
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
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Finite-state methods
in natural language processing
and mathematics of language.

Introduction to the special issue

Frank Drewes1 and Makoto Kanazawa2
1 Department of Computing Science, Umeå University, Umeå, Sweden
2 Department of Advanced Sciences, Hosei University, Tokyo, Japan

For more than half a century, finite-state methods and mathe-
matical linguistics have benefitted from a close relation and fruitful
interaction. Both research fields aim to achieve a deeper understand-
ing of human language by means of mathematical techniques. For the
automated processing of language by computers such a mathematical
basis is an indispensable prerequisite. Historically, the goal pursued
by mathematical linguists to formalize natural language syntax in a
computer-accessible way was one of the strongest driving forces be-
hind the development of finite-state methods. Thus, it is no exaggera-
tion to say that the field of finite-state methods owes its existence to a
large extent to mathematical linguistics. In turn, continued research on
finite-state methods has resulted in a categorization of various kinds
of language classes and language aspects, together with efficient and
provably correct algorithms, thus expanding our understanding of the
mathematical properties of language.

The two premier conferences in these fields are Finite-State Meth-
ods in Natural Language Processing (FSMNLP) and Mathematics of Lan-
guage (MoL), organized biannually by their respective ACM Special
Interest Groups SIGFSM and SIGMOL. The most recent installments
of these conferences were FSMNLP 2017, which took place in Umeå,
Sweden, on September 4–6, 2017 and MoL 2017 held on July 13–14,
2017 at Queen Mary University of London, UK. Because of the fruitful
interaction between the fields, it was a natural idea to compile a joint
special issue that would collect extended versions of a small number

Journal of Language Modelling Vol 7, No 2 (2019), pp. 1–2
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of selected contributions of both of these conferences. This special is-
sue of the Journal of Language Modelling is the result, containing five
articles that substantially extend, and in some cases correct, the corre-
sponding short articles in the conference proceedings of FSMNLP 2017
and MoL 2017. In this, we follow the example of the special issue of
FSMNLP 2015 and MoL 2015, which appeared as Vol 5, No 1 of the
Journal of Language Modelling almost exactly two years ago.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/
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Monotonicity as an effective theory
of morphosyntactic variation

Thomas Graf1
Department of Linguistics, Stony Brook University, Stony Brook, USA

abstract
Keywords:
monotonic
functions,
syncretism,
typology, ∗ABA-
generalization,
Person Case
Constraint,
Gender Case
Constraint

One of the major goals of linguistics is to delineate the possible range
of variation across languages. Recent work has identified a surprising
number of typological gaps in a variety of domains. In morphology,
this includes stem suppletion, person pronoun syncretism, case syn-
cretism, and noun stem allomorphy. In morphosyntax, only a small
number of all conceivable Person Case Constraints and Gender Case
Constraints are found. While various proposals have been put for-
ward for each individual domain, few attempts have been made to
give a unified explanation of the limited typology across all domains.
This paper presents a novel account that deliberately abstracts away
from the usual details of grammatical description in order to provide
a domain-agnostic explanation of the limits of typological variation.
This is achieved by combining prominence hierarchies, e.g. for person
and case, with mappings from those hierarchies to the relevant output
forms. As the mappings are required to be monotonic, only a fraction
of all conceivable patterns can be instantiated.

1 introduction

In physics, an effective theory describes the behavior of a system at a
higher level of abstraction that does not necessarily reflect the true
causal factors that give rise to the behavior. For example, the physical
laws governing the behavior of gases are effective theories of a system
whose causal factors reside at the much lower level of atoms and fun-
damental forces. An effective theory is often easier to understand than

Journal of Language Modelling Vol 7, No 2 (2019), pp. 3–47
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the actual system, and it may furnish generalizations that are harder
or impossible to state at a more fine-grained level of description.
The central goal of this paper is to develop such an effective the-

ory for certain areas of morphology and morphosyntax that have at-
tracted a lot of attention in recent years:
(1) a. The ∗ABA generalization in morphology

• Stem suppletion in adjectival gradation
• Syncretism in person pronoun paradigms
• Syncretism in case paradigms
• Noun stem allomorphy

b. Morphosyntactic constraints on clitic clusters
• Person Case Constraint (PCC)
• Gender Case Constraint (GCC)

In each domain, the goal is to explain why not all logically conceivable
patterns are attested. For example, there are 64 logically possible PCC
variants, but only a handful have been reported in the literature. Such
seemingly arbitrary typological gaps demand a principled explanation,
and the explanation should apply across as many domains as possible.
The explanation proposed in this paper consists of two compo-

nents: a base hierarchy that captures certain prominence relations
between the elements in a domain, and a mapping from each base
hierarchy to the relevant output forms. Crucially, the mapping must
be monotonic. The shape of the base hierarchy and the monotonicity
requirement conspire to greatly limit the range of possible patterns.
The approach advocated here is strongly inspired by the mathe-

matical formalism of Graf (2014, 2017) but improves on it in impor-
tant respects. A broader range of data is considered, including a wide
selection of case syncretisms and a new kind of PCC reported by Tyler
(2017) for Choctaw. In addition, the analysis in terms of monotonicity
greatly simplifies Graf’s rather byzantine machinery (I am indebted
to an anonymous reviewer of Graf 2017 for pushing me to explore
monotonicity as a unifying principle). In contrast to generative ac-
counts such as Anagnostopoulou (2005), Nevins (2007), Caha (2009),
Bobaljik (2012), and Zompí (2016), the monotonicity approach pro-
vides a unified solution for all the phenomena above, rather than just
one or two of them. This is because as an effective theory, my proposal
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can focus on describing the general behavior of the system rather than
how this behavior arises from the machinery of the grammar.
My proposal is close in spirit to Bobaljik and Sauerland (2018),

who seek to derive the ∗ABA generalization from feature combina-
torics without making specific reference to the content or denotation
of these features. However, my account is less radical in its quest for
content-agnostic explanations as each domain may come with its own
base hierarchy. This makes the approach easier to apply to specific
phenomena. But as it is still an open question what specific forms
the base hierarchies may take, there is also a lot of room for over-
generation. The hierarchies proposed in this paper are largely in line
with current linguistic thinking, but a tight mathematical characteri-
zation of the space of possible hierarchies is still missing. The ideas
pursued in Bobaljik and Sauerland (2018) might actually turn out
to be equivalent to specific restrictions on base hierarchies. So even
though the two approaches differ a fair bit at this point and address
slightly different questions, they are at the very least fellow travelers.
In particular, both largely abstract away from feature systems and the
specifics of the grammar and thus are not tied to any specific grammar
formalism.
The paper proceeds as follows. Section 2 defines monotonicity

and explains it in intuitive terms. No other mathematical concepts are
needed for this paper. Sections 3 and 4 then present the account of the
∗ABA generalization and the PCC, respectively. I conclude the paper
with some brief thoughts on the status of monotonicity in general (Sec-
tion 5.1), the psychological reality of the monotonicity account and
the mechanisms it posits (Section 5.2), and the empirical robustness
of the approach in light of an impoverished data sample (Section 5.3).

2 monotonicity:
definition and explanation

Even though monotonicity is a well-known concept of mathematics,
I include a detailed explanation here to accommodate as large an au-
dience as possible. Readers who are already familiar with monotonic
functions can skip ahead to Section 2.2, where I introduce the notion
feasibly monotonic as a minor generalization of monotonicity. This gen-
eralization step will simplify the discussion of the ∗ABA generalization
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in Section 3. The analysis of PCC effects in Section 4 only needs the
standard notion of monotonicity.

2.1 Monotonic functions
Monotonicity expresses whether a mapping between two objects re-
spects their internal structure. Suppose we are given two structures
〈A,≤A〉 and 〈B,≤B〉 such that A and B are (possibly infinite) sets with
respective order relations ≤A and ≤B defined over them. For example,
〈A,≤A〉 may be the set of natural numbers ordered by the less-or-equal
relation, and 〈B,≤B〉may be the set of Latin characters in alphabetical
order. Then a function f from A to B is monotonic iff f preserves the
relative order of elements. Sticking with our example of natural num-
bers and alphabet letters, a monotonic function must not map 10 to H
and 100 to E because 10≤ 100 but f (10) = H occurs after f (100) = E
rather than before it. However, the function may map all numbers be-
tween 0 and 10 to E and all other numbers to H, as this does not invert
the original order.1

(2) Monotonicity
Given two sets A and B, let ≤A⊆ A×A and ≤B⊆ B× B. A function
f : A→ B is monotonic with respect to ≤A and ≤B iff it holds for
all x and y in A that x ≤A y implies f (x)≤B f (y).
A linguistic analogy for monotonicity is the ban against cross-

ing branches in autosegmental phonology (Goldsmith 1976). In au-
tosegmental phonology, a phonological representation is not merely
a string of segments, but instead consists of multiple tiers whose el-
ements are connected by association lines. Each tier is still linearly
ordered, though, and may be regarded as a string on its own. For ex-
ample, a representation may consist of a string of segments, i.e. the
segmental tier, and a string of tones, i.e. the tone tier. This is illustrated
below with an example of tone association in Kikuyu.

1The reader may have noticed that this description of monotonicity only
applies to monotonically increasing (or isotone) functions. A function can also be
monotonically decreasing (or antitone). In this case, the order must be inverted:
x ≤A y implies f (y) ≤B f (x). For the purposes of this paper, the distinction
is immaterial because every isotone function from A to B is antitone from A to
the dual of B. For instance, an isotone function from numbers to alphabetically
ordered letters would be antitone if the letters are instead ordered in reverse.
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(3)
t o m a r O r i r E

L H L H

The ban against crossing branches ensures that segmental tier and
tonal tier are synchronized to a certain extent. The linear order of
tones must reflect the linear order of the segments they are associated
to. Whenever this is not the case, some association lines illicitly cross
each other as in the representation below.

(4)
t o m a r O r i r E

L H L H

These are exactly the cases where the mapping from elements on the
segmental tier to elements on the tone tier is not monotonic. In the
case at hand, the segment o linearly precedes a, yet o is mapped to a
high tone H that follows the low tone L that a is associated with.
Note that even though the examples above all involve linearly or-

dered structures, monotonicity is more general and can be evaluated
for any arbitrary ordering relation. The example below depicts a map-
ping from a partially ordered structure S on the left to the algebra 2
of truth values on the right. This mapping is monotonic because there
are no x and y such that x ≤S y yet f (y) <2 f (x). In particular, it is
irrelevant for monotonicity that f (2) <2 f (3) because neither 2 ≤S 3
nor 3 ≤S 2 hold. If two elements x and y are unordered with respect
to each other, the relative order of f (x) and f (y) is immaterial for
monotonicity.

(5)

4

2 3

1

0

T

F

However, if the mapping is altered just a bit such that 1 is mapped
to True instead of False, monotonicity is lost because then we have
1<S 2 yet f (2) = F<2 T = f (1).
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We will encounter both linearly and partially ordered structures
in this paper. Linearly ordered structures are at the center of the
∗ABA-generalization for adjectival gradation and pronoun syncretism
(Section 3.1). Partial orders, on the other hand, are indispensable
for broadening the empirical scope to case syncretism (Section 3.3),
noun stem allomorphy (Section 3.4), Person Case Constraints (Sec-
tions 4.2, 4.3), and the Gender Case Constraint (Section 4.4).
2.2 Feasibly monotonic functions
During the discussion of the ∗ABA generalization in Section 3, there
will be some cases where the co-domain B does not have any natural
order defined over it. Adjectival gradation, for example, involves two
kinds of objects:
1. a set of adjectival degrees, i.e. {positive,comparative, superlative},
and

2. a set of surface realizations, e.g. {slow, slower, slowest}.
Whereas the former can be given a natural order in terms of seman-
tics, the set of surface realizations lacks such an internal structure.
There is no obvious ordering relation between these three phonolog-
ical representations. One could put them in reverse alphabetical or-
der, or line them up according to length or morphological complexity.
For our purposes, the important thing is simply that some sufficiently
strict order is defined over this domain so that monotonicity can be
invoked. We make this requirement explicit via the notion of feasible
monotonicity.
(6) Feasible monotonicity

Let A be a set ordered by ≤A⊆ A× A, and B some arbitrary set.
Then f : A→ B is feasibly monotonic iff there is some linear order
≤B⊆ B × B such that f is monotonic with respect to ≤A and ≤B.

