Leopar and Frigram are able
to parse 86% of the sentences. The remaining sentences correspond
to sentences that should be covered by the robustness of the parser
rather than by the detailed grammar (like, for instance, unusual kind
of coordination, sentences with incomplete negations). For the un-
grammatical sentences of the TSNLP, 37% are parsed by Leopar and
Frigram. The main sources of problems are: sentences that are syn-
tactically correct but semantically incorrect, phonological rules, tricky
rules for past participle agreement in French that are not encoded in
the grammar.

To try to deal with TSNLP drawbacks, we have designed our own
test suite which is complementary to the TSNLP; it contains 944 posi-
tive sentences and 192 negative ones. 97.5% of the grammatical sen-
tences are parsed and the ratio is 19.8% for ungrammatical sentences.
The reader can find the test suite and the parsing results on the same
web page as before. When parsing succeeds, the list of dependency
structures produced is also given. The variety of the examples gives a
good idea of the coverage of Frigram and the richness of dependency
graphs helps to understand the subtlety of the grammar.

9 conclusion

The next step to go ahead with Frigram is to solve the bottleneck
of the parser Leopar in order to parse raw corpora. We need to im-
prove the efficiency of the parser to contain the possible explosion
resulting from the increase of the grammar size in combination with
the increased sentence length. It is also necessary to take robustness
into account in the parsing algorithm and add extra-grammatical pro-
cedures to deal with phenomena that we do not want to model by the
lexicalized grammar.

[311]

Guy Perrier, Bruno Guillaume

For English, Tabatabayi Seifi (2012) is the first attempt to build
an interaction grammar, which should be extended in order to have a
coverage equivalent to the one of Frigram.

acknowledgements

The authors wish to thank the reviewers for their useful remarks on
previous versions of the article. They also thank Claire Gardent for her
careful reading of the final version.

references
Anne Abeillé, Lionel Clément, and François Toussenel (2003), Building a
Treebank for French, in Treebanks. Building and Using Parsed Corpora,
pp. 165–187, Kluwer Academic Publishers.
Anne Abeillé and Danièle Godard (1997), The Syntax of French Negative
Adverbs, in Negation and polarity: syntax and semantics, pp. 1–27, John
Benjamins publishing Company.
Anne Abeillé, Danièle Godard, and Philip Miller (1997), Les causatives en
français, un cas de compétition syntaxique, Langue française, 115:62–74.
Jason Baldridge, Sudipta Chatterjee, Alexis Palmer, and Ben Wing
(2007), DotCCG and VisCCG: Wiki and Programming Paradigms for Improved
Grammar Engineering with OpenCCG, in Proceedings of the Grammar Engineering
Across Frameworks Workshop (GEAF 07), pp. 5–25, CSLI Studies in
Computational Linguistics ONLINE, Dagstuhl, Germany.
Emily Bender (2008), Grammar Engineering for Linguistic Hypothesis Testing,
in Proceedings of the Texas Linguistics Society X Conference: Computational
Linguistics for Less-Studied Languages, pp. 16–36.
Guillaume Bonfante, Bruno Guillaume, and Mathieu Morey (2009),
Dependency Constraints for Lexical Disambiguation, in Proceedings of the 11th
International Conference on Parsing Technology (IWPT 2009), pp. 242–253, Paris,
France, http://www.aclweb.org/anthology/W09-3840.
Joan Bresnan (2001), Lexical-Functional Syntax, Blackwell Publishers, Oxford.
Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi Masuichi, and Christian
Rohrer (2002), The Parallel Grammar Project, in Proceedings of the Workshop
on Grammar Engineering and Evaluation (COLING 2002), pp. 1–7, Association for
Computational Linguistics, Stroudsburg, PA, USA.
Marie Candito and Djamé Seddah (2012), Le corpus Sequoia : annotation
syntaxique et exploitation pour l’adaptation d’analyseur par pont lexical, in

[312]

