
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1

1

Journal of

Language
Modelling
volume 4 issue 1
june 2016

Institute of Computer Science
Polish Academy of Sciences
Warsaw

Journal of
Language Modelling

volume 4 issue 1
june 2016

Editorials
Parsing and finite-state technologies,

introduction to the special issue 1
Mark-Jan Nederhof, Khalil Sima’an

Articles
ZeuScansion: A tool for scansion of English poetry 3

Manex Agirrezabal, Aitzol Astigarraga,
Bertol Arrieta, Mans Hulden

On regular languages over power sets 29
Tim Fernando

Data-oriented parsing
with discontinuous constituents and function tags 57
Andreas van Cranenburgh, Remko Scha, Rens Bod
On different approaches to syntactic analysis into
bi-lexical dependencies: An empirical comparison
of direct, PCFG-based, and HPSG-based parsers 113

Angelina Ivanova, Stephan Oepen,
Rebecca Dridan, Dan Flickinger,
Lilja Øvrelid, Emanuele Lapponi

1

journal of
language modelling

ISSN 2299-8470 (electronic version)
ISSN 2299-856X (printed version)
http://jlm.ipipan.waw.pl/

managing editor
Adam Przepiórkowski ipi pan

guest editors of this special issue
Mark-Jan Nederhof University of St Andrews

Khalil Sima’an University of Amsterdam

section editors
Elżbieta Hajnicz ipi pan

Agnieszka Mykowiecka ipi pan
Marcin Woliński ipi pan

statistics editor
Łukasz Dębowski ipi pan

Published by IPI PAN
Institute of Computer Science, Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Circulation: 100 + print on demand
Layout designed by Adam Twardoch.

Typeset in XƎLATEX using the typefaces: Playfair Display
by Claus Eggers Sørensen, Charis SIL by SIL International,

JLM monogram by Łukasz Dziedzic.
All content is licensed under

the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

editorial board

Steven Abney University of Michigan, usa
Ash Asudeh Carleton University, canada;
University of Oxford, united kingdom

Chris Biemann Technische Universität Darmstadt, germany
Igor Boguslavsky Technical University of Madrid, spain;

Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, russia

António Branco University of Lisbon, portugal
David Chiang University of Southern California, Los Angeles, usa

Greville Corbett University of Surrey, united kingdom
Dan Cristea University of Iași, romania

Jan Daciuk Gdańsk University of Technology, poland
Mary Dalrymple University of Oxford, united kingdom

Darja Fišer University of Ljubljana, slovenia
Anette Frank Universität Heidelberg, germany
Claire Gardent cnrs/loria, Nancy, france

Jonathan Ginzburg Université Paris-Diderot, france
Stefan Th. Gries University of California, Santa Barbara, usa

Heiki-Jaan Kaalep University of Tartu, estonia
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, germany

Jong-Bok Kim Kyung Hee University, Seoul, korea
Kimmo Koskenniemi University of Helsinki, finland

Jonas Kuhn Universität Stuttgart, germany
Alessandro Lenci University of Pisa, italy

Ján Mačutek Comenius University in Bratislava, slovakia
Igor Mel’čuk University of Montreal, canada

Glyn Morrill Technical University of Catalonia, Barcelona, spain

Stefan Müller Freie Universität Berlin, germany
Mark-Jan Nederhof University of St Andrews, united kingdom

Petya Osenova Sofia University, bulgaria
David Pesetsky Massachusetts Institute of Technology, usa
Maciej Piasecki Wrocław University of Technology, poland

Christopher Potts Stanford University, usa
Louisa Sadler University of Essex, united kingdom

Agata Savary Université François Rabelais Tours, france
Sabine Schulte im Walde Universität Stuttgart, germany

Stuart M. Shieber Harvard University, usa
Mark Steedman University of Edinburgh, united kingdom

Stan Szpakowicz School of Electrical Engineering
and Computer Science, University of Ottawa, canada
Shravan Vasishth Universität Potsdam, germany

Zygmunt Vetulani Adam Mickiewicz University, Poznań, poland
Aline Villavicencio Federal University of Rio Grande do Sul,

Porto Alegre, brazil
Veronika Vincze University of Szeged, hungary

Yorick Wilks Florida Institute of Human and Machine Cognition, usa
Shuly Wintner University of Haifa, israel

Zdeněk Žabokrtský Charles University in Prague, czech republic

Parsing and finite-state technologies,
introduction to the special issue

Mark-Jan Nederhof1 and Khalil Sima’an2
1 School of Computer Science, University of St Andrews, UK

2 Institute for Logic, Language and Computation,
University of Amsterdam, The Netherlands

This issue is dedicated to extended versions of papers published
in the proceedings of two conferences. The 11th International Confer-
ence on Finite-State Methods and Natural Language Processing was
held in July 2013 in St Andrews, Scotland (UK). The 13th International
Conference on Parsing Technologies was held in November 2013 in
Nara, Japan.

The paper “ZeuScansion: A tool for scansion of English poetry”
by Manex Agirrezabal, Mans Hulden, Bertol Arrieta and Aitzol Asti-
garraga is about scansion, which is the act of marking stressed and
unstressed elements in a line of verse and dividing the line into metri-
cal feet. Novel finite-state technology is presented to perform metrical
scansion on English poetry.

The paper “On regular languages over power sets” by Tim Fer-
nando is about alphabets that are power sets of finite sets, motivated
by, among other things, temporal semantics. Studied are extensions
of regular expressions and sentences of monadic second-order logic,
offering succinct descriptions of regular languages.

The paper “Data-oriented parsing with discontinuous constituents
and function tags” by Andreas van Cranenburgh, Remko Scha and
Rens Bod presents an extension of the data-oriented parsing approach
for dealing with discontinuous constituents. Two versions are pre-
sented, one based on Discontinuous Tree-Substitution Grammars and
another based on encoding the discontinuities in the labels of the tree-
bank trees before extracting a Context-Free Grammar.

The paper “On different approaches to syntactic analysis into
bi-lexical dependencies: An empirical comparison of direct, PCFG-

Journal of Language Modelling Vol 4, No 1 (2016), pp. 1–2

Nederhof and Sima’an

based, and HPSG-based parsers” by Angelina Ivanova, Stephan Oepen,
Rebecca Dridan, Dan Flickinger, Lilja Øvrelid and Emanuele Lapponi
presents a comparison of three different approaches to parsing into
syntactic, bi-lexical dependencies for English. The approaches con-
sist of a ‘direct’ data-driven dependency parser, a statistical phrase
structure parser, and a hybrid, ‘deep’ grammar-driven parser. The
paper provides extensive analysis of the parsing results of the three
approaches being compared.

We would like to thank the authors for contributing to this special
issue and the referees for their careful reading of the manuscripts and
their helpful reports.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[2]

ZeuScansion:
A tool for scansion of English poetry

Manex Agirrezabal1, Aitzol Astigarraga1,
Bertol Arrieta1, and Mans Hulden2

1 University of the Basque Country (UPV/EHU),
Department of Computer Science, 20018 Donostia, Spain

2 University of Colorado Boulder, Department of Linguistics,
Boulder, Colorado (USA)

abstract
Keywords:
scansion, English,
poetry,
out-of-vocabulary
words

We present a finite-state technology (FST) based system capable of
performing metrical scansion of verse written in English. Scansion
is the traditional task of analyzing the lines of a poem, marking the
stressed and non-stressed elements and dividing the line into metrical
feet. The system’s workflow is composed of several subtasks designed
around finite-state machines that analyze verse by performing tok-
enization, part-of-speech tagging, stress placement, and stress-pattern
prediction for unknown words. The scanner also classifies poems ac-
cording to the predominant type of metrical foot found. We present a
brief evaluation of the system using a gold standard corpus of human-
scanned verse, on which a per-syllable accuracy of 86.78% is achieved.
The program uses open-source components and is released under the
GNU GPL license.1

1 introduction

Scansion is a well-established form of poetry analysis which involves
marking the prosodic meter of lines of verse and possibly also dividing
the lines into feet. The specific technique and scansion notation may

1ZeuScansion code:
https://github.com/manexagirrezabal/zeuscansion
Stress guesser code: https://github.com/manexagirrezabal/athenarhythm

Journal of Language Modelling Vol 4, No 1 (2016), pp. 3–28

M. Agirrezabal et al.

differ from language to language because of phonological and prosodic
differences, and also because of different traditions regarding meter
and form. Scansion is traditionally done manually by students and
scholars of poetry. In the following, we present ZeuScansion, an FST-
based software tool for performing this task for English poetry, and
provide a brief evaluation of its performance on a gold standard corpus
of poetry in various meters.
1.1 Scansion
Conventionally, scanning a line of poetry should yield a representation
which marks every syllable with its level of stress and divides groups
of syllables into units of feet. Typically two or more levels of stress are
used.
Consider, for example, the following line from John Keats’ poem

To autumn (Robertson 2007, p. 137).
To swell the gourd, and plump the hazel shells

Here, a natural analysis is as follows:
- ' - ' - ' - ' - '

To swell |the gourd |and plump |the haz|el shells

We use the symbol ' to denote stressed (ictic) syllables, and - to
denote unstressed (non-ictic) ones. That is, we have analyzed the line
in question as following the stress pattern

DE-DUM DE-DUM DE-DUM DE-DUM DE-DUM

and also as consisting of five feet of two syllables each with an
unstressed–stressed pattern. Indeed, this is the most common meter
in English poetry: iambic pentameter.
The above example is rather clear-cut. How a particular line of

verse should be scanned, however, is often a matter of contention. Con-
sider a line from the poem Le Monocle de Mon Oncle byWallace Stevens
(1923):

I wish that I might be a thinking stone
Here, matters are much more murky. This line can, for example,

be analyzed as five iambic feet,2 or as one iamb, followed by a pyrrhic
2 Iambic foot: An unstressed syllable followed by a stressed syllable [-'].

[4]

ZeuScansion: A tool for scansion of English poetry

foot,3 followed by two stressed syllables, followed by two more iambs.
The following represents several analyses of the line in question.

Examp.: I wish that I might be a thinking stone

1st: - ' - ' - ' - ' - '

2nd: - ' - - ' ' - ' - '

3rd: - ' - ' ' ' - ' - '

4th: - ' - - - ' - ' - '

The first variant is the meter most likely intended by the author.
The second line represents the mentioned alternative scansion. The
third and fourth lines show the output of the software tools Scandroid
(Hartman 2005) and ZeuScansion, respectively.
Sometimes a line’s analysis can be different from the expected

one. In fact, well-known poems usually include some metrical varia-
tion; this is a stylistic device to break monotony and provide elements
of surprise and variation to the reader. In the poem The More Loving
One by W. H. Auden (Auden 1960), the poet varies the meter several
times. An interesting case in point is the stanza

Admirer as I think I am
of stars that do not give a damn,
I cannot, now I see them, say
I missed one terribly all day

where the natural flow of the last line is scanned as two iambs and a
double iamb.4 While the poem itself is written in iambic tetrameters,
this last line illustrates the author assigning extra emphasis on the final
part: all day.
In short, evaluating the output of automatic scansion is somewhat

complicated by the possibility of various good interpretations. As we
shall see below, when evaluating the scansion task, we use a gold stan-
dard that addresses this and accepts several possible outputs as valid.
1.2 The challenges of scansion
Scansion is, then, the analysis of rhythmic structure in verse. But what
makes it difficult? In the following, we discuss some of the immediate
obstacles that have to be overcome to provide accurate annotations of
rhythm and stress.

3Pyrrhic foot: Two unstressed syllables [--].
4Double iamb: two unstressed syllables and two stressed syllables [--''].

[5]

M. Agirrezabal et al.

1.2.1 Lexical stress patterns do not always apply
The primary piece of information necessary for performing metrical
scansion is the lexical stress of words. While other elements are also
important, the inherent lexical stress of a word is indispensable for
the task. Consider the first line of Thomas Hardy’s The voice (Monroe
1917, p. 131):

Woman much missed, how you call to me, call to me
If we were to simply perform scansion by marking the primary,

secondary, and unstressed syllables along the line as provided for the
individual words in a dictionary,5 the result would be

' - ' ` ' ' ' - ' ' - '
Woman much missed, how you call to me, call to me

This poem is in fact composed of four quatrains, where each line
is written in dactylic tetrameter throughout,6 which leads to the fol-
lowing analysis for this line.

' - - ' - - ' - - ' - -
Woman much missed, how you call to me, call to me

As is obvious, we have to know the prosodic stress of the line in
order to calculate the meter of the poem; simply knowing the lexical
stress of each of the words will not suffice. The lexical stress is the rela-
tive emphasis inherent to certain syllables in a word, independently of
the word’s context. The prosodic stress shows the prominence of each
of the syllables within a sentence. We address this problem by using
a simplified version of some heuristics proposed by Groves (1998).
Groves’ rules provide a principled method to exclude some lexically
stressed syllables from carrying prosodic stress.
1.2.2 Dividing the stress pattern into feet
The prosodic stress location is important, but knowledge of it is still
not sufficient to obtain the intended overall meter of a poem. In order
to analyze the meter, each line needs to be divided into plausible feet.

5We use the symbol ' to denote primary stress, the symbol ` to denote sec-
ondary stress, and - for unstressed syllables.

6Dactyl: a stressed syllable followed by two unstressed syllables ['--].

[6]

ZeuScansion: A tool for scansion of English poetry

A foot represents a grouping of usually one to three syllables. Return-
ing to the above example by Thomas Hardy, we need to somehow be
able to determine that the poem’s lines are composed of four dactyls,
and thus, that its meter is dactylic tetrameter.
In order to produce a good division of lines into feet, we employ a

scoring system that takes into account not only the number of matches
of the foot in the stress structure of the poem, but also the length of
the feet proposed.

1.2.3 Dealing with out-of-vocabulary words
Automatic scansion is made considerably more difficult by the pres-
ence of out-of-vocabulary words. Although the lexical stress of words
is not sufficient for scanning a line of poetry, it is nevertheless neces-
sary. For some words, however, it is not available in standard dictio-
naries. Let us suppose that we are scanning the following line from
Henry Wadsworth Longfellow’s poem The song of Hiawatha (Longfel-
low 1855, p. 39):

By the shores of Gitche gumee
Here, most dictionaries would lack entries for either Gitche or

gumee. For such cases, we need an informed method or algorithm for
assigning lexical stress to out-of-vocabulary words. The use of rare,
made-up, or unknown words is, of course, common in poetry. They
appear as a result of atypical spellings, are derived through complex
morphological processes, or are just nonce words coined for the oc-
casion (cf. John Lennon’s The faulty Bagnose or Jabberwocky by Lewis
Carroll, 1916). Usually, the character names in poems also do not ap-
pear in dictionaries, and so their scansion cannot be inferred from
such knowledge sources. This problem is exacerbated in older poetry
(e.g., Beowulf). Failure to correctly indicate primary stress in such
unknown words results in a lower accuracy of automatic scansion
systems.
In order to reduce the occurrence of this type of error, we use

an FST-based system that finds words spelled similarly to the target
unknown word, with the assumption that their lexical stress will also
be similar. More sophisticated algorithms for this purpose have been
developed in Agirrezabal et al. (2014); such external resources can
easily be embedded in ZeuScansion because of its modular design.

[7]

M. Agirrezabal et al.

2 the output of zeuscansion

As many different established systems of scansion exist that often
vary in minor details, we have chosen a rather conservative approach,
which also lends itself to a fairly mechanical, linguistic rule-based im-
plementation. The system distinguishes three levels of stress, marks
each line with a stress pattern, and attempts to analyze the predomi-
nant meter used in a poem. The following illustrates the analysis pro-
duced by our tool of a stanza from Lewis Carroll’s poem Jabberwocky
(Carroll 1916, p. 181):

1 He took his vorpal sword in hand:
2 Long time the manxome foe he sought-
3 So rested he by the Tumtum tree,
4 And stood awhile in thought.

1 - ' - `- ' - '
2 ' ' - `' ' - '
3 ' `- - - - `- '
4 - ' -' - '

In addition to this, the system also analyzes the different types of
feet that make up the whole poem (discussed in more detail below).
ZeuScansion supports most of the common types of foot found in En-
glish poetry, including iambs, trochees, dactyls, and anapests. Table 1
shows a complete listing of the feet supported by the tool.

Table 1:
Metrical feet used in English poetry

supported by ZeuScansion
Stress pattern Name

- - pyrrhus
Disyllabic feet - ' iamb

' - trochee
' ' spondee
- - - tribrach
' - - dactyl
- ' - amphibrach

Trisyllabic feet - - ' anapest
- ' ' bacchius
' ' - antibacchius
' - ' cretic
' ' ' molossus

[8]

ZeuScansion: A tool for scansion of English poetry

Once we have identified the feet used in the whole poem, we can
infer the poem’s meter. This includes common meters such as:
• Iambic pentameter: Lines composed of 5 iambs, used by Shake-
speare in his Sonnets (Shakespeare 2011).
• Dactylic hexameter: Lines composed of 6 dactyls, used by Homer
in the Iliad (Murray 1925).
• Iambic tetrameter: Lines composed of 4 iambs, used by Robert
Frost in Stopping by Woods on a Snowy Evening (Frost 1979).
For example, if we provide Shakespeare’s Sonnets (the whole

work) as input, ZeuScansion’s global analysis concludes it to be writ-
ten in iambic pentameter (line-by-line output omitted here):

Syllable stress _'_'_'_'_'
Meter: Iambic pentameter

For Longfellow’s The song of Hiawatha, the result of the global
analysis is:

Syllable stress '_'_'_'_
Meter: Trochaic tetrameter

3 related work

Scansion of English verse has attracted attention from numerous schol-
ars for years. There are several books that provide general introduc-
tions to prosody in English poetry, for example, Corn (1997) or Steele
(1999).
In Gerber (2013), the author compares two existing approaches

to scansion: traditional stress metrics and generative metrics. In de-
veloping ZeuScansion, we have followed the traditional approach.
A number of projects also attempt to automate the scansion of

English verse. Below, we give an overview of some of the current ones.
Logan (1988) documents a set of programs to analyze sound and

meter in poetry. This work falls in a general genre of techniques that
attempt to analyze the phonological structure of poems following the
generative phonological theory outlined by Chomsky and Halle (1968)
and described by Brogan (1981).
Scandroid is a program that scans English verse written in either

iambic or anapestic meter, designed by Charles O. Hartman (1996;

[9]

M. Agirrezabal et al.

2005). The source code is publicly available.7 The program can ana-
lyze poems and check if the predominant stress pattern is iambic or
anapestic. However, if the input poem’s meter is not one of those two,
the system forces each line into one of them.
AnalysePoems is another tool for automatic scansion and identi-

fication of metrical patterns written by Marc Plamondon (2006). In
contrast to Scandroid, AnalysePoems only identifies patterns; it does
not impose them. The program also checks the rhyme scheme found
in the input poem. It is reportedly developed in Visual Basic and the
.NET framework; however, neither the program nor the code appear
to be available.
Calliope is a similar tool, built on top of Scandroid by Garrett

McAleese (2007). It is an attempt to take advantage of linguistic the-
ories of stress assignment in scansion. The program does not seem to
be freely available.
Of the current efforts, Greene et al. (2010) appears to be the only

one that uses statistical methods in the analysis of poetry. For the
learning process, The Sonnets by Shakespeare was used, as well as a
number of other works freely available online.8 Weighted finite-state
transducers were used for stress assignment. As with the other docu-
mented projects, we have not obtained an implementation to review.

4 corpora

Several different corpora were used for the development of ZeuScan-
sion. These include the pronunciation dictionaries NETtalk (Sejnowski
and Rosenberg 1987) and CMU (Weide 1998), which both list pro-
nunciations of words, the number of syllables they contain, as well as
indications of primary and secondary stress location. Each employs a
slightly different notation, but they are in general quite similar in con-
tent as they both mark three levels of stress and show pronunciations:

NETTALK format:
@bdIkeS|n `_'_ S4 abdication 0 (N)

CMU format:
INSPIRATION IH2 N S P ER0 EY1 SH AH0 N

7http://oak.conncoll.edu/cohar/Programs.htm
8http://www.sonnets.org

[10]

ZeuScansion: A tool for scansion of English poetry

We also use a human-annotated poetry corpus obtained from
an interactive learning environment program for training people to
scan traditionally metered English poetry called For Better For Verse
(Tucker 2011).9 The poems on the site are marked up with TEI P5 cod-
ing, a convenient format for poetry markup.10 The collection of poems
is rather homogeneous, the predominant meter of the poems being
iambic (92.7% of the lines). The remaining 7.3% lines use trochaic
(3.65%), anapestic (2.09%) or dactylic (1.56%) meters. We employ
this corpus in order to evaluate the performance of ZeuScansion.
In addition to this source, we downloaded several poems from

Project Gutenberg (Hart 1971) for evaluation and testing purposes.11
Finally, we used the Wall Street Journal section of the Penn Tree-

bank (Marcus et al. 1993) to train a part-of-speech-tagger, the role of
which is described below.

5 method

Our tool is constructed around a number of guidelines for scansion
developed by Peter L. Groves (1998). It consists of three main compo-
nents:
(a) an implementation of Groves’ rules of scansion – mainly a collec-

tion of POS-based stress-assignment rules,
(b) a pronunciation lexicon together with an out-of-vocabulary word-

stress guesser, and
(c) a ‘plausible foot division’ system.
5.1 Groves’ rules
Groves’ rules try to assign stress levels in a way that turns this task, as
far as possible, into an objective process driven by lexicon and syntax,
independent of more elusive concepts of the poem such as meaning
and intent. The rules assign stress as follows:

1. Primarily stressed syllables of content words (nouns, verbs, ad-
jectives, and adverbs) receive primary stress.

9http://prosody.lib.virginia.edu
10http://www.tei-c.org/release/doc/tei-p5-doc/en/html/VE.html
11http://www.gutenberg.org

[11]

M. Agirrezabal et al.

2. Secondarily stressed syllables in polysyllabic content words, pri-
marily stressed syllables in polysyllabic function words (auxil-
iaries, conjunctions, pronouns, and prepositions) and secondarily
stressed syllables in compound words get secondary stress.

3. Unstressed syllables of polysyllabic words and monosyllabic func-
tion words are unstressed.

In Section 6 we present a more elaborate example to illustrate
how Groves’ rules are implemented.
5.2 Pronunciation lexicon and out-of-vocabulary word-stress guesser
To calculate the basic stress pattern of words necessary for Groves’
rules, we mainly use the dictionaries mentioned earlier: the CMU pro-
nunciation dictionary and NETtalk. The system first attempts to locate
the stress pattern in the smaller NETtalk dictionary (20,000 words)
and then falls back to using CMU (125,000 words) if the word is miss-
ing in NETtalk. The merged lexicon, where NETtalk pronunciations
are given priority, contains about 133,000 words.
In the event that a word cannot be found in either the NETtalk

lexicon or the CMU dictionary, we try to guess the stress pattern of
the word using an FST-based system, which relies on the hypothesis
that similarly spelled words have the same stress pattern.
5.3 Foot division system
The final subtask – no less important than the previous ones – is to
divide a line’s stress pattern into feet, for which we use a scoring sys-
tem. The scoring system takes two features into account: the number
of matches that each possible foot has in the line and the number of
syllables that that foot has. More details are given below.

6 zeuscansion: technical details

The structure of the system is divided into the subtasks shown in
Figure 1. We begin with preprocessing and tokenization, followed by
part-of-speech tagging. Then, we find the lexical stress pattern for each
word, guessing the stress patterns for any words not found in the dic-
tionary. After these preliminaries, we apply Groves’ scansion rules to
determine the prosodic stress and perform some cleanup of the result.

[12]

ZeuScansion: A tool for scansion of English poetry
English poetry

text

Tokenizer

POS-tagger

Groves' scansion rules

Cleanup

Poem's meter

Are the words in
the dictionary?

Y

Closest word
finder

N
Global Analysis System

Figure 1:
Structure of
ZeuScansion

Finally, we calculate the average line stress pattern, which we later
try to divide into feet.
The toolchain is implemented as a chain of finite-state transduc-

ers, each of them written using the foma toolkit (Hulden 2009),12 save
for the part-of-speech tagger, which is a HiddenMarkov Model (HMM)
implementation (Halácsy et al. 2007). We use Perl as a glue language
to communicate between the components.
6.1 Preparation of the input data
After tokenization,13 we obtain the part-of-speech (POS) tags of the
words of the poem. For the POS tagger, we trained Hunpos14 (Halácsy
et al. 2007) on the Wall Street Journal section of the Penn Treebank
(Marcus et al. 1993). While other, more general, corpora might be
more suitable for this task, we only need to distinguish between func-

12https://foma.googlecode.com
13Code available at https://code.google.com/p/foma/wiki/FAQ.
14https://hunpos.googlecode.com

[13]

M. Agirrezabal et al.

tion and non-function words, and thus performance differences would
most likely be slight between tagger implementations.
Once the first process is completed, the system starts applying

Groves’ rules. This process is also encoded as finite-state transducers.
To apply the rules, however, we must know the stress pattern of each
word. Here, as mentioned above, we resort to a heuristic for assigning
lexical stress to out-of-vocabulary words.
The strategy we use to analyze such words is to find a close neigh-

boring word in the dictionary, relying on an intuition that words that
differ very little in spelling from the sought-after word are also likely
to be pronounced in a similar way, or, at the very least, exhibit the
same stress pattern.
6.2 Finding the closest word
In order to find what we call the closest word in the dictionary, we
construct a cascade of finite-state transducers from the existing dic-
tionaries in such a way that, given an input word, it will output the
most similar word, according to spelling, using a metric of word dis-
tances that we have derived for the purpose. These transducers will
perform small specific changes (substitution, insertion, and deletion)
on the input word, such as:
• change one vowel,
• change one consonant,
• change two vowels,
• change one vowel and one consonant,
• change two consonants.
Before performing any of these changes, we divide the unknown

word into two parts, where the second part represents roughly the
last syllable. Then, we perform the aforementioned changes in each
part of the word. If, when performing any one of those changes, we
find an existing word, the system will return that word and not pro-
ceed with the other changes. For example, in the following line from
Shakespeare’s Romeo and Juliet (Shakespeare 1806, p. 77)

And usest none in that true use indeed
we find the word usest (the archaic second person singular, simple
present form of the verb use), which does not appear in our lexicon.

[14]

ZeuScansion: A tool for scansion of English poetry

Our closest-word finder begins with the word splitter, which would
return u|sest. Then, it maps this word to all possible words produced
by changing just one vowel in the first part of the word, one vowel
in the second part, or changing one consonant. In this example case,
after performing some of these changes, the system would determine
the closest match according to the scheme above to be wisest, and
assume that its lexical stress matches that of usest. This is achieved
by changing one vowel and inserting a consonant at the beginning of
the word.
These transducers need to be correctly ordered, as an earlier

transducer in the cascade will have priority over later ones. In our
cascade, the dictionaries are also included as the very first map-
ping. If the word is not found in the dictionary, subsequent trans-
ducers perform the various mappings, filtering their outputs in such
a way as to be constrained against possible words in the dictio-
nary. The actual order in the cascade was determined based on the
precision achieved in cross-validation against the NETtalk dictio-
nary. To illustrate this, consider a pair of transducers, one perform-
ing just one vowel change and the other changing only one conso-
nant. If the first transducer can guess the correct word stress in, say,
90% of the cases and the other one in 10% of the cases, we order
the vowel transducer first in the cascade, and the consonant trans-
ducer second. In the case that a close word is not found making the
possible mentioned changes, the finder will return the symbol ? as
a result.

6.3 Implementation of Groves’ rules
Once we have obtained the lexical stress for each word, we employ
a finite-state transducer that encodes each step in Groves’ rules in re-
placement rules (Beesley and Karttunen 2003).
Groves’ rules dictate that the primarily stressed syllable in content

words will maintain primary stress. In polysyllabic function words,
the syllable carrying primary lexical stress will be assigned secondary
stress. Secondary stresses in polysyllablic content words will maintain
secondary stress. All other syllables will be unstressed.
The input for these transducers is a string with the structure

word+POS. The output is the stress pattern of the word after apply-

[15]

M. Agirrezabal et al.

ing Groves’ rules, written as word+stress+POS. Let’s consider a line
from Longfellow’s poem The song of Hiawatha:

changed them thus because they mocked you
For an analysis of the word because, the input for the trans-

ducer that encodes Groves’ rules would be because+IN. The lexical
resources transducer would locate the word in the dictionary and de-
termine that the second syllable carries primary stress while the first
syllable is unstressed. After applying the prosodic stress rules, the sys-
tem would return that the second syllable should receive secondary
stress (instead of the original primary) as the input word is a polysyl-
labic function word. Hence, the output of the transducer would in this
case be because+-`+IN.
The last step is to remove all the material not strictly required

for working with stress patterns. For the cleanup process, we use a
transducer that removes everything before the first + character and
everything after the second + character. It then removes all the +
characters, so that the only result we get is the bare stress structure of
the input word:

because+-`+IN → -`

6.4 Global analysis
After the stress rules have been applied and we know the stress levels
of each syllable of each line, we move to the meter inference process.
To this end, we calculate the entire poem’s average stress structure.
This is encoded by a vector of syllable positions. Each line is examined
and for each syllable and its position we add numerical values de-
pending on the syllable’s stress. The pseudocode of the average stress
calculator is as follows:

vector[1..nsylls]=0
foreach line (1..nlines) {

foreach syllable (1..nsylls) {
if stress(syllable) == '

vector[syllable] = vector[syllable] + 2
if stress(syllable) == `

vector[syllable] = vector[syllable] + 1
}

}

[16]

ZeuScansion: A tool for scansion of English poetry

We illustrate the process with the following excerpt from The song
of Hiawatha as the input (Longfellow 1855, p. 146):

Barred with streaks of red and yellow1

Streaks of blue and bright vermilion2

Shone the face of Pau-Puk-Keewis3

From his forehead fell his tresses4

Smooth and parted like a woman’s5

Shining bright with oil and plaited6

Hung with braids of scented grasses7

As among the guests assembled8

To the sound of flutes and singing9

To the sound of drums and voices10

Rose the handsome Pau-Puk-Keewis11

And began his mystic dances12

According to Groves’ rules, the stress values for each line are:
'-`-'-'`1

`-'-'-'-2

'-'-?3

--'`'-`-4

'-`---`-5

`-'-'-`-6

'-`-`-`-7

'-`-`-`-8

--'-`-`-9

--'-`-`-10

'-'-?11

--`-'-`-12

Our algorithm would then calculate the following:
Syllable 1 2 3 4 5 6 7 8
Σ 14 0 19 1 14 0 12 1
Normalized 0.74 0 1 0.05 0.74 0 0.63 0.05
Stress ' - ' - ' - ' -

These numbers represent each syllable’s average stress over the
entire poem. In Figures 2 and 3 we show a graphical representation

[17]

M. Agirrezabal et al.
Figure 2:

Average stress level per syllable
position in Shakespeare’s Sonnets

Figure 3:
Average stress level per syllable

position in Longfellow’s
The song of Hiawatha

of these numbers based on an analysis of Shakespeare’s Sonnets and
Longfellow’s The song of Hiawatha. We use 0.5 as a cutoff value: if
the normalized average stress for a syllable is greater than this, it is
assigned the label stressed and otherwise unstressed. We assume that all
the lines contain the same number of syllables. This naturally leads to
difficulties with works with differing syllable counts per line (such
as Phantasmagoria and other poems by Lewis Carroll, 1869). We set
aside the interesting problems surrounding proper normalization and
treatment of mixed-line poems for future work.
After the above steps, we attempt to divide the average stress

pattern into feet with the goal of producing a global analysis of the
poem. In our previous example, it is obvious that the optimal meter
to assign is trochaic tetrameter, a sequence of four trochees, but in
other cases foot-division can be ambiguous. Consider, for instance,
the meter:

-'--'--'--'-

which could be analyzed as consisting mainly of (1) amphibrachs
[-'-], (2) trochees ['-] and (3) iambs [-']. All three patterns appear
four times in the line. For such cases, we have elaborated a scoring
system for selecting the appropriate pattern: we give a weight of 1.0

[18]

ZeuScansion: A tool for scansion of English poetry

for hypothetical disyllabic patterns, and a weight of 1.5 for trisyllabic
ones. In this example, this would yield the judgement that the struc-
ture is amphibrachic tetrameter (1.5 × 4 matches = 6). This example
is illustrated in Table 2.

Foot Pattern N¬∫ matches Score
Amphibrach -'- 4 6
Iamb -' 4 4
Trochee '- 4 4
Anapest '-- 3 4.5
Dactyl '-- 3 4.5
Pyrrhus - - 3 3

Table 2:
Hypothetical feet for the meter
-'--'--'--'-

We also attempted to develop an alternative foot-division strat-
egy by taking into account how many syllables were omitted in the
analysis. For example, in the previous Longfellow example at line 12,
the system would note two unused syllables. The intuition was that
a collection of feet that left less unaccounted syllables should be the
preferred meter. After evaluating this procedure, however, the results
were consistently lower than with the first-mentioned scoring system,
which we then chose to use.