(7) Linear order
A relation ≤B⊆ B×B is a linear order iff all of the following hold
for all x , y, z ∈ B:
• reflexivity: x ≤B x

• antisymmetry: x ≤B y and y ≤B x jointly imply x = y

• transitivity: x ≤B y and y ≤B z jointly imply x ≤B z

• totality: x ≤B y or y ≤B x
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The figure below shows three mappings. The leftmost one is
monotonic. The one in the middle is not monotonic, but it is feasi-
bly monotonic because we can switch the order of B and C and thus
obtain a monotonic mapping. The function on the right, on the other
hand, is neither monotonic nor feasibly monotonic: no matter which
order one picks for A, B, and C, two branches will always cross, indi-
cating that the mapping is not monotonic.

(8)
1 2 3

A B C

1 2 3

A B C

1 2 3

A B C

To sum up, monotonic mappings are order-preserving in the sense
that they do not invert existing orderings: x ≤A y entails f (x)≤B f (y).
The notion of feasibly monotonic mappings extends this to cases
where the co-domain lacks internal structure. It does so by consid-
ering all possible ways to order the co-domain such that feasible
monotonicity holds iff monotonicity holds for at least one of those
orders. The next section discusses the ∗ABA generalization as the first
application of (feasible) monotonicity, with the PCC following in Sec-
tion 4.

3 ∗aba generalization
The first part of the empirical analysis is devoted to the ∗ABA gen-
eralization. I initially limit myself to suppletion in adjectival grada-
tion and pronoun systems (Section 3.1). Each domain involves only
3 cells, which simplifies the discussion. Both of them will be explained
in terms of a linearly ordered based hierarchy – one for adjectival de-
grees, another one for person. Crucially, the mappings from these hier-
archies to surface forms must be feasibly monotonic. This requirement
severely restricts the range of possible suppletion patterns, providing
a close fit for the attested typology and reducing the ∗ABA generaliza-
tion to monotonicity.
I then expand this approach to larger, partially ordered hierar-

chies to account for case syncretism (Section 3.3) and noun stem al-
lomorphy (Section 3.4). The general idea remains the same, though:
once a suitable, linguistically motivated hierarchy has been fixed, the
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range of cross-linguistic variation falls out from the limitation to (fea-
sibly) monotonic functions.
As I explain in Section 3.2, the monotonicity program is still in

its early stages, and as a result the construction of these hierarchies
is primarily guided by empirical concerns. Conceptual or mathemat-
ical restrictions on the shape of hierarchies must be postponed until
a larger class of hierarchies has been identified. That is not to say,
though, that the hierarchies presented in this paper are completely ar-
bitrary. They display many regularities, and are very natural from a
linguistic perspective.

3.1 3-cell paradigms: Adjectival gradation and pronoun allomorphy
The ∗ABA generalization was formulated in Bobaljik (2012) and refers
to a particular typological gap in numerous morphological paradigms.
Given a morphological subsystem where one may posit an underlying
hierarchy x > y > z, z cannot pattern with x to the exclusion of y.
The best-known example of the ∗ABA generalization is suppletion

in adjectival gradation, which was analyzed at great depth in Bobaljik
(2012). Bobaljik points out that if a language allows for stem sup-
pletion in either comparatives or superlatives, it must allow for both.
Data illustrating this generalization is given in Table 1. If one follows
the convention to list the three forms in the order positive, comparative,
superlative and uses letters to indicate which forms use the same stem,
one can decompose the typological gaps into two constraints: ∗AAB
and ∗ABA. The central puzzle is why these specific constraints should
hold for adjectival gradation but not, say, ∗ABB or ∗ABC.
In Bobaljik (2012), the ban against ABA patterns is explained via

structural mechanisms. Adjectival forms are decomposed into a tree

Table 1:
Examples of attested

suppletion patterns from
Smith et al. (2018)

Language Positive Comparative Superlative Pattern
English smart smart-er smart-est AAA
English good bett-er be-st ABB
Finnish hyvä pare-mpi parha-in ABB
Latin bon-us mel-ior opt-imus ABC
Welsh da gwell gor-au ABC
unattested good bett-er good-est ∗ABA
unattested good good-er be-st ∗AAB
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template such that comparatives contain the positive base form as a
subtree and are in turn themselves subtrees of the corresponding su-
perlative forms. Then ∗ABA follows from specific assumptions about
the rewrite rules that convert these tree structures into morphological
surface forms. Bobaljik and Sauerland (2018) provide an alternative
explanation grounded in the combinatorics of feature systems. Under
both approaches ∗ABA falls out from the fact that it is impossible for
a rewrite rule to target positive and superlative forms to the exclusion
of the comparative. Both works also agree that ∗ABA is the more im-
portant constraint of the two – whereas ∗ABA holds for many morpho-
logical paradigms, ∗AAB seems to be specific to adjectival suppletion
and requires additional stipulations.
The increased importance of ∗ABA relative to ∗AAB is noteworthy

because the former can be explained in terms of monotonicity, but
not the latter. Suppose that there is a universal underlying hierarchy
of the form positive > comparative > superlative. For the sake of suc-
cinctness, I abbreviate this hierarchy as 1 > 2 > 3. Now let {A, B, C}
be the set of possible surface forms. Irrespective of how this set is or-
dered, there can be no monotonic function f with f (1) = f (3) ̸= f (2).
We already saw this in (8) at the end of Section 2.2. Hence no feasi-
bly monotonic function over 1 > 2 > 3 can produce a pattern of the
form ABA, and consequently the ∗ABA generalization reduces to a ban
against functions that are not feasibly monotonic.
But the other patterns AAA, AAB, ABB, and ABC can be produced

by feasibly monotonic functions, as is shown below with an assumed
ordering of A> B > C .

(9)

1

2

3

A

B

C

1

2

3

A

B

C

1

2

3

A

B

C

1

2

3

A

B

C
AAA AAB ABB ABC

Some trivial variations are not depicted here, such as a function that
maps 1, 2, and 3 to C instead of A. Keep in mind that no further as-
sumptions are made about the exponents of A, B, and C, so it is not the
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case that A is the fixed counterpart of a positive form or C the fixed
counterpart of a superlative form. Instead, A, B, and C are just abstract
variables or bins, and any two forms that are put in the same bin must
have the same exponent. Consequently, a function mapping all three
forms to A is empirically equivalent to one mapping all three forms
to C. In this system, there are only five ways to map three different
forms to exponents. But one of them is the illicit (and not monotonic)
ABA pattern, so that (9) already exhausts the full range of options.
We see, then, that the typology of adjectival gradation is partially

explained by the assumption that
1. there is a universal hierarchy positive > comparative > superlative,
and

2. the mapping from this hierarchy to surface forms must be feasibly
monotonic.

These two assumptions explain the absence of ABA patterns, but they
still allow for AAB patterns, which are unattested cross-linguistically.
Just like the previous analyses in Bobaljik (2012) and Bobaljik and
Sauerland (2018), monotonicity cannot give a unified explanation of
the absence of both ABA and AAB patterns.
However, this is actually a welcome state of affairs because AAB

patterns do show up in other empirical domains. Harbour (2015) con-
ducts an extensive survey of pronoun systems. His findings are sum-
marized in Table 2. Putting aside number and the inclusive-exclusive
distinction to focus exclusively on person specification, we can infer
that all of the languages surveyed by Harbour adopt one of four person
systems:
• all persons are the same (AAA),
• first and second person are the same (AAB),

Table 2:
Typology of pronoun systems

according to Harbour (2015, p. 137)
Pronominal contrasts Language

none Wichita
1|23 Damin, Elseng/Morwap?

12|3 Winnebago
1|2|3 Jarawa, Kiowa

1ex|1in|2|3 Imonda, Matses, Waris
1|23 × sg|pl Sanapaná
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• second and third person are the same (ABB),
• all persons are different (ABC).

Again the ABA pattern is missing, and this fact is expected if all lan-
guages use an underlying person hierarchy of 1 > 2 > 3 and the map-
ping to surface forms must be feasibly monotonic. At the same time,
the four attested patterns AAA, AAB, ABB, and ABC are completely
expected from this perspective. I thus conclude that monotonicity can
successfully limit the possible range of variation in these morpholog-
ical domains, although certain options such as AAB may still be unat-
tested due to unrelated factors.2

3.2 Motivating the hierarchies
The advantage of the monotonicity approach lies in its ability to
account for the ∗ABA generalization across seemingly unrelated do-
mains. Person and adjectival gradation have nothing in common se-
mantically, and it also seems unlikely that they are syntactically re-
lated. More specifically, I am not aware of any proposals where first
person is structurally contained by second person which in turn is
contained by third person, mirroring Bobaljik’s treatment of positive,
comparative, and superlative. But from the abstract high-level per-
spective advocated here, person and adjectival degrees are exactly
parallel because their respective hierarchies are isomorphic. Each one
is of the form 1> 2> 3, and the only difference is what each element
of the hierarchy denotes.

2An anonymous reviewer wonders how the person hierarchy can be extended
to the exclusive-inclusive distinction without losing its explanatory force. The
reviewer notes that it would be very natural to analyze 1in as the combination
of 1 and 2, such that one gets the ordering relations 1in> 1> 3 and 1in> 2> 3.
But with this hierarchy, 1 and 3 can now be syncretic to the exclusion of 2,
undermining the results of this section.

This case shows that the choice of hierarchies must be carefully guided by
data. An empirically more adequate hierarchy might preserve 1 > 2 > 3 while
also adding 1in > 1 and 1in > 2. This would incorporate the natural idea that
1in combines first and second person without loosening the relative order of
1 and 2. At this early stage of the monotonicity enterprise, though, the choice
of hierarchy is primarily driven by empirical data, and without a careful analy-
sis of this data all claims about the shape of hierarchies are highly speculative.
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This raises the question, though, whether there is any indepen-
dent motivation for these hierarchies beyond their central role in ac-
counting for the data. There certainly is, but before discussing this
in detail I would like to point out that every account of the ∗ABA
generalization has to assume some base hierarchy for the domain in
question, at least at a descriptive level. Otherwise, the ∗ABA gener-
alization in its current form cannot be stated. Suppose that adjecti-
val gradation patterns were by default listed in the order compara-
tive-positive-superlative. An attested pattern like good-better-best would
then be regarded as better-good-best, which is an ABA pattern. The dis-
cussion of the ∗ABA generalization thus presupposes an agreed-upon
base order for every domain under investigation.3 The monotonic-
ity account simply takes this base order at face value and describes
how the expected typology is narrowed down by restricting our atten-
tion to feasibly monotonic mappings from base hierarchies to surface
forms.
Crucially, though, the hierarchies posited so far are highly

plausible from a cognitive perspective. The hierarchy positive >
comparative > superlative directly reflects the semantics of each form.
The person hierarchy 1 > 2 > 3, on the other hand, has already been
argued for by Zwicky (1977) for entirely different reasons. This hier-
archy is also implicit in feature-based systems such as that of Nevins
(2007), where first person is [+author,+participant], second person is
[−author, +participant], and third person is [−author,−participant].
Suppose we represent these specifications in privative terms as
{author,participant}, {participant}, and {}, respectively. If one orders
these sets by the superset relation, the very same ordering emerges
as with Zwicky’s person hierarchy. Admittedly, there are other well-
known feature systems that give rise to a different ordering, e.g. Harley
and Ritter (2002). The posited person hierarchy is also missing the
crucial contrast between inclusive and exclusive. The current per-
son hierarchy thus might present an overly simplified picture. But
future refinements would only make the hierarchy an even closer

