
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
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A practitioner’s view: a survey
and comparison of lemmatization

and morphological tagging
in German and Latin

Rüdiger Gleim1, Steffen Eger2, Alexander Mehler1, Tolga Uslu1,
Wahed Hemati1, Andy Lücking1, Alexander Henlein1,

Sven Kahlsdorf1, and Armin Hoenen1
1 Text Technology Lab, Goethe University Frankfurt, Germany

2 Ubiquitous Knowledge Processing Lab,
Technische Universität Darmstadt, Germany

abstract

Keywords:
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tagging,
lemmatization,
morphologically
rich languages,
NLP evaluation
modeling

The challenge of POS tagging and lemmatization in morphologically
rich languages is examined by comparing German and Latin. We start
by defining an NLP evaluation roadmap to model the combination
of tools and resources guiding our experiments. We focus on what a
practitioner can expect when using state-of-the-art solutions. These
solutions are then compared with old(er) methods and implementa-
tions for coarse-grained POS tagging, as well as fine-grained (morpho-
logical) POS tagging (e.g. case, number, mood). We examine to what
degree recent advances in tagger development have improved accu-
racy – and at what cost, in terms of training and processing time. We
also conduct in-domain vs. out-of-domain evaluation. Out-of-domain
evaluation is particularly pertinent because the distribution of data
to be tagged will typically differ from the distribution of data used
to train the tagger. Pipeline tagging is then compared with a tagging
approach that acknowledges dependencies between inflectional cate-
gories. Finally, we evaluate three lemmatization techniques.

Journal of Language Modelling Vol 7, No 1 (2019), pp. 1–52
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1 introduction

Lemmatization and part-of-speech (POS) tagging are critical prepro-
cessing steps for many natural language processing (NLP) tasks, such
as information retrieval, knowledge extraction, and semantic analy-
sis. In morphologically rich languages such as German and Latin, both
processes are non-trivial due to the variability of lexical forms. This
results in large tagsets for both coarse-grained and fine-grained (mor-
phological) POS tagging – including inflectional categories such as
case, gender, and degree in addition to coarse-grained POS labels
– and a large number of (potentially unseen) forms associated with
each lemma. In this work, we survey tagging and lemmatization tech-
niques for German and Latin, using corpora that allow us to analyse
the effects of NLP between genres (Tiger vs. TGermaCorp), and also
between periods (Capitularies vs. Proiel). Our survey includes both
older tools, such as the TreeTagger (Schmid 1994) and TnT (Brants
2000), and more modern approaches to tagging and lemmatization.
Even though we expect technology to improve steadily over time, it is
not always easy to quantify the gap between older and more modern
approaches, or to rank the most recent generation of systems in order
of efficiency. We test our systems under the following conditions and
requirements:

• We train lemmatization and tagging independently because the
methods studied are designed for separate use.1 We then focus
on the impact of varying parameters, supplementary resources,
and a combination of tools.

• Ideally, we want a learned system to perform well on the data on
which it has been trained (in-domain (ID): a specific text genre,
historical language variant, etc.) but also to perform adequately
on similar corpora (out-of-domain (OD): with similar but different
genres, registers, language varieties, etc.).

• Since coarse-grained POS tagging alone may be insufficient for
linguistic applications and unsatisfactory for practitioners, we ex-
pect a system to perform reasonably well on fine-grained POS
tagging.

1LemmaTag (Kondratyuk et al. 2018) is an exception that natively supports
joint lemmatization and tagging.
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• As run-times of systems may be of considerable interest for prac-
titioners, we include both training and testing time estimates for
each technique.
Section 2 provides a systematization grid for NLP applications

and their evaluation. This grid is mapped on to our evaluation objec-
tives, thereby offering both a general evaluation model and a roadmap
for the subsequent experimental sections. In Section 3, we describe
three approaches to lemmatization, followed in Section 4 by ten tools
for tagging, which form the basis of our experiments. Section 5 in-
troduces all resources used in the experiments, primarily the corpora
used for training and evaluation, with a discussion of other lexical
resources and methods of computing word embeddings. Section 6 de-
scribes the experiments used to test lemmatization and POS– as well
as fine-grained POS tagging. In Section 7, we discuss our findings,
while Section 8 provides a summary of this study and prospects for
future work.

2 nlp evaluation roadmap
Taggers cannot be compared or even applied in vacuo; the minimum
requirements for NLP taggers are a tagset and a target text of some
natural language. Similar dependencies apply to virtually all NLP ap-
plications. In order to systematize such relationships and make them
transparent for readers of NLP-related work, we provide an interrela-
tionship model in Figure 1. The tree structure on the left-hand side of
the model presents NLP tasks and resources, followed by instantiat-
ing parameters, which are then mapped on to evaluation objectives.
The dashed lines in Figure 1 indicate partial use of a parameter set
with respect to an objective. Thus, the systematization grid explicates
the requirements to be met in order to perform NLP experimentations.
Accuracy values for such experiments assess how adequately relevant
objectives have been attained. These objective-to-accuracy mappings
constitute the right-hand side of Figure 1 (column “A”, values given
in %). We chose the maximum accuracy achieved as target value for
the scale (which usually lies in the range between 96% and 98%). We
also indicate which section presents the relevant evaluation studies.
The systematization grid thus presents a general dependency model of
NLP tasks and resources, as a roadmap for the current paper.

[ 3 ]
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Figure 1: Roadmap for NLP evaluation. See main text for details. The tree on
the left-hand side provides a systematization of tasks and resources for NLP. The
leaf nodes (“Parameter” column) collect the parameter settings we employ to
instantiate the relevant cells of the systematization grid. Parameters that are not
part of the current paper are shaded in gray. The parameters are mapped in
different ways on to the evaluation objectives, as indicated by connecting lines.
Dashed lines indicate that the parameter instantiation in question is not fully
exhausted by the target evaluation objective. The scale on the right-hand side
depicts the maximum accuracy of the evaluation results for each objective, and
indicates the section where the relevant evaluation study is described
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3 lemmatization

We view lemmatization as the problem of transforming a word form
into its canonical form, or lemma. In a machine-learning context,
lemmatization has sometimes been considered as a character-level
string transduction process (Dreyer et al. 2008; Nicolai et al. 2015;
Eger 2015; Schnober et al. 2016), a prefix and suffix transformation
problem (Juršič et al. 2010; Gesmundo and Samardzic 2012), or as
a pattern-matching task (Durrett and DeNero 2013; Hulden et al.
2014).2 While character-level string transducers may yield excellent
results (Nicolai et al. 2015), particularly when trained and tested on
lists of words randomly extracted from a lexicon (Eger 2015), they
tend to be learned slower, and typically do not lemmatize in con-
text, but consider the lemmatization problem in isolation, ignoring
contextual word-form cues. In addition, we found in preliminary ex-
periments that, for real-world lemmatization, where distribution is
marked by many irregular forms, simpler prefix and suffix transfor-
mation systems may be competitive with more sophisticated string
transducers.

In this work, we experiment with three approaches to lemmati-
zation, two of which are based on prefix and suffix transformations,
and one on neural networks. These experiments are presented in Sec-
tion 6.2. LemmaGen (Juršič et al. 2010) learns ‘ripple down rules’
(Compton and Jansen 1988), that is, tree-like decision structures, from
pairs of strings. Rule conditions are suffixes of word forms, and rule
consequents are transformations that replace the suffix in question by
a new suffix. The second approach we experiment with is the casting
of lemmatization as a classification task (Gesmundo and Samardzic
2012), which we call LAT: lemmatization is viewed here as a 4-tuple
indicating the prefix and suffix transformations involved in the lemma-
tization process. For example (see Figure 2), the transformation of the
German verb form gespielt into its lemma spielen is encoded by the

2Lemmatization can also be implemented with the help of a lexicon. How-
ever, lexicons are hard to acquire, and their performance is comparatively low in
cases where they do not sufficiently discriminate the distributions of polysemous
lemmas in large corpora of real texts. Nevertheless, a lexicon could typically ‘as-
sist’ a learned system, e.g., via features that trigger if a form occurs in the lexicon
(e.g., in a similar manner to that outlined here).
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Figure 2:

Example of how
to represent lemmatization

for gespielt to spielen
as a tuple

g e s p i e l t
1 2 1

s p i e l e n

2− prefix→ ; 1− suffix→ en =⇒ (2,;, 1, en)

tuple (2,;, 1, en), indicating that to derive spielen, the first two charac-
ters of gespielt are replaced by the empty string, and the last character
is replaced by en. This compact encoding considers lemmatization as
a classification problem where the size of the output space is rela-
tively small (some hundreds or thousands of labels, at most). More-
over, lemmatization can then also be treated as a sequence labeling
problem, where dependency between subsequent labels may be taken
into account. One may argue that inflections in German are rich and
that modifications may also include central characters, thus replacing
the entire word in extreme cases. Nonetheless, this approach can be
applied as long as the tagger can handle the output space.

Finally we include LemmaTag (Kondratyuk et al. 2018), which
is based on neural networks. It has primarily been included in experi-
ments for POS tagging (see Section 4), but it is also interesting to work
with as it supports joint lemmatization and tagging.

4 pos tagging

Among the milestones in POS tagging (or sequence labelling) are: in-
cluding dependencies between output labels (as in Markov models such
as HMMs or CRFs); the broad use of lexical features (Ratnaparkhi 1996;
Toutanova et al. 2003); and the concept of the margin introduced in
SVMs. The most recent class of taggers is characterized by several pos-
sibilities: that of including word representations learned from unlabeled
data, that of applying feature-rich models to problems with large out-
put spaces, and that of making use of deep (rather than shallow) models
such as neural networks that can in addition function without hand-
crafted features.

In this work, we consider the following POS tagging systems,
which are listed in order of their year of publication. The TreeTag-
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ger (Schmid 1994), a popular tagging system until recently, is based
on decision trees. As such, it cannot account for dependencies be-
tween output (tag) labels. TnT (Brants 2000) implements a trigram
Hidden Markov tagger with a module for handling unknown words.
It has been shown to perform as well as maximum entropy models.
The Stanford tagger (Toutanova et al. 2003) implements a bidirec-
tional log-linear model that makes broad use of lexical features. The
implementation lets the user specifically activate and deactivate de-
sired features. Lapos (Tsuruoka et al. 2011) is a ‘history-based’ tagging
model (this model class subsumes maximum entropy Markov models)
incorporating a lookahead mechanism into its decision-making pro-
cess. It has been reported to be competitive with globally optimized
models such as CRFs and structured perceptrons. Mate (Bohnet and
Nivre 2012) has been introduced as a transition-based system for joint
POS tagging and dependency parsing. We also include the OpenNLP
tagger, an official Apache project.3 For these systems, we refer to the
original works for more in-depth descriptions.

Among the most recent generation of taggers, we consider Mar-
MoT (Müller et al. 2013), which implements a higher order CRF with
approximations such that it can deal with large output spaces. In ad-
dition, MarMoT can be trained to fire on the predictions of lexical
resources as well as on word embeddings, real vector-valued represen-
tations of words.4

The RDRPOSTagger (Nguyen et al. 2014) implements an error-
driven approach to POS tagging by constructing a tree of single clas-
sification ripple down rules (SCRDR). It takes a gold standard and
an automatically tagged version thereof as input in order to gener-
ate rules to reflect any differences. By default, RDRPOSTagger uses
a built-in lexicon-based tagger, which by itself is not very accurate,
but learning exception rules from the initial tagging gives promising
results. Note that, since the approach is based on the concept of cor-
recting the output of some initial tagging, the initial tagger is required
for both training and testing/tagging. Nguyen et al. (2016) show that
using an external tagger (e.g. TnT) over the built-in (lexicon-based)

3See https://opennlp.apache.org/.
4Another morphological tagger which is based on conditional random fields

is TLT-CRF (vor der Brück and Mehler 2016) which we could not include due to
time and space constraints.
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tagger yields better results. In this work, we replicate their experi-
ment by optionally using TnT, and extend it by using MarMoT as the
initial tagger. Note that, in order to achieve a tagged version of the
training set for our experiments, we use 10-fold jack-knifing: each fold
is tagged by TnT or MarMoT based on the remaining folds. Taking a
practitioner’s view, we use the built-in tagger for most of our exper-
iments. However, we also examine the benefits of using an external
tagger for POS.

FLORS (Schnabel and Schütze 2014) tags a given word by con-
structing a feature vector representation of its local context and then
classifying this vector by an SVM. The feature vector representation
of each word in a context includes distributional, shape, and suffix
information, and the feature vector for the entire context is the con-
catenation of the word vector representations. Note that the imple-
mentation of FLORS includes language-specific features (for English).
This is expected to decrease its performance on the Latin and German
datasets we consider. In principle, the vector representations of words
are the same for known and unknown words, thus FLORS is poten-
tially very well-suited for OD tasks. In our work, we use online FLORS
(Yin et al. 2015), which incrementally updates word representations
for each new test sentence encountered.

We also wanted to include NonLexNN (Labeau et al. 2015), a
non-lexicalized neural network architecture for POS tagging. By oper-
ating on the subword/character-level, it promises to yield higher per-
formance on OD tasks, similarly to the FLORS tagger. However, we
could not make this tagger perform on-par with the other taggers sur-
veyed. One reason for this was its very lengthy runtime – several days
for a single training fold – so that we could not sufficiently experiment
with its parameters.

A neuronal network approach based on bidirectional long short-
term memory recurrent neural networks (Wang et al. 2015) was im-
plemented using Deeplearning4j. It consists of one Graves Bidirec-
tional Long-Short Term Memory (BLSTM) Layer, and one RNNOutput-
Layer with a Softmax activation function andMultiClass Cross Entropy
(MCXENT) Loss function. The BLSTM Layer uses a TANH activation
function, and we changed the updater to ADAGRAD, to improve learn-
ing for rare POS tags. Following Wang et al. (2015), we represent each
word with its word embedding, and add a three-dimensional binary
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User-def.
features

Large
output spaces

External
resources

Label
dependencies

FLORS ✓ ✓
Lapos ✓
LemmaTag ✓ ✓
MarMoT ✓ ✓ ✓ ✓
Mate ✓ ✓
OpenNLP ✓ ✓
RDRPOSTagger ✓ ✓
Stanford ✓ ✓
TnT ✓ ✓
TreeTagger ✓

Table 1:
Systems
and selected
properties

vector to retain information about capitalization: initial upper case,
all upper case, or all lower case. We add another vector of 3 dimen-
sions to identify the word ending. Note that this approach could not be
fully exploited during our experiments, because of limited hardware
resources and the amount of time needed to train the networks.

Finally, we include LemmaTag (Kondratyuk et al. 2018), a fea-
tureless neural network approach to joint lemma and POS tagging,
based on bidirectional memory recurrent neural networks. It uses
character- and word-level embeddings. LemmaTag is based on Ten-
sorflow, a library for dataflow programming widely used in machine
learning applications. Since it benefits from GPUs, we run LemmaTag
on a GPU workstation so as to run all experiments in reasonable time.

In Table 1, we list some key properties of the taggers in the survey.
While most models make use of features (except for HMMs as TnT is
based on, for which the inclusion of arbitrary features is non-trivial),
not all of them allow users to specify user-defined features. Therefore,
we had to exclude Lapos and Stanford from some experiments (e.g.
joint-tagging) as they do not scale well on large output spaces.

In addition to the list of taggers, we include amajority vote POS
tagger. By examining the results of at least three taggers, we identify
the POS tag for a given token with maximum tagger agreement. In
order to solve ties, taggers are ranked by date of publication. In prac-
tice, tagger accuracy should be estimated on a held-out set, extracted
from the training data, or on a (small) hand-annotated data set. The
majority vote tagger is used to assess whether tagging system errors

[ 9 ]



Rüdiger Gleim et al.

correlate. The assumption is that majority voting does not work when
all systems commit the same types of errors.

5 datasets

In this work, we examine the performance of NLP tools on Latin
and German texts. We distinguish between in-domain (ID) and out-
of-domain (OD) experiments. From a machine learning perspective,
ID experiments are more well-defined, because they are generally
performed on a corpus of texts from the same era and genre. More im-
portantly, the gold standard of such corpora has usually been created
by a closed group of trained annotators who agreed upon a specific
annotation manual. Thus, we can expect a high degree of coherency
in terms of the primary content as well as the annotation.

For ID experiments the data must be partitioned into distinct
training and test sets. In general, we perform a 3-fold random subset
validation, with a 90%/10% split on each corpus for each language. In
contrast, OD experiments involve two corpora, with one corpus used
entirely for training, and the other one for testing. For the LemmaTag
tagging and lemmatization tool, we require an additional develop-
ment set. For these ID experiments, we use a 3-fold 80%/10%/10%
split. For the OD experiments, we use 90% of the entire source corpus
as the training set and the remaining 10% as the development set. As
before, the entire target corpus is used for testing and the 90%/10%-
split is performed three times. Since OD experiments bring together
corpora that may vary in terms of the era in which they were written,
in the genres they cover, and in the standards by which they were
annotated, we expect a significant drop in accuracy when we eval-
uate NLP tools, as has been documented by much previous research
(Müller et al. 2015; McGillivray et al. 2009). Nonetheless, OD scenar-
ios provide a much more realistic perspective on the performance of
lemmatization and POS tagging, since a practitioner usually has to
rely on pre-trained models. This is not primarily because of the tech-
nical skills required to train a model, but rather because of the huge
effort required to construct a training set large enough to accurately
cover the desired genre.

In the following subsections, we describe the corpora as well as
supplementary resources used in this work for German and Latin. Of
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Corpus Language Sentences Tokens
Tiger German 50,472 888,238
TGermaCorp German 8,941 157,210
Capitularies Latin 15,572 481,578
Proiel Latin 1,147 22,280

Table 2:
Statistics of corpora
used in the experiments

the taggers we consider, MarMoT can benefit from additional lexical
resources as well as word embeddings. In order to examine the im-
pact of supplementary data, we evaluate various lexical resources and
different corpora, as well as algorithms to compute word embeddings.

5.1 Corpora
For German, we train and test on the Tiger corpus (Brants et al. 2004),
and on TGermaCorp (Lücking et al. 2016). The Tiger corpus consists of
newspaper articles from the German “Frankfurter Rundschau” which
were semi-automatically lemmatized and tagged for POS and mor-
phology. For Latin, we use the Capitularies corpus (Mehler et al. 2015;
Eger et al. 2015) and the Proiel corpus (Haug and Jøhndal 2008). The
Capitularies corpus is based on the “Capitvlaria regvm Francorvm, ed.
Alfredus Boretius (Hannover 1897)”. The two Latin corpora stem from
different genres and different epochs, making them interesting candi-
dates for OD tagging experiments. The Capitularies consist of instruc-
tions and directives from the Merovingian and Carolingian periods
(600–900 AD), whereas Proiel consists of classical and Christian texts
(100 BC–500 AD). We use a random subset of Proiel, for which tag
labels have been manually synchronized with those of the Capitular-
ies. As the Proiel corpus does not contain punctuation, we expect low
accuracy when it participates in OD scenarios. This problem should
not occur with the Capitularies corpus, which contains punctuation.
Table 2 gives an overview of the corpora used in the experiments.

For this study, the thematic range of TGermaCorp, which is com-
posed of literary texts in standard German, was extended to include
language of science, from a diachronic perspective. Extracts were se-
lected from two texts from the second half of the nineteenth century:
Friedrich Nietzsche’s Der Antichrist (1894), representing humanities,
and Gregor Mendel’s Versuche über Pflanzenhybriden (1866), represent-
ing the natural sciences. Nietzsche’s text was obtained from the Digitale
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Kritische Gesamtausgabe Werke und Briefe.5 Mendel’s text was obtained
from Project Gutenberg.6 The token count for Der Antichrist is 30,652
and for Versuche über Pflanzenhybriden it is 20,129.

Each text was divided into 12 equal chunks which were paired
to form 12 mixed files for annotation. Each annotator had to anno-
tate and occasionally correct the tokenization of a mixed file of 4,831
tokens. Eight annotators performed (coarse-grained) POS tagging and
lemmatization, following STTS annotation guidelines (Schiller et al.
1999) – see Lücking et al. (2016) for further details.

Before annotating the TGermaCorp extension, annotators under-
went a five-week training period, supervised by two linguistically
trained experts. The objective of the training period was to familiar-
ize annotators with the tagset, so as to achieve consistent annotation.
The first part of the training period focused on the rules and labels for
lemmatization, using the annotation manuals and comparing results
with gold-standard annotations (one week). During the second part of
the training period (four weeks), the annotators had to complete two
annotation tasks. Their results were inspected on a sample basis by
the two supervisors. The findings as well as any examples worthy of
discussion encountered by the annotators, were discussed in weekly
meetings, in order to clarify annotation rules or agree on conven-
tions in cases not unequivocally covered by the manuals. Annotators
who successfully completed the training period then annotated the
TGermaCorp extension.7

In order to test annotator self-agreement, 300 tokens from each
text snippet were extracted and added at the end of the annotation file,
so that 600 tokens were annotated twice by each annotator. Intra-rater
agreement was calculated on these two annotations for each annotator
by means of Cohen’s Kappa (Cohen 1960). The results are presented
in Table 3. The perfect agreement for ann7 is due to her recognizing
the double annotation task and reconstructing her previous choices.

An inter-rater agreement study was also carried out. Four anno-
tators annotated a set of 100 tokens from Nietzsche’s Antichrist, while
the other four annotators annotated a set of 100 tokens from Mendel’s

5Provided at http://www.nietzschesource.org (CC BY-NC 3.0).
6http://www.gutenberg.org/cache/epub/40854/pg40854.txt
7Although twelve annotators were trained, only eight successfully completed

the training period.
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Annotator Lemma POS
annotator 1 0.98 0.98
annotator 2 0.99 0.99
annotator 3 0.98 0.96
annotator 4 0.99 0.99
annotator 5 0.98 0.97
annotator 6 0.96 0.94
annotator 7 1.00 1.00
annotator 8 0.97 0.92

Table 3:
Intra-rater agreement:
summary

Level All ann1-gs ann2-gs ann3-gs ann4-gs
lemma 0.92 0.91 0.94 0.97 0.88
POS 0.85 0.96 0.94 0.88 0.85

Table 4:
Inter-rater agreement:
summary for the
Nietzsche extract

Level All ann5-gs ann6-gs ann7-gs ann8-gs
lemma 0.95 0.95 0.85 0.94 0.95
POS 0.91 0.90 0.89 0.89 0.90

Table 5:
Inter-rater agreement:
summary for the
Mendel extract

Versuche über Pflanzenhybriden. These two sets of tokens had previ-
ously been annotated and discussed by two linguistically trained an-
notators, thus providing a gold standard for comparison. Agreement
values for the Nietzsche extract are given in Table 4, and those for the
Mendel extract are given in Table 5. Column ‘all’ presents agreement
values among all four annotators in terms of Fleiss’ generalized Kappa
(Fleiss 1971). The remaining columns provide each annotator’s com-
pliance with the Gold Standard (Cohen’s Kappa). With all agreement
scores exceeding the threshold of 0.81, annotations can be regarded
as ‘sound’ (Krippendorff 1980) or ‘almost perfect’ (Rietveld and van
Hout 1993).

As self-consistency (intra-rater) is even higher than mutual con-
sistency (inter-rater) – although both sets of values are satisfactory
– and as more annotators were involved in annotating the extension
than the original corpus, slightly more diverse annotation values are
expected for the extension. We therefore expect a slight decrease in
tagger performance for the newly added snippets.
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5.2 Tagsets
The choice of a tagset dependsmainly on the language to be annotated.
For German NLP, the Stuttgart-Tübingen TagSet (STTS) is widely rec-
ommended. It is used in the Tiger corpus and has been adopted for the
annotation of TGermaCorp. Consequently, STTS is used in this work
to train and evaluate POS tagging. However, there are some cases in
linguistic studies where for a certain type of word, such as a verb, it is
not relevant to differentiate between sub-groups, such as finite or non-
finite. Another argument in favor of simplification is that training ef-
fort for annotators will be reduced. Instead of simply training our tag-
gers for STTS and grouping results into a more coarse-grained tagset,
we also investigated the potential accuracy of a simplified tagset. We
therefore performed experiments based not only on the STTS but also
on the simplified tagset, sSTTS.

Our experiments on Latin texts are primarily based on the Capit-
ularies corpus, which was tagged using the Computational Historical
Semantics TagSet (CHSTS).8 Compared to STTS, the CHSTS is coarse
grained, and does not distinguish between different types of verbs, ad-
jectives, or pronouns. It does, however, distinguish nouns from named
persons and named entities. We therefore expect further simplification
not to have as great an impact on the accuracy of POS tagging as that
observed with the simplified STTS. Consequently, we also used a sim-
plified tagset sCHSTS in our experiments, which maps nouns (NN),
persons (NP), and named entities (NE) to one single POS tag (N).
Table 6 maps simplified equivalents to STTS and CHSTS.

The tagsets discussed so far encode morphological information to
some extent (e.g. VVFIN vs. VVIMP) but do not explicate morpholog-
ical categories as a whole. We therefore differentiate between coarse-
grained and fine-grained (morphological) POS tagging in our experi-
ments. Table 7 provides an overview of morphological tags. Categories
or tags that are unique either to Latin (·la) or German (·de) corpora are
marked accordingly. The Tiger corpus, the Capitularies and the Proiel
corpus provide annotations of case, (comparison) degree, gender,
mood, number, person and tense. In addition, the Latin texts are an-

8This tagset was developed within the framework of the Computational
Historical Semantics project (http://www.comphistsem.org/) (Jussen et al.
2007).
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Table 6: Mapping simplified tagsets for STTS and CHSTS

sSTTS STTS sCHSTS CHSTS
adjective ADJ ADJA, ADJD ADJ ADJ
adposition AP APPO, APPR, APPRART, APZR AP AP
adverb ADV ADV, PAV ADV ADV
article ART ART
card. num. CARD CARD NUM NUM
conjunction KON KOKOM, KON, KOUI, KOUS CON CON
dist. num. DIST DIST
foreign FM FM FM FM
interjection ITJ ITJ ITJ ITJ
non-word XY XY XY XY
noun N NN, NE N NN, NE, NP
particle PTK PTKZU, PTKNEG, PTKVZ, PTKA, PTKANT PTC PTC
pronoun P PDAT, PDS, PIAT, PIS, PPER, PPOSAT,

PPOSS, PRELAT, PRELS, PRF, PWAT,
PWAV, PWS, PIDAT

PRO PRO

truncation TRUNC TRUNC
verb V VAFIN, VAIMP, VAINF, VAPP, VMFIN,

VMINF, VMPP, VVFIN, VVIMP, VVINF,
VVIZU, VVPP

V V

pun. term. $. $. $. $.
comma $, $, $, $,
other pun. $( $( $( $(

Category Tags
case *de, ablativela, accusative, dative, genitive,

locativela, nominative, vocativela

degree *de, comparative, positive, superlative
gender *de, feminine, masculine, neuter
mood gerundla, gerundivela, imperative, indicative,

infinitivela, participlela, subjunctive, supinela

number *de, plural, singular
person 1, 2, 3
tense futurela, future perfectla, imperfectla, pastde,

perfectla, pluperfectla, present
voicela activela, passivela

Table 7:
Morphological tags used
for fine-grained POS
tagging. The ·la tags are
only used for Latin texts,
whereas ·de tags are only
used for the German Tiger
corpus

[ 15 ]



Rüdiger Gleim et al.

notated with either active or passive voice. Note that tags common
to both corpora can be mapped directly, even if they are not identical
in appearance (e.g. “acc” in Tiger and “accusative” in the Latin texts).
The morphological annotation of the two Latin corpora is much richer
than that of the Tiger corpus.

5.3 Lexicons
For German, we extracted a lexicon from the GermanWiktionary.9 Ex-
tracting lemmas and syntactic words (including all grammatical cate-
gories available) from a Wiktionary instance in a thorough and robust
way is not a trivial task. Even though guidelines and templates exist,
they differ significantly between Wiktionary instances, and also vary
in the way they are used within the same language. Our approach
parses the HTML code of a Wiktionary instance that has been setup
on a local server using the XML-dump from 2015-09-01.10 This is, in
our experience, more accurate than trying to parse MediaWiki sources
directly, and it saves bandwidth on the official Wiktionary servers. We
also used GermaNet version 11.0 (Hamp and Feldweg 1997; Henrich
and Hinrichs 2010) as a lexical resource. In both cases, we are limited
to the simplified STTS tagset, since the lexicons extracted to not have
sufficient information to differentiate between different types of verbs,
as STTS does. Future work may however include an STTS-compliant
extraction and mapping of Wiktionary.

For Latin, we made use of the Frankfurt Latin Lexicon (FLL)
(Mehler et al. 2015). As an equivalent to GermaNet, we included the
lexical resources of a Latin WordNet (Minozzi 2008), available under
an Attribution-ShareAlike 4.0 license.

For MarMoT, we used information about word forms and their
POS. Table 8 gives an overview of the lexical resources used in the
experiment.

5.4 Embeddings
Besides lexicons, word embeddings can be used as an additional re-
source to train specific taggers like MarMoT. In order to achieve re-
liable representations of word forms in a vector space, large corpora

9http://de.wiktionary.org
10https://dumps.wikimedia.org/dewiktionary/20150901/
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Lexicon Language Tagset Word forms
DE-Wiktionary German sSTTS 381,296
GermaNet German sSTTS 126,392
GermanAll German sSTTS 463,912
FLL Latin CHSTS 3,635,245
FLL Latin sCHSTS 3,631,179
LatinWordNet Latin sCHSTS 9,124
LatinAll Latin sCHSTS 3,631,199

Table 8:
Statistics of lexica used
in the experiments

are required. We considered three corpora: The Gutenberg-DE Edition
13, the German Wikipedia, and the German newspaper “Süddeutsche
Zeitung” (SZ). All corpora were tokenized using the PTBTokenizer con-
tained in StanfordCoreNLP (Manning et al. 2014), lemmatized and
tagged using MarMoT, and dependency parsed using Mate (Bohnet
and Nivre 2012). All these tools and the corresponding processing
pipeline are available (also as web-services) via the TextImager system
(Hemati et al. 2016).

The Gutenberg-DE Edition 13 is a collection of classical German
literature ranging from modern works back to a poem by Walther von
der Vogelweide written in 1198. In contrast, the German Wikipedia
corpus covers articles of the online encyclopedia which were extracted
from a dump dating from 2016-02-03. The articles were parsed using
Sweble (Dohrn and Riehle 2011) and converted into TEI P5. Finally,
the newspaper corpus covers 23 volumes of the “Süddeutsche Zeitung”
between 1992 and 2014. In our experiments, we use each corpus sep-
arately and all corpora combined (German-All).

For Latin, we use texts ranging from the 2nd to the 14th cen-
tury. The documents stem from the Patrologia Latina (PL) corpus, the
Monumenta Germaniae Historica, and the Central European Medieval
Texts Series.11 12 13 Most of the texts are from the 9th to the 12th cen-
tury and were written by clerics. Since the Patrologia Latina does not
contain annotations of dependency structures, it is not suitable for all
the word embedding tools examined in this contribution. In order to
explore the effect of incorporating dependency structure information

11http://patristica.net/latina
12http://www.mgh.de/dmgh
13http:

//www.ceupress.com/books/html/CentralEuropeanMedievalTexts.htm
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into word embedding nonetheless, we included the Index Thomisti-
cus. This corpus contains texts by Thomas Aquinas (1225–1274 AD).
Its size is but a fraction of the Patrologia Latina, but it is annotated
with dependency information (Passarotti 2015).