7 further explorations

In the preceding section, we have presented ZeuScansion, an imple-
mented system for scansion, available online.15 However, we also
explored possible improvements for its out-of-vocabulary word-stress
guesser. To this end, we developed two alternative approaches based
on linguistic generalizations and machine learning techniques. In this
section, we will outline how these two systems assign stress to out-
of-vocabulary words. While the system described earlier also assigned
secondary stresses to words, the alternatives only produce a predic-
tion of the placement of primary stress. However, once the primary
stress is assigned, predicting the location of secondary stresses is quite
straightforward.
These systems receive a word as input and return the location of

primary stress. For example, with the word introduction as input, these
15https://github.com/manexagirrezabal/zeuscansion

[19]

M. Agirrezabal et al.

guessers should return --'-, given that the primary stress is located
in the third syllable (duc).
Our ultimate goal is to include the best one out of all these ap-

proaches in the final ZeuScansion implementation. The source code
for these stress assignment tools is made available under the GNU GPL
license.16
7.1 Linguistic approach
For the linguistic approach we have programmed a linguistic toolchain
that performs grapheme-to-phoneme conversion (G2P), syllabification
and stress assignment.
We first convert the orthographic representation of words to se-

quences of phonemes, using a G2P system presented in Novak et al.
(2012).17 Following this, we syllabify the words using a finite-state
syllabification algorithm (Hulden 2006). Our main concern for stress
assignment is the weight of the syllables, which might be light or
heavy, captured as follows:
• Heavy syllable: The syllable has a coda or ends in a tense vowel.
• Light syllable: Any syllable not classified as heavy.
After this processing, we apply several stress assignment rules

that rely on various linguistic generalizations regarding the English
vocabulary. The main active rule is the so-called Latin stress rule (Halle
and Vergnaud 1987), which, despite the name, also applies to many
English polysyllabic words. This rule codifies the generalization that
heavy syllables tend to attract stress. Below is a description of this,
divided into four subrules:
• If the penultimate syllable is light, the antepenultimate syllable
is stressed.
• If the penultimate syllable is heavy, it is stressed.
• In the case of disyllabic words, the first syllable is stressed.
• Monosyllabic words are stressed.
Despite the descriptive power of the generalization, examples ex-

ist of words where it fails, such as an|té|nna, a|la|bá|ma or po|líce.
16https://github.com/manexagirrezabal/athenarhythm
17https://github.com/AdolfVonKleist/Phonetisaurus/

[20]

ZeuScansion: A tool for scansion of English poetry

7.2 Machine learning approach
In our machine learning approach we have trained a Support Vec-
tor Machine (SVM) (Chang and Lin 2011; Fan et al. 2008) using the
NETTalk stress-annotated dictionary. We treat the stress assignment
task as a multi-class classification problem. The class to be assigned is
the stress pattern that each word follows, taking into account only the
main stress. We extracted 25 different stress patterns from our dictio-
nary, where each stress pattern is a sequence of symbols for stressed
and unstressed syllables (' and -).
We used two different sets of features for the purpose of training

the SVMs. In the first set, FS1, we used character bigrams as features,
including word boundaries as a special character. In the second fea-
ture set, FS2, we used character trigram frequencies, also known as
Wickelfeatures (Rumelhart and McClelland 1985). For example, given
the word reference, with FS1 we would train the SVM with the infor-
mation that the bigrams {#r}, {ef}, {fe}, {er}, {en}, {nc}, {ce}, {e#}
appeared once, the bigram {re} twice and all other possible bigrams
zero times. These, together with the length of the word, are the train-
ing features for the first set. In the second feature set, we include the
frequencies of trigrams, in this case {#re}, {ref}, {efe}, {fer}, {ere},
{ren}, {enc}, {nce}, {ce#}. For the example word reference, the cor-
rect class would be '-, indicating that the first syllable carries primary
stress.
Naturally, these features need to be encoded as numbers; a simple

mapping function performs this mapping. After this, we produced a
corpus of 19,528 instances, one instance per word in the dictionary.
In the case of FS1, each word was represented using 899 feature–value
pairs, while in FS2, 5,495 feature–value pairs were required.
The feature set that yielded the highest performance using cross-

validation over the training set was the set consisting of character
bigrams and their frequencies (FS1). We trained different support vec-
tor machines with varying parameters. The best performing one was
a Support Vector Classifier using an RBF/Gaussian kernel, whose pa-
rameters C and γ (soft-margin penalty and the Gaussian dispersion)
were tuned by a grid-search.

[21]

M. Agirrezabal et al.

8 evaluation

As the gold standard material for evaluation, we used the corpus of
scanned poetry For Better For Verse, made available by the University
of Virginia, from which we extracted the reference analyses. Some-
times several analyses are given as correct. The results of the evalu-
ation are given in Table 3. 86.78% of syllables are scanned correctly
in the best configuration of ZeuScansion. This is slightly below the
performance of Scandroid per syllable. As our test corpus is mainly
iambic, Scandroid of course has an advantage in that it is fixed to
only handle iambic or anapestic feet.
Table 3:

ZeuScansion evaluation
results against the

For Better For Verse corpus

Scanned lines Correctly scanned Accuracy
ZeuScansion 759 199 26.21%
Scandroid 759 326 42.95%

Scanned sylls. Correctly scanned Accuracy
ZeuScansion 7076 5999 86.78%
Scandroid 7076 6353 89.78%

We evaluate our system by checking the error rate obtained by
using Levenshtein distance comparing ZeuScansion’s output for each
line of the analyzed poem against the gold standard scansion. We do
this in order not to penalize missing or superfluous syllables, which
are sometimes present, with more than 1 count. For example, this line
from Longfellow’s poem The song of Hiawatha,

sent the wildgoose wawa northward
written in trochaic tetrameter, should be scanned as

'-'-'-'-

while our tool marks the line in question as
'-?'-'-

after conversion to using only two levels of stress from the original
three-level marking. For the conversion, we consider primarily and
secondarily stressed syllables stressed, and unstressed syllables un-
stressed. With the Levenshtein metric we evaluate the distance be-
tween the analysis proposed by our tool, ZeuScansion, and the gold

[22]

ZeuScansion: A tool for scansion of English poetry

Poem Correctly classified
The song of Hiawatha 32.03%18
Shakespeare’s Sonnets 70.13%

Table 4:
Evaluation of the global analysis
system (only ZeuScansion)

standard. Obviously, any proposed analysis identical to the gold stan-
dard will be assigned a distance of zero. The value that we obtain from
using this distance metric can be interpreted as a minimum number of
errors in the analysis. In the example, ZeuScansion fails to assign the
correct stress pattern to wildgoose, because the word does not appear
in dictionaries and no similarly spelled word can be found. The min-
imum Levenshtein distance between the analysis and the reference is
two, since changing the third ? to a ' and adding a - to the anal-
ysis would produce the stress pattern given for this line in the gold
standard.
We also evaluated the global analysis system using two different

works of poetry. The first one is Longfellow’s The song of Hiawatha
and the second one Shakespeare’s Sonnets. We analyzed the meter
of each sonnet in Shakespeare’s writing (154 sonnets); in the case
of Longfellow’s poem we analyzed each stanza (637 stanzas) sepa-
rately. Shakespeare’s sonnets are written in iambic pentameter and
The song of Hiawatha in trochaic tetrameter. Table 4 reports the accu-
racy on this task.
8.1 Out-of-vocabulary word-stress guesser
Since the out-of-vocabulary word-stress guesser impacts on the over-
all quality of the system, we have evaluated that component sepa-
rately. ZeuScansion only uses the similarity approach for the out-of-
vocabulary word-stress guessing process. However, we intend to in-
clude the linguistic and machine learning approaches in the future as
they achieve better results.
The NETtalk pronunciation dictionary was used for evaluating

this phase. As some of the methods for stress assignment are data-
driven and others not, we evaluated them slightly differently. Both the
similarity approach and machine learning approach were evaluated
using 10-fold cross-validation. The linguistic approach, however, was
evaluated against the whole corpus without any splitting, as it does

1844.58% were classified as amphibraic dimeter.

[23]

M. Agirrezabal et al.
Table 5:

Evaluation results for the
out-of-vocabulary word-stress guesser

Accuracy
FST-based approach 67.77%
Linguistic approach 73.62%
Machine Learning approach 70.98%

not rely on any training data and is essentially an expert system. The
results are shown in Table 5.
The highest accuracy is achieved by the linguistic generalization;

however, both the results for using SVMs and those for using hand-
encoded generalizations are sufficiently close to warrant further re-
search in the improvement of both.

9 discussion and future work

In this article, we have presented a basic system for scansion of English
poetry. The evaluation results are promising: a qualitative analysis of
the remaining errors reveals that the system, while still containing
errors vis-à-vis human expert judgements, makes very few egregious
errors. We expect to develop the system further in several respects.
We intend to apply new stress-guessing algorithms in ZeuScansion

that yield better results. We believe that the general results of the
system will improve slightly.
We also plan to add statistical information about the global prop-

erties of poems to resolve uncertain cases in a manner consistent with
the overall structure of a given poem. Such additions could resolve am-
biguous lines and try to make them fit the global pattern of a poem.
What we have in mind is the replacement of the part-of-speech tag-
ging process by a deterministic FST-based tagger such as Brill’s tagger
(Roche and Schabes 1995). This would allow the representation of
the entire tool as a single finite-state transducer composed of several
subparts. Under such a model, however, we would not be able to use
other word-stress guessing algorithms than the similarity approach. In
the short term, we also expect to tackle improvements regarding the
possibility of analyzing mixed-length lines.
We believe that the availability of a gold-standard corpus of ex-

pert scansion offers a valuable improvement in the quantitative assess-
ment of the performance of future systems and modifications.

[24]

ZeuScansion: A tool for scansion of English poetry

As noted in Agirrezabal et al. (2014), there is still room for im-
provement in the out-of-vocabulary word-stress allocation systems.
One of the main issues is the addition of information about the part
of speech to the learning corpus. This is necessary because disyllabic
words, which are quite frequent, tend to behave differently along the
lines of noun–verb distinction.19 We believe that with this improve-
ment the accuracy of the linguistic and the machine learning paradigm
might see significant gains in accuracy.
To conclude, as our main research project involves both poetry

analysis and generation, we intend to use this implementation in the
generation of poetry using morphosyntactic patterns following the
philosophy of Agirrezabal et al. (2013).

acknowledgments

The first author’s work is funded by a PhD grant from the University of
the Basque Country and supported by the Association of the Friends of
Bertsolaritza. We are also grateful to the University of Delaware, where
part of this work was undertaken in the Department of Linguistics and
Cognitive Sciences. We especially acknowledge the help of professor
Jeffrey Heinz. The help of Herbert Tucker, author of the For Better For
Verse project, has been fundamental to evaluate our system. We also
want to extend thanks to the Scholar’s Lab, an arm of the University of
Virginia Library, maintainers of For Better For Verse. Joseph Gilbert
and Bethany Nowviskie have been most steadily helpful there.

references
Manex Agirrezabal, Bertol Arrieta, Aitzol Astigarraga, and Mans
Hulden (2013), POS-tag based poetry generation with WordNet, Proceedings of
the 2013 European Workshop on Natural Language Generation, pp. 162–166.
Manex Agirrezabal, Jeffrey Heinz, Mans Hulden, and Bertol Arrieta
(2014), Assigning stress to out-of-vocabulary words: three approaches,
International Conference on Artificial Intelligence, 27:105–110.
Wystan H. Auden (1960), The more loving one,
https://www.poets.org/poetsorg/poem/more-loving-one.

19 If the word is a noun, the stress goes on the first syllable, e.g., récord. If it
is a verb, the second syllable is stressed, e.g. recórd.

[25]

M. Agirrezabal et al.

Kenneth R. Beesley and Lauri Karttunen (2003), Finite-state morphology:
Xerox tools and techniques, CSLI.
Terry V. F. Brogan (1981), English versification, 1570-1980: a reference guide
with a global appendix, Johns Hopkins University Press.
Lewis Carroll (1869), Phantasmagoria and Other Poems, London : Macmillan,
https://archive.org/details/phantasmagoriaot00carrrich.
Lewis Carroll (1916), Alice’s Adventures in Wonderland and Through the
Looking Glass, George W. Jacobs & Company, Philadelphia.
Chih-Chung Chang and Chih-Jen Lin (2011), LIBSVM: A library for support
vector machines, ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Noam Chomsky and Morris Halle (1968), The sound pattern of English, Harper
& Row.
Alfred Corn (1997), The poem’s heartbeat: a manual of prosody, Copper Canyon
Press.
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin (2008), LIBLINEAR: A library for large linear classification, The
Journal of Machine Learning Research, 9:1871–1874, software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear.
Robert Frost (1979), The poetry of Robert Frost: the collected poems, complete
and unabridged, Henry Holt and Company.
Paul Fussell (1965), Poetic meter and poetic form, McGraw Hill.
Natalie Gerber (2013), Stress-based metrics revisited: a comparative exercise
in scansion systems and their implications for iambic pentameter, Thinking
Verse, III:131–168.
Erica Greene, Tugba Bodrumlu, and Kevin Knight (2010), Automatic
analysis of rhythmic poetry with applications to generation and translation, in
Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pp. 524–533.
Peter L. Groves (1998), Strange music: the metre of the English heroic line,
volume 74 of ELS Monograph Series, English Literary Studies, University of
Victoria.
Péter Halácsy, András Kornai, and Csaba Oravecz (2007), HunPos: an
open source trigram tagger, in Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (Interactive Poster and Demonstration
Sessions), pp. 209–212.
Morris Halle and Jean-Roger Vergnaud (1987), An essay on stress, MIT Press.
Michael Hart (1971), Project Gutenberg, https://www.gutenberg.org/.

[26]

ZeuScansion: A tool for scansion of English poetry

Charles O. Hartman (1996), Virtual muse: experiments in computer poetry,
Wesleyan University Press.
Charles O. Hartman (2005), The Scandroid 1.1,
http://oak.conncoll.edu/cohar/Programs.htm.
Mans Hulden (2006), Finite-state syllabification, in Anssi Yli-Jyrä, Lauri
Karttunen, and Juhani Karhumäki, editors, Finite-State Methods and Natural
Language Processing, volume 4002 of Lecture Notes in Computer Science,
pp. 86–96, Springer.
Mans Hulden (2009), Foma: a finite-state compiler and library, in Proceedings
of the 12th Conference of the European Chapter of the Association for
Computational Linguistics (Demonstrations Session), pp. 29–32.
Harry M. Logan (1988), Computer analysis of sound and meter in poetry,
College Literature, 15(1):19–24.
Henry W. Longfellow (1855), The Song of Hiawatha, David Bogue,
https://archive.org/details/songhiawathathe00longrich.
Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini
(1993), Building a large annotated corpus of English: the Penn Treebank,
Computational Linguistics, 19(2):313–330.
William G. M. McAleese (2007), Improving scansion with syntax: an
investigation into the effectiveness of a syntactic analysis of poetry by computer
using phonological scansion theory, Technical report, Department of Computing
Faculty of Mathematics, Computing and Technology The Open University.
Harriet Monroe (1917), The new poetry: an anthology, The Macmillan
Company, https://archive.org/details/newpoetryananth01hendgoog.
Augustus T. Murray (1925), Homer: The Iliad, Heinemann,
https://archive.org/details/iliadmurray01homeuoft.
Josef Novak, Nobuaki Minematsu, and Keikichi Hirose (2012),
WFST-based grapheme-to-phoneme conversion: open source tools for
alignment, model-building and decoding, in Proceedings of the 10th Internaltional
Workshop on Finite-State Methods and Natural Language Processing, pp. 45–49.
Marc R. Plamondon (2006), Virtual verse analysis: analysing patterns in
poetry, Literary and Linguistic Computing, 21(1):127–141.
Margaret Robertson, editor (2007), Poems published in 1820 by John Keats,
Project Gutenberg, http://www.gutenberg.org/ebooks/23684.
Emmanuel Roche and Yves Schabes (1995), Deterministic part-of-speech
tagging with finite-state transducers, Computational Linguistics, 21(2):227–253.
David E. Rumelhart and James L. McClelland (1985), On learning the
past tenses of English verbs, Technical report, Institute for Cognitive Science,
University of California, San Diego.

[27]

M. Agirrezabal et al.

Terrence J. Sejnowski and Charles R. Rosenberg (1987), Parallel networks
that learn to pronounce English text, Complex Systems, 1(1):145–168.
William Shakespeare (1806), Romeo and Juliet, John Cawthorn.
William Shakespeare (1904), The tragedy of Hamlet, Cambridge University
Press.
William Shakespeare (2011), Shakespeare’s sonnets, Project Gutenberg,
https://archive.org/details/shakespearessonn01041gut.
Timothy Steele (1999), All the fun’s in how you say a thing: an explanation of
meter and versification, Ohio University Press.
Wallace Stevens (1923), Harmonium, Academy of American Poets.
Herbert F. Tucker (2011), Poetic data and the news from poems: a *For Better
for Verse* memoir, Victorian Poetry, 49(2):267–281.
Robert L. Weide (1998), The CMU pronunciation dictionary, release 0.6,
Carnegie Mellon University.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[28]

On regular languages over power sets

Tim Fernando
Trinity College Dublin, Ireland

abstract

Keywords:
regular language,
power set, MSO,
institution

The power set of a finite set is used as the alphabet of a string interpret-
ing a sentence of Monadic Second-Order Logic so that the string can be
reduced (in straightforward ways) to the symbols occurring in the sen-
tence. Simple extensions to regular expressions are described match-
ing the succinctness of Monadic Second-Order Logic. A link to Goguen
and Burstall’s notion of an institution is forged, and applied to con-
ceptions within natural language semantics of time based on change.
Various reductions of strings are described, along which models can
be miniaturized as strings.

1 introduction

Working with more than one alphabet is established practice in finite-
state language processing, attested by the popularity of auxiliary sym-
bols (e.g., Kaplan and Kay 1994; Beesley and Karttunen 2003; Yli-Jyrä
and Koskenniemi 2004; Hulden 2009). To avoid choosing an alphabet
prematurely, implementations commonly treat the alphabet Σ as a dy-
namic entity that is left underspecified before the finite automaton is
constructed in full.1 Fixing Σ is not always necessary to determine
the language denoted by an expression. This is the case with regular
expressions; the expression ; denotes the empty set for any alpha-
bet Σ, and the expression ab denotes the singleton set {ab} for any
alphabet Σ ⊇ {a, b}. Beyond regular expressions, however, there are
expressions that denote different languages given different choices of

1 I am indebted to an anonymous referee for raising this point.

Journal of Language Modelling Vol 4, No 1 (2016), pp. 29–56

Tim Fernando

the alphabet Σ. Consider ab’s negation (or complement) ab, which
denotes a language

Σ∗ − {ab} = {s ∈ Σ∗ | s ̸= ab}
that is regular iff Σ is a finite set. To delay fixing Σ to some finite set
is to leave open just what the denotation Σ∗ − {ab} of ab is. Relative
to an alphabet Σ, a symbol c, understood as a string of length one,
belongs to that denotation if and only if c ∈ Σ. (Σ contains any symbol,
including c, in the open alphabet system implemented in Beesley and
Karttunen 2003.)

Apart from negations, there are many more extensions to regular
expressions describing denotations that vary with the choice of alpha-
bet. Consider the sentences of Monadic Second-Order Logic (MSO),
which, under a model-theoretic interpretation against strings, capture
the regular languages, by a fundamental theorem due independently
to Büchi, Elgot and Trakhtenbrot (e.g., Theorem 3.2.11, page 145 in
Grädel 2007; Theorem 7.21, page 124 in Libkin 2010). Leaving the
precise details of MSO for Section 2 below, suffice it to say (for now)
that occurrences of a string symbol a are encoded in a unary predi-
cate symbol Pa for an MSO-sentence such as ∀x Pa(x), saying a occurs
at every string position (satisfied by the string aaa but not by the string
ab unless a = b). We can check if a string over any finite alphabet Σ
(hereafter, a Σ-string) satisfies an MSO-sentence φ, but the computa-
tion gets costlier as Σ is enlarged. Surely, however, only the symbols
that appear in φ matter in satisfying φ or its negation? To investigate
this question, let the vocabulary of φ be the set

voc(φ) := {a | Pa occurs in φ}
of subscripts of unary predicate symbols appearing in φ. (For example,
∀x Pa(x)’s vocabulary voc(∀x Pa(x)) is {a}.) Now the question is: can
we not reduce satisfaction of φ by a Σ-string to satisfaction of φ by a
voc(φ)-string? A simple form such a reduction might take is a function
f : Σ∗ → voc(φ)∗ mapping a Σ-string s to a voc(φ)-string f (s) that
satisfies φ if and only if s does

s |= φ ⇐⇒ f (s) |= φ. (1)
Unfortunately, already forφ equal to ∀x Pa(x) andΣ to {a, b}, it is clear
no such function f can exist; the lefthand side of (1) fails for s = ab,

[30]

On regular languages over power sets

whereas the righthand side cannot: an |= ∀x Pa(x) for all integers n≥ 0.
Evidently, voc(φ)∗ is too small to provide the variation necessary for
the reduction (1). Enter (2voc(φ))∗, where the power set 2A of a set
A is the set of all subsets of A. For any MSO-sentence φ and string
s = α1 · · ·αn of sets αi, we intersect s componentwise with voc(φ) for
the 2voc(φ)-string

ρvoc(φ)(α1 · · ·αn) := (α1 ∩ voc(φ)) · · · (αn ∩ voc(φ)).
Then for any finite set Σ, we let MSOΣ be the set of MSO-sentences
with vocabulary contained in Σ

MSOΣ := {φ | φ is an MSO-sentence and voc(φ) ⊆ Σ}
and interpret sentences φ ∈ MSOΣ relative to 2Σ-strings s using a bi-
nary relation |=Σ (defined in Section 2) such that

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ. (2)
The subscripts Σ and voc(φ) on |= in the lefthand and righthand sides
of (2) track the reduction effected by ρvoc(φ) but could otherwise be
dropped, had we not already used |= for the satisfaction relation men-
tioned in (1). Fixing φ’s denotation relative to Σ as the set

LΣ(φ) =
�
s ∈ (2Σ)∗ | s |=Σ φ

	
of 2Σ-strings that |=Σ-satisfy φ, we may conclude from (2) that
(†) whatever finite set Σwe use to fix the denotation of φ, it all comes

down to voc(φ).
Our argument for (†) via (2) rests on modifying MSO-satisfaction |= as
it is usually presented overΣ-strings (e.g., Libkin 2010) to one |=Σ over
2Σ-strings. Without appealing to (†), which might be made precise
some other way, we motivate the step from Σ to 2Σ in our presentation
of MSO-models in Section 2, showing, among other things, how that
step clarifies what predication and quantification amount to on strings
(essentially, preimages and images under ρvoc(φ)).

Beyond MSO, the reduction (2) is an instance of a general condi-
tion built into an abstract model-theoretic approach to specification
and programming based on institutions (Goguen and Burstall 1992).
We adopt this perspective to generalize (2) in Section 3 from ρvoc(φ)

[31]

Tim Fernando

to functions on strings of sets, manipulating not only the vocabulary
but also the length of strings (yielding, at the limit, infinite strings). At
the center of this perspective are declarative methods for specifying
sets of strings over different alphabets. We focus on methods, includ-
ing but not limited to MSO, where the alphabets are power sets 2Σ of
finite sets Σ.

A multiplicity of such alphabets is useful in the semantics of tense
and aspect to measure time at different bounded granularitiesΣ, track-
ing finite sets of unary predicates named in Σ. Consider, for instance,
Reichenbach’s well-known account based on a reference time R, an
event time E and a speech time S (Reichenbach 1947). We can picture
various temporal relations between an event and a speech as strings
of boxes that may or may not contain E or S. For example, the string
E S portrays S after E (much like a film or comic strip), which we can
verbalize using the simple past or the present perfect, illustrated by (a)
and (b) respectively (where the event with time E is Ed’s exhalation).
(a) Ed exhaled.
(b) Ed has exhaled.

To represent the difference between (a) and (b), we bring the
reference time R into the picture, expanding Σ= {E,S} to Σ= {R,E,S}
with
(‡) R,E S for the simple past (a), and

E R,S for the present perfect (b),
where a box is drawn instead of the usual curly braces {, } for a set
construed as a symbol in a string of sets. The difference brought out
in (‡) carries significance for anaphora (e.g., Kamp and Reyle 1993,
where R is split many ways) and event structure (including an event’s
consequent state, in Moens and Steedman 1988). Both strings in (‡)
can be constructed from simpler strings representing a Reichenbachian
analysis of
(i) tense as a relation between R and S, with Σ= {R,S} and

R S for the past (a), and R,S for the present (b)
and

(ii) aspect as a relation between R and E, with Σ= {R,E} and
R,E for the simple (a), and E R for the perfect (b).

[32]

On regular languages over power sets

Complicating the picture, there are finer analyses of E into aspectual
classes going back to Aristotle, Ryle and Vendler (e.g., Dowty 1979)
that call for an expansion of Σ= {R,E,S} to refine the level of granular-
ity (Fernando 2014). A wide ranging hypothesis that the semantics of
tense and aspect is finite-state is defended in Fernando (2015), deploy-
ing regular languages over power sets, of the kind described below.

Applications to temporal semantics aside, the reader expecting
a discussion of finite-state methods applied to phonology, morphol-
ogy and/or syntax should be warned that such a discussion has been
left for someone competent in such matters to take up elsewhere. The
present paper claims neither to be the first nor the last word on regular
languages over power sets. Its aim simply is to show how to get a han-
dle on the dependence of certain declarative methods on the choice
of a finite set Σ of symbols by stepping up to the power set 2Σ of Σ
and reducing a string through some function ρvoc(φ) or other. MSO
provides an obvious point of departure (Section 2), leading to further
declarative methods (Section 3).

2 mso and related extensions of regular
expressions

It is convenient to fix an infinite set Z of symbols a that can appear in
unary predicate symbols Pa, from which sentences of MSO are formed.
An MSO-sentence φ can have within it only finitely many unary predi-
cate symbols Pa, allowing us to break MSO up into fragments given by
finite subsets Σ of Z (no single one of which encompasses all of MSO).
In addition to the Pa’s, we assume a binary relation symbol S (for suc-
cessors), from which we can form, for example, the MSO-sentence

∀x
�
Pa(x) ⊃ ∃y(S(x , y)∧ Pb(y))

�
saying that every a-occurrence is succeeded by a b-occurrence. Formal
definitions are given in Subsection 2.1 of a satisfaction relation |=Σ
between (finite) MSOΣ-models andMSOΣ-sentences, built fromMSOΣ-
formulas with free variables analyzed by suitable expansions of Σ.
These expansions are undone by functions ρΣ on strings that arguably
provide the key to predication and quantification over strings. Indeed,
the ρΣ’s pave an easy route to the regularity of MSO, as we show in
Subsection 2.2. The functions can be tweaked for useful extensions

[33]

Tim Fernando

in Subsection 2.3 of regular expressions, and declarative methods in
Section 3 that, like our presentation of MSO via |=Σ, meet abstract
requirements from Goguen and Burstall (1992).

In what follows, we write Fin(A) for the set of finite subsets of a
set A. Often but not always, A is Z .
2.1 MSO-models, formulas and satisfaction
We restrict our attention to finite models, defining for any integer
n≥ 0, [n] to be the set of integers from 1 to n,

[n] := {1, 2, . . . , n}
and Sn to be the successor (next) relation from i to i+1 for i ∈ [n−1]

Sn := {(1, 2), (2,3), . . . , (n− 1, n)} .
Given Σ ∈ Fin(Z), let us agree that an MSOΣ-model M is a tuple

〈[n], Sn, {[[Pa]]}a∈Σ〉
for some integer n ≥ 0,2 such that for each a ∈ Σ, [[Pa]] is a subset
of [n] interpreting the unary relation symbol Pa. For A ⊆ Σ, the A-
reduct of M is the MSOA-model 〈[n], Sn, {[[Pa]]}a∈A〉, keeping only the
interpretations [[Pa]] for a ∈ A.

There is a simple bijection str from MSOΣ-models to 2Σ-strings,
picturing an MSOΣ-model M = 〈[n], Sn, {[[Pa]]}a∈Σ〉 as the 2Σ-string
str(M) = α1 · · ·αn with

αi := {a ∈ Σ | i ∈ [[Pa]]} (for i ∈ [n]),
which inverts to

[[Pa]] = {i ∈ [n] | a ∈ αi} (for a ∈ Σ).
For example, if Σ = {a, b} and M is
[4], S4, {[[Pc]]}c∈Σ

� with [[Pa]] =
{1, 2} and [[Pb]] = {1,3}, then

str(M) = a, b a b

(with αi boxed, as noted in the introduction, to mark them out as string
symbols). Strings of boxes with exactly one a ∈ Σ embed Σ∗ into (2Σ)∗;
let ι : Σ∗→ (2Σ)∗ map a1 · · · an ∈ Σn to

ι(a1 · · · an) := a1 · · · an .

2We follow Libkin (2010) in allowing a model to have an empty do-
main/universe.

[34]

On regular languages over power sets

An advantage in working with (2Σ)∗ rather than Σ∗ is that we can
intersect a 2Σ-string α1 · · ·αn componentwise with any subset A of Σ
for the 2A-string

ρA(α1 · · ·αn) := (α1 ∩ A) · · · (αn ∩ A)

(generalizing ρvoc(φ) in the introduction). The A-reduct of the MSOΣ-
model given by the string α1 · · ·αn is represented by ρA(α1 · · ·αn); i.e.,
for any MSOΣ-model M and MSOA-model M ′,

ρA(str(M)) = str(M ′) ⇐⇒ M ′ is the A-reduct of M .

The difference between an MSOΣ-model M and the string str(M) is so
slight that we can confuse M harmlessly with str(M) and refer to a
2Σ-string as an MSOΣ-model.

To form MSO-formulas with free variables, let us fix an infinite
set Var disjoint from Z , Var ∩ Z = ;, treating each x ∈ Var as a first-
order variable. Given finite subsets Σ of Z and V of Var, we define a
MSOΣ,V -model to be a 2Σ∪V -string in which each x ∈ V occurs exactly
once, and collect these in the set ModV (Σ)

ModV (Σ) :=
¦

s ∈ (2Σ∪V)∗ | (∀x ∈ V) ρ{x}(s) ∈ ∗
x
∗©

.

We define the setMSOΣ,V of MSOΣ-formulas φ with free variables in V
by induction, alongside sets LΣ,V (φ) of strings in ModV (Σ) that satisfy
φ, determining a satisfaction relation

|=Σ,V ⊆ ModV (Σ)×MSOΣ,V

between strings s ∈ModV (Σ) and formulas φ ∈MSOΣ,V according to
s |=Σ,V φ ⇐⇒ s ∈ LΣ,V (φ).

The inductive definition consists of six clauses.
(a) If {x , y} ⊆ V , then x = y and S(x , y) are in MSOΣ,V , with x = y

satisfied by strings in ModV (Σ) where x and y occur in the same
position

LΣ,V (x = y) :=
¦

s ∈ModV (Σ) | ρ{x ,y}(s) ∈ ∗
x , y

∗©
and S(x , y) satisfied by strings in ModV (Σ) where x occurs imme-
diately before y

LΣ,V (S(x , y)) :=
¦

s ∈ModV (Σ) | ρ{x ,y}(s) ∈ ∗
x y

∗©
.

[35]

Tim Fernando

(b) If a ∈ Σ and x ∈ V , then Pa(x) is in MSOΣ,V and is satisfied by
strings in ModV (Σ) where the occurrence of x coincides with one
of a

LΣ,V (Pa(x))

:=
¦

s ∈ModV (Σ) | ρ{a,x}(s) ∈
¦

, a
©∗

a, x
¦

, a
©∗©

.

(c) If φ ∈ MSOΣ,V then so is ¬φ with ¬φ satisfied by strings in
ModV (Σ) that do not satisfy φ

LΣ,V (¬φ) := ModV (Σ)−LΣ,V (φ).

(d) If φ and ψ are in MSOΣ,V then so is φ∧ψ with φ∧ψ satisfied by
strings in ModV (Σ) that satisfy both φ and ψ

LΣ,V (φ ∧ψ) := LΣ,V (φ)∩LΣ,V (ψ).

For quantification, we must be careful that a variable can be reused,
as in

Pb(x)∧ ∃x Pa(x),

which is equivalent to Pb(x)∧∃yPa(y) since ∃x Pa(x) and ∃yPa(y) are.3
To cater for reuse of q ∈ Var∪ Z , we define an equivalence relation ∼q

between strings s and s′ of sets that differ at most on q, putting
s′ ∼q s ⇐⇒ ρ̂q(s

′) = ρ̂q(s),

where the function ρ̂q removes q from a string α1 · · ·αn of sets
ρ̂q(α1 · · ·αn) := (α1 − {q}) · · · (αn − {q}).

We can now state the last two clauses of our inductive definition of
MSOΣ,V and LΣ,V (φ).
(e) If φ ∈ MSOΣ,V∪{x} then ∃xφ is in MSOΣ,V with ∃xφ satis-

fied by strings in ModV (Σ) that are ∼x -equivalent to strings in
ModV∪{x}(Σ) satisfying φ :
LΣ,V (∃xφ) :=

�
s ∈ModV (Σ) | (∃s′ ∈ LΣ,V∪{x}(φ)) s′ ∼x s

	
,

which simplifies in case x is not reused
LΣ,V (∃xφ) =

�
ρΣ∪V (s) | s ∈ LΣ,V∪{x}(φ)

	 if x ̸∈ V.
3We can always avoid reuse in finite formulas, working with finitely many

variables.

[36]

On regular languages over power sets

(f) If φ ∈ MSOΣ∪{a},V then ∃Paφ is in MSOΣ,V with ∃Paφ satisfied by
strings in ModV (Σ) that are ∼a-equivalent to strings in ModV (Σ∪
{a}) satisfying φ :
LΣ,V (∃Paφ) :=

�
s ∈ModV (Σ) | (∃s′ ∈ LΣ∪{a},V (φ)) s′ ∼a s

	
,

which simplifies in case Pa is not reused
LΣ,V (∃Paφ) =

�
ρΣ∪V (s) | s ∈ LΣ∪{a},V (φ)

	 if a ̸∈ Σ.

We adopt the usual abbreviations: φ ∨ ψ for ¬(¬φ ∧ ¬ψ), ∀xφ for
¬∃x¬φ, etc. Also, we render second-order quantification ∃Pa as ∃X ,
writing ∃Xφ for ∃Paφ

X
a where a does not occur in φ, and φX

a is φ
with Pa replacing every occurrence of X . For example, we can express
x < y as ∃X (X (y) ∧ ¬X (x) ∧ closed(X)) where closed(X) abbreviates
∀x∀y(X (x)∧ S(x , y) ⊃ X (y)), which we can picture as

L{a},;(closed(Pa)) =
∗

a
∗

for the picture
L;,{x ,y} (∃Pa(Pa(y)∧¬Pa(x)∧ closed(Pa)))

=
�
ρ{x ,y}(s) | s ∈ L{a},{x ,y}(Pa(y)∧¬Pa(x)∧ closed(Pa))

	
=
¦
ρ{x ,y}(s) | s ∈ ∗

x
∗ ∗

a
∗

a, y a
∗©

=
∗

x
∗

y
∗

of x < y.
Next comes the pay-off in interpreting MSO-sentences over not

just Z-strings but strings of sets. An easy proof by induction on φ ∈
MSOΣ,V establishes
Proposition 1 Let Σ ∈ Fin(Z) and V ∈ Fin(Var). Then for all sets A⊆ Σ
and U ⊆ V ,

MSOA,U ⊆ MSOΣ,V

and for all φ ∈MSOA,U ,
LΣ,V (φ) =
�
s ∈ModV (Σ) | ρA∪U(s) ∈ LA,U(φ)

	
.

To pick out MSOΣ,V -formulas with no free variables, we let V = ; for
the set

MSOΣ = MSOΣ,;

[37]

Tim Fernando

of MSOΣ-sentences, and write |=Σ for |=Σ,;, and LΣ(φ) for LΣ,;(φ)
(where φ ∈ MSOΣ). An immediate corollary to Proposition 1 is that
for all φ ∈MSOΣ and s ∈Mod;(Σ) = (2Σ)∗,

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ (2)
where voc(φ) is the smallest subset A of Z such that φ ∈MSOA

voc(φ) =
∩ {A∈ Fin(Z) | φ ∈MSOA}

(sharpening the description of voc(φ) in the introduction).
2.2 Regularity
For any finite sets A and B, the restriction

ρB
A := ρA ∩
�
(2B)∗ × (2B)∗
�

of ρA to (2B)∗ is a regular relation – i.e. computed by a finite-state
transducer (with one state, mapping α ⊆ B to α∩A). For the preimage
(or inverse image) of a language L under a relation R, we borrow the
notation

〈R〉 L :=
�
s | (∃s′ ∈ L) sRs′

	
from dynamic logic, instead of R−1 L which becomes awkward for long
R’s. We can then rephrase the definition of ModV (Σ) as

ModV (Σ) =
∩
x∈V

¬
ρΣ∪V{x}
¶ ∗

x
∗
. (3)

Similarly we have
LΣ,V (S(x , y)) = ModV (Σ)∩

¬
ρΣ∪V{x ,y}
¶ ∗

x y
∗ for x , y ∈ V

and writing θ B
A for the inverse of ρB

A ,

LΣ,V (∃xφ) = ModV (Σ)∩
¬
ρΣ∪V
Σ∪V−{x}
¶ ¬
θ
Σ∪V∪{x}
Σ∪V−{x}
¶ LΣ,V∪{x}(φ)

= ModV (Σ)∩
¬
θ
Σ∪V∪{x}
Σ∪V

¶ LΣ,V∪{x}(φ) for x ̸∈ V.