3This holds even for the account of Bobaljik and Sauerland (2018). While
their mathematical analysis is order-independent and eliminates ABA patterns
based on the shape of the feature system, the application to empirical data re-
quires picking a suitable feature system. This is tantamount to positing a base
hierarchy for the empirical domain under investigation.
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match for current linguistic thinking. Overall, then, the hierarchies
for person and adjectival gradation are both on linguistically solid
ground.
Ultimately, the monotonicity approach must furnish a restrictive

theory of linguistic hierarchies lest it devolve to a purely descriptive
enterprise where hierarchies are tuned and tweaked until monotonic-
ity yields the desired result. But these restrictions cannot be put in
place a priori. They must be inferred by defining empirically adequate
hierarchies for a wide range of phenomena and by isolating properties
that separate these hierarchies from conceivable alternatives that pro-
duce undesirable data patterns (cf. fn. 2). This bottom-up strategy is
a major methodological difference to Bobaljik and Sauerland (2018),
who start out with abstract yet linguistically natural restrictions on
feature systems and use those to derive the absence of ABA patterns.
Such a top-down strategy could also be applied to the monotonicity
approach, but I believe that a largely data-driven approach will prove
more fruitful for a nascent enterprise like this. Without a rich body
of well-established hierarchies, the best option is to craft restrictive
hierarchies to fit the data and evaluate their linguistic plausibility. As
the number of hierarchies grows, their shared properties will become
more apparent and serve to constrain the shape of newly posited hi-
erarchies.
It is also of interest in this connection how the hierarchies relate to

linguistic assumptions about feature systems or structural projections.
A clearer understanding of this link would make it easier to convert
assumptions about linguistic feature systems into constraints on hier-
archies. I have already hinted at such a connection between feature
systems and hierarchies in my brief discussion of Nevins (2007) and
its strong correspondence to the person hierarchy of Zwicky (1977). In
this particular case, the relation is easy to discern thanks to the simple
nature of both the person hierarchy and the feature system. But as we
will see in the remainder of this paper, other empirical domains re-
quire much more elaborate hierarchies whose connections to features
or projections from the linguistic literature is much less clear. The
very next phenomenon, case syncretism, is already a striking example
of the complexity of hierarchies.
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3.3 Moving beyond 3 cells: Case syncretism
Even though adjectival gradation and pronoun allomorphy pertain to
vastly different morphological domains, they are both similar in that
their paradigms distinguish only three cells: positive-comparative-
superlative for the former, first person-second person-third person for
the latter. Many paradigms, however, involve more than three cells.
Case is a prime example of this, with many languages distinguishing
at least four different cases. It will be interesting to see if monotonicity
still holds in these larger paradigms, and if so, what shape the relevant
hierarchies have.
Caha (2009, 2013) provides a detailed study of case syncretism,

i.e. which cases in a noun inflection paradigm may systematically
display the same surface form. Such syncretisms are common across
languages with multiple morphologically realized cases, e.g. Russian
(Caha 2009, p.12).

(10)

window (sg) teacher (pl) 100
Nom okn-o učitel-ja st-o
Acc okn-o učitel-ej st-o
Gen okn-a učitel-ej st-a
Loc okn-e učitel-jax st-a
Dat okn-u učitel-am st-a
Inst okn-om učitel-am-i st-a

The first column shows syncretism of nominative and accusative. In
the second column, accusative and genitive are syncretic. The third
column displays two syncretisms, nominative-accusative on the one
hand and genitive-locative-dative-instrumental on the other. With six
cases, there are 203 logically conceivable patterns, but only a fraction
of those are attested. As it it unlikely that all these typological gaps
are purely accidental, a more principled explanation of this limited
typology is needed.
Even though Caha’s primary concern is to accommodate the ty-

pological facts in the framework of nano-syntax, he first formulates a
purely descriptive universal. His strong case contiguity hypothesis limits
case syncretism to contiguous areas of Blake’s case hierarchy (Blake
2001):
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(11) Blake’s case hierarchy (strict version)
Nom> Acc> Gen> Dat> Inst> others

This means that a language may mark, say, accusative, genitive, dative
and instrumental the same, but not accusative and instrumental to
the exclusion of dative and genitive. In other words, the strong case
contiguity hypothesis extends the ∗ABA generalization beyond systems
with three-way contrasts.
The strong case contiguity hypothesis is yet another instance of

monotonicity. Any feasibly monotonic function can only map contin-
uous parts of Blake’s case hierarchy to the same exponent. If such a
function mapped, say, accusative and dative to A but genitive to B,
then we would have both f (acc) ≤ f (gen) ≤ f (dat) and f (acc) =
f (dat) ̸= f (gen), which is impossible. Hence (feasible) monotonicity
over Blake’s case hierarchy rules out case syncretisms of the ABA-
variety.
Curiously, though, such ABA-style case syncretisms do exist.

Harđarson (2016) points out that accusative and dative are frequently
syncretic to the exclusion of the genitive in Germanic languages. For
the monotonicity account, the only way of incorporating this fact is
to change the case hierarchy. By relaxing Blake’s hierarchy such that
genitive and dative are unordered with respect to each other, we can
keep all the syncretisms of the original hierarchy while also allowing
for accusative-dative syncretism.
(12) Blake’s case hierarchy (relaxed version)

Nom

Acc

Gen Dat

Inst

Others
This is the first instance where I have to posit a hierarchy that is only
partially ordered. But since monotonicity is not limited to linear or-
ders (Section 2.1), the step to partial orders for base hierarchies is a
natural one. With the hierarchy in (12), dative and genitive can still
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be syncretic because they are unordered with respect to each other.
Recall from Section 2.1 that monotonicity only limits the possible
values for ordered elements, which entails that syncretism of these
two unordered cases cannot violate monotonicity. At the same time,
accusative still cannot be syncretic with instrumental to the exclusion
of dative or genitive as this would violate the ordering relations estab-
lished by the hierarchy.
However, such accusative-instrumental syncretism are actually

attested, which means that the current hierarchy is still too restrictive.
In fact, the range of attested case syncretisms goes far beyond what our
relaxed hierarchy allows for. In a painstaking literature survey, Zompí
(2016) has compiled an extensive list of case syncretisms across nu-
merous typologically diverse languages, including languages with an
ergative-absolutive system and even nominative-ergative-absolutive
systems. His findings are summarized in Table 3 and includemany syn-
cretisms that are unexpected even with the relaxed version of Blake’s
hierarchy in (12).4
Zompí (2016) argues for a radically simplified case hierar-

chy to account for the permissive typology. Cases come in three
types: unmarked core case (Nom, Abs), marked core case (Acc,
Erg), and oblique case (Gen, Dat, Loc, Inst, Prep, possibly others).
The case hierarchy is then simplified to unmarked < marked <
oblique, and every syncretism must be continuous over this or-
dering of classes. For example, nominative-accusative syncretism
is licensed because it covers two adjacent classes, unmarked and
marked. Similarly, nominative-accusative-dative-instrumental syn-
cretism involves only adjacent classes and thus is permitted. An
unattested syncretism of absolutive and genitive, on the other
hand, is correctly ruled out because it would involve an un-
marked case and an oblique case to the exclusion of all marked
cases.

4Zompí (2016) classifies some cases like ablative and allative as instances
of other cases. The table faithfully reproduces his terminology to the best of my
abilities. Note that Prep is short for prepositional case. Zompí also discusses what
he calls a prepositional locative, and it is unclear whether this should be subsumed
under Loc like a standard locative or under Prep. I decided to list it as Loc, but
treating it as an instance of Prep would work equally well for the purposes of
this paper.
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Syncretism Page(s)
Nom-Acc 6, 18, 35, 36
Nom-Acc + Dat-Inst 6, 28
Nom-Acc + Gen-Loc 28
Nom-Acc + Gen-Loc+Dat-Inst 18
Nom-Acc + Erg-Inst 37
Nom-Acc + Erg-Prep 39
Nom-Acc-Prep + Erg-Gen 39
Nom-Acc-Dat 19, 22
Nom-Acc-Dat-Inst 23, 24
Nom-Gen 83
Nom-Gen + Acc-Dat 87
Nom-Erg 33, 35, 36, 37
Acc-Gen 18
Acc-Gen + Loc-Dat 28
Acc-Dat 19, 21, 22
Acc-Inst 24
Acc-Prep 39
Acc-Loc-Dat 27
Acc-Loc + Gen-Dat-Inst 26
Gen-Dat 23
Gen-Loc-Dat 26
Loc-Dat 27, 28
Dat-Inst 23
Abs-Erg 32
Erg-Gen 32
Erg-Inst 33

Table 3:
Case syncretism patterns
from Zompí (2016)

While Zompí’s approach represents a marked improvement, it still
falls short as it is both too permissive and too restrictive. For one thing,
the hierarchy allows syncretisms such as nominative-ergative-dative,
which do not seem to occur. When a syncretism involves nomina-
tive and an oblique case, the marked case is always accusative and
never ergative. Admittedly this might just be a statistical confound:
languages with a three way contrast between nominative, ergative,
and absolutive are exceedingly rare, and so are syncretisms that in-
volve all three of Zompí’s case types. Hence, one is very unlikely to
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come across a language that could conceivably display syncretism of
nominative, ergative, and an oblique. Still, a more principled expla-
nation that curbs overgeneration and provides a tighter fit for this
typological gap would be welcome.
The more severe problem, as Zompí (2016, p. 88) readily admits,

is that his solution still undergenerates because it cannot account for
the robustly attested syncretism of nominative and genitive. This is
an instance of an unmarked case being syncretic with an oblique case
to the exclusion of all marked cases, directly contradicting Zompí’s
central claim that syncretism must be contiguous across case classes.
Zompí (2016, p. 87f) concludes that genitive must enjoy some spe-
cial status, but does not offer a detailed account of how genitive is
supposed to work in his system.
The monotonicity approach can remedy these shortcomings by

building on Zompí’s idea of three distinct case classes and combining
them with the insight that hierarchies need not be linearly ordered.
The result is a hierarchy that roughly breaks down into three “case
layers”, but also grants special status to genitive and locative. (To min-
imize clutter, the hierarchy below omits Zompí’s case Prep; like other
oblique cases such as allative, ablative, and so on, it would reside in
the third layer.)
(13) Case layer hierarchy

Nom

Acc Gen Loc Erg

Abs

Dat Inst

If one were to consolidate the individual cases into classes, this hier-
archy would directly follow Zompí in positing unmarked < marked <
oblique, except that one also has special < oblique for genitive and
locative.
Let us look at several syncretism patterns from Table 3 and why

they can be regarded as feasibly monotonic maps over this hierarchy.
We start with nominative-accusative-dative as the only syncretism in
the paradigm. Suppose that all three cases are mapped to some expo-
nent C. Then genitive, locative, and ergative must be mapped to some

[ 20 ]