Table 9 gives an outline of the corpus statistics.

Table 9:
Statistics of supplementary

corpora used in the
experiments

Corpus Language Sentences Tokens
Gutenberg German 24,766,958 440,896,599
Wikipedia German 85,027,606 1,158,005,656
SZ German 42,426,628 725,868,505
German-All German 152,221,192 2,324,770,760
PL Latin 5,598,592 133,158,974
Index Thomisticus Latin 21,931 371,824

In order to compute word embeddings, we incorporate five differ-
ent variants: The Mikolov model (Mikolov et al. 2013) optimizes word
embeddings such that they can predict other context words occurring
in a defined window. The model considers target-context word pairs
inside a window of words to the right and to the left of the target
word. Among other options, the text model chosen can be either the
continuous bag of words model (cbow) or the skip-gram model (skip).
The effect of varying this parameter is examined in the experiments
discussed in Section 6.1.2. FastText (Bojanowski et al. 2017) is a li-
brary and tool to learn word embeddings as well as sentence classi-
fications. Pennington et al. (2014) developed GloVe, which we also
examined as an alternative to learn word embeddings. Levy and Gold-
berg (2014) modified the skip-gram model of Mikolov et al. (2013).
They used dependency contexts instead of a window-based word con-
text. Komninos and Manandhar (2016) introduced a variant of the
skip-gram model that combines Mikolov skip-grams with those de-
rived from dependency trees. Each target word optimizes word em-
beddings such that maximum probabilities of other words within dis-
tance one and two in the dependency tree are calculated. A weighting
according to distance is applied. Words with distance one from the
target word are counted twice. These word-word predictions behave
similar to the window model of Mikolov et al. (2013). Dependency
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parses are also used to filter coincidental co-occurrences (Komninos
and Manandhar 2016).

5.5 Morphological analyzers
This article focuses on standard tools for natural language processing
that are (i) generic, in the sense that they can in principle be applied
to any language and genre, and (ii) produce an unambiguous annota-
tion. However, there are resources and tools developed for a specific
language that provide detailed information on lexical units and are
widely used in the community.

Morphological analyzers provide information about inflected
forms regarding morphology and lemmatization. They may also in-
clude information regarding segmentation (e.g. Lemlat). All of the
following analyzers perform an out-of-context analysis, that is, they
process each inflected form individually and may return multiple re-
sults. Furthermore, these results do not necessarily cover the actual
valid result (when context is considered). Thus we cannot directly
compare these resources to the tagging tools analyzed in our experi-
ments. However, we can perform a coverage analysis in order to get an
overall impression of the potential of the analyzers. For this purpose,
we discard numerals and punctuation. Table 10 summarizes the cov-
erages of the following morphological analyzers. Morpheus is a web
service as part of the Perseus project (Crane 1991), which provides
morphological analyses for Greek and Latin.14 Lemlat 3.0 (Passarotti
et al. 2017) is a morphological analyzer based on a lexical database.
LatMor (Springmann et al. 2016) is a finite-state morphology for Latin,
which, on our corpora, reached the best coverage.

Analyzer Capitularies Proiel
LatMor 99.527 99.426
Lemlat 97.616 99.495
Morpheus 92.371 96.297

Table 10:
Coverage of morphological analyzers
on Latin corpora in percent

14To evaluate the coverage of Morpheus, we used a Python project (https://
github.com/tmallon/morpheus) by Timothy Mallon, which wraps and caches
requests on the Morpheus web service.
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6 experiments

In this section, we evaluate the performance of various NLP tools. We
do not seek to find only one perfect combination of tool and resources
in order to proclaim a winner. To attempt to do so would require
extensive hyperparameter experiments and tuning of each tool. Our
experiments showed that this is almost impossible since some tools
take hours to train a model on our compiled training/test partitions
and have a wide parameter space to explore. And even then the results
would be valid for the examined corpora but might differ significantly
for other corpora. This is because the process of optimizing parameters
to maximize accuracy for a given data set might lead to over-fitting
for that specific task.

So our focus is rather on the practitioner: What accuracy can one
generally expect from a given NLP approach – used off-the-shelf and
using default hyperparameters – and how much time do you need to
invest for training and predicting? Furthermore, we are interested in
how significant the differences are between older and more modern
approaches. Does “old” automatically need to stand for “no longer
relevant”?

We start by examining POS and fine-grained POS tagging, fol-
lowed by lemmatization. Finally, we evaluate what level of accuracy
we can expect when putting the pieces together.

6.1 Tagging
Table 11 shows POS tagging accuracy, achieved without using

any optimization or adding any supplementary resources for training.
LemmaTag performed best on almost all German corpora, followed
by MarMoT and FLORS. The picture becomes more diverse when con-
sidering the results for the Latin texts. While LemmaTag still performs
best on the Capitularies, accuracy drops significantly for Proiel as well
as (to a minor degree) for the two OD scenarios. On average, Mar-
MoT and the tagging veteran TreeTagger are only 1.40% apart. An-
other outlier worth noticing is FLORS, trained on Tiger and tested on
TGermaCorp, which is 0.47% above LemmaTag (second in place for
this setting), followed by Mate and Lapos. As expected, we observed
a significant drop in accuracy for OD experiments, compared to ID
experiments. For example, MarMoT achieves 98.02% accuracy on the
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Tiger corpus (ID). But when Tiger is used as the training corpus to tag
TGermaCorp, results drop by about 9%. The problem becomes even
more apparent when a relatively small corpus such as Proiel is used to
tag a larger corpus like the Capitularies. In this case, accuracy drops
from 95.62% (Proiel ID) to 63.48% (Proiel→Capitularies) when using
Lapos. However, this is partly because Proiel does not contain punc-
tuation, so a model trained on that corpus is bound to produce more
errors when applied to the Capitularies. Since a practitioner is often
limited to using pre-trained models, OD experiments reveal a much
more realistic view of what can be expected. In Section 6.1.2, we will
examine how and to what degree accuracies in OD scenarios can be
improved by supplementary resources. Our results show that given a
specific tagger, accuracy may vary heavily across different resources.
We also observe that the taggers perform quite differently for the same
resource. This finding suggests, that it may be worth the effort to try
more than one tagger on a given POS tagging task.

Taggers may vary considerably in the way they can cope with
words which have not been part of the training set (out-of-vocabulary
items). Table 11 lists the accuracy for out-of-vocabulary items in
italics. Figure 3 shows a visualization of the differences compared
to all tokens as heatmap. The more saturated the cell, the higher the
delta. The maximum delta of 31.88% is reached by Stanford tagger
on the Capitularies. Lapos and MarMoT perform best from the per-
spective of how well they can cope with out-of-vocabulary items. In
contrast Stanford tagger, RDR and TreeTagger mark the other end
of the spectrum. Figure 3 also reveals that the delta for Tiger→TG is
much higher than for TG→Tiger which is in contrast to Capit→Proiel
vs. Proiel→Capit: In the German out-of-domain scenario accuracy
drops significantly more when Tiger, being the much larger corpus, is
used to tag TGermaCorp. For Latin it is the other way around: Accu-
racy drops much more for Proiel being used as training set to tag the
significantly larger Capitularies corpus.

What are the main reasons for tagging errors? Figure 4 depicts in
a bipartite graph how often POS-tagging errors have occurred, using
LemmaTag on Tiger. The arrows from the gold-standard (top) to the
test results (bottom) represent the range of variation in POS-tagging
errors, and their relative frequency of occurrence. For better read-
ibility, the figure only shows the ten most frequent nodes for gold
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Figure 3: Heatmap depicting the degree to which accuracy drops when only out-
of-vocabulary tokens are considered. Themore saturated the cell color, the higher
the delta

NE
20.2%

NN
10%

ADJD
9.1%

FM
8.3%

ADV
8.3%

ADJA
3.5%

PIS
3.3%

APPR
2.9%

VVINF
2.9%

KON
2.8%

NN
22%

NE
15.9%

ADV
9.6%

APPR
6.4%

ADJD
6%

VVPP
5.6%

VVFIN
4.4%

ADJA
4.3%

PIS
2.5%

KOKOM
2.5%

Figure 4: Depiction of the distribution and extent of erroneous POS tagging,
comparing gold-standard tags (top) with test-results (bottom), using STTS for
LemmaTag on Tiger

standard, and for test results, while arrows indicate at least ten mis-
matches. Percentages represent the ratio of all incoming or outgoing
arrows with respect to the overall total. Apparently, most errors are
caused by named entities recognized as nouns and vice versa. Like-
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Figure 5: Depiction of the distribution and extent of erroneous POS tagging, com-
paring gold-standard tags (top) with test-results (bottom), using STTS for all tag-
gers on Tiger

wise, finite verbs are often erroneously tagged as non-finite verbs and
vice versa. Are these observations specific to LemmaTag or do other
taggers show similar behavior? Compare Figure 4 with Figure 5, which
shows the sum of all mismatches over all taggers combined. Percent-
ages in the upper row code the fraction of errors where the correspond-
ing POS was tagged erroneously; percentages in the lower line code
the fraction of errors where this target POS was chosen. The figure
is based on the same filter criteria. As before discriminating named
entities and nouns as well as finite and non-finite verbs are the main
sources of error.

The POS-tagging accuracy results shown in Table 11 for ID exper-
iments are the average of a three-fold cross-validation. The choice of
how to partition a corpus into a training set and a test set may have
a significant impact, and thus make comparision between POS tag-
ging results from the literature more difficult. The distribution of the
deltas between the minimum and maximum value encountered for
POS tagging in cross-validations (Figure 6) clearly shows that delta
values depend on the size of the corpus. The smaller the corpus to be
partitioned, the higher the probability that the training set will fail to
cover words or patterns that are part of the test set.

In Section 5.2, we introduced a mapping from STTS to a sim-
plified version that abstracts from variants of verbs, pronouns, etc.
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a three-fold cross-validation. The more saturated the cell color, the higher the
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The Latin tagset CHSTS is similar to sSTTS already, but still discrim-
inates nouns from named entities and named persons. Consequently,
we also examined the impact of an abstraction of the Latin tagset,
sCHSTS. As some use cases in computational linguistics do not require
an explicit distinction for verbs, pronouns, and other POS, the ques-
tion is whether this abstraction results in significantly higher accu-
racy. Table 12 contrasts the STTS/CHSTS-based POS results for Tiger
and the Capitularies with the simplified tagsets, sSTTS and sCHSTS.15
All taggers show improvement after the abstraction. On average Tiger
gains 1.09% while accuracy for Capitularies is increased by 0.32%.
Since sCHSTS only abstracts nouns, the improvement is understand-
ably less.

We already noted that mismatches between named entities and
nouns, as well as variants of verbs, are a major source of POS tagging
errors. Shifting to a simplified tagset brings into focus other errors
that were already present in the original tagsets. Figure 7 shows the
percentage of erroneous POS using sSTTS for all taggers on Tiger. As
before, the figure shows only the ten most frequent types for gold
standard and for test results, with arrows to indicate at least ten mis-

15For two out of three train/test partitions of Tiger, Lapos frequently tagged
commas not as “$,” but as “$(”, “V” and other forms. As this error was not ob-
served for other corpora nor other taggers, we presumed that this was an error
in Lapos and therefore explicitly set the correct tag for commas in this specific
case.
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Table 12:

POS accuracy for all tagsets
on Tiger and Capitularies in %

Tiger Tiger Capit Capit
STTS sSTTS CHSTS sCHSTS

FLORS 97.69 98.74 95.44 95.65
Lapos 97.84 98.69 96.08 96.31
LemmaTag 98.58 99.18 96.18 96.51
MarMoT 98.02 98.88 96.10 96.35
Mate 97.88 98.90 95.79 96.09
OpenNLP 96.84 98.11 94.83 95.18
RDRPOSTagger 96.72 97.92 95.43 95.88
Stanford 97.17 98.37 94.83 95.18
TnT 97.23 97.93 95.47 95.74
TreeTagger 97.09 97.86 95.17 95.60
average 97.51 98.46 95.53 95.85
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Figure 7: Percentage of POS tagging errors using sSTTS for all taggers on Tiger

matches. The most dominant errors are adjectives erroneously tagged
as nouns or verbs. Another frequent error stems from pronouns beings
tagged as articles. These errors were present in STTS as well but were
dominated there by the much more frequent problem of distinguishing
nouns from verbs.

So far we have only considered coarse-grained POS tagging. Now,
we shed light on what accuracy can be achieved for fine-grained POS
tagging. Instead of lining up result tables as we did for POS, we pro-
pose a graphical representation to depict tagging accuracy for the
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Figure 8:
Fine-grained POS tagging
of the Tiger corpus
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Tiger corpus (Figure 8) and for the Capitularies (Figure 9). For both
corpora, results are relatively good for degree, mood, person, and
tense, whereas case, gender, and number appear to be more chal-
lenging. All tools show similar behavior with respect to the accuracy
for a given morphological category. LemmaTag performs exception-
ally well on all categories, while TreeTagger marks the lower end of
the spectrum.

6.1.1 Majority voting
When more than two annotations are generated for the same task, a
majority-vote approach can be applied. Assuming that the majority
is more likely to be right when tagging a specific token, erroneous
outliers can be compensated for, thus leading to better results. We
distinguish three groups of taggers: By “top3” and “top5” we denote
the three or five most recently published (see Section 4): LemmaTag,
FLORS, RDRPOSTagger, MarMoT, and Mate. By “all” we denote the
ten taggers examined in our study. We also rely on (descending) order
of publication of the taggers to resolve tie situations in majority votes.

As Table 13 shows, applying a majority vote improves perfor-
mance in most cases. Unexpectedly, using the three most recently pub-
lished taggers (LemmaTag, FLORS, and RDRPOSTagger, according to
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Figure 9:

Fine-grained POS tagging
of the Capitularies

(accuracy in %)
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Table 13:
Majority vote tagging
of POS (STTS/CHSTS)

(accuracy in %)

Corpora Best Top3 Top5 All
TG 93.44 93.63 93.91 93.86
Tiger 98.58 98.30 98.37 98.29
TG→Tiger 90.69 90.47 91.37 91.39
Tiger→TG 90.59 90.41 90.44 90.08
Capit 96.18 96.20 96.29 96.28
Proiel 95.62 94.70 95.78 96.04
Capit→Proiel 87.73 86.49 87.82 87.92
Proiel→Capit 63.85 63.51 64.61 64.76

our list) cannot be recommended, as it improves accuracy in only two
out of eight cases. However, by adding MarMoT and Mate to this list,
accuracy exceeds the baseline in six out of eight cases. A similar im-
provement is observed when using all taggers.

We then went a step further and evaluated the performance of ma-
jority votes for any combination of taggers, in any possible order (to
solve ties). With 10 taggers available, 9,864,000 combinations were
computed. Table 14 lists the best combinations for fine-grained (STTS)
POS tagging of the Tiger corpus, using a fixed number of taggers. In
this scenario, the best result (98.44%) is achieved when using Lem-
maTag, Mate, TnT, and FLORS (in that order), which is 0.14% above
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# Acc. Taggers (ordered chronologically, most recent first)
3 98.39 LemmaTag, FLORS, Mate
4 98.44 LemmaTag, Mate, TnT, FLORS
5 98.37 LemmaTag, RDRPOSTagger, FLORS, MarMoT, Mate
6 98.41 LemmaTag, RDRPOSTagger, Mate, FLORS, MarMoT,

TreeTagger
7 98.33 LemmaTag, RDRPOSTagger, Mate, TnT, MarMoT,

Lapos, FLORS
8 98.36 LemmaTag, RDRPOSTagger, Mate, Lapos, MarMoT,

TreeTagger, TnT, FLORS
9 98.29 LemmaTag, Mate, MarMoT, TnT, TreeTagger,

FLORS, Stanford, RDRPOSTagger, Lapos
10 98.31 LemmaTag, Mate, FLORS, RDRPOSTagger, Stanford,

MarMoT, TnT, Lapos, TreeTagger, OpenNLP

Table 14:
Best results for
majority vote
POS-tagging
(STTS) of Tiger
by number
of taggers
(accuracy in %)

the best single performer (LemmaTag). Our results suggest that, in
practice, the relatively small gain in performance does not justify the
great effort for training the individual tools in order to use majority
vote tagging.
6.1.2 Supplementary resources
The first experiment presented in this article examined the perfor-
mance of various tools on POS tagging, with no hyperparameter tun-
ing and no additional resources whatsoever. We observed that, even
though all tools produced reasonable results for ID scenarios, switch-
ing to OD settings had a severe impact on accuracy: The training data
cannot cover the morphological and grammatical diversity, or the spe-
cific characteristics of the test domain. This problem becomes even
more severe when only small training corpora are available. Creating
well-annotated corpora as gold standard for tagging is a tedious and
complex task. How can additional resources that are easier to produce
be used to augment models, and what impact can be expected on the
accuracy of our scenarios?

Lexical resources as well as word embeddings can be used with
MarMoT to support the training of POS tags, while FLORS can benefit
from additional unstructured texts. Because of the time required to
train FLORS models, we focused on MarMoT to examine the impact of
different resources on overall performance. We started by examining
POS tagging of Latin corpora, using different combinations of lexicons
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Table 15:

POS (CHSTS)
accuracy in %
using MarMoT,

for different
types of word
embedding,

based on two
Latin corpora

Emb. corp. Corpora No em. Mik. F.Text GloVe Kom. Levy
PL Capit 96.10 96.26 96.23 96.01 – –
Thom. Capit 96.10 96.08 96.09 96.06 96.03 96.01
PL Pro 95.49 96.85 96.75 95.90 – –
Thom. Pro 95.49 95.67 95.56 95.75 95.83 95.78
PL Cp→Pro 87.58 88.68 88.69 86.75 – –
Thom. Cp→Pro 87.58 87.28 87.35 86.40 86.33 86.14
PL Pro→Cp 63.05 69.61 68.77 64.91 – –
Thom. Pro→Cp 63.05 63.65 63.47 62.92 64.25 64.24

and word embeddings. The word-embedding approaches of Komninos
and Levy can only be applied to the Index Thomisticus, because the
Patrologia Latina corpus lacks dependency information.

We used default values for Mikolov, FastText, GloVe, Komninos,
and Levy, while aiming to keep results for the different approaches
comparable. We therefore used a feature vector size of 100 and 5 iter-
ations (Levy used 1 by default, which we changed to 5). As the default
number of iterations for GloVe is 25, we did not limit the number of
iterations to 5. For German, we set the minimum word frequency to
10 in order to compute embeddings within reasonable timeframe. For
Latin, we used a minimum word frequency of 1.

Table 15 shows that using word embeddings based on the Patrolo-
gia Latina improved tagging results. Mikolov performs best in most
cases, followed by FastText and GloVe. The most significant boost in
terms of accuracy is achieved for the OD setting Pro→Cp. In this case,
training POS tags based on the rather small Proiel corpus benefits best
from the additional information provided by word embeddings. In two
cases, GloVe has a negative impact compared to the baseline of using
no word embeddings.

In contrast, the results of using Index Thomisticus as a basis for
word embeddings are rather inconclusive. In about half the cases the
baseline is not met. When Proiel is examined in-domain or out-of-
domain, Komninos yields the best results, but in the other scenarios,
it does not reach baseline accuracy either. Using dependency informa-
tion may therefore have a positive impact, but a great deal depends
on the corpora being processed. The Index Thomisticus consists only
of texts from the 13th century, whereas the Capitularies date from
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Corpora Lexicon Tagset No em. PL skip PL cbow
Capit none CHSTS 96.10 96.26 95.02
Capit FLL CHSTS 96.52 96.60 95.52
Capit none sCHSTS 96.35 96.49 95.44
Capit FLL sCHSTS 96.67 96.69 95.77
Capit La-WN sCHSTS 96.37 96.49 95.45
Capit all sCHSTS 96.68 96.69 95.78
Cp→Pro none CHSTS 87.58 88.68 85.29
Cp→Pro FLL CHSTS 88.59 88.79 86.03
Pro→Cp none CHSTS 63.05 69.61 68.65
Pro→Cp FLL CHSTS 69.88 72.82 71.18

Table 16:
POS accuracy in %, using
MarMoT, for combinations
of lexicons and
Mikolov-embeddings on
Capitularies as well as
OD-settings of Capitularies
and Proiel

the Merovingian and Carolingian periods, while Proiel is based on an-
cient and early Christian Latin. Furthermore, the Index Thomisticus
is rather small, at least compared to the Patrologina Latina. Finally,
the Index Thomisticus treebank is completely set in lower-case, which
may also contribute to the bad overall results.

Table 16 reveals that including lexical resources to train MarMoT
consistently improves accuracy in ID as well as OD experiments. The
most significant improvement can be observed when the relatively
small Proiel corpus is used to tag the Capitularies. By including the
Frankfurt Latin Lexicon (FLL), accuracy can be increased by 6.83% to
69.88%. Even a small lexicon like that extracted from the Latin Word-
Net, which is only a fraction the size of the FLL, has a positive impact
on the results. As already noted, Proiel does not contain punctuation,
and neither do the lexicons: thus the improvements result from the
additional lexical resources, and are not merely a fix for a single short-
coming. Table 16 also shows that skip-gram clearly outperforms the
continuous bag of words (cbow) model when using Mikolov. Finally,
results confirm that using the simplified tagset sCHSTS over CHSTS
also provides better results when supplementary resources are used.
The best improvement can be achieved by incorporating skip-gram
and FLL for the Proiel→Capit scenario, which raises accuracy from
63.05% to 72.82%.

In order to study the impact of supplementary resources on Ger-
man, we rely on two lexica: one extracted from the German Wik-
tionary and the other from GermaNet (see Section 5.3). We used five
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methods (Mikolov, FastText, GloVe, Komninos, and Levy) to com-
pute word embeddings on four different corpora: Gutenberg, Süd-
deutsche Zeitung (SZ), Wikipedia, and a merged corpus thereof (see
Section 5.4). Combined with four different ID and OD scenarios, for
two different tagsets, there are too many options to be shown in detail.
We rather focus on specific aspects, and then describe the whole.

We first examined the impact of different types of word em-
beddings, based on the four corpora available for this experiment.
Table 17 shows the results for POS tagging, using MarMoT, on a se-
lection of ID and OD settings for Tiger and TGermaCorp, using STTS.
As we already saw for Latin, our findings indicate that using word
embeddings can have a positive or negative effect on accuracy, de-
pending on the method used and the parameters applied. Mikolov and
Komninos yielded the best accuracy, even for OD scenarios. FastText
was mostly on a par with Mikolov, whereas using GloVe gave slightly
worse results, but was still better than the baseline of no embeddings
at all. The expected accuracy gain when including dependency infor-
mation for training with Komninos and Levy was much more obvious
in the experiments on German in comparison with the Latin corpora.
However, we assume that this result cannot be generalized to the lan-
guage examined, but rather to the specific characteristics of the Latin
corpus used.

Table 17:
POS (STTS)

accuracy in %
using MarMoT,

for different
types of word
embedding,

based on four
German corpora

Emb. corp. Corpora No em. Mik. F.Text GloVe Kom. Levy
Gutenberg Tiger 98.02 98.12 98.11 98.06 98.19 98.16
SZ Tiger 98.02 98.20 98.20 98.11 98.29 98.22
Wikipedia Tiger 98.02 98.17 98.16 98.05 98.25 98.19
Merged Tiger 98.02 98.22 98.22 98.11 98.32 98.28
Gutenberg Tig→TG 89.10 90.17 90.10 89.88 90.11 90.07
SZ Tig→TG 89.10 89.81 89.67 89.92 89.67 89.54
Wikipedia Tig→TG 89.10 89.79 89.72 89.84 90.07 89.92
Merged Tig→TG 89.10 90.45 90.17 90.21 90.37 90.33
Gutenberg TG→Tig 90.59 91.98 90.72 91.60 91.61 91.62
SZ TG→Tig 90.59 92.51 92.18 91.19 93.10 92.84
Wikipedia TG→Tig 90.59 92.37 92.64 91.54 93.43 93.44
Merged TG→Tig 90.59 92.96 93.02 91.83 93.80 93.44
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Corpora Tagset No em. Mik. F.Text GloVe Kom. Levy
TG STTS 93.34 94.03 94.05 93.64 94.08 93.79
Tiger STTS 98.02 98.22 98.22 98.11 98.32 98.28
TG→Tiger STTS 90.59 92.96 93.02 91.83 93.80 93.44
Tiger→TG STTS 89.10 90.45 90.17 90.21 90.37 90.33
TG sSTTS 96.02 96.51 96.43 96.27 96.47 96.40
Tiger sSTTS 98.88 99.00 98.98 98.90 99.04 99.02
TG→Tiger sSTTS 94.83 95.75 95.55 94.85 96.15 96.13
Tiger→TG sSTTS 92.41 93.22 93.10 93.10 93.35 93.07

Table 18:
POS accuracy
in % using
MarMoT,
for different
types of word
embedding,
based on all
German corpora
(merged)

Do we get a different picture when we consider the simplified
version of STTS, which abstracts from different types of verbs, etc.?
Table 18 presents the results for POS tagging, comparing STTS with
sSTTS. Apart from the general improvement of accuracy by switching
to sSTTS, we observe the same behavior as with plain STTS when
embeddings are introduced. Using embeddings based on Komninos
yields the best results. The accuracy for Tiger reaches the 99% mark.

In Section 4, we mentioned an approach for POS tagging based
on Bidirectional Long Short-TermMemory Recurrent Neural Networks
(BLSTMRNN; Wang et al. (2015)). Because of limited hardware re-
sources and the extensive time needed to train the networks, we did
not fully include it in our experiments. However, we did perform a
POS tagging experiment on Tiger (ID), in order to estimate the per-
formance of this class of taggers compared to others. We include it
in the section discussing supplementary resources because our imple-
mentation strictly requires word embeddings (rather than using them
as an option as MarMoT does). We used Mikolov and the merged Ger-
man corpus for this task. Using BLSTMRNN achieves an accuracy of
98.29%, which is comparable to MarMoT (98.22%), using the same
word embedding.

So far we have only considered word embeddings as a supple-
mentary resource for German POS tagging. In the following, we ex-
amine the impact of the two lexicons based on Wiktionary and Ger-
maNet. Table 19 shows the accuracy for combinations of lexicons
and embeddings on the Tiger corpus. Since we observed that Levy
was outperformed by Komninos based on the merged German corpus,
we only considered one option (Komninos) as word embedding. Wik-
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Table 19:

POS (sSTTS) accuracy in %
for combinations

of German lexica and word
embeddings, using MarMoT

with Komninos, based on
the merged German corpus

None GNet Wikt. AllLex Emb All&Emb
TG 96.02 96.11 96.26 96.24 96.47 96.46
Tiger 98.88 98.90 98.95 98.94 99.04 99.04
TG→Tig 94.83 94.96 95.14 95.16 96.15 96.16
Tig→TG 92.41 92.50 92.56 92.61 93.35 93.33

tionary and, to a lesser extent, GermaNet provided a slight gain in
performance. Merging both resources (AllLex) had no significant ef-
fect. Combining lexical resources and embeddings did not produce the
expected improvement in accuracy. In fact, our findings indicate that,
at least in this setting, using both types of resources may even lead to
a slight drop in accuracy. This scenario suggests that it is better to rely
solely on embeddings rather than lexical resources or a combination
of both.

We therefore conclude that including lexical resources for POS
tagging is consistently beneficial. Incorporating word embeddings
may improve results in many cases, especially in OD scenarios. How-
ever, depending on the corpus being processed, as well the method
and parameters being used to compute the embeddings, the effect may
also be negative, as seen in our Latin experiments. For Mikolov, the
skip model outperforms the continuous bag of words model.
6.1.3 RDR-based POS tagger on external taggers
Our experiments have shown that the RDR-based POS tagging ap-
proach produced only modest results. So far, however, we have sim-
ply applied the out-of-the-box procedure, using the internal, lexicon-
based tagger for initial tagging, as a practitioner will most likely do.
As Nguyen et al. (2016) have demonstrated, using an external tagger
can yield better results.16 They report an accuracy of 96.28 using the
internal tagger for initial tagging and 97.46 using TnT, which consti-
tutes an improvement of 1.18. In our experiment, we measured 96.72
as the baseline when using the internal tagger. By integrating TnT
as the initial tagger, we achieve an accuracy of 97.62, an improve-

16According to personal communication with the authors, the data published
in Nguyen et al. (2016) is not based on 10-fold jack-knifing, which they nonethe-
less recommend to achieve better results. Following their recommendation, we
applied 10-fold jack-knifing in our experiments.
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ment of 0.9 compared to the baseline and 0.39 compared to TnT.
Can this approach also improve the results for the MarMoT tagger,
among the most successful taggers on the Tiger corpus in our experi-
ments, with an accuracy of 98.02? When using MarMoT as the initial
tagger for the RDR-based POS tagging approach, accuracy reaches
98.05, a slight improvement. This shows that the method can signif-
icantly improve the results of mediocre taggers, and may even have
a positive impact on the best performing taggers. However this im-
provement massively increases computation costs in both training
and testing.
6.1.4 Pipeline vs joint tagging
So far, we have examined each category of tagging independently. But
as soon as morphological tagging is included, the question of max-
imum accuracy arises, when all tags have to fit the gold standard.
We examined two different approaches: pipeline-learning and (what
we call) “joint-learning”. In pipeline-learning, we train and test each
category independently. Then we combine all results to compute the
overall accuracy. The advantage of this approach is that it can be per-
formed by virtually any tagger. One of its major disadvantages, how-
ever, is that we cannot integrate any dependencies between categories
into the learning process. Thus, it is theoretically possible for a noun
to be tagged with a tense because each category is learned and tested
independently.

A joint approach (in our sense) integrates all grammatical cate-
gories into one tag, which helps to capture dependencies. However,
the tagset space becomes considerably larger: the Tiger corpus re-
quires 53 STTS tags, but when the tags required to capture morphology
are added, the total rises to 694 joint tags. Likewise, the Capitularies
use 19 CHSTS tags, and 913 joint tags. In our experiments, taggers like
Lapos and Stanford could not handle such a vast tagset space.