As regular languages are closed under intersection, complementation
and preimages under regular relations (which are themselves closed
under inverses), it follows that

[38]

On regular languages over power sets

Proposition 2 For every Σ ∈ Fin(Z), V ∈ Fin(Var) and φ ∈MSOΣ,V , the
set LΣ,V (φ) of strings in ModV (Σ) that satisfy φ is a regular language.
The aforementioned Büchi–Elgot–Trakhtenbrot theorem (BET) side-
steps free variables, making do with MSOΣ = MSOΣ,; and a fragment
|=Σ ⊆ Σ∗ ×MSOΣ of |=Σ ⊆ (2Σ)∗ ×MSOΣ given by Σ-strings s and φ ∈
MSOΣ such that

s |=Σ φ ⇐⇒ ι(s) |=Σ φ
(recalling from Subsection 2.1 that ι(a1 · · · an) = a1 · · · an for
a1 · · · an ∈ Σn). A language L ⊆ Σ∗ is then characterized by BET as
regular iff for some sentence φ ∈MSOΣ,

L =
�
s ∈ Σ∗ | s |=Σ φ	 .

There is a sense in which the difference between s and ι(s) is purely
cosmetic; a simple one-state finite-state transducer computes ι. But
the MSOΣ-sentences valid in |=Σ need not be valid in |=Σ; take the
MSOΣ-sentence

spec(Σ) := ∀x
∨
a∈Σ

�
Pa(x)∧
∧

a′∈Σ−{a}
¬Pa′(x)
�

specifying in every string position x , exactly one symbol a from Σ.
BET effectively presupposes spec(Σ) to extract from φ ∈ MSOΣ the
regular language {s ∈ Σ∗ | ι(s) |=Σ φ} over Σ, rather than the full
regular language LΣ(φ) over 2Σ from Proposition 2. To represent a
regular language over 2Σ, BET provides a sentence not inMSOΣ but in
MSO2Σ , which we can translate into MSOΣ by replacing every subfor-
mula Pα(x) (for α ⊆ Σ) with the conjunction∧

a∈α
Pa(x) ∧
∧

a′∈Σ−α
¬Pa′(x)

in MSOΣ,{x} interpretable by |=Σ,V .4 Insofar as computations are car-
ried out on syntactic representations (e.g., MSO-formulas) rather than
on semantic models (designed largely as theoretical aids to under-
standing), the explosion from Σ to 2Σ is computationally worrying
in the syntactic step from MSOΣ to MSO2Σ rather than in the semantic
enrichment of Σ∗ to (2Σ)∗.

4Conversely, we can translate MSOΣ to MSO2Σ by replacing subformulas
Pa(x), for a ∈ Σ, with the disjunction ∨{Pα(x) | α ⊆ Σ and a ∈ α} in MSO2Σ ,{x}.

[39]

Tim Fernando

Underlying Proposition 2 is a recipe from MSOΣ,V to the regular
expressions

L;,{x ,y}(x = y) =
∗

x , y
∗

L;,{x ,y}(S(x , y)) =
∗

x y
∗

L{a},{x}(Pa(x)) =
¦

, a
©∗

a, x
¦

, a
©∗

closed under conjunction, complementation and preimages under ρB
A

and θ B
A . These extended regular expressions are as succinct as the for-

mulas in MSOΣ,V they represent (up to a constant factor). That said,
if we take the example of spec(Σ), we can simplify the recipe for
LΣ(spec(Σ)) considerably to the image of Σ∗ under ι

LΣ(spec(Σ)) =
¦

a | a ∈ Σ©∗
linear in the size of Σ (as opposed to spec(Σ) with quadratically many
occurrences of the variable x). The representability of regular lan-
guages by regular expressions in general (i.e., Kleene’s theorem) raises
the question: what useful finite-state tools does MSO add to the usual
regular operations? Apart from intersection and complementation (the
usual extensions to regular expressions), one tool that MSOΣ intro-
duces is the idea of a string as a model, the proper formulation of
which blows Σ up to its power set 2Σ (to represent all finite MSOΣ-
models, whether or not they satisfy spec(Σ)). Exploiting that blow up,
we can define regular relations such as ρB

A under which preimages of
regular languages are also regular. We modify the relations ρB

A in the
next subsection, Subsection 2.3, examining the MSO representation
of accepting runs of a finite automaton, which is demonstrably more
succinct than any available with regular expressions.

2.3 Some parts and sorts
Using sets as symbols provides a ready approach to meronymy (i.e.,
parts); we drop the subscript A on ρA for the non-deterministic relation
⊵ of componentwise inclusion between strings of the same length

α1 · · ·αn ⊵ β1 · · ·βm ⇐⇒ n= m and αi ⊇ βi for i ∈ [n]
called subsumption in Fernando (2004). For example, s ⊵ ρA(s) for all
strings s of sets. A part of reduced length can be obtained by truncating

[40]

On regular languages over power sets

a string s from the front for a suffix s′

s suffix s′ ⇐⇒ (∃s′′) s = s′′s′

or from the back for a prefix s′

s prefix s′ ⇐⇒ (∃s′′) s = s′s′′.

We can then compose the relations ⊵, suffix and prefix for a notion ⊒
of containment

s ⊒ s′ ⇐⇒ (∃s1, s2) s ⊵ s1 and s1 suffix s2 and s2 prefix s′

⇐⇒ (∃u, v) s ⊵ us′v

between strings of possibly different lengths. For every atomic
MSOΣ,V -formula φ, the satisfaction set LΣ,V (φ) consists of the strings
in ModV (Σ) with characteristic ⊒-parts, given as follows.
Proposition 3 For all disjoint finite sets Σ and V ,

LΣ,V (x = y) = ModV (Σ)∩ 〈⊒〉 x , y for x , y ∈ V

LΣ,V (S(x , y)) = ModV (Σ)∩ 〈⊒〉 x y for x , y ∈ V

LΣ,V (Pa(x)) = ModV (Σ)∩ 〈⊒〉 a, x for a ∈ Σ, x ∈ V.

Under Proposition 3, each set LΣ,V (φ) is the intersection of ModV (Σ)
with a language 〈⊒〉 sφ, where sφ is a string of length ≤ 2 that pic-
tures φ. The obvious picture of x < y is the set x

∗
y of arbitrarily

long strings

LΣ,V (x < y) = ModV (Σ)∩ 〈⊒〉 x
∗

y for x , y ∈ V

which is nonetheless easier to visualize (if not read) than the
MSO;,{x ,y}-formula

∃X (X (y)∧¬X (x)∧ (∀u, v) (X (u)∧ S(u, v) ⊃ X (v)))

expressing x < y. To compress the language x
∗

y to the string
x y , we can replace containment ⊒ by weak containment

⪰ := {(α1 · · ·αn, x1 · · · xn) | x i = ε or x i ⊆ αi for i ∈ [n]}

[41]

Tim Fernando

with deletions (x i equal to the empty string ε) allowed anywhere, not
just in the front or back of α1 · · ·αn or inside any box αi. (For example,
x , a

n
y ⪰ x y for all integers n ≥ 0.) Proposition 3 holds with ⊒

and S(x , y) replaced by ⪰ and x < y respectively

LΣ,V (x = y) = ModV (Σ)∩ 〈⪰〉 x , y for x , y ∈ V

LΣ,V (x < y) = ModV (Σ)∩ 〈⪰〉 x y for x , y ∈ V

LΣ,V (Pa(x)) = ModV (Σ)∩ 〈⪰〉 a, x for a ∈ Σ, x ∈ V.

Whether the part relation R is ⊒ or ⪰,5 what matters for the regularity
of LΣ,V (φ) is that the restriction of R to (2Σ∪V)∗

R ∩ ((2Σ∪V)∗ × (2Σ∪V)∗)

is computable by a finite-state transducer (for all finite sets Σ and V).
Within ModV (Σ) are part relations ρ{x} (for x ∈ V) revealed by the
equation

ModV (Σ) =
∩
x∈V

¬
ρΣ∪V{x}
¶ ∗

x
∗
. (3)

Moving from MSO to finite automata, let us rewrite pairs Σ, V as
pairs A,Q of disjoint finite sets A and Q, and define an (A,Q)-automaton
to be a triple A = (→A , FA , qA) consisting of
(i) a set →A of triples in Q× A×Q specifying A -transitions (where

we write q
a→A q′ instead of (q, a, q′) ∈ →A)

(ii) a set FA ⊆Q of A -final states, and
(iii) an A -initial state qA ∈Q.
Given an (A,Q)-automaton A , an A -accepting run is a string

a1, q1 a2, q2 · · · an, qn ∈ (2A∪Q)∗

such that qA
a1→A q1 and qn ∈ FA and

qi−1
ai→A qi for 1< i ≤ n

5For the present purposes, we can take a part relation to be any fragment R
of ⪰ (i.e., whenever sRs′, s ⪰ s′). Thus, ρA, suffix, prefix, ⊒ and ⪰ are all part
relations.

[42]

On regular languages over power sets

(where for n = 0, the empty string ε is an A -accepting run iff qA ∈
FA). Let AccRuns(A) be the set of A -accepting runs. Clearly, for all
s ∈ A∗,

A accepts s ⇐⇒ (∃s′ ∈ AccRuns(A)) ι(s) = ρA(s
′)

(recalling ι(a1 · · · an) = a1 · · · an). That is, A accepts the language

L (A) = 〈ιA〉

θA∪Q

A

� AccRuns(A)
(recalling θ B

A is the inverse of ρB
A). As for the set AccRuns(A) of

A -accepting runs, we start by collecting strings of pairs from A and
Q in
Pairs(A,Q) :=

∪
n≥0

¦
a1, q1 · · · an, qn | a1 · · · an ∈ An and q1 · · ·qn ∈Qn

©
.

We refine Pairs(A,Q) to AccRuns(A), taking into account
(i) the set Init[A] of strings that start with a pair a, q such that

qA
a⇝A q

Init[A] := 〈prefix〉¦ a, q | qA a⇝A q
©

(ii) the set Final[A] of strings ending with an A -final state

Final[A] := 〈⊵〉 〈suffix〉¦ q | q ∈ FA
©

and
(iii) the set Bad[A] of strings containing q a, q′ for triples (q, a, q′)

outside the set ⇝A of A -transitions

Bad[A] := 〈⊵〉 〈suffix〉 〈prefix〉¦ q a, q′ | (q, a, q′) ∈Q× A×Q

and not q
a⇝A q′
©

.

Note that 〈R〉 〈R′〉 L = 〈R; R′〉 L for all relations R and R′ and sets L,
where R; R′ is the relational composition of R and R′

R; R′ :=
�
(s, s′) | (∃s′′) sRs′′ and s′′R′s′

	
(and containment ⊒ is the relational composition of ⊵, suffix and
prefix).

[43]

Tim Fernando

Proposition 4 For all disjoint finite sets A and Q, and all (A,Q)-automata
A , the set AccRuns(A) of A -accepting runs consists of all strings in
Pairs(A,Q) that belong to Init[A] and Final[A] but not to Bad[A]

AccRuns(A) = Pairs(A,Q)∩ Init[A]∩ Final[A]−Bad[A].
Note that the language Pairs(A,Q) can be formed by defining for any
finite sets C and D, the set

SpecD(C) := LC∪D(spec(C)) =

ρC∪D

C

�¦
c | c ∈ C
©∗

of 2C∪D-strings with exactly one element of C in each box, making
Pairs(A,Q) = SpecQ(A)∩ SpecA(Q).

The language
¦

c | c ∈ C
©
of ρC -parts of strings in SpecD(C) includes

strings of any finite length, whereas all strings a, q , q and q a, q′
pictured in InitA , FinalA and BadA have length ≤ 2. This is one sense
in which the constraint Pairs(A,Q) is global (wide), while Init[A] ∩
Final[A]−Bad[A] is local (narrow). A second sense is that Pairs(A,Q)
captures accepting runs of all (A,Q)-automata, just as ModV (Σ) in
Proposition 3 captures all MSOΣ,V -models. That is, Pairs(A,Q) and
ModV (Σ) are general, sortal constraints that provide a context (or
background) for more specific constraints to differentiate strings of
the same sort; this differentiation is effected in Propositions 4 and 3
by attributes or parts that pick out substrings of length bounded by 2.
Table 1 outlines the situation.

Table 1: sortal (taxonomic) differential (meronymic)
Proposition 3 ModV (Σ) 〈⊒〉 sφ
Proposition 4 Pairs(A,Q) Init[A]∩ Final[A]−Bad[A]

general specific (to φ, A)
length of part unbounded (ρA) bounded (≤ 2)

A further difference between the second and third columns of
Table 1 is that whereas the sortal constraints ModV (Σ) and Pairs(A,Q)
employ deterministic part relations ρA, the differential constraints
〈⊒〉 sφ and Init[A]∩ Final[A]−Bad[A] employ non-deterministic re-
lations ⊒, prefix and the relational composition ⊵; suffix. Although it is

[44]

On regular languages over power sets

clear from Subsection 2.1 that the work done by ⊒, prefix and ⊵; suffix
can be done by ρA, non-determinism nevertheless arises when intro-
ducing existential quantification through the inverse θ B

A of ρB
A (used

for the step from A -accepting runs to the language L (A) accepted
by A). But while ⊒, prefix and ⊵; suffix search inside a string, θ B

A
searches outside. The search by θ B

A is bounded only because the set
B (that serves as its superscript) is finite (with elements of B not in A
amounting to auxiliary symbols).

Non-determinism aside, the relations ⊒, prefix and ⊵; suffix differ
from ρA and its inverse in relating strings of different lengths. Indeed,
Table 1 arose above from the observation that parts with length ≤ 2
suffice for the constraints in the third column. That said, in the next
section, we compress strings deterministically without setting any pre-
determined bounds (such as 2) on the resulting length, for sorts and
parts alike.

3 compression and institutions
Having established through Proposition 1 the reduction

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ (2)
(for all φ ∈MSOΣ and s ∈ (2Σ)∗), we proceeded to part relations other
than ρA in Table 1. The present section calls attention to string func-
tions that can (unlike ρA) shorten a string, pointing the equivalence (2)
and Table 1 in the direction of institutions (Goguen and Burstall 1992).
As the length n of a string determines the domain [n] = {1, . . . , n} of
the model encoded by the string, compression alters ontology over and
above A-reducts produced by ρA.
3.1 From compression to inverse limits
We can strip off empty boxes at the front and back of a string s by
defining

unpad(s) :=

� unpad(s′) if s = s′ or else s = s′
s otherwise

so that unpad(s) neither begins nor ends with , making
∗

x
∗
= 〈unpad〉 x .

[45]

Tim Fernando

Using unpad-preimages, we can eliminate Kleene stars from the right
side of

ModV (Σ) =
∩
x∈V

¬
ρΣ∪V{x}
¶ ∗

x
∗ (3)

and from the extended regular expressions from Proposition 3 for the
sets LΣ,V (φ) of strings satisfying formulas φ ∈ MSOΣ,V . Regular ex-
pressions with complementation instead of Kleene star are known in
the literature as star-free regular expressions, denoting, by a theorem of
McNaughton and Papert, the first-order definable sets (Theorem 7.26,
page 127, Libkin 2010). We can formulate a notion of Σ-extended star-
free expressions matching the regular expressions over 2Σ, but while it
is easy enough to introduce the constructs 〈⊒〉 and 〈unpad〉, we need
subsets and supersets of Σ to relativize complementation and define
the constructs
ρB

A

� and
θ B
A

�, where θ B
A is the inverse of ρB

A . On the
positive side, this complication is potentially interesting as it suggests
a hierarchy between the star-free regular languages and regular lan-
guages over 2Σ. Be that as it may, our present concerns lie elsewhere.

Rather than separating the set Var of first-order variables from
the set Z of subscripts a on unary predicates Pa, we can formulate the
requirement on a symbol a that it occur exactly once in MSO{a}

nom(a) := ∃x∀y(Pa(y)≡ x = y)

characteristic of nominals in the sense of Hybrid Logic (e.g., Braüner
2014, or “world variables” in Prior 1967, pages 187–197), with

L{a}(nom(a)) = 〈unpad〉 a .

From nom(a), it is a small step to the condition interval(a) that a occur
in a string without gaps, which we can express in MSO{a} as

interval(a) := ∃x Pa(x) ∧ ¬∃y gapa(y)

where gapa(y) says a does not occur at position y even though it occurs
before and after y

gapa(y) := ¬Pa(y)∧ ∃u∃v (u< y ∧ y < v ∧ Pa(u)∧ Pa(v))

so that
L{a}(interval(a)) = 〈unpad〉 a

+
. (4)

[46]

On regular languages over power sets

We can eliminate ·+ from the right of (4) by defining a function bc that
given a string s, compresses blocks αn of n> 1 consecutive occurrences
in s of the same symbol α to a single α, leaving s otherwise unchanged

bc(s) :=

bc(αs′) if s = ααs′
α bc(βs′) if s = αβs′ with α ̸= β
s otherwise

so that a
+ is 〈bc〉 a . In general, bc outputs only stutter-free strings,

where a string α1α2 · · ·αn is stutter-free if αi ̸= αi+1 for i from 1 to
n−1. Construing boxes in a string as moments of time, we can view bc
as implementing “McTaggart’s dictum that ‘there could be no time if
nothing changed”’ (Prior 1967, page 85). The restriction of bc to any
finite alphabet is computable by a finite-state transducer, as are, for
all Σ ∈ Fin(Z) and A⊆ Σ, the composition ρΣA ; bc for bcΣA

bcΣA (s) := bc
�
ρΣA (s)
� for s ∈ (2Σ)∗

and the composition bcΣA ;unpad for πΣA
πΣA (s) := unpad�bcΣA (s)

�
= bc
�unpad(ρΣA (s))� for s ∈ (2Σ)∗.

For a ∈ Σ, the (2Σ)-strings in which a is an interval are those that πΣ{a}
maps to a

LΣ(interval(a)) =
¬
πΣ{a}
¶

a .

The functions πΣA compose nicely
whenever A⊆ B ⊆ Σ, πΣA = πΣB ;πB

A (5)
from which it follows that

LΣ
�∧

a∈A

interval(a)� = ∩
a∈A

LΣ(interval(a))
=
∩
a∈A

¬
πΣ{a}
¶

a

=

πΣA
� Interval(A)

where Interval(A) is the πA
A-image of ∩a∈A

¬
πA{a}
¶

a

Interval(A) :=

�
πA

A(s) | s ∈
∩
a∈A

¬
πA{a}
¶

a

�
.

[47]

Tim Fernando

Conflating a string s with the language {s}, observe that Interval({a}) =
a . For a ̸= a′, the set Interval({a, a′}) consists of thirteen strings, one
per interval relation in Allen (1983), which can be partitioned

Interval({a, a′}) = L �a⃝ a′
� ∪ L (a ≺ a′) ∪ L (a′ ≺ a)

between the nine-element set
L �a⃝ a′
�

:=
¦

a , a′ , ε
©

a, a′
¦

a , a′ , ε
©

describing overlap⃝ between a and a′ insofar as for all s ∈ Interval(Σ)
with a, a′ ∈ Σ,

s |=Σ ∃x (Pa(x)∧ Pa′(x)) ⇐⇒ πΣ{a,a′}(s) ∈ L
�
a⃝ a′
�

and the two-element sets
L (a ≺ a′) :=

¦
a a′ , a a′
©

L (a′ ≺ a) :=
¦

a′ a , a′ a
©

describing complete precedence≺ insofar as for all s ∈ Interval(Σ)with
a, a′ ∈ Σ,

s |=Σ ∀x∀y
�
(Pa(x)∧ Pa′(y)) ⊃ x < y

� ⇐⇒ πΣ{a,a′}(s) ∈ L (a ≺ a′)

and similarly for a′ ≺ a. Event structures are built around the rela-
tions⃝ and ≺ in Kamp and Reyle (1993) (pages 667–674) to express
the Russell-Wiener event-based conception of time, a particular elab-
oration of McTaggart’s dictum mentioned above. The sets Interval(A)
above provide representations of finite event structures (Fernando
2011).

Requiring that event structures be finite flies against the popu-
larity of, for instance, the real line R in temporal semantics (e.g.,
Kamp and Reyle 1993, page 670). But we can approximate any in-
finite set Z by its set Fin(Z) of finite subsets, using the inverse system
(Interval(A))A∈F in(Z),
πA,B : Interval(B)→ Interval(A), s 7→ πB

A(s) for A⊆ B ∈ Fin(Z)
for the inverse limit
{a : Fin(Z)→ Fin(Z)∗ | a(A) = πA,B(a(B)) whenever A⊆ B ∈ Fin(Z)}

[48]

On regular languages over power sets

consisting of maps a : Fin(Z) → Fin(Z)∗ that respect the projections
πA,B. An element of that inverse limit, in case R ⊆ Z , is the map aR
such that for all r1 · · · rn ∈ R∗,

aR({r1, r2, . . . , rn}) = r1 r2 · · · rn for r1 < r2 < · · ·< rn

copying R. Notice that compressing strings via πA,B allows us to
lengthen the strings in the inverse limit. If we remove the compression
bc in πA,B, we are left with the map ρA that leaves the ontology intact
(insofar as the domain of an MSO-model is given by the string length),
whilst restricting the vocabulary (for A-reducts).

3.2 From inverse systems to institutions
We have left out from the language Interval({a}) = a the string a
(among many others) that satisfies interval(a), having built unpad into
πA

A. Notice that a is bounded to the left in a

a |={a} ∃x∃y(S(x , y)∧ Pa(y)∧¬Pa(x))

but not in a . The functions πB
A underlying Interval(A) abstract away

information about boundedness, which is fine if we assume in-
tervals are bounded (as in Allen 1983). But what if we wish to
study intervals that may or may not be left-bounded? Or, for that
matter, strings where a may or may not be an interval? The line
we pursue in this subsection harks back to Table 1 at the end of
Section 2, encoding presuppositions in the second column (e.g.,
ModV (Σ)), and assertions in the third column (e.g., 〈⊒〉 sφ). For in-
stance, we presuppose a string s is stutter-free (i.e., s = bc(s)) and
assert that a is an interval in s, to replace Interval(A) by the inter-
section �

bc(s) | s ∈ (2A)∗
	︸ ︷︷ ︸

presupposition
∩ ∩¦¬πA{a}
¶

a | a ∈ A
©︸ ︷︷ ︸

assertion

of which a and a are members, for a ∈ A. More generally, the idea
is to refine the inverse system from the previous subsection to certain
concrete instances of institutions (in the sense of Goguen and Burstall
1992) given by suitable functions on strings.

[49]

Tim Fernando

More precisely, let Z be a large set of symbols, and f be a function
on Fin(Z)-strings (e.g., bc). For any finite subset A of Z , let P f (A) be the
image of (2A)∗ under f

P f (A) := { f (s) | s ∈ (2A)∗}
and let fA be the composition fA = ρA; f

fA(s) := f (ρA(s)) for s ∈ Fin(Z)∗.
Thus, P f (A) is the image of Fin(Z)∗ under fA. More importantly, for
every pair (B, A) of finite subsets of Z such that A ⊆ B, we define the
function P f (B, A) : P f (B)→ P f (A) sending s ∈ P f (B) to fA(s) ∈ P f (A)

P f (B, A)(s) := fA(s) for s ∈ P f (B).

Now, to say P f is an inverse system over Fin(Z) is to require that for
all A∈ Fin(Z),
(c1) P f (A, A) is the identity function on P f (A); i.e.,

fA(f (s)) = f (s) for all s ∈ (2A)∗

and whenever A⊆ B ⊆ C ∈ Fin(Z),
(c2) P f (C , A) is the composition P f (C , B);P f (B, A); i.e.,

fA(f (s)) = fA(fB(f (s))) for all s ∈ (2C)∗.

Functions f validating conditions (c1) and (c2) include the identity
function on Fin(Z)∗ (in which case fA is ρA), unpad and bc (see Fernando
2014, where inverse systems P f are referred to as presheaves). The
condition (c2) reduces to the condition

whenever A⊆ B ⊆ Σ, πΣA = π
Σ
B ;πB

A (5)
from the previous subsection, for f equal to the composition bc;unpad
(meeting also the requirement (c1)). To capture the entry ModV (Σ) in
the second column and row of Table 1 in terms of P f , we must treat a
first-order variable in V as a symbol a ∈ Z (as in the previous subsec-
tion), and build into f both the uniqueness and existence conditions
that nom(a) expresses, for a ∈ V . To ensure that no a ∈ V occur more
than once in a string s, we delete occurrences in s of a after its first,
setting for all α1 · · ·αn ∈ Fin(Z)∗,

[50]

On regular languages over power sets

uV (α1 · · ·αn) := β1 · · ·βn where βi := αi−
�
V ∩

i−1∪
j=1

α j

�
for i ∈ [n].

To ensure each a ∈ V occurs at least once in the string, we put V at
the very end

eV (sα) := s(α∪ V)

with eV (ε) := V for the empty string ε. Now, if f is the composition
eV ; uV then

ModV (Σ) = P f (Σ∪ V)

and (c1) and (c2) hold.
The third column of Table 1 calls for further ingredients. Let us

define a Z-form to be a function sen with domain Fin(Z) mapping A∈
Fin(Z) to a set sen(A) such that for all B ∈ Fin(Z),

sen(A)∩ sen(B) ⊆ sen(A∩ B)

and
sen(A) ⊆ sen(B) whenever A⊆ B.

Given a Z-form sen, we can associate every φ ∈∪{sen(A) | A∈ Fin(Z)}
with the finite subset

voc(φ) =
∩{A∈ Fin(Z) | φ ∈ sen(A)}

of Z such that
φ ∈ sen(A) ⇐⇒ voc(φ) ⊆ A

for all A ∈ Fin(Z). Next, given a function f on Fin(Z)∗ and a Z-form
sen, let us agree that a (f , sen)-specification L is a function with do-
main Fin(Z) mapping A ∈ Fin(Z) to a function LA with domain sen(A)
mapping φ ∈ sen(A) to a set LA(φ) of strings in P f (A). The intuition is
that LA(φ) consists of the strings in P f (A) that A-satisfy φ

s ∈ LA(φ) ⇐⇒ s A-satisfies φ (for all s ∈ P f (A)).

Putting the ingredients together, let us define a (Z , f)-quadriplex to be
a 4-tuple (Fin(Z),P f , sen,L) such that
(i) P f is an inverse system over Fin(Z)
(ii) sen is a Z-form, and
(iii) L is a (f , sen)-specification.

[51]

Tim Fernando

Note that once Z and f are fixed, only the third and fourth compo-
nents sen and L of a (Z , f)-quadriplex (Fin(Z),P f , sen,L) may vary.
To link up with institutions, as defined in Goguen and Burstall (1992),
we view
(i) Fin(Z) as a category with morphisms given by ⊆
(ii) P f as a contravariant functor from Fin(Z) to the category Set of

sets and functions, and
(iii) sen as a (covariant) functor from Fin(Φ) to Set such that whenever

A⊆ B ∈ Fin(Z), sen(A, B) is the inclusion sen(A) ,→ sen(B).
The one remaining condition a (Z , f)-quadriplex must meet to be an
institution is that for all A⊆ B ∈ Fin(Z) and φ ∈ sen(A),

s ∈ LB(φ) ⇐⇒ fA(s) ∈ LA(φ) (for all s ∈ P f (B))

which we can put as the equation
LB(φ) = P f (B)∩ 〈 fA〉 LA(φ).

In fact, the special case A= voc(φ) suffices.
Proposition 5 Given a set Z and function f on Fin(Z)∗, a (Z , f)-
quadriplex (Fin(Z),P f , sen,L) is an institution iff for all Σ ∈ Fin(Z) and
φ ∈ sen(Σ),

LΣ(φ) = P f (Σ)∩

fvoc(φ)

� Lvoc(φ)(φ) . (6)
If f is the identity on Fin(Z)∗, and sen(Σ) is MSOΣ, then (6) becomes
the equivalence

s |=Σ φ ⇐⇒ ρvoc(φ)(s) |=voc(φ) φ (2)
for all φ ∈ MSOΣ and s ∈ (2Σ)∗. (6) also represents the division in
Table 1 between column 2 (P f (Σ)) and column 3 (
 fvoc(φ)

� Lvoc(φ)(φ)),
whilst leaving open the possibility that f is not the identity function
on Fin(Z)∗ nor is φ an MSO-formula.

Under (6), we may assume without loss of generality that sen and
L have the following form. For every Σ ∈ Fin(Z), there is a set Expr(Σ)
of expressions e with denotations [[e]] ⊆ (2Σ)∗ such that sen(Σ) = 2Σ×
Expr(Σ) consists of pairs (A, e) of subsets A ⊆ Σ and e ∈ Expr(Σ) with
voc(A, e) = A and

LΣ(A, e) = P f (Σ)∩ 〈 fA〉 [[e]]. (7)

[52]

On regular languages over power sets

An instructive example is provided by A equal to {a}, and e equal to
the extended regular expression 〈⊒〉 a a or equivalently, the MSO{a}-
sentence

∃x∃y (S(x , y)∧ Pa(x)∧ Pa(y)).

The righthand side of (7) can never hold with f = bc; there is no s ∈
(2Σ)+ such that bc{a}(s) ⊒ a a . A slight revision, however, makes the
right hand side bc-satisfiable; introduce a symbol b ̸= a for A equal to
{a, b} and e equal to 〈⊒〉 a, b a or the MSO{a,b}-sentence

∃x∃y (S(x , y)∧ Pa(x)∧ Pa(y)∧ Pb(x)).

In general, we can neutralize block compression bc on a string s by
adding a fresh symbol to alternating boxes in s, which bc then leaves
unchanged, since

bc(s) = s ⇐⇒ s is stutter-free
(recalling that α1 · · ·αn is stutter-free if αi ̸= αi+1 for 1 ≤ i < n). Simi-
larly, we can add negations a of symbols a in A through a function clA
clA(α1 · · ·αn) := β1 · · ·βn where βi := αi ∪ {a | a ∈ A−αi} for i ∈ [n]
to express bcΣA in terms of πΣB

bcΣA = clA;πΣc(A);ρA where c(A) := A∪ {a | a ∈ A}
treating a ∈ c(A)− A as an auxiliary symbol, and

bcΣA ; clA = clA;πΣc(A).

Returning to (7) with f = bc, we can say a is bounded to the left
LΣ({a},∃x(¬Pa(x)∧∀y(Pa(y) ⊃ x < y))) =

¬
bcΣ{a}
¶ 〈prefix〉

applying prefix after bc, and say a overlaps a′

LΣ({a, a′},∃x(Pa(x)∧ Pa′(x))) =
¬
bcΣ{a,a′}
¶ 〈⊒〉 a, a′

applying containment ⊒ after bc. It is clear that unpad is just one
of many relations that can come after bcΣA (leading, in this case, to
πΣA = bcΣA ;unpad). The projection ρΣA in bcΣA = ρ

Σ
A ; bc changes the gran-

ularity from Σ to A before bc reduces the ontology to suit A, and part

[53]

Tim Fernando

relations (such as prefix, containment ⊒ or unpad) pick out a temporal
span to frame a string (such as or a, a′) picturing an assertion (e.g.,
left-boundeness, overlap). We are dividing here the choice of an ex-
pression eφ denoting the languageLvoc(φ)(φ) in Proposition 5 between
a relation R and a string s for eφ = 〈R〉 s. Such a choice presupposes the
finite approximability of the model of interest via the inverse limit
of P f (the discreteness of strings mirroring the bounded granularity
of natural language statements, rife with talk of “the next moment”).
Finite approximability is not only plausible but arguably implicit in
accounts such as Reichenbach (1947) of tense and aspect.

4 conclusion

There is no question that as declarative devices specifying sets of
strings accepted by finite automata, regular expressions are more pop-
ular than MSO. What MSO offers, however, is a model-theoretic per-
spective on strings with computable notions of entailment (inclusions
between regular languages being decidable), in addition to Boolean
connectives that expose deficiencies in succinctness of regular expres-
sions (e.g., Gelade and Neven 2012). Mapping a finite automaton A
to a regular expression denoting the language L (A) accepted by A
can have exponential cost (Ehrenfeucht and Zeiger 1976; Holzer and
Kutrib 2010). A more concise representation of L (A) existentially
quantifies away the internal states from the accepting runs ofA (ana-
lyzed in Proposition 4 above). Not only can this be carried out in MSO
(proving one half of the Büchi–Elgot–Trakhtenbrot theorem), but it is
well-known that MSO-sentences can be far more succinct than finite
automata (e.g., Libkin 2010, pages 124–125, and 135–136). To match
the succinctness of MSO, regular expressions over alphabets 2Σ (for
finite sets Σ) are extended with preimages and images under homo-
morphisms ρA that output A-reducts, for A⊆ Σ.

The step from Σ up to 2Σ is justified by the various notions of
part between strings of sets, given by ρA, subsumption ⊵, prefix, suffix,
block compression bc and unpad, all computable (over 2Σ) by finite-
state transducers. Reducts between vocabularies are composed with
compression within a fixed vocabulary to fit ontology against the vo-
cabulary. An inverse limit construction (turning compression around
to extension) takes us beyond the finite models of MSO to infinite time-

[54]

On regular languages over power sets

lines, approximated at granularity Σ by strings over the alphabet 2Σ.
Different finite sets Σ induce different notions |=Σ of satisfaction that
form institutions, under certain minimal smoothness conditions (used
to establish the Büchi–Elgot–Trakhtenbrot theorem in Section 2).

acknowledgements
My thanks to Mark-Jan Nederhof for his editorship and four anony-
mous journal referees for their comments and help.

references
James F. Allen (1983), Maintaining knowledge about temporal intervals,
Communications of the ACM, 26(11):832–843.
Kenneth R. Beesley and Lauri Karttunen (2003), Finite State Morphology,
CSLI Publications, Stanford.
Torben Braüner (2014), Hybrid Logic, The Stanford Encyclopedia of
Philosophy, http://plato.stanford.edu/archives/spr2014/entries/logic-hybrid/.
David R. Dowty (1979), Word Meaning and Montague Grammar, Reidel,
Dordrecht.
Andrzej Ehrenfeucht and Paul Zeiger (1976), Complexity measures for
regular expressions, J. Comput. Syst. Sci., 12(2):134–146.
Tim Fernando (2004), A finite-state approach to events in natural language
semantics, Journal of Logic and Computation, 14(1):79–92.
Tim Fernando (2011), Finite-state representations embodying temporal
relations, in Proceedings 9th International Workshop on Finite State Methods and
Natural Language Processing, pp. 12–20.
Tim Fernando (2014), Incremental semantic scales by strings, in Proceedings
EACL 2014 Workshop on Type Theory and Natural Language Semantics (TTNLS),
pp. 63–71.
Tim Fernando (2015), The semantics of tense and aspect: A finite-state
perspective, in S. Lappin and C. Fox, editors, Handbook of Contemporary
Semantic Theory, pp. 203–236, Wiley-Blackwell, second edition.
Wouter Gelade and Frank Neven (2012), Succinctness of the complement
and negation of regular expressions, ACM Trans. Comput. Log., 13(1):4.1–4.19.
Joseph Goguen and Rod Burstall (1992), Institutions: Abstract model
theory for specification and programming, J. ACM, 39(1):95–146.
Erich Grädel (2007), Finite model theory and descriptive complexity, in Finite
Model Theory and Its Applications, pp. 125–230, Springer.