Monotonicity in morphosyntax

Bg , Bl , Be < C , respectively; absolutive is mapped to some A≤ Be; and
instrumental has some D > C as its exponent. Any set that furnishes
a sufficient number of case exponents can be ordered in this way, so
the mapping is feasibly monotonic.
Next, consider a system with three distinct syncretisms: nomin-

ative-accusative, genitive-locative, and dative-instrumental. Suppose
nominative and accusative are mapped to some A. Then genitive
and locative must be realized as some B, but it does not matter
whether A < B or B < A since nominative and accusative are both
unordered with respect to genitive and locative. Dative and instru-
mental must have an exponent C with both A < C and B < C , and
the remaining cases can be handled as before. Again, it is possible
to produce such an ordering of exponents, and consequently we are
dealing with yet another feasibly monotonic mapping over the case
hierarchy.
Three more examples will prove instructive. First, note that syn-

cretism of nominative and genitive to the exclusion of accusative is
readily available in this system because genitive is unordered with
respect to nominative and accusative. Hence, the explanation for
nominative-genitive syncretism is exactly parallel to our previous ac-
count for genitive-dative syncretism in the relaxed version of Blake’s
hierarchy.
Second, the hierarchy captures the fact that nominative-accusa-

tive-dative syncretism is attested, but not nominative-ergative-dative.
Since accusative occurs between nominative and all oblique cases (ex-
cept genitive and locative), any syncretism involving nominative and
one of these cases must also include accusative due to monotonicity.
Yet it is also possible for nominative and ergative to be syncretic to
the exclusion of accusative, which is also an attested pattern.
Third, locative must not be in the same case layer as other oblique

cases because of paradigms where accusative and locative are syn-
cretic while genitive, dative, and instrumental display a different syn-
cretism. If we had genitive < locative, with A and B as the respec-
tive exponents, then monotonicity would require A ≤ B. Since loca-
tive and genitive are not syncretic in this specific case, A < B must
hold. As accusative and dative are not syncretic, either, and we have
accusative < dative, we also have C < D. But accusative and locative
are syncretic, so B = C . Similarly, syncretism of genitive and dative
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implies A = D. Put together, these equations entail both A < B and
B < A. It is clearly impossible for a linear order to obey both A < B
and B < A. Consequently, the described syncretism pattern cannot be
feasibly monotonic unless locative and genitive are unordered, which
requires locative to assume a special place in the hierarchy alongside
genitive.
The last point highlights an important generalization of the mono-

tonicity account.
(14) Ban against multiple cross-level case syncretisms

No case paradigm may display two distinct syncretism patterns
A-X and B-Y such that A and B belong to the second case layer
and X and Y to the third.

Hence the hierarchy in (13), albeit permissive, still puts a fair number
of principled restrictions on case syncretism.5
Overall, then, the monotonicity approach does a decent job at ac-

commodating the wide range of attested case syncretisms while still
enforcing some testable restrictions on the typology. Its main advan-
tage over competing approaches such as the nano-syntax analysis of

5The empirical impact of the generalization as presented here hinges on how
one interprets language-specific data. No language instantiates all the cases listed
in the hierarchy, which makes the status of unrealized cases an important issue.
One option is to treat unrealized cases as if they were not part of the hierarchy
at all. This is equivalent to positing a language-specific hiearchy that omits all
unrealized cases. But instead one may treat case absence as case syncretism. For
example, if a language lacks a distinct genitive but can use a dative for this
purpose, one might analyze this as dative and genitive being syncretic across all
paradigms. These two approaches are not empirically equivalent.

Consider a language that has both genitive and dative, but the two are some-
times syncretic. Suppose furthermore that the language also has an instrumental,
which can also serve the role of a locative. However, instrumental and locative
never have distinct forms. If unrealized cases are ignored, such a language is ex-
pected to exist since a monotonic function can map both genitive and dative to
some exponent A while mapping instrumental to some other exponent B. If, on
the other hand, missing cases are analyzed as an instance of complete syncretism,
then both locative and instrumental have to be mapped to B. But then the ban
against multiple cross-level syncretisms makes it impossible for both genitive and
dative to be mapped to A.

I conjecture that the second approach is not empirically feasible, wherefore
unrealized cases must be excised from the hierarchy.
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Caha (2009) or the case type hierarchy of Zompí (2016) is the flexi-
bility that comes with partially ordered hierarchies. This is difficult to
achieve in a syntactic approach, where case hierarchies are replicated
in terms of constituency containment (similar to how Bobaljik 2012
analyzes the superlative as containing the comparative, which in turn
contains the base form). At the same time, though, the flexibility of
the monotonicity approach also risks depriving it of any explanatory
power – if just about any hierarchy will do, one can always fit the data
as needed.
This is indeed a problem, but I maintain that all the hierarchies so

far reflect common linguistic intuitions. As already explained in Sec-
tion 3.2, the hierarchy for adjectival gradation is directly grounded
in semantics, and the person hierarchy is both compatible with con-
temporary assumptions about person features and can be traced all
the way back to Zwicky (1977). The case hierarchy looks more be-
wildering, but it, too, is built on linguistic ideas. The core of the hi-
erarchy is the stratification into three types of cases, as argued for in
Zompí (2016). The distinction between core cases and oblique cases is
well-established, and within the core cases it is also standard to single
out accusative and ergative as dependent cases that have, in a certain
sense, lesser status than nominative and absolutive. The split between
nominative and accusative on the one hand, and ergative and abso-
lutive, is typologically well-supported, with most languages adopting
one of the two but not both. This only leaves the special position of
genitive and locative in need of an explanation.
However, our approach is not an exception in granting these cases

privileged status. Caha (2009, p. 130) posits multiple distinct loca-
tives, some of which occur very high in his linear hierarchy:
(15) Refined case hierarchy of Caha (2009)

Nom> Acc> Loc1 > Gen> Loc2 > Dat> Loc3 > Inst
Zompí (2016, p. 87f), on the other hand, argues that genitive exhibits
special behavior because it can be an unmarked (= default) case or an
inherent case in syntax. Depending on its syntactic status, it may occur
higher or lower in the case hierarchy. Instead of distinguishing multi-
ple types of genitive and locative, the hierarchy in (13) instead assigns
them a position that makes them more prominent than obliques but
not directly comparable to the core cases.
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At this point, then, we have a unified explanation of syncretism
across three vastly different domains: adjectival gradation, pronouns,
and case. In all three areas, typological gaps are accounted for by limit-
ing the range of possible systems to those that can be produced by fea-
sibly monotonic maps from some base hierarchy. Each base hierarchy
is motivated by linguistic considerations. In the case of pronouns, the
account provides a perfect fit for the typology, whereas it only carves
out a superset of the attested patterns for adjectival gradation and
case syncretism. For adjectival gradation, only the absence of the pat-
tern AAB remains unexplained and requires a different account, e.g. in
terms of syntactic containment. For case syncretisms, the amount of
overgeneration is hard to assess because the number of possible com-
binations is so large that any gaps may just be due to insufficient data
rather than principled exceptions. I put off discussion of this method-
ological issue until Section 5 – for now, I take the hierarchy to present
a reasonable approximation of the typology of case syncretism.
I conclude this section on morphological syncretism with a short

observation on noun stem allomorphy before moving on to a com-
pletely different phenomeon, the Person Case Constraint in mor-
phosyntax.
3.4 Case in noun stem allomorphy
So far, I have only considered strict case syncretism, i.e. whether two
forms that differ in case may have exactly the same surface realization.
Hence the focus is on total identity for case. Instead, one can also look
at partial identity, in particular whether two distinct cases attach to
identical noun stems. This does not always occur. In Latin, for exam-
ple, the nominative of ‘man’ is hom-o, whereas the accusative is homin-
em. Nominative and accusative thus are formed with different stems
of the same noun. This is known as noun stem allomorphy. As it turns
out, the kinds of allomorphy observed with singular stems can also be
captured in terms of monotonicity (I ignore plural stem allomorphy
here because I am unaware of any detailed studies in this area).
McFadden (2018) proposes that all languages obey a strict condi-

tion on stem allomorphy.
(16) Nominative stem-allomorphy generalization

If noun stem allomorphy is conditioned by case, it distinguishes
the nominative from all other cases.
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In other words, noun stem allomorphy always displays an ABn pat-
tern, where A and B may be identical. Hence only the nominative may
pick out a different stem. For a language with three cases, McFadden’s
generalization permits only AAA and ABB while excluding AAB, ABA,
and ABC.
We already know from our discussion in Section 3.1 that AAA and

ABB can be produced from a linear hierarchy by feasibly monotonic
maps. Generalizing from this, it does not take much effort to verify
that both An+1 and ABn are licit patterns given the case layer hierarchy
in (13). The puzzle of noun stem allomorphy, hence, is not why the
attested patterns are possible. Once the case layer hierarchy is in place
for case syncretism, the attested noun stem allomorphy patterns are
also readily available. Instead, the question is why the majority of
conceivable allomorphy patterns are unattested.
Although I cannot envision a convincing reason as to why noun

stem allomorphy is much more restricted than case syncretism, it is
worth noting that the observed restrictions can be given a natural ac-
count in terms of the case layer hierarchy in (13). In this hierarchy,
all cases in the second layer are more prominent than the cases in the
third layer. But suppose that the hierarchy contains a cycle such that
all third-layer cases are also more prominent than the second-layer
cases. This is illustrated below, with arrows reflecting prominence.
(17) Conflated case layer hierarchy

Nom

Acc Gen Loc Erg

Abs

Dat Inst

Such cycles naturally enforce identity of exponents. Let f be a feasibly
monotonic map and suppose that x ≤ y and y ≤ x . By monotonicity,
this implies f (x)≤ f (y) and f (y)≤ f (x). But since f is feasibly mono-
tonic, the exponents are linearly ordered. Therefore f (x) ≤ f (y) and
f (y)≤ f (x) both hold if and only if f (x) = f (y). So if all second-layer
and third-layer cases are part of one large cycle, any two cases x and
y that are part of this cycle stand in the relation x ≤ y and y ≤ x , and
consequently they must be mapped to the same exponent.
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From this it also follows that if nominative is syncretic with any
case, it is syncretic with all of them. The one exception to this is ab-
solutive, but since the data in McFadden (2018) does not include any
languages with both a nominative and an absolutive, it remains to be
seen whether this exception is undesirable.6 For McFadden’s sample,
the solution in (17) works as desired. It allows for An+1 and ABn, and
nothing else.
As I admitted earlier on, it is unclear at this point why noun stem

allomorphy should use the conflated hierarchy in (17) instead of the
more stratified one in (13). Like the missing AAB pattern in adjectival
gradation, this issue is beyond the scope of this research project. It
is one of the cases where abstracting away from the concrete mech-
anisms of morphology and syntax comes at the cost of leaving some
aspects entirely unexplained. But as we will see next, this is exactly
what makes it possible to relate morphological paradigms for adjec-
tival gradation, person, and case to morphosyntactic well-formedness
constraints.
4 person case constraint
Our exploration of monotonicity in language now transitions from
morphology proper to a widely studied phenomenon of morphosyn-
tax, the Person Case Constraint (PCC). The PCC is a restriction on clitic
clusters. A direct object (DO) and indirect object (IO) clitic may co-
occur in a cluster only if their person specifications are compatible.
The “case” in PCCs thus refers to the DO-IO distinction rather than
morphological case.
(18) PCC (Spanish) (Ormazabal and Romero 2007, p. 316f)

a. Pedro
Pedro

{me,
{1sg.dat,

te}
2sg.dat}

lo
3sg.m.acc

envía.
send.pres.3sg

‘Pedro sends it to {me, you}.’
b. * Pedro

Pedro
le
3sg.m.dat

{me,
{1sg.acc,

te}
2sg.acc}

envía.
send.pres.3sg

‘Pedro sends {me, you} to him.’
6An anonymous reviewer, citing observations in Bobaljik (2008), points out

that every known split-ergative language with nominative and absolutive case
has identical stem forms for the two. If this generalization is indeed exceptionless,
then (17) must also contain a loop between those two cases.
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The PCC is very different from the phenomena we have consid-
ered so far. It is morphosyntactic in nature, not morphological. It does
not regulate the range of available exponents, but the well-formedness
of clitic combinations. But just like the phenomena from Section 3
surrounding the ∗ABA generalization, the PCC presents an interesting
puzzle where only a fraction of all conceivable options are typologi-
cally attested. And just like for the previous phenomena, the typolog-
ical gaps can be readily explained in terms of monotonic mappings
from a base hierarchy to some domain of values.
In the following, I first describe the PCC typology in detail (Sec-

tion 4.1) and explain how PCCs can be conceptualized as monotonic
maps (Section 4.2). Section 4.3 then uses this perspective to explain
why only a few PCC variants seem to occur in natural languages.
In contrast to previous approaches (Anagnostopoulou 2005; Adger
and Harbour 2007; Nevins 2007, a.o.), the monotonicity approach
correctly predicts the existence of a recently described PCC variant
in Choctaw. As shown in Section 4.4, it also generalizes straight-
forwardly to the Gender Case Constraint (Foley et al. 2017). Mono-
tonicity thus manages to provide a unified perspective on a wide range
of seemingly unrelated phenomena.