Table 20 shows accuracy results for joint and pipeline tagging on
Tiger, Capitularies, and Proiel (ID/OD). As Figures 8 and 9 have al-
ready shown, accuracy varies considerably from category to category.
While results for POS are relatively stable across all taggers, results
for case and gender are significantly worse. The results achieved by
pipeline learning are unlikely to be better than the individual results
for each category.
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It is striking how LemmaTag outclasses other taggers for mor-
phological tagging of the Tiger corpus, reaching 93.72% accuracy for
pipeline tagging, i.e. 6.73% above MarMoT in second place. Results
for Latin corpora (whether ID or OD) are far closer. LemmaTag still
performs reasonably well on the Capitularies, both ID and OD. But
when Proiel is processed in-domain or as training set to tag Capitu-
laries, results for LemmaTag fall to the lower end of the spectrum. An
outlier worth noticing is the RDRPOSTagger, which performs best on
the Proiel→Capit OD setting. As expected, the joint approach outper-
forms pipeline tagging in most cases, and can thus be recommended
when the tagger supports it. LemmaTag can be recommended for Ger-
man and it also performs well on Latin corpora, at least on the Capit-
ularies. When accuracy for the joint approach is averaged, MarMoT
obtains the best results, mainly because of its better performance on
Proiel. This may be due to the fact that Proiel lacks punctuation. Fu-
ture work needs to address in more detail the robustness of taggers on
morphological tagging for OD settings and small corpora.
6.2 Lemmatization
To evaluate lemmatizers, we trained systems on the (form,lemma)
pairs available in the training data. For LAT, we considered lemma-
tization as a tagging task, as described in Gesmundo and Samardzic
(2012). We used the MarMoT tagger for this, without any additional
resources. We could have used any other tagger, but MarMoT has
proven to work well for POS tagging and can deal with large label
spaces. For example, using Tiger as the training corpus for lemmati-
zation results in 2,405 labels. This would not be suitable for Lapos
or Stanford. We found (Table 21) that LemmaTag performs best in
most cases (performing joint POS tagging and lemmatization); LAT is
consistently better than LemmaGen, which corroborates results from
Gesmundo and Samardzic (2012). We also note that ID accuracy on
Tiger is higher than on TGermaCorp, but Tiger is a larger corpus than
TGermaCorp (∼50,000 sentences vs.∼9,000) andmore homogeneous,
while TGermaCorp contains poems, various types of literature, etc.
The OD results seem pretty low, compared to ID results, as was the
case for tagging. We remark that specific lemma conventions differ
between the two datasets. In addition, TGermaCorp contains spelling
mistakes (Widersehen), and historical variants (Capital) that are con-
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Table 21:

Direct lemmatization
accuracy in %

LemmaGen MarMoT-LAT LemmaTag
TG 91.71 91.99 92.11
Tiger 98.07 98.19 98.66
TG→Tiger 87.00 88.57 88.37
Tiger→TG 87.26 88.05 90.34
Capit 95.64 95.81 96.13
Proiel 90.63 90.29 81.85
Capit→Proiel 81.39 81.24 82.25
Proiel→Capit 76.28 76.37 49.61

ventionally lemmatized by their modern lemma forms (Kapital). Such
cases are difficult for trained systems to handle, since they are absent
from Tiger.

As Tables 22 and 23 show for the German TGermaCorp and the
Latin Capitularies, the most frequent lemmatization errors by LAT and
LemmaGen correlate well. Confusing the two variants of the German
conjunction “dass” and “daß” (old) is partly due to the training corpus,
which contains documents from different decades and centuries, and
partly to genuine inconsistencies in the gold standard, which should
be corrected in future editions. The impact on overall accuracy is
still quite minor – normalizing these variants improves accuracy for
TGermaCorp ID by about 0.1%. Table 24 illustrates how the type of
lemmatization error shifts when the model is either trained based on
Proiel (ID) or on the Capitularies (OD), which decreases accuracy by
about 9%.

6.3 Tagging and lemmatization
In Section 6.1.4, we addressed the pros and cons of joint vs pipeline
learning of POS and morphology tags. Here, we complete the pic-
ture by examining accuracy for lemmatization and tagging combined.
Table 25 shows accuracy for LemmaTag (joint fine-grained tagging
and lemmatization), ranging from 92.95% for lemmatization and fine-
grained tagging on Tiger ID to only 30.44% on Proiel→Capit. Like-
wise, the loss of accuracy resulting from the extension of lemmatiza-
tion by POS and morphology ranges from 5.71% on Tiger and 7.6%
Capitularies to 20–25% for Proiel and the two Latin OD settings.
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Table 24: Most frequent lemmatization errors for LAT Proiel ID and Capitularies
→ Proiel OD

LAT Proiel LAT Capit→Proiel
Form Gold Predicted # Form Gold Predicted #
quod qui quod 17 se is sui 630
quam qui quam 8 a ab a 333
minus parum minus 7 ac atque ac 291
una una unus 5 sibi is sui 210
respondit respondeo respondo 5 castra castra castrum 177
oportere oportet oporteo 4 sese is sui 153
tergum tergum tergus 4 quod qui quod 140
coeperunt incipio cobeo 4 uti ut utor 120
actis ago actis 4 castris castra castrum 99
Hi is hic 4 quam qui quam 86
Si si is 4 se se sui 69
progressus progredior progredo 3 minus parum parve 57
magis magis magus 3 copias copia copio 51
primum primus primum 3 Germanos Germani Germanus 51
iuris ius iur 3 Germani Germani Germanus 51
vocibus vox vocis 3 equitatu equitatus equitas 48
reliquit relinquo reliquo 3 equites eques equites 45
plures multus plures 3 Germanorum Germani Germanus 45
pedem pes pedem 3 Haeduis Aedui Haeduis 43
influit influo infelio 3 equitatum equitatus equitas 40

Lemma Lemma
POS

POS
morph

Lemma
POS
morph

TG 92.11 87.44 – –
Tiger 98.66 97.21 93.68 92.95
TG→Tiger 88.37 82.05 – –
Tiger→TG 90.34 83.39 – –
Capit 96.13 94.33 90.03 88.53
Proiel 81.85 78.54 73.10 62.48
Capit→Proiel 82.25 76.22 63.43 57.40
Proiel→Capit 49.61 44.06 38.09 30.44

Table 25:
Accuracy in % for
combined POS tagging,
morphological
joint-tagging,
and lemmatization,
using LemmaGen
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Table 26:
Run-times

for a partition
of Tiger (ID)

POS Joint
FLORS 3h16m26s 3m42s 1d7h39m56s 7m14s
Lapos 6m30s 13s
LemmaTag (GPU) 26m7s 2s 2h23m16s 10s
LemmaTag (CPU) 18h42m57s 1m58s
MarMoT 6m1s 10s 44m47s 38s
Mate 11m57s 21s 3h0m0s 4m4s
OpenNLP 8m10s 4s 1h17m23s 27s
RDR 20m33s 10s 21m5s 1m
Stanford 35m12s 11s
TnT 5s 697ms 13s 2s
TreeTagger 2s 438ms 1m12s 5s

6.4 Computing time
Until now, we have focused on evaluating tools with regard to the
accuracy achieved for tagging and lemmatization. However, when a
parameter space needs to be explored to determine the optimal con-
figuration for training a model, or when large collections of text need
to be tagged, runtime cannot be neglected. Table 26 shows the time
needed to train and test a partition of the Tiger corpus. Here, 45,372
tokens in 799,406 sentences were used for training, and 5,100 tokens
in 88,832 sentences for testing. Please note that these numbers may
vary considerably, depending on the workstation or server the pro-
cesses run on, as well as the machine’s current load. However, they
give a first impression of what to expect. Note also that the time for
testing included the time taken to load the trained files.17 While Tree-
Tagger takes about 2 seconds to train and less than a second to test,
FLORS takes more than 3 hours to train and 3 minutes 42 seconds
to test. When taking accuracy into account, MarMoT appears to be
the best trade-off, as it needs only 12 minutes for training and 10
seconds for testing. Alternatively, if a GPU workstation is available,
LemmaTag is a good choice.18 Without a GPU, training and testing
for LemmaTag can also be done on CPUs. But for CPU-based POS tag-
ging, we measured a training time of over 18 hours, with a test time

17LemmaTag performs training and testing in one process chain, so that the
model files would have already been loaded.

18We conducted our experiments on a workstation equipped with one NVidia
GTX1080 and one GTX1060.
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of about 2 minutes. So even if a GPU is used for training, testing on
a CPU is still not a good option with large corpora. In order to tag
large amounts of text, we recommend splitting the corpus into chunks
and processing them separately – either by separate processes or by
multi-threading within one application. In this regard all taggers (to
our knowledge) suffer from the problem of not being thread-safe, such
that multiple instances cannot share the same model file in memory.
This means that each instance needs to load its own representation of
the trained model. So, depending on the hardware available for tag-
ging, a bottle-neck may be caused by short memory rather than by
CPU issues.

Finally, we examine the time needed to train and test lemmatiza-
tion based on Tiger. LemmaGen takes 6 seconds for training and less
than 1 second for testing, while LAT based on MarMoT takes 2h29m9s
for training and 1m47s for testing. Since accuracy results for Lemma-
Gen and MarMoT-LAT differ only marginally, LemmaGen has a much
better performance-runtime trade-off than MarMoT-LAT. LemmaTag
takes 26m7s for training and 2s for testing – the same time as it takes
for POS tagging, since it performs both tasks in one sweep.

7 discussion

In terms of accuracy, MarMoT, FLORS, Lapos, Mate, and particularly
LemmaTag are the methods of choice when (especially) fine-grained
morphological tagging is the goal. LemmaTag performs exceptionally
well on German corpora but its results for Latin, especially on Proiel
and Latin OD, show that it is not the unique solution that fits all cases.
For POS tagging, MarMoT proves to be competitive. When trained
with embeddings as a supplementary resource, it reaches up to 98.32%
on Tiger, while LemmaTag achieved 98.58%. Moreover, the lexical re-
sources as well as the word embeddings derived from unlabeled data
that can be fed into MarMoT (and FLORS) make the systems more
robust to change of domain, which is an immensely important as-
pect of real-world POS tagging. With respect to word embeddings, we
note that the approach (FastText, GloVe, Mikolov, Komninos or Levy)
and its parameters play an important role. The choice of parameters
to compute embeddings can either improve or degrade accuracy, as
shown in Table 16. In our settings, Mikolov and FastText outperform

[ 43 ]



Rüdiger Gleim et al.

GloVe. When dependency parsing information is available, Komninos
yields better results than Levy. The question as to whether Komninos
is better than Mikolov cannot be answered unambiguously, as the re-
sults are somewhat similar, depending on language and corpus. Our
experiments on German corpora indicate that Komninos should be pre-
ferred over Mikolov, as long as enough parsed corpora are available
to compute the embeddings.

Accuracy aside, it is also interesting to take a closer look at the
time needed for training and testing (see Table 26).19 Various as-
pects may have an impact on run-time. First, time depends linearly
on the hardware being used. Second, processing times depend on
the configuration of the taggers – especially with regard to train-
ing a new model. Finally, the taggers evaluated are implemented
in different programming languages, and the implementations are
not necessarily optimized for everyday field-use but for high accu-
racy. This means that even though the computational complexity
of a given approach cannot be changed, a great deal of time can
be saved by using efficient programming techniques, with exten-
sive use of multi-threading. Both FLORS and the Stanford tagger
can take hours or even days to train a model, depending on the
size of the corpora and the parameters. In contrast, TnT and Tree-
Tagger, while typically performing less well – sometimes badly – in
terms of accuracy, take only a fraction of the training and testing
time of the more recent generation. For a practitioner, computing
time can be a critical issue. For example, when it comes to tag-
ging large corpora, such as the entire Wikipedia, even a few sec-
onds more per processed text can make a huge difference. So, de-
pending on the task at hand, even the older approaches may still be
attractive.

In this respect, TnT is particularly interesting: it is about as fast
as TreeTagger, and its fine-grained tagging accuracy is often only
marginally below that of MarMoT. For example, with only one excep-
tion, TnT is within ∼1% point of the (joint) fine-grained POS tagging
accuracy of MarMoT (used without additional resources), while the
TreeTagger is between 3% and 8% below MarMoT with respect to

19Please note that the computation times can only give a general impression,
and include the time to load/save model files.
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fine-grained tagging. At the same time, training time on Tiger (ID)
for joint fine-grained tagging is 13s for TnT vs. 44m for MarMoT and
above 1m for TreeTagger. The good results of LemmaTag on German
corpora confirm the success of neural network approaches – at the
cost of extensive computation time when no GPUs are available. This
suggests that, in near future, tagging large corpora such as Wikipedia
will require a solid GPU workstation or even a cluster.

Regarding the drop of performance in OD experiments, we note
that OD experiments actually constitute a lower bound on performance,
while ID experiments constitute an (ideal case) upper bound. The rea-
son why ID experiments are not entirely reliable, for a practitioner, is
that it is assumed that the test data will have the same distributional
properties as the data on which a machine-learning system has been
trained. This is implausible in almost all practical scenarios. On the
other hand we also note that OD experiments often indicate errors that
are, from a linguistic perspective, not errors at all but correspond, for
example, to different conventions according to which different datasets
have been annotated.

Similar to POS tagging, we can observe a trade-off between ac-
curacy and run-time for lemmatization. In most cases, LemmaTag
performs best, followed by MarMoT-LAT, and LemmaGen. Thus Lem-
maTag is the best solution if GPUs are available and processing time
is less of an issue. When having to decide between LemmaGen and
MarMoT-LAT, the latter appears to be the best choice. But for in-
domain settings the difference is only marginal – the largest gap
of 1.57% can be observed when TGermaCorp is used to train a model
for lemmatization of Tiger. On the other hand, MarMoT-LAT takes
107 seconds for lemmatization of Tiger (ID), whereas LemmaGen
takes only 5 seconds. So the choice of lemmatizer depends on the use-
case. If processing time is not an issue or if there is enough hardware
to scale on, MarMoT-LAT would be a good choice. Since LemmaGen’s
accuracy is at a similar level, even outperforming LAT in some cases,
it can be considered a good option to lemmatize large corpora.

In a nutshell, we conclude that the performance of taggers can
be raised by including distributional information (about paradigmatic
word associations), as computed by word embeddings or by means of
(still mostly handcrafted) lexicons. It is no surprise that this relates es-
pecially to OD scenarios. However, it also means that, especially in the
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case of low-resource languages, for which lexicons are rarely available,
neural network models are the first choice when trying to improve tag-
ging results. In scenarios of processing historical texts, either lexical
or procedural information about alternative spellings would be an al-
ternative informational resource that may also help computing word
embeddings at a more abstract level (of super-lemmas instead of lem-
mas alone).

Our study has also demonstrated the computational effort nec-
essary to train and to evaluate new taggers – especially in the light
of the ever-increasing size of annotated corpora that can be used for
training and testing. In order to capture this effort, one may think
of a meta-learner that takes as input (1) taggers, (2) learning scenarios
(e.g., fine-grained/coarse-grained), (3) annotated corpora, and (4) ad-
ditional resources (embeddings or lexica), in order to update the de-
sired evaluation. One may think of a toolbox for building large-scale
evaluation studies allowing for laborious (hyper-)parameter studies in
terms of big data-experiments. Ideally, this would function out of the
box so that newly available annotation data could be rapidly used to
retrain taggers. Currently, comparative studies are still very laborious
rather than being easily manageable.

8 conclusion

We conducted a study of tagging for German and (classical as well as
medieval) Latin texts by examining a range of older taggers in compar-
ison with more recent ones. We experimented with coarse-grained as
well as fine-grained POS tagging, and with lemmatization. Our find-
ings highlight the improvements achieved by the most recent tagger
developments. LemmaTag, in particular, performed best in most of
the tasks considered here. We also show that out-of-domain (OD) tag-
ging leads to a considerable loss in tagging accuracy. The same is true
when we consider pipeline learning of inflectional categories. These
findings hint at the need to further develop taggers, possibly by ex-
tending feature space (e.g., by morphological, syntactic, or even se-
mantic features). However, our experiments also show that such an
extension may lead to a considerable increase in training and oper-
ating time, and thus may be problematic in the case of time-critical
scenarios. Last but not least, we evaluated three lemmatizers. Here
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also, LemmaTag performs best in most cases, followed by LAT. Our
experiments show once more that accuracy drops significantly if the
lemmatizer is applied OD. As before, this is a good argument for fur-
ther developments in this area of NLP, in particular, to address domain
adaptation.

open source

Models for taggers evaluated here are available online.20 This includes
all annotated corpora, as far as license terms allow.
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We survey research using neural sequence-to-sequence models as com-
putational models of morphological learning and learnability. We dis-
cuss their use in determining the predictability of inflectional expo-
nents, in making predictions about language acquisition and in mod-
eling language change. Finally, we make some proposals for future
work in these areas.

1 introduction

Theoretical morphologists have long appealed to notions of learning,
or learnability, to explain language change and the varied typological
patterns of the world’s languages. The high-level argument is simple:
all natural languages must be learned, and “unlearnable” linguistic
systems cannot survive. Therefore, the learning mechanism provides
constraints on what sorts of languages can exist in the world. In the
realm of morphology, however, it has not proven simple to define
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learnability (or, as it is often described, morphological complexity). Dif-
ferent theories offer different ideas of what must be learned in order
to acquire a morphological system, and how to measure the difficulty
of the learning problem for a particular language.
In doing so, they have sometimes used computational models of

the learner to buttress their claims. In many cases, their tools for
model-building draw on the rich tradition of morphological processing
within computational linguistics. Computational linguists construct
models of morphology not only as direct contributions to linguistic
research, but as engineering solutions to the low token/type ratios of
languages with large inflectional paradigms; such models have been
applied to language generation, machine translation, and other tasks.
In recent years, a particular model from the machine translation com-
munity, the neural sequence-to-sequencemodel, has grown in popularity
for morphological tasks. Sequence-to-sequence models are now being
applied, not only as engineering solutions, but also as theoretically
interesting models of morphological complexity.
This paper provides an overview of both theoretical and compu-

tational work in this framework. Beginning with an overview of mor-
phological complexity, and the different proposals for how it can be
measured, we show that sequence-to-sequence models are a natural fit
for the Word and Paradigm model and its notion of Integrative Com-
plexity. We present some criticisms of previous implementations of
Integrative Complexity, and explain how sequence-to-sequence mod-
eling has already begun to address them. However, we spotlight sev-
eral areas where the framework, as currently conceived, falls short. We
go on to describe some important open questions to which it might be
applied in the future.

2 theoretical foundations

Work in computational morphology has often been concerned with
engineering questions, rather than with modeling speakers’ morpho-
logical knowledge. Whether recent computational models can be prof-
itably applied to theoretical questions thus depends on the extent to
which the structure of a model reflects principles of morphological
theory. To see the issues at hand, we begin with an overview of two
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theoretical positions, the Item-and-Arrangement (IA) family of theo-
ries, and the Word-and-Paradigm (WP) family (names proposed by
Hockett (1954); see Blevins (2016) for a historical overview). These
contrasting positions set forth different concepts of what morpholog-
ical complexity is, and how it might shape morphological typology.
2.1 Learnability and typology in morpheme-based models
IA models take the morpheme as the fundamental unit of analysis,1
and describe inflectional systems in terms of their syntagmatic struc-
ture – that is, the associations between stems, affixes and meanings.
For models built upon this assumption, it is natural to define the lan-
guage learner’s task as acquisition of the morpheme inventory and the
syntagmatic rules for composing morphemes into words. This, in turn,
tends to lead to a focus on the size of morphological systems, what Ack-
erman and Malouf (2013) call a language’s ‘enumerative complexity’
(E-complexity). Quantitative measurement of this kind of morpholog-
ical complexity has a long history, going back to Greenberg (1960).
One typological generalization that has been approached from

an IA perspective is that languages tend to have far fewer inflection
classes than they could, given their number of allomorphs. Table 1
shows a simplified example from Icelandic. Two allomorphs are shown

1Traditional IA models define morphemes as lexical bundles of minimal form
and minimal meaning. This is consistent with the principle of ‘incrementalism’
(Stump 2001), according to which concatenating a morpheme to a stem adds the
morpheme’s form to the word and simultaneously adds its meaning, with mean-
ing broadly construed to include morphosyntactic and morphosemantic values.
The meaning of a word should thus be fully determined by the meanings of its
parts plus their order of combination. However, as Blevins (2013: 436) points
out, “...ideas tend to outlive the traditions that initially hosted them and mutate
during their own lifespans”. Incrementalism has proven too restrictive, and start-
ing in the early 1990’s (Anderson 1992; Halle and Marantz 1993) it was largely
replaced by ‘realizationalism’, which postulates that operations on form, such as
concatenating an affix to a stem, are licensed by the morphosyntactic proper-
ties of a word. Formal operations thus realize the meaning of a word rather than
adding to a word’s meaning. Somemodern theories, such as Distributed Morphol-
ogy (Halle and Marantz 1993; Harley and Noyer 2003), adopt realizationalism
while retaining other IA/morpheme-based assumptions, such as the primary im-
portance of concatenative operations and syntagmatic (stem-affix) relations in
morphological structure. These theories are ‘lexical-realizational’ in the termi-
nology of Stump (2001).
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Table 1:

Select inflected forms of Icelandic
verbs: three paradigm cells with two
allomorphs each. 1 and 2 are logically

possible but unattested classes

grípa kalla *1 *2
‘grasp’ ‘shout’

1sg.pst greip kall-aði X X-aði
2sg.pst greip-st kall-aðir X-aðir X-st
3sg.pst greip kall-aði X X-aði

for each of three paradigm cells. (The Icelandic verb system has both
more paradigm cells and more classes, but these few forms are suffi-
cient for illustration.) Based on the forms shown, there could mathe-
matically be as many as 2×2×2= 8 inflection classes, if the allomorphs
of different paradigm cells were independent of each other. And as the
number of allomorphs and paradigm cells grows, the number of pos-
sible classes – and thus the potential E-complexity of the inflectional
system – increases rapidly. Yet allomorphs tend not to be independent
of each other: this is why it is useful to talk about inflection classes.
Indeed, in Icelandic verbs the 1sg.pst zero allomorph (as in grípa)
is never found in the same paradigm as the 2sg.pst allomorph -aðir.
Likewise, 1sg.pst -aði (as in kalla) is never found with 2sg.pst -st,
and so on. While eight classes are potentiated by these allomorphs,
the shown allomorphs in fact group into two classes – the minimum
possible number. Moreover, this is representative of a strong tendency
cross-linguistically for the actual number of classes observed in a lan-
guage to be far fewer than the mathematically possible number of
classes (Carstairs 1987).2 This raises the question: Why?
A number of morphological theories attempt to explain this

and other constraints by appealing to learnability. In an IA frame-
work, there is often an assumption that more inflection classes
and larger paradigms make languages more difficult to learn, and
that inductive learning biases must therefore serve to constrain the
learner’s hypothesis space. Perhaps most famously, the No Blur Prin-
ciple (Carstairs-McCarthy 1994), later revised as Vocabular Clarity
(Carstairs-McCarthy 2010), posits that for each paradigm cell, only
one allomorph can “...fail to identify inflection class unambiguously”
(1994:742). In other words, there can be only one ‘default’ (class-
unspecified) form for each paradigm cell. This proposed constraint is

2Apparent exceptions include Burmeso and Nuer (Baerman 2012; Baerman
et al. 2017).
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rooted in the idea that learning biases must serve to constrain learn-
ers’ hypotheses about allomorph distributions. Specifically, Carstairs-
McCarthy views No Blur as a byproduct of the Principle of Contrast
(Clark 1987), the idea that in lexical acquisition, children are biased
towards hypothesizing that a difference in word form corresponds to a
difference in word meaning. Extending the Principle of Contrast from
words to inflectional allomorphs, Carstairs-McCarthy defines inflec-
tion class membership as meaning in the relevant sense. He proposes
that the observed cross-linguistic restriction on the proliferation of
inflection classes is indirectly caused by an inductive bias that pushes
child language learners towards positing that each suppletive allo-
morph either belongs to a different inflection class, or does not bear
inflection class meaning. From an IA perspective there is logic to this
extension, since morphemes (including any suppletive allomorphs)
are taken to be the units of storage in the lexicon – the level at which
form and meaning are related.
Important here are ways in which Carstairs-McCarthy’s assump-

tions about the nature of morphological knowledge shape his concep-
tualization of the relationship between learning and inflectional typol-
ogy. The first thing to observe is that Carstairs-McCarthy posits a fun-
damental distinction between concatenative and non-concatenative
morphological processes; No Blur applies only to concatenative al-
lomorphs. While this distinction is motivated theory-internally in IA
models, it has no clear independent motivation (Stump 2001). Mini-
mally, this raises questions about why the Principle of Contrast should
constrain learners’ hypotheses about allomorph distributions only for
concatenative morphology. We know of no empirical evidence sup-
porting this assumption.
Second, Halle and Marantz (2008) point out that cross-linguisti-

cally, inflection classes often group hierarchically into macroclasses,
yet such distributions virtually require individual allomorphs to be-
long to multiple classes. They focus on the empirical problems that
such patterns create for No Blur, but even if we set these aside, we
can observe that Carstairs-McCarthy’s hypothesis about how learning
might shape morphological typology reflects an IA emphasis on mor-
phemes as isolable form-meaning units and the syntagmatic (stem-
affix) dimension of structure. It seems to imply that paradigmatic
relationships among words/classes (e.g. whether they fully separate,
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hierarchically grouped, cross-classifying, etc.3) are irrelevant to ques-
tions of learnability, beyond what is dictated by No Blur. However,
this is an open question.
Finally, although No Blur does not place an absolute limit on

the number of inflection classes in a language,4 it will generally pre-
dict that the actual number of classes in a language is substantially
smaller than the potential number of its classes, capturing the cross-
linguistic tendency observed above.5 Since allomorphs realizing dif-
ferent paradigm cells must be class-specific for the most part, No
Blur indirectly captures the grouping of allomorphs into classes as a
byproduct of the learner’s acquisition of the morpheme inventory.
Blevins (2004) and Ackerman and Malouf (2015) argue that No

Blur is derivative of the paradigmatic structure of inflectional mor-
phology, and paradigmatically-structured learning of morphology. We
turn to this perspective in the following section.
2.2 Learnability and typology in word-based models
Word-and-Paradigm morphology offers an alternative link between
learnability and inflectional typology. WP is in many respects the old-
est framework for inflectional theory, reflected in the traditional ped-
agogical approach to describing classical languages’ inflectional sys-
tems in terms of their principal parts. (A lexeme’s principal parts are
those inflected forms that together suffice to deduce all of the lex-
eme’s inflected forms, i.e. its full paradigm of surface word-forms.)
Suchmodels take the word as the basic unit of morphological structure
and analyze inflectional meaning as being instantiated via paradig-
matic contrasts – that is, contrasts between the forms filling different
inflectional cells.6 The learner’s task, therefore, is to understand the
relationships between the forms of each lexeme. We focus here on

3For further discussion from the typological perspective, see Dressler et al.
(2006) and Brown and Hippisley (2012).

4Unlike its predecessor, Paradigm Economy (Carstairs 1987), which directly
defines constraints on the number of classes that a language can have.

5Except that there are languages that violate the various formulations of the
constraint, whether stated as Paradigm Economy, No Blur, or Vocabular Clar-
ity (Halle and Marantz 2008; Müller 2007; Þorgeirsson 2017; Stump and Finkel
2013).

6WPmodels differ in the extent to which the abstract concept of the paradigm
is considered to be a metaphor, emergent structure, or a reified theoretical primi-
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the abstractive WP framework, in which the key relationships are di-
rectly between surface forms.7 Abstractive models take as their start-
ing point the idea that the inflected forms of a lexeme are interpre-
dictable to some (potentially substantial) degree. Or, as Wurzel (1989:
114) stated it, “...inflectional paradigms are, as it were, kept together
by implications. There are no paradigms (except highly extreme cases
of suppletion) that are not based on implications valid beyond the in-
dividual word, so that we are quite justified in saying that inflectional
paradigms generally have an implicative structure.”
Importantly, in WP models there is no requirement that paradigm

cells be realized by some segmentable phonological form (a classical
morpheme); cells can also be realized by non-concatenative morpho-
logical operations that alter the phonological form of the stem. These
operations can encompass, for instance, root-and-pattern morphology
in Semitic languages, tonal morphology in Bantu languages, and Ger-
man ablaut. Moreover, WP models make no explicit or implicit as-
sumptions that there should be a one-to-one correspondence between
morphological form andmeaning. They accommodate insertion of ma-
terial (exponents) with no obvious meaning,8 multiple exponence,
in which a meaning is signaled by multiple morphological pieces,
and zero exponence, in which there is no phonological change cor-
responding to a change in meaning. WP models are thus “inferential-

tive and direct object of study. We touch on this interesting question in Section 6,
in the context of what we call the Paradigm Cell Discovery Problem.

7As with IA models, modern WP models differ in many respects from clas-
sical WP models, reflecting in part the adoption of goals and principles from
modern generativism (Blevins 2016; Matthews 1972). Importantly here, modern
WP models can be divided into constructive and abstractive types (Blevins 2006).
Constructive models (Anderson 1992; Stump 2001) characterize the morpholog-
ical structure of a word in terms of form operations applied to lexically-stored
stems to produce surface inflected forms. In contrast, abstractive models (Blevins
2016; Bochner 1993; Albright 2002a) describe the morphological structure of a
word in terms of form operations applied to one or more surface word-forms to
produce another.