[55]

Tim Fernando

Markus Holzer and Martin Kutrib (2010), The complexity of regular(-like)
expressions, in Developments in Language Theory, pp. 16–30, Springer.
Mans Hulden (2009), Regular expressions and predicate logic in finite-state
language processing, in Finite-State Methods and Natural Language Processing,
pp. 82–97, IOS Press.
Hans Kamp and Uwe Reyle (1993), From Discourse to Logic, Kluwer Academic
Publishers, Dordrecht.
Ronald M. Kaplan and Martin Kay (1994), Regular models of phonological
rule systems, Computational Linguistics, 20(3):331–378.
Leonid Libkin (2010), Elements of Finite Model Theory, Springer.
Marc Moens and Mark Steedman (1988), Temporal ontology and temporal
reference, Computational Linguistics, 14(2):15–28.
Arthur N. Prior (1967), Past, Present and Future, Clarendon Press, Oxford.
Hans Reichenbach (1947), Elements of Symbolic Logic, London, Macmillan.
Anssi Yli-Jyrä and Kimmo Koskenniemi (2004), Compiling contextual
restrictions on strings into finite-state automata, in Proceedings of the Eindhoven
FASTAR Days.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[56]

Data-oriented parsing with
discontinuous constituents

and function tags

Andreas van Cranenburgh1,2, Remko Scha2, and Rens Bod2
1 Huygens ING, Royal Netherlands Academy of Arts and Sciences

2 Institute for Logic, Language and Computation, University of Amsterdam

abstract

Keywords:
discontinuous
constituents,
statistical parsing,
tree-substitution
grammar

Statistical parsers are effective but are typically limited to producing
projective dependencies or constituents. On the other hand, linguisti-
cally rich parsers recognize non-local relations and analyze both form
and function phenomena but rely on extensive manual grammar en-
gineering. We combine advantages of the two by building a statistical
parser that produces richer analyses.
We investigate new techniques to implement treebank-based

parsers that allow for discontinuous constituents. We present two sys-
tems. One system is based on a Linear Context-Free Rewriting System
(lcfrs), while using a Probabilistic Discontinuous Tree-Substitution
Grammar (pdtsg) to improve disambiguation performance. Another
system encodes discontinuities in the labels of phrase-structure trees,
allowing for efficient context-free grammar parsing.
The two systems demonstrate that tree fragments as used in tree-

substitution grammar improve disambiguation performance while
capturing non-local relations on an as-needed basis. Additionally, we
present results for models that produce function tags, resulting in a
more linguistically adequate model of the data. We report substantial
accuracy improvements in discontinuous parsing for German, English,
and Dutch, including results on spoken Dutch.
This article is a substantially revised and extended version of van Cranenburgh
and Bod (2013). While finishing this article, we learned with great sadness of the
passing of our co-author Remko Scha. We dedicate this article to his memory.

Journal of Language Modelling Vol 4, No 1 (2016), pp. 57–111

van Cranenburgh, Scha, Bod

1 introduction

Probabilistic algorithms for parsing and disambiguation select the
most probable analysis for a given sentence in accordance with a cer-
tain probability distribution. A fundamental property of such algo-
rithms is thus the definition of the space of possible sentence structures
that constitutes the domain of the probability distribution. Modern sta-
tistical parsers are often automatically derived from corpora of syntac-
tically annotated sentences (“treebanks”). In this case, the “linguistic
backbone” of the probabilistic grammar naturally depends on the con-
vention for encoding syntactic structure that was used in annotating
the corpus.
When different parsing and disambiguation algorithms are ap-

plied to the same treebank, their relative accuracies can be objectively
assessed if the treebank is split into a training set (that is used to in-
duce a grammar and its probabilities) and a test set (that provides a
“gold standard” to assess the performance of the system). This is com-
mon practice now. In many cases, however, the linguistic significance
of these evaluations may be questioned, since the test sets consist of
phrase-structure trees, i.e., part-whole structures where all parts are
contiguous chunks. Non-local syntactic relations are not represented
in these trees; utterances in which such relations occur are therefore
skipped or incorrectly annotated.
For certain practical applications this restriction may be harm-

less, but from a linguistic (and cognitive) viewpoint it cannot be de-
fended. Since Chomsky’s transformational-generative grammar, there
have been many proposals for formal grammars with a less narrow
scope. Some of these formalisms have been employed to annotate large
corpora; in principle, they can thus be used in treebank grammars ex-
tracted from these corpora.
The Penn treebank, for instance, enriches its phrase-structure rep-

resentations with “empty constituents” that share an index with the
constituent that, from a transformational perspective, would be an-
alyzed as originating in that position. Most grammars based on the
Penn treebank ignore this information, but it was used by, e.g., John-
son (2002), Dienes and Dubey (2003), and Gabbard et al. (2006).
Another perspective on non-local syntactic dependencies gener-

alizes the notion of a “syntactic constituent,” in that it allows “dis-

[58]

Discontinuous data-oriented parsing

continuous constituent structures,” where a non-terminal node dom-
inates a lexical yield that consists of different non-contiguous parts
(McCawley 1982). Several German and Dutch treebanks have been
annotated in terms of discontinuous constituency, and some statisti-
cal parsers have been developed that use these treebanks. Also, phrase
structures with co-indexed traces can be converted into discontinu-
ous constituent structures; the Penn treebank can therefore be trans-
formed and used in the discontinuous constituency approach (Evang
and Kallmeyer 2011). Figure 1 shows an example of a tree with dis-
continuous constituents.

SMAIN

PPART

NP

VNW N WW VNW BW WW

Dat
That

werkwoord
verb

had
had

ze
she

zelf
herself

uitgevonden
invented

Figure 1:
A tree from the Dutch Alpino treebank
(van der Beek et al. 2002). PPART is a
discontinuous constituent (indicated with
crossing branches) due to its extraposed NP
object. Part-of-speech tags: VNW=pronoun,
N=noun, WW=verb, BW=adverb. The tags
also contain additional morphological features
not shown here that distinguish personal
pronouns from others, auxiliary verbs from
main verbs, etc.

It is an annotation choice to employ discontinuous constituents;
some treebanks elect not to model non-local phenomena, while others
may choose different mechanisms. For example, two German tree-
banks employ discontinuous constituents (Skut et al. 1997; Brants et al.
2002), while another German treebank does not (Telljohann et al.
2004, 2012). The annotation scheme of the latter treebank lacks infor-
mation expressed in the former two. For instance, it cannot encode
the heads of non-local modifiers; with discontinuous constituents, a
modifier is a sibling of its head, regardless of their configuration.
On the other hand, the co-indexed traces of the Penn treebank pro-
vide more information than discontinuous constituents, because they
assume that constituents have been moved from somewhere else in
the tree and encode the original position. Discontinuous constituents
describe surface structure without making such assumptions. Some
phenomena that can be analyzed with discontinuous constituents are
extraposition, topicalization, scrambling, and parentheticals; cf. Maier
et al. (2014) for an overview of such phenomena in German.

[59]

van Cranenburgh, Scha, Bod
Figure 2:

A dependency structure derived from the tree
in Figure 1. The obj1 arc makes this structure

non-projective.
Dat werkwoord had ze zelf uitgevonden

VNW N WW VNW BW WW

det

obj1

su
predm

vc

root

The notion of discontinuous constituents in annotation is useful
to bridge the gap between the information represented in constituency
and dependency structures. Constituency structures capture the hier-
archical structure of phrases – which is useful for identifying re-usable
elements; discontinuous constituents extend this to allow for arbitrary
non-local relations that may arise due to such phenomena as extrapo-
sition and free word order. There is a close relation of discontinuous
constituency to non-projectivity in dependency structures (Maier and
Lichte 2011). Compare Figure 2, which shows a dependency structure
for the constituency tree in Figure 1. Note that in this dependency
structure, the edge labels are grammatical functions present in the
original treebank, while the constituent labels in Figure 1 are syntac-
tic categories. The dependency structure encodes the non-local rela-
tions within the discontinuous constituent. On the other hand, it does
not represent the hierarchical grouping given by the NP and PPART
constituents. By encoding both hierarchical and non-local informa-
tion, trees with discontinuous constituents combine the advantages of
constituency and dependency structures. We will also come back to
grammatical function labels.
This paper is concerned with treebank-based parsing algorithms

that accept discontinuous constituents. It takes as its point of departure
work by Kallmeyer andMaier (2010, 2013) that represents discontinu-
ous structures in terms of a string-rewriting version of Linear Context-
Free Rewriting Systems (Section 3.1). In addition, we employ Tree-
Substitution Grammar (tsg). We make the following contributions:
1. We discuss the notions of competence and performance in (com-
putational) linguistics (Section 2). We argue that instead of fo-
cussing on the search for the formal (competence) grammar
with the right capacity for natural language, we can consider
performance aspects such as cognitive limitations and pruning
strategies.

[60]

Discontinuous data-oriented parsing

2. We show that Tree-Substitution Grammar can be applied to dis-
continuous constituents (Section 3.2) and that it is possible, using
a transformation, to parse with a Tree-Substitution Grammar
without having to write a separate parser for this formalism (Sec-
tion 4.2).

3. We induce a tree-substitution grammar from a treebank (Sec-
tion 5) using a method called Double-dop (Sangati and Zuidema
2011). This method extracts a set of recurring tree fragments. We
show that compared to another method which implicitly works
with all possible fragments, this explicit method offers advantages
in both accuracy and efficiency (Section 4.2.1, Section 9).

4. Fragments make it possible to treat discontinuous constituency
as a statistical phenomenon within an encompassing context-free
framework (Section 4.1, Section 7); this yields a considerable ef-
ficiency improvement without hurting accuracy (Section 9).

5. Finally, we present an evaluation on three languages. We em-
ploy manual state splits from previous work for improved per-
formance (Section 8) and discuss methods and results for gram-
mars that produce function tags in addition to phrasal labels (Sec-
tion 8.3).
This work explores parsing discontinuous constituents with

Linear Context-Free Rewriting Systems and Context-Free Grammar,
as well as with and without the use of tree fragments through tree
substitution. Figure 3 gives an overview of these systems and how
they are combined in a coarse-to-fine pipeline (cf. Section 6.4).

2 the division of labor between
competence and performance

Traditionally, two aspects of language cognition have been distin-
guished: competence and performance (Chomsky 1965). Linguistic
competence comprises a language user’s “knowledge of language,”
usually described as a system of rules, while linguistic performance
includes the details of the user’s production and comprehension be-
havior. For a computational model, its syntactic competence defines
the set of possible sentences that it can process in principle, and the
structures it may assign to them, while its performance includes such

[61]

van Cranenburgh, Scha, Bod

(start)

treebank
grammars

recurring
fragments
grammars

Discontinuities
encoded in
LCFRS

Discontinuities
split in multiple
non-terminals

PLCFRS

Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

Split-PCFG

SÑ VP*12 NP VP*22

VP*12 Ñ VB
VP*22 Ñ PRT

Disco-2DOP Split-2DOP
S

xWake v1 upy

VP2
xWake, upy

NP
xv1y

VB
xWakey

PRT
xupy

S
xWake v1 upy

VP*12
xWakey

NP
xv1y

VP*22
xupy

VB
xWakey

PRT
xupy

Figure 3: The systems explored in this work

aspects as disambiguation using occurrence frequencies of grammati-
cal constructions. Thus, the choice of a formalism to describe the sys-
tem’s competence grammar depends on one’s decisions on how syn-
tax should be formalized. Regular and context-free grammars have
been argued to be too limited (Chomsky 1956; Shieber 1985), while
richer alternatives – context-sensitive and beyond – are considered
too powerful to allow for an efficient computational implementa-
tion; this applies to Transformational Grammar (Peters and Ritchie
1973), Lexical-Functional Grammar, and Head-Driven Phrase Struc-
ture Grammar (Trautwein 1995). We may therefore wish to strike a
balance and find a grammar formalism that is just powerful enough to
describe the syntax of natural language. Joshi (1985) proposes Mildly
Context-Sensitive grammars, which are beyond context-free, but avoid
the computational complexity that comes with the full class of context-
sensitive grammars. The first formalism developed in this framework
was Tree-Adjoining Grammar (tag; Joshi 1985). There has been

[62]

Discontinuous data-oriented parsing

work on automatic extraction of tree-adjoining grammars from cor-
pora (Chiang 2000; Xia et al. 2001; Kaeshammer and Demberg 2012),
and formal extensions such as multi-component tag (Weir 1988;
Schuler et al. 2000; Kallmeyer 2009). Linear Context-Free Rewriting
Systems (lcfrss), as employed in the work reported below, are in-
stances of Mildly Context-Sensitive grammar. lcfrs appears to be a
lingua franca among mildly context-sensitive formalisms, since several
formalisms have been shown to be equivalent to it (Vijay-Shanker and
Weir 1994).
Irrespective of whether one accepts the competence-performance

dichotomy, a practical natural language system needs to deal with
phenomena that depend on world knowledge reflected in language
use (e.g., the fact that in “eat pizza with a fork”, with a fork is prototyp-
ically related to eat rather than to pizza). This has led to a statistical
turn in computational linguistics, in whichmodels are directly induced
from treebanks (Scha 1990; Charniak 1996; Bod et al. 2003; Geman
and Johnson 2004). If the end goal is to make an adequate model
of language performance, there is actually no need to have a compe-
tence grammar which is ‘just right.’ Instead, we might reduce some
of the formal complexity by encoding it in statistical patterns. Con-
cretely, we can opt for a grammar formalism that deliberately overgen-
erates, and count on grammatical analyses having a higher probabil-
ity of being selected during disambiguation. This operationalizes the
idea of there being a spectrum between ungrammaticality, marked-
ness, and felicity. In Section 4.1 we introduce an approximation of
lcfrs that makes it possible to produce discontinuous constituents in
cubic time using a context-free grammar, by encoding information in
non-terminal labels. A probabilistic variant of the resulting grammar
makes stronger independence assumptions than the equivalent lcfrs,
but as a component in a larger statistical system this does not have to
pose a problem.
In the debate about the context-freeness of language, cross-

serial dependencies have played an important role (Huybregts 1976;
Bresnan et al. 1982; Shieber 1985). Consider the following example
in Dutch:
(1) Jan

Jan
zag
saw
dat
that

Karel
Karel

hem
him

haar
her

laat
lets
leren
teach

zwemmen.
swim.

‘Jan saw that Karel lets him teach her to swim.’

[63]

van Cranenburgh, Scha, Bod
Figure 4:

Cross-serial dependencies in Dutch
expressed with discontinuous constituents

SMAIN

N WW

CP

VG

SSUB

N VNW

INF2

INF2

VNW WWWWWW

Jan
Jan

zag
saw

dat
that

Karel
Karel

hem
him

haar
her

zwemmen
swim

leren
teach

laat
lets

Ojeda (1988) gives an account using discontinuous constituents;
cf. Figure 4. In Section 4.1 we show how such analyses may be pro-
duced by an overgenerating context-free grammar.
This is an instance of the more general idea of approximating

rich formal models in formally weaker but statistically richer models,
i.e., descriptive aspects of language that can be handled as a perfor-
mance rather than a competence problem. Another instance of this
is constituted by the various restricted versions of tag, whose string
languages form a proper subset of those of lcfrs. Restricted variants
of tag that generate context-free string languages are Tree-Insertion
Grammar (Schabes and Waters 1995; Hoogweg 2003; Yamangil and
Shieber 2012), and off-spine tag (Swanson et al. 2013); tsg is an even
more restricted variant of tag in which the adjunction operation is
removed altogether. These results suggest that there is a trade-off to be
made in the choice of formalism. While on the one hand Mild Context-
Sensitivity already aims to limit formal complexity to precisely what
is needed for adequate linguistic description, a practical, statistical
implementation presents further opportunities for constraining com-
plexity.
Another performance aspect of language relevant for compu-

tational linguistics is pruning. While normally considered an im-
plementation aspect made necessary by practical hardware limi-
tations, finding linguistically and psychologically plausible short-
cuts in language processing forms an interesting research question.
Schuler et al. (2010) present a parser with human-like memory
constraints based on a finite-state model. Although Roark et al.
(2012) are not concerned with cognitive plausibility, they also
work with finite-state methods and show that cfg parsing can

[64]

Discontinuous data-oriented parsing

be done in quadratic or even linear time with finite-state prun-
ing methods.
As a specific example of a cognitive limitation relevant to parsing

algorithms, consider center embedding. Karlsson (2007) reports from
a corpus study that center embeddings only occur up to depth 3 in
written language, and up to depth 2 in spoken language. If a statistical
parser would take such cognitive limitations into account, many im-
plausible analyses could be ruled out from the outset. More generally,
it is worthwhile to strive for an explicit performance model that in-
corporates such cognitive and computational limitations as first class
citizens.
In this work we do not go all the way to a finite-state model, but

we do show that the non-local relations expressed in discontinuous
constituents can be expressed in a context-free grammar model. We
start with a mildly context-sensitive grammar formalism to parse dis-
continuous constituents, augmented with tree substitution. We then
show that an approximation with context-free grammar is possible
and effective. We find that the reduced independence assumptions
and larger contexts taken into account as a result of tree substitu-
tion make it possible to capture non-local relations without going be-
yond context-free. Tree substitution thus increases the capabilities of
the performance side without increasing the complexity of the com-
petence side. A performance phenomenon that is modeled by this is
that non-local relations are only faithfully produced as far as observed
in the data.

3 grammar formalisms

In this section we describe two formalisms related to discontinuous
constituents; (string rewriting) Linear Context-Free Rewriting Systems
and Discontinuous Tree-Substitution Grammar.
(String rewriting) Linear Context-Free Rewriting Systems (lcfrs;

Vijay-Shanker et al. 1987) can produce such structures. An lcfrs
generalizes cfg by allowing non-terminals to rewrite tuples of strings
instead of just single, contiguous strings. This property makes lcfrs
suitable for directly parsing discontinuous constituents (Kallmeyer
and Maier 2010, 2013), as well as non-projective dependencies
(Kuhlmann and Satta 2009; Kuhlmann 2013).

[65]

van Cranenburgh, Scha, Bod

A tree-substitution grammar (tsg) provides a generalization of
context-free grammar (cfg) that operates with larger chunks than
just single grammar productions. A probabilistic tsg can be seen as
a pcfg in which several productions may be applied at once, captur-
ing structural relations between those productions. Tree-substitution
grammars have numerous applications. They can be used for statisti-
cal parsing, such as with Data-Oriented Parsing (dop; Scha 1990; Bod
1992; Bod et al. 2003; Bansal and Klein 2010; Sangati and Zuidema
2011) and Bayesian tsgs (O’Donnell et al. 2009; Post and Gildea 2009;
Cohn et al. 2009, 2010; Shindo et al. 2012). Other applications include
grammaticality judgements (Post 2011), multi-word expression iden-
tification (Green et al. 2011), stylometry (Bergsma et al. 2012; van
Cranenburgh 2012b), and native language detection (Swanson and
Charniak 2012).
Before defining these formalisms, we first define the tree struc-

tures they operate on. The notion of a “discontinuous tree” stems from
a long linguistic tradition (Pike 1943, Sections 4.12–14; Wells 1947,
Sections 55–62; McCawley 1982). It generalizes the usual notion of a
phrase-structure tree in that it allows a non-terminal node to dominate
a lexical span that consists of non-contiguous chunks. In our interpre-
tation of this idea, it results in three formal differences:

1. A non-terminal with non-contiguous daughters does not have a
non-arbitrary place in the left-to-right order with respect to its
sibling nodes. Therefore, it is not obvious anymore that the left-
to-right order of the terminals is to be described in terms of their
occurrence in a tree with totally ordered branches. Instead, we
employ trees with unordered branches, while every node is aug-
mented with an explicit representation of its (ordered) yield.

2. An “ordinary” (totally ordered) tree has a contiguous string of leaf
nodes as its yield. When we allow discontinuities, this property
still applies to the (totally lexicalized) complete trees of complete
sentences. But for tree fragments, it fails; their yields may contain
gaps. In the general case, the yield of a discontinuous tree is thus
a tuple of strings.

3. Extracting a fragment from a tree now consists of two steps:
(a) Extracting a connected subset of nodes, and

[66]

Discontinuous data-oriented parsing

(b) Updating the yield tuples of the nodes. In the yield tuple of
every non-terminal leaf node, every element (a contiguous
chunk of words) is replaced by a terminal variable. This re-
placement is percolated up the tree, to the yield tuples of all
nodes. Different occurrences of the same word carry a unique
index, to allow for the percolation to proceed correctly.

We now proceed to give a more formal definition of our notion
of a discontinuous tree.
Definition 1. A discontinuous syntactic tree is a rooted, unordered
tree. Each node consists of a label and a yield. A yield is a tuple of
strings composed of lexical items; the tuple of strings denotes a sub-
sequence of the yield at the root of the tree. We write xa by to denote
a yield consisting of the contiguous sequence of lexical items ‘a’ and
‘b’, while xa b, cy denotes a yield containing ‘a b’ followed by ‘c’ with
an intervening gap. Given a node X ,
• the yield of X is composed of the terminals in the yields of the
children of X;
• conversely, the yield of each child of X is a subsequence of the
yield of X ;
• the yields of siblings do not overlap.
Figure 5 shows a tree according to this definition in which dis-

continuities are visualized with crossing branches as before. The same
tree is rendered in Figure 6, without crossing branches, to highlight
the fact that the information about discontinuities is encoded in the
yields of the tree nodes.

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

WW
xuitgevondeny

WW
xhady

N
xzey

BW
xzelfy

Figure 5:
A discontinuous tree
with yield tuples

[67]

van Cranenburgh, Scha, Bod
Figure 6:

An equivalent
representation of the tree

in Figure 5, without
crossing branches

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

WW
xuitgevondeny

NP
xDat werkwoordy

N
xwerkwoordy

VNW
xDaty

BW
xzelfy

N
xzey

WW
xhady

Definition 2. An incomplete tree is a discontinuous tree in which
the yields may contain variables vn with n P N in addition to lexical
items. Variables stand in for any contiguous string of lexical items. An
incomplete tree contains 2 or more nodes, or a single node with only
lexical items in its yield. A node without children whose yield consists
solely of variables is called a substitution site.
An incomplete tree may be derived from an extracted tree frag-

ment. The tree fragment may contain variables for substrings which
needed to be distinguished in other parts of the tree, but only occur
contiguously in the fragment. We reduce these strings of contiguous
variables to single variables; i.e., we abstract fragments from their
original context by reducing strings of variables that appear contigu-
ously across the fragment into single variables (e.g. Figure 7).

Figure 7:
Reducing variables in a
fragment extracted from

the tree in Figure 5

SMAIN
xv1 v2 v3 v4 v5 v6y

PPART2
xv1 v2, v6y

WW
xv3y

N
xv4y

BW
xv5y

SMAIN
xv1 v2 v3 v4 v5y

PPART2
xv1, v5y

WW
xv2y

N
xv3y

BW
xv4y

The fan-out of a non-terminal node equals the number of terminals
in its yield that are not directly preceded by another terminal in the
same yield; i.e., the number of contiguous substrings (components) of
which the yield consists.1 From here on we denote the fan-out of a
discontinuous non-terminal with a subscript that is part of its label.

1Note that a distinction is often made between the fan-out of non-terminals
in grammar productions, and the block degree of nodes of a syntactic tree (Maier
and Lichte 2011; Kuhlmann 2013). Due to the fact that the productions of a tsg
are trees, these notions coincide for our purposes.

[68]

Discontinuous data-oriented parsing

3.1 Linear Context-Free Rewriting Systems
String-rewriting lcfrs can be seen as the discontinuous counterpart
of cfg, and its probabilistic variant can be used to articulate a discon-
tinuous treebank grammar. lcfrs productions differ from cfg pro-
ductions in that they generate for a given non-terminal one or more
strings at a time in potentially non-adjacent positions in the sentence.
The number of these positions, the measure of discontinuity in a con-
stituent, is called the fan-out. A cfg is an lcfrs with a maximum
fan-out of 1. Together with the number of non-terminals on the right-
hand side, the fan-out defines a hierarchy of grammars with increas-
ing complexity, of which cfg is the simplest case. In this paper we
use the simple rcg notation (Boullier 1998) for lcfrs. We focus on
string-rewriting lcfrs and use the tree produced as a side-effect of a
string’s derivation as its syntactic analysis. It is possible to define an
lcfrs that rewrites trees or graphs; however, the formalisms used in
this paper are all expressible as string-rewriting lcfrss.
Definition 3. A string-rewriting lcfrs is a tuple G “ xN , T, V, P, Sy.
N and T are disjoint finite sets of non-terminals and terminals, respec-
tively. A function φ : N Ñ t1, 2, . . . , u specifies the unique fan-out for
every non-terminal symbol. V is a finite set of variables; we refer to
the variables as x i

j with i, j P N. S is the distinguished start symbol
with S P N and φpSq “ 1. P is a finite set of productions, of the form:

Apα1, . . . ,αφpAqq Ñ B1px1
1 , . . . , x1

φpB1q
q . . . Brpx r

1, . . . , x r
φpBr q

q

for r ě 0, where A, B1, …, Br P N , each x i
j P V for 1 ď i ď r, 1 ď j ď

φpBiq, and α j P pT Y V q
` for 1 ď j ď φpAq. Observe that a component

α j is a concatenation of one or more terminals and variables.
The rank r refers to the number of non-terminals on the right-

hand side of a production, while the fan-out φ of a non-terminal refers
to the number of components it covers. A rank of zero implies a lexi-
cal production; in that case the right-hand side (rhs) is notated as ϵ
implying no new non-terminals are produced (not to be confused with
generating the empty string), and the left-hand side (lhs) argument
is composed only of terminals.
Productions must be linear and non-erasing: if a variable occurs in

a production, it occurs exactly once on the lhs, and exactly once on

[69]

van Cranenburgh, Scha, Bod

the rhs. A production is monotone2 if for any two variables x1 and x2

occurring in a non-terminal on the rhs, x1 precedes x2 on the lhs iff
x1 precedes x2 on the rhs. Due to our method of grammar extraction
from treebanks, (cf. Section 3.1.1 below) all productions in this work
are monotone and, except in some examples, at most binary (r ď 2);
lexical productions (r “ 0) have fan-out 1 and introduce only a single
terminal.
A production is instantiated when its variables are bound to spans

such that for each component α j of the lhs, the concatenation of the
strings that its terminals and bound variables point to forms a con-
tiguous, non-overlapping span in the input. In the remainder we will
notate discontinuous non-terminals with a subscript indicating their
fan-out.
When a sentence is parsed by an lcfrs, its derivation tree (Boul-

lier 1998, Section 3.3; Kallmeyer 2010, pp. 115–117) is a discontinu-
ous tree. Conversely, given a set of discontinuous trees, a set of pro-
ductions can be extracted that generate those trees.
In a probabilistic lcfrs (plcfrs), each production is associated

with a probability and the probability of derivation is the product of
the probabilities of its productions. Analogously to a pcfg, a plcfrs
may be induced from a treebank by using relative frequencies as prob-
abilities (Maier and Søgaard 2008).
Definition 4. The language of an lcfrs G is defined as fol-
lows (Kallmeyer and Maier 2013, pp. 92–93):
1. For every A P N , we define the yield of A, yieldGpAq, as follows:
(a) For every production Aptq Ñ ϵ with t P T , xty P yieldGpAq

(b) For every production

Apα1, . . . ,αφpAqq Ñ B1px1
1 , . . . , x1

φpB1q
q . . . Brpx r

1, . . . , x r
φpBr q

q

and all tuples τ1 P yieldGpB1q, . . . ,τr P yieldGpBrq:

x f pα1q, . . . , f pαφpAqqy P yieldGpAq

where f is defined as follows:
i. f ptq “ t for all t P T ,

2This property is called ordered in the rcg literature.

[70]

Discontinuous data-oriented parsing

ii. f px i
jq “ τir js for all 1 ď i ď r, 1 ď j ď φpBiq, and

iii. f pabq “ f paq f pbq for all a, b P pT Y V q`.
f is the composition function of the production.

(c) Nothing else is in yieldGpAq.
2. The language of G is then LpGq “ yieldGpSq.
3.1.1 Extracting LCFRS productions from trees
lcfrs productions may be induced from a discontinuous tree, using
a procedure described in Maier and Søgaard (2008). We extend this
procedure to handle substitution sites, i.e., non-terminals with only
variable terminals in their yield, but no lexical items; such nodes oc-
cur in tree fragments extracted from a treebank. The procedure is as
follows:
Given a discontinuous tree, we extract a grammar production for

each non-leaf non-terminal node. The label of the node forms the lhs
non-terminal, and the labels of the nodes immediately dominated by it
form the rhs non-terminals. The arguments of each rhs non-terminal
are based on their yield tuples. Adjacent variables in the yield of the
rhs non-terminals are collapsed into single variables and replaced on
both lhs and rhs. Consider the tree fragment in Figure 7, which gives
the following lcfrs production:

SMAINpabcdeq Ñ PPARTpa, eqWWpbq Npcq BWpdq

Pre-terminals yield a production with their terminal as a direct argu-
ment to the pre-terminal, and an empty rhs. Substitution sites in a
tree only appear on the rhs of extracted productions, since it is not
known what they will expand to. See Figure 8 for examples of lcfrs
productions extracted from a discontinuous tree.
3.2 Discontinuous Tree-Substitution Grammar
We now employ string-rewriting lcfrs, introduced in the previous
section, to replace the cfg foundation of tsgs. Note that the re-
sulting formalism directly rewrites elementary trees with discontin-
uous constituents, making it an instantiation of the more general
notion of a tree-rewriting lcfrs. Tree-rewriting lcfrss are more
general because they allow other rewriting operations besides sub-
stitution. However, since we limit the operations in the formalism

[71]

van Cranenburgh, Scha, Bod
Figure 8:
The lcfrs

G “ xN , T, V, P,Sy

extracted from the tree
in Figure 5

N “ tSMAIN, PPART, NP, VNW, N, WW, BWu

T “ tDat, had, uitgevonden, werkwoord, ze, zelfu
V “ ta, b, c, d, eu

φ “ tSMAIN : 1, PPART : 2, NP : 1,
VNW : 1, N : 1, WW : 1, BW : 1u

S “ SMAIN
P “ tSMAINpabcdeq ÑWWpbq Npcq BWpdq PPARTpa, eq,

PPARTpa, bq Ñ NPpaqWWpbq,

NPpabq Ñ VNWpaq Npbq,

VNWpDatq Ñ ϵ, Npwerkwoordq Ñ ϵ,

WWphadq Ñ ϵ, Npzeq Ñ ϵ, BWpzelfq Ñ ϵ,

WWpuitgevondenq Ñ ϵu

to substitution, it remains possible to specify a direct mapping to
a string-rewriting grammar, as we shall see in the next section. As
noted before, a tsg can be seen as a tag without the adjunction
operation. A discontinuous tsg may be related to a special case
of set-local multi-component tag (Weir 1988; Kallmeyer 2009).
A multi-component tag is able to specify constraints that require
particular elementary trees to apply together; this mechanism can
be used to generate the non-local elements of discontinuous con-
stituents.
The following definitions are based on the definition for continu-

ous tsg in Sima’an (1997).
Definition 5. A probabilistic, discontinuous tsg (pdtsg) is a tuple
xN , T, V, S,C ,Py, where N and T are disjoint finite sets that denote the
set of non-terminal and terminal symbols, respectively; V is a finite set
of variables; S denotes the start non-terminal; and C is a finite set of
elementary trees. For all trees in C it holds that for each non-terminal,
there is a unique fan-out; this induces a function φ Ă N ˆ t1, 2, . . .u
with φpAq being the unique fan-out of A P N . For convenience, we
abbreviate φprootptqq for a tree t as φptq. The function P assigns a
value 0 ă Pptq ď 1 (probability) to each elementary tree t such that
for every non-terminal A P N , the probabilities of all elementary trees
whose root node is labelled A sum to 1.

[72]

Discontinuous data-oriented parsing

The tuple xN , T, V, S,C y of a given pdtsg xN , T, V, S,C ,Py is called
the dtsg underlying the pdtsg.
Definition 6. Substitution: The substitution A ˝ B is defined iff the
label of the left-most substitution site of A equals the label of the root
node of B. The left-most substitution site of an incomplete tree A is
the leaf node containing the first occurrence of a variable in the yield
of the root of A. When defined, the result of A ˝ B equals a copy of
the tree Awith B substituted for the left-most substitution site of A. In
the yield argument of A, each variable terminal is replaced with the
corresponding component of one or more contiguous terminals from
B. For example, given yieldpAq “ xl1v2, l4y and yieldpBq “ xl2l3y where
ln is a lexical terminal and vn a variable, yieldpA ˝ Bq “ xl1l2l3, l4y.
Definition 7. A left-most derivation (derivation henceforth) d is a
sequence of zero or more substitutions T “ p. . . p f1 ˝ f2q˝ . . .q˝ fm, where
f1, . . . , fm P C , rootpT q “ rootp f1q “ S,φpT q “ 1 and T contains no
substitution sites. The probability Ppdq is defined as:

Pp f1q ¨ . . . ¨ Pp fmq “

m
ź

i“1

Pp fiq

Refer to Figure 9 for an example.
SMAIN

xv1 had ze zelf v2y

PPART2
xv1, v2y

xv1y xv2y

WW
xhady

N
xzey

BW
xzelfy

PPART2
xv1,uitgevondeny

NP
xv1y

WW
xuitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

SMAIN
xDat werkwoord had ze zelf uitgevondeny

PPART
xDat werkwoord, uitgevondeny

NP
xDat werkwoordy

VNW
xDaty

N
xwerkwoordy

WW
xuitgevondeny

WW
xhady

N
xzey

BW
xzelfy

Figure 9:
A discontinuous
tree-substitution derivation
of the tree in Figure 1. Note
that in the first fragment,
which has a discontinuous
substitution site, the
destination for the
discontinuous spans is
marked in advance, shown
with variables (vn) as
placeholders.

[73]

van Cranenburgh, Scha, Bod

Definition 8. A parse is any tree which is the result of a derivation.
A parse can have various derivations. Given the set DpT q of derivations
yielding parse T , the probability of T is defined as ř

dPDpTq Ppdq.