4.1 The PCC typology
The PCC was first observed in Perlmutter (1971), but it is only in
recent years that it has attracted significant attention (see e.g. Bonet
1994; Anagnostopoulou 2005; Adger and Harbour 2007; Nevins 2007,
2011; Rezac 2007; Walkow 2012; Graf 2014, 2017). The current lit-
erature distinguishes four different types of PCC.
(19) a. S(trong)-PCC

DO must be 3. (Bonet 1994)
b. U(ltrastrong)-PCC
DO is less prominent than IO, where 3 is less prominent than
2, and 2 is less prominent than 1. (Nevins 2007)

c. W(eak)-PCC
3IO combines only with 3DO. (Bonet 1994)

d. M(e first)-PCC
If IO is 2 or 3, then DO is not 1. (Nevins 2007)
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Very recent work argues for the existence of additional PCCs (Stegovec
2016; Tyler 2017), but for the sake of exposition I will limit the dis-
cussion to these four PCCs for now and return to the others later on.
Even with just four PCCs under discussion, it is hard to deny that

the class of PCCs as defined above seems rather bewildering. However,
a clearer picture emerges if one simply represents the licit and illicit
combinations in tabular form as in Table 4. The tables make it readily
apparent that each PCC represents a specific way for grammaticality
to spread from the top right corner – the 1-3 combination – towards
the bottom left, where 3-1 resides.
Table 4: Attested variants of the PCC

IO↓/DO→ 1 2 3
1 NA * ✓
2 * NA ✓
3 * * NA

(a) S-PCC

IO↓/DO→ 1 2 3
1 NA ✓ ✓
2 * NA ✓
3 * * NA

(b) U-PCC

IO↓/DO→ 1 2 3
1 NA ✓ ✓
2 ✓ NA ✓
3 * * NA

(c) W-PCC

IO↓/DO→ 1 2 3
1 NA ✓ ✓
2 * NA ✓
3 * ✓ NA

(d) M-PCC

Before we proceed, an important disclaimer is in order regard-
ing the diagonal of each table. The cells where IO and DO have
the same person specification are marked as NA, which is short for
“not applicable”. The reason for this value is not a lack of avail-
able data, but rather how this data should be analyzed. These cases
are known to exhibit special behavior, such as 3-3 effects (Perlmutter
1971, p. 132).

(20) * Le
3sg.dat

lo
3sg.m.acc

recommendé.
recommend.past.1sg

‘I recommended it to him.’
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Although (20) looks like a PCC-effect, it is generally assumed that
the source of 3-3 effects is morphological in nature (see Foley et al.
2017 for a full discussion). Since PCCs are taken to be syntactic in
nature, morphologically conditioned phenomena do not fall under
their purview and should be treated differently. I follow this com-
mon line of reasoning and exclude all cells along the diagonal from
the PCCs.
Even with the diagonal excluded, there are 26 = 64 conceivable

PCC variants. Only a small fraction of those 64 are actually attested.
Every account of the PCC thus has to explain why the range of vari-
ation is severely limited. As we will see soon, the monotonicity ap-
proach does so with little effort.

4.2 PCCs as monotonic maps
We now turn our attention to the four patterns in Table 4 and why
each one of them can be regarded as the result of a monotonic map.
First, we have to define an appropriate structure to represent IO/DO-
combinations. We do this by constructing a specific crossproduct based
on the person hierarchy P := 1 > 2 > 3 of Zwicky (1977), which we
already encountered during the discussion of person syncretisms in
Section 3.1. Given two hierarchies A and X , their crossproduct is the
structure 〈A× X ,≤〉 such that 〈a, x〉 ≤ 〈b, y〉 iff a ≤A b and x ≤X y. An
example is shown below.

(21) 1

2 3

+

−

1+

1−2+ 3+

2− 3−
A X A× X

With the right crossproduct, all the PCCs in Table 4 will turn out to
be captured by monotonic maps from this crossproduct to the algebra
2 of truth values.
It is very tempting to go with the intuitively pleasing option to

construct the crossproduct P × P. This hierarchy, which is shown be-
low, combines the person hierarchy with itself so that every node of
the hierarchy represents a specific IO-DO combination.
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(22) Full person-person hierarchy P × P
1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

Since we ignore the diagonal, we remove all nodes of the form x , x ,
for x ∈ {1, 2, 3}. This leaves us with the reduced hierarchy R below.
(23) Reduced person-person hierarchy R

1,2

1,3

2,1

2,3

3,1

3,2

However, this is not the correct hierarchy for our purposes. TheW-PCC
does indeed correspond to a monotonic mapping from this hierarchy
to the algebra 2, where T indicates a well-formed combination and F
an ill-formed one. But the same does not hold for the U-PCC. Let us
look at this in detail, starting with the W-PCC:
(24) W-PCC as a monomorphemic map

1,2

1,3

2,1

2,3

3,1

3,2

T

F

The relation between a map like in (24) and the PCC tables is as fol-
lows: if a node of the form x , y is mapped to T, then the cell in row x
and column y has a checkmark. In other words, a combination of an
IO with person x and a DO with person y is well-formed. The reader is
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invited to verify for themselves that the mapping in (24) does indeed
define the pattern of the W-PCC.
Note that (24) contains no x and y such that x ≤R y yet f (y)≤2

f (x), which establishes that the W-PCC mapping is monotonic. But
the mapping for the U-PCC is not monotonic.
(25) U-PCC mapping

1,2

1,3

2,1

2,3

3,1

3,2

T

F

Here, we have 2, 3≤R 2, 1 yet f (2, 1) = F ≤2 T = f (2, 3). Switching the
order of T and F does not help, for then the problematic pair would be
1, 2 and 3, 2. So the U-PCC mapping isn’t even feasibly monotonic for
R , which entails that it cannot be monotonic. If the typology of PCCs
is to be analyzed as yet another instance of monotonicity, a different
hierarchy is needed.
Recall from the initial discussion of the patterns in Table 4 that

well-formedness seems to be growing out from the top-right corner,
which corresponds to the combination 1, 3. This suggests that we
should construct a hierarchy where the top element is 1, 3 rather
than 1, 1. One candidate is the crossproduct of the person hierarchy
P := 1 > 2 > 3 with its dual P−1 := 3 > 2 > 1. The result is shown
below.
(26) Dual Person Hierarchy P × P−1

1,3

1,2

1,1

2,3

2,2

2,1

3,3

3,2

3,1
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Once again all elements of the form x , x are removed, which results
in a new person hierarchy P .
(27) Reduced dual person hierarchy P (final)

1,3

1,2 2,3

2,1 3,2

3,1

OverP , each one of the four attested PCCs corresponds to amonotonic
map to 2. These are depicted in Table 5. For the sake of simplicity,
I omit 2 and instead put a box around a node iff it is mapped to T.
In conclusion, the attested PCC variants can all be regarded as

monotonic functions from the hierarchy P to the algebra 2 of truth
values.

Table 5:
The four PCC variants as monotonic
maps from the person hierarchy to the
algebra of truth values; boxed nodes
are mapped to true, all others to false

1,3

1,2 2,3

2,1 3,2

3,1

1,3

1,2 2,3

2,1 3,2

3,1
S-PCC U-PCC

1,3

1,2 2,3

2,1 3,2

3,1

1,3

1,2 2,3

2,1 3,2

3,1
W-PCC M-PCC
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4.3 Explaining the typology
The four mappings depicted in Table 5 do not exhaust the range
of available monotonic functions. So we have succeeded in correlat-
ing each attested PCC with monotonicity, but we have not given a
monotonicity-based characterization of the PCC typology. But as I ar-
gue next, this too is fairly simple.
Only five other maps from P to 2 are monotonic. The first two

map everything to T or everything to F.

(28)

1,3

1,2 2,3

2,1 3,2

3,1

1,3

1,2 2,3

2,1 3,2

3,1

This corresponds to PCCs where either all combinations are allowed
or all options are forbidden. Even though such patterns are usually not
considered PCCs in the literature, they do exist. Many languages al-
low clitics to be freely combined, e.g. German. And at least in Cairene
Arabic, clitics may never be combined, irrespective of their person
specification (Shlonsky 1997; Walkow p.c.). We may consider these
to be instances of a F[ree]-PCC and an I[ndiscriminate]-PCC, respec-
tively. So these two monotonic maps do have attested counterparts in
the typology.
The next mapping is a mirror image of the S-PCC, where the only

licit combinations are 1, 3 and 1, 2 instead of 1, 3 and 2, 3.

(29)

1,3

1,2 2,3

2,1 3,2

3,1
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For the longest time, this pattern has been believed not to exist. But
Tyler (2017, p. 10) reports that Choctaw has a rather unusual PCC of
the following form:

(30) PCC in Choctaw (as reported)

IO↓/DO→ 1 2 3
1 NA ✓ ✓
2 * NA *
3 ✓ ✓ NA

This pattern is clearly not monotonic over any of the hierarchies en-
tertained so far: (22), (23), (26), and (27). However, Tyler (p.c.) states
that the combinations 3, 1 and 3, 2 never surface in the data. He argues
that they are blocked for reasons that are unrelated to the PCC – sim-
ilar to how the diagonal often exhibits special behavior. The value ✓
in the corresponding cells thus does not indicate an empirically at-
tested combination, but rather the theoretical claim that these patterns
would be well-formed if it were not for these independent factors.
We might also entertain the scenario, then, that these combinations
are also illicit with respect to the PCC, which yields a very different
table.