8For example, verbal inflection classes in many Indo-European languages
are organized around so-called ‘theme vowels’ (e.g. [a] vs. [e] vs. [i] in Spanish
am-a-r ‘love-tv-inf’, ten-e-r, ‘have-tv-inf’, and part-i-r ’depart-tv-inf’), which
serve to mark the inflection class of the verb but do not bear any syntactically-
or semantically-relevant meaning.
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Table 2:

Indicative present forms of two Icelandic
verb classes. Some allomorphs are the same

in both classes

grípa kalla
‘grasp’ ‘shout’

1sg.prs gríp kall-a
2sg.prs gríp-ur kall-ar
3sg.prs gríp-ur kall-ar
1pl.prs gríp-um köll-um
2pl.prs gríp-ið kall-ið
3pl.prs gríp-a kall-a

realizational” (Stump 2001), also sometimes called “a-morphous” (An-
derson 1992).
Given its postulation that surface forms serve as the bases for

other surface forms, abstractive WP models must contend with the
question of how hard it is for speakers to predict an unobserved sur-
face word-form for a lexeme, given some other word-form(s) in the
paradigm; this is the Paradigm Cell Filling Problem (PCFP) (Acker-
man et al. 2009). For illustration, we return to the simplified Icelandic
example introduced earlier. Table 2 shows that while the two verbs
represent different classes, some allomorphs are the same for both. If
a speaker encounters a new verb in the 3pl.prs with allomorph -a,
the distribution of allomorphs engenders some amount of uncertainty
regarding what some of the present and past tense forms of the verb
are. (For the latter, see Table 1 in the previous section.) When a word
is subject to the PCFP, there may thus be some amount of ambiguity
regarding its inflection class membership. Morphological complexity,
then, is taken to be the difficulty of this problem for a speaker or
learner of some particular language.
As noted above, in an IA framework the complexity of an in-

flectional system tends to be conceptualized in terms of the size of
its paradigms and the number of its classes (i.e. its E-complexity).
However, we know of no clear evidence that languages with high
E-complexity are more challenging to learn. There are many clear
examples of natural languages with large paradigms – Kibrik (1998)
famously observed that in principle, verbs in the Nakh-Daghestanian
language Archi can have more than 1.5 million forms each. Moreover,
historical change may increase, rather than reduce, the E-complexity
of an inflectional system, even though we might predict that this ren-
ders languages less learnable. To give just one example, in the Iranian
language Zazaki, phonological and syntactic competition among ezafe
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forms has resulted in the development of a complex system of nominal
inflection (with upwards of 144 paradigm cells) that includes rampant
fusionality and syncretism. This stands in stark contrast with closely
related languages in which a more agglutinative system can still be
observed (Karim 2019). It is admittedly harder to provide example
languages with large numbers of inflection classes, since the number
of classes identified for an inflectional system depends heavily on an-
alytic assumptions (Parker 2016), rather than being directly empiri-
cally observable. But such examples have certainly been proposed: for
example, as many as 115 classes of Russian nouns (Parker 2016). Ulti-
mately, these arguments raise doubts about whether metrics based on
E-complexity are directly related to the learnability of morphological
systems.
However, there is no particular reason that an E-complex lan-

guage should have a difficult PCFP; it is not the number of forms that
matters but their predictability. Thus, the WP model offers a different
formulation of complexity, which Ackerman and Malouf (2013) term
“Integrative complexity” (I-complexity). As the number of allomorphs
in an inflectional system grows, the potential I-complexity of the sys-
tem grows, but to the extent that the inflected forms of lexemes are in-
terpredictable, it is possible for the actual I-complexity to remain low
(Ackerman and Malouf 2013). Studies have attempted to measure the
complexity in this sense for various languages’ inflectional systems us-
ing set-theoretic (Stump and Finkel 2013) and information-theoretic
(Ackerman and Malouf 2013; Stump and Finkel 2013; Bonami and
Beniamine 2016; Sims and Parker 2016; Cotterell et al. 2018a) mea-
surements.9 These studies have generally focused on the role of ab-
stractive paradigmatic relations – conceptually, proportional analogy
– in solving the PCFP.
Like IA models, WP models have attempted to explain typological

patterns by appealing to learnability, and in WP frameworks the PCFP
has been intimately connected to typological questions. In particular,
abstractive WP models propose that the cross-linguistic restriction on

9A separate line of investigation has found that information-theoretic mea-
surements of inflectional paradigmatic relations predict speakers’ response times
in lexical decision tasks (Milin et al. 2009; Moscoso del Prado Martín et al.
2004), suggesting the relevance of abstractive-type relations to morphological
processing.
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the proliferation of inflection classes that we noted in the preceding
section is caused by the need for learners to be able to solve the PCFP.
Ackerman and Malouf (2013) estimate the average difficulty of

the PCFP in a language by its average conditional entropy: abstract-
ing away from stems, they calculate the average unpredictability of
the exponent (affix) realizing one paradigm cell, given the exponent
for another paradigm cell of the same lexeme. This implementation
of proportional analogy does not capture any predictiveness that de-
rives from similarity among whole words, an issue that we return to
below, but it does offer a quantification of how difficult it is to predict
inflectional exponents from other exponents (for example, Icelandic
2sg : -ir :: 3sg : -i). Finding low average conditional entropy in each
of ten languages (generally, less than 1 bit, equivalent to or better
than a coin toss), they conclude that the PCFP is not exceptionally dif-
ficult in these languages and propose a typological universal, the Low
Entropy Conjecture: “...enumerative morphological complexity is ef-
fectively unrestricted, as long as the average conditional entropy, a
measure of integrative complexity, is low...” (436). Their conclusion
is consistent with that of Stump and Finkel (2013), who find that an
inflectional system’s average cell predictor number – a set-theoretic
measure of the number of dynamic principal parts required to deter-
mine the inflected form corresponding to a given paradigm cell – tends
to be low.10
Ackerman and Malouf connect the PCFP to the Low Entropy Con-

jecture via learnability:
If low entropy is the correct measure for explaining the

implicational organization of paradigms, rendering complex
systems learnable, then this makes a prediction about types
of systems that we do not find… [T]here are no known fully
suppletive systems in the languages of the world. This ab-
sence is easily explicable given the low entropy conjecture
and its facilitating function for learnability: a completely sup-
pletive system is one in which no form bears an implicational

10 In dynamic principal parts analysis, the paradigm cells identified as princi-
pal parts need not be the same from one inflection class to another. This contrasts
with static principal parts analysis, in which the cells that function as principal
parts are identified for an inflection class system as a whole, rather than on a
class-by-class basis.
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relation with any other form, and thus there is no useful pat-
terned organization reflective of low entropy. (Ackerman and
Malouf 2013: 454)

The logic here seems to be that inflected forms that are not learnable
on the basis of implicative relations are likely to be subject to analog-
ical changes that make them more predictable.
Moreover, word tokens have Zipfian distribution, so most in-

flected forms of most lexemes are sparsely attested in both adult
speech (Baayen 2001) and child-directed speech (Lignos and Yang
2018). This suggests that speakers of morphologically rich languages
encounter the PCFP on a regular basis and throughout their lifetimes
(Bonami and Beniamine 2016). From the perspective of a WP theory,
wemight posit that token frequencies of word-forms play an important
role in defining which lexemes and paradigm cells are subject to the
PCFP. Words that are of sufficiently high frequency as to be directly
stored and retrieved from memory are not subject to the PCFP (al-
though, as Bybee (1995) observes, memory is not a dictionary; speak-
ers may use relationships within the lexicon to aid retrieval even of
word forms for which they have extensive experience). If we assume
a memory-rich model of word storage, abstractive WP models thus
seem to predict that learnability will have the potential to enforce
low I-complexity only when words cannot be retrieved directly from
memory and are therefore subject to the PCFP.
Taken together, these distributional facts raise further questions

about the connection between the learnability of individual forms and
the I-complexity of inflectional systems. The model of morphological
knowledge that is assumed by abstractive WP models, combined with
the Zipfian distribution of word tokens, predicts that the PCFP should
be more challenging in some languages than others, with implications
for morphological typology. Recent work by Cotterell et al. (2018a)
moves in the direction of exploring these implications. Based on cal-
culations for thirty-one languages, they argue that inflectional systems
may be high in either E-complexity or I-complexity, but not both. The
presumption is that in inflectional systems with small paradigms, each
paradigm cell will be attested more often on average, as compared
to an inflectional system with large paradigms, all else being equal.
Essentially, the same amount of semantic ‘space’ (and thus, presum-
ably, usage) is being divided among more inflected forms in the lat-
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ter. This leads to cross-linguistic differences in the extent to which
the PCFP presents challenges in learning. We might expect fewer con-
straints on I-complexity in languages where the PCFP presents less
of a challenge (i.e. languages with small paradigms, and thus low E-
complexity). Cotterell et al. argue that this prediction is borne out in
the data.
Abstractive WPmodels also predict language-internal differences:

some subparts of an inflectional system may be more challenging for
the PCFP than others. This suggests the need for fine-grained mea-
sures of learnability, as well as more nuanced hypotheses about how
learnability might shape morphological typology.

3 the need for fine grained measures
of learnability

As discussed above, I-complexity (the difficulty of the PCFP in a par-
ticular language) has been proposed as a measure of morphological
learnability. Average conditional entropy is often taken as a formal
model of I-complexity. In turn, average conditional entropy is often
computed by segmenting word forms into two substrings: a ‘stem’
and an ‘exponent’ or ‘affix’,11 and applying four-part morphological
analogy based on pairs of exponents (Ackerman and Malouf 2013).
For example, Icelandic 2sg -ir implies 3sg -i. (In Section 3.2 we note
differences between this notion of proportional analogy and how the
concept is often employed in historical linguistics.) However, both the
choice of average entropy, and calculating entropy based only on pairs
of exponents, have been criticized. In this section, we argue that con-
tinued progress towards understanding learnability-based constraints
will require a more fine-grained understanding of how inflectional dis-
tributions are learned, because the difficulty of predicting a lexeme’s
entire paradigm (i.e. learning how to use it as a speaker) is not a di-
rect function of the difficulty of predicting an individual form (the
PCFP). Moreover, looking only at exponents can miss regularities in

11The segmentation process is often implemented using computational string
alignment; see Beniamine et al. (2018) for a discussion. Stump and Finkel
(2013) prefer to call the lexically-specific part of the form the ‘theme’ and the
inflectionally-specific part the ‘distinguisher’, since these may not correspond to
linguistically justified morphological analyses.
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some inflectional systems which we believe human learners are able
to exploit. Section 4 discusses how some of these troublesome cases
can be addressed with more sophisticated computational models.

3.1 Criticisms of averaging
Averaging can conceal large differences in the predictability of in-
dividual cells; the average does not indicate whether every pairwise
PCFP in a given language is somewhat unpredictable, or whether some
PCFPs are very easy while others are very difficult. Thus, average
conditional entropy can group together languages for which the un-
derlying network of predictability relationships between cells are in
fact quite different. There is some evidence that indeed, the typology
of cell-to-cell predictability values is quite diverse: Stump and Finkel
(2013) find that there is substantial cross-linguistic variation in the
number of dynamic principal parts required to predict all inflected
forms of lexemes, i.e. full paradigms, in contrast to the relatively uni-
form number of dynamic principal parts needed to predict a single
inflected form. While this does not invalidate the average as an over-
all measure of morphological complexity, it does call for more sophis-
ticated tools which can distinguish between these different kinds of
systems.
Systems characterized by recurring partials are one example in

which the individual PCFPs have predictability values far from the av-
erage. Recurring partials are groups of cells that divide the paradigm
into implicatively coherent subsets. Within each subset, cells predict
one another especially well, but they predict cells outside their subset
poorly. The more deeply these subsets divide the paradigm, the more
principal parts will be required to reproduce it.12 Averaging the pair-
wise values suggests that the PCFP in these systems has an intermedi-

12 In the extreme case, where interprediction is perfect within subsets and im-
possible between them, predicting the full paradigm requires exactly as many
principal parts as there are subsets. Large numbers of principal parts may also be
required to describe languages with cross-classifying inflection class subsystems,
such as Chiquihuitlán Mazatec (Jamieson 1982), Russian (Brown et al. 1996) and
Greek (Sims 2006). In such languages, different dimensions of inflectional expo-
nence (e.g. suffixes, inflectional stress, stem extensions) vary semi-independently
of one another, so that forms which predict one inflectional dimension may not
be sufficient to predict another.
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ate difficulty, but this is deceptive; each individual pairwise decision
is either very easy, or very hard. Cotterell et al. (2018a) level the same
criticism from a mathematical point of view, observing that averaging
the pairwise entropy values does not compute the joint entropy of the
distribution but generally yields an overestimate.
Even in cases where averaging across paradigm cells yields a

good description of the system’s difficulty, averaging across words,
or classes of words, may not. Words with high token frequency are
more likely to be irregular (Bybee 2003; Corbett et al. 2001) – that
is, they belong to inflection classes with relatively few members (low
type frequency). Stump and Finkel (2013) propose that these irreg-
ulars contribute disproportionately to the difficulty of the PCFP, the
so-called Marginal Detraction Hypothesis. This property holds for a
variety of languages, although seemingly not universally (Sims and
Parker 2016). These classes expose a trade-off between predictabil-
ity and predictiveness; exponents that are unpredictable by virtue of
being irregular (and thus associated with a specific class) tend to be
highly predictive of the other inflected forms of the same lexeme by
virtue of this same fact (Finkel and Stump 2009). Again, the average
is deceptive, failing to distinguish systems with a few highly irregular
classes from systems in which every word is slightly unpredictable.

3.2 Criticisms of simplistic implementations of morphological analogy
We now turn to criticism of four-part morphological analogy based
only on pairs of exponents as a measure of predictability. We start by
observing that this type of “analogy” is not quite the same concept
as analogy in historical linguistics (Hock and Joseph 1996: 10) or ex-
emplar models (Skousen 1989). The issue has to do with abstracting
away from stems and modeling only the relationship among expo-
nents. Analogical inflectional change is not always sensitive to simi-
larities between whole word forms,13 but sometimes it clearly is. It

13Hock (1991: 172) suggests that the spread of English plural -s, e.g. kine to
cows, should be considered a result of proportional analogy on the model of, e.g.,
stone-stones. This extension of -s to new words was not dependent on the overall
phonological similarity of the words which gained plural -s to existing words with
-s. Regularizations of this sort have sometimes been treated as simplification of
the rule system (Kiparsky 1968), as something distinct from analogical change,
but a distinction between rule-based change and analogical change is not even
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is well known that in English, some classes of irregular verbs have
attracted the occasional new member based on whole word similar-
ity (e.g. the historically weak verb string changed to the string-strung
pattern on the model of swing-swung, sting-stung, sling-slung, etc.). In
historical linguistics (also in exemplar models), analogy is thus gener-
ally conceptualized as based on relationships among whole words.
The analogical computations of Ackerman andMalouf (2013) rely

only on similarity between pairs of exponents (distinguishers), with-
out taking stems (themes) into account. While tractable methodolog-
ically, this leads to a number of issues. We present cases in which in-
flectional forms are predictable, or partly predictable, on the basis of
whole-word information. Importantly, the issue is not just that mor-
phological analogy can overestimate the difficulty of the PCFP, but
that the overestimation problem is likely to be larger for some lan-
guages than for others, so that the overly simplistic implementation
based on pairs of exponents give an unrealistic description of the ty-
pological space. Baerman (2014) suggests that there is a typologically
interesting class of languages in which information beyond what is
captured by this narrow notion of morphological analogy contributes
heavily to determining exponence; such a conjecture is difficult to test
at a large scale without a model which is capable of exploiting these
regularities as it learns to predict inflectional forms.
Several previous studies have emphasized the importance of stem

information to predicting exponence in particular inflectional systems.
Verb conjugation class membership in Italian (Albright 2002b) and
English past tense verb forms (Albright and Hayes 2002; Bybee and
Moder 1983; Rumelhart and McClelland 1986) are included among
many other cases. It is thus necessary to attend to the syntagmatic di-
mension when modeling the predictability of inflectional exponence.
In fact, Baerman (2014) argues that in Võro, a variety of Estonian,
inflectional exponents are predictable predominantly from stem shape
(specifically, how stem alternants are distributed in the paradigm),
and that the exponents of other inflected forms of the same lexeme
are uninformative. Morphological stem shape can also matter: the in-
flection class that a lexeme belongs to may be predictable from its

possible in some theoretical frameworks and we see no good motivation for it in
this case.
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derivational morphology. For example, in Croatian, abstract nouns de-
rived from adjectives with -ost always belong to the feminine Class III,
even though nouns whose stems end in a consonant normally fall into
the masculine Class I. Capturing this syntagmatic dimension of pre-
dictability requires a model to be sensitive to stem shape.
Another property not captured by analogy is the re-use of affixes

in different parts of the paradigm: in Kashmiri, the same set of suffixes
express the remote past in one inflection class and the recent past in
another (Stump and Finkel 2015). This is one example of what Baer-
man et al. (2017) call ‘distributional’ systems, in which inflection class
distinctions are instantiated not by different exponents themselves,
but by the distributions of exponents among paradigm cells. Analogy-
based entropy calculations treat the different paradigm cells as sep-
arate random variables; the PCFP becomes harder when two classes
share the same affix in the same paradigm cell (since this makes it
harder to predict the realizations of other cells). Occurrences of the
same affix in different cells are not modeled, either as a source of po-
tential confusion or a regularity which the learning mechanism can
exploit.
Finally, some systems have predictable relationships between

cells, even where the content of those cells is unpredictable. For in-
stance, a small number of Croatian nouns, for instance jaje ‘egg’,
have weak stem suppletion in oblique singular cases but not direct
singular cases (jaj-e ‘egg-nom.sg’ but jajet-u ‘egg-dat.sg’). This ar-
guably makes the PCFP easier for learners of Croatian – faced with
a new noun, they may be unable to guess whether it is (weakly or
strongly) suppletive or what its suppletive stem may be. However,
there are no Croatian nouns where a suppletive stem applies to a mis-
cellaneous collection of singular and plural cells. So learners can pre-
dict to some extent the set of cells in which suppletive forms are al-
lowed to appear.
To sum up, predictability based on simplistic implementations

of morphological analogy captures only the interpredictability of ex-
ponents, not whether the interpredictable forms are coherent in any
sense. To us, it seems unlikely that learnability constraints operate at
the level of inflectional systems as a whole, even though this is the
level at which the Low Entropy Conjecture and similar proposals have
been formulated. It seems more likely that any upper bound on how
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complex inflectional systems can be is an emergent property that de-
rives (at least partly) from the learnability of individual inflected forms
in the context of their local relationships to other inflected forms. The
distributional patterns highlighted in this section identify deficiencies
with previous single-measure estimates of I-complexity, and show the
need for a more fine-grained approach. Sophisticated tools are there-
fore needed to model acquisition at this fine-grained level, and to ex-
plore its implications for morphological typology.

4 computational tasks
and methods

Studies of the PCFP, whether using simple or sophisticated tools, are
inherently statistical in nature; their conclusions depend on the data
and on how well the data can be modeled. Thus, the advent of larger
datasets and better systems for computational morphology are well-
placed to make theoretical contributions to this field of study. In the
next section, we discuss “morphological reinflection” as a computa-
tional formalization of morphological predictability. This approach
is theoretically underpinned by abstractive WP models, making it
well suited to investigation of the PCFP and the typological ques-
tions that stem from it. We summarize arguments that this formaliza-
tion captures forms of predictability which are accessible to human
learners, but were not measured by previous formal models such as
that of Ackerman and Malouf (2013). By changing the way we esti-
mate predictability to more closely conform to the human learner,
we have the potential to change our current understanding of the
morphological typology of the world’s languages and its relationship
to learnability.
In addition to refining our estimates of morphological complex-

ity, we discuss ways in which computational models can be used to
more precisely locate potential sources of learning difficulty within in-
flectional morphology. In other words, the models can tell us not only
whether a particular system is easy to learn, but which forms, classes or
other elements of the system contribute to its difficulty, and what er-
rors we might expect an imperfect learner to make in acquiring them.
We discuss these issues in the following sections.
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4.1 Reinflection with sequence-to-sequence models
(Re)inflection tasks14 involve converting one surface inflected word-
form into a target form of the same lexeme, as illustrated in Table 3
for the German noun Aak (a kind of boat) and verb aalen ‘to hunt
eels, to relax’ (Cotterell et al. 2016). The morphosyntactic values of
the target are known, so reinflection amounts to predicting an in-
flected form for a known paradigm cell, given another known form.
The task is thus equivalent to the PCFP and fits well into the theoretical
framework of WP morphology. Of course, this equivalence comes with
a few methodological caveats: most reinflection models are trained
on orthographic, rather than phonemically transcribed data. And the
datasets used are traditionally word lists, which do not reflect the to-
ken or type frequencies of the natural language, an issue we discuss in
detail in Section 5. The ACL Special Interest Group on Computational
Morphology and Phonology (SIGMORPHON) has sponsored a series
of such tasks for shared use (Cotterell et al. 2016, 2017, 2018c), moti-
vating the recent development of highly effective reinflection systems.

Table 3:
Example German reinflection

problems from SIGMORPHON 2016
tasks 1 and 3. In task 1, above the

line, the input form is a citation form;
in task 3, below, the input form is

arbitrary

Input Target features Target
Aak pos=N, case=NOM,

gen=NEUT, num=SG
Aak

aalen pos=V, tense=PST geaalt
Aakes pos=N, case=NOM,

gen=NEUT, num=SG
Aak

aaltet pos=V, tense=PST geaalt

Broadly speaking, these systems fall into the machine learning
framework of sequence-to-sequence modeling. Such models map one
sequence of tokens to another sequence, which is potentially longer or
shorter. The source and target tokens need not line up one-to-one, a
useful property (perhaps an indispensable one) for modeling morphol-
ogy. Older reinflection models in the sequence-to-sequence framework

14Properly speaking, “inflection” suggests the prediction of variable target
forms from a fixed base, as in SIGMORPHON task 1, while “reinflection” sug-
gests the prediction of one arbitrary form from another, as in tasks 2 and 3. For
convenience, we discuss both task settings as “reinflection”.
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operated by inducing string edit rules (Durrett and DeNero 2013; Al-
bright 2002b) or transductions (Nicolai et al. 2015). Current models
use a neural network sequence-to-sequence (encoder-decoder) frame-
work, which was devised for machine translation (Sutskever et al.
2014; Bahdanau et al. 2014), but which later also proved capable
of learning inflectional morphology (Faruqui et al. 2016; Kann and
Schütze 2016; Aharoni and Goldberg 2017; Malouf 2017).
Sequence-to-sequence models can be thought of as relying on

whole-word analogy, just as exemplar models (Skousen 1989) do. But
unlike traditional exemplar models, they induce their own, implicit,
similarity function between examples. The models project the input
form and featural specification of the desired output into a latent space
described by a set of numerical features. The space is “latent” in that
its features have no pre-specified interpretations, but reflect whatever
information about the input the system finds most useful for producing
the correct output. This space defines the implicit similarity metric, by
clustering related inputs near one another. From its latent represen-
tation, the system can extract the output character by character. This
architecture does not enforce a clear separation between stems and af-
fixes, nor between phonological and morphological conditioning; be-
cause the output is produced character-by-character, rather than as-
sembled from concatenated pieces, sequence-to-sequence models can
learn to capture dependencies between each output character, the pre-
ceding outputs, and the entire input string.
This representational flexibility makes neural sequence-to-se-

quence models appealing as formal models of the WP morphological
framework. Because the latent representation does not make implicit
assumptions about morphemes as one-to-one form-meaning map-
pings, they are capable of learning nonconcatenative morphological
processes, as discussed in Section 2.2. Cotterell et al. (2018a) point this
out as an advantage of the “a-morphous” sequence-to-sequence frame-
work over approaches relying on morpheme segmentation. Sequence-
to-sequence models are also capable of learning stem-affix relation-
ships, both morphological and phonological, as discussed in Section 3.
Faruqui et al. (2016) illustrates this for the case of Finnish vowel har-
mony (see also Corkery et al. 2019); many earlier models with ex-
plicit morpheme segmentation were forced to represent this process
as suppletive allomorphy (for example, positing the two phonological
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variants of the inessive suffix, -ssa and -ssä, as suppletive allomorphs),
which could lead to overassessment of the system’s complexity (Stump
and Finkel 2015). But the sequence-to-sequence model learns a gen-
eralizable harmony rule. Similarly, sequence-to-sequence models can
learn a fully general process of reduplication (Prickett et al. 2018)
where earlier models would be forced to memorize a separate rule for
each reduplicating substring.
Kirov and Cotterell (2018) argue that these models remedy many

of the shortcomings of earlier neural networks for inflection (Rumel-
hart and McClelland 1986), which were criticized (Pinker and Prince
1988; Pirrelli et al. 2015; Lignos and Yang 2018) both for inaccurate
predictions, and for using representations which obscured the sequen-
tial nature of the input and were thus incapable of learning common
typological patterns such as position class systems.
Due to these advantages, sequence-to-sequence models have been

applied to several theoretical questions. Cotterell et al. (2018a) use
them to measure I-complexity without relying on simplistic variants
of four-part morphological analogy. Cotterell et al. (2018b) use them
to simulate acquisition-based change in predicting the regularization
of English past tense verbs. In doing so, projects like these implic-
itly assume that the SIGMORPHON reinflection task can be treated as
a model of morphological acquisition and the sequence-to-sequence
neural net as a model of the learner.
Thinking of sequence-to-sequence models in this way opens up

several questions which deserve further attention. First is the issue of
qualitative evaluation: which parts of the morphological system can
the model acquire, and which does it struggle with? Second is the
interpretation of the reinflection task as a model of acquisition: what
sorts of datasets are appropriate and what sorts of task settings are
realistic as representations of the data that humans (adults or children)
encounter and the tasks that they face? Third is the question of how the
model can be used to predict language change and language typology.
What kinds of languages are predicted to be learnable, how does the
input affect morphological learning, and what are the consequences
for typological distributions, especially of inflectional systems?
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5 evaluating models’ morphological
knowledge

The performance of reinflection models is generally measured in terms
of percentage accuracy of the predicted output strings.15 This yields
a single number per language – usually a fairly high one. For the pur-
pose of comparing different model variants, this kind of evaluation
is sufficient, but as a tool for understanding the morphological sys-
tem, it falls short. In fact, this kind of evaluation is vulnerable to the
criticisms of other measurements of morphological complexity which
attempt to distill the question of “how learnable” a system is into a
single number (Section 3). A few other studies (Gorman et al. 2019;
King et al. 2020) make the same criticisms and propose techniques for
error analysis similar to the one outlined below. Malouf (2017) and
Corkery et al. (2019) perform a different, and complementary, analy-
sis of what is learned, by plotting reduced-dimensional projections of
the model’s latent space.
We argue here for a fine-grained, linguistically sophisticated anal-

ysis of model errors. Counterintuitively, we argue that such an in-
formative error analysis requires the very theoretical concepts which
the model was designed to do without: “inflection class” and “expo-
nent”. As a simple case study, we present an experiment using Latin
nouns, one of the best-studied examples of an inflection class system
(Carstairs-McCarthy 1994; Stump and Finkel 2015; Beniamine et al.
2018). Latin nouns inflect for case (6 cases, not counting the rare
locative) and number (singular and plural) for a total of 12 paradigm
cells per noun. We use a Pytorch (Paszke et al. 2017) implementa-
tion of Kann and Schütze (2016)16 on the nouns from Latin Unimorph
(Kirov et al. 2018),17 training for 5 epochs (passes over the training
data) of stochastic gradient descent. The dataset contains 8342 nom-
inal paradigms; we hold out 10% of the lexemes as a development
set and another 10% for testing. This training/testing procedure is the

15The Levenshtein edit distance on character strings is also reported, but exact
match is more useful; under an edit metric, a system can achieve fairly high
scores by copying the input form, and the performance of this baseline varies
across languages based on the relative lengths of stems versus affixes.

16https://github.com/DavidLKing/MED-pytorch
17Unimorph 1.0, accessed 5 December 2018.
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one used in SIGMORPHON 2016 (Cotterell et al. 2016), and is the most
standard from a machine learning point of view. It has been criticized
on cognitive grounds, since it gives the learner access to complete
paradigms for 90% of the words, a point we return to in our discus-
sion of acquisition below.
As in SIGMORPHON task 1, we inflect a citation form to produce

the other forms. The choice of input form is important for task perfor-
mance; Stump and Finkel (2015) show that Latin nouns have 4 static
principal parts; in other words, that if a single set of paradigm cells
must predict the output cell, it would have to consist of 4 members
per lexeme. We instead use the nom.sg, which is the conventional
dictionary head word, but not a particularly predictive paradigm cell
– thus, the system will be forced to guess at the class memberships for
some of the words.18 Our measure of success is exact match accuracy.
The accuracy of the model on test is 86%; the accuracy on the

validation data is 93%. This is comparable with previously reported
results using this model and this type of task (though far from the cur-
rent state of the art – see Cotterell et al. 2018c), and is high enough to
render the model useful for some practical applications in language
generation (King and White 2018). But what is the system getting
wrong? A first attempt at an error analysis (on the development set)
is to compute error counts by paradigm cell (Table 4). This shows
that the voc.sg has much lower error than the other cells, which
is unsurprising since voc.sg is identical to nom.sg unless the noun
ends in -us or -ius.19 But the remaining errors are distributed relatively
evenly across the cells.

18 It is theoretically relevant whether morphological systems have defined
bases, and if so, whether the base is one surface form (Albright 2002a), many
(as assumed by some abstractive WP models; Kann et al. 2017), or an abstract
stem (as assumed, more or less, by constructive WP models; Cotterell et al. 2015;
Stump 2001). This question could be evaluated in this framework. If the stem is
abstract, it is also theoretically relevant how to decide what is part of the stem
and what is part of inflectional exponence (Spencer 2012; Beniamine et al. 2017).
Our choice here is theoretically unmotivated and merely represents a common
way of constructing a reinflection task.

19Why does the system ever make errors in the (easy) vocative singular? Some
of these reflect inconsistency in the training data, as also noted by Gorman et al.
(2019), but the system also applies two generalizations somewhat inconsistently:
Nouns in -us take -e, but not all nouns ending in -s do so: rinoceros ‘rhinoceros’
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Case sg errors pl errors
nom – 59
gen 56 71
dat 58 57
acc 55 62
abl 61 57
voc 28 57

Table 4:
Errors by paradigm cell

We can move beyond this by examining the inflectional micro-
classes. Taking for granted that Latin nominal inflections are entirely
suffixing, and without anymodel of phonological alternations, we con-
struct a function to assign each lexeme to a class: we compute a stem
by taking the longest common initial string across all inflected forms
of the lexeme, and a signature which is a list of ‘suffixes’ (that is, every-
thing except the stem) ordered by paradigm cell. This procedure is a
simplification of existing approaches designed for more complex prob-
lems (Gaussier 1999; Goldsmith 2001; Durrett and DeNero 2013) and
for calculations of inflectional complexity (Stump and Finkel 2013).20
The system finds 272 classes in the full dataset; the most common
class in our data is exemplified by gutta ‘drop’.21 (Many of the
smaller “classes” represent compound words like dies Martis ‘Tuesday’
for which the assumption of suffixation is erroneous.)
Of these classes, 79 occur in the development set, but only 11 of

them are represented by 9 or more lexemes. Table 5 shows each one
with its error rate. Interestingly, several of the most common classes
have error rates of around 1%, while the 5 least frequent have rates
between 10–20%. This is consistent with the observation that inflected
forms within small classes are unpredictable as a result of irregularity.
It can also be construed as consistent with the Marginal Detraction
Hypothesis (Stump and Finkel 2013), inasmuch as small classes are
disproportionately responsible for whatever total amount of unpre-
dictability is found in the inflectional system. Again, it is possible to
rather than rinocere; nouns in -ius take -ī rather than -e: sēcrētārī ‘secretary’ rather
than sēcrētārie.
20As noted earlier, Stump and Finkel (2013) call the initial string the ‘theme’

and the remainder the ‘distinguisher’ to make it clear that while these subparts
of the word may correspond to a stem and affix in theoretical terms, they need
not.

21With suffixes -īs, -ā, -ās, -am, -īs, -ae, -ārum, -ae, -ae, -a, -ae, -a.
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look deeper by examining the actual erroneous outputs. In each case,
we compute a suffix for the errorful form and ask which microclasses
(if any) it could have belonged to.22 Many of the erroneous forms can-
not be assigned to any microclass and cannot therefore be easily in-
terpreted. These include cases where the system produces sequences
with no linguistic interpretation (honōrificābilitūdinitās to honōrififiil-
isitūditās) – an occupational hazard of running recurrent neural net-
works on long strings – and other cases where the stem is incorrectly
copied.
In the remaining instances, the word receives an ending that is

legitimate elsewhere in the language but not for the lexeme in ques-
tion. These include mispredictions of stem elements that are neutral-
ized in the nom.sg: the nutrix ‘nurse’ class contains nouns whose
nom.sg ends in -ix and whose stem ends in -ic. Members of this class
are frequently misinflected like haruspex ‘diviner’, which has -ex in
the nominative and -ic elsewhere,23 and grex ‘herd’ (not shown in
the chart), whose stem ends in -eg.24 They also include cases where
the nominative form does not identify the inflection class: the sena-
tus ‘Senate’ class (part of the traditional 4th declension) has an -us
suffix in nom.sg and an -u stem vowel. The -us suffix is also consis-
tent with the much more common class of -o-stem nouns like asellus
‘donkey.dim’, and the system is not always capable of telling the dif-
ference.25
While the overall performance number tells us little about what

is difficult in Latin nominal inflections, and the featural analysis not
much more, it is possible to learn something about the system by ex-
amining the sequence-to-sequence model errors. A natural next step
is to ask whether these errors tell us something about how the system
is acquired (did Roman infants learn the senatus class later than the

22 In Table 5, the microclasses are labeled with the citation form of an arbitrary
member. When calculating confusions between classes, we restrict ourselves to
alternative classes including at least 10 lexical items. A single error may be con-
sistent with multiple overlapping classes, so the counts of ‘confused classes’ can
exceed the total errors.
23Ex. faicēs for faecēs ‘dregs.acc.pl’.
24Ex. quincungēs for quincuncēs ‘five-twelfths.acc.pl’.
25Ex. quassīs for quassibus ‘shaking.abl.pl’ and Scōtibus for Scōtīs

‘Scot.abl.pl’.
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asellus class) and how stable it might be (should we predict that the
senatus class eventually merged into asellus). We address these
questions below.