4 grammar transformations

cfg, lcfrs, and dtsg can be seen as natural extensions of each other.
This makes it possible to define transformations that help to make
parsing more efficient. Specifically, we define simplified versions of
these grammars that can be parsed efficiently, while their productions
or labels map back to the original grammar.

4.1 A CFG approximation of discontinuous LCFRS parsing
Barthélemy et al. (2001) introduced a technique to guide the pars-
ing of a range concatenation grammar (rcg) by a grammar with
a lower parsing complexity. Van Cranenburgh (2012a) applies this
idea to probabilistic lcfrs parsing and extends the method to
prune unlikely constituents in addition to filtering impossible con-
stituents.
The approximation can be formulated as a tree transformation in-

stead of a grammar transformation. The tree transformation by Boyd
(2007) encodes discontinuities in the labels of tree nodes.3 The re-
sulting trees can be used to induce a pcfg that can be viewed as an
approximation to the corresponding plcfrs grammar of the original,
discontinuous treebank. We will call this a Split-pcfg.
Definition 9. A Split-pcfg is a pcfg induced from a treebank trans-
formed by the method of Boyd (2007); that is, discontinuous con-
stituents have been split into several non-terminals, such that each
new non-terminal covers a single contiguous component of the yield
of the discontinuous constituent. Given a discontinuous non-terminal

3Hsu (2010) compares three methods for resolving discontinuity in trees:
(a) node splitting, as applied here; (b) node adding, a simpler version of node
splitting that does not introduce new non-terminal labels; and (c) node rais-
ing, the more commonly applied method of resolving discontinuity. While the
latter two methods yield better performance, we use the node splitting ap-
proach because it provides a more direct mapping to discontinuous constituents,
which, as we shall later see, makes it a useful source of information for pruning
purposes.

[74]

Discontinuous data-oriented parsing

Xn in the original treebank, the new non-terminals will be labelled
X˚m

n , with m the index of the component, s.t. 1 ď m ď n.
For example:

lcfrs productions: Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

cfg approximation: SÑ VP*12 NP VP*22

VP*12 Ñ VB
VP*22 Ñ PRT

In a post-processing step, pcfg derivations are converted to discon-
tinuous trees by merging siblings marked with ‘*’. This approxima-
tion overgenerates compared to the respective lcfrs, i.e., it licenses
a superset of the derivations of the respective lcfrs. For example,
a component VP*12 may be generated without generating its counter-
part VP*22 ; such derivations can be filtered in post-processing. Further-
more, two components VP*12 and VP*22 may be generated which were
extracted from different discontinuous constituents, such that their
combination could not be generated by the lcfrs.4 Another prob-
lemwould occur when productions contain discontinuous constituents
with the same label; the following two productions map to the same
productions in the cfg approximation:

VPpadcebq Ñ VP2pa, bq CNJpcq VP2pd, eq

VPpadcbeq Ñ VP2pa, bq CNJpcq VP2pd, eq

However, such productions do not occur in any of the treebanks used
in this work. The increased independence assumptions due to rewrit-
ing discontinuous components separately are more problematic, es-
pecially with nested discontinuous constituents. They necessitate the
use of non-local statistical information to select the most likely struc-
tures, for instance by turning to tree-substitution grammar (cf. Section
2 above). (Note that the issue is not as problematic when the approx-
imation is only used as a source of pruning information).
As a specific example of the transformation, consider the case

of cross-serial dependencies. Figure 10 shows the parse tree for the
4A reviewer points out that if discontinuous rewriting is seen as synchronous

rewriting (synchronous cfgs are equivalent to lcfrss with fan-out 2), the split
transformation is analogous to taking out the synchronicity.

[75]

van Cranenburgh, Scha, Bod
SMAIN

N WW

CP

VG

SSUB

N VNW

INF2

INF2

VNW WWWWWW

Jan
Jan

zag
saw

dat
that

Karel
Karel

hem
him

haar
her

zwemmen
swim

leren
teach

laat
lets

discontinuous constituents:

SMAINpabcq Ñ Npaq WWpbq CPpcq

CPpabq Ñ VGpaq SSUBpbq

SSUBpabcdq Ñ Npaq

INF2pb, dq WWpcq

INF2pab, cdq Ñ VNWpaq INF2pb, dq

WWpcq

INF2pa, bq Ñ VNWpaq WWpbq

SMAIN

N

Jan

WW

zag

CP

VG

dat

SSUB

N

Karel

VNW

hem

INF*12

INF*12

VNW

haar

WW

laat

INF*22

WW

leren

INF*22

WW

zwemmen

PCFG approximation:

SMAIN Ñ NWWCP
CP Ñ VG SSUB

SSUB Ñ N INF*12 WW INF*22

INF*12 Ñ VNW INF*12

INF*22 Ñ WW INF*22

INF*12 Ñ VNW

INF*22 Ñ WW

Figure 10: Cross-serial dependencies in Dutch expressed with discontinuous con-
stituents (top); and the same parse tree, after discontinuities have been encoded
in node labels (bottom)

example sentence from the previous section, along with the grammar
productions for it, before and after applying the cfg approximation of
lcfrs. Note that in the approximation, the second level of INF nodes
may be rewritten separately, and a context-free grammar cannot place
the non-local constraint that each transitive verb should be paired with
a direct object. On the other hand, through the use of tree substitution,
an elementary tree may capture the whole construction of two verbs
cross-serially depending on two objects, and the model needs only
to prefer an analysis with this elementary tree. Once an elementary
tree contains the whole construction, it no longer matters whether
its internal nodes contain discontinuous constituents or indexed node
labels, and the complexity of discontinuous rewriting is weakened to
a statistical regularity.
A phenomenon which cannot be captured in this representation,

not even with the help of tree-substitution, is recursive synchronous
rewriting (Kallmeyer et al. 2009). Although this phenomenon is rare,
it does occur in treebanks.

[76]

Discontinuous data-oriented parsing

4.2 TSG compression
Using grammar transformations, it is possible to parse with a tsg
without having to represent elementary trees in the chart explicitly,
but instead work with a parser for the base grammar underlying the
tsg (typically a cfg, in our case an lcfrs).
In this section we present such a transformation for an arbitrary

discontinuous tsg to a string-rewriting lcfrs. We first look at well-
established strategies for reducing a continuous tsg to a cfg, and then
show that these carry over to the discontinuous case. Previous work
was based on probabilistic tsg without discontinuity; this special case
of pdtsg is referred to as ptsg.
4.2.1 Compressing PTSG to PCFG
Goodman (2003) gives a reduction to a pcfg for the special case of a
ptsg based on all fragments from a given treebank and their frequen-
cies. This reduction is stochastically equivalent to an all-fragments
ptsg after the summation of probabilities from equivalent deriva-
tions; however, it does not admit parsing with tsgs consisting of arbi-
trary sets of elementary trees or assuming arbitrary probability mod-
els. Perhaps counter-intuitively, restrictions on the set of fragments in-
crease the size of Goodman’s reduction (e.g., depth restriction, Good-
man 2003, p. 134). While Goodman (2003) gives instantiations of his
reduction with various probability models, the limitation is that proba-
bility assignments of fragments have to be expressible as a composition
of the weights of the productions in each fragment. Since each produc-
tion in the reduction participates in numerous implicit fragments, it is
not possible to adjust the probability of an individual fragment with-
out affecting related fragments. We leave Goodman’s reduction aside
for now, because we would prefer a more general method.
A naive way to convert any tsg is to decorate each internal

node of its elementary trees with a globally unique number, which
can be removed from derivations in a post-processing step. Each el-
ementary tree then contributes one or more grammar productions,
and because of the unique labels, elementary trees will always be de-
rived as a whole. However, this conversion results in a large number
of non-terminals, which are essentially ‘inert’: they never participate
in substitution but deterministically rewrite to the rest of their ele-
mentary tree.

[77]

van Cranenburgh, Scha, Bod

A more compact transformation is used in Sangati and Zuidema
(2011), which can be applied to arbitrary ptsgs, but adds a min-
imal number of new non-terminal nodes. Internal nodes are re-
moved from elementary trees, yielding a flattened tree of depth
1. Each flattened tree is then converted to a grammar production.
Each production and original fragment is stored in a backtrans-
form table. This table makes it possible to restore the original frag-
ments of a derivation built from flattened productions. Whenever
two fragments would map to the same flattened production, a unary
node with a unique identifier is added to disambiguate them. The
weight associated with an elementary tree carries over to the first
production it produces; the rest of the productions are assigned
a weight of 1.
4.2.2 Compressing PDTSG to PLCFRS
The transformation defined by Sangati and Zuidema (2011) assumes
that a sequence of productions can be read off from a syntactic tree,
such as a standard phrase-structure tree that can be converted into
a sequence of context-free grammar productions. Using the method
for inducing lcfrs productions from syntactic trees given in Sec-
tion 4.2.1, we can apply the same tsg transformation to discontinuous
trees as well.
Due to the design of the parser we will use, it is desirable

to have grammar productions in binarized form, and to separate
phrasal and lexical productions. We therefore binarize the flat-
tened trees with a left-factored binarization that adds unique iden-
tifiers to every intermediate node introduced by the binarization.
In order to separate phrasal and lexical productions, a new pos
tag is introduced for each terminal, which selects for that spe-
cific terminal. A sequence of productions is then read off from the
transformed tree. The unique identifier in the first production is
used to look up the original elementary tree in the backtransform
table.5
Figure 11 illustrates the transformation of a discontinuous tsg.

The middle column shows the productions after transforming each ele-
5Note that only this first production requires a globally unique identifier; to

reduce the grammar constant, the other identifiers can be merged for equivalent
productions.

[78]

Discontinuous data-oriented parsing

Elementary tree Productions Weight
S

xv1 v2 v3 v4 uitgevonden y

PPART2
xv1, uitgevonden y

NP
xv1y

WW
xuitgevonden y

WW
xv2y

N
xv3y

BW
xv4y

Spabq Ñ S1paq WWpbq f { f 1

S1pabq Ñ S2paq BWpbq 1

S2pabq Ñ S3paq Npbq 1

S3pabq Ñ NPpaq WW4pbq 1
WW4puitgevondenq Ñ ϵ 1

S
xv1 had ze zelf v2y

PPART2
xv1, v2y

xv1y xv2y

WW
xhady

N
xzey

BW
xzelfy

Spabcq Ñ S5
2pa, cq BW6pbq f { f 1

S5
2pab, cq Ñ S7

2pa, cq Npbq 1

S7
2pab, cq Ñ PPART2pa, cq WW8pbq 1

WW8phadq Ñ ϵ 1

N7pzeq Ñ ϵ 1

BW6pzelfq Ñ ϵ 1

PPART2
xv1,uitgevondeny

NP
xv1y

WW
xuitgevondeny

PPART2pa, bq Ñ NPpaq WW9pbq f { f 1

WW9puitgevondenq Ñ ϵ 1

Figure 11: Transforming a discontinuous tree-substitution grammar into an
lcfrs and backtransform table. The elementary trees are extracted from the
tree in Figure 1 with labels abbreviated. The first production of each fragment
is used as an index to the backtransform table so that the original fragments in
derivations can be reconstructed.

Base grammar

Spabcq Ñ NPpbq VP2pa, cq

VP2pa, bq Ñ VBpaq PRTpbq

Trees

Fragments

tre
eba
nk

gra
mm
ar

recurring

fragments

backtransform
table

(productionñ fragment)

S
xWake him upy

VP2
xWake, upy

NP
xhimy

VB
xWakey

PRT
xupy

S
xWake v1 upy

VP2
xWake, upy

NP
xv1y

VB
xWakey

PRT
xupy

Figure 12: Diagram of the methods of grammar induction.

[79]

van Cranenburgh, Scha, Bod

mentary tree. The rightmost column shows how relative frequencies
can be used as weights, where f is the frequency of the elementary tree
in the treebank, and f 1 is the frequency mass of elementary trees with
the same root label. Note that the productions for the first elementary
tree contain no discontinuity, because the discontinuous internal node
is eliminated. Conversely, the transformation may also introduce more
discontinuity, due to the binarization (but cf. Section 8.1 below).
Figure 12 presents an overview of the methods of grammar induc-

tion presented thus far, as well as the approach for finding recurring
fragments that will be introduced in the next section.

5 inducing a tsg from a treebank

In Data-Oriented Parsing the grammar is implicit in the treebank it-
self, and in principle all possible fragments from its trees can be used
to derive new sentences. Grammar induction is therefore conceptu-
ally simple (even though the grammar may be very large), as there
is no training or learning involved. This maximizes re-use of previous
experience.
The use of all possible fragments allows for multiple derivations

of the same tree; this spurious ambiguity is seen as a virtue in dop, be-
cause it combines the specificity of larger fragments and the smoothing
of smaller fragments. This is in contrast to parsimonious approaches
which decompose each tree in the training corpus into a sequence of
fragments representing a single derivation.
5.1 Extracting recurring fragments
Representing all possible fragments of a treebank is not feasible, since
the number of fragments is exponential in terms of the number of
nodes. A practical solution is to define a subset. A method called
Double-dop (2dop; Sangati and Zuidema 2011) implements this with-
out compromising on the principle of data-orientation. It restricts the
fragment set to recurring fragments, i.e., fragments that occur in at
least two different contexts. These are found by considering every pair
of trees and extracting the largest tree fragments they have in com-
mon. It is feasible to do this exhaustively for the whole treebank. This
is in contrast to the sampling of fragments in earlier dop models (Bod
2001) and Bayesian tsgs. Since the space of fragments is enormous

[80]

Discontinuous data-oriented parsing

(that is, exponential in terms of sentence length), it stands to reason
that a sampling approach will not discover all relevant fragments in a
reasonable time frame.
Sangati et al. (2010) presents a tree-kernel method for extract-

ing maximal recurring fragments that operates in quadratic time in
terms of the number of nodes in the treebank. A faster version of this
method was presented in van Cranenburgh (2014), which uses a linear
average time tree kernel, and introduces the ability to handle discon-
tinuous trees. We obtain a further increase in speed by implementing
an inverted index with a compressed bitmap (Chambi et al. 2015).

5.2 Discontinuous fragments
The aforementioned fragment extraction algorithms can be adapted
to support trees with discontinuous constituents. Instead of imple-
menting a new version with data structures for discontinuous trees
following Definitions 1 and 2, we apply a representation that makes
it possible to add discontinuous trees as a special case.
In the representation, leaf nodes are decorated with indices in-

dicating their ordering. Just as in Figure 6, a discontinuous tree may
be represented as a continuous tree, as long as information about the
yield is encoded somehow. We do this by storing indices as leaf nodes,
which denote an ordering and refer to a separate list of tokens. This
makes it possible to use the same data structures as for continuous
trees, as long as the child nodes are kept in a canonical order (induced
from the order of the lowest index of each child).
Indices are used not only to keep track of the order of lexical nodes

in a fragment, but also for that of the contribution of substitution sites.
This is necessary in order to preserve the configuration of the yield in
the original sentence. When leaf nodes are compared, the indices stand
in for the token at the sentence position referred to. After a fragment is
extracted, any indices need to be canonicalized. The indices originate
from the original sentence, but need to be decoupled from this original
context. This process is analogous to how lcfrs productions are read
off from a tree with discontinuous constituents, in which contiguous
intervals of indices are replaced by variables.
The canonicalization of fragments is achieved in three steps, as

defined in the pseudocode of Algorithm 1; Figure 13 illustrates the

[81]

van Cranenburgh, Scha, Bod

process. In the examples, substitution sites have spans denoted with
inclusive start:end intervals, as extracted from the original parse tree,
which are reduced to variables denoting contiguous spans whose re-
lation to the other spans is reflected by their indices.

Algorithm 1 Canonicalizing discontinuous fragments.
Input: A tree fragment t with indexed terminals wi or intervals xi : j, . . . y as
leaves (0 ď i ă j ă n)

Output: A tree fragment with modified indices.
1: k Ð the smallest index in t
2: subtract k from each index in t
3: for all intervals I = xi : j, . . . y of the substitution sites in t
4: for all i : j P I
5: replace i : j with i
6: subtract j ´ i from all indices k s.t. k ą j
7: for all indices i in t
8: if the indices i ` 1 and i ` 2 are not in t
9: k Ð the smallest index in t s.t. k ą i
10: subtract k ´ i from all indices y s.t. y ą i

Figure 13:
Canonicalization of fragments

extracted from parse trees. These
sample fragments have been extracted

from the tree in Figure 1. The
fragments are visualized here as
discontinuous tree structures, but

since the discontinuities are encoded
in the indices of the yield, they can be
represented in a standard bracketing

format as used by the fragment
extractor.

1. Translate indices so that they start at 0; e.g.:
WW

uitgevonden5

WW

uitgevonden0

2. Reduce spans of frontier non-terminals to length 1;
move surrounding indices accordingly; e.g.:

S

VP2

0:1 5:5

WW

had2

N

ze3

BW

zelf4

S

VP2

0 5

WW

had1

N

ze2

BW

zelf3
3. Compress gaps to length 1; e.g.:

VP2

NP

0

WW

uitgevonden5

VP2

NP

0

WW

uitgevonden2

We will refer to the combination of Double-dop with discontin-
uous constituents as Disco-2dop. When recurring fragments are ex-
tracted from the Tiger treebank (cf. Section 8.1), we find that 10.4%

[82]

Discontinuous data-oriented parsing

of fragment types contain a discontinuous node (root, internal, or sub-
stitution site). This can be contrasted with the observation that 30%
of sentences in the Tiger treebank contain one or more discontinu-
ous constituents, and that 20.9% of production types in the plcfrs
treebank grammar of Tiger contain a discontinuous non-terminal. On
the other hand, when occurrence frequencies are taken into account,
both the fragments and productions with discontinuities account for
around 6.5% of the total frequency mass.

6 parsing with plcfrs and pdtsg

After extracting fragments by means of the method of Section 5, we
augment the set of fragments with all depth 1 fragments, in order to
preserve complete coverage of the training set trees. Since depth 1
fragments are equivalent to single grammar productions, this ensures
strong equivalence between the tsg and the respective treebank gram-
mar.6 We then apply the grammar transformation (cf. Section 4.2.1)
to turn the fragments into productions. Productions corresponding to
fragments are assigned a probability based on the relative frequency
of the respective fragment; productions introduced by the transforma-
tion are given a probability of 1. For an example, please refer back to
Figure 11.
We parse with the transformed grammar using the disco-dop

parser (van Cranenburgh et al. 2011; van Cranenburgh 2012a).
This is an agenda-based parser for plcfrs based on the algorithm
in Kallmeyer and Maier (2010, 2013), extended to produce n-best
derivations (Huang and Chiang 2005) and exploit coarse-to-fine prun-
ing (Charniak et al. 2006).
Parsing with lcfrs can be done with a weighted deduction sys-

tem and an agenda-based parser. The deduction steps are given in
Figure 14; for the pseudo-code of the parser see Algorithm 2, which
is an extended version of the parser in Kallmeyer and Maier (2010,
2013) that obtains the complete parse forest as opposed to just the
Viterbi derivation.

6Previous dop work such as Zollmann and Sima’an (2005) adds all possible
tree fragments up to depth 3. Preliminary experiments on 2dop gave no im-
provement on performance, while tripling the grammar size; therefore we do not
apply this in further experiments.

[83]

van Cranenburgh, Scha, Bod
Figure 14:

Weighted deduction system
for binarized lcfrs

Lexical:
p : rA, xxwiyys

p : Apwiq Ñ ϵ P G

Unary: x : rB,αs

p ¨ x : rA,αs

p : Apαq Ñ Bpαq

is an instantiated rule
from G

Binary: x : rB,βs, y : rC ,γs

p ¨ x ¨ y : rA,αs

p : Apαq Ñ Bpβq Cpγq

is an instantiated rule
from G

Goal: rS, xxw1 ¨ ¨ ¨ wnyys

In Section 6.1 we describe the probabilistic instantiation of dtsg
and the criterion to select the best parse. Section 6.2 describes how
derivations from the compressed tsg are converted back into trees
composed of the full elementary trees. Section 6.4 describes how
coarse-to-fine pruning is employed to make parsing efficient.

Algorithm 2 A probabilistic agenda-based parser for lcfrs.
Input: A sentence w1 ¨ ¨ ¨ wn, a grammar G
Output: A chart C with Viterbi probabilities, a parse forest F .
1: initialize agenda A with all possible pos tags for input
2: while A not empty
3: xI , xy Ð pop item with best score on agenda
4: add xI , xy to C
5: for all xI 1, zy that can be deduced from xI , xy and items in C
6: if I 1 RA YC
7: enqueue xI 1, zy in A
8: else if I 1 PA ^ z ą score for I 1 in A
9: update weight of I 1 in A to z
10: add edge for I 1 to F

6.1 Probabilities and disambiguation
Our probabilistic model uses the relative frequency estimate (rfe),
which has shown good results with the Double-dop model (Sangati
and Zuidema 2011). The relative frequency of a fragment is the num-
ber of its occurrences, divided by the total number of occurrences of
fragments with the same root node.
In dop many derivations may produce the same parse tree, and

it has been shown that approximating the most probable parse, which

[84]

Discontinuous data-oriented parsing

considers all derivations for a tree, yields better results than the most
probable derivation (Bod 1995). To select a parse tree from a deriva-
tion forest, we compute tree probabilities on the basis of the 10,000
most probable dop derivations, and select the tree with the largest
probability. Although the algorithm of Huang and Chiang (2005)
makes it is possible to extract the exact k-best derivations from a
derivation forest, we apply pruning while building the forest.

6.2 Reconstructing derivations
After a derivation forest is obtained and a list of k-best derivations has
been produced, the backtransform is applied to these derivations to
recover their internal structure. This proceeds by doing a depth-first
traversal of the derivations, and expanding each non-intermediate7
node into a template of the original fragment. These templates are
stored in a backtransform table indexed by the first binarized pro-
duction of the fragment in question. The template fragment has its
substitution sites marked, which are filled with values obtained by
recursively expanding the children of the current constituent.

6.3 Efficient discontinuous parsing
We review several strategies for making discontinuous parsing effi-
cient. As noted by Levy (2005, p. 138), the intrinsic challenge of dis-
continuous constituents is that a parser will generate a large number
of potential discontinuous spans.

6.3.1 Outside estimates
Outside estimates (also known as context-summary estimates and
figures-of-merit) are computed offline for a given grammar. During
parsing they provide an estimate of the outside probability for a given
constituent, i.e., the probability of a complete derivation with that
constituent divided by the probability of the constituent. The estimate
can be used to prioritize items in the agenda. Estimates were first intro-
duced for discontinuous lcfrs parsing in Kallmeyer and Maier (2010,
2013). Their estimates are only applied up to sentences of 30 words.
Beyond 30 words the table grows too large.

7An intermediate node is a node introduced by the binarization.

[85]

van Cranenburgh, Scha, Bod

A different estimate is given by Angelov and Ljunglöf (2014), who
succeed in parsing longer sentences and providing an A* estimate,
which is guaranteed to find the best derivation.
6.3.2 Non-projective dependency conversion
Hall and Nivre (2008), Versley (2014), and Fernández-González and
Martins (2015) apply a reversible dependency conversion to the Tiger
treebank, and use a non-projective dependency parser to parse with
the converted treebank. The method has the advantage of being fast
due to the greedy nature of the arc-eager transition-based dependency
parser that is employed. The parser copes with non-projectivity by
reordering tokens during parsing. Experiments are reported on the full
Tiger treebank without length restrictions.
6.3.3 Reducing fan-out
The most direct way of reducing the complexity of lcfrs parsing is
to reduce the fan-out of the grammar.
Maier et al. (2012) introduces a linguistically motivated reduction

of the fan-outs of the Negra and Penn treebanks to fan-out 2 (up to a
single gap per constituent). This enables parsing of sentences of up to
length 40.
Nederhof and Vogler (2014) introduce a method of synchronous

parsing with an lcfrs and a definite clause grammar. A parameter
allows the fan-out (and thus parsing complexity) of the lcfrs to be
reduced. Experiments are reported on sentences of up to 30 words on
a small section of the Tiger treebank.
6.3.4 Coarse-to-fine pruning
We will focus on coarse-to-fine pruning, introduced in Charniak et al.
(2006) and applied to discontinuous parsing by van Cranenburgh
(2012a), who reports parsing results on the Negra treebank without
length restrictions. Compared to the previous methods, this method
does not change the grammar, but adds several new grammars to be
used as preprocessing steps. Compared to the outside estimates, this
method exploits sentence-specific information, since pruning informa-
tion is collected during parsing with the coarser grammars.
Pauls and Klein (2009) present a comparison of coarse-to-fine and

(hierarchical A*) outside estimates, and conclude that except when

[86]

Discontinuous data-oriented parsing

near-optimality is required, coarse-to-fine is more effective as it prunes
a larger number of unlikely constituents.
A similar observation is obtained from a comparison of the

discontinuous coarse-to-fine method and the outside estimates of
Angelov and Ljunglöf (2014): coarse-to-fine is faster with longer sen-
tences (30 words and up), at the cost of not always producing the
most likely derivation (Ljunglöf, personal communication).
6.4 Coarse-to-fine pipeline
In order to tame the complexity of lcfrs and dop, we apply coarse-
to-fine pruning. Different grammars are used in the sequel, each being
an overgenerating approximation of the next. That is, a coarse gram-
mar will generate a larger set of constituents than a fine grammar.
Parsing with a coarser grammar is more efficient, and all constituents
which can be ruled out as improbable with a coarser grammar can
be discarded as candidates when parsing with the next grammar. A
constituent is ruled improbable if it does not appear in the k-best
derivations of a parse forest. We use the same setup as in van Cra-
nenburgh (2012a); namely, we parse in three stages, using three dif-
ferent grammars:
1. Split-pcfg: A cfg approximation of the discontinuous treebank
grammar; rewrites spans of discontinuous constituents indepen-
dently.

2. plcfrs: The discontinuous treebank grammar; rewrites discon-
tinuous constituents in a single operation. A discontinuous span
Xnxx1, . . . , xny is added to the chart only if all of X ˚m

n xxmy with
1 ď m ď n are part of the k-best derivations of the chart of the
previous stage.

3. Disco-dop: The discontinuous dop grammar; uses tree fragments
instead of individual productions from the treebank. A discontin-
uous span Xnxx1, . . . , xny is added to the chart only if Xnxx1, . . . , xny

is part of the k-best derivations of the chart of the previous stage,
or if Xn is an intermediate symbol introduced by the tsg com-
pression.
The first stage is necessary because without pruning, the plcfrs

generates too many discontinuous spans, the majority of which are
improbable or not even part of a complete derivation. The second stage

[87]

van Cranenburgh, Scha, Bod

is not necessary for efficiency but gives slightly better accuracy on
discontinuous constituents.
For example, while parsing the sentence “Wake your friend up,”

the discontinuous VP “Wake … up” may be produced in the plcfrs
stage. Before allowing this constituent to enter into the agenda and
the chart, the chart of the previous stage is consulted to see if the
two discontinuous components “Wake” and “up” were part of the k-
best derivations. In the dop stage, multiple elementary trees may be
headed by this discontinuous constituent, and again they are only al-
lowed on the chart if the previous stage produced the constituent as
part of its k-best derivations.
The initial values for k are 10,000 and 50 for the plcfrs and

dop grammar respectively. These values are chosen to be able to di-
rectly compare the new approach with the results in van Cranenburgh
(2012a). However, experimenting with a higher value for k for the
dop stage has shown to yield improved performance. In other coarse-
to-fine work the pruning criterion is based on a posterior thresh-
old (e.g., Charniak et al. 2006; Bansal and Klein 2010); the k-best ap-
proach has the advantage that it does not require the computation of
inside and outside probabilities.
For the initial pcfg stage, we apply beam search as in Collins

(1999). The highest scoring item in each cell is tracked and only items
up to 10,000 times less probable are allowed to enter the chart.
Experiments and results are described in Sections 8–9.

7 discontinuity without lcfrs

The idea up to now has been to generate discontinuous constituents
using formal rewrite operations of lcfrs. It should be noted, however,
that the pcfg approximation used in the pruning stage reproduces dis-
continuities using information derived from the non-terminal labels.
Instead of using this technique only as a crutch for pruning, it can also
be combined with the use of fragments to obtain a pipeline that runs in
cubic time. While the cfg approximation increases the independence
assumptions for discontinuous constituents, the use of large fragments
in the dop approach can mitigate this increase. To create the cfg ap-
proximation of the discontinuous treebank grammar, the treebank is
transformed by splitting discontinuous constituents into several non-

[88]

Discontinuous data-oriented parsing

terminal nodes (as explained in Section 4.1), after which grammar
productions are extracted. This last step can also be replaced with
fragment extraction to obtain a dop grammar from the transformed
treebank. We shall refer to this alternative approach as ‘Split-2dop.’
The coarse-to-fine pipeline is now as follows:
1. Split-pcfg: A treebank grammar based on the cfg approxima-
tion of discontinuous constituents; rewrites spans of discontinu-
ous constituents independently.

2. Split-2dop grammar: tree fragments based on the same trans-
formed treebank as above.
Since every discontinuous non-terminal is split up into a new non-

terminal for each of its spans, the independence assumptions for that
non-terminal in a probabilistic grammar are increased. While this rep-
resentation is not sufficient to express the full range of nested discon-
tinuous configurations, it appears adequate for the linguistic phenom-
ena in the treebanks used in this work, since their trees can be unam-
biguously transformed back and forth into this representation. More-
over, the machinery of Data-Oriented Parsing mitigates the increase
in independence assumptions through the use of large fragments. We
can therefore parse using a dop model with a context-free grammar as
the symbolic backbone, and still recover discontinuous constituents.

8 experimental setup
In this section we describe the experimental setup for benchmarking
our discontinuous Double-dop implementations on several discontin-
uous treebanks.
8.1 Treebanks and preprocessing
We evaluate on three languages: for German, we use the Negra (Skut
et al. 1997) and Tiger (Brants et al. 2002) treebanks; for English,
we use a discontinuous version of the Penn treebank (Evang and
Kallmeyer 2011); and for Dutch, we use the Lassy (Van Noord 2009)
and cgn (van der Wouden et al. 2002) treebanks; cf. Table 1. Negra
and Tiger contain discontinuous annotations by design, as a strategy
to cope with the relatively free word order of German. The discontin-
uous Penn treebank consists of the wsj section in which traces have

[89]

van Cranenburgh, Scha, Bod
Table 1: The discontinuous treebanks used in the experiments and the number
of sentences used for development, training, and testing

Treebank train (sentences) dev (sentences) test (sentences)
G E R M A N
Negra 18,602 1000 1000

(#1–18,602) (#19,603–20,602) (#18,603–19,602)
Tiger 40,379 / 45,427 5048 5047
E N G L I S H
ptb: wsj 39,832 1346 2416
D U T C H
Lassy small 52,157 6520 6523
CGN 70,277 2000 2000

been converted to discontinuous constituents; we use the version used
in Evang and Kallmeyer (2011, Sections 5.1–5.2) without restrictions
on the transformations. The Lassy treebank is referred to as a depen-
dency treebank but when discontinuity is allowed it can be directly
interpreted as a constituency treebank. The Corpus Gesproken Neder-
lands (CGN, Spoken Dutch Corpus; van der Wouden et al. 2002) is a
Dutch spoken language corpus with the same syntactic annotations.
We use the syntactically annotated sentences from the Netherlands
(i.e., without the Flemish part) of up to 100 tokens. The train-dev-test
splits we employ are as commonly used for the Penn treebank: sec. 2–
21, sec. 24, sec. 23, respectively. For Negra we use the one defined in
Dubey and Keller (2003). For Tiger we follow Hall and Nivre (2008)
who define sections 0–9 where sentence i belongs to section i mod
10, sec. 0 is used as test, sec. 1 as development, and 2–9 as training.
When parsing the Tiger test set, the development set is added to the
training set as well; while this is not customary, it ensures the results
are comparable with Hall and Nivre (2008).
The same split is applied to the cgn treebank but with a single

training set. For Lassy the split is our own.8

8The Lassy split derives from 80–10–10 partitions of the canonically ordered
sentence IDs in each subcorpus (viz. dpc, WR, WS, and wiki). Canonically ordered
refers to a ‘version sort’ where an identifier such as ‘2.12.a’ is treated as a tuple
of three elements compared consecutively.

[90]

Discontinuous data-oriented parsing

For purposes of training we apply heuristics for head assign-
ment (Klein and Manning 2003) and binarize the trees in the train-
ing sets head-outward with h “ 1, v “ 1 markovization; i.e., n-ary
nodes are factored into nodes specifying an immediate sibling and
parent. Note that for lcfrs, a binarization may increase the fan-out,
and thus the complexity of parsing. It is possible to select the bina-
rization in such a way as to minimize this complexity (Gildea 2010).
However, experiments show that this increase in fan-out does not
actually occur, regardless of the binarization strategy (van Cranen-
burgh 2012a). Head-outward means that constituents are binarized in
a right-factored manner up until the head child, after which the rest
of the binarization continues in a left-factored manner.
We add fan-out markers to guarantee unique fan-outs for non-

terminal labels, e.g., tVP, VP2, VP3, . . .u, which are removed again for
evaluation.
For the Dutch and German treebanks, punctuation is not part

of the syntactic annotations. This causes spurious discontinuities, as
the punctuation interrupts the constituents dominating its surround-
ing tokens. Additionally, punctuation provides a signal for constituent
boundaries, and it is useful to incorporate it as part of the rest of the
phrase structures. We use the method described in van Cranenburgh
(2012a): punctuation is attached to the highest constituent that con-
tains a neighbor to its right. With this strategy there is no increase
in the amount of discontinuity with respect to a version of the tree-
bank with punctuation removed. The CGN treebank contains spoken
language phenomena, including disfluencies such as interjections and
repeated words. In preprocessing, we treat these as if they were punc-
tuation tokens; i.e., they are moved to an appropriate constituent (as
defined above) and are ignored in the evaluation.
The complexity of parsing with a binarized lcfrs is Opn3φq with

φ the highest fan-out of the non-terminals in the grammar (Seki et al.
1991). For a given grammar, it is possible to give a tighter upper
bound on the complexity of parsing. Given the unique fan-outs of non-
terminals in a grammar, the number of operations it takes to apply a
production is the sum of the fan-outs in the production (Gildea 2010):

cppq “ φpAq `

r
ÿ

i“1

φpBiq

[91]

van Cranenburgh, Scha, Bod

The complexity of parsing with a grammar is then the maximum value
of this measure for productions in the grammar. In our experiments
we find a worst-case time complexity of Opn9q for parsing with the
dop grammars extracted from Negra and wsj. The following sentence
from Negra contributes a grammar production with complexity 9. The
production is from the VP of vorgeworfen; bracketed words are from
other constituents, indicating the discontinuities:
(2) Den

The
Stadtteilparlamentariern
district-MPs

[ist]
have

immer
always

wieder
again

[“Kirchturmpolitik”]
“parochialism”

vorgeworfen
accused

[worden],
been,

weil
because

sie
they

nicht
not

über
beyond

die
the
Grenzen
boundaries

des
of-the

Ortsbezirks
local-district

hinausgucken
look-out

würden.
would.