(31) PCC in Choctaw (reanalyzed)
IO↓/DO→ 1 2 3
1 NA ✓ ✓
2 * NA *
3 * * NA

Let us call this pattern the C[hoctaw]-PCC. The C-PCC corresponds
exactly to the monotonic mapping in (29) where only 1, 3 and 1, 2 are
mapped to T.
So far then, three monotonic maps beyond the initial four have

been successfully related to some attested data pattern. This leaves
only two more monotonic maps to consider. In one 1, 3 is the only
licit combination, in the other one 3, 1 is the only illicit combi-
nation.
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(32)

1,3

1,2 2,3

2,1 3,2

3,1

1,3

1,2 2,3

2,1 3,2

3,1
To the best of my knowledge, no language exhibits a pattern of this
kind. So just as in the case of adjectival gradation, monotonicity is a
bit too loose as a characterization of the typology.
That said, it is easy to distinguish these two unattested patterns

from the rest. They are the only ones that define a class with only a sin-
gle member. Either the set of well-formed combinations is a singleton,
or the class of ill-formed combinations is. There may be independent
reasons that drive languages towards patterns that do not put a sin-
gle combination in opposition to the rest of the paradigm. Or perhaps
this is yet another case where the answer can only be found at a less
abstracted level of description.
Be that as it may, monotonicity in combination with the hier-

archy P from (27) provides a very tight fit for the attested PCC ty-
pology, with only minimal overgeneration. This establishes a direct
connection to the morphological syncretism phenomena discussed in
Section 3. But as we will see next, it can also be extended to other
aspects of morphosyntax, such as the recently reported Gender Case
Constraint.
4.4 Hierarchical reversal in the Gender Case Constraint
Besides furnishing two unattested patterns, the monotonicity account
also seems stipulative in that it fails for the intuitively most pleasing
hierarchy P × P and instead has to use (a reduced version of) P × P−1,
where the order in the second component is the reverse of that in the
first component. Why should natural language operate with such a
peculiar hierarchy? I have no insightful answer to this puzzle, but I
would like to point out that the puzzle is not limited to the PCC.
Foley et al. (2017) report that Zapotec displays a restriction on

subject-object clitic clusters that is driven by gender rather than per-
son, a Gender Case Constraint (GCC). This constraint only acts on third
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person clitics. Zapotec distinguishes four genders: elder human, non-
elder human, animal, and inanimate. For the sake of simplicity, I refer
to these as 1, 2, 3, and 4. The Zapotec GCC then produces the following
pattern:
(33) Zapotec GCC (Foley et al. 2017, p. 6)

S↓/O→ 1 2 3 4
1 NA ✓ ✓ ✓
2 * NA ✓ ✓
3 * * NA ✓
4 * * * NA

Mirroring standard practice for the PCC, Foley et al. (2017) argue that
the diagonal can be subject to a separate constraint against identical
combinations. For this reason, I have given those cells the value NA
here, but nothing in the subsequent discussion hinges on that.
After our extensive discussion of monotonicity in the PCC, the

reader should be able to see immediately that the pattern in (33) is
monotonic if one starts with a hierarchy 1 > 2 > 3 > 4 and combines
it with its inverse 4> 3> 2> 1.
(34) Gender hierarchy with the second component reversed

1,4

1,3

1,2

2,4

2,3

2,1

3,4

3,2

3,1

4,3

4,2

4,1
If, on the other hand, the hierarchy were simply built by combining
1> 2> 3> 4 with itself, the Zapotec GCC would not be monotonic by
virtue of not being feasibly monotonic.
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(35) Gender hierarchy with identical components
1,2

1,3

1,4

2,1

2,3

2,4

3,1

3,2

3,4

4,1

4,2

4,3

Here we have 3, 4 ≤ 3, 2 ≤ 1, 2 and thus f (3, 4) = T ≤ f (3, 2) = F ≤
f (1, 2) = T – but T ≤ F ≤ T cannot be satisfied irrespective of how one
orders T and F. It seems, then, that it is a general fact of language that
clitic combination patterns “grow” from the top-right corner of the
paradigm, which is formally captured by reversing the second hierar-
chy. I doubt that the reason for this can be discerned at the level of ab-
straction at which the monotonicity approach operates. This question
requires the more fine-grained and detailed assumptions of syntactic
and/or morphological formalisms.
4.5 Other PCCs
There is one more point regarding the typology of PCCs that merits
discussion. Stegovec (2016) argues based on data from Slovenian that
the established PCCs also have counterparts where the relevant con-
trast is not that between IO and DO, but rather which clitic occurs
linearly first. For example, Slovenian has a counterpart of the S-PCC
that looks exactly the same as the one in Table 4 except that the x
and y-axis do not correspond to DO and IO, but rather to the linearly
second and the linearly first clitic.
Stegovec’s findings present a major challenge for syntactic ap-

proaches such as Anagnostopoulou (2005), which derive the limited
PCC typology from structural asymmetries between IO and DO. With-
out this structural asymmetry, syntactic accounts lose all their force.
In particular, it becomes mysterious why the range of possible PCC
patterns remains the same when the conditioning factor is linear or-
der instead of the IO-DO asymmetry.
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The monotonicity approach, on the other hand, can easily accom-
modate these findings. All the work is done by the hierarchy in (27),
which is agnostic about what each component of a node encodes. The
standard interpretation of, say, 3,1 is that IO is third person and DO
is first person. But we might just as well interpret it as saying that the
linearly first clitic is third person and the second one is first person.
The monotonicity approach is not concerned with identifying poten-
tial triggers or the exact linking from syntactic configurations to the
hierarchies it operates over. What it does is provide an abstract charac-
terization of the range of variation once the appropriate triggers have
been identified. As we have seen throughout this paper, this high-level
approach has great unifying power, but it comes at the expense of leav-
ing certain issues entirely unaddressed. Stegovec’s findings show that
this kind of agnosticism, albeit occasionally unsatisfying, increases the
robustness of the approach.

5 methodological remarks

Before I turn to the summary of this paper’s key findings, there still
are several methodological issues that deserve a careful exploration.
These concern the status of monotonicity as a desirable property of
mappings (Section 5.1), the cognitive status of the analysis advanced
in this paper (Section 5.2), and the risks of building a formal model
on a limited range of data (Section 5.3).

5.1 Monotonicity in language
Monotonicity plays a central role in this paper. It is the key ingre-
dient that narrows down the range of variation once a suitable base
hierarchy has been defined. One may wonder, then, why monotonic-
ity should be a desirable property for language. This is a very deep
question that cannot be answered in a few lines. That said, the role
of monotonicity seems to extend beyond the phenomena discussed in
the preceding sections.
In Section 2.1, I used the No Crossing Branches constraint from

autosegmental phonology to illustrate the concept of monotonicity.
But monotonicity in phonology goes beyond this constraint. To give
but one example, there seems to be no phonological process that
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targets high and low vowels to the exclusion of mid vowels – a kind
of phonological ∗ABA constraint, and arguably an instance of mono-
tonicity.
Monotonicity can also be found in syntax. The Accessibility hier-

archy of Keenan and Comrie (1977) classifies different kinds of NP by
their relative prominence as SU > DO > IO > OBL > GEN > OCOMP
and states that if a language allows for NPs of type x to be relativized,
it also allows this for every NP type y > x . This implicational universal
amounts to the requirement that mappings from the linear hierarchy
of NP-types to the algebra 2 must be monotonic (being mapped to T
means that relativization is allowed).
Another example comes from the ordering of operations in syntax.

A phrase can undergo three types of operations: selection, A-move, and
A′-move. Once a phrase has undergone A-movement, it can no longer
be selected or select arguments of its own. Furthermore, A-movement
is impossible once the phrase has undergone A′-movement. This, too,
can be viewed as an instance of monotonicity. For any given phrase,
consider the linear sequence of operations it undergoes during the
syntactic derivation. For example, an arbitrary DP’s record may read
Select-A-A′-A′. Now suppose furthermore that operation types are lin-
early ordered such that Select < A-move < A′-move. Then the inability
to select after A-moving or to A-move after A’-moving follows from
the requirement that the mapping from a phrase’s derivational record
to the hierarchy of operation types must be monotonic.
A more complex example from syntax is the analysis of adjunct

island effects in Graf (2013). There, the fact that extraction from an
adjunct is ungrammatical is reinterpreted as a monotonicity require-
ment over a specific kind of algebra. This monotonicity entailment can
produce situations where a syntactic structure is illicit even though
it does not violate any syntactic constraints. Hence, there is no such
thing as an Adjunct Island Constraint, the observed effects are a direct
consequence of monotonicity.
Monotonicity also surfaces in semantics. The denotations of deter-

miners, for example, are always monotonic (Keenan and Westerståhl
1996; Peters and Westerståhl 2006). Even in the realm of lexical se-
mantics, it has been argued that word meanings tend to be convex
(Gärdenfors 2000; Jäger 2007, 2010), a notion that is closely related
to monotonicity.
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Overall, then, there is plenty of evidence for monotonicity in lan-
guage, although the motivations for that are still largely unclear. This
paper just adds a few more entries to a long list of phenomena that
involve monotonicity.
5.2 Cognitive commitment
The previous section suggests that monotonicity plays a fundamental
role in language. This seems to be at odds with the initially stated aim
for an effective theory, i.e. an account that correctly characterizes the
system under investigation but does not necessarily encompass the
causal factors that give rise to this system. Upon reflection, though,
these two positions are perfectly compatible.
It is true that the monotonicity account deliberately abstracts

away from those factors that linguists consider the nuts and bolts
of mental grammars: features bundles, feature checking, structure-
building operations, and so on. As a consequence, the concepts I rely
on may not have direct counterparts in the grammar. For example, the
posited person hierarchy of 1 > 2 > 3 is entirely agnostic about the
long-standing issue whether third person is a feature or the absence of
person features. At the same time, this does not entail that the person
hierarchy is merely a descriptive device without any cognitive reality.
Rather, the claim is that the mechanisms of the grammar, whatever
they may be, are such that they give rise to this kind of hierarchy for
the surface forms we observe in the data. In a sense, this is no different
from syntacticians asserting the cognitive reality of their grammar for-
malism while leaving the neural substrate of the grammar unspecified.
The monotonicity approach employs the same strategy, characterizing
the high-level behavior of language while abstracting away from the
grammar substrate.
As the reader has seen throughout the paper, this has several ad-

vantages. One can now generalize across domains that arguably do
not look very similar and behave very differently at the usual level
of grammatical description. By abstracting away from technical de-
tails, the account remains remarkably simple on a formal level. It also
is largely framework agnostic and is directly compatible with Mini-
malism (Chomsky 1995), Distributed Morphology (Halle and Marantz
1993; Embick and Marantz 2008), GPSG (Gazdar et al. 1985), HPSG
(Pollard and Sag 1994), LFG (Bresnan 1982), and TAG (Joshi 1985),
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among others. By not directly linking into the tools and concepts of ex-
isting grammar formalisms, the account also enjoys a greater amount
of freedom and can easily be adjusted to fit new data – the discovery
of new PCC types in Stegovec (2016), for example, poses a major prob-
lem for syntactic accounts, but not for the monotonicity approach.
The obvious downside of abstraction is that some typological gaps

cannot be adequately explained. Without the connection to the gram-
mar substrate, domain-specific limitations such as the absence of AAB
patterns in adjectival gradation remain mysterious. There is a risk that
this abstractness, combined with the malleability of the approach, will
ultimately lead to blind descriptivism, with the hierarchies constantly
being tweaked and refined until they fit the data. As I argue next,
though, the goals of the enterprise make this an unappealing option
and hence an unlikely outcome.
5.3 The risk of overfitting
Typological accounts always face the danger of overfitting their the-
ory to an unrepresentative data sample. Even large-scale studies rarely
contain data from more than 150 languages. Since many phenom-
ena such as the PCC are exceedingly rare, the sample of languages
that display the phenomenon in question is even smaller. At the same
time, combinatorial explosion leads to large numbers of logically pos-
sible systems in certain domains. For instance, there are 203 distinct
case syncretism patterns for a system with 6 cases. In the face of
such numbers, it is doubtful that our current data exhausts the full
range of variation. In addition, the analysis of existing data is fraught
with difficulties. Syncretism, for example, has to be distinguished from
merely accidental homophony, which leaves plenty of wiggle room in
how the data is interpreted (but see Sauerland and Bobaljik 2013 for
a more rigorous approach to accidental homophony). Even in cases
where sufficient data is available, then, it might have been misana-
lyzed.
While all these points are certainly correct, they are unavoidable

given the realities of doing empirical work in linguistics. All compe-
tence data is heavily theory-laden, and since we do not know the full
extent of universal grammar, even 6000 languages may only provide a
small sample of the full space of grammars. Instead of stopping dead in
their tracks, linguists accept that the empirical landscape may change
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from one day to the next and try to formulate the most insightful the-
ories given the currently available data.
Things are no different for the monotonicity approach, but it has

several properties that mitigate the data problem. First and foremost,
the account is about identifying principles that hold across many dif-
ferent domains. Hence, a data shortage in one domain is less of an
issue because it can be offset by insights from another domain. Per-
son syncretism and the PCC, for instance, mutually support each other
as they both operate over person hierarchies. In addition, the mono-
tonicity approach is robust in the sense that it does not try to perfectly
fit the existing data but rather identifies upper bounds on the range
of variation. For example, the ABA pattern is ruled out on systematic
grounds, whereas the absence of AAB patterns in adjectival gradation
has to be stipulated. By focusing on what holds across many domains,
the approach avoids overfitting the data for any given domain.
How well this enterprise will work out in practice remains to be

seen. But at this point, there is no reason to dismiss it on conceptual
or methodological grounds.