Frigram: a French Interaction Grammar

Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, pp. 321–334,
ATALA/AFCP, Grenoble, France,
http://www.aclweb.org/anthology/F12-2024.
Marie-Hélène Candito (1999), Organisation modulaire et paramétrable de
grammaires électroniques lexicalisées. Application au français et à l’italien, Ph.D.
thesis, Université Paris 7.
Jinho D. Choi and Martha Palmer (2010), Robust Constituent-to-Dependency
Conversion for Multiple Corpora in English, in Proceedings of the 9th
International Workshop on Treebanks and Linguistic Theories (TLT-9), pp. 55–66,
Tartu, Estonia.
Ann Copestake and Dan Flickinger (2000), An Open Source Grammar
Development Environment and Broad-coverage English Grammar Using HPSG,
in Proceedings of the 2nd International Conference on Language Resources and
Evaluation (LREC 2000), pp. 591–600, Athens, Greece.
Benoit Crabbé (2005), Représentation informatique de grammaires fortement
lexicalisées : application à la grammaire d’arbres adjoints, Ph.D. thesis, Université
Nancy2.
Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):1–66.
Valmi Dufour-Lussier, Bruno Guillaume, and Guy Perrier (2014),
Parsing Coordination Extragrammatically, in Zygmunt Vetulani and Joseph
Mariani, editors, Human Language Technology. Challenges for Computer Science
and Linguistics. 5th Language and Technology Conference, LTC 2011, Poznan,
Poland, November 25-27, 2011, Revised Selected Papers, Human Language
Technology Challenges for Computer Science and Linguistics, pp. 55–66,
Springer International Publishing.
Catherine Fuchs, Nathalie Fournier, and Pierre Le Goffic (2008), Structures
à subordonnée comparative en français. Problèmes de représentations
syntaxiques et sémantiques, Lingvisticæ Investigationes, 31(1):11–61.
Claire Gardent and Yannick Parmentier (2007), SemTAG: a platform for
specifying Tree Adjoining Grammars and performing TAG-based Semantic
Construction, in Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL 2007), pp. 13–16, Prague, Czech Republic.
Danièle Godard (2004), French Negative Dependency, in Francis Corblin
and Henriëtte de Swart, editors, Handbook of French Semantics, pp. 351–390,
Center for the Study of Language and Information.
Maurice Grevisse and André Goosse (2008), Le bon usage: et son édition
Internet, Grevisse langue française, De Boeck Supérieur.

[313]

Guy Perrier, Bruno Guillaume

Bruno Guillaume, Joseph Le Roux, Jonathan Marchand, Guy Perrier,
Karën Fort, and Jenifer Planul (2008), A Toolchain for Grammarians, in
Proceedings of the 22nd International Conference on Computational Linguistics
(COLING 2008) - Demonstration, pp. 9–12, Manchester, United Kingdom.
Bruno Guillaume and Guy Perrier (2009), Interaction Grammars, Research
on Language and Computation, 7:171–208.
Hélène Huot (1982), Constructions infinitives du français : le subordonnant
”de”, L’information grammaticale, 15(1):40–45.
Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and Dan Flickinger
(2012), Who Did What to Whom?: A Contrastive Study of Syntacto-semantic
Dependencies, in Proceedings of the Sixth Linguistic Annotation Workshop, LAW VI
’12, pp. 2–11, Association for Computational Linguistics, Jeju, Republic of
Korea.
Aravind K. Joshi, Leon S. Levy, and Masako Takahashi (1975), Tree Adjunct
Grammars, Journal of Computer and System Sciences, 10(1):136–162.
Aravind K. Joshi and Yves Schabes (1997), Tree-Adjoining Grammars, in
Handbook of formal languages, pp. 69–123, Springer.
Ronald M. Kaplan and Annie Zaenen (1995), Long-distance Dependencies,
Constituent Structure, and Functional Uncertainty, Formal Issues in
Lexical-Functional Grammar, 47:137–165.
Jong-Bok Kim and Ivan A. Sag (2002), Negation without Head-Movement,
Natural Language & Linguistic Theory, 20(2):339–412.
Joachim Lambek (1958), The Mathematics of Sentence Structure, Amer. Math.
Monthly, 65:154–170.
Sabine Lehmann, Stephan Oepen, Sylvie Regnier-Prost, Klaus Netter,
Veronika Lux, Judith Klein, Kirsten Falkedal, Frederik Fouvry, Dominique
Estival, Eva Dauphin, Hervé Compagnion, Judith Baur, Lorna Balkan,
and Doug Arnold (1996), TSNLP - Test Suites for Natural Language
Processing, in Proceedings of the 16th International Conference on Computational
Linguistics (COLING 1996), pp. 711–716, Copenhagen, Denmark,
http://aclweb.org/anthology/C96-2120.
Michael Moortgat (1996), Categorial Type Logics, in J. van Benthem and
A. ter Meulen, editors, Handbook of Logic and Language, pp. 93–177, Elsevier.
Richard Moot and Christian Retoré (2012), A Logic for Categorial Grammars:
Lambek’s Syntactic Calculus, Springer.
Glyn V. Morrill (1994), Type Logical Grammar, Kluwer Academic Publishers,
Dordrecht and Hingham.
Stephan Oepen, Dan Flickinger, Jun’ichi Tsujii, and Hans Uszkoreit,
editors (2002), Collaborative Language Engineering. A Case Study in Efficient
Grammar-based Processing, CSLI Lecture Notes, CSLI Publications, Stanford.