Table 5: Errors for common microclasses

Class Lexemes Forms Errs Err. rate Frequently confused classes
gutta 171 1881 27 0.014 none (27)
gravitatio 170 1870 28 0.015 gremium (9), lexicon (9)
gremium 145 1595 5 0.003 none (3), minutal (1)
asellus 87 957 43 0.045 none (16), senatus (10)
imperator 44 484 4 0.008 littus (3), none (1)
gravitas 41 451 32 0.07 none (11), asellus (10)
nutrix 18 198 39 0.197 none (9), haruspex (9)
guttur 10 110 33 0.3 imperator (10), none (8)
senatus 9 99 11 0.11 asellus (10), mythos (10)
hostis 9 99 23 0.232 none (2)
gymnas 9 99 25 0.253 none (11), gravitatio (8)

6 acquisition

Cotterell et al. (2018b) suggests that sequence-to-sequence models
can function as cognitive models of infant language learners (though
see Corkery et al. (2019) for some differences in behavior for nonce
words). But to use a sequence-to-sequence model as a credible stand-in
for the human infant, we must determine what the input for acquisi-
tion of morphology looks like – the right representation and learning
algorithm cannot tell us anything if it is supplied with the wrong data.
From the computational point of view, this question divides more or
less neatly into two parts: first, what is the distribution of lexemes and
paradigm cells in the input? And second, what information (phonolog-
ical, syntactic or otherwise) is available to the learner when they hear
a form?
The answer to the first question is conceptually well-known: both

lexical items and paradigm cells have a Zipfian distribution (Blevins
et al. 2017; Lignos and Yang 2018). In informal terms, natural lan-
guage consists of many repetitions of the most common words, in-
terspersed with a large population of rare words which appear a few
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times each. Roughly the same is true for inflections: a natural cor-
pus contains many repetitions of the most-used cells, but rarely-used
cells are sparse in the data, and, in general, found only with common
words. These distributions interact on the semantic level, so that (for
instance) paired body parts like hands and eyes are commonly attested
in the dual, while the dual forms for nouns like “nose” and “tooth” are
relatively rare (Tiersma 1982; Bybee 1995).
Simulations in the sequence-to-sequence framework are just be-

ginning to engage with this issue, perhaps because appropriate train-
ing data can be difficult to acquire. The datasets released by the SIG-
MORPHON shared tasks do not reflect the Zipfian frequency distri-
butions of natural language. The 2016 dataset was chosen at ran-
dom from Wiktionary, while the 2017 provided fewer examples, with
complete paradigms for only a few words in each language. Systems
trained on these datasets tend to learn from and be evaluated mostly
on rare words. They have little incentive to learn about rare inflec-
tion classes, even where these contain extremely common words that
make up a large percentage of child input. As already mentioned, fre-
quency appears to be critical to the acquisition and diachronic stability
of these small classes (Bybee 1995). Cotterell et al. (2018b), in their
study of English irregulars, instead provide the system with data bal-
anced by token frequency. This forces the system to learn irregulars
like go ∼ went.
But the straightforward choice to balance the system by token fre-

quency is also problematic, since many theories propose that learners
are more sensitive to type frequency (Bybee 2003; Yang 2017; Gold-
water et al. 2006). Typically, such theories suggest that generalization
of a pattern to new items depends on the number of types to which
it applies, while retention of a pattern for observed items depends
on the number of tokens experienced. Bayesian models like adaptor
grammars (Johnson et al. 2006) are capable of interpolating between
types and tokens by using a separate “memory” component to store
high-token-frequency training items, while some tokens of each type
(logarithmically many) are treated as evidence for a general base dis-
tribution. The same process has been proposed as a model of morpho-
logical processing (Bertram et al. 2000; Baayen 2007). In modeling
terms, two alternatives suggest themselves. One possibility is to use
a conventional model, but provide it with a dataset in which a word
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type whose frequency is t has log(t) tokens. The other is to add a
memory component which can use the neural model as a Bayesian
prior (Kawakami et al. 2018).
Regardless of the particular theoretical choices a researcher

wishes to make, any attempt to study a real language via simula-
tion requires access to high-quality data. Here, it is important to
note that none of the SIGMORPHON datasets, nor the newer and
larger Unimorph dataset (Kirov et al. 2018), provide an adequate
set of lexical items for preparing Zipfian datasets in a large set of
languages. The German Unimorph 2.0 dataset, for instance,26 lacks
paradigms for the copula sein, the auxiliary verbs können, möchten,
sollen, wollen, and some commonly used content words in the child-
directed inventory: hören ‘hear’, essen ‘eat’, Hund ‘dog’, etc. Many
of these words exist in derived or compounded form (for instance,
Dachshund, Kampfhund, Schweinhund are all represented), but this is
unhelpful when attempting to construct a dataset which matches the
token frequency of natural language, since none of these derivatives
is particularly frequent. Unfortunately, the spotty coverage of high
frequency words for German appears to be typical of the Unimorph
datasets.
Thus, although Unimorph is an important resource for under-

standing morphological systems across a wide variety of languages,
it is of limited use for simulations of language acquisition that seek
to account for the role of frequency distributions. The easiest current
option for creating frequency-matched datasets is to scavenge mor-
phologically tagged forms from the Universal Dependencies syntactic
datasets (Nivre et al. 2016). These do not have complete paradigms
and do not represent child-directed speech; nonetheless, their cover-
age of commonly used forms such as auxiliary verbs is reasonably com-
plete.
The second question, the issue of what information is available

to the learner when they hear a form, is more complex. The SIGMOR-
PHON reinflection problem, in its hardest form (task 3) is intended to
model something like a “wug”-test (Berko 1958), in which an already
somewhat proficient speaker of a language hears a novel word and

26Downloaded from https://unimorph.github.io/ on 29 October 2019,
with 179339 forms and 15060 lemmas.
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then tries to produce some form of the word themselves. An English
speaker, for instance, might participate in the following conversation
(Berko 1958):

A: This is a man who knows how to spow. He did the same
thing yesterday. What did he do yesterday?
B: Yesterday he _ (spow).

Here, B’s role in the conversation requires them to produce a form
of the abstract lexical item spow. In order to do so, they must guess
that A’s production spow is the v.nfin form, and then infer the corre-
sponding v.pst. But this description of B’s mental processes assumes a
relatively mature grammar of English, in which B already knows that
how to _ is a good context for the nonfinite English verb, that English
marks the past tense differently from the nonfinite, but that it is not
necessary to mark person or number in the past tense, etc. All that is
missing is the exponence, that is, the actual surface form which occu-
pies the cell v.pst, thus the conventional description of this task as a
paradigm cell filling problem.
For the developing language learner, however, this problem setup

assumes too much. The learner does not start off knowing which fea-
tures of the context are relevant to determining the form of spow, or
which abstract features are active for the desired output form, or even
which surface forms in dialogues like this belong to the same lexeme!
This more complex problem can be viewed as one of paradigm cell
discovery.27 But how can a Paradigm Cell Discovery Problem (PCDP)
be modeled computationally?
One possibility is the cloze task described in the SIGMORPHON

2018 shared task (Cotterell et al. 2018c). In this task, the output slot
is described in terms of a sentence frame rather than a set of abstract
features. However, the sentence frame representation has a serious
problem in that it does not always specify the semantic features of the
output. In the dialogue above, it is clear from the auxiliary verb have
that the output has to express pst tense. But in many sentences, the
morphological marker is the only expression of the property – in the
sentence “The sun shine on the tree”, both shines and shone, and

27Boyé and Schalchli (2019) independently raise essentially the same issue,
which they call the Paradigm Cell Finding Problem.
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both tree and trees, are acceptable. SIGMORPHON 2018 deals with
this by allowing both answers to be accepted. But from a learning
standpoint, this is not reasonable; one response is presumably more
faithful to the world context, the conversational common ground,
and the speaker’s own mental representation of the event than the
other. It is not clear how such problems ought to be addressed. Vi-
sual language grounding (Kamper et al. 2017: among others) is a good
source of information about objects and their properties, but prob-
ably cannot be used to learn features of verbs such as irrealis or
remote past, since abstract verb semantics are mostly inaccessible
from visual context alone (Gillette et al. 1999; Papafragou et al. 2007).
An effective solution to this problem probably cannot depend solely
on learning semantic/surface correspondences, but requires attention
to the structure of the surface morphological system itself (the mor-
phome; cf. Maiden 2005; Aronoff 1994). In a morphomic analysis, the
learner tries to determine how many different exponences each lex-
eme seems to have and their distributions, without necessarily assum-
ing that each one corresponds to a coherent set of semantic mean-
ings. Dreyer and Eisner (2011) models this process by clustering sur-
face forms into lemmas and paradigm cells, at the same time inducing
a set of morphological processes which relate the cells. But Dreyer’s
“cells” are purely formal groupings with no syntactic or semantic inter-
pretation.
At the same time, the learner must do a realizational analysis us-

ing grounding and linguistic context to determine what external fac-
tors seem to license inflectional variations. The two analyses may not
match; in some cases, as with complex tense/aspect distinctions, the
surface differences between two forms may be much more salient than
the distributions. In cases of syncretism, on the other hand, the sur-
face forms are identical across two paradigm cells which nonetheless
express different abstract features, and this can only be noticed on the
basis of distributional evidence. The goal of a PCDP model must be
to reconcile the two analyses by determining the interface between
them.
A PCDP model, therefore, cannot be evaluated solely on the basis

of a cloze task, since this will fail to test the model’s ability to distin-
guish between too many feature pairs in most contexts. It should also
function as a morphological part of speech tagger and can be evaluated
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in that respect.28 Given a form in context, it should be able to catego-
rize it consistently by labeling it as an instance of an abstract paradigm
cell, and perhaps even assigning it some latent semantic dimensions.
These can be compared with the results of existing unsupervised POS
taggers (Christodoulopoulos et al. 2010).
One way forward might be to augment existing grammar induc-

tion models for untagged word strings (Seginer 2007; Jin et al. 2018;
He et al. 2018) to assemble words into morphological paradigms.
These models are already constructed to predict correlations between
words at the sentence level by positing syntactic relationships be-
tween them; equipping them with a model for morphological varia-
tion (Dreyer and Eisner 2011; Silfverberg et al. 2018) would allow
them to model the morphosyntactic interface. Taking the nomina-
tive/accusative cases for example, if the case markings are relatively
consistent and regular, and the statistical properties of the relationship
between the subject/object and the verb are also relatively consistent,
the grammar induction system should find distinguishing these cases
beneficial to predicting sentence structure. It is unclear how well such
an approach would work. Current grammar induction systems do not
always induce linguistically plausible grammars. For systems that in-
duce phrase structure grammars, morphological agreement features
must be conveyed by aggressively subcategorizing syntactic categories
(Petrov et al. 2006), which greatly increases the size of the model to
be induced. Nevertheless, a combined model of this type might serve
as a useful baseline for the PCDP.

7 change

Models of acquisition test how well a single learner can discover the
rules of the system, given data produced by actual speakers of the
language. But the language learners of today are the language users of
tomorrow; a natural extension of the learning simulation is to make
the output from one generation of computational learners serve as
28Taggers which use fine-grained, multidimensional tags to indicate all the

morphosyntactic properties of a particular word token are generally trained in
the supervised setting (Chrupała et al. 2008; Müller et al. 2013); for this task, it
would be necessary to apply this fine-grained standard of evaluation to unsuper-
vised models.
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training data for another, observing how the system changes over time
(Kirby and Hurford 1997, 2002). Such iterated learning experiments
have been used to study the emergence and disappearance of irregular
forms in both simulated (Ackerman and Malouf 2015; Parker et al.
2019) and real (Hare and Elman 1995; Cotterell et al. 2018b) datasets,
and to study the spread and loss of different languages or linguistic
features in a social network (Abrams and Strogatz 2003; Castelló et al.
2013).
Iterated language change simulations tend to take one of two per-

spectives on language change, modeling change as arising either from
acquisition or from usage. Models of acquisition-based change treat
most differences between generations as cases of imperfect acquisi-
tion: due either to data sparsity or to biased hypothesis selection, the
“children” do not acquire the same language as the “parents”. Sparsity
and a preference for regularity lead the system to regularize, eliminat-
ing irregular forms and merging inflection classes (Kalish et al. 2007;
Reali and Griffiths 2009); this is also a typical outcome in Ackerman
and Malouf (2015), though some simulations do lead to large num-
bers of inflection classes. A preference for distinctiveness, on the other
hand, can lead to the maintenance or even the creation of irregular-
ity, since irregular forms are compact and easy to recognize (go ∼ went
rather than goed; Dale and Lupyan 2012). In any case, these models
see change as primarily arising from learning.
Many such models make the same incorrect prediction: morpho-

logical change should be rapid and common, and it should work to
eliminate “non-functional” parts of the system, such as inflection class,
which do not correspond to any abstract meaning. In fact, the typo-
logical pattern is the opposite; many real morphological systems have
these non-functional elements, and while individual words may move
from class to class, the classes can be remarkably stable across long
periods of historical time. As Harris (2008: 66) says, “there is appar-
ently no need of repair; the system works and can be acquired... there
is nothing about our innate endowment that demands that a language
simplify”. Although some elements of a morphological system may
take years to reach adult-like competence (Xanthos et al. 2011; For-
shaw et al. 2017), given enough exposure, learners will eventually
produce it with high fidelity. The preference for over-regularization
observed in child learners may be a relatively temporary phase of
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development (Maratsos 2000; Ambridge et al. 2013; Joseph 2011)
which does not normally cause sweeping changes in the adult sys-
tem (for an opposing viewpoint, see Huang and Pinker 2010). Addi-
tionally, the Natural Morphology framework (Dressler 2003; Wurzel
1989, 2000) emphasizes the role of languages’ system-defining struc-
tural properties in making their morphological systems conservative
when it comes to language change (Wurzel 1989: 104). From this per-
spective, the pressure in language change is towards greater system
congruity, not necessarily towards elimination of inflection classes or
other “non-functional” parts of the system.
Sociolinguistic models, on the other hand, see change as primarily

a result of biased language usage, with significant language changes
occurring throughout the lifetime (Labov 2007). In this kind of model,
users make both conscious and unconscious decisions about what lan-
guage features to use (Milroy 2007). For instance, in a model of lan-
guage change in Spain (Castelló et al. 2013), agents in a social network
speak either prestigious Castilian or stigmatized Galician. Speakers
may switch languages in either direction, based on how many of their
neighbors in the network they will be able to communicate with and
how socially prestigious they will become. For most network topolo-
gies, Galician will eventually be lost entirely. This is not an effect of
learning biases: in a model of this type, there is no difference in learn-
ability between the systems; rather, it is taken for granted that agents
could, in principle, acquire either system perfectly, if it proved to be
worth the social investment.
In the case of morphological systems, change is likely to be a

combination of both learnability and prestige and other social fac-
tors. While any linguistic variability is likely to gain some amount of
social evaluation, some morphological variables within a population
seem relatively unmarked (perhaps because they apply primarily to
unfamiliar words; Dąbrowska 2008), while others attract widespread
attention and stigmatization. This is the idea behind Labov’s division
of socially-relevant linguistic variables into indicators, markers, and
stereotypes (Labov 1971, 2001). At the same time, however, the sys-
tem may provide the learner with varying degrees of evidence for
the different forms. These conflicting pressures are probably responsi-
ble for selecting among the possible outcomes. For example, Jutronic
(2001) describes competition between two dialects of Croatian in the
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city of Split; for instance, the local dialect form profesŭri competes with
standard profesora to realize ‘professor.pl.gen’. Dialect contact of this
kind can eventually converge on one of the two original systems, but
can also give rise to a more complex system in which both variants
are analyzed as morphological markers (Trudgill 2011: 27).
In many cases, however, the real impact of social factors is to

cause changes to the morphology indirectly, through their impact on
other linguistic subsystems. For instance, socially conditioned phono-
logical change can cause a reorganization of the inflectional system.
On the one hand, sound change can destroy morphological distinc-
tions, by merging or eliminating affixes. Where distinctions are not
leveled outright, it can change which elements of the surface string
act as markers for a morphological feature, raising a phonological al-
ternation to the level of an exponent. On the other hand, processes of
phonological reduction and grammaticalization can create new mor-
phemes, as in the evolution of the French adverbial suffix -ment from
the Latin noun mente ‘mind.abl’ (Joseph 2003).
The real impact of learning biases in morphological change

may be felt primarily in determining how a language reacts to this
kind of disruption. Harris (2008) argues that the Georgian pattern
in which the same case endings indicate different semantic roles
for different classes of verbs (Series I vs II) results from the his-
torical development of the Kartvelian languages from true ergative
languages to split-ergative alignment. The Series II verbs began as
a productive antipassive construction which was lost along with
ergativity, but became “frozen” in the language as a morphologi-
cally complex relationship between classes of verbs and surface case
markers. Harris argues that while some languages undergoing this
kind of change converge on a single consistent set of case mark-
ers, the salience of the Georgian markers prevented this kind of
mis-learning. In other words, as the language changed, the older
meaning of the construction became too opaque for learners to ac-
quire it, creating the potential for two eventual outcomes: one in
which the new surface pattern persisted and one in which it was
regularized. It was in this situation that the phonological distinc-
tiveness of the markers themselves (and perhaps other acquisition
biases) became important in determining which system would be
learned.
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In other examples, the external pressures on the system come from
bilingualism or adult language learning. A wide variety of studies in-
volving bilinguals can be interpreted as demonstrating these kinds of
change, which can lead the system either to lose or to gainmorphologi-
cal features. Dorian (1978) shows the loss of features in a dying variety
of Scots Gaelic in the process of being replaced by English. The Gaelic
system retains a variety of exponents of the plural and gerund, even in
the last generation of speakers, but morphological processes involving
features which English does not use (for instance lengthening) were
lost. On the other hand, Lefebvre (1996) shows the introduction of
new features by bilingual speakers who expect a system to express
certain abstract features, and recruit L2 features as surrogate markers.
This is the case in Haitian Creole, where the tense/aspect/modality,
pronominal and nominal systems have been interpreted as relexifica-
tion of its substrates (mainly Ewe and Fongbe) using a French super-
stratum. For example, Ewe has the morpheme wò indicating the third
person plural pronoun and the plural in noun phrases. Lefebvre argues
that the Haitian Creole morpheme yo encodes both notions and that it
reflects substratum influence. While the presence of L2 speakers has
been suggested as a pressure towards less enumerative morphological
complexity (Trudgill 2011; Dale and Lupyan 2012; Frank and Smith
2018), understanding the actual impact of a learner population might
require more insight into their L1 system and how their learned rep-
resentations can be adapted to fit the state of the L2, as well as into
the social circumstances under which they learn.
Whether simulating L1 or L2 learning, sequence-to-sequence

models provide an interesting platform for detailed and realistic learn-
ing simulations. But these simulations need to move beyond training
the system on corpora reflecting synchronic steady states, then ana-
lyzing the errors to predict incipient large-scale restructuring towards
some imagined typological ideal. Typological variety is the product
of the historical paths down which languages travel (Harris 2008; An-
derson 2004): typologically rare morphological systems occur when
a particular change (phonological, social or otherwise) interacts with
a particular morphological system. By incorporating data from out-
side the realm of morphology, we can hope to create better models
of diachronic change and better understand the circumstances under
which these rare systems arise.
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8 conclusions

The main goal of this paper has been to argue that sequence-to-
sequence models hold out the possibility not only of improvements in
practical tasks, but also of real advances in morphological theory and
typology. Alongside this promise comes the necessity to think harder
about our experimental setups. We have put forward possible improve-
ments in how the models are evaluated, in what tasks they are trained
to perform and in how we extrapolate from a single learner to a com-
munity of socially motivated language users. In particular, we have
argued for error analyses in terms of paradigm cells and inflectional
classes, rather than dataset-wide accuracy. We have proposed using
Zipfian datasets and replacing, or at least supplementing, Paradigm
Cell Filling with Paradigm Cell Discovery. And we have suggested that
models of morphological change reach beyond the morphological sys-
tem to incorporate factors such as prestige, bilingualism and sound
change.
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We propose a strategy to build the distributional meaning of sentences
mainly based on two types of semantic objects: context vectors as-
sociated with content words and compositional operations driven by
syntactic dependencies. The compositional operations of a syntactic
dependency make use of two input vectors to build two new vec-
tors representing the contextualized sense of the two related words.
Given a sentence, the iterative application of dependencies results in
as many contextualized vectors as content words the sentence con-
tains. At the end of the contextualization process, we do not obtain
a single compositional vector representing the semantic denotation
of the whole sentence (or of the root word), but one contextualized
vector for each constituent word of the sentence. Our method avoids
the troublesome high-order tensor representations of approaches re-
lying on category theory, by defining all words as first-order ten-
sors (i.e. standard vectors). Some corpus-based experiments are per-
formed to both evaluate the quality of the contextualized vectors built
with our strategy, and to compare them to other approaches on dis-
tributional compositional semantics. The experiments show that our
dependency-based method performs as (or even better than) the state-
of-the-art.
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1 introduction

Semantic compositionality is the crucial property of natural lan-
guage according to which the meaning of a complex expression is
a function of the meaning of its constituent parts and of the mode
of their combination (Montague 1970). In the last decade, differ-
ent distributional semantic models endowed with a compositional
component have been proposed. The basic approach to composi-
tion (Mitchell and Lapata 2008, 2009, 2010) is to combine vectors
of two syntactically related words with arithmetic operations: ad-
dition or component-wise multiplication. However, this approach is
not fully compositional because the mode of combining the con-
stituent parts is not considered. This way, two sentences with the
same constituents but with different functions, e.g. cats chase mice and
mice chase cats, are wrongly interepreted with the same flat vector
combination.
To take into account the mode of combination, more recent dis-

tributional approaches (Coecke et al. 2010) follow a strategy aligned
with the formal semantics perspective. Using the abstract mathemati-
cal framework of category theory, they provide the distributional mod-
els of meaning with the elegant mechanism expressed by the prin-
ciple of compositionality, where words interact with each other ac-
cording to their type-logical identities (Kartsaklis 2014; Baroni et al.
2014). The categorial-based approaches define arguments as vectors
while functions taking arguments (e.g., verbs or adjectives that com-
bine with nouns) are n-order tensors, with the number of arguments
determining their order. Function application is the general composi-
tion operation. This is formalized as the tensor contraction which is
nothing more than a generalization of matrix multiplication in higher
dimensions.
Even if the type-logical compostional approach based on category

theory is a very elegant proposal, it has, at least, four important draw-
backs:
1. It results in an information scalability problem, since tensor rep-
resentations grow exponentially (Kartsaklis et al. 2014). For in-
stance, if noun meanings are encoded in vectors of 500 dimen-
sions, adjectives, which are 2-order tensors, become matrices
of 5002 cells, while transitive verbs are described as tensors
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with 5003 dimensions. This situation leads to data sparseness
problems, particularly for less common adjectives and verbs.

2. The use of tensor product for function application does not always
perform as well as basic composition operations on vectors, such
as component-wise multiplication (Mitchell and Lapata 2010).

3. The same word that occurs in different syntactic contexts is as-
signed different semantic types with incomparable representa-
tions (Paperno et al. 2014). For example, verbs like eat can
be used in transitive or intransitive constructions (children eat
meat/children eat), or in passive (meat is eaten). The different uses
of the verb differ in the predicate arity and, then, are encoded
in tensors of different orders. Since each of these tensors must
be learned from examples individually, their obvious relation is
missed. For each word, the creation of as many lexical entries as
the number of its different syntactic uses is a drawback shared by
all grammars based on the category theory.

4. The meaning of a sentence is a single representation and there is
no access to the meaning of the constituents within the context of
the whole sentence. For instance, let us observe the sense of the
pronoun They in the sequence of sentences: children eat meat. They
are fat. By co-reference, this pronoun is linked to children whose
sense is contextualized by the fact that they are eaters of meat.
However, there is no trivial mechanism to infer this specific sense
of children from the meaning of the whole sentence.
Some approaches have tried to solve the issues described in the

aforementioned four points. However, no strategy has been designed
to deal with all of them together. For instance, the first issue has been
addressed by the work reported in Paperno et al. (2014), where the
representation size grows linearly, not exponentially, for higher se-
mantic types, allowing for simpler and more efficient parameter es-
timation, storage, and computation. The third issue is at the center
of the work described in Weir et al. (2016), where the meaning of a
sentence is represented by the contextualized sense of its constituent
words. The final point is addressed by Kruszewski and Baroni (2014),
where the authors have observed that simpler and more economical
models based on multiplication or addition yield better results than
more complex ones.
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These drawbacks have already been addressed by Socher et al.
(2012) who proposed a strategy based on recursive neural networks,
and by Paperno et al. (2014) whose proposal, practical lexical function
model, represents each function word by a vector plus an ordered set
of matrices enconding its arguments. We also address the four draw-
backs by proposing a dependency-based framework with transparent
vectors (and not embeddings as in Socher et al. (2012)). Moreover, the
compositional model is different from that reported in Paperno et al.
(2014), since we define all content words as unary-tensors (standard
vectors), while syntactic dependencies are binary functions combining
vectors in an iterative and incremental way. Take again the sentence
“children eat meat”. The subject dependency builds two contextualized
senses: the sense of children as nominal subject of eat and the sense of
eat given children as subject. The two contextualized senses are vectors
that can be involved in further dependencies. Then, the direct object
dependency combines the previously contextualized sense of eat with
the noun meat to build two new contextualized senses: a new contex-
tualization of the sense of verb, on the one hand, and the sense of meat
in the context of “children eat”, on the other. The intrepretation of the
sentence is formalized as an incremental iteration giving rise to three
contextualized senses. So, in this model, the meaning of a sentence
is no more a single meaning, but one (contextualized) sense per con-
tent word, and each sense is represented by means of a word vector.
In the previous example, dependencies have been applied iteratively
from left-to-right: first the subject, and then the direct object. But they
may also be applied from right-to-left: first the direct object and then
the subject. The right-to-left iteration would result in slightly different
contextualized senses. This way, the sense of children would be more
specific since it would be built in the context of “eat meat”.
In our approach, syntactic dependencies are compositional func-

tions that combine vectors to build the contextualized senses of words
(still vectors) in an incremental way. While words are semantically
represented as vectors, dependencies are compositional operations on
them. It means that we operate with only two types of semantic ob-
jects: first-order tensors (or standard vectors) for content words, and
binary functions for syntactic dependencies. This solves the scalabil-
ity problem of high-order tensors (first drawback). In addition, it also
prevents us from giving different categorical representations to verbs
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in different syntactic contexts. A verb is represented as a single vector
which is contextualized as it is combined with its arguments (second
drawback).
Concerning the compositional function, dependencies are opera-

tions that combine first-order vectors using simple arithmetic opera-
tions such as addition andmultiplication, instead of more complex ten-
sor products (third drawback). However, given that our vector space is
enriched with syntactic information, the vectors built by composition
cannot be a simple mixture of the input vectors as in the bag-of-words
approaches (Mitchell and Lapata 2008). Our syntax-based vector rep-
resentation of two related words encodes incompatible information
and there is no direct way of combining the information encoded in
their respective vectors. Vectors of content words (nouns, verbs, adjec-
tives, and adverbs) are in different and incompatible spaces because
they are constituted by different types of syntactic contexts. So, they
cannot be merged. To combine them, on the basis of previous work
(Thater et al. 2010; Erk and Padó 2008), we distinguish between direct
denotation and selectional preferences (or indirect denotation) within
a dependency relation.
The iterative application of the syntactic dependencies found in

a sentence is actually the process of building the contextualized sense
of all the content words constituting that sentence. So, the whole sen-
tence is not assigned only one meaning – which could be the contextu-
alized sense of the root word – but one sense per word, with the mean-
ing of the root being only one such contentualized sense among many.
This allows us to retrieve the contextualized sense of all constituent
words within a sentence. The contextualized sense of any word might
be required in further semantic processes, namely for dealing with co-
reference resolution involving anaphoric pronouns (fourth drawback).
The main contribution of our work is to propose a semantic space

for Dependency Grammar, whose syntactic framework only consists
of lexical units and dependencies (Kahane 2003; Hudson 2003). Our
semantic model is wholly composed of binary operations (dependen-
cies) and first-order vectors (words and selectional preferences). There
is no room for semantic objects associated with composite expressions
such as phrases or sentences. A sentence is interpreted as an iterative
combination of word vectors with selectional preferences by using
component-wise multiplication. This iterative and incremental com-
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positional process may have two directions: from left-to-right and from
right-to-left. These two directions result in slightly different contextu-
alized words as we will show later in the experiments. Another impor-
tant contribution of our work is that it should be seen as a continuation
of Erk and Padó (2009) by allowing contextualized selectional prefer-
ences. Our approach was previously applied to other tasks: composi-
tional translation (Gamallo and Pereira-Fariña 2017) and relational-
based semantics (Gamallo 2017b). The current article is an extension
of a previous conference work (Gamallo 2017c).
This article is organized as follows. In Section 2, our dependency-

based compositional model is described. In Section 3, corpus-based
experiments are performed to build and evaluate the quality of com-
positional/contextualized vectors. Then, in Section 4, several distri-
butional compositional approaches are introduced and discussed. Fi-
nally, relevant conclusions are addressed in Section 5.