‘Time and again, the district MPs have been accused of “parochialism” be-
cause they would not look out beyond the boundaries of the local district.’
The complexities for Tiger and Lassy are Opn10q and Opn12q respec-

tively, due to a handful of anomalous sentences; by discarding these
sentences, a grammar with a complexity of Opn9q can be obtained with
no or negligible effect on accuracy.
8.2 Unknown words
In initial experiments the parser is trained and evaluated on gold
standard part-of-speech tags, as in previous experiments on discon-
tinuous parsing. Later we show results when tags are assigned auto-
matically with a simple unknown word model, based on the Stanford
parser (Klein and Manning 2003). An open class threshold σ deter-
mines which tags are considered open class tags; tags that rewrite
more than σ words are considered open class tags, and words they
rewrite are open class words. Open class words in the training set that
do not occur more than 4 times are replaced with signatures based on
a list of features; words in the test set which are not part of the known
words from the training set are replaced with similar signatures. The
features are defined in the Stanford parser as Model 4, which is rela-
tively language independent; cf. Table 2 for the list of features.9 Sig-
natures are formed by concatenating the names of features that apply

9This table is based on code from the Stanford parser (release 2014-08-
27), specifically the method getSignature4 in the file EnglishUnknownWord-
Model.java.

[92]

Discontinuous data-oriented parsing

Feature Description
AC All capital letters
SC Initial capital, first word in sentence
C Initial capital, other position
L, U Has lower / upper case letter
S No letters
N, n All digits / one or more digits
H, P, C Has dash / period / comma
x Last character if letter and length ą 3

Table 2:
Unknown word features,
Stanford parser Model 4

to a word; e.g., ‘forty-two’ gives _UNK-L-H-o. A probability mass ε
is assigned for combinations of known open class words with unseen
tags. We use ε= 0.01. We tuned σ on each training set to ensure that
no closed class words are identified as open class words; for English
and German we use σ = 150, and we use σ = 100 for Dutch.

8.3 Function tags
We investigated two methods of having the parser produce function
tags in addition to the usual phrase labels. The first method is to train a
separate discriminative classifier that adds function tags to parse trees
in a post-processing step. This approach is introduced in Blaheta and
Charniak (2000). We employed their feature set.
Another approach is to simply append the function tags to the

non-terminal labels, resulting in, e.g., NP-SBJ and NP-OBJ for subject
and object noun phrases. While this approach introduces sparsity and
may affect the performance without function tags, we found this ap-
proach to perform best and therefore report results with this approach.
Gabbard et al. (2006) and Fraser et al. (2013) use this approach as well.
Compared to the classifier approach, it does not require any tuning,
and the resulting model is fully generative. We apply this to the Tiger,
wsj, and Lassy treebanks.
The Penn treebank differs from the German and Dutch treebanks

with respect to function tags. The Penn treebank only has function
tags on selected non-terminals (never on preterminals) and each non-
terminal may have several function tags from four possible categories;
whereas the German and Dutch treebanks have a single function tag

[93]

van Cranenburgh, Scha, Bod

on most non-terminals. The tag set also differs considerably: the Penn
treebank has 20 function tags, Lassy has 31, and Tiger has 43.
8.4 Treebank refinements
We apply a set of manual treebank refinements based on previous
work. In order to compare the results on Negra with previous work,
we do not apply the state splits when working with gold standard pos
tags.
For Dutch and German we split the pos tags for the sentence-

ending punctuation ‘.!?’. For all treebanks we add the feature ‘year’
to the preterminal label of tokens with numbers in the range 1900–
2040, and replace the token with 1970. Other numbers are replaced
with 000.
8.4.1 Tiger
For Tiger we apply the refinements described in Fraser et al. (2013).
Since the Negra treebank is only partially annotated with morpholog-
ical information, we do not apply these refinements to that treebank.
8.4.2 WSJ
We follow the treebank refinements of Klein and Manning (2003) for
the Wall Street Journal section of the Penn treebank.
8.4.3 Lassy
The Lassy treebank contains fine-grained part-of-speech tags with
morphological features. It is possible to use the full part-of-speech tags
as the preterminal labels, but this introduces sparsity. We select a sub-
set of features to add to the preterminal labels:
• nouns: proper/regular;
• verbs: auxiliary/main, finite/infinite;
• conjunctions: coordinating/subordinating;
• pronouns: personal/demonstrative;
• pre- vs. postposition.
Additionally, we percolate the feature identifying finite and infi-

nite verbs to the parents and grandparents of the verb.
For multi-word units (MWU), we append the label of its head

child. This helps distinguish MWUs as being nominal, verbal, preposi-
tional, or otherwise.

[94]

Discontinuous data-oriented parsing

The last two transformations are based on those for Tiger. Unary
NPs are added for single nouns and pronouns in sentential, preposi-
tional and infinitival constituents. For conjuncts, the function tag of
the parent is copied. Both transformations can be reversed.
Since the cgn treebank uses a different syntax for the fine-grained

pos tags, we do not apply these refinements to that treebank.

8.5 Metrics
We employ the exact match and Parseval measures (Black et al. 1992)
as evaluation metrics. Both are based on bracketings that identify the
label and yield of each constituent. The exact match is the proportion
of sentences in which all labelled bracketings are correct. The Par-
seval measures consist of the precision, recall, and F-measure of the
correct labelled bracketings averaged across the treebank. Since the
pos accuracy is crucial to the performance of a parser and neither of
the previous metrics reflect it, we also report the proportion of correct
pos tags.
We use the evaluation parameters typically used with EVALB on

the Penn treebank. Namely, the root node and punctuation are not
counted towards the score (similar to COLLINS.prm,10 except that we
discount all punctuation, including brackets). Counting the root node
as a constituent should not be done because it is not part of the cor-
pus annotation and the parser is able to generate it without doing
any work; when the root node is counted it inflates the F-score by
several percentage points. Punctuation should be ignored because in
the original annotation of the Dutch and German treebanks, punctu-
ation is attached directly under the root node instead of as part of
constituents. Punctuation can be re-attached using heuristics for the
purposes of parsing, but evaluation should not be affected by this.
It is not possible to directly compare evaluation results from dis-

continuous parsing to existing state-of-the-art parsers that do not pro-
duce discontinuous constituents, since parses without discontinuous
constituents contain a different set of bracketings; cf. Figure 15, which
compares discontinuous bracketings to the bracketings extracted from
a tree in which discontinuity has been resolved by attaching non-
head siblings higher in the tree, as used in work on parsing Negra.

10This is part of the EVALB software, cf. http://nlp.cs.nyu.edu/evalb/

[95]

van Cranenburgh, Scha, Bod
Figure 15:

Bracketings from a tree
with and without

discontinuous constituents

S

VP2

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

xS, t1 . . . 5uy

xVP2, t1, 2, 5uy

xNP, t1, 2uy

S

VPNP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

xS, t1 . . . 5uy

xVP, t5uy

xNP, t1, 2uy

Compared to an evaluation of bracketings without discontinuous con-
stituents, an evaluation including discontinuous bracketings is more
stringent. This is because bracketings are scored in an all-or-nothing
manner, and a discontinuous bracketing includes non-local elements
that would be scored separately when discontinuity is removed in a
preprocessing step.
For function tags we use two metrics:

1. The non-null metric of Blaheta and Charniak (2000), which is
the F-score of function tags on all correctly parsed bracketings.
Since the German and Dutch treebanks include function tags on
pre-terminals, we also include function tags on correctly tagged
words in this metric.

2. A combined F-measure on bracketings of the form xC , F, spany,
where C is a syntactic category and F a function tag.

9 evaluation

This section presents an evaluation on three languages, and with re-
spect to the use of function tags, tree fragments, pruning, and proba-
bilities.

9.1 Main results on three languages
Table 3 lists the results for discontinuous parsing of three Germanic
languages, with unknown word models. The cited works by Kallmeyer
and Maier (2013) and Evang and Kallmeyer (2011) also use lcfrs

[96]

Discontinuous data-oriented parsing

for discontinuity but employ a treebank grammar with relative fre-
quencies of productions. Hall and Nivre (2008), Versley (2014), and
Fernández-González and Martins (2015) use a conversion to depen-
dencies discussed in Section 6.3.2. For English and German our results
improve upon the best known discontinuous constituency parsing re-
sults. The new system achieves a 16% relative error reduction over the
previous best result for discontinuous parsing on sentences of sizeď 40
in the Negra test set. In terms of efficiency, the Disco-2dop model is
more than three times as fast as the dop reduction, taking about three
hours instead of ten on a single core. The grammar is also more com-
pact: the Disco-2dop grammar is only a third the size of that of the
dop reduction, at 6 mb versus 18 mb compressed size.
Table 3 also includes results from van Cranenburgh and Bod

(2013) who do not add function tags to non-terminal labels nor ap-
ply the extensive treebank refinements described in Sections 8.3–8.4.
Although the refinements and some of the function tags would be ex-
pected to improve performance, the rest of the function tags increase
sparsity and consequently the resulting F-scores are slightly lower; but
this tradeoff seems to be justified in order to get parse trees with func-
tion tags. The results on cgn show a surprisingly high exact match
score. This is due to a large number of interjection utterances, e.g.,
“uhm.”; since such sentences only consist of a root node and pos tags,
the bracketing F1-score is not affected by this.
9.2 Function tags
Table 4 reports an evaluation including function tags. For these three
treebanks, the models reproduce most of the information in the orig-
inal treebank. The following parts are not yet incorporated. The Ger-
man and Dutch treebanks contain additional lexical information con-
sisting of lemmas and morphological features. These could be added to
the non-terminal labels of the model or obtained from an external pos
tagger. Lastly, some non-terminals have multiple parents; these occur
in the German and Dutch treebanks and are referred to as secondary
edges.
9.3 All-fragments vs. recurring fragments
The original Disco-dop model (van Cranenburgh et al. 2011) is based
on an all-fragments model, while Disco-2dop is based on recurring

[97]

van Cranenburgh, Scha, Bod
Table 3: Discontinuous parsing of three Germanic languages. POS is the part-
of-speech tagging accuracy; F1 is the labelled bracketing F1-score; EX is the
exact match score. Results marked with * use gold standard pos tags; those
marked with † do not discount the root node and punctuation. NB: Kallmeyer
and Maier (2013) and Evang and Kallmeyer (2011) use a different test set and
length restriction. ‘vanCraBod2013’ refers to van Cranenburgh and Bod (2013),
and ‘FeMa2015’ to Fernández-González and Martins (2015)

DEV TEST
Treebank and parser |w| POS F1 EX POS F1 EX
G E R M A N
Negra
van Cranenburgh (2012a)* ď 40 100 74.3 34.3 100 72.3 33.2
Kallmeyer and Maier (2013)*† ď 30 100 75.8
this work, Disco-2DOP* ď 40 100 77.7 41.5 100 76.8 40.5
this work, Disco-2DOP ď 40 96.7 76.4 39.2 96.3 74.8 38.7
Tiger
Hall and Nivre (2008) ď 40 97.0 75.3 32.6
Versley (2014) ď 40 100 74.2 37.3
FeMa2015 ď 40 82.6 45.9
vanCraBod2013, Disco-2DOP ď 40 97.6 78.7 40.5 97.6 78.8 40.8
this work, Disco-2DOP ď 40 96.6 78.3 40.2 96.1 78.2 40.0
this work, Split-2DOP ď 40 96.6 78.1 39.2 96.2 78.1 39.0
E N G L I S H
wsj
Evang and Kallmeyer (2011)*† ă 25 100 79.0
vanCraBod2013, Disco-2DOP ď 40 96.0 85.2 28.0 96.6 85.6 31.3
this work, Disco-2DOP ď 40 96.1 86.9 29.5 96.7 87.0 34.4
this work, Split-2DOP ď 40 96.1 86.7 29.5 96.7 87.0 33.9
D U T C H
Lassy
vanCraBod2013, Disco-2DOP ď 40 94.1 79.0 37.4 94.6 77.0 35.2
this work, Disco-2DOP ď 40 96.7 78.3 36.2 96.3 76.6 34.0
this work, Split-2DOP ď 40 96.8 78.0 34.9 96.3 76.2 32.7
cgn
this work, Disco-2DOP ď 40 96.7 72.6 64.1 96.7 73.0 63.8
this work, Split-2DOP ď 40 96.6 71.2 63.4 96.7 72.2 63.3

[98]

Discontinuous data-oriented parsing

Language, treebank phrase labels function tags combined
German, Tiger 78.2 93.5 68.1
English, wsj 87.0 86.3 82.5
Dutch, Lassy 76.6 92.8 70.0

Table 4:
Evaluation of function tags on
sentences ď 40 words, test sets; F1

scores as defined at the end of
Section 8.5

fragments. Table 5 compares previous results of Disco-dop to the new
Disco-2dop implementation. The second column shows the accuracy
for different values of k, i.e., the number of coarse derivations that de-
termine the allowed labelled spans for the fine stage. While increasing
this value did not yield improvements using the dop reduction, with
Disco-2dop there is a substantial improvement in performance, with
k “ 5000 yielding the best score among the handful of values tested.
Figure 16 shows the average time spent in each stage using the latter
model on wsj. The average time to parse a sentence (ď 40 words)
for this grammar is 7.7 seconds. Efficiency could be improved signif-
icantly by improving the pcfg parser using better chart representa-
tions such as packed parse forests and bit vectors (Schmid 2004).

Model k=50 k=5000
F1 F1

dop reduction: disco-dop 74.3 73.5
Double-dop: disco-2dop 76.3 77.7

Table 5:
Comparing F-scores for the dop
reduction (implicit fragments) with
Double-dop (explicit fragments) on
the Negra development set with
different amounts of pruning (higher
k means less pruning); gold standard
pos tags

10 20 30 40
words

0

5

10

15

20

C
P
U

 t
im

e
 (

se
co

n
d
s)

DOP
PLCFRS
Split-PCFG

Figure 16:
Average time spent in each
stage for sentences by
length; disco-2dop, wsj
development set

[99]

van Cranenburgh, Scha, Bod

9.4 Effects of pruning
The effects of pruning can be further investigated by comparing dif-
ferent levels of pruning. We first parse the sentences in the Negra de-
velopment set that are up to 30 words long with a plcfrs treebank
grammar, with k “ 10, 000 and without pruning. Out of 897 sentences,
the Viterbi derivation is pruned on only 14 occasions, while the pruned
version is about 300 times faster.
Table 6 shows results for different levels of pruning on sentences

of all lengths. For sentences of all lengths it is not feasible to parse
with the unpruned plcfrs. However, we can compare the items in
the parse forest after pruning and the best derivation to the gold tree
from the treebank. From the various measures, it can be concluded
that the pruning has a large effect on speed and the number of items
in the resulting parse forest, while having only a small effect on the
quality of the parse (forest).

Table 6: Results for different levels of pruning; mean over 1000 sentences

(pcfg) k=100 k=1000 k=5000 k=10,000

CPU time (seconds) 2.461 0.128 0.193 0.444 0.739
Number of items in chart 69,570.5 207.6 282.7 378.2 436.5
Percentage of gold
standard items in chart 94.7 94.2 97.2 98.1 98.4

F1 score 69.3 69.8 69.9 69.9 69.8

9.5 Without LCFRS
Table 3 shows that the Disco-2dop and Split-2dop techniques have
comparable performance, demonstrating that the complexity of lcfrs
parsing can be avoided. Table 7 shows the performance in each step
of the coarse-to-fine pipelines, with and without lcfrs. Surprisingly,
the use of a formalism that explicitly models discontinuity as an oper-
ation does not give any improvement over a simpler model in which
discontinuities are only modeled probabilistically by encoding them
into labels and fragments. This demonstrates that given the use of tree
fragments, discontinuous rewriting through lcfrs comes at a high
computational cost without a clear benefit over cfg.

[100]

Discontinuous data-oriented parsing

Pipeline F1 EX%
Split-pcfg (no lcfrs, no tsg) 65.8 28.0
Split-pcfg ñ plcfrs (no tsg) 65.9 28.6
Split-pcfg ñ plcfrs ñ 2dop 77.7 41.5
Split-pcfg ñ Split-2dop (no lcfrs) 78.1 42.0

Table 7:
Parsing discontinuous constituents
is possible without lcfrs (Negra
development set, gold standard pos
tags; results are for final stage)

9.6 The role of probabilities
From the results it is clear that a probabilistic tree-substitution gram-
mar is able to provide much better results than a simple treebank
grammar. However, it is not obvious whether the improvement is
specifically due to the more fine-grained statistics (i.e., frequencies of
more specific events), or generally because of the use of larger chunks.
A serendipitous discovery during development of the parser provides
insight into this: during an experiment, the frequencies of fragments
were accidentally permuted and assigned to different fragments, but
the resulting decrease in performance was surprisingly low, from 77.7
to 74.1 F1 – suggesting that most of the improvement over the 65.9 F1

score of the plcfrs treebank grammar comes from memorizing larger
chunks, as opposed to statistical reckoning.

9.7 Previous work
Earlier work on recovering empty categories and their antecedents
in the Penn treebank (Johnson 2002; Levy and Manning 2004; Gab-
bard et al. 2006; Schmid 2006; Cai et al. 2011) has recovered non-
local dependencies by producing the traces and co-indexation as in the
original annotation. If the results include both traces and antecedents
(which holds for all but the last work cited), the conversion to discon-
tinuous constituents of Evang and Kallmeyer (2011) could be applied
to obtain a discontinuous F-score. Since this would require access to
the original parser output, we have not pursued this.
As explained in Section 8.5, it is not possible to directly compare

the results to existing parsers that do not produce discontinuous con-
stituents. However, the F-measures do give a rough measure, since the
majority of constituents are not discontinuous.
For English, there is a result with 2dop by Sangati and Zuidema

(2011) with an F1 score of 87.9. This difference can be attributed to the
absence of discontinuous bracketings, as well as their use of the Max-

[101]

van Cranenburgh, Scha, Bod

imum Constituents Parse instead of the Most Probable Parse; the for-
mer optimizes the F-measure instead of the exact match score. Shindo
et al. (2012) achieve an F1 score of 92.9 with a Bayesian tsg that
uses symbol refinement through latent variables (i.e., automatic state
splitting).
For German, the best results without discontinuity and no length

restriction are F1 scores of 84.2 for Negra (Petrov 2010) and 76.8 for
Tiger (Fraser et al. 2013; note that this result employs a different train-
dev-test split than the one in this work).

10 conclusion

We have shown how to parse with discontinuous tree-substitution
grammars and presented a practical implementation. We employ a
fragment extraction method that finds recurring structures in tree-
banks efficiently, and supports discontinuous treebanks. This enables
a data-oriented parsing implementation that employs a compact, ef-
ficient, and accurate model for discontinuous parsing in a generative
model that improves upon previous results for this task.
Surprisingly, it turns out that the formal power of lcfrs is not

necessary to describe discontinuity, since equivalent results can be
obtained with a probabilistic tree-substitution grammar in which non-
local relations are encoded in the non-terminal labels. In other words,
it is feasible to produce discontinuous constituents without invoking
mild context-sensitivity.
We have presented parsing results on three languages. Compared

to previous work on statistical parsing, our models are linguistically
richer. In addition to discontinuous constituents, our models also re-
produce function tags from the treebank. While there have been pre-
vious results on reproducing non-local relations or function tags, this
work reproduces both using models derived straightforwardly from
treebanks, while exploiting ready-made treebank transformations for
improved performance.
The source code of the parser used in this work is available at

https://github.com/andreasvc/disco-dop.

[102]

Discontinuous data-oriented parsing

acknowledgments

We are grateful to Kilian Evang for supplying the discontinuous Penn
treebank, to the reviewers for detailed comments, and to Dave Carter
and Adam Przepiórkowski for copy-editing suggestions.
This work is supported by the Computational Humanities Pro-

gram of the Royal Netherlands Academy of Arts and Sciences, as part
of The Riddle of Literary Quality.

references
Krasimir Angelov and Peter Ljunglöf (2014), Fast statistical parsing with
parallel multiple context-free grammars, in Proceedings of EACL, pp. 368–376,
http://aclweb.org/anthology/E14-1039.
Mohit Bansal and Dan Klein (2010), Simple, accurate parsing with an
all-fragments grammar, in Proceedings of ACL, pp. 1098–1107,
http://aclweb.org/anthology/P10-1112.
François Barthélemy, Pierre Boullier, Philippe Deschamp, and Éric de la
Clergerie (2001), Guided parsing of range concatenation languages, in
Proceedings of ACL, pp. 42–49, http://aclweb.org/anthology/P01-1007.
Shane Bergsma, Matt Post, and David Yarowsky (2012), Stylometric
analysis of scientific articles, in Proceedings of NAACL, pp. 327–337,
http://aclweb.org/anthology/N12-1033.
Ezra Black, John Lafferty, and Salim Roukos (1992), Development and
evaluation of a broad-coverage probabilistic grammar of English-language
computer manuals, in Proceedings of ACL, pp. 185–192,
http://aclweb.org/anthology/P92-1024.
Don Blaheta and Eugene Charniak (2000), Assigning function tags to
parsed text, in Proceedings of NAACL, pp. 234–240,
http://aclweb.org/anthology/A00-2031.
Rens Bod (1992), A computational model of language performance:
data-oriented parsing, in Proceedings COLING, pp. 855–859,
http://aclweb.org/anthology/C92-3126.
Rens Bod (1995), The problem of computing the most probable tree in
data-oriented parsing and stochastic tree grammars, in Proceedings of EACL,
pp. 104–111, http://aclweb.org/anthology/E95-1015.
Rens Bod (2001), What is the minimal set of fragments that achieves maximal
parse accuracy?, in Proceedings of ACL, pp. 69–76,
http://aclweb.org/anthology/P01-1010.

[103]

van Cranenburgh, Scha, Bod

Rens Bod, Remko Scha, and Khalil Sima’an, editors (2003), Data-Oriented
Parsing, The University of Chicago Press.
Pierre Boullier (1998), Proposal for a natural language processing syntactic
backbone, Technical Report RR-3342, inria-Rocquencourt, Le Chesnay,
France, http://www.inria.fr/RRRT/RR-3342.html.
Adriane Boyd (2007), Discontinuity revisited: An improved conversion to
context-free representations, in Proceedings of the Linguistic Annotation
Workshop, pp. 41–44, http://aclweb.org/anthology/W07-1506.
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and
George Smith (2002), The Tiger treebank, in Proceedings of the workshop on
treebanks and linguistic theories, pp. 24–41,
http://www.bultreebank.org/proceedings/paper03.pdf.
Joan Bresnan, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen
(1982), Cross-serial dependencies in Dutch, Linguistic Inquiry, 13(4):613–635.
Shu Cai, David Chiang, and Yoav Goldberg (2011), Language-independent
parsing with empty elements, in Proceedings of ACL-HLT, pp. 212–216,
http://aclweb.org/anthology/P11-2037.
Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin (2015),
Better bitmap performance with Roaring bitmaps, Software: Practice and
Experience, ISSN 1097-024X, doi:10.1002/spe.2325,
http://arxiv.org/abs/1402.6407, to appear.
Eugene Charniak (1996), Tree-bank grammars, in Proceedings of the National
Conference on Artificial Intelligence, pp. 1031–1036.
Eugene Charniak, Mark Johnson, M. Elsner, J. Austerweil, D. Ellis,
I. Haxton, C. Hill, R. Shrivaths, J. Moore, M. Pozar, et al. (2006),
Multilevel coarse-to-fine PCFG parsing, in Proceedings of NAACL-HLT,
pp. 168–175, http://aclweb.org/anthology/N06-1022.
David Chiang (2000), Statistical parsing with an automatically-extracted tree
adjoining grammar, in Proceedings of ACL, pp. 456–463,
http://aclweb.org/anthology/P00-1058.
Noam Chomsky (1956), Three models for the description of language, IRE
Transactions on Information Theory, 2(3):113–124.
Noam Chomsky (1965), Aspects of the Theory of Syntax, MIT press.
Trevor Cohn, Phil Blunsom, and Sharon Goldwater (2010), Inducing
tree-substitution grammars, The Journal of Machine Learning Research,
11(Nov):3053–3096.
Trevor Cohn, Sharon Goldwater, and Phil Blunsom (2009), Inducing
compact but accurate tree-substitution grammars, in Proceedings of NAACL-HLT,
pp. 548–556, http://aclweb.org/anthology/N09-1062.

[104]

Discontinuous data-oriented parsing

Michael Collins (1999), Head-driven statistical models for natural language
parsing, Ph.D. thesis, University of Pennsylvania.
Peter Dienes and Amit Dubey (2003), Deep syntactic processing by combining
shallow methods, in Proceedings of ACL, pp. 431–438,
http://aclweb.org/anthology/P03-1055.
Amit Dubey and Frank Keller (2003), Probabilistic parsing for German using
sister-head dependencies, in Proceedings of ACL, pp. 96–103,
http://aclweb.org/anthology/P03-1013.
Kilian Evang and Laura Kallmeyer (2011), PLCFRS parsing of English
discontinuous constituents, in Proceedings of IWPT, pp. 104–116,
http://aclweb.org/anthology/W11-2913.
Daniel Fernández-González and André F. T. Martins (2015), Parsing as
reduction, in Proceedings of ACL, pp. 1523–1533,
http://aclweb.org/anthology/P15-1147.
Alexander Fraser, Helmut Schmid, Richárd Farkas, Renjing Wang, and
Hinrich Schütze (2013), Knowledge sources for constituent parsing of
German, a morphologically rich and less-configurational language,
Computational Linguistics, 39(1):57–85,
http://aclweb.org/anthology/J13-1005.
Ryan Gabbard, Mitchell Marcus, and Seth Kulick (2006), Fully parsing the
Penn treebank, in Proceedings of NAACL-HLT, pp. 184–191,
http://aclweb.org/anthology/N06-1024.
Stuart Geman and Mark Johnson (2004), Probability and statistics in
computational linguistics, a brief review, in Mark Johnson, Sanjeev P.
Khudanpur, Mari Ostendorf, and Roni Rosenfeld, editors, Mathematical
foundations of speech and language processing, pp. 1–26, Springer.
Daniel Gildea (2010), Optimal parsing strategies for linear context-free
rewriting systems, in Proceedings of NAACL-HLT, pp. 769–776,
http://aclweb.org/anthology/N10-1118.
Joshua Goodman (2003), Efficient parsing of DOP with PCFG-reductions, in
Bod et al. (2003), pp. 125–146.
Spence Green, Marie-Catherine de Marneffe, John Bauer, and
Christopher D. Manning (2011), Multiword expression identification with tree
substitution grammars: A parsing tour de force with French, in Proceedings of
EMNLP, pp. 725–735, http://aclweb.org/anthology/D11-1067.
Johan Hall and Joakim Nivre (2008), Parsing discontinuous phrase structure
with grammatical functions, in Bengt Nordström and Aarne Ranta, editors,
Advances in Natural Language Processing, volume 5221 of Lecture Notes in
Computer Science, pp. 169–180, Springer,
http://dx.doi.org/10.1007/978-3-540-85287-2_17.

[105]

van Cranenburgh, Scha, Bod

Lars Hoogweg (2003), Extending DOP with insertion, in Bod et al. (2003),
pp. 317–335.
Yu-Yin Hsu (2010), Comparing conversions of discontinuity in PCFG parsing,
in Proceedings of Treebanks and Linguistic Theories, pp. 103–113,
http://hdl.handle.net/10062/15954.
Liang Huang and David Chiang (2005), Better k-best parsing, in Proceedings
of IWPT, pp. 53–64, NB corrected version on author homepage:
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf.
Marinus A.C. Huybregts (1976), Overlapping dependencies in Dutch, Utrecht
Working Papers in Linguistics, 1:24–65.
Mark Johnson (2002), A simple pattern-matching algorithm for recovering
empty nodes and their antecedents, in Proceedings of ACL, pp. 136–143,
http://aclweb.org/anthology/P02-1018.
Aravind K. Joshi (1985), How much context sensitivity is necessary for
characterizing structural descriptions: Tree adjoining grammars, in David R.
Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural language
parsing: Psychological, computational and theoretical perspectives, pp. 206–250,
Cambridge University Press, New York.
Miriam Kaeshammer and Vera Demberg (2012), German and English
treebanks and lexica for tree-adjoining grammars, in Proceedings of LREC,
pp. 1880–1887,
http://www.lrec-conf.org/proceedings/lrec2012/pdf/398_Paper.pdf.
Laura Kallmeyer (2009), A declarative characterization of different types of
multicomponent tree adjoining grammars, Research on Language and
Computation, 7(1):55–99.
Laura Kallmeyer (2010), Parsing Beyond Context-Free Grammars, Cognitive
Technologies, Springer.
Laura Kallmeyer and Wolfgang Maier (2010), Data-driven parsing with
probabilistic linear context-free rewriting systems, in Proceedings of COLING,
pp. 537–545, http://aclweb.org/anthology/C10-1061.
Laura Kallmeyer and Wolfgang Maier (2013), Data-driven parsing using
probabilistic linear context-free rewriting systems, Computational Linguistics,
39(1):87–119, http://aclweb.org/anthology/J13-1006.
Laura Kallmeyer, Wolfgang Maier, and Giorgio Satta (2009), Synchronous
rewriting in treebanks, in Proceedings of IWPT,
http://aclweb.org/anthology/W09-3810.
Fred Karlsson (2007), Constraints on multiple centre-embedding of clauses,
Journal of Linguistics, 43(2):365–392.

[106]

Discontinuous data-oriented parsing

Dan Klein and Christopher D. Manning (2003), Accurate unlexicalized
parsing, in Proceedings of ACL, volume 1, pp. 423–430,
http://aclweb.org/anthology/P03-1054.
Marco Kuhlmann (2013), Mildly non-projective dependency grammar,
Computational Linguistics, 39(2):355–387,
http://aclweb.org/anthology/J13-2004.
Marco Kuhlmann and Giorgio Satta (2009), Treebank grammar techniques
for non-projective dependency parsing, in Proceedings of EACL, pp. 478–486,
http://aclweb.org/anthology/E09-1055.
Roger Levy (2005), Probabilistic models of word order and syntactic discontinuity,
Ph.D. thesis, Stanford University.
Roger Levy and Christopher D. Manning (2004), Deep dependencies from
context-free statistical parsers: correcting the surface dependency
approximation, in Proceedings of ACL, pp. 327–334,
http://aclweb.org/anthology/P04-1042.
Wolfgang Maier, Miriam Kaeshammer, Peter Baumann, and Sandra
Kübler (2014), Discosuite – A parser test suite for German discontinuous
structures, in Proceedings of LREC,
http://www.lrec-conf.org/proceedings/lrec2014/pdf/230_Paper.pdf.
Wolfgang Maier, Miriam Kaeshammer, and Laura Kallmeyer (2012),
PLCFRS parsing revisited: Restricting the fan-out to two, in Proceedings of TAG,
volume 11, http://wolfgang-maier.net/pub/tagplus12.pdf.
Wolfgang Maier and Timm Lichte (2011), Characterizing discontinuity in
constituent treebanks, in Proceedings of Formal Grammar 2009, pp. 167–182,
Springer.
Wolfgang Maier and Anders Søgaard (2008), Treebanks and mild
context-sensitivity, in Proceedings of Formal Grammar 2008, pp. 61–76.
James D. McCawley (1982), Parentheticals and discontinuous constituent
structure, Linguistic Inquiry, 13(1):91–106,
http://www.jstor.org/stable/4178261.
Mark-Jan Nederhof and Heiko Vogler (2014), Hybrid grammars for
discontinuous parsing, in Proceedings of COLING, pp. 1370–1381,
http://aclweb.org/anthology/C14-1130.
Timothy J. O’Donnell, Joshua B. Tenenbaum, and Noah D. Goodman
(2009), Fragment grammars: Exploring computation and reuse in language,
Technical Report MIT-CSAIL-TR-2009-013, MIT CSAIL,
http://hdl.handle.net/1721.1/44963.
Almerindo E. Ojeda (1988), A linear precedence account of cross-serial
dependencies, Linguistics and Philosophy, 11(4):457–492.

[107]

van Cranenburgh, Scha, Bod

Adam Pauls and Dan Klein (2009), Hierarchical search for parsing, in
Proceedings of NAACL-HLT, pp. 557–565,
http://aclweb.org/anthology/N09-1063.
P. Stanley Peters and R. W. Ritchie (1973), On the generative power of
transformational grammars, Information Sciences, 6:49–83,
http://dx.doi.org/10.1016/0020-0255(73)90027-3.
Slav Petrov (2010), Products of random latent variable grammars, in
Proceedings of NAACL-HLT, pp. 19–27,
http://aclweb.org/anthology/N10-1003.
Kenneth L. Pike (1943), Taxemes and immediate constituents, Language,
19(2):65–82, http://www.jstor.org/stable/409840.
Matt Post (2011), Judging grammaticality with tree substitution grammar
derivations, in Proceedings of the ACL-HLT 2011, pp. 217–222,
http://aclweb.org/anthology/P11-2038.
Matt Post and Daniel Gildea (2009), Bayesian learning of a tree substitution
grammar, in Proceedings of the ACL-IJCNLP 2009 Conference, Short Papers,
pp. 45–48, http://aclweb.org/anthology/P09-2012.
Brian Roark, Kristy Hollingshead, and Nathan Bodenstab (2012),
Finite-state chart constraints for reduced complexity context-free parsing
pipelines, Computational Linguistics, 38(4):719–753,
http://aclweb.org/anthology/J12-4002.
Federico Sangati and Willem Zuidema (2011), Accurate parsing with
compact tree-substitution grammars: Double-DOP, in Proceedings of EMNLP,
pp. 84–95, http://aclweb.org/anthology/D11-1008.
Federico Sangati, Willem Zuidema, and Rens Bod (2010), Efficiently extract
recurring tree fragments from large treebanks, in Proceedings of LREC,
pp. 219–226, http://dare.uva.nl/record/371504.
Remko Scha (1990), Language theory and language technology; competence
and performance, in Q.A.M. de Kort and G.L.J. Leerdam, editors,
Computertoepassingen in de Neerlandistiek, pp. 7–22, LVVN, Almere, the
Netherlands, original title: Taaltheorie en taaltechnologie; competence en
performance. English translation: http://iaaa.nl/rs/LeerdamE.html.
Yves Schabes and Richard C. Waters (1995), Tree insertion grammar:
cubic-time, parsable formalism that lexicalizes context-free grammar without
changing the trees produced, Computational Linguistics, 21(4):479–513,
http://aclweb.org/anthology/J95-4002.
Helmut Schmid (2004), Efficient parsing of highly ambiguous context-free
grammars with bit vectors, in Proceedings of COLING ’04,
http://aclweb.org/anthology/C04-1024.