6 conclusion

The account proposed in this paper derives typological gaps from two
components: a fixed underlying hierarchy shared across all languages
(a person hierarchy, case hierarchy, and so on), and the requirement
that the mappings from these hierarchies to output forms must be
monotonic. This simple principle produces close approximations of
the range of variation for each domain, with only some requiring fur-
ther stipulations (e.g. the ban against AAB pattern in adjectival gra-
dation, or the absence of PCC patterns with only one well-formed or
ill-formed clitic combination). The relevant hierarchies are summa-
rized in Table 6.
While it must remain an open question for now why monotonicity

should play such an important role, it cannot be denied that it surfaces
in many other areas of language, including phonology, morphology,
syntax, and semantics. Hopefully future work will be able to shed light
on this fundamental question.
A lot of analytic work also remains to be done. The literature

on typological generalizations is enormous, and only a few could be
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Phenomenon Hierarchy

Adjectival gradation

positive

comparative

superlative

Pronoun syncretism
1

2

3

Case syncretism

Nom

Acc Gen Loc Erg

Abs

Dat Inst

Noun stem allomorphy

Nom

Acc Gen Loc Erg

Abs

Dat Inst

PCC

1,3

1,2 2,3

2,1 3,2

3,1

GCC

1,4

1,3

1,2

2,4

2,3

2,1

3,4

3,2

3,1

4,3

4,2

4,1

Table 6:
Overview of posited
hierarchies for each
phenomenon
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explored here. Number was completely ignored, and preliminary work
on syncretism patterns in verbal inflection suggests that its behavior
is more complicated than that of person in the PCC. Other topics for
future research are inverse marking and resolved agreement.
Expanding the range of domains is of vital importance as it may

provide additional support for hierarchies posited here. For example,
the person hierarchy 1 > 2 > 3 should surface in every domain that
involves person. In addition, hierarchies for entirely new domains will
increase our understanding of what hierarchies can (and cannot) look
like. This is vital for keeping the approach from devolving into pure
stipulation of suitable hierarchies.
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This paper analyzes the language-theoretic complexity of Harmonic
Serialism (HS), a derivational variant of Optimality Theory. I show
that HS can generate non-rational relations using strictly localmarked-
ness constraints, proving the “result” of Hao (2017), that HS is ratio-
nal under those assumptions, to be incorrect. This is possible because
deletions performed in a particular order have the ability to enforce
nesting dependencies over long distances. I argue that coordinated
deletions form a canonical characterization of non-rational relations
definable in HS.

1 introduction

A classical question in mathematical linguistics concerns whether or
not patterns describable by grammar formalisms resemble natural lan-
guage dependencies (Chomsky 1959; Berwick 1984). An ideal gram-
mar formalism should be expressive enough to generate all attested
languages, but also restrictive enough to exclude patterns thought to
be impossible in natural language.

In phonology, the seminal work of Johnson (1970, 1972) and Ka-
plan and Kay (1994) showed that the Sound Pattern of English (SPE)
formalism of Chomsky and Halle (1968) is equivalent in generative
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power to finite-state transducers (FSTs). Henceforth, it has been gener-
ally accepted that the mapping from underlying phonological repre-
sentations (URs) to surface phonetic representations (SRs) in a given
language can be computed using an FST. Empirical evidence in fa-
vor of this hypothesis can be found in the SPE phonology literature,
as well as in the success of hidden-Markov-model-based approaches
to automatic speech recognition (Baker 1975; Lowerre 1976; Jelinek
1976).

If it is empirically true that phonological mappings are finite-
state, then theoretical frameworks for phonology should ideally de-
scribe only mappings that are finite-state. Frank and Satta (1998) carry
out an analysis of Optimality Theory (OT, Prince and Smolensky 1993,
2004), showing that the full OT framework can describe non-rational
relations, and is therefore too powerful according to the criterion of
finite-stateness. They do this by following Ellison (1994) in thinking
of OT constraints as FSTs that read input–output pairs and emit viola-
tion marks. However, Frank and Satta also find that OT can be made
equivalent to FSTs by assuming that for each constraint there is an up-
per bound on the number of violation marks that the constraint may
assign to any given input–output pair. Accordingly, Karttunen (1998)
has developed a finite-state calculus for implementing this violation-
bounded version of OT.

This paper presents an analysis of Harmonic Serialism (HS), a vari-
ant of OT in which surface forms are computed by recursively applying
incremental changes to underlying forms. These incremental changes
are chosen from a collection of basic operations based on an OT-style
constraint ranking system. Previous work on the expressive power of
HS includes Lamont (2018a,b), who shows that HS can implement
bounded alphabetical sorting if constraints are strictly piecewise and
if the basic operations include metathesis. Hao (2017), on the other
hand, arrives at the main conclusion that if markedness constraints are
strictly local and if the basic operations only include insertion, dele-
tion, and substitution of a single symbol, then HS only produces ra-
tional relation. The present paper disproves the latter “result” by con-
structing an HS grammar that produces a non-rational relation while
fulfilling Hao’s assumptions.

The structure of this paper is as follows. Section 2 defines termi-
nology and notation used in the rest of this paper. Section 3 introduces
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the formalism of OT and reviews existing literature in finite-state OT.
Section 4 defines HS along with various kinds of markedness con-
straints. In Section 5, I show that the model from Section 4 can pro-
duce a non-rational relation by relying on carefully coordinated dele-
tions. Section 6 argues that all non-rational mappings in HS are im-
plemented in a manner similar to the non-rational mapping from Sec-
tion 5. Section 7 concludes.

2 preliminaries
Let us adopt the following standard notations and definitions. Z is the
set of integers, and N ⊊ Z is the set of non-negative integers. Unless
otherwise specified, the letters Σ, ∆, and Γ denote finite alphabets not
including the special symbols ⋊ and ⋉. When used, these special sym-
bols represent the left and right boundaries of a string, respectively.

The length of a string x is denoted by |x |, and λ denotes the empty
string, the unique string of length 0. Alphabet symbols are identified
with strings of length 1, Σk denotes the set of strings of length k, Σ≤k

denotes the set of strings of length at most k, Σ∗ denotes the set of all
strings over Σ, and Σ+ denotes the set Σ∗\{λ}. For strings a and b, ab
denotes the concatenation of a and b. This notation is extended to sets
of strings A and B in the usual way. We say that a is a substring of b if
there exist strings l and r such that b = lar.

For sets A and B, A× B is the Cartesian product of A and B. An
n-ary relation over A1, A2, . . . , An is a subset R ⊆ A1 × A2 × · · · × An. If
〈a1, a2, . . . , an〉 ∈ R, then we may write R(a1, a2, . . . , an). If n = 2, then
we may also write a1 R a2. For any sets A, B, and C , the composition
of a relation R ⊆ B × C with a relation S ⊆ A× B is the unique binary
relation R◦S ⊆ A×C such that a R ◦ S c if and only if there exists b such
that a S b and b R c. The transitive closure of a relation R is defined as

R+ :=
∞∪
i=1

R ◦ R ◦ · · · ◦ R︸ ︷︷ ︸
i-many times

.

An equivalence relation over A is a relation R ⊆ A× A satisfying the
following properties.

• For all a ∈ A, a R a (i.e., R is reflexive).
• For all a, b ∈ A, if a R b, then b R a (i.e., R is symmetric).
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• For all a, b, c ∈ A, if a R b and b R c, then a R c (i.e., R is transitive).
For each a ∈ A, the equivalence class of a with respect to R is the set
[a]R := {b|b ∈ A, b R a}. The quotient of A under R is the set A/R :=
{[a]R|a ∈ A}. Each element of A/R is called an equivalence class.

A finite-state transducer (FST) is a 6-tuple T = 〈Q,Σ, Γ , I , F,→〉,
where

• Q is a finite set of states;
• Σ is an alphabet called the input alphabet;
• Γ is an alphabet called the output alphabet;
• I ⊆Q is the set of initial states;
• F ⊆Q is the set of final states; and
• →⊆Q× (Σ∪ {λ})× (Γ ∪ {λ})×Q is the transition relation.

We assume without loss of generality that if→(q, x , y, r), then x y ̸= λ.
The extended transition relation is denoted by→∗. The notations q

x:y−→ r
and q

x:y−→∗ r denote → (q, x , y, r) and →∗ (q, x , y, r), respectively. The
behavior of an FST T is the relation [T] defined by x [T] y if and only if
T has an initial state q and a final state r such that q

x:y−→∗ r. A relation
is rational if it is the behavior of an FST.

A finite-state automaton (FSA) is a 5-tuple A= 〈Q,Σ, I , F,→〉, where
• Q is a finite set of states;
• Σ is an alphabet called the input alphabet;
• I ⊆Q is the set of initial states;
• F ⊆Q is the set of final states; and
• →⊆Q× (Σ∪ {λ})×Q is the transition relation.

The extended transition relation is denoted by→∗. The notations q
x−→ r

and q
x−→∗ r denote → (q, x , r) and →∗ (q, x , r), respectively. We say

that A accepts a string w if and only if A has an initial state q and a
final state r such that q

x−→∗ r. The language recognized by A is the set
of all strings accepted by A. A language is regular if it is recognized by
an FSA.

3 background
Optimality Theory (OT, Prince and Smolensky 1993, 2004) is a formal-
ism that defines mappings between URs and SRs using ranked, violable
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constraints. An OT grammar is standardly considered to be given by
three components. Firstly, the function Gen takes an input and returns
a set of candidates. Then, the function Eval chooses one or more of
these candidates to be the output of the grammar. The SR of a word
is assumed to be the output of the grammar when given the UR as
input. The computation performed by Eval is parameterized by the
input and by Con, a set of constraints that must be satisfied by input–
output pairs. These constraints typically contradict one another, so
Eval specifies a ranking over Con that determines which constraints
are prioritized over others.1 The relationships among these three com-
ponents are shown visually in Figure 1.

Con

EvalGen SRUR

Figure 1:
The three components
of standard OT

To illustrate, let us consider a concrete example. (1) shows three
words from the Māori language. If a UR ends with a consonant, the
SR is produced by deleting this consonant.
(1) Coda Deletion in Māori (Hohepa 1967; Hale 1973)

a. /hopuk/⇝ [hopu] “catch”
b. /arum/⇝ [aru] “follow”
c. /maur/⇝ [mau] “carry”

A typical OT implementation of this mapping is as follows. Gen takes
a UR as input, and produces as candidates all possible strings that
may be obtained by inserting symbols to the input, deleting symbols
from the input, or changing symbols from the input to other symbols.
From among these possibilities, Eval chooses an output based on the
following constraints from Con. This output is taken to be the SR.

1Other formalisms with violable constraints may feature other methods for
adjudicating between constraints. For example, Harmonic Grammar (Pater 2009;
Potts et al. 2010) features weighted constraints that contribute additively to the
computation of SRs from URs. Ranked constraints give rise to explanations of
linguistic universals based on factorial typology (see Prince and Smolensky 1993,
2004), while weighted constraints account for gang effects (see Pater 2009).
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(2) a. Id: Assign one violation for each symbol from the input that
is changed to a different symbol in the output.

b. Dep: Assign one violation for each symbol inserted into the
input.

c. NoCoda: Assign one violation if the input ends with a con-
sonant.2

d. Max: Assign one violation for each symbol deleted from the
input.