2 the compositional model

We first give a quick overview of our vector space (Section 2.1), which
is followed by a technical description of the compositional operations
driven by syntactic dependencies (Section 2.2). We conclude by apply-
ing an incremental interpretation approach to our model (Section 2.3).
2.1 Dependency-based vector representation
Distributional Semantics associates the meaning of a word with the
set of contexts in which it occurs (Firth 1957). Typically, in compu-
tational approaches, the distributional representation for a word is
computed from the occurrences of that word in a given corpus (Grefen-
stette 1995). In distributional semantics models, each word is defined
as a context vector, and each position in the vector represents a spe-
cific context of the word whose value is the frequency (or some statis-
tical weight) of the word in that context. According to recent research,
a vector space can be considered as a semantic model, since vector-
based representations (i.e. distributional features) may be defined as
extensions of logical expressions if they are seen as ideal distributions
(Copestake and Herbelot 2012; Erk 2013).
Our model employs vector representations for words (or lemmas)

based on syntactic contexts. Syntactic contexts are derived from bi-
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nary dependencies, which can be found in a corpus analyzed with
a dependency-based parser. Let’s suppose the composite expression
a horse is running was found in a corpus and is analyzed as the follow-
ing syntactic dependency:

(nsubj, run,horse)
It states that the noun horse (dependent word) is related to the head
verb run by means of the relation nsubj (nominal subject). A depen-
dency is then a triple consisting of a relation, a head, and a depen-
dent word. From this dependency, we can identify two complementary
word contexts:

<nsubj↑, run>,<nsubj↓,horse>
Then, we count co-occurrences between words and contexts. In this
case, the context<nsubj↑, run> is assigned frequency 1 within the vec-
tor of horse, while we add a new occurrence to <nsubj↓,horse> within
the vector of run. The up arrow in nsubj↑ means that the head word
run in the subject relation is expecting a dependent word, while the
down arrow in nsubj↓ means that the dependent noun horse is search-
ing for the head verb. This representation is inspired by Gamallo et al.
(2005) and is similar to that used for distinguishing traditional selec-
tional preferences from inverse selectional preferences (Erk and Padó
2008). To reduce the number of contexts, we apply a technique to fil-
ter out contexts by relevance. The filtering strategy to select the most
relevant contexts consists in selecting, for each word, the R (relevant)
contexts with highest log-likelihood measure. The top R contexts are
considered to be the most relevant and informative for each word. R is
a global, arbitrarily defined constant whose usual values range from
10 to 1000 (Biemann and Riedl 2013; Padró et al. 2014). In short, we
keep at most the Rmost relevant contexts for each target word (where
R = 500 in our experiments). This is an explicit and transparent rep-
resentation giving rise to a non-zero matrix.
2.2 Vector composition
In our approach, composition is modeled by two semantic functions,
head and dependent, that take three arguments each:

head↑(r, x⃗ , y⃗◦)(1)
dep↓(r, x⃗◦, y⃗)(2)
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where head↑ and dep↓ represent the head and dependent functions, re-
spectively, r is the name of the relation (nsubj, dobj, nmod, etc.), and
x⃗ , x⃗◦, y⃗, and y⃗◦ stand for vector variables. On the one hand, x⃗ and y⃗
represent the denotation of the head and dependent words, respec-
tively. They represent standard context distributions which we call
direct vectors. On the other hand, x⃗◦ represents the selectional prefer-
ences imposed by the head, while y⃗◦ stands for the selectional prefer-
ences imposed by the dependent word. Selectional preferences are also
called indirect vectors and the way we build them is described below.
Consider now a specific dependency relation, nominal subject

(nsubj), and two specific words: horse and run. The application of the
two functions consists of multiplying the direct and indirect vectors
by taking into account the nsubj relation:

head↑(nsubj, ⃗run, ⃗horse◦) = ⃗run⊙ ⃗horse◦ = ⃗runnsubj↑(3)
dep↓(nsubj, ⃗run◦, ⃗horse) = ⃗horse⊙ ⃗run◦ = ⃗horsensubj↓(4)
Each multiplicative operation results in a compositional vector

which represents the contextualized sense of one of the two words (ei-
ther the head or the dependent). Component-wise multiplication has
an intersective effect: the selectional preferences restricts the direct
vector by assigning frequency 0 to those contexts that are not shared
by both vectors. Here, ⃗horse◦ and ⃗run◦ are indirect vectors resulting
from the following vector additions:

⃗horse◦ =
∑

w⃗∈ H
w⃗(5)

⃗run◦ =
∑

w⃗∈ R
w⃗(6)

where H is the vector set of those verbs having horse as subject
(except the verb run). More precisely, given the linguistic context
<nsubj↓,horse>, the indirect vector ⃗horse◦ is obtained by adding the
vectors {w⃗|w⃗ ∈ H} of those verbs (eat, jump, etc.) that are combined
with the noun horse in that syntactic context. Component-wise addi-
tion of vectors has an union effect. In more intuitive terms, ⃗horse◦
stands for the inverse selectional preferences imposed by horse on any
verb at the subject position. As this new vector consists of verbal con-
texts, it lives in the same vector space as verbs and, therefore, it can
be combined with the direct vector of run.
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⃗red ⃗white ⃗vague ⃗car◦ ⃗red⊙ ⃗car◦
<amod↑, car> 5 2 0 2 10
<amod↑,pencil> 2 0 0 0 0
<amod↑, idea> 1 0 7 0 0
<amod↑,book> 2 1 2 1 2

Table 1:
Deriving the vector of red
in red car
by dependency-based
compositionality
(dependent function)

⃗run ⃗eat ⃗sleep ⃗horse◦ ⃗horse◦ ⊙ ⃗run

<nsubj↓,horse> 3 5 1 6 18
<dobj↓,program> 5 0 0 0 0
<prep_in↓,prairie> 2 1 1 2 4
<prep_with↓, gas> 3 0 0 0 0

Table 2:
Deriving the vector of run
in horses run
by dependency-based
compositionality
(head function)

On the other hand, R in Equation 6 represents the vector set of
nouns occurring as subjects of run (except the noun horse). Given the
lexico-syntactic context <nsubj↑, run>, the vector ⃗run◦ is obtained by
adding the vectors {w⃗|w⃗ ∈ R} of those nouns (e.g. dog, car, computer,
etc.) that might be at the subject position of the verb run. Indirect vec-
tor ⃗run◦ stands for the selectional preferences imposed by the verb on
any noun at the subject position. It is constituted by nominal contexts
and, therefore, is compatible with the direct vector of horse.
Tables 1 and 2 are toy examples showing how to construct the

compositional vectors of two contextualized words: red in red car (Ta-
ble 1) and run in horses run (Table 2). Vectors are in columns and rows
are dependency-based contexts. Each vector position is filled with the
frequency of the word in the corresponding context. In the two ta-
bles, we represent three direct vectors, one indirect vector (derived
from the direct vectors) and the compositional vector (last column).
In this toy example, words are hypothetical four-dimensional vectors;
whereas in real scenarios extracted from large corpora, vectors may
have hundreds of thousands of dimensions.
In Table 1, the indirect vector ⃗car◦, associated to the noun car

given red as modifier, is obtained by adding the vectors of those ad-
jectives that are also modifiers of car (except red). In this toy example,
only the direct vector of white fulfills such conditions. In Table 2, the
indirect vector ⃗horse◦ is the result of adding the direct vectors of eat
and sleep, since horse also occurs as subject of these verbs.
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It is worth noticing that the contextualized vector of red within
red car (last column in Table 1) has fewer contexts with positive values
than the direct vector of the polysemous adjective red (out of context).
The (inverse) selectional preferences imposed by car are able to select
a more compact and less ambiguous vector of the adjective. This way,
the context activating the ideological sense of red (<amod↑, idea>)
is filtered out as it is multiplied by 0. Similarly, the resulting vec-
tor of run within horses run has fewer positive contexts and then
tends to be less ambiguous than the direct vector of the polysemous
verb run out of context. In Table 2, the contexts (<prep_with↑, gas>,
<dobj↑,program>), which hardly appears with words denoting ani-
mals, are removed (frequency 0) from the new contextualized vector
of run. So, the inverse selectional preferences imposed by horse acti-
vate one specific sense of the verb: physical movement. Notice that
we do not consider prepositions as content words, but as syntactic
dependencies.
In approaches to computational semantics inspired by Combina-

tory Categorial Grammar (Steedman 1996) and Montagovian seman-
tics (Montague 1970), the interpretation process activated by compos-
ite expressions such as dogs chase cats, horses run or red car relies on
rigid function-argument structures. Relational expressions like verbs
and adjectives are used as predicates while nouns and nominals are
their arguments. In the composition process, each word is supposed to
play a rigid and fixed role: the relational word is semantically repre-
sented as a selective function imposing constraints on the denotations
of the words it combines with, while non-relational words are in turn
seen as arguments filling the constraints imposed by the function. For
instance, run and red denote functions while horses and car are their
respective arguments.
By contrast, we do not define verbs and adjectives as functional

artifacts driving the compositional process. In our compositional ap-
proach, dependencies are the active functions that control and rule the
selectional requirements imposed by the two related words. Depen-
dencies, instead of relational words, are then conceived of as the main
functional operations taking part in composition. This way, two syn-
tactically dependent expressions are no longer interpreted as a rigid
“predicate-argument” structure, where the predicate is the active func-
tion imposing the semantic preferences on a passive argument, which
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matches such preferences. On the contrary, each constituent word im-
poses its selectional preferences on the other. This is in accordance
with non-standard linguistic research which assumes that the words
involved in a composite expression impose semantic restrictions on
each other (Pustejovsky 1995; Gamallo 2008; Gamallo et al. 2005).
Not only verbs or adjectives are taken as predicates selecting different
types of nouns, but so too do nouns select for different types of verbs
and adjectives. Following this idea, we propose a co-compositional
approach: in the head function, the dependent element imposes its re-
strictions on the head denotation, and the output is a more specific
and less ambiguous denotation of the head. By contrast, in the depen-
dent function, it is the head that imposes its selectional restrictions
on the dependent denotation to produce a more elaborate and less
ambiguous denotation of the dependent expression.
It means that the semantic space consists of just two types of enti-

ties: word vectors and dependency-based functions. Vectors represent
both word senses (direct vectors) and selectional preferences (indirect
vectors), while head/dependent functions represent compositional op-
erations. A dependency-based function takes as arguments a relation
and a pair of vectors (direct + indirect), and returns a more elaborate
direct vector.
2.3 Dependencies and incremental interpretation
Frameworks such as Discourse Representation Theory (Kamp and
Reyle 1993) and Situation Semantics (Barwise 1987) make two ba-
sic assumptions about interpretation: that the meaning of a sentence
is dependent of the meaning of the previous sentence in the discourse;
and that a sentence modifies in turn the meaning of the following
sentence. Sentence meaning is not isolated from discursive unfolding;
rather, meaning is incrementally constructed at the same time as dis-
course information is processed.
We assume that incrementality is true not only at the inter-

sentence level but also at the inter-word level, i.e., between depen-
dent words. In order for a sentence-level interpretation to be attained,
dependencies must be established between individual constituents as
soon as possible. This claim is assumed by a great variety of research
(Kempson et al. 2001, 1997; Milward 1992; Costa et al. 2001; Schle-
sewsky and Bornkessel 2004). The incremental hypothesis states that
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information is built up on a left-to-right word-by-word basis in the
interpretation process (Kempson et al. 2001). The meaning of an ut-
terance is progressively built up as the words come in. The sense of a
word is provided as part of the context for processing each subsequent
word. Incremental processing assumes that humans interpret language
without reaching the end of the input sentence; that is, they are able to
assign a sense to the initial left fragment of an utterance. This hypoth-
esis has received a large experimental support in the psycholinguistic
community over the years (McRae et al. 1997; Tanenhaus and Carlson
1989; Truswell et al. 1994).
For instance, to interpret the cat chased a mouse, it is required to in-

terpret cat chased as a fragment that restricts the type of nouns that can
appear at the direct object position: mouse, rat, bird, etc.1 In the same
way police chases restricts the entities that can be chased by police
officers: thieves, robbers, and so on. However, a left-to-right interpre-
tation process cannot be easily assumed by a standard compositional
approach. In a Montagovian model, chase is a transitive verb denoting
the binary function λxλy chase(x , y), chased a mouse is an intransitive
verb denoting a unary predicate, while the cat chased a mouse is a sen-
tence denoting a truth value. The standard compositional model does
not provide any interpretation for the cat chased within the sentence
the cat chased a mouse; consequently, it is unable to predict how the
expression the cat chased restricts the type of nouns appearing at the
direct object position.
By contrast, in our left-to-right incremental compositional strat-

egy, the cat chased is a grammatical expression referring to two se-
mantic objects: the compositional vectors of the two related lexical
units.
In our approach, the iterative application of the syntactic depen-

dencies found in a sentence is actually the recursive process of building
the contextualized sense of all the content words which constitute the
sentence. Thus, the whole sentence is not assigned only one meaning
(which could be the contextualized sense of the root word), but one

1We do not consider the compositional meaning of determiners, auxiliary
verbs, or tense affixes. Quantificational issues associated with them are beyond
the scope of this work. An interesting work on determiners in compositional
distributional semantics is reported by Bernardi et al. (2013).
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sense per lemma, where the sense of the root is only one such sense
considered.
This recursive and incremental process may have two directions:

from left-to-right and from right-to-left.
The incremental left-to-right interpretation of the cat chased a

mouse is illustrated in Equation 7 (without considering the meaning
of determiners nor verbal tense):

head↑(nsubj, ⃗chase, ⃗cat◦) = ⃗chasensubj↑
dep↓(nsubj, ⃗chase◦, ⃗cat) = ⃗catnsubj↓
head↑(dobj, ⃗chasensubj↑, ⃗mouse◦) = ⃗chasensubj↑+dobj↑
dep↓(dobj, ⃗chase◦nsubj↓, ⃗mouse) = ⃗mousensubj↓+dobj↓(7)

First, the head and dependent functions are applied on the subject
dependency nsubj to build the compositional vectors ⃗chasensubj↑ and
⃗catnsubj↓. Then, the head function is applied dobj to produce a more
elaborate chasing event, ⃗chasensubj↑+dobj↑, which stands for the full con-
textualized sense of the root verb. In addition, the dependent function
takes dobj to yield a new nominal vector, ⃗mousensubj↓+dobj↓, whose in-
ternal information only can refer to a specific animal: mouse chased
by the cat. In the context of a chasing event, mouse does not refer to a
computer’s device.
The contextualized selectional preferences, ⃗chase◦nsubj↓, represent

an indirect vector obtained as follows:
(8) ⃗chase◦nsubj↓ = ⃗catnsubj↓ ⊙

∑
w⃗∈ C

w⃗

where C is the vector set of those nouns that are in the direct ob-
ject role of chase (except the noun mouse). The new vector resulting
by adding the vectors of C is combined by multiplication (intersec-
tion) with the contextualized dependent vector, ⃗catnsubj↓, to build the
contextualized selectional preferences. In more intuitive terms, the se-
lectional preferences built in Equation 8 are constituted by selecting
the contexts of the nouns appearing as direct object of chase, which
are also part of cat after having been contextualized by the verb at the
subject position.
The dependency-by-dependency functional application results

in three contextualized word senses: ⃗catnsubj↓, ⃗chasensubj↑+dobj↑ and
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⃗mousensubj↓+dobj↓. They all together represent the meaning of the sen-
tence in the left-to-right direction. Notice that ⃗catnsubj↓ is not a fully
contextualized vector: it was only contextualized by the verb, but not
by the direct object noun. In order to fully contextualize the subject,
we need to initialize the composition process in the other way around.
In the opposite direction, from right-to-left, the incremental pro-

cess starts with the direct object dependency:
head↑(dobj, ⃗chase, ⃗mouse◦) = ⃗chasedobj↑
dep↓(dobj, ⃗chase◦, ⃗mouse) = ⃗mousedobj↓
head↑(nsubj, ⃗chasedobj↑, ⃗cat◦) = ⃗chasedobj↑+nsubj↑
dep↓(nsubj, ⃗chase◦dobj↓, ⃗cat) = ⃗catdobj↓+nsubj↓(9)

In Equation 9, the verb chase is first restricted by mouse at the di-
rect object position, and then by its subject cat. In addition, this noun
is restricted by the vector ⃗chase

◦
dobj↓, which represents the contextu-

alized selectional preferences built by combining ⃗mousedobj↓ with the
vectors of the nouns that are in the subject position of chase (except
cat). This new compositional vector represents a very contextualized
nominal concept: the cat that chased a mouse. The word cat and its spe-
cific sense can be related to anaphorical expressions by making use
of co-referential relationships at the discourse level: e.g., pronoun it,
other definite expressions (that cat, the cat, ...), and so on. Notice that
this compositional vector might also be used to represent the contextu-
alized sense of a nominal restricted by a relative clause. For this type of
construction, it is worth paying special attention to the work reported
in Sadrzadeh et al. (2013), where the authors describe a tensor-based
method to represent the compositional meaning of relative pronouns.
The meaning of a sentence is ideally represented by the full con-

textualization of its constituent words. Yet, as has been said, not all
words in a sentence can be fully contextualized using left-to-right
combination. For instance, to fully contextualize the noun subject
⃗catdobj↓+nsubj↓ within the subject-verb-object sentence the cat chased a
mouse, the iterative process must follow the right-to-left direction:
first, the noun vector ⃗mouse is combined with chasing preferences on
the object ( ⃗chase◦). Then, the resulting vector of the previous com-
bination is used to generate the restricted verb preferences on the
subject ( ⃗chase◦dobj↓), which are combined with the noun vector ⃗cat to
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eventually return the fully contextualized vector of the subject noun.
As in standard compositional approaches, vectors are combined with
pointwise multiplication. The main difference with regard to standard
vector combination is that our compositional strategy also relies on
vectors representing selection preferences. Both selection preferences
and compositional (contextualized) vectors are generated dynamically
during word combination.
The order of function application is flexible since it is not con-

strained by the type of dependencies or by the arity of function words
(mainly verbs). A particular order may be applied by principles or con-
straints that are independent of the syntactic structure. The constraints
that specify a particular order may be defined by external factors. For
instance, if the objective is to simulate a psycholinguistic notion of in-
crementality, where the meaning of words is gradually elaborated as
they are syntactically integrated into new dependencies, then the best
option is to implement the left-to-right algorithm. However, nothing
prevent us implementing the complementary right-to-left direction in
order to compare the contextualized senses generated by using both
directions (as we will show later in the experimental section). Instead
of applying all possible orders, which has high computational cost,
it would be possible to apply external constraints and principles to
impose a very restricted order. One of these contraints might be, for
instance, to consider the degree of ambiguity of lexical units: we could
apply first those dependencies containing less ambiguous words with
more semantically homogenous vectors; and then use these in a sub-
sequent step to disambiguate more heteregenous word vectors (i.e.,
more ambiguous ones) (Gamallo 2008).
In the sentence the coach drives the team, this contraint should lead

us to interpret drives the team before the coach drives, since team is less
ambiguous than coach. By contrast, in the team hired a coach, the or-
der should be the other way around following the same principle. In a
more complex sentence such as I lost my computer mouse, the same prin-
ciple would force us to interpret first the less ambiguous noun-noun
dependency between computer and mouse before the more ambiguous
relation between lost and mouse. This ambiguity-based constraint may
be seen as a general procedure to word sense discrimination. Yet, the
definition and implementation of specific contraints and principles re-
stricting function application is beyond the scope of the current work.
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Finally, it is worth noticing that the compositional objects we
build using dependencies are not flat representations such as those de-
rived from typical dependency-based analysis. The order of functional
application is meaningful and allows us to build vectors at different
constituency levels in terms of immediate constituent analysis. A crit-
icism of dependency analysis is that it is not able to deal with the dif-
ferent interpretations obtained from expressions like fastest American
runner and American fastest runner. As both expressions are analyzed
with the same flat dependency-based structure (fastest and American
are dependent of runner), it would not be possible to derive differ-
ent semantic entailments from the same syntactic analysis. However,
in our dependency-based model, the order in which the functions are
applied allows us to build several compositional entities, which simu-
late the construction of different constituent units.

3 experiments

We have designed and developed a system, DepFunc, based on the
method described in the previous section. Although the method can
potentially be applied to any sentence, regardless of its syntactic struc-
ture, the limitations of the implementation and the complexity of the
task have led us to apply it only to expressions with a predetermined
and fixed structure: adjective-noun, noun-verb, and noun-verb-noun.
Two different types of experiments were carried out to evaluate

the performance of our system. The specific objective of the first exper-
iment (Section 3.1) is to compare the distributional similarity between
compositional vectors of composite expressions and corpus-observed
vectors of the same composite expressions. If they are similar, our
vectors predicted by compositionality can be considered correct be-
cause they are close to standard vectors built with observed data. We
compared our strategy with the one defined in Baroni and Zamparelli
(2010), which also carried out a similar evaluation. Experiments were
made with ADJ-NOUN (to abbreviate: AN) and NOUN-VERB expressions
(to abbreviate: NV).
In the second type of experiments (Section 3.2), we use test

datasets to measure the correlation between human similarity judge-
ments and similarity coefficients computed with our compositional
expressions. In Subsection 3.2.2, we measure the quality of composi-
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tional vectors built from NV composite expressions, using as gold stan-
dard the test dataset provided by Mitchell and Lapata and described
in (Mitchell and Lapata 2008). In Subsection 3.2.3, we check the qual-
ity of more complex composite expressions, namely NOUN-VERB-NOUN
constructions (NVN) incrementally composed with nsubj and dobj de-
pendencies.
3.1 Compositional and corpus-observed vectors
As in Baroni and Zamparelli (2010), the experiment consists in com-
paring the distributional similarity between two different types of vec-
tors associated with composite expressions: compositional vectors and
corpus-observed vectors. Compositional vectors are those built follow-
ing the compositional method described in the previous section. They
are thus model-generated vectors constructed according to the corpus-
based observed frequencies of their constituents. Corpus-observed vec-
tors of composite expressions are constructed with the frequencies as-
sociated with the whole expression. They are called holistic vectors
by Turney (2013). We should expect that the compositional and the
holistic vectors built for the same composite expression should be sim-
ilar (Baroni and Zamparelli 2010). More precisely, we expect that
the predicted distribution computed by our compositional approach
should yield similar vectors to those built with real distributions cal-
culated from real-world corpora. For instance, if we build a compo-
sitional vector for red car according to the frequency of its parts in
a compositional way, the resulting vector should be similar to the
vector constructed by just observing the co-occurrences of the com-
posite expression as a whole. Notice that there are exceptions to that,
namely those cases where the meaning of the compound expression
is not compositional (e.g., collocations, frozen expressions, idioms,
and so on).
3.1.1 Corpus and distributional models
In order to build the compositional and holistic (corpus-observed)
vectors, we made two partitions from the English Wikipedia (dump
file of November 2015), with 100M tokens each. The first partition
was used to build the compositional vectors (and to train learning
models) while the second partition was used for extracting corpus-
observed vectors as well as for testing and evaluation. Word vec-
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tors were built by computing their co-occurrences in lexico-syntactic
contexts. We used the dependency parser DepPattern (Gamallo and
Garcia 2018; Gamallo 2015) to perform syntactic analysis. Three dif-
ferent types of vectors were built from the corpus: nominal, verbal,
and adjectival vectors. Then, for each word we filtered out irrelevant
contexts using simple count-based techniques inspired by those de-
scribed in Gamallo (2017a), where matrices are stored in hash ta-
bles with only non-zero values. More precisely, the association be-
tween words and their contexts were weighted with the Dunning’s
likelihood ratio (Dunning 1993) and then, for each word, only the N
contexts with highest likelihood scores were stored in the hash table
(where N = 500). So, the remaining contexts were removed from the
hash (whereas in standard vector/matrix representations, instead of
removing contexts we should assign them zero values). This filtering-
based approach turned out to be more efficient than other strate-
gies based on dimensionality reduction such as Singular Value De-
composition (Gamallo and Bordag 2011). In addition, our approach
requires explicit vector spaces, which are more linguistically trans-
parent than dense representations such as neural-based word embed-
dings.
Not all words were selected for computing similarity; in particu-

lar, we selected those nouns, verbs, and adjectives occurring in more
than 100 different contexts. The experiments were made with lemmas.
Experiments were performed with two types of composite units:

AN expressions in the nominal space and NV in the verbal space. Our
specific task consists of selecting a list of both AN and NV compos-
ites, building their compositional and corpus-observed vectors, and
checking whether each particular compositional vector is similar to
its corresponding corpus-observed vector. To avoid possible bias be-
tween predicted and observed occurrences, corpus-observed vectors
were derived from the second partition of the corpus, while compo-
sitional vectors were built from the first partition. To build composi-
tional vectors, the strategy defined in the previous section was imple-
mented in Perl giving rise to the software DepFunc.
3.1.2 Evaluation
The list of target composites for evaluation was created as follows. In
the second partition with 100M tokens, we selected the composites
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with more than 50 different contexts: 6676 ANs and 3004 NVs. Then,
we filtered out those composites with at least one constituent word
which does not appear in the matrices created from the first corpus
partition (since these constituent words had fewer than 100 lexico-
syntactic contexts in the first partition). Finally, we obtained a test
list of 1,841 ANs and another of 767 NVs, which were subsequently
manually revised in order to filter out ill-formed expressions. We ob-
tained more AN composites than those of NVs because the nominal
space has a higher number of entities and lexico-syntactic contexts
than the verbal space.
Then, we built, on the one hand, the compositional vectors of

the selected 1,841 ANs and 767 NVs using the first corpus partition
and, on the other hand, the corpus-observed vectors of the same com-
posites using the quantitative information of the second partition.
The new vectors are added to both the nominal and verbal matri-
ces. In total, the nominal matrix contains 22,025 single nouns and
1,841×2 AN composites, while the verbal matrix consists of 5,131
single verbs and 767×2 NV composites. Next, all possible pairs were
generated and cosine similarity was computed in each matrix. For
each corpus-observed composite, we created a ranked list of the N
most similar expressions, and finally, we verified whether its corre-
sponding compositional composite is found in the list and recorded its
ranking.
We define hit to mean an instance of finding the compositional

vector of a composite expression in the ranked list of its correspond-
ing corpus-observed vector. For instance, if the compositional vector
of “red car” is in the top N list of similar candidates of the corpus-
observed vector associated to the same expression, we count one hit.
To compare our model with a state-of-the-art system, we used the

software DISSECT (Dinu et al. 2013a)2 The software was used to train
and apply the compositional functions described in Baroni and Zam-
parelli (2010), taking as input the first (part-of-speech tagged) corpus
partition and the lists of test composites introduced above. The train-
ing process was performed by selecting all the adjectives and verbs of
the test list and all their occurrences with those nominal arguments

2http://clic.cimec.unitn.it/composes/toolkit/introduction.
html
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that are not in the test list. To compute word-context co-occurrences,
we defined the contexts of a word as the bag-of-lemmas extracted from
a window of size 5 (two context words both to the left and to the right
of the target word). Co-occurrence matrices were reduced to 300 di-
mensions by making use of Singular Value Decomposition. Similarity
between vectors was computed with the cosine measure. The function
we have used for training the model is LexFunc (Lexical Function),
which gave rise to the best results in the experiments described in
Baroni and Zamparelli (2010) and Dinu et al. (2013b).
The final results are shown in Tables 3 and 4. Each system is

evaluated with regard to different values of K: 10, 50 and 100. For
each value, we count the proportion of hits to compute precision at
K, noted P@K. For instance P@10 is the number of hits within the 10
most similar expressions divided by the total number of evaluated ex-
pressions. The other measure, ranking_average, stands for the average
of the ranking positions of all hits within the ranked list with the 100
most similar expressions. For instance, if 3 hits were found in rankings
25, 50, and 75, the ranking_average is 50. This evaluation is inspired
by standard information retrieval metrics.
Four strategies are compared: what we call lower-bound is just the

by chance probability of finding hits at each K level. The hits found
at K = 100 tend to occur at position 50 on average. The baseline strat-
egy consists in associating the compositional vector to the head vec-
tor. For instance, the baseline compositional vector of “red car” would
be the vector of the head noun car, while the baseline compositional
vector of “horses run” would be the vector of the head verb run. This
is a very reliable and sound baseline because there is a straight se-
mantic relationship between any composite expression and its head:
the concept designated by the head tends to be the direct hypernym
of the concept designated by the composite expression. So, “red car”
(hyponym) must be closely related to car (hypernym). In the experi-
ments described by Baroni and Zamparelli (2010), this baseline was
the third best strategy out of six evaluated systems, outperforming the
approaches introduced by Mitchell and Lapata (2009) and Guevara
(2010). The system denoted LexFunc represents the best compositional
system, known as alm and based on the Lexfunc model, described in
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Baroni and Zamparelli (2010).3 These two systems are compared with
our compositional approach: DepFunc (head). It is worth noting that,
in these experiments, the evaluation is just focused on the contextu-
alized heads of compositional vectors. The reason for this is that the
syntactic contexts of holistic expressions are found in the space of the
heads: AN expressions are nouns and NVs are verbs. So, in order to
compare compositional with holistic expressions, we have to consider
that compositional ANs are contextualized nouns and compositional
NVs are contextualized verbs.

system P@10 P@50 P@100 ranking_average
lower-bound 0% 0.2% 0.4% 50

baseline (noun) 11.74% 31.36% 42.95% 33.90

DepFunc (head) 36.39% 53.01% 60.32% 17.69

LexFunc 21.36% 35.79% 42.87% 22.43

Table 3:
Percentages of hits
(precision at 10, 50 and
100) and ranking average
in the ranked lists of AN
expressions

system P@10 P@50 P@100 ranking_average
random 0.1% 0.7% 1.5% 50

baseline (verb) 6.21% 23.16% 35.02% 37.74

DepFunc (head) 17.51% 37.85% 45.76% 25.64

LexFunc 24.54% 35.24% 39.81% 24.23

Table 4:
Percentages of hits
(precision at 10, 50 and
100) and ranking average
in the ranked lists of NV
expressions

Tables 3 and 4 show the results of AN and NV expressions.
Our compositional approach, DepFunc (head), clearly outperforms the
baseline strategies for both AN and NV. In addition, it also outperforms
LexFunc for AN. However, the differences between LexFunc and Dep-
Func are not so sharp for NV. In fact, DepFunc finds more hits within
larger ranked lists (50 and 100), but those found by LexFunc are in
better ranks, being even more precise at K = 10.
The main problem of this evaluation is that it does not allow us to

take advantage of the contextualization of the dependent word. This
will be solved in the following experiments.