[108]

Discontinuous data-oriented parsing

Helmut Schmid (2006), Trace prediction and recovery with unlexicalized
PCFGs and slash features, in Proceedings of COLING-ACL, pp. 177–184,
http://aclweb.org/anthology/P06-1023.
William Schuler, Samir AbdelRahman, Tim Miller, and Lane Schwartz
(2010), Broad-coverage parsing using human-like memory constraints,
Computational Linguistics, 36(1):1–30,
http://aclweb.org/anthology/J10-1001.
William Schuler, David Chiang, and Mark Dras (2000), Multi-component
TAG and notions of formal power, in Proceedings of ACL, pp. 448–455,
http://aclweb.org/anthology/P00-1057.
Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami
(1991), On multiple context-free grammars, Theoretical Computer Science,
88(2):191–229.
Stuart M. Shieber (1985), Evidence against the context-freeness of natural
language, Linguistics and Philosophy, 8:333–343.
Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and Masaaki Nagata
(2012), Bayesian symbol-refined tree substitution grammars for syntactic
parsing, in Proceedings of ACL, pp. 440–448,
http://aclweb.org/anthology/P12-1046.
Khalil Sima’an (1997), Efficient Disambiguation by means of stochastic tree
substitution grammars, in D. Jones and H. Somers, editors, New Methods in
Language Processing, pp. 178–198, UCL Press, UK.
Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit
(1997), An annotation scheme for free word order languages, in Proceedings of
ANLP, pp. 88–95, http://aclweb.org/anthology/A97-1014.
Ben Swanson, Elif Yamangil, Eugene Charniak, and Stuart Shieber
(2013), A context free TAG variant, in Proceedings of the ACL, pp. 302–310,
http://aclweb.org/anthology/P13-1030.
Benjamin Swanson and Eugene Charniak (2012), Native language detection
with tree substitution grammars, in Proceedings of ACL, pp. 193–197,
http://aclweb.org/anthology/P12-2038.
Heike Telljohann, Erhard Hinrichs, and Sandra Kübler (2004), The
Tüba-D/Z Treebank: Annotating German with a context-free backbone, in
Proceedings of LREC, pp. 2229–2235,
http://www.lrec-conf.org/proceedings/lrec2004/pdf/135.pdf.
Heike Telljohann, Erhard W Hinrichs, Sandra Kübler, Heike
Zinsmeister, and Kathrin Beck (2012), Stylebook for the Tübingen treebank
of written German (TüBa-D/Z), technical report, Seminar für
Sprachwissenschaft, Universität Tübingen, Germany,
http://www.sfs.uni-tuebingen.de/fileadmin/static/ascl/
resources/tuebadz-stylebook-1201.pdf.

[109]

van Cranenburgh, Scha, Bod

Marten H. Trautwein (1995), Computational pitfalls in tractable grammar
formalisms, Ph.D. thesis, University of Amsterdam, http://www.illc.uva.nl/
Research/Publications/Dissertations/DS-1995-15.text.ps.gz.
Andreas van Cranenburgh (2012a), Efficient parsing with linear
context-free rewriting systems, in Proceedings of EACL, pp. 460–470, corrected
version: http://andreasvc.github.io/eacl2012corrected.pdf.
Andreas van Cranenburgh (2012b), Literary authorship attribution with
phrase-structure fragments, in Proceedings of CLFL, pp. 59–63, revised version:
http://andreasvc.github.io/clfl2012.pdf.
Andreas van Cranenburgh (2014), Extraction of phrase-structure fragments
with a linear average time tree kernel, Computational Linguistics in the
Netherlands Journal, 4:3–16, ISSN 2211-4009, http://www.clinjournal.org/
sites/default/files/01-Cranenburgh-CLIN2014.pdf.
Andreas van Cranenburgh and Rens Bod (2013), Discontinuous parsing
with an efficient and accurate DOP model, in Proceedings of IWPT, pp. 7–16,
http://www.illc.uva.nl/LaCo/CLS/papers/iwpt2013parser_final.pdf.
Andreas van Cranenburgh, Remko Scha, and Federico Sangati (2011),
Discontinuous data-oriented parsing: A mildly context-sensitive all-fragments
grammar, in Proceedings of SPMRL, pp. 34–44,
http://aclweb.org/anthology/W11-3805.
Leonoor van der Beek, Gosse Bouma, Robert Malouf, and Gertjan van
Noord (2002), The Alpino dependency treebank, Language and Computers,
45(1):8–22.
Ton van der Wouden, Heleen Hoekstra, Michael Moortgat, Bram
Renmans, and Ineke Schuurman (2002), Syntactic analysis in the spoken
Dutch corpus (CGN), in Proceedings of LREC, pp. 768–773,
http://www.lrec-conf.org/proceedings/lrec2002/pdf/71.pdf.
Gertjan Van Noord (2009), Huge parsed corpora in Lassy, in Proceedings of
TLT7, LOT, Groningen, The Netherlands.
Yannick Versley (2014), Experiments with easy-first nonprojective
constituent parsing, in Proceedings of SPMRL-SANCL 2014, pp. 39–53,
http://aclweb.org/anthology/W14-6104.
K. Vijay-Shanker and David J. Weir (1994), The equivalence of four
extensions of context-free grammars, Theory of Computing Systems,
27(6):511–546.
K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi (1987),
Characterizing structural descriptions produced by various grammatical
formalisms, in Proceedings of ACL, pp. 104–111,
http://aclweb.org/anthology/P87-1015.

[110]

Discontinuous data-oriented parsing

David J. Weir (1988), Characterizing mildly context-sensitive grammar
formalisms, Ph.D. thesis, University of Pennsylvania,
http://repository.upenn.edu/dissertations/AAI8908403/.
Rulon S. Wells (1947), Immediate constituents, Language, 23(2):81–117,
http://www.jstor.org/stable/410382.
Fei Xia, Chung-Hye Han, Martha Palmer, and Aravind Joshi (2001),
Automatically extracting and comparing lexicalized grammars for different
languages, in Proceedings of IJCAI, pp. 1321–1330.
Elif Yamangil and Stuart Shieber (2012), Estimating compact yet rich tree
insertion grammars, in Proceedings of ACL, pp. 110–114,
http://aclweb.org/anthology/P12-2022.
Andreas Zollmann and Khalil Sima’an (2005), A consistent and efficient
estimator for data-oriented parsing, Journal of Automata Languages and
Combinatorics, 10(2/3):367–388,
http://staff.science.uva.nl/~simaan/D-Papers/JALCsubmit.pdf.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[111]

On different approaches
to syntactic analysis

into bi-lexical dependencies:
An empirical comparison
of direct, PCFG-based,
and HPSG-based parsers

Angelina Ivanova1, Stephan Oepen1, Rebecca Dridan1,
Dan Flickinger2, Lilja Øvrelid1, and Emanuele Lapponi1

1 University of Oslo, Department of Informatics
2 Stanford University, Center for the Study

of Language and Information

abstract

Keywords:
syntactic
dependency
parsing,
domain variation

We compare three different approaches to parsing into syntactic, bi-
lexical dependencies for English: a ‘direct’ data-driven dependency
parser, a statistical phrase structure parser, and a hybrid, ‘deep’
grammar-driven parser. The analyses from the latter two are post-
converted to bi-lexical dependencies. Through this ‘reduction’ of all
three approaches to syntactic dependency parsers, we determine em-
pirically what performance can be obtained for a common set of de-
pendency types for English; in- and out-of-domain experimentation
ranges over diverse text types. In doing so, we observe what trade-offs
apply along three dimensions: accuracy, efficiency, and resilience to
domain variation. Our results suggest that the hand-built grammar in
one of our parsers helps in both accuracy and cross-domain parsing
performance. When evaluated extrinsically in two downstream tasks
– negation resolution and semantic dependency parsing – these ac-
curacy gains do sometimes but not always translate into improved
end-to-end performance.

Journal of Language Modelling Vol 4, No 1 (2016), pp. 113–144

Angelina Ivanova et al.

1 motivation
Bi-lexical dependencies, i.e. binary head–argument relations holding
exclusively between lexical units, are widely considered an attractive
target representation for syntactic analysis. At the same time, Cer et al.
(2010) and Foster et al. (2011), inter alios, have demonstrated that
higher dependency accuracies can sometimes be obtained by parsing
into a phrase structure representation first, and then reducing parse
trees into bi-lexical dependencies.1 Thus, if one is willing to accept
pure syntactic dependencies as a viable interface (and evaluation) rep-
resentation, an experimental setup like the one of Cer et al. (2010)
allows the exact experimental comparison of quite different parsing
approaches.2 Existing such studies to date have predominantly fo-
cused on purely data-driven (or statistical) parsers, i.e. systems where
linguistic knowledge is exclusively acquired through supervised ma-
chine learning from annotated training data. For English, the vener-
able Wall Street Journal (WSJ) portion of the Penn Treebank (PTB;
Marcus et al. 1993) has been the most common source of training data
for phrase structure and dependency parsers.

Two recent developments make it possible to broaden the range of
parsing approaches that can be assessed empirically on the task of de-
riving bi-lexical syntactic dependencies. Flickinger et al. (2012) make
available another annotation layer over the same WSJ text, ‘deep’
syntacto-semantic analyses in the linguistic framework of Head-Driven
Phrase Structure Grammar (HPSG; Pollard and Sag 1994; Flickinger
2000). This resource, dubbed DeepBank, is available since late 2012.
For the type of HPSG analyses recorded in DeepBank, Zhang andWang
(2009) and Ivanova et al. (2012) define a reduction into bi-lexical syn-
tactic dependencies, which they call Derivation Tree-Derived Depen-
dencies (DT). Through application of the converter of Ivanova et al.
(2012) to DeepBank, we can thus obtain a DT-annotated version of
the standard WSJ text, to train and test a data-driven dependency and

1This conversion from one representation of syntax to another is lossy, in the
sense of discarding constituency information, hence we consider it a reduction
in linguistic detail.

2 In contrast, much earlier work on cross-framework comparison involved
post-processing parser outputs in form and content, into a target representation
for which gold-standard annotations were available. In Section 2 below, we argue
that such conversion inevitably introduces blur into the comparison.

[114]

On syntactic analysis into bi-lexical dependencies

phrase structure parser, respectively, and to compare parsing results
to a hybrid, grammar-driven HPSG parser. Furthermore, we can draw
on a set of additional corpora annotated in the same HPSG format
(and thus amenable to conversion for both phrase structure and de-
pendency parsing), instantiating a comparatively diverse range of do-
mains and genres (Oepen et al. 2004). Adding this data to our setup for
additional cross-domain testing, we seek to document not only what
trade-offs apply in terms of dependency accuracy vs. parser efficiency,
but also how these trade-offs are affected by domain and genre varia-
tion, and more generally how resilient the different approaches are to
variation in parser inputs.

2 related work

Comparing between parsers from different frameworks has long been
an area of active interest, ranging from the original parseval design
(Black et al. 1991), to evaluation against ‘formalism-independent’
dependency banks (King et al. 2003; Briscoe and Carroll 2006), to
dedicated workshops (Bos et al. 2008). Grammatical Relations (GRs;
Briscoe and Carroll 2006) have been the target of a number of bench-
marks, but they require a heuristic mapping from ‘native’ parser out-
puts to the target representations for evaluation, which makes re-
sults hard to interpret. Clark and Curran (2007) established an upper
bound by running the mapping process on gold-standard data, to put
into perspective the mapped results from their CCG parser proper.
When Miyao et al. (2007) carried out the same experiment for a num-
ber of different parsers, they showed that the loss of accuracy due
to the mapping process can swamp any actual parser differences.
As long as heuristic conversion is required before evaluation, cross-
framework comparison inevitably includes a level of fuzziness. An
alternative approach is possible when there is enough data available
in a particular representation to train a statistical parser, and any ne-
cessary conversion between representations is deterministic and hence
doesn’t introduce the same fuzziness. One example of this approach is
demonstrated by Cer et al. (2010), who used Stanford Dependencies
(de Marneffe and Manning 2008) to evaluate a range of statistical
parsers. Since there is a deterministic process for converting between
PTB phrase structure trees and Stanford Dependencies, they were able

[115]

Angelina Ivanova et al.

to evaluate a large number of different parsers which can be trained
on one or the other of these representations, using the standard PTB
training and test data, without resorting to fuzzy mapping processes.

Fowler and Penn (2010) formally proved that a range of Com-
binatory Categorial Grammars (CCGs) are context-free. They trained
the PCFG Berkeley parser on CCGBank, the CCG annotation of the
PTB WSJ text (Hockenmaier and Steedman 2007), advancing the state
of the art in terms of supertagging accuracy, parseval measures,
and CCG dependency accuracy. They concluded that a specialized
CCG parser is not necessarily more accurate than the general-purpose
Berkeley parser; this study, however, fails to also take parser efficiency
into account.

In related work for Dutch, Plank and van Noord (2010) suggest
that, intuitively, one should expect that a grammar-driven system can
be more resilient to domain shifts than a purely data-driven parser.
In a contrastive study on parsing into Dutch syntactic dependencies,
they substantiated this expectation by showing that their HPSG-based
Alpino system performed better and was more resilient to domain vari-
ation than data-driven direct dependency parsers.

3 background: hpsg syntactic dependencies

The dependency format we use is a deterministic conversion of HPSG
derivation trees licensed by the English Resource Grammar (ERG;
Flickinger 2000). Figure 1 of an ERG derivation tree, where labels
of internal nodes name HPSG constructions (e.g. subject–head or
head–complement: sb-hd_mc_c and hd-cmp_u_c, respectively; see Sec-
tion 5.3.1 for more details on unary rules). Preterminals are labeled
with fine-grained lexical categories – called ERG lexical types – that
augment common parts of speech with additional information, for ex-
ample argument structure or the distinction between count, mass, and
proper nouns. In total, the ERG distinguishes about 250 construction
types and 1000 lexical types.

ERG derivations are grounded in a formal theory of grammar that
explicitly marks heads. For this reason mapping these trees onto pro-
jective bi-lexical dependencies is straightforward (Zhang and Wang
2009). Ivanova et al. (2012) coin the term DT for ERG Derivation Tree-
Derived Dependencies, where they reduce the inventory of some 250

[116]

On syntactic analysis into bi-lexical dependencies

sb-hd_mc_c

hdn_bnp-pn_c

aj-hdn_norm_c

n-nh_v-cpd_c

w_hyphen_plr

n_-_mc_le

Sun-

v_pas_odlr

v_np_noger_le

filled

n_sg_ilr

n_-_pn_le

Mountain View

hd-cmp_u_c

v_vp_did-n_le

didn’t

hd-cmp_u_c

v_n3s-bse_ilr

v_np*_le

impress

hdn_bnp-qnt_c

w_period_plr

n_-_pr-me_le

me.

Figure 1: Sample HPSG derivation: construction identifiers label internal nodes,
and lexical types the preterminals

Sun- filled Mountain View didn’t impress me.
n_-_mc_le v_np_noger_le n_-_pn_le v_vp_did-n_le v_np*_le n_-_pr-me_le

root

sb-hdaj-hdnn-nh hd-cmp hd-cmp

Figure 2: Sample DT bi-lexical dependencies: construction identifiers are gener-
alized to major types (cutting at the first underscore)

ERG syntactic rules to 48 broad HPSG constructions.3 The DT syntac-
tic dependency tree for our running example is shown in Figure 2.

To better understand the nature of the DT scheme, Ivanova et al.
(2012) offer a quantitative, structural comparison against two pre-
existing dependency standards for English, viz. those from the CoNLL
dependency parsing competitions (Nivre et al. 2007) and the ‘basic’
variant of Stanford Dependencies. They observe that the three depen-
dency representations are broadly comparable in granularity and that
there are substantial structural correspondences between the schemes.

3The ERG distinguishes main clause vs. subordinate subjects, for example, as
seen in Figure 1. Ivanova et al. (2012) discard this and other grammar-internal
contrasts by ‘cutting’ construction labels at the first underscore.

[117]

Angelina Ivanova et al.

Measured as average Jaccard similarity over unlabeled dependencies,
they observe the strongest correspondence between DT and CoNLL (at
a Jaccard index of 0.49, compared to 0.32 for DT and Stanford, and
0.43 between CoNLL and Stanford).

Ivanova et al. (2013) complement the above discussed compari-
son of dependency schemes through an empirical assessment in terms
of ‘parsability’, i.e. accuracy levels available for the different tar-
get representations when training and testing a range of state-of-the-
art parsers on the same data sets. In their study, the dependency
parser of Bohnet and Nivre (2012), henceforth B&N, consistently per-
forms best for all schemes and output configurations. Furthermore,
parsability differences between the representations are generally very
small.

For a more exact comparison, we replicate their study and eval-
uate B&N for all three schemes when trained and tested on the same
subset of PTB WSJ sentences that are available in DeepBank.4 The
results in Table 1 show that there are no interesting differences in
performance of the Bohnet and Nivre (2012) parser across the DT,
CoNLL, and Stanford Basic dependency schemes.

Table 1:
Parsability of three dependency schemes,

measured as labeled attachment score (LAS)
and unlabeled attachment score (UAS)

LAS UAS
CoNLL 90.53 93.56
Stanford 90.43 92.87
DT 90.48 92.77

Based on the observations from the above comparisons, we con-
jecture that DT is as suitable a target representation for parser com-
parison as any of the others. Furthermore, two linguistic factors add to
the attractiveness of DT for our study: it is defined in terms of a formal
(and implemented) theory of grammar; and it makes available more
fine-grained lexical categories, ERG lexical types, than is common in
PTB-derived dependency banks.

4For compatibility with much previous work, and to level the playing field
for all three schemes, we opt for a slightly different setup for this comparison
than in (most) subsequent experiments: here, we apply PTB-style tokenization,
coarse-grained PTB parts of speech, and exclude punctuation from scoring.

[118]

On syntactic analysis into bi-lexical dependencies

4 data
Below we describe the construction and characteristics of the data sets
we use in our parsing experiments, highlighting some of the relevant
differences to the more widely-known Penn Treebank format.
4.1 DeepBank
DeepBank annotations were created by combining the native ERG
parser PET (Callmeier 2002), with a discriminant-based tree selection
tool (Carter 1997; Oepen et al. 2004), thus making it possible for an-
notators to navigate the large space of possible analyses efficiently,
identify and validate the intended reading, and record its full HPSG
analysis in the treebank. Owing to this setup, DeepBank version 1.0,
as used presently, lacks analyses for some 15 percent of the WSJ sen-
tences, for which either the ERG parser failed to suggest a set of can-
didates (within certain bounds on time and memory usage), or the an-
notators found none of the available parses acceptable.5 Furthermore,
DeepBank annotations to date only comprise the first 21 sections of
the PTB WSJ corpus. Following the splits suggested by the DeepBank
developers, we train on Sections 0–19, use Section 20 for tuning, and
test against Section 21 (abbreviated as WSJ below).6

4.2 Cross-domain test data
Another benefit of the DT target representation is the availability of
comparatively large and diverse samples of additional test data. The
ERG Redwoods Treebank (Oepen et al. 2004) is similar in genealogy
and format to DeepBank, comprising corpora from various domains
and genres. Although Redwoods counts a total of some 400,000 anno-
tated tokens, we only draw on it for additional testing data. In other
words, we do not attempt parser re-training or adaptation against this
additional data, but rather test our WSJ-trained parsers on out-of-
domain samples from Redwoods. We report on four such test corpora,

5Thus, limitations in the ERG and PET effectively lead to the exclusion of
a non-trivial percentage of sentences from our training and testing corpora. We
discuss methodological ramifications of this setup to our study in Section 13
below.

6To ‘protect’ Section 21 as unseen test data, also for the ERG parser, this final
section in Version 1.0 of DeepBank was not exposed to its developers until the
grammar and disambiguation model were finalized and frozen for this release.

[119]

Angelina Ivanova et al.
Table 2:

Sentence, token, and type counts
for data sets

Sentences Tokens Types

De
ep
Ba
nk Train 33,783 661,451 56,582

Tune 1,721 34,063 8,964
WSJ 1,414 27, 515 7,668

Re
dw

oo
ds CB 608 11,653 3,588

SC 864 13,696 4,925
VM 993 7,281 1,007
WS 520 8,701 2,974

viz. (a) a software advocacy essay, The Cathedral and the Bazaar (CB);
(b) a subset of the SemCor portion of the Brown Corpus (SC; Francis
and Kučera 1982); (c) a collection of transcribed, task-oriented spoken
dialogues (VM; Wahlster 2000); and (d) part of the Wikipedia-derived
WeScience Corpus (WS; Ytrestøl et al. 2009). Table 2 provides exact
sentence, token, and type counts for these data sets.

4.3 Tokenization conventions
A relevant peculiarity of the DeepBank and Redwoods annotations in
this context is the ERG approach to tokenization. Three aspects in Fig-
ure 1 deviate from the widely used PTB conventions: (a) hyphens
(and slashes) introduce token boundaries; (b) whitespace in multi-
word lexical units (like ad hoc, of course, or Mountain View) does not
force token boundaries; and (c) punctuation marks are attached as
‘pseudo-affixes’ to adjacent words, reflecting the rules of standard or-
thography. Adolphs et al. (2008) offer some linguistic arguments for
this approach to tokenization, but for our purposes it suffices to note
that these differences to PTB tokenization may in part counter-balance
each other in terms of overall parsing difficulty, but they do increase
the types-per-tokens ratio somewhat. This property of the DeepBank
annotations, arguably, makes English look somewhat similar to lan-
guages with moderate inflectional morphology. To take advantage of
the fine-grained ERG lexical categories, most of our experiments as-
sume ERG tokenization. In two calibration experiments, however, we
also investigate the effects of tokenization differences on our parser
comparison.

[120]

On syntactic analysis into bi-lexical dependencies

5 parsers

This section describes our three parsers, including the alternate con-
figurations we use, and details of how they are trained and run.

5.1 PET: native HPSG parsing
The parser most commonly used with the ERG is called PET (Callmeier
2002), a highly engineered chart parser for unification grammars. PET
constructs a complete parse forest, using subsumption-based ambigu-
ity factoring (Oepen and Carroll 2000), and then extracts from the
forest n-best lists of complete analyses according to a discriminative
parse ranking model (Zhang et al. 2007). For our experiments, we em-
ploy ERG version 1212, train the parse ranker on Sections 00–19 of
DeepBank, and otherwise use the default configuration (which cor-
responds to the environment used by the DeepBank and Redwoods
developers), which is optimized for accuracy. This parser, performing
exact inference, we will call ERGa.

In recent work, Dridan (2013) has augmented ERG parsing with
lattice-based sequence labeling over lexical types and lexical rules.
Pruning the parse chart prior to forest construction yields greatly im-
proved efficiency at a moderate accuracy loss. We include the best-
performing configuration of Dridan (2013) in our experiments, a vari-
ant henceforth referred to as ERGe.

Unlike the other parsers in our study, PET internally operates over
an ambiguous token lattice, and there is no easy interface to feed
the parser pre-tokenized inputs. We approximate the effects of gold-
standard tokenization by requesting from the parser a 2000-best list,
which we filter for the top-ranked analysis whose leaves match the
treebank tokenization. This approach is imperfect, as in some cases
no token-compatible analysis may be on the n-best list, especially so
in the ERGe setup (where lexical items may have been pruned by the
sequence labeling model). When this happens, we fall back to the top-
ranked analysis and adjust our evaluationmetrics to robustly deal with
tokenization mismatches (see Section 6).

5.2 B&N: direct dependency parsing
The parser of Bohnet and Nivre (2012), henceforth B&N, is a transition-
based dependency parser with joint tagger that implements global

[121]

Angelina Ivanova et al.

learning and a beam search for non-projective labeled dependency
parsing. This parser consistently outperforms pipeline systems (such
as the Malt and MST parsers) both in terms of tagging and parsing
accuracy for typologically diverse languages such as Chinese, English,
and German. We apply B&N mostly ‘out-of-the-box’, training on the
DT conversion of DeepBank Sections 00–19, and running the parser
with an increased beam size of 80.
5.3 Berkeley: PCFG parsing
The Berkeley parser (Petrov et al. 2006), henceforth just Berkeley, is
a generative, unlexicalized phrase structure parser that automatically
derives a smoothed latent-variable PCFG from the treebank and refines
the grammar by a split–merge procedure. The parser achieves state-
of-the-art performance on various standard benchmarks.

Formally, the HPSG analyses in the DeepBank and Redwoods tree-
banks transcend the class of context-free grammars. Nevertheless, one
can pragmatically look at an ERG derivation as if it were a context-
free phrase structure tree. On this view, standard, off-the-shelf PCFG
parsing techniques are applicable to the ERG treebanks. Zhang and
Krieger (2011) explore this space experimentally, combining the ERG,
Redwoods (but not DeepBank), and massive collections of automati-
cally parsed text. Their study, however, does not consider parser effi-
ciency.7 In contrast, our goal is to reflect on practical trade-offs along
multiple dimensions. We therefore focus on Berkeley, as one of the
currently best-performing (and relatively efficient) PCFG engines. We
train the parser on the derivation trees and then, for comparison to
the other parsers in terms of DT dependency accuracy, we apply the
converter of Ivanova et al. (2012) to Berkeley outputs. For technical
reasons, however, the optional mapping from ERG to PTB tokenization
is not applicable in this setup, and hence our experiments involving
Berkeley are limited to ERG tokens and fine-grained lexical categories.
5.3.1 Tuning
Table 3 summarizes a series of experiments, seeking to tune the Berke-
ley parser for maximum accuracy on our development set, DeepBank

7Their best PCFG results are only a few points F1 below the full HPSG parser,
using very large PCFGs and exact inference; in this set-up, parsing times in fact
exceed those of the native HPSG parser.

[122]

On syntactic analysis into bi-lexical dependencies
Table 3: Tagging accuracy, parseval F1, and dependency accuracy for Berkeley
on WSJ development data

Unary Rules Removed
Labels Long Short
Cycles 5 6 5 6
Gaps 3 3 0 0
TA 88.46 87.65 89.16 88.46
F1 74.53 73.72 75.15 73.56
LAS 83.96 83.20 80.49 79.56
UAS 87.12 86.54 87.95 87.15

Unary Rules Preserved
Labels Long Short Mixed
Cycles 5 6 5 6 5 6
Gaps 2 5 0 0 11 19
TA 90.96 90.62 91.11 91.62 90.93 90.94
F1 76.39 75.66 79.81 80.33 76.70 76.74
LAS 86.26 85.90 82.50 83.15 86.72 86.16
UAS 89.34 88.92 89.80 90.34 89.42 88.84

Section 20. Due to its ability to internally rewrite node labels, this
parser should be expected to adapt well also to ERG derivations.
Compared to the phrase structure annotations in the PTB, there are
two structural differences evident in Figure 1. First, the inventories
of phrasal and lexical labels are larger, at around 250 and 1000, re-
spectively, compared to only about two dozen phrasal categories and
45 parts of speech in the PTB. Second, ERG derivations contain more
unary (non-branching) rules, recording for example morphological
variation or syntacto-semantic category changes.8

We experiment with preserving unary rules in ERG derivations or
removing them (as they make no difference to the final DT analysis);
we further run experiments using the native (‘long’) ERG construc-

8Examples of morphological rules in Figure 1 include v_pas_odlr and v_n3s-
bse_ilr, for passive-participle and non-third person singular or base inflection, re-
spectively. Also, there are two instances of bare noun phrase formation: hdn_bnp-
pn_c and hdn_bnp-qnt_c.

[123]

Angelina Ivanova et al.

tion identifiers, their generalizations to ‘short’ labels as used in DT,
and a variant with long labels for unary and short ones for branching
rules (‘mixed’). We report results for training with five or six split–
merge cycles, where fewer iterations generally show inferior accu-
racy, and larger values lead to more parse failures (‘gaps’ in Table 3).
There are some noticeable trade-offs across tagging accuracy, depen-
dency accuracy, and coverage, without a single best performer along
all three dimensions. As our primary interest across parsers is depen-
dency accuracy, we select the configuration with unary rules and long
labels, trained with five split–merge cycles, which seems to afford
near-premium LAS at near-perfect coverage.9

6 evaluation
Standard evaluation metrics in dependency parsing are labeled and
unlabeled attachment scores (LAS, UAS; implemented by the CoNLL
eval.pl scorer). These measure the percentage of tokens which are cor-
rectly attached to their head token and, for LAS, have the right de-
pendency label. As assignment of lexical categories is a core part of
syntactic analysis, we complement LAS and UAS with tagging accu-
racy scores (TA), where appropriate. However, in our work there are
two complications to consider when using eval.pl. First, some of our
parsers occasionally fail to return any analysis, notably Berkeley and
ERGe. For these inputs, our evaluation re-inserts the missing tokens
in the parser output, padding with dummy ‘placeholder’ heads and
dependency labels.

Second, a more difficult issue is caused by occasional tokenization
mismatches in ERG parses, as discussed above. Since eval.pl identifies
tokens by their position in the sentence, any difference of tokenization
will lead to invalid results. One option would be to treat all system out-
puts with token mismatches as parse failures, but this over-penalizes,
as potentially correct dependencies among corresponding tokens are
also removed from the parser output. For this reason, we modify the
evaluation of dependency accuracy to use character offsets, instead of
consecutive identifiers, to encode token identities. This way, tokeniza-
tion mismatches local to some sub-segment of the input will not ‘throw

9A welcome side-effect of this choice is that we end up using native ERG
derivations without modifications.

[124]

On syntactic analysis into bi-lexical dependencies

off’ token correspondences in other parts of the string.10 We will refer
to this character-based variant of the standard CoNLL metrics as LASc

and UASc.

7 in-domain parsing results

Our first cross-paradigm comparison of the three parsers is against the
WSJ in-domain test data, as summarized in Table 4. There are substan-
tive differences between parsers both in terms of coverage, speed, and
accuracy. Berkeley fails to return an analysis for one input, whereas
ERGe cannot parse 13 sentences (close to one percent of the test set);
just as the 44 inputs where parser output deviates in tokenization from
the treebank, this is likely an effect of the lexical pruning applied in
this setup. At an average of one second per input, Berkeley is the fastest
of our parsers; ERGa is exactly one order of magnitude slower. How-
ever, the lexical pruning of Dridan (2013) in ERGe leads to a speed-up
of almost a factor of six, making this variant of PET perform com-
parable to B&N. The strongest differences, however, we observe in
tagging and dependency accuracies. The two data-driven parsers per-
form very similarly (at close to 93% TA and around 86.7% LAS); the
two ERG parsers are comparable too, but at accuracy levels that are
four to six points higher in both TA and LAS. Compared to ERGa, the
faster ERGe variant performs very slightly worse – which likely re-
flects penalization for missing coverage and token mismatches – but
it nevertheless delivers much higher accuracy than the data-driven
parsers.

Gaps Time TAc LASc UASc

Berkeley 1+0 1.0 92.9 86.65 89.86
B&N 0+0 1.7 92.9 86.76 89.65
ERGa 0+0 10 97.8 92.87 93.95
ERGe 13+44 1.8 96.4 91.60 92.72

Table 4:
Parse failures and token
mismatches (‘gaps’),
efficiency, and tagging and
dependency accuracy
on WSJ

10Where tokenization is identical for the gold and system outputs, the score
given by this generalized metric is exactly the same as that of eval.pl. Unless
indicated otherwise, punctuation marks are included in scoring.

[125]

Angelina Ivanova et al.

8 cross-domain parsing results

To gauge the resilience of the different systems to domain and genre
variation, we apply the same set of parsers – without re-training or
other adaptation – to the additional Redwoods test data. Table 5 sum-
marizes coverage and accuracy results across the four diverse samples.
Again, Berkeley and B&N pattern alike, with Berkeley slightly ahead in
terms of dependency accuracy, but penalized on two of the test sets
for parse failures. LAS for the two data-driven parsers ranges between
74% and 81%, up to 12 points below their WSJ performance. Though
large, accuracy drops on a similar scale have been observed repeat-
edly for purely statistical systems when moving out of the WSJ do-
main without adaptation (Gildea 2001; Nivre et al. 2007). In contrast,
ERGe performance is more similar toWSJ results, with a maximum LAS
drop of less than two points.11 For Wikipedia text (WS; previously un-
seendata for the ERG, just as for the other two), for example, both
tagging and dependency accuracies are around ten points higher, an
error reduction of more than 50%. From these results, it is evident
that the general linguistic knowledge available in ERG parsing makes
it far more resilient to variation in domain and text type.

9 error analysis

The ERG parsers outperform the two data-driven parsers on the WSJ
and cross-domain data. Through in-depth error analysis, we seek to
identify parser-specific properties that can explain the observed dif-
ferences. In the following, we look at (a) the accuracy of individual
dependency types, (b) dependency accuracy relative to (predicted and
gold) dependency length, and (c) the distribution of LAS over different
lexical categories.

Among the different dependency types, we observe that the no-
tion of an adjunct is difficult for all three parsers. One of the hardest

11 It must be noted that, unlike the WSJ test data, some of these cross-domain
data sets have been used in ERG development throughout the years, notably VM
and CB, and thus the grammar is likely to have particularly good linguistic cover-
age of this data. Conversely, SC has hardly had a role in grammar engineering so
far, and WS is genuinely unseen (for the ERG and Redwoods release used here),
i.e. treebankers were first exposed to it once the grammar and parser were frozen.

[126]

On syntactic analysis into bi-lexical dependencies

Gaps TAc LASc UASc

CB

Berkeley 1+0 87.1 78.13 83.14
B&N 0+0 87.06 77.70 82.96
ERGa 0+4 96.3 90.77 92.47
ERGe 8+8 95.3 90.02 91.58

SC

Berkeley 1+0 87.2 79.81 85.10
B&N 0+0 85.9 78.08 83.21
ERGa 0+0 96.1 90.84 92.65
ERGe 11+7 94.9 89.49 91.26

VM

Berkeley 7+0 84.0 74.40 83.38
B&N 0+0 83.1 75.28 82.86
ERGa 0+40 94.3 90.44 92.27
ERGe 11+42 94.4 90.18 91.75

W
S

Berkeley 7+0 87.7 80.31 85.11
B&N 0+0 88.4 80.63 85.24
ERGa 0+0 97.5 91.33 92.48
ERGe 4+12 96.9 90.64 91.76

Table 5:
Cross-domain coverage
gaps (parse failures and
token mismatches) and
tagging and dependency
accuracies

dependency labels across domains is hdn-aj (post-adjunction to a nom-
inal head), the relation employed for relative clauses and prepositional
phrases attaching to a nominal head. The most common error for this
relation is verbal attachment.

It has been noted that dependency parsers may exhibit system-
atic performance differences with respect to dependency length (i.e.
the distance between a head and its argument; McDonald and Nivre
2007). In our experiments, we find that the parsers perform compara-
bly on longer dependency arcs (upwards of fifteen words), with ERGa

constantly showing the highest accuracy, and Berkeley holding a slight
edge over B&N as dependency length increases.

In Figure 3, one can eyeball frequency and accuracy levels per
lexical category on WSJ. The cross-domain picture is similar to the in-
domain one, but the difference between accuracy for PET and the data-
driven parsers on adjectives (aj), adverbs (av), and conjunctions (c)
is more pronounced on the out-of-domain data. Determiners (d) and
complimentizers (cm) are similar, while conjunctions (c) and various
types of prepositions (p and pp) are the most difficult for all three
parsers.

[127]

Angelina Ivanova et al.