[314]

Frigram: a French Interaction Grammar

Guy Perrier (2000), Interaction Grammars, in Proceedings of the 18th
International Conference on Computational Linguistics (COLING 2000),
pp. 600–606, Sarrebrücken, Germany.
Guy Perrier (2014), FRIGRAM: a French Interaction Grammar, Research
Report RR-8323, Inria Nancy.
Carl J. Pollard and Ivan A. Sag (1994), Head-Driven Phrase Structure
Grammar, University of Chicago Press.
Geoffrey K. Pullum and Barbara C. Scholz (2001), On the Distinction
between Model-Theoretic and Generative-Enumerative Syntactic Frameworks,
in Proceedings of the 4th International Conference on Logical Aspects of
Computational Linguistics (LACL 2001), volume 2099 of Lecture Notes in
Computer Science, pp. 17–43, Le Croisic, France.
Martin Riegel, Jean-Christophe Pellat, and René Rioul (1999), Grammaire
méthodique du français, Presses universitaires de France.
Laura Rimell and Stephen Clark (2008), Constructing a Parser Evaluation
Scheme, in Proceedings of the Workshop on Cross-Framework and Cross-Domain
Parser Evaluation (COLING 2008), pp. 44–50, Manchester, United Kingdom.
James Rogers and K. Vijay-Shanker (1994), Obtaining Trees from their
Descriptions: an Application to Tree-Adjoining Grammars, Computational
Intelligence, 10(4):401–421.
Laurent Romary, Susanne Salmon-Alt, and Gil Francopoulo (2004),
Standards going concrete: from LMF to Morphalou, in Michael Zock, editor,
Proceedings of the 20th International Conference on Computational Linguistics
(COLING 2004), pp. 22–28, Geneva, Switzerland,
http://acl.ldc.upenn.edu/W/W04/W04-2104.bib.
Ivan A. Sag, Thomas Wasow, and Emily M. Bender (2003), Syntactic Theory:
a Formal Introduction, Center for the Study of Language and Information.
Mark Steedman (2000), The Syntactic Process, Bradford Books, MIT Press.
Shohreh Tabatabayi Seifi (2012), An Interaction Grammar for English Verbs,
in Rasmus K. Rendsvig and Sophia Katrenko, editors, Proceedings of the
ESSLLI 2012 Student Session, pp. 160–169, Opole, Poland,
http://ceur-ws.org/Vol-954/paper17.pdf.
Karel Van den Eynde and Piet Mertens (2003), La valence : l’approche
pronominale et son application au lexique verbal, Journal of French Language
Studies, 13:63–104.
Éric Villemonte De La Clergerie (2010), Building factorized TAGs with
meta-grammars, in Proceedings of the 10th International Conference on Tree
Adjoining Grammars and Related Formalisms (TAG+10), pp. 111–118, New
Haven, CO, USA.

[315]

Guy Perrier, Bruno Guillaume

Éric Villemonte De La Clergerie (2013), Improving a symbolic parser
through partially supervised learning, in The 13th International Conference on
Parsing Technologies (IWPT 2013), pp. 54–62, Nara, Japan,
https://hal.inria.fr/hal-00879358.
XTAG Research Group (2001), A Lexicalized Tree Adjoining Grammar for
English, Technical Report IRCS-01-03, IRCS, University of Pennsylvania.
Nicholas Yates (2002), French Causatives: a Biclausal Account in LFG, in
Proceedings of the LFG02 Conference, pp. 390–407, Athens, Greece.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[316]