3Additive andmultiplicative models implemented in DISSECTwere also eval-
uated, but the results obtained were below the baseline.
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3.2 Correlation with human judgements
In the following experiments, we compare the similarity between pairs
of compositional vectors representing composite expressions with the
similarity given by annotators to those expressions. In this case, we
will compare all contextualized words of the expressions instead of
only considering the word heads.
3.2.1 Corpus and distributional models
In these experiments, our working corpus consists of both the English
Wikipedia (dump file of November 20154) and the British National
Corpus (BNC)5. In total, the corpus contains about 2.5 billion word
tokens, which were analysed with DepPattern.
Word vectors were built by computing their co-occurrences in

syntactic contexts. Two different types of vectors were built from the
corpus: nominal and verbal vectors. Distributional matrices were built
using the same strategy as the one defined for the previous experiment.
This process of matrix reduction resulted in the selection of

330 953 nouns (most of them proper names) with 236,708 different
nominal contexts; and 6,618 verbs with 140,695 different verbal con-
texts. As the contexts of nouns and verbs are not compatible, we cre-
ated two different vector spaces. Words and their contexts were stored
in two hashes, one per vector space, which represent matrices contain-
ing only non-zero values. Cosine similarity was calculated for pairs of
composite expressions.
3.2.2 NV composite expressions
The test dataset by Mitchell and Lapata (2008) comprises a total of
3600 human similarity judgements. Each item consists of an intransi-
tive verb and a subject noun, which are compared to another NV pair
combining the same noun with a synonym of the verb that is chosen
to be either similar or dissimilar to the verb in the context of the given
subject. For instance, child stray is related to child roam, roam being a
synonym of stray. The dataset was constructed by extracting NV com-
posite expressions from the British National Corpus (BNC) and verb
synonyms from WordNet (Miller et al. 1990). To evaluate the results

4https://dumps.wikimedia.org/enwiki/
5http://www.natcorp.ox.ac.uk
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of our systems, Spearman correlation is computed between individual
human similarity scores and the systems’ predictions.
As the objective of the experiment is to compute the similarity

between pairs of NV composite expressions, we are able to compare
the similarity not only between the contextualized heads of two NV
composite expressions, but also between their contextualized depen-
dent expressions. So, we built compositional vectors using not only the
head function, but also the dependent one. For instance, we compute
the similarity between eye flare vs. eye flame by comparing first the
verbs flare and flame when combined with eye in the subject position
(head function), and by comparing how (dis)similar the noun eye is
when combined with both the verbs flare and flame (dependent func-
tion). In addition, as we are provided with two similarities (head and
dep) for each pair of compared expressions, it is possible to compute a
new similarity measure by averaging head and dep, and what we call
head+dep system.
Table 5 shows the Spearman’s correlation values (ρ) obtained by

our compositional strategy (DepFunc). We compare our results to the
Lexfunc algorithm (Baroni and Zamparelli 2010), which is the state-
of-the-art method for this dataset according to the ρ score reported
in Dinu et al. (2013b) using a corpus consisting of approximately
2.8 billion tokens compiled from Wikipedia, BNC and ukWaC (Ba-
roni et al. 2009). In the first row of DepFunc, we show the ρ value
obtained by our combinatorial similarity measure (head+dep). The
ρ score reaches 0.32, which is higher than using only head similarity
(head) or dep similarity (dep). This shows that the similarity obtained
by combining the head and dependent functions is more accurate than
that obtained by using only one type of compositional function. The
head+dep similarity strategy based on DepFunc outperforms the Lex-
func system (0.26). The baseline method we have implemented (first

system ρ size of training corpus
non-compositional (V) 0.11 2.5B tokens: Wiki & BNC
DepFunc (head+dep) 0.32 2.5B tokens: Wiki & BNC
DepFunc (head) 0.27 2.5B tokens: Wiki & BNC
DepFunc (dep) 0.31 2.5B tokens: Wiki & BNC
Lexfunc (Dinu et al. 2013) 0.26 2.8B tokens: Wiki, BNC & ukWaC

Table 5:
Spearman’s
correlation for
intransitive
expressions using
the benchmark
by Mitchell and
Lapata (2008)
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row in Table 5) is a non-compositional strategy just based on the simi-
larity between the head verbs within the NV pairs. In this case, all the
compositional methods clearly outperform this basic strategy. Finally,
the non-compositional similarity between the noun subjects has not
been computed because the nouns of each NV pair are identical in the
current dataset.
3.2.3 NVN composite expressions
The last experiment consists of evaluating the quality of compositional
vectors built by means of the consecutive application of head and de-
pendency functions associated with nominal subject and direct object.
The experiment is performed on the dataset developed in Grefenstette
and Sadrzadeh (2011a). The dataset was built using the same guide-
lines as Mitchell and Lapata (2008), using transitive verbs paired with
subjects and direct objects: NVN composites.
Given our compositional strategy, we are able to composition-

ally build several vectors that somehow represent the meaning of the
whole NVN composite expression. Take the expression the coach runs
the team. If we follow the left-to-right strategy (noted nv-n), at the
end of the compositional process, we obtain two fully contextualized
senses:
nv-n_head The sense of the head run, as a result of being contextual-
ized first by the preferences imposed by the subject and then by
the preferences required by the direct object. We note nv-n_head
the final sense of the head in a NVN composite expression follow-
ing the left-to-right strategy.

nv-n_dep The sense of the object team, as a result of being contextual-
ized by the preferences imposed by run previously combined with
the subject coach. We note nv-n_dep the final sense of the direct
object in a NVN composite expression following the left-to-right
strategy.
If we follow the right-to-left strategy (noted n-vn), at the end of

the compositional process, we obtain two fully contextualized senses:
n-vn_head The sense of the head run as a result of being contextual-
ized first by the preferences imposed by the object and then by
the subject.
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n-vn_dep The sense of the subject coach, as a result of being contex-
tualized by the preferences imposed by run previously combined
with the object team.
Table 6 shows the Spearman’s correlation values (ρ) obtained by

all the different variations built by our system DepFunc. The best score
was achieved by averaging the head and dependent similarity values
derived from the n-vn (right-to-left) strategy. Let us note that, for NVN
composite expressions, the left-to-right strategy seems to build less
reliable compositional vectors than the right-to-left counterpart. Note
too that the broader model (n-vn+nv-n) resulting from combining the
two strategies does not improve the results of the best one (n-vn). This
model, n-vn+nv-n, is computed by averaging the similarities of both
n-vn_head+dep and nv-n_head+dep. More precisely, it is the result of
averaging the four fully contextualized vectors:
• nv-n_head: left-to-right full contextualization of the verb,
• nv-n_dep: left-to-right full contextualization of the object noun,
• n-vn_head: right-to-left full contextualization of the verb,
• n-vn_dep: right-to-left full contextualization of the subject noun.

system ρ

non-compositional (V) 0.27

DepFunc (nv_head) 0.33

DepFunc (nv_dep) 0.19

DepFunc (vn_head) 0.36

DepFunc (vn_dep) 0.38

DepFunc (nv-n_head+dep) 0.35

DepFunc (nv-n_head) 0.33

DepFunc (nv-n_dep) 0.20

DepFunc (n-vn_head+dep) 0.46

DepFunc (n-vn_head) 0.36

DepFunc (n-vn_dep) 0.42

DepFunc (n-vn+nv-n) 0.44

Grefenstette and Sadrzadeh (2011) 0.28

Hashimoto and Tsuruoka (2014) 0.43

Polajnar et al. (2015) 0.35

Table 6:
Spearman’s correlation
for transitive expressions
using the benchmark
by Grefenstette and Sadrzadeh (2011)
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It is worth mentioning that the best fully contextualized vec-
tor is the subject noun generated with the right-to-left algorithm
(n-vn_dep = 0.42), which outperforms the two contextualized verb
senses: n-vn_head and nv-n_head. This result was not expected since the
sense of the verb represents the meaning of the syntactic root of the
sentence, which is the best connected word in the syntactic tree and,
by extension, the best positioned word to represent the core mean-
ing of the sentence. However, the fact that the subject noun works
so well is conceptually possible since any fully contextualized vector
may represent the meaning of the whole sentence from a specific point
of view.
The score value obtained by our n-vn_head+dep right-to-left strat-

egy outperforms the three other systems tested using this dataset:
Grefenstette and Sadrzadeh (2011b) and Polajnar et al. (2015), which
are two works based on the categorical compositional distributional
model of meaning of Coecke et al. (2010), and the neural network
strategy described in Hashimoto and Tsuruoka (2015).
At the top of Table 6, we show the non-contextual baseline we

have created for this dataset: similarity between single verbs. No test
has been made for subject and object nouns since they are identical
in each pair of transitive clauses, as was the case with the subject
nouns in the dataset of intransitive expressions. In the current exper-
iment, the correlation ρ of the non-compositional baseline is much
higher than in Table 5. This might explain why the best correlation
value of the compositional strategy is also much higher for this dataset
(0.46 vs. 0.32). The table also shows four intermediate values resulting
from comparing partial compositional constructions: the noun-verb
(nv_head and nv_dep) and the verb-noun (vn_head and vn_dep) combi-
nations. Two interesting remarks can be made from these values when
they are compared with the full compositional constructions.
First, there is no clear improvement of performance if we compare

the full compositional information of the two transitive constructions
with the partial combinations. On the one hand, the full nv-n construc-
tion does not improve the scores obtained by the partial intransitive
nv. On the other hand, n-vn performs slightly better than vn but only
in the case of the dependent function which makes use of contextu-
alized selectional preferences: n-vn_dep = 0.42 / vn_dep = 0.38. The
low performance at the second level of composition might call into
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question the use of contextualized vectors to build still more contex-
tualized senses. The scarcity problem derived from the recursive com-
bination of contextualized vectors is an important issue which could
be resolved by incorporating more text/additional corpora, and which
we should analyze with more complex evaluation tests.
The second remark is about the difference between the two al-

gorithms: left-to-right and right-to-left. The scores achieved by the
left-to-right algorithm (nv, nv-n) are clearly below those achieved by
right-to-left (vn, n-vn) . This might be due to the weak semantic mo-
tivation of the selectional preferences involved in the subject depen-
dency of transitive constructions in comparison to the direct object. In
fact, right-to-left and left-to-right function application produces sub-
stantially different vectors because each algorithm corresponds to a
particular hierarchy of constituents. Change of constituency implies
different semantic entailments; for example, consider the different lev-
els of constituency of noun modifiers (e.g. fastest American runner ̸=
American fastest runner). Finally, the poor results of nv in this dataset
compared with those obtained in Table 5 is explained because the
subject role is less meaningful in transitive clauses than in intransitive
ones. The subject of intransitive clauses is assigned a complex semantic
role that tends to merge the notions of agent and patient. By contrast,
the subject of transitive constructions tends to be just the agent of an
action with an external patient.

4 related work

Several models for compositionality in vector spaces have been pro-
posed in the last decade, and most of them use bag-of-words as basic
representations of word contexts. As has been said in the introduc-
tion, the basic approach to composition, explored by Mitchell and La-
pata (2008, 2009, 2010), is to combine vectors of two syntactically re-
lated words with arithmetic operations: addition and component-wise
multiplication. The additive model produces a sort of union of word
contexts, whereas multiplication has an intersective effect. According
to Mitchell and Lapata (2008), component-wise multiplication per-
forms better than the additive model. However, in Mitchell and Lapata
(2009, 2010), these authors explore weighted additive models giving
more weight to some constituents in specific word combinations. For
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instance, in a noun-subject-verb combination, the verb is assigned a
higher weight because the whole construction is closer to the verb
than to the noun. Other weighted additive models are described in
Guevara (2010) and Zanzotto et al. (2010). Another work using these
basic composition operations is reported in Reddy et al. (2011). In this
work, the compositional model is enriched with a notion close to our
concept of contextualization, which the authors call dynamic prototype,
but only applied to noun-noun compounds. The model represents each
constituent by a prototype vector which is built dynamically by acti-
vating only the contexts considered to be relevant with regard to the
other constituent. All these models share a common trait: they define
composition operations solely for pairs of words. Their main draw-
back is that they do not propose a more systematic model accounting
for all types of semantic composition. They do not focus on the logical
aspects of the functional approach underlying compositionality.
As has been said before, other distributional approaches develop

sound compositional models of meaning where functional words are
represented as high-dimensional tensors (Coecke et al. 2010; Baroni
and Zamparelli 2010; Grefenstette et al. 2011; Krishnamurthy and
Mitchell 2013; Kartsaklis and Sadrzadeh 2013; Baroni 2013; Baroni
et al. 2014). This idea is mostly based on Combinatory Categorial
Grammar and typed functional application inspired by Montagovian
semantics. The functional approaches relying on Categorial Grammar
distinguish the words denoting atomic types, which are represented
as vectors, from those that denote compositional functions applied to
vectors. By contrast, in our compositional approach, we show that
function application is not associated with predicate words such as ad-
jectives or verbs, but rather with binary dependencies. Our semantic
space does not map the syntactic structure of Combinatory Categorial
Grammar but that of Dependency Grammar. This way, we avoid the
troublesome high-order tensor representations of verbs with n-arity
arguments.
Some of the approaches cited above induce the compositional

meaning of the functional words from examples adopting regression
techniques commonly used in machine learning (Baroni and Zampar-
elli 2010; Krishnamurthy andMitchell 2013; Baroni 2013; Baroni et al.
2014). In our approach, by contrast, functions associated with depen-
dencies are just basic arithmetic operations on vectors, as in the case
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of the arithmetic approaches to composition described above (Mitchell
and Lapata 2008). Arithmetic approaches are easy to implement and
produce high-quality compositional vectors, whichmakes them a good
choice for practical applications (Baroni et al. 2014).
The other compositional approaches based on Categorial Gram-

mar use tensor products for composition (Coecke et al. 2010; Grefen-
stette et al. 2011). As has been said in the introduction, at least two
problems arise with tensor products. First, they result in an informa-
tion scalability problem, since tensor representations grow exponen-
tially as the phrases grow longer (Turney 2013). And second, tensor
products did not perform as well as component-wise multiplication in
the experiments made by Mitchell and Lapata (2010). To improve the
performance of the composition process, the tensor-based approach
reported in Kartsaklis et al. (2014) is provided with an explicit dis-
ambiguation step prior to composition. In Paperno et al. (2014), the
authors try to partially overcome the scalability problem of tensors
by representing a functional word as a vector plus an ordered set of
matrices, with one matrix for each argument the function takes.
There are a few works using vector spaces structured with syntac-

tic information which, as in our approach, are not based on n-order
tensors. Thater et al. (2010) distinguish between first-order and second-
order vectors in order to allow two syntactically incompatible vectors
to be combined. Similarly, in Melamud et al. (2015) the second-order
vectors are called “substitute vectors”. The notion of second-order (or
substitute) vector is close to our concept of indirect vector, while their
first-order vector corresponds to our direct vector. However, there are
important differences with regard to our approach. In (Thater et al.
2010), the combination of a first-order with a second-order vector
returns a second-order vector, which can be combined with other
second-order vectors. This could require the resort to third-order (or
n-order) vectors at further levels of vector composition. By contrast,
in our approach, any vector combination always returns a first-order
(i.e. direct) vector, and we only permit compositional combinations
between a direct vector and an indirect one. This simplifies the com-
positional process at any level of analysis.
The work by Thater et al. (2010) is inspired by that described in

Erk and Padó (2008) and Erk and Padó (2009). Erk and Padó (2008)
proposes a method in which the combination of two words, a and b,
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returns two vectors: a vector a’ representing the sense of a given the
selectional preferences imposed by b, and a vector b’ standing for the
sense of b given the (inverse) selectional preferences imposed by a.
The main problem is that this approach does not propose any com-
positional model for sentences. Its objective is to simulate word sense
disambiguation, but not to model semantic composition at any level
of analysis. In Erk and Padó (2009), the authors briefly describe an
extension of their model by proposing a recursive application of the
compositional function. However, they only formalize the recursive
application when the composite expression consists of two dependents
linked to the same head. So, they explain how the head is contextu-
alized by its dependents, but not the other way around. They do not
model the influence of context on the selectional preferences. In other
terms, their recursive model does not make use of contextualized se-
lectional preferences. By contrast, in our approach, selectional prefer-
ence are contextualized recursively. This is formalized in Equation 8
(Section 2.3).
Thater et al. (2010) took up the basic idea from Erk and Padó

(2008) which consists in exploiting selectional preference informa-
tion for contextualization and disambiguation. However, they did not
borrow the idea of splitting the output of a word combination into
two different vectors (one per word). As far as we know, no fully and
coherent compositional approach has been proposed on the basis of
the interesting idea of returning two contextualized vectors per com-
bination. Our approach is an attempt to join the main ideas of these
syntax-based models (namely, selectional preferences as indirect vec-
tors and two returning senses per word combination) into an entirely
compositional model. In sum, we generalize the model introduced by
Erk and Padó (2008) to include dependencies as compositional op-
erations allowing us to interpret any composite expression with any
number of word constituents. Finally, it is important to point out that
there is another relevant difference between our work and that re-
ported in Erk and Padó (2008), Thater et al. (2010), andMelamud et al.
(2015). While they tested their systems on a task of determining word
meaning in context by lexical substitution, to evaluate our system we
performed experiments in the task of measuring phrase similarity.
A very similar work to our compositional approach has been re-

ported in Weir et al. (2016). The authors also state that distributional
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composition is a matter of integrating the meaning of each of the
words in the phrase. The main difference is the type of context they
use to build word vectors. Each word occurrence is modelled by what
they call “anchored packed dependency tree”, which is a dependency-
based graph that captures the full sentential context of the word. The
main drawback of this context approach is its critical tendency to build
very sparse word representations.
Finally, recent works make use of deep learning strategies to

build compositional vectors, such as recursive neural network mod-
els (Socher et al. 2012; Hashimoto and Tsuruoka 2015), which share
with our model the idea that in the composition of two words both
words modify each other’s meaning. Similarly, the bidirectional recur-
sive neural network reported in Irsoy and Cardie (2014) computes a
context vector for each word. It is also worth noting the deep learning
syntax-based compositional version of the C-BOW algorithm (Pham
et al. 2015).

5 conclusions

In this paper, we described a distributional model to contextualize
word meaning in composite expressions based on a syntactically struc-
tured vector space. To avoid the different syntactic environments asso-
ciated with two syntactically dependent words, we proposed to com-
bine direct with indirect vectors, which are compatible and can be
merged into a new direct vector. An indirect vector represents the se-
lectional preferences that one word uses to contextualize the direct
vector of the other word. The combination of two related words gives
rise to two vectors which represent the senses of the two contextual-
ized words. This process can be repeated until no syntactic dependency
is found in the analyzed composite expression. The compositional in-
terpretation of a composite expression builds the sense of each con-
stituent word in a recursive and incremental way.
Syntactic dependencies are endowed with a combinatorial mean-

ing. Characterizing dependencies as compositional devices has impor-
tant consequences on the way in which the process of semantic in-
terpretation is considered. First, dependencies are binary functions on
vectors while all content words are vectors. Vectors of content words
(as well as collocations and idioms) can be constructed from a cor-
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pus directly, while vectors of composite expressions are the result of
composition operations driven by dependencies. Second, the contex-
tualization process is performed in an incremental way dependency
by dependency. It starts with very ambiguous vectors associated with
the constituent words before composition and results in more compact
and less ambiguous vectors associated with the contextualized words.
And third, as syntactic dependencies are conceived here as semantic
operations, syntax becomes a semantic participant involved in the in-
terpretation process (Langacker 1991).
Our compositional model tackles the problem of information scal-

ability. This problem states that the size of semantic representations
should grow in proportion to the amount of information that they are
representing. If the size of the contextualized vectors is fixed, eventu-
ally there will be information loss. Besides, the size of vector repre-
sentations should not grow exponentially. In our approach, even if the
size of the contextualized vectors is fixed, there is no information loss
since each word of the composite expression is associated to a com-
positional vector representing its context-sensitive sense. In addition,
the contextualized vectors do not grow exponentially since their size
is fixed by the vector space: they are all first-order tensors.
Substantial problems still remain unsolved. For instance there is

no clear boundary between compositional and non-compositional ex-
pressions (collocations, compounds, or idioms). It seems to be obvious
that vectors of full compositional units should be built by means of
compositional operations and predictions based on their constituent
vectors. It is also evident that vectors of entirely frozen expressions
should be totally derived from corpus co-occurrences of the whole ex-
pressions without considering internal constituency. However, there
are many expressions, in particular collocations (such as save time, go
mad, heavy rain, etc.) which can be considered as both compositional
and non-compositional. In those cases, it is not clear which is the best
method to build their distributional representation: predicted vectors
by compositionality; or corpus-observed vectors of the whole expres-
sion.
Another problem that has not been considered is how to repre-

sent the semantics of some grammatical words, namely determiners
and auxiliary verbs (i.e., noun and verb specifiers). This might require
a different functional approach, probably closer to the work described
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by Baroni et al. (2014), which defines functions as linear transforma-
tions on vector spaces. A solution might be similarly inspired by Gupta
et al. (2015), where the authors analyze the distributional features as-
sociated with referential expressions.
An obvious drawback of the recursive strategy is the scarcity that

results from the iterative application of several contextualizations to
the same word vector. The more complex the dependency structure,
the fewer occurrences there will be to compute the in-context se-
lectional preferences. This problem also underlies other similar ap-
proaches based on transparent and interpretable distributional mod-
els, such as that reported in Weir et al. (2016). Kober et al. (2016) pro-
posed a solution to this problem. Their proposal involves explicitly
inferring un-observed co-occurrences using the distributional neigh-
borhood. More precisely, in order to transform a sparse word vector
w into a new enriched vector w′, the algorithm iterates over all word
vectors w in a given distributional model M , and adds the vector repre-
sentations of the nearest neighbors, determined by cosine similarity, to
the representation of the new enriched word vector w′. In future work,
we will carry out new experiments by using this strategy on similarity
datasets containing phrases or sentences with more complex syntactic
structures.
Among the most fundamental applications of compositional mod-

els are paraphrasing and textual entailment. For instance, by making
use of sentence similarity, we should be able to infer that the sen-
tence A stadium craze is sweeping the country entails A craze is covering
the nation, but not A craze is brushing the nation (Garrette et al. 2014).
These applications build compositional vectors from co-occurrences
observed in monolingual corpora. However, if the same methodol-
ogy is applied to acquire phrase and sentence similarity from com-
parable corpora, it could be possible to learn translation equivalents
of composite units. This could lead to new machine translation tech-
niques.
In future work, we will try to define more complex semantic

word models by combining relation-based features (from WordNet or
other lexical resources) with distributional-based representations. We
will also explore the link between distributional representations and
model-theoretical objects (entities, events, and so on), by considering
bridging concepts such as ideal distributions.
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The code for DepFunc and the distributional models used in the
experiments are made freely available.6
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We present a model for predicting inflected word forms based on mor-
phological analogies. Previous work includes rule-based algorithms
that determine and copy affixes from one word to another, with lim-
ited support for varying inflectional patterns. In related tasks such as
morphological reinflection, the algorithm is provided with an explicit
enumeration of morphological features which may not be available in
all cases. In contrast, our model is feature-free: instead of explicitly
representing morphological features, the model is given a demo pair
that implicitly specifies a morphological relation (such as write:writes
specifying infinitive:present). Given this demo relation and a query word
(e.g. watch), the model predicts the target word (e.g. watches). To ad-
dress this task, we devise a character-based recurrent neural network
architecture using three separate encoders and one decoder.

Our experimental evaluation on five different languages shows
that the exact form can be predicted with high accuracy, consistently
beating the baseline methods. Particularly, for English the prediction
accuracy is 94.85%. The solution is not limited to copying affixes from
the demo relation, but generalizes to words with varying inflectional
patterns, and can abstract away from the orthographic level to the
level of morphological forms.

*A large portion of this work was done while O.M. was a PhD student at
Chalmers university of technology, Sweden.
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1 introduction

Analogical reasoning is an important part of human cognition (Gen-
tner et al. 2001). Resolving analogies bymapping unknown data points
to known analogous examples allows us to draw conclusions about
the previously unseen data points. This is closely related to zero-shot
and one-shot learning: strategies that are useful when training data
is very limited, such as when explicit labels may not be available, or
only sparsely available. In linguistics, analogies have been studied ex-
tensively, e.g. phonetic analogies (Yvon 1997) and semantic analogies
(Mikolov et al. 2013a). In general, an analogy is defined as a quadruple
of objects A, B, C , and D having the analogical relation: A is to B as C
is to D, and the problem is to predict D given A, B, and C . In this work,
we study morphological analogies where A, B, C , and D are words.
The pair (A, B) represents a demo relation representing some morpho-
logical transformation between two word forms, and the problem is
to transform the query word C from the source form to the target form
as specified by the demo relation. The task may be illustrated with a
simple example: see is to sees as eat is to what?

A good solver for morphological analogies can be of practical help
as writing aids for authors, suggesting synonyms in a form specified
by examples rather than using explicitly specified forms. Furthermore,
models that can generate words with correct inflection are important
building blocks for many tasks within natural language processing.
Studying how systems can learn the right abstraction to generate in-
flected words using limited supervision, can help us learn how to cre-
ate systems for more complex language generation tasks, such as ma-
chine translation, automatic summarization, and dialogue systems.

Previous work has tackled the problem of predicting the target
form by identifying the string transformation (insertions, deletions, or
replacements of characters) in the demo relation, and then trying to
apply the same transformation to C (Lepage 1998). For instance, this
algorithm correctly solves the example given above, since it just needs
to add an s to the query word.

However, such solutions are brittle, as they are unable to abstract
away from the raw strings, failing when the given relation is realized
differently in A and B than in C and D. On a basic level, the model
needs to take into account phonological processes such as umlaut and
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vowel harmony, as well as orthographic quirks such as the rule in En-
glish that turns y into ie in certain contexts. Furthermore, an evenmore
challenging problem is that the model will need to take into account
that words belong to groups whose inflectional patterns are different –
morphological paradigms. In all these cases, to be successful, a solution
needs to abstract away from the raw character-based representation
to a higher level representation of the relations.

In this work, we propose a supervised machine learning approach
to the problem of predicting the target word in a morphological anal-
ogy. The model is based on character-level recurrent neural networks
(RNNs), which have recently seen much success in a number of mor-
phological prediction tasks (Faruqui et al. 2016; Kann and Schütze
2016). This model is able to go beyond the simple string substitutions
handled by previous approaches: it picks up contextual string trans-
formations including orthograpic and phonological rules, and is able
to generalize between inflection paradigms.

Machine learning approaches, including character-based RNNs,
have been successfully applied in several types of prediction prob-
lems in morphology, including lemmatization, inflection and reinflec-
tion (see Section 2.2). However, those tasks have either been more
restricted than ours (e.g. lemmatization), or relied on an explicit enu-
meration of morphological features, which may not be available in all
cases. In contrast, our model is a completely feature-free approach to
generating inflected forms, which can predict any form in a morpho-
logical paradigm.

The fact that our model does not rely on explicit features makes
it applicable in scenarios with under-resourced languages where such
annotations may not be available. However, since the model is trained
using a weaker signal than in the traditional feature-based scenario,
it needs to learn a latent representation from the analogies that play
the same role as the morphological features otherwise would, making
the task more challenging.

2 related work

Analogical reasoning is useful in many different tasks. In this section
we will limit the survey to work that is relevant to morphological
applications.
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2.1 Morphological analogies
Lepage (1998) presented an algorithm to solve morphological analo-
gies by analyzing three input words, determining changes in prefixes,
infixes, and suffixes, and adding or removing them to or from the
query word, transforming it into the target:

reader:unreadable = doer:x → x = undoable.

Stroppa and Yvon (2005) presented algebraic definitions of analogies
and a solution for analogical learning as a two-step process: learning a
mapping from a memorized situation to a new situation, and transfer-
ring knowledge from the known to the unknown situation. The solu-
tion takes inspiration from k-nearest neighbour (k-NN) search, where,
given a query q, one looks for analogous objects A, B, C from the train-
ing data, and selects a suitable output based on a mapping of A, B, C
from input space to output space. The task studied in these papers
is the same as in the current paper. The solutions, are however much
limited in the generality. Our solution can learn very flexible relations
and different inflectional patterns.
2.2 Character based modeling for morphology
The 2016 and 2017 SIGMORPHON shared tasks on morphological rein-
flection (Cotterell et al. 2016a, 2017) have spurred some recent interest
in morphological analysis. In this task, a word is given in one form,
and should be transformed into a form specified by an explicit feature
representation. These features represent number, gender, case, tense,
aspect, etc. In comparison, the problem of morphological analogies is
more difficult, as no explicit tags are provided: the forms must instead
be inferred from a demo relation.

While morphological inflection tasks have previously been stud-
ied using rule-based systems (Koskenniemi 1984; Ritchie et al. 1991)
and learned string transducers (Yarowsky and Wicentowski 2000;
Nicolai et al. 2015a; Ahlberg et al. 2015; Durrett and DeNero 2013),
they have more recently been dominated by character-level neural
network models (Faruqui et al. 2016; Kann and Schütze 2016) as they
address the inherent drawbacks of traditional models that represent
words as atomic symbols. This offers a number of advantages: the vo-
cabulary in a character-based model can be much smaller, as it only
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needs to represent a finite and fairly small alphabet, and as long as
the characters are in the alphabet, no words will be out-of-vocabulary
(OOV). Character-level models can capture distributional properties,
not only of frequent words but also of words that occur rarely (Luong
and Manning 2016), and they need no tokenization, freeing the sys-
tem from one source of errors. Neural models working on character-
or subword-level have been applied in several natural language pro-
cessing (NLP) tasks, ranging from relatively basic tasks such as text
categorization (Zhang et al. 2015) and language modelling (Kim et al.
2016) to complex prediction tasks, such as translation (Luong and
Manning 2016; Sennrich et al. 2016). Because they can recognize pat-
terns on a subword level, character-based neural models are attractive
in NLP tasks that require an awareness of morphology.
2.3 Other morphological transformations
Lemmatization is the task of predicting the base form (lemma) of an
inflected word. A lemmatizer may make use of the context to get
(implicit) information about the source form of the word (Kosken-
niemi 1984; Kanis and Müller 2005; Chrupała et al. 2008; Jongejan
and Dalianis 2009; Chakrabarty et al. 2017). In comparison, our task
does not offer contextual information, but instead provides the (sim-
ilarly implicit) cues for the forms from the demo relation. With this
in mind, predicting the lemma is just a special case of the morpho-
logical analogy problem. Paradigm filling is the more general task of
predicting all unknown forms in a paradigm (Dreyer and Eisner 2011).
2.4 Morphological relations in word embedding models
Word analogies have been proposed as a way to demonstrate the util-
ity of neural word embeddings and to evaluate their quality (Mikolov
et al. 2013a; Mnih and Kavukcuoglu 2013; Nicolai et al. 2015b; Pen-
nington et al. 2014). Such embeddings show simple linear relation-
ships in the resulting continuous embedding space that allow for
finding impressive analogous relations such as

v(king)− v(man) + v(woman)≈ v(queen)
where v(w) is the word embedding of the word w. Analogies have been
categorized as either semantic or syntactic. (The example with “king”
and “queen” is a semantic analogy, while syntactic analogies relate
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different morphological forms of the same words). Google’s dataset
for syntactic analogies (Mikolov et al. 2013a) was proposed as a task
to evaluate word embedding models on English.

Cotterell et al. (2016b) presented an approach using a Gaussian
graphical model to process word embeddings computed using a stan-
dard toolkit such as Word2Vec to improve the quality of embeddings
for infrequent words, and to construct embeddings for morphologi-
cal forms that were missing in the training data (but belonging to a
paradigm that had some form or forms in the data).

3 the neural morphological
analogy system

In this paper, we present the Neural morphological analogy system
(NMAS), a neural approach for morphological relational reasoning.
We use a deep recurrent neural network with gated recurrent unit
(GRU) cells that take words represented by their raw character se-
quences as input.
3.1 Morphological relational reasoning with analogies
We define the task as follows. Given a query word q and a demo word
in two forms w1 and w2, demonstrating a transformation from one
word form to another, and where q is another word in the same form
as w1, the task is to transform q into the form represented by w2.
3.2 Recurrent neural networks
A recurrent neural network (RNN) is an artificial neural network that
can model a sequence of arbitrary length. Gated RNNs were proposed
to solve some issues of basic “vanilla” RNNs (the difficulty to capture
long dependencies and vanishing gradients) (Hochreiter 1998; Bengio
et al. 1994). The long short term memory (LSTM) (Schmidhuber and
Hochreiter 1997) is one of the most famous types. At every step in
the sequence, it has a cell with three learnable gates that controls
what parts of the internal memory vector to keep (the forget gate),
what parts of the input vector to store in the internal memory (the
input gate), and what to include in the output vector (the output gate).
The gated recurrent unit (GRU) (Cho et al. 2014a) is a simplification
of this approach, having only two gates by replacing the input and
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forget gates with an update gate that simply erases memory whenever
it is updating the state with new input. Hence, the GRU has fewer
parameters, and still obtains similar performance as the original LSTM.