Figure 3: WSJ per-category frequency (left) and dependency accuracies (right) on
coarse lexical head categories: adjective, adverb, conjunction, complementizer,
determiner, noun, preposition, lexical prepositional phrase, punctuation, verb,
and others

It is unsurprising that the DT analysis of coordination is challeng-
ing. Schwartz et al. (2012) show that choosing conjunctions as heads in
coordinate structures is harder to parse for direct dependency parsers
(while this analysis also is linguistically more expressive). Our results
confirm this effect also for the PCFG parser and (though to a lesser de-
gree) for ERGa. At the same time, conjunctions are among the lexical
categories for which ERGa most clearly outperforms the other parsers.
Berkeley and B&N exhibit LAS error rates of around 35–41% for con-
junctions, whereas the ERGa error rate is below 20%. For many of the
coordinate structures parsed correctly by ERGa but not the other two,
we find that attachment to root constitutes the most frequent error
type – indicating that clausal coordination is particularly difficult for
the data-driven parsers.

The attachment of prepositions constitutes a notorious difficulty
in syntactic analysis. Unlike ‘standard’ PoS tag sets, ERG lexical types
provide a more fine-grained analysis of prepositions, for example rec-
ognizing a lexicalized PP like in full, or making explicit the distinction
between semantically contentful vs. vacuous prepositions. In our er-
ror analysis, we find that parser performance varies a lot across the
various prepositional sub-types. For some prepositions, all parsers per-
form comparatively well; e.g. p_np_ptcl-of_le, for semantically vacuous
of, ranks among the twenty most accurate lexical categories across the
board. Other types of prepositions are among the categories exhibiting
the highest error rates, e.g. p_np_i_le for ‘common’ prepositions, taking

[128]

On syntactic analysis into bi-lexical dependencies

an NP argument and projecting intersective modifier semantics. Even
so, Figure 3 shows that the attachment of prepositions (p and pp) is an
area where ERGa excels most markedly. Three frequent prepositional
lexical types that show the largest ERGa advantages are p_np_ptcl-of_le
(history of Linux), p_np_ptcl_le (look for peace), and p_np_i_le (talk about
friends).

Looking more closely at inputs where the parsers disagree, they
largely involve (usages of) prepositions which are lexically selected
for by their head. ERG lexical rules, which function as lexical types in
DT, encode valency information in the form of an ordered sequence of
complements for the given type. For example, v_np-pp_prop_le is a verb
that requires two complements: a noun phrase and a prepositional
phrase (see example (1)).

We analyze parse errors on prepositional complements for heads
of various lexical types, including the most frequent verbs, nouns, and
adjectives, illustrated by (1), (2), and (3). Example (1) depicts the
analysis of the argument structure of such a verb (sneak) with a noun
phrase and a prepositional phrase. Both B&N and Berkeley incorrectly
define the head of the phrase into the office as the noun therapists, while
ERGa delivers the parse tree that corresponds to the gold standard. In
example (2) ERGa correctly identifies growth as the head of the prepo-
sitional phrase of recent years while B&N attaches of to the cardinal 4
and Berkeley to the conjunction but with erroneous dependency labels.
In example (3), ERGa correctly analyzes the prepositional complement,
and B&N and Berkeley predict the proper label, but wrongly assign at-
tachment to the noun work and verb sounds, respectively.

(1) … managers sneak massage therapists into the office …
v_np-pp_prop_le

HD-CMP

HD-CMP

(2) … below the 4 % to 5 % growth of recent years - but …
n_pp_mc-of_le

HD-CMP

(3) … sounds more like a shaggy poet describing his work than …
aj_pp_i-more_le

HD-CMP

[129]

Angelina Ivanova et al.

In most cases the lexical category of the head explicitly shows the
requirement of a prepositional complement; taking advantage of this
rule, ERGa consistently outperforms other parsers in- and cross-domain
as depicted in Table 6 which shows the number of total and correct
analyses of prepositional complement structures.

Table 6:
Number of total and correct analyses

of prepositional complement
structures

domain total ERGa Berkeley B&N

WSJ 940 905 778 799
CB 469 446 348 354
SC 602 553 471 454
VM 164 142 113 119
WS 372 361 293 289

Most prepositions in isolation are ambiguous lexical items. How-
ever, it appears that lexical information about the argument structure
of heads encoded in the grammar allows ERGa to analyze these prepo-
sitions (in context) much more accurately.

10 sanity: ptb tokenization and pos tags
Up to this point, we have applied the two data-driven parsers in a
setup that one might consider somewhat ‘off-road’; although our ex-
periments are on English, they involve unusual tokenization and lex-
ical categories. For example, the ERG treatment of punctuation as
‘pseudo-affixes’ increases vocabulary size, which PET may be better
equipped to handle due to its integrated treatment of morphological
variation. In these experiments, we seek to isolate the effects of tok-
enization conventions and granularity of lexical categories, taking ad-
vantage of optional output flexibility in the DT converter of Ivanova
et al. (2012).12 Table 7 confirms that tokenization does make a dif-
ference. In combination with fine-grained lexical categories still, B&N
obtains LAS gains of two to three points, compared to smaller gains
(around or below one point) for ERGe.13 However, in this setup our

12As mapping from ERG derivations into PTB-style tokens and PoS tags is
applied when converting to bi-lexical dependencies, we cannot easily include
Berkeley in these final experiments.

13When converting to PTB-style tokenization, punctuation marks are always
attached low in the DT scheme, to the immediately preceding or following to-

[130]

On syntactic analysis into bi-lexical dependencies

two earlier observations still hold true: ERGe is substantially more ac-
curate within the WSJ domain and far more resilient to domain and
genre variation. When we simplify the syntactic analysis task and train
and test B&N on coarse-grained PTB PoS tags only, in-domain differ-
ences between the two parsers are further reduced (to 0.8 points), but
ERGe still delivers an error reduction of ten percent compared to B&N.
The picture in the cross-domain comparison is not qualitatively differ-
ent, also in this simpler parsing task, with ERGe maintaining accuracy
levels comparable to WSJ, while B&N accuracies degrade markedly.

Gaps Lexical Types PTB PoS Tags
LASc UASc LASc UASc

W
SJ B&N 0+0 88.78 91.52 91.56 93.63

ERGe 13+9 92.38 93.53 92.38 93.53

CB

B&N 0+0 81.56 86.18 84.54 88.53
ERGe 8+4 90.77 92.21 90.77 92.21

SC

B&N 0+0 81.69 86.11 85.17 88.85
ERGe 11+0 90.13 91.86 90.13 91.86

VM

B&N 0+0 77.00 83.73 82.76 88.11
ERGe 10+0 91.55 93.08 91.55 93.08

W
S B&N 0+0 82.09 86.17 84.59 88.41

ERGe 4+0 91.61 92.62 91.61 92.62

Table 7:
Coverage and dependency accuracies
with PTB tokenization and either
detailed or coarse lexical categories

11 first extrinsic evaluation:
negation scope resolution

One reason for using a representation format like DT is to make it
easy to use parsing results in a downstream application, since parsing
is rarely the final goal. In order to test the suitability of DT and also
explore the effects that improved parser accuracy may have in such a
downstream application, we embed our different parsing setups in an
extrinsic evaluation scenario.

Elming et al. (2013) try a number of different tasks to explore the
effects of different dependency representation formats. They find the
ken, effectively adding a large group of ‘easy’ dependencies. However, results of
evaluation excluding punctuation tokens are not qualitatively different.

[131]

Angelina Ivanova et al.

negation resolution task (Morante and Blanco 2012) to be the most
sensitive to changes in dependency format, and so we chose that as
our first external task.

11.1 Negation resolution task
Negation resolution (NR) is the task of determining negation cues, i.e.
morphemes, words or a combination of words that express negation
(for example, un-, no, by no means), scopes of negation, i.e. parts of
a sentence that are affected by a negation cue, and negated events,
i.e. semantically negated eventualities inside scopes in factual sen-
tences. We employ the NR system of Lapponi et al. (2012a), one of the
best performing systems of the 2012 Computational Semantics (*SEM)
Shared Task (Morante and Blanco 2012) which uses a CRF model for
scope resolution relying on dependency features. The dataset for the
2012 *SEM shared task comprises negation annotated stories of Co-
nan Doyle: a training set of 3644 sentences, a development set of 787
sentences, and a test set of 1089 sentences. One example from the
training set is presented in (4) below. The cue is typeset in small caps,
its scope italicized, and the negated event underlined.
(4) I therefore spent the day at my club and did not return to Baker Street

until evening.
Note that this negation scope is discontinuous, which shows that

proximity to a negation cue is not always a good strategy to assign
tokens to scopes; here the subject (I) at the beginning of the sentence
is a part of the clause negated by the cue in the coordinate sentence
and should be retrieved.

For the evaluation we use software developed by the 2012 *SEM
Shared Task organizers which reports the following metrics (Morante
and Blanco 2012):
Cues Cue F1-measure.
Scopes Scope-level F1-measure.
Negated F1-measure over negated events, computed independently

from cues and from scopes
Global Global F1-measure of negation: the three elements of the nega-

tion – cue, scope, and negated event – all have to be correctly
identified (strict match)

[132]

On syntactic analysis into bi-lexical dependencies

11.2 Format comparison
Table 8 presents evaluation of performance of the NR system relying
on dependency features from the analyses of the B&N parser with the
three dependency formats we tested in Section 3: CoNLL, Stanford Ba-
sic, and DT dependencies. As Elming et al. (2013) saw, we get quite a
range of performance across the three formats, particularly consider-
ing Table 1 showed that intrinsic parse accuracy is basically identical.

CoNLL Stanford DT
Scopes 79.57 81.69 80.43
Negated 75.96 71.15 73.33
Global 65.89 63.78 65.89

Table 8:
Performance of the NR system with
gold cues on the Conan Doyle
development set for three dependency
formats using the B&N parser

Table 9 reproduces the numbers Elming et al. (2013) reported,
using dependency formats that varied more than ours do. While these
numbers are not directly comparable to our work due to some differ-
ences in the data sets for training parsing models, DT is well within
their range of variation, and as such, seems a reasonable format for
the task.

Yamada CoNLL-07 EWT LTH
Scopes 81.27 80.43 78.70 79.57
Negated 76.19 72.90 73.15 76.24
Global 67.94 63.24 61.60 64.31

Table 9:
Performance of the NR system with
gold cues on the Conan Doyle
development set for different
dependency formats using the Mate
parser, reproduced from Elming et al.

11.3 Parser comparison
To see if the intrinsic parser accuracy differences we saw earlier trans-
late to better negation resolution, we use the PET and B&N parsers to
produce DT dependencies for our NR system.

Intrinsic parser evaluation on the 91 manually annotated sen-
tences taken from the story Wisteria Lodge, a subset of Conan Doyle
development data, is shown in Table 10. Since negation resolution
system uses PTB tokenization with PTB PoS tags, we again cannot
include Berkeley in this comparison. The Conan Doyle domain is gen-
uinely new for the ERG as it was not available before the release of

[133]

Angelina Ivanova et al.
Table 10:

Parse failures and token mismatches
(‘gaps’), and tagging and dependency
accuracy on the subset of the Conan

Doyle development data

Gaps TAc LASc UASc

B&N 0+0 92.24 83.92 87.92
ERGa 0+0 96.36 92.54 93.84
ERGe 0+3 94.21 89.22 90.57

version 1212, used in the present work. Consistent with our expecta-
tions, results are similar to the cross-domain evaluation in Table 7.

While B&N has complete coverage on the full Conan Doyle corpus,
Table 11 shows that both of our PET variants sometimes fail to produce
an analysis, especially the ERGe variant due to excessive pruning. In
addition, PET does not always land on the gold-standard tokenization
as the parsing process starts from the raw text. Due to this, we fall
back on the B&N parser for the sentences that lack syntactic analysis in
the negation resolution experiments with PET; e.g. for the experiments
with ERGa the training set consists of 89.24% PET analyses and 10.76%
analyses from B&N.

Table 11:
PET coverage on

Conan Doyle
and alignment

with ‘gold’
tokenization

ERGa ERGe

Train Dev Test Train Dev Test
% Coverage 89.96 91.11 87.42 81.64 83.99 79.98
% Alignment 89.24 91.11 86.23 80.98 83.86 78.88

Tables 12 and 13 show the results of the NR system on the devel-
opment and test sets, respectively. The results from the original system
using the Malt parser and Stanford Basic dependencies are shown for
comparison Lapponi et al. (2012b). Somewhat surprisingly, the rea-
sonably large differences in parser accuracy seen in Table 7 are not
reflected in the task performance. Statistical significance testing using
the paired, two-tailed formulation of the sign test shows that none of
the performance differences are actually significant.

Table 12:
Performance of the negation

resolution system on the development
set with gold cues

ERGa ERGe B&N Malt
Scopes 80.00 80.85 80.43 80.00
Negated 75.73 73.33 73.33 80.55
Global 64.31 63.24 65.89 66.41

[134]

On syntactic analysis into bi-lexical dependencies

ERGa ERGe B&N Malt
Cues 91.31 91.31 91.31 91.31
Scopes 73.52 74.83 75.40 72.39
Negated 61.29 60.95 60.44 61.79
Global 53.73 55.53 55.17 54.82

Table 13:
Performance of the negation
resolution system on the
test set with predicted cues

It is possible that this negation resolution task is not sensitive
enough to parser performance to be a useful extrinsic parser evalua-
tion. There is a reasonable body of previous work (Mollá and Hutchin-
son 2003; Miyao et al. 2008; Miwa et al. 2010) that has shown that
many tasks such as answer extraction, protein-protein interaction
(PPI) extraction, and event extraction are relatively insensitive to
parser accuracy. It is possible that negation resolution, at least in this
particular setup, is another such task.

12 second extrinsic evaluation:
semantic dependency parsing

As another downstream application for extrinsic evaluation, we ex-
plore the task of Broad-Coverage Semantic Dependency Parsing (SDP;
Oepen et al. 2014, 2015), which was part of the 2014 and 2015 Se-
mantic Evaluation Exercises (SemEval). We re-train and evaluate the
best-performing system from the SDP 2014 open track, called Prib-
eram (Martins and Almeida 2014), which is based on a feature-rich
model that takes advantage of the information from the syntactic de-
pendency parser. For this second extrinsic evaluation, we test whether
syntactic dependency features provided by the grammar-based system
facilitate more accurate semantic parsing than features delivered by
the data-driven tools.

12.1 Broad-coverage semantic dependency parsing
Oepen et al. (2014) define semantic dependency parsing (SDP) as the
problem of recovering sentence-internal predicate-argument relation-
ships for all content words. Thus, target representations are semantic
in nature (rather than directly representing grammatical structure),
and in contrast to syntactic parsing the SDP semantic dependencies

[135]

Angelina Ivanova et al.

are general (directed and acyclic) graphs rather than trees, and need
not span input tokens that are analyzed as semantically vacuous.

The SDP 2014 data consists of Sections 0–21 of the WSJ Cor-
pus annotated with three target representations called DM, PAS, and
PCEDT (which are all aligned at the sentence and token levels). DM
is the result of a two-step reduction of the underspecified logical-form
meaning representations produced by the ERG to pure bi-lexical de-
pendencies (Oepen and Lønning 2006; Ivanova et al. 2012), as exem-
plified for our running example in Figure 4. PAS dependencies are
predicate–argument structures produced by the Enju system, a statis-
tical HPSG parser obtained by learning from a conversion of the (full)
PTB annotations (Miyao and Tsujii 2008). PCEDT dependencies, in
turn, are extracted from the tectogrammatical analysis layer of the
Prague Czech–English Dependency Treebank (Hajič et al. 2012).

Sun- filled Mountain View didn’t impress me.

top

ARG1

ARG2compound neg ARG2

Figure 4: DM bi-lexical semantic dependencies for our running example

The task is organized into two tracks: systems in the closed track
were trained only on the data distributed by the task organizers while
the systems in the open track could use additional resources. We are,
therefore, only interested in the latter track. In the open track of the
SDP 2014 task, participants had been offered syntactic ‘companion’
files with Stanford dependencies produced by the parser of Bohnet and
Nivre (2012). Evaluation measures are labeled precision (LP), labeled
recall (LR), labeled F1 (LF), and labeled exact match (LM) with respect
to predicted 〈predicate, role,argument〉 triples.

The Priberam system (Martins and Almeida 2014), which relies
on a model with second-order features and decoding with dual decom-
position, was ranked first in the SDP 2014 open track, and achieved the
second highest score in the closed track. By virtue of syntactic features
extracted from the output of a syntactic dependency parser, Priberam
attained an improvement of around 1% in LF for all three dependency
formats. We have chosen this system for extrinsic evaluation.

[136]

On syntactic analysis into bi-lexical dependencies

12.2 Parser comparison
We compare the quality of syntactic features produced by ERGa, ERGe

and B&N for the semantic parsing with Priberam. Using these three
parsers we prepare alternate companion files containing DT bi-lexical
dependencies. Of the 1348 sentences in the SDP test set, ERGa and ERGe

fail to deliver analysis for 11 and 24 sentences, respectively; thus, we
‘borrow’ the missing analyses from B&N outputs, much like we did in
Section 11 above.

Tables 14, 15, and 16 present SDP results for DM, PAS, and
PCEDT, respectively. For comparison, we include results of Priberam
from the SDP 2014 task with the original companion file generated by
task organizers. Compared to the original SDP 2014 results, moving
from Stanford to DT dependencies (derived by B&N in both cases)
appears to only have a small effect on semantic dependency parsing.
Our re-trained version of Priberam with the DT syntactic compan-
ion performs marginally below the published SDP 2014 results for

ERGa ERGe B&N SDP 2014
LP 90.88 90.77 88.96 90.23
LR 89.86 89.67 88.10 88.11
LF 90.37 90.22 88.53 89.16
LM 32.42 32.64 29.75 26.85

Table 14:
SDP open track results on DM

ERGa ERGe B&N SDP 2014
LP 92.04 92.19 91.91 92.56
LR 89.67 89.89 89.63 90.97
LF 90.84 91.03 90.75 91.76
LM 31.38 30.93 32.86 37.83

Table 15:
SDP open track results on PAS

ERGa ERGe B&N SDP 2014
LP 79.62 79.94 79.42 80.14
LR 75.67 75.82 75.45 75.79
LF 77.59 77.82 77.38 77.90
LM 11.05 11.20 10.98 10.68

Table 16:
SDP open track results on PCEDT

[137]

Angelina Ivanova et al.

DM and PCEDT, whereas for PAS there is a more pronounced drop
in semantic dependency LF when replacing Stanford with DT depen-
dencies. Different syntactic accuracy levels of our three DT parsers,
on the other hand, actually do project into downstream differences
in semantic dependency quality: For all three target representations,
the ERG parsers yield higher semantic dependency LF than B&N. The
differences are comparatively small for the PAS and PCEDT targets,
but for DM there is a large benefit in deriving the (more accurate) DT
syntactic companion from ERGa rather than from B&N. Seeing as DM
and DT both originate from DeepBank, while PAS as well as Stanford
dependencies originate from the PTB, our results suggest that it is
beneficial for the semantic dependency parsing task to rely on ‘corre-
lated’ syntactic dependency features: The overall best-performing SDP
pipeline for the DM target representation uses DT dependencies (from
ERGa), but the best PAS results are obtained with Stanford syntactic
dependencies (from B&N).

In conclusion, the results of this second extrinsic evaluation sug-
gest that semantic dependency parsing is more sensitive to syntactic
parser performance than negation resolution, especially when taking
into account that the maximum in-domain difference between ERGe

and B&N observed in Table 7 is 0.82% in LASc when using PTB tok-
enization and PTB PoS tags (as is also the case in the SDP 2014 task).

13 discussion and conclusion

Our experiments have sought to contrast state-of-the-art representa-
tives from three parsing paradigms on the task of producing bi-lexical
syntactic dependencies for English. For the HPSG-derived DT scheme,
we find that hybrid, grammar-driven parsing yields superior accuracy,
both in- and in particular cross-domain, at processing times compara-
ble to the currently best direct dependency parser; the grammar-driven
parser in our experiments, however, fails to parse a small percentage of
inputs in naturally occurring text. These results corroborate the Dutch
findings of Plank and van Noord (2010) for English, where more train-
ing data is available, and in comparison to more advanced data-driven
parsers. Extrinsic evaluation on semantic dependency parsing corre-
lates with the results of the in-domain intrinsic evaluation. However,
we do not find that this superior accuracy is reflected in superior ac-

[138]

On syntactic analysis into bi-lexical dependencies

curacy in the negation resolution task. In most of this work, we have
focussed exclusively on parser inputs represented in the DeepBank and
Redwoods treebanks, ignoring 15 percent of the original running text,
for which the ERG and PET do not make available a gold-standard anal-
ysis. While a parser with partial coverage can be useful in some con-
texts, obviously the data-driven parsers must be credited for providing
a syntactic analysis of (almost) all inputs. However, the ERG cover-
age gap can be straightforwardly addressed by falling back to another
parser when necessary, as we did in our extrinsic evaluations. Such a
system combination should yield better tagging and dependency ac-
curacies than the data-driven parsers by themselves, especially so in
an open-domain setup. A secondary finding from our experiments is
that PCFG parsing with Berkeley and conversion to DT dependencies
yields equivalent or mildly more accurate analyses, at much greater
efficiency. In future work, it would be interesting to include in this
comparison other PCFG parsers and linear-time, transition-based de-
pendency parsers, but a tentative generalization over our findings to
date is that linguistically richer representations enable more accurate
parsing. It would also be informative to try a wider variety of down-
stream tasks to see which are sensitive to parser accuracy, as opposed
to dependency representation.

acknowledgments

We are grateful to our colleagues Emily M. Bender, Bernd Bohnet,
Francis Bond, Rui Wang, Yi Zhang, and André Martins for many
helpful discussions, suggestions, and assistance in running third-party
tools, as well as to our three anonymous reviewers for insightful com-
ments. This work was in part funded by the Norwegian Research
Council through its WeSearch project. Large-scale experimentation
is made possible through access to the ABEL high-performance com-
puting facilities at the University of Oslo, and we are grateful to the
Scientific Computing staff at UiO, as well as to the Norwegian Meta-
center for Computational Science, and the Norwegian tax payer.

[139]

Angelina Ivanova et al.

references

Peter Adolphs, Stephan Oepen, Ulrich Callmeier, Berthold Crysmann,
Dan Flickinger, and Bernd Kiefer (2008), Some Fine Points of Hybrid
Natural Language Parsing, in Proceedings of the 6th International Conference on
Language Resources and Evaluation, Marrakech, Morocco.
Ezra Black, Steve Abney, Dan Flickinger, Claudia Gdaniec, Ralph
Grishman, Phil Harrison, Don Hindle, Robert Ingria, Fred Jelinek,
Judith Klavans, Mark Liberman, Mitch Marcus, S. Roukos, Beatrice
Santorini, and Tomek Strzalkowski (1991), A Procedure for
Quantitatively Comparing the Syntactic Coverage of English Grammars, in
Proceedings of the Workshop on Speech and Natural Language, pp. 306–311,
Pacific Grove, USA.
Bernd Bohnet and Joakim Nivre (2012), A Transition-Based System for Joint
Part-of-Speech Tagging and Labeled Non-Projective Dependency Parsing, in
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Conference on Natural Language Learning, pp. 1455–1465, Jeju
Island, Korea.
Johan Bos, Edward Briscoe, Aoife Cahill, John Carroll, Stephen Clark,
Ann Copestake, Dan Flickinger, Josef van Genabith, Julia
Hockenmaier, Aravind Joshi, Ronald Kaplan, Tracy Holloway King,
Sandra Kuebler, Dekang Lin, Jan Tore Lønning, Christopher Manning,
Yusuke Miyao, Joakim Nivre, Stephan Oepen, Kenji Sagae, Nianwen Xue,
and Yi Zhang, editors (2008), Workshop on Cross-Framework and Cross-Domain
Parser Evaluation, Manchester, UK.
Ted Briscoe and John Carroll (2006), Evaluating the Accuracy of an
Unlexicalised Statistical Parser on the PARC DepBank, in Proceedings of the 21st
International Conference on Computational Linguistics and the 44th Meeting of the
Association for Computational Linguistics, pp. 41–48, Sydney, Australia.
Ulrich Callmeier (2002), Preprocessing and Encoding Techniques in PET, in
Stephan Oepen, Daniel Flickinger, J. Tsujii, and Hans Uszkoreit, editors,
Collaborative Language Engineering. A Case Study in Efficient Grammar-Based
Processing, pp. 127–140, CSLI Publications, Stanford, CA.
David Carter (1997), The TreeBanker. A Tool for Supervised Training of
Parsed Corpora, in Proceedings of the Workshop on Computational Environments
for Grammar Development and Linguistic Engineering, pp. 9–15, Madrid, Spain.
Daniel Cer, Marie-Catherine de Marneffe, Dan Jurafsky, and Chris
Manning (2010), Parsing to Stanford Dependencies. Trade-Offs between
Speed and Accuracy, in Proceedings of the 7th International Conference on
Language Resources and Evaluation, pp. 1628–1632, Valletta, Malta.

[140]

On syntactic analysis into bi-lexical dependencies

Stephen Clark and James R. Curran (2007), Formalism-Independent Parser
Evaluation with CCG and DepBank, in Proceedings of the 45th Meeting of the
Association for Computational Linguistics, pp. 248–255, Prague, Czech Republic.
Marie-Catherine de Marneffe and Christopher D. Manning (2008), The
Stanford Typed Dependencies Representation, in Proceedings of the COLING
Workshop on Cross-Framework and Cross-Domain Parser Evaluation, pp. 1–8,
Manchester, UK.
Rebecca Dridan (2013), Ubertagging. Joint Segmentation and Supertagging
for English, in Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1–10, Seattle, WA, USA.
Jacob Elming, Anders Johannsen, Sigrid Klerke, Emanuele Lapponi,
Hector Martinez, and Anders Søgaard (2013), Down-Stream Effects of
Tree-to-Dependency Conversions, in Proceedings of Human Language
Technologies: The 2013 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 617–626, Atlanta, GA, USA.
Dan Flickinger (2000), On Building a More Efficient Grammar by Exploiting
Types, Natural Language Engineering, 6 (1):15–28.
Dan Flickinger, Yi Zhang, and Valia Kordoni (2012), DeepBank. A
Dynamically Annotated Treebank of the Wall Street Journal, in Proceedings of
the 11th International Workshop on Treebanks and Linguistic Theories, pp. 85–96,
Edições Colibri, Lisbon, Portugal.
Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner, Joseph Le Roux,
Joakim Nivre, Deirdre Hogan, and Josef van Genabith (2011), From News
to Comment. Resources and Benchmarks for Parsing the Language of Web 2.0,
in Proceedings of the 2011 International Joint Conference on Natural Language
Processing, pp. 893–901, Chiang Mai, Thailand.
Timothy A. D. Fowler and Gerald Penn (2010), Accurate Context-Free
Parsing with Combinatory Categorial Grammar, in Proceedings of the 48th
Meeting of the Association for Computational Linguistics, pp. 335–344, Uppsala,
Sweden.
W. Nelson Francis and Henry Kučera (1982), Frequency Analysis of English
Usage. Lexicon and Grammar, Houghton Mifflin, New York, USA.
Daniel Gildea (2001), Corpus Variation and Parser Performance, in
Proceedings of the 2001 Conference on Empirical Methods in Natural Language
Processing, pp. 167–202, Pittsburgh, USA.
Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall, Ondřej Bojar,
Silvie Cinková, Eva Fučíková, Marie Mikulová, Petr Pajas, Jan Popelka,
Jiří Semecký, Jana Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka
Urešová, and Zdeněk Žabokrtský (2012), Announcing Prague
Czech-English Dependency Treebank 2.0, in Proceedings of the 8th International

[141]

Angelina Ivanova et al.

Conference on Language Resources and Evaluation, pp. 3153–3160, Istanbul,
Turkey.
Julia Hockenmaier and Mark Steedman (2007), CCGbank. A Corpus of
CCG Derivations and Dependency Structures Extracted from the Penn Treebank,
Computational Linguistics, 33:355–396.
Angelina Ivanova, Stephan Oepen, and Lilja Øvrelid (2013), Survey on
Parsing Three Dependency Representations for English, in Proceedings of the
51th Meeting of the Association for Computational Linguistics, pp. 31–37, Sofia,
Bulgaria.
Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and Dan Flickinger
(2012), Who Did What to Whom? A Contrastive Study of Syntacto-Semantic
Dependencies, in Proceedings of the Sixth Linguistic Annotation Workshop,
pp. 2–11, Jeju, Republic of Korea.
Tracy Holloway King, Richard Crouch, Stefan Riezler, Mary Dalrymple,
and Ronald M. Kaplan (2003), The PARC 700 Dependency Bank, in
Proceedings of the 4th International Workshop on Linguistically Interpreted Corpora,
pp. 1–8, Budapest, Hungary.
Emanuele Lapponi, Jonathon Read, and Lilja Øvrelid (2012a), Representing
and Resolving Negation for Sentiment Analysis, in Proceedings of the 2012 ICDM
Workshop on Sentiment Elicitation from Natural Text for Information Retrieval and
Extraction, Brussels, Belgium.
Emanuele Lapponi, Erik Velldal, Lilja Øvrelid, and Jonathon Read
(2012b), UiO2: Sequence-Labeling Negation Using Dependency Features, in
Proceedings of the 1st Joint Conference on Lexical and Computational Semantics,
pp. 319–327, Montréal, Canada.
Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz
(1993), Building a Large Annotated Corpora of English. The Penn Treebank,
Computational Linguistics, 19:313–330.
T. André F. Martins and C. Mariana S. Almeida (2014), Priberam: A Turbo
Semantic Parser with Second Order Features, in Proceedings of the 8th
International Workshop on Semantic Evaluation (SemEval 2014), pp. 471–476,
Association for Computational Linguistics, Dublin, Ireland.
Ryan T. McDonald and Joakim Nivre (2007), Characterizing the Errors of
Data-Driven Dependency Parsing Models, in Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Conference on
Natural Language Learning, pp. 122–131, Prague, Czech Republic.
Makoto Miwa, Sampo Pyysalo, Tadayoshi Hara, and Jun’ichi Tsujii (2010),
Evaluating Dependency Representations for Event Extraction, in Proceedings of
the 23rd International Conference on Computational Linguistics, pp. 779–787.

[142]

On syntactic analysis into bi-lexical dependencies

Yusuke Miyao, Rune Sætre, Kenji Sagae, Takuya Matsuzaki, and Jun’ichi
Tsujii (2008), Task-Oriented Evaluation of Syntactic Parsers and Their
Representations, in Proceedings of the 46th Meeting of the Association for
Computational Linguistics, pp. 46–54, Columbus, OH, USA.
Yusuke Miyao, Kenji Sagae, and Jun’ichi Tsujii (2007), Towards
Framework-Independent Evaluation of Deep Linguistic Parsers, in Proceedings of
the 2007 Workshop on Grammar Engineering across Frameworks, pp. 238–258,
Palo Alto, California.
Yusuke Miyao and Jun’ichi Tsujii (2008), Feature Forest Models for
Probabilistic HPSG Parsing, Computational Linguistics, 34(1):35–80.
Diego Mollá and Ben Hutchinson (2003), Intrinsic Versus Extrinsic
Evaluations of Parsing Systems, in Proceedings of the EACL 2003 Workshop on
Evaluation Initiatives in Natural Language Processing: Are Evaluation Methods,
Metrics and Resources Reusable?, pp. 43–50, Budapest, Hungary.
Roser Morante and Eduardo Blanco (2012), *SEM 2012 Shared Task.
Resolving the Scope and Focus of Negation, in Proceedings of the 1st Joint
Conference on Lexical and Computational Semantics, pp. 265–274, Montréal,
Canada.
Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens
Nilsson, Sebastian Riedel, and Deniz Yuret (2007), The CoNLL 2007
Shared Task on Dependency Parsing, in Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Conference on Natural
Language Learning, pp. 915–932, Prague, Czech Republic.
Stephan Oepen and John Carroll (2000), Ambiguity Packing in
Constraint-Based Parsing. Practical Results, in Proceedings of the 1st Meeting of
the North American Chapter of the Association for Computational Linguistics,
pp. 162–169, Seattle, WA, USA.
Stephan Oepen, Daniel Flickinger, Kristina Toutanova, and
Christopher D. Manning (2004), LinGO Redwoods. A Rich and Dynamic
Treebank for HPSG, Research on Language and Computation, 2(4):575–596.
Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie
Cinkova, Dan Flickinger, Jan Hajic, and Zdenka Uresova (2015),
SemEval 2015 Task 18: Broad-Coverage Semantic Dependency Parsing, in
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval
2015), pp. 915–926, Denver, CO, USA.
Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan
Flickinger, Jan Hajič, Angelina Ivanova, and Yi Zhang (2014), SemEval
2014 Task 8. Broad-Coverage Semantic Dependency Parsing, in Proceedings of
the 8th International Workshop on Semantic Evaluation, Dublin, Ireland.

[143]

Angelina Ivanova et al.

Stephan Oepen and Jan Tore Lønning (2006), Discriminant-Based MRS
Banking, in Proceedings of the 5th International Conference on Language Resources
and Evaluation, pp. 1250–1255, Genoa, Italy.
Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein (2006),
Learning Accurate, Compact, and Interpretable Tree Annotation, in Proceedings
of the 21st International Conference on Computational Linguistics and the 44th
Meeting of the Association for Computational Linguistics, pp. 433–440, Sydney,
Australia.
Barbara Plank and Gertjan van Noord (2010), Grammar-Driven versus
Data-Driven. Which Parsing System is more Affected by Domain Shifts?, in
Proceedings of the 2010 Workshop on NLP and Linguistics: Finding the Common
Ground, pp. 25–33, Association for Computational Linguistics, Uppsala, Sweden.
Carl Pollard and Ivan A. Sag (1994), Head-Driven Phrase Structure Grammar,
Studies in Contemporary Linguistics, The University of Chicago Press, Chicago,
USA.
Roy Schwartz, Omri Abend, and Ari Rappoport (2012),
Learnability-Based Syntactic Annotation Design, in Proceedings of the 24th
International Conference on Computational Linguistics, Mumbai, India.
Wolfgang Wahlster, editor (2000), Verbmobil. Foundations of Speech-to-Speech
Translation, Springer, Berlin, Germany.
Gisle Ytrestøl, Stephan Oepen, and Dan Flickinger (2009), Extracting and
Annotating Wikipedia Sub-Domains, in Proceedings of the 7th International
Workshop on Treebanks and Linguistic Theories, pp. 185–197, Groningen, The
Netherlands.
Yi Zhang and Hans-Ulrich Krieger (2011), Large-Scale Corpus-Driven PCFG
Approximation of an HPSG, in Proceedings of the 12th International Conference on
Parsing Technologies, pp. 198–208, Dublin, Ireland.
Yi Zhang, Stephan Oepen, and John Carroll (2007), Efficiency in
Unification-Based N-Best Parsing, in Proceedings of the 10th International
Conference on Parsing Technologies, pp. 48–59, Prague, Czech Republic.
Yi Zhang and Rui Wang (2009), Cross-Domain Dependency Parsing Using a
Deep Linguistic Grammar, in Proceedings of the 47th Meeting of the Association
for Computational Linguistics, pp. 378–386, Suntec, Singapore.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[144]