An RNN can easily be trained to predict the next token in a
sequence, and when applied to words this essentially becomes a lan-
guage model. A sequence-to-sequence model is a neural language
model conditioned on another input sequence. Such a model can be
trained to translate from one sequence to another (Sutskever et al.
2014; Cho et al. 2014b). This is the major building block in modern
neural machine translation systems, where they are combined with
an attention mechanism to help with the alignment (Bahdanau et al.
2015).

In language settings it is common to have a linear input layer
that learns embeddings for a vocabulary of words. However, these
models suffer from the limitations of having fixed word vocabularies,
and being unable to learn subword patterns. As an alternative, an RNN
can work either using a vocabulary of subword units, or a vocabulary
of characters, as is the case in this paper.
3.3 Model layout
The proposed model has three major parts, the relation encoder, the
query encoder, and the decoder, all working together to generate the
predicted target form given the three input words: the demo relation
(w1, w2), and the query word q. The whole model is trained end-to-end
and requires no other input than the raw character sequences of the
three input words w1, w2, and q.

A. The relation encoder. The first part encodes the demo relation Rdemo =
(w1, w2) using an encoder RNN for each of the two words w1 and w2.
The relation encoder RNNs share weights but have separate internal
state representations. The outputs of the relation encoders are fed into
a fully connected layer with tanh activation FC relation:

hrel = tanh(Wrel[grel(0,w1), grel(0,w2)]),

where grel is the output from the relation encoder RNN (using zero
vectors as initial hidden states), w1,w2 are sequences of one-hot en-
codings for the characters of w1 and w2, Wrel is the weight matrix for
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the FC relation layer, and tanh is the element-wise nonlinearity. Here,
[x,y] means the concatenation of the vectors x and y.

B. The query encoder. The query word q is encoded separately using a
distinct encoder RNN. The final output from the query encoder is fed
together with the output from FC relation (A) through a second fully
connected layer (with tanh activation) FC combined:

hcomb = tanh(Wcomb[hrel, gq(0,q)]),

where hrel is the output from FC relation, gq is the output from the
query RNN encoder, q is a sequence of embeddings of the characters
of the query word, Wcomb is the weight matrix for the FC combined
layer, and tanh is the element-wise nonlinearity. The result hcomb is
fed as the initial hidden state into the RNN decoder.

C. The decoder. The decoder RNN employs a standard attention mech-
anism (Bahdanau et al. 2015), computing a weighted sum of the se-
quence of outputs of the query encoder at every step td in the gen-
eration process. For each step te in the query encoder, the attention
weight is computed using a multi-layer perceptron taking the decoder
state at td and the query encoder state at te as inputs. For each decoder
step td , the output character is decided by computing a distribution
over the alphabet using the softmax output layer, and then sampling
greedily from this distribution; this is fast and has yielded good re-
sults. The distribution p(ytd

= i) = h(i)dec;td
for each character i in the

alphabet and for each step td in the decoder is modelled using:

hdec;td
= s(Wdec[gdec(hcomb,y(0:td−1)),a]),

where hcomb is the output from FC combined (used as the initial hidden
state for the decoder RNN), gdec is the output from the decoder RNN,
y(0:td−1) is a sequence of embeddings of the characters generated by
the decoder until step td −1, Wdec is the weight matrix for the decoder
output layer, a is the weighted sum of hidden states from the query
encoder RNN computed by the attention mechanism, and s is the soft-
max activation function: s(z) = ez∑

i ez(i)
. The result hdec;td

is a vector that
sums to one, defining the distribution over the alphabet at time td .
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The whole model is similar to a sequence-to-sequence model used
for translation, with the addition of the relation encoder. Figure 1
shows the architecture of the model pictorially.

4 experimental setup

This section explains the setup of the empirical evaluation of our
model: how it is designed, trained, and evaluated.

The model was implemented using Pytorch;1 all source code is
freely available.2 With the final hyperparameter settings (see Sec-
tion 4), the model contains approximately 155,000 parameters, and
it can be trained in a few hours on a modern GPU. In the experiments
reported in this paper, the code was executed on a desktop PC with
an NVIDIA Titan X GPU using Ubuntu 18.04.

The hyperparameters relevant to the proposed model are pre-
sented in Table 1. The RNN hidden size parameter decides the dimen-
sionality of all four RNNs in the model, as we noticed no performance
gain from varying them individually.

Hyperparameter Explored Selected
Embedding size 50–350 100
FC relation size 50–350 100
FC combined size 50–350 200
RNN hidden size 25–350 100
RNN depth 1–3 2
Learning rate 1× 10−3

L2 weight decay 5× 10−5

Drop probability 0.0, 0.2, ..., 0.8 0.0

Table 1:
Hyperparameters in the model

Training was done with backpropagation through time (BPTT)
and minibatch learning with the Adam optimizer (Kingma and Ba
2015). For each example in a minibatch, a relation type is selected
uniformly randomly. Then two word pairs are selected randomly
from that relation type; one of these will be the demo relation, and
one will be the query–target pair. The output from the decoder (see

1http://pytorch.org/
2https://github.com/olofmogren/char-rnn-wordrelations
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... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

FC relation

FC combined

Attention

... ...Deep GRU Deep GRU Deep GRU

Decoder RNN

Figure 1: The layout of the proposed model. The demo relation is encoded using
two encoder RNNs with shared weights for the two demo word forms. A fully
connected (FC) layer FC relation follows the demo relation pair. The query word
is encoded separately, and its embedding is concatenated with the output from
the fully connected (FC) layer FC relation, and fed as the initial hidden state into
the RNN decoder which generates the output while using an attention pointer to
the query encoder. In the example see is to sees as eat is to what, see is fed into
the demo relation RNN encoder 1, sees is fed into the demo relation RNN encoder 2,
eat is fed into the query RNN encoder, and the whole model is trained to generate
the correct output eats at the decoder RNN

[ 148 ]



The Neural morphological analogy system

Section 3.3 C) is a categorical distribution over the alphabet. We use
the cross-entropy loss function for each character at position td in
the output word as the learning objective for all parameters θ in the
model:

L (θ ) = −
∑

td
y(td ) · loghθ ;td

N
,

where N is the length of the target word, y(td ) is the one-hot encoding
of the true target at position c and hθ ;td

is the model output distri-
bution at position c. Training duration was decided using early stop-
ping (Wang et al. 1994).

One model with separate parameters was trained per language.
The parameters are shared between the two encoding RNNs in the
relation encoder, but the query encoder RNN and the decoder RNN
have separate weights, as the model search showed best performance
using this configuration. Ensembling did not improve the results.
4.1 Baselines
The task considered in this work is closely related to morphological
reinflection. Systems trained for the latter task generally obtain higher
absolute numbers of prediction accuracy than ours, because more in-
formation is given through the explicit enumeration of morphological
tags. Our task is also related to the syntactic analogy task used to eval-
uate word embeddings (Mikolov et al. 2013c), and we also include the
word embedding-based word-level analogy solution as a baseline.

Lepage. This baseline was implemented from the description in (Lep-
age 1998). The algorithm is rule-based, and uses information collected
when computing edit distance between w1 and w2, as well as between
w1 and q (Wagner and Fischer 1974). It can handle changes in prefix,
infix, and suffix, but fails when words exhibit different inflectional
patterns.

Word embedding baseline. This baseline uses pre-trained word embed-
dings using Word2Vec CBOW (continuous bag-of-words) (Mikolov
et al. 2013b) and FastText (Bojanowski et al. 2017), referred to as
W2V and FT, respectively. The FastText embeddings are designed to
take subword information into account, and they performed better

[ 149 ]



Olof Mogren, Richard Johansson

than Word2Vec CBOW-based vectors in our experiments. The predic-
tion is selected by choosing the word in the vocabulary that has an
embedding with the highest cosine similarity compared to

v(q)− v(w1) + v(w2),

where v(w) is the word embedding of the word w, q is the query word,
and w1, w2 are the two demo words in the demo relation.

Word embeddings have been used in previous work for this task
(then called syntactic analogies), but the solution is limited by a fixed
vocabulary, and needs retraining to incorporate new words. Although
it is trained without supervision, training requires much data and com-
paring the resulting vector above with all words in the vocabulary is
expensive.

In this work, pretrained embeddings were downloaded and used.
The utilized Word2Vec CBOW embeddings were downloaded from
Kyubyong Park’s repository.3 The embeddings were trained using
data from Wikipedia. The FastText embeddings used were down-
loaded from the FastText authors’ website.4 The embeddings were
trained using data from CommonCrawl and Wikipedia. All the em-
beddings used have 300 dimensions.

To make the word embedding baseline stronger, we used the Lep-
age baseline as a fallback whenever any of the three input words are
missing in the vocabulary.
4.2 Datasets
One model was trained and evaluated on each of five different lan-
guages. Data for all languages except for English and Swedish was
taken from the SIGMORPHON 2016 dataset (Cotterell et al. 2016a).
The code for downloading the data and performing dataset split is
available for download.5

English. A total of 10 relations and their corresponding inverse rela-
tions were considered:

• nouns:
– singular–plural, e.g. dog–dogs
3https://github.com/Kyubyong/wordvectors/
4https://fasttext.cc/
5https://github.com/olofmogren/char-rnn-wordrelations/
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• adjectives:
– positive–comparative, e.g. high–higher
– positive–superlative, e.g. high–highest
– comparative–superlative, e.g. higher–highest

• verbs:
– infinitive–past, e.g. sit–sat
– infinitive–present, e.g. sit–sits
– infinitive–progressive, e.g. sit–sitting
– past–present, e.g. sit–sits
– past–progressive, e.g. sit–sitting
– present–progressive, e.g. sits–sitting

For English, the dataset was constructed using the word list with in-
flected forms from the SCOWL project.6 In the English data, 25,052
nouns, 1,433 adjectives, and 7,806 verbs were used for training.
1000 word pairs were selected randomly for validation and 1000
for testing, evenly distributed among relation types.

Swedish. Words were extracted from SALDO (Borin et al. 2013). In
the Swedish data, 64,460 nouns, 12,507 adjectives, and 7,764 verbs
were used for training. The division into training, validation, and test
sets were based on the same proportions as in English. The same forms
were used as in English, except that instead of the progressive form
for verbs, the passive infinitive was used, e.g. äta:ätas ‘eat:be eaten’.

Finnish, German, and Russian. For these languages, data from task1 and
task2 in SIGMORPHON 2016 was used for training, and task2 data
was used for evaluation. In this dataset, each word pair is provided
along with morphological tags for the source and target words. We
define a relation R as the combination of two sets of morphological
tags, for which there exist words in the data.

The SIGMORPHON datasets consist of word pairs along with the
corresponding morphological tags, specifying properties such as gen-
der, number, case, and tense. For training set and validation set, we
generate analogies from this as follows. First, we read each word pair

6See http://wordlist.aspell.net/.
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(w1, w2) from the dataset, building tables of paradigms by storing the
word pairs together with their tags. If w1 or w2 with the exact same
set of tags has already been stored in a table (it may be part of another
word pair (u1, u2)), then w1 and w2 is stored in the same table as u1

and u2. Second, when all words are stored in tables, we go through
them and consider each pair of word forms members of a morpholog-
ical relation. All words having a given source form and target form
make up the set of word pairs for that relation. This procedure allows
us to get more training data, as some new pairs can be generated from
the tables (e.g. (w1, u1) from the example above). For the test set, we
do not enhance the data in any such way, but use the exact relations
provided from the original SIGMORPHON data set.

As the task described in this paper differs from the original SIG-
MORPHON task, with the additional requirement that every query–
target word pair needs to be accompanied by a demo relation with
the same forms, all relations with only one word pair were discarded.
Of the SIGMORPHON datasets, we did not include Arabic, Georgian,
Hungarian, Maltese, Navajo, Spanish, and Turkish, either because of
the sparsity problemmentioned above,7 or because the morphological
features used in the languagemade it difficult to generate query–target
pairs. The percentage of test set word pairs from the SIGMORPHON
data being discarded in the remaining languages: Finnish: 1.2%, Ger-
man: 2.1%, and Russian: 0.5%. Details about dataset sizes can be found
in Table 2.
4.3 Evaluation
To evaluate the performance of the model, the datasets for English and
Swedish were randomly split into training, validation, and test sets.
Exact dataset split is defined within the openly shared code reposi-
tory.8 For the SIGMORPHON languages (Finnish, German, and Rus-
sian), the provided dataset split was used, and the test was performed
as specified in the dataset, ignoring the specified morphological tags.
For English and Swedish, each word pair was tested in both directions
(switching the query word and the target word). Within one relation
type, each word pair was randomly assigned another word pair as

7We decided on a threshold of at most 3% of the word pairs that could be
discarded for the evaluation to be meaningful.

8https://github.com/olofmogren/char-rnn-wordrelations/
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Table 2: Number of relations (“Rels”, after discarding size-1 relations) and word
pairs (“WPs”) in the data set. *English and Swedish word pairs are all used exactly
twice, once in original order, and once reversed. This means that the effective
number of word pairs for these two languages are double the numbers in this
table

Language Training set Validation set Test set Total
Rels WPs Rels WPs Rels WPs Rels WPs

English 10 74,187 10 1,000 10 1,000 10 76,187∗
Finnish 1,291 49,312 427 1,246 1,092 11,471 1,322 62,029
German 1,571 58,651 400 1,174 1,249 7,768 1,571 67,593
Russian 830 51,939 285 1,399 666 11,492 834 64,830
Swedish 10 146,551 10 1,000 10 1,000 10 148,551∗

demo relation. Each word pair was used exactly once as a demo rela-
tion, and once as a query–target pair. Both word pairs in each analogy
were selected from the same data partition; i.e. the test set for the
evaluation. Relations having only one word pair were dropped from
the test set, this is the only difference between the original SIGMOR-
PHON test data and the test data used here (for more information,
see Section 4.2). Where nothing else is specified, reported numbers
are the prediction accuracy. This is the fraction of predictions that
exactly match the target words.
4.4 Data ambiguity
As noted in Section 1, different words can have different inflectional
patterns, and some words may also have the same expression for sev-
eral forms. We note that there are such examples in the training data
and in the validation data, but no such examples were detected in
any of the test sets, see Table 3. This may affect the training, but not
the evaluation of the system. When such ambiguities are presented
as the target in demo relations, there is of course no way for a sys-
tem with this setup to know which form to pick. However, the aim
of our study was to keep the setup realistic, and hence, such am-
biguous expressions were not removed from the datasets. Since no
ambiguities were found in the test sets, there is always exactly one
correct target for each query, but with a corresponding amount of
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Table 3: Number of ambiguities detected in the data. This is the number of words
that occur twice or more as a source word or as a target word in respective dataset
partition

Language Training set Validation set Test set Total
Twice More Twice More Twice More Twice or more

English 407 6 0 0 0 0 413
Finnish 20 0 0 0 0 0 20
German 415 0 2 0 0 0 417
Russian 186 0 0 0 0 0 186
Swedish 2,852 41 0 0 0 0 2,893

Table 4: Prediction accuracy and average Levenshtein distance of the proposed
model (NMAS) trained using one language. Baseline: Lepage (1998)

Language Accuracy AVG Levenshtein
NMAS Lepage NMAS Lepage

English 94.85% 56.05% 0.08 0.67
Finnish 85.64% 31.39% 0.22 1.76
German 87.96% 76.63% 0.20 0.39
Russian 75.85% 48.19% 0.36 1.01
Swedish 91.40% 64.80% 0.15 0.60

ambiguous data in the training set, the model may learn robustness
and the noise provided by the ambiguities may also help to regularize
the training.

5 results

This section presents the results of the experimental evaluation of the
system.
5.1 Language-wise performance
The prediction accuracy results for the test set can be seen in Table 4,
reaching an accuracy of 94.85% for English. While Finnish is a mor-
phologically rich language, with 1323 distinct relations in the dataset,
and with the lowest Lepage baseline score of all evaluated languages

[ 154 ]



The Neural morphological analogy system

(31.39%), NMAS is able to learn its relations rather well, with a predic-
tion accuracy of 85.64%. For German and Swedish, the performance
is 87.96% and 91.40%, respectively. They both have more complex
morphologies with more inflectional patterns for nouns and verbs. On
Russian, NMAS obtains an accuracy of 75.85%. This may be explained
by its complex morphology and phonology, and is consistent with the
results of top scoring systems on the SIGMORPHON tasks.
5.1.1 Detailed analysis of phonological and orthographic regularities
To successfully predict inflected word forms, our model must take the
inflectional paradigms into account, as well as the orthographic and
the phonological regularities that sometimes cut across the paradigms.
We will now consider a number of examples of such regularities for
all five languages and investigate how well they are handled by our
model.
English. A basic textbook example of an orthographic rule condi-
tioned on the immediate context is the y/ie alternation in English,
such as fry/fries, hurry/hurried, etc. This simple regularity poses no
difficulty for our model which predicted the correct form in all cases
where such alternations occurred in the data.
Finnish. A more interesting case is the phonology of Finnish, which
is well-known for its vowel harmony and consonant gradation. To in-
vestigate how well the model handles vowel harmony, we considered
instances where the final vowel (which typically corresponds to the in-
flection) in the gold-standard output is either in the back-vowel group
(a, o, or u) or the front-vowel group (ä, ö, or y). In these cases, the
model predicts the correct vowel of the output form in 97% of the
cases. This figure is identical for the subset of instances where vowel
in the output is in a different group from the corresponding vowel in
the demo output, which occurs in about 18% of the instances. It is
notable that several of the model’s vowel harmony errors correspond
to exceptions where the usual rules of vowel harmony do not apply:
(1) in a compound such as hiuspinnit (‘hairpins’), the model is con-
fused by the back vowel u in the compound prefix, and incorrectly
predicts an a instead of ä in inflections; (2) a non-native word such as
desideratiivi (‘desiderative’) may take an “unexpected” vowel (in this
case the inflections use front vowels despite the preceding a).
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In consonant gradation, consonants or consonant clusters may ap-
pear in either the strong or theweak grade, depending on the phonolog-
ical context. For instance, the cluster rt in parta (‘beard’ in the nomina-
tive singular) is in the strong grade, which in the weak grade becomes
rr, as in parrat (nominative plural). We selected the occurrences where
the query word and the gold-standard output differed in grade (about
15% of the instances). The correct grade is predicted by the model in
84% of these cases, and this does not seem to be affected by whether
the demo pair involves consonant gradation or not.

German. For German, we considered umlaut alternations such as
Baum/Bäume. We selected the instances where there is an umlaut
vowel in either the query word or in the gold-standard output, but not
both. This is about 2.7% of the instances. In such cases, the model pre-
dicts the vowel correctly just 27% of the time. This can be contrasted
with results we saw for Finnish, where vowel harmony was handled
almost perfectly. This difference is probably due to the unpredictabil-
ity and rarity of the German umlaut, while the Finnish vowel harmony
is very common and almost perfectly regular.

Swedish. Somewords in Swedish exhibit the process of syncope where
the unstressed vowel e is lost in some contexts. For instance, the word
nyckel (‘key’) has the plural form nycklar. We found 36 instances in-
volving a syncope of the query word or the gold-standard output. This
corresponds to 1.8% of the total set. The model predicts the correct
form in 94% of these cases.

Russian. This is the language which has proven to be the most prob-
lematic for our model, due to the rich system of its inflectional
paradigms, as well as the complex phonological processes (e.g. palatal-
ization) affecting some of the inflections. While irregularities are chal-
lenging for the model, it successfully handles phenomena that are
more predictable. As an example of a regular pattern that the model
handles well, we can consider the clitic used with reflexive verbs,
which takes the form -sya or -s’ depending on the phonological con-
text. The form of this clitic is predicted correctly by our model 98%
of the time.
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5.2 Model variants
Attend to relation. Kann and Schütze (2016) explicitly feeds the mor-
phological tags as special tokens being part of the input sequence, and
the attention mechanism learns when to focus on the forms during out-
put generation. Inspired by this we decided to evaluate a variant of our
model where the embedding of the relation encoder is appended to the
query encoder output sequence, allowing the decoder to attend to the
whole query as well as the relation embedding, see Figure 2. The per-

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder FC relation

FC combined

(e) Attend to relation

... ...Deep GRU Deep GRU Deep GRU

Decoder RNN

(c) Disabling FC combined

(d) FC shortcut

Tag classifier

(b) Auxilliary training criterion

(f) Disabling relation encoder for source form, (g) Disabling relation encoder for both forms

(a) Disabling attention mechanism

Attention

Figure 2: The evaluated variants of the proposed model. (a) disabling attention
mechanism, (b) auxiliary training criterion, (c) disabling FC combined, (d) FC
shortcut, (e) attend to relation, (f) disabling relation encoder for source form,
and (g) disabling relation encoder for both forms
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Table 5: Prediction accuracy of the proposed model trained with “attend to re-
lation”, with and without the relation embedding fed to initial hidden state (FC
combined), all words reversed, feeding the relation embedding using a shortcut
to each step in the decoder RNN, and using auxiliary tags classification criterion,
respectively. English validation set

Variant Validation accuracy
Full model 96.40%
Attend to relation 96.20%
Attend to relation & No FC combined 95.35%
Reversed words 96.00%
Relation shortcut 95.40%
Auxiliary tags classification 95.25%

formance of the model was not affected by this change (see Table 5),
and there was no clear trend spanning over different languages. When
also disabling FC combined, and thus feeding the relation embedding
directly as input to the decoder, there was a noticeable decrease in
performance: 95.35% accuracy on the English validation set.

Relation shortcut. In the layout of the proposed model, the information
from the relation encoder is available to the decoder only initially. To
explore if it would help to have the information available at every
step in the decoding process, a shortcut connection was added from
FC relation to the final layer in the decoder. This helped the model to
start learning fast (see Figure 3), but then resulted in a slight decrease
in accuracy (95.25% on English validation set). (See Table 5).

Auxiliary training criterion. Multi-task learning using a related auxil-
iary task can lead to stronger generalization and better regularized
models (Caruana 1998; Collobert and Weston 2008; Bingel and Sø-
gaard 2017). We evaluated a model that used an auxiliary training
task: the model had to predict the morphological tags as an output
from the relation encoder. This addition gave a slight initial train-
ing speedup (see Figure 3), but did not give a better performing
model once the model finished training. This indicates a strength
in the originally proposed solution: the model can learn to differenti-
ate the morphological forms of the words in the demo relation, even
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Figure 3:
Prediction accuracy
on the English
validation set during
training for some variations
of the model

without having this explicit training signal, something that is also
demonstrated by the visualized relation embeddings (see Figure 4).

Disabling model components. The relation encoder learns to represent
the different morphological relations with nicely disentangled embed-
dings (see Figure 4). The fact that the prediction accuracy drops as
far as to 39.35% when disabling the relation input (see Table 6) in-
dicates that the setup is useful, and that the model indeed learns to
utilize the information from the demo relation. Disabling only the first
word in the demo relation allows the model to perform much better
(94.60% validation accuracy), but it does not reach the accuracy of the
full model with both demo words (96.40%). Disabling the attention
mechanism is a small modification of our model, but it substantially
degrades performance, resulting in 91.90% accuracy on the English
validation set.
5.3 Mechanisms of word inflection
As English (and many other languages) forms inflections mainly
by changing suffixes, an experiment was performed where every
word was reversed (e.g. “requirement” → “tnemeriuqer”), to evaluate
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(+) ADJ: Comparative-Positive

(x) ADJ: Positive-Comparative

(+) ADJ: Comparative-Superlative

(x) ADJ: Superlative-Comparative

(+) ADJ: Positive-Superlative

(x) ADJ: Superlative-Positive

(+) N: Plural-Singular

(x) N: Singular-Plural

(+) V: Progressive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present-Progressive

(+) V: Progressive-Past

(x) V: Past-Progressive

(+) V: Infinitive-Progressive

(x) V: Progressive-Infinitive

(+) V: Infinitive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present

(+) V: Infinitive-Past

(x) V: Past-Infinitive

(+) V: 3rd Pers. Sg. Present-Past

(x) V: Past-3rd Pers. Sg. Present

Figure 4: t-SNE visualization of all demo relation pairs from English validation
set embedded using the relation encoder. Each point is colored by the relation
type that it represents

Table 6: Prediction accuracy of the proposed model without attention mecha-
nism, without the first (source) word in the demo relation, and completely with-
out demo relation encoder, respectively. English validation set

Variant Validation accuracy

Full model 96.40%
Disable attention mechanism 91.90%
Disable relation source 94.60%
Disable relation input 39.35%

whether the model can cope with other mechanisms of word inflec-
tion. On this data, NMAS obtains a prediction accuracy that is only
slightly worse than the original version (96.00% on English valida-
tion set). This indicates that the model can cope with different kinds
of inflectional patterns (i.e. suffix and prefix changes). As can be
noted in the example outputs (see Table 7), the model does handle
several different kinds of inflections (including orthographic varia-
tions such as y/ie), and it does not require the demo relation to show
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Table 7: Correct (top), and incorrect (bottom) example outputs from the model.
Samples from English validation set

Correct:
Demo word 1 Demo word 2 Query Target Output
misidentify misidentifies bottleneck bottlenecks bottlenecks
obliterate obliterated prig prigged prigged
ventilating ventilates disorganizing disorganizes disorganizes
crank cranker freckly frecklier frecklier
debauchery debaucheries bumptiousness bumptiousnesses bumptiousnesses

Incorrect:
Demo word 1 Demo word 2 Query Target Output
repackage repackaged outrun outran outrunned
misinformed misinform gassed gas gass
julep juleps catfish catfish catfishes
cedar cedars midlife midlives midlifes
affrays affray buzzes buzz buzze

the same inflectional pattern as the query word. In fact, often when
the system fails, it does so by inflecting irregular words in a regular
manner, suggesting that patterns with less data availability poses the
major problem.
5.4 Relation embeddings
Figure 4 shows a t-SNE visualization of the embeddings from the rela-
tion encoder (“FC relation”) of all data points in the English validation
set. One can see that most relations have been clearly separated into
one distinct cluster each, with the exception of two clusters, both con-
taining points from two relations each. The first such cluster contains
the two relation types “N: Singular-Plural” and “V: Infinitive-3 Pers. Sg.
Present”; both of these are realized in English by appending the suffix
-s to the query word. The second cluster contains the relation types “N:
Plural-Singular” and “V: 3 Pers. Sg. Present-Infinitive”; both of these are
realized by the removal of the suffix -s. It is worth noting that no ex-
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(+) ADJ: Comparative-Positive

(x) ADJ: Positive-Comparative

(+) ADJ: Comparative-Superlative

(x) ADJ: Superlative-Comparative

(+) ADJ: Positive-Superlative

(x) ADJ: Superlative-Positive

(+) N: Plural-Singular

(x) N: Singular-Plural

(+) V: Progressive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present-Progressive

(+) V: Progressive-Past

(x) V: Past-Progressive

(+) V: Infinitive-Progressive

(x) V: Progressive-Infinitive

(+) V: Infinitive-3rd Pers. Sg. Present

(x) V: 3rd Pers. Sg. Present-Infinitive

(+) V: Infinitive-Past

(x) V: Past-Infinitive

(+) V: 3rd Pers. Sg. Present-Past

(x) V: Past-3rd Pers. Sg. Present

Figure 5: t-SNE visualization of all query words from English validation set em-
bedded using the query encoder. Each point is coloured by the relation type that
it represents

plicit training signal has been provided for this to happen. The model
has learned to separate different morphological relations to help with
the downstream task.

Similar clustered representations can be seen when analysing the
embeddings computed by the relation encoder RNN also for other
languages. We refer interested readers to the supplemental material9
for a complete list of these plots.

Figure 5 shows a t-SNE visualization of the embeddings from the
query encoder. As we saw with the relation encoder, query embed-
dings seem to encode information about morphology as similar mor-
phological forms cluster together, albeit with more internal variation
andmore inter-cluster overlaps. The task for the query encoder is more
complex as it needs to encode all information about the query word
and provide information on how it may be transformed. To solve the
task, and be able to correctly transform query words with the same re-
lation type but with different inflection patterns, it needs to be able to
deduce what subcategory of a relation a given query word belongs to.

9http://bit.ly/2oyPEtX
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Figure 6: Results for all relations (total), and for each specific relation of the
English test set

5.5 Word embedding analogies
The Lepage baseline proved to be the strongest baseline for all lan-
guages. For instance, for English it obtains prediction accuracy of
56.05%, compared to 40.75% for the Word2Vec baseline, and 45.00%
for the FastText baseline. Without the Lepage fallback, the Word2Vec
baseline scored 14.45%, and the FastText baseline scored 22.75%. For
other languages, the results were even worse. The datasets in our study
contain a rather large vocabulary, not only including frequent words.
While the fixed vocabulary is one of the major limitations (explaining
the difference between the embedding baselines and the correspond-
ing ones without fallback), the word embedding baseline predictions
were often incorrect even when the words were included in the vo-
cabulary. This led us to use the Lepage baseline in the result tables.
5.6 Relation-wise performance
Figure 6 shows the performance for each relation type, showing that
our model obtains 100% test set accuracy for the transforms between
comparative–superlative. It obtains the lowest accuracy (85.19%) for
past–infinitive, 94.17%, and 92.23% for plural–singular, and singular–
plural, respectively. From Figure 4 we have learned that these very
relations are the most difficult ones for the relation encoder to distin-
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guish between. One difficulty of plural–singular seems to be to deter-
mine how many character to remove, while the patterns for adding
the -s suffix is generally simpler. An example demonstrating this can
be seen in Table 7: buzzes:buzz, where the model incorrectly pre-
dicted buzze.
5.7 Example outputs
We have collected some examples from the English validation set
where our model succeeds and where it fails (see Table 7). Exam-
ples of patterns that can be observed in the failed examples are (1)
words with irregular inflections that the model incorrectly inflects
using regular patterns, e.g. outrun:outran, where the model predicted
outrunned; (2) words with ambiguous targets, e.g. gassed:gas, where
the model predicted gass. If there existed a verb gass, it could very
well have been gassed in its past-tense form. Tables with example
output for the other studied languages are provided in the supple-
mental material.10 In general: the model can learn different inflec-
tional patterns. Suffixes, infixes, and prefixes do not pose problems.
The query word does not need to have the same inflectional pattern
as the demo relation. When the model does fail, it is often due to an
inflection that is not represented in the training data, such as irregular
verbs.

6 discussion and conclusions

In this paper, we have presented a neural model that can learn to carry
out morphological relational reasoning on a given query word q, given
a demo relation consisting of a word in two different forms (source
form and desired target form). Our approach uses a character based
encoder RNN for the demo relation words, and one for the query word,
and generates the output word as a character sequence. The model is
able to generalize to unseen words as demonstrated by good prediction
accuracy on the held-out test sets in five different languages: English,
Finnish, German, Russian, and Swedish. It learns representations that
separate the relations well provided only with the training signal given
by the task of generating the words in correct form.

10http://bit.ly/2oyPEtX
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Our solution is more general than existing methods for morpho-
logical inflection and reinflection, in the sense that they require ex-
plicit enumeration of the morphological tags specifying the transfor-
mation; our solution instead learns to build its own internal repre-
sentation of this information by observing an analogous word pair
demonstrating the relation.
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