Each constraint assigns to each candidate a score, expressed in units
called violations, that measures the degree to which the candidate vi-
olates the constraint. While several possible rankings of the four con-
straints above may yield the mapping shown in (1), for simplicity let
us assume that the four constraints are ranked in the order shown, with
higher-ranking constraints taking priority over lower-ranking ones.
We denote the constraint ranking by

Id≫ Dep≫ NoCoda≫Max.

Now, let us consider an input ending with a consonant. Based on this
constraint ranking, the output cannot be produced by performing sub-
stitutions or insertions, as candidates produced in this manner vio-
late Id and Dep. The output also cannot end with a consonant, lest it
violate NoCoda. Deleting the final consonant violates Max, but this
is tolerated because Max is the lowest-ranked constraint. All candi-
dates produced by Gen without deletion either end with a consonant,
thus violating NoCoda, or avoid a NoCoda violation by inserting or
changing symbols, thus violating Id or Dep. Constraints may be vio-
lated to varying degrees; thus, deleting additional symbols beyond the
final consonant is not possible, because such candidates violate Max
more severely than the candidate that only deletes the final consonant.

The computation of an output is shown in a table called a tableau.3
An example of a tableau is shown in (3). The columns represent the

2Typically, NoCoda assigns a violation for each syllable ending with a con-
sonant (Prince and Smolensky 1993, 2004). For simplicity, syllabification is not
discussed here, hence this alternate statement of NoCoda.

3For simplicity, only violation tableaux are used in this paper. Comparative
tableaux (Prince 2002, 2003) are also commonly used in OT phonology.
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constraints, from highest-ranked to lowest-ranked. The rows repre-
sent a selection of candidates produced by Gen. Typically, the candi-
dates shown in a tableau are those used to illustrate or justify claims
about the behavior of the grammar, such as the effect of changing the
constraint ranking. Each cell shows the number of violations the con-
straint assigns to the candidate.4 The candidate that is identical to the
input is known as the faithful candidate. The candidate that is chosen
as the output, marked with the symbol �, is known as the winning
candidate, or winner. For a non-winning candidate, the cell associated
with the highest-ranking constraint that distinguishes the candidate
from the winner is annotated with the symbol !.
(3) /hopuk/⇝ [hopu]

hopuk Id Dep NoCoda Max
a. hopuk 0 0 1! 0

� b. hopu 0 0 0 1
c. hopuku 0 1! 0 0
d. hopuu 1! 0 0 0
e. ho 0 0 0 3!

In (3), we consider the tableau of the grammar described by (2) for
the UR /hopuk/. The faithful candidate violates NoCoda. Candidates
c and d satisfy NoCoda, but violate Dep and Id, respectively. Candi-
dates b and e, obtained by deleting the final consonant, violate only
the lowest-ranked constraint Max. However, because candidate e vi-
olates Max thrice while candidate b violates Max only once, candi-
date b is the winner.

3.1 Finite-State Optimality Theory
Māori coda deletion, as described here, is implemented by the FST in
Figure 2. Recall that an FST is a device that reads an input string from
left to right and produces an output while doing so. Throughout the
course of its computation, the FST can be in one of a finite collection of
states, serving as a limited form of memory. The diagram in Figure 2

4Numbers of violations are typically represented in unary notation over the
symbol ∗. Arabic numerals are used here because some parts of this paper repre-
sent numbers of violations using algebraic expressions.
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Figure 2:

An FST that deletes codas

q0start q1

x : x
C : λ
V : V

is interpreted as follows. The FST begins in state q0. After reading
each symbol, the FST may choose to add that symbol to the output
while remaining in state q0 (x : x), or transition to state q1. Should the
machine choose the latter, it must either read a vowel and add it to the
output (V : V ), or read a consonant and omit it from the output (C : λ).
The two circles around q1 indicate that the computation is allowed to
end there; the FST crashes if its computation ends at q0. Since the FST
in Figure 2 has no permissible actions once it has entered state q1, on
any given input it must remain in q0, outputting a copy of its input,
and then transition to q1 while reading the last input symbol. If the
last input symbol is a consonant, that consonant is deleted. We say
that Māori coda deletion is rational, since it can be implemented by
an FST.

In general, OT can define mappings that cannot be computed us-
ing an FST. To see how this is possible, let us consider an example
of a grammar defining a non-rational relation. In this grammar, given
by Gerdemann and Hulden (2012), Gen once again produces candi-
dates by inserting symbols into the UR, deleting symbols from the UR,
and changing symbols of the UR into other symbols. Con contains
the following four constraints, shown in order from highest-ranking
to lowest-ranking.5

(4) a. Dep: Assign one violation for each symbol inserted into the
input.

b. Id: Assign one violation for each symbol from the input that
is changed to a different symbol in the output.

c. Agr: Assign one violation for each occurrence of the sub-
string ab or ba in the output.

d. Max: Assign one violation for each symbol deleted from the
input.

5Again, this is not the only ranking with the intended behavior; for example,
Dep and Id may be switched without consequence.
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Suppose that URs are strings over the alphabet Σ= {a, b} and SRs are
strings over the alphabet ∆ = {a, b, c}. Consider an input of the form
a∗b∗, such as aaabb. A tableau for aaabb is shown in (5).

(5) aaabb⇝ aaa

aaabb Dep Id Agr Max
a. aaabb 0 0 1! 0
b. aaacbb 1! 0 0 0
c. aaaaa 0 2! 0 0
d. bbbbb 0 3! 0 0

� e. aaa 0 0 0 2
f. bb 0 0 0 3!

The faithful candidate a violates Agr, since it contains the substring
ab. Candidates satisfying Agr cannot be chosen as the winner if they
are formed by inserting or changing symbols, since such candidates
violate the higher-ranking constraints Dep and Id, respectively. Thus,
candidates b, c, and d cannot be the winner. An Agr-obeying can-
didate may be obtained by deleting all the as or the bs, resulting in
candidates f and e, respectively. Because Agr ≫ Max, violation of
Max in order to satisfy Agr is warranted. Between candidates f and
e, the candidate that involves less deletion, namely candidate e, vio-
lates Max to a lesser degree, and is therefore chosen as the winner.

In general, when presented with a UR of the form a∗b∗, this gram-
mar deletes all instances of either a or b, whichever symbol occurs
less frequently. This kind of mapping, in which the SR depends on the
frequency of each symbol in the UR, is known as a majority-rules map-
ping (Baković 1999, 2000). Since counting the number of as and bs in
a string requires infinite-state memory, finite-state transducers cannot
compute majority-rules mappings.

Examining tableau (5), we see that the adjudication between can-
didates e and f is done by counting the number of symbols deleted from
the UR. Thus, OT is endowed with the ability to count by the fact that
constraints may be violated to varying degrees. Because of this insight,
existing approaches to finite-state OT have sought to strip constraints
of counting power by imposing restrictions on how constraints may
assign violation marks, or how two candidates may be compared with
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one another. Using the nomenclature of Eisner (2002), the current
proposals for restricted constraints are listed below.
(6) a. n-Bounded Approximation (Frank and Satta 1998; Kart-

tunen 1998): Each constraint may assign at most n-many
violations.

b. Matching (Gerdemann and van Noord 2000; Gerdemann
and Hulden 2012): Each constraint is computed by an FST
that reads candidates and emits violation marks, and can-
didate y is considered worse than candidate z if the set of
positions where violations are assigned to y is a strict su-
perset of those for z.

c. Directional Evaluation (Eisner 2000): Each constraint is
computed by an FST. Candidates are compared to each other
by scanning them left-to-right or right-to-left in parallel, and
a candidate is eliminated as soon as it receives a violation
that at least one other candidate does not receive.

While these approaches do not reflect the version of OT used in
phonology, each of them has a finite-state implementation, and there-
fore none of them can generate majority-rules mappings. Beyond these
approaches, Riggle (2004) proposes an algorithm called the Optimality
Transducer Construction Algorithm (OTCA) that takes an OT grammar
and attempts to produce an FST computing the mapping defined by
the grammar. However, this algorithm is not guaranteed to terminate.

4 harmonic serialism

Harmonic Serialism (HS) is a variation of OT in which SRs are pro-
duced by making incremental changes to URs. In HS, for any given
input, Gen is assumed only to produce candidates that may be ob-
tained by applying to the input one of a small collection of basic op-
erations. Most existing HS analyses assume that these operations may
insert, delete, or change at most one symbol of the input, so that can-
didates differ from the input by an edit distance of at most 1 (Mc-
Carthy 2007). Other proposals for basic operations include applying
multiple instances of the same one-symbol change (McCarthy 2008;
Walker 2008, 2010), creating and adjoining syllables (Elfner 2009,
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2016), creating feet and assigning stress (Pruitt 2008, 2012), and in-
serting or deleting autosegmental association lines (McCarthy 2009).
In order to effect more dramatic changes to URs, HS stipulates that
recursive calls to the grammar are made until a fixed point is reached.
In other words, suppose y is the winning candidate chosen by Eval
for the UR x . If y = x , then y is the SR for x . If not, then the SR for x
is the SR for y. This process is illustrated in Figure 3.

Con

EvalGen Faithful? SRUR

No

Yes

Figure 3:
Harmonic
Serialism

To see how HS works, let us consider an example due to McCarthy
(2010). In Classical Arabic, the two symbols [ʔi] are appended to the
beginning of the SR if the UR begins with more than one consonant.
For example, the SR for the UR /fʕal/ “do!” is [ʔifʕal]. One possible
constraint ranking deriving the correct SR is shown below.
(7) a. *CO: Assign one violation if the word begins with more than

one consonant.
b. Max: Assign one violation for each symbol deleted from the

input.
c. Id: Assign one violation for each symbol from the input that

is changed to a different symbol in the output.
d. Onset: Assign one violation if the word does not begin with

a consonant.
e. Dep: Assign one violation for each symbol inserted into the

input.
Since the constraint *CO outranks all faithfulness constraints, any vi-
olations of *CO occurring in a UR must be repaired in the SR. The fact
that Dep is the lowest-ranking faithfulness constraint means that *CO
will be repaired via insertion. Let us assume that low-ranking marked-
ness constraints not shown above ensure that any inserted vowel is i,
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and any inserted consonant is ʔ.6 Accordingly, on input fʕal, we see
that the winner repairs the *CO violation by inserting a vowel.
(8) Step 1: fʕal⇝ ifʕal

fʕal *CO Max Id Onset Dep
a. fʕal 1! 0 0 0 0
b. ʕal 0 1! 0 0 0
c. iʕal 0 0 1! 1 0

� d. ifʕal 0 0 0 1 1
The tableau above follows McCarthy (2007) in assuming that Gen can
only change a single symbol. Thus, the final SR [ʔifʕal] is not available
among the candidates shown. Since the winner in (8) is not the faithful
candidate, the grammar is called a second time.
(9) Step 2: ifʕal⇝ ʔifʕal

ifʕal *CO Max Id Onset Dep
a. ifʕal 0 0 0 1! 0
b. fʕal 1! 1 0 0 0
c. ʔfʕal 1! 0 1 0 0

� d. ʔifʕal 0 0 0 0 1
This time, the input violates Onset, since it begins with a vowel. Since
Dep is still the lowest-ranking faithfulness constraint, the winning can-
didate is the one that repairs the Onset violation by inserting a con-
sonant. Since the winner is not the faithful candidate, the grammar is
called for a third time.
(10) Step 3: Convergence

ʔifʕal *CO Max Id Onset Dep
� a. ʔifʕal 0 0 0 0 0

b. ifʕal 0 1! 0 1 0
c. iifʕal 0 0 1! 1 0
d. iʔifʕal 0 0 0 1! 1

This time, the input does not violate any of themarkedness constraints.
The unfaithful candidates introduce gratuitous violations of faithful-

6This is known as the emergence of the unmarked (McCarthy and Prince 1994).
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ness constraints, so they are all eliminated. Since the faithful candi-
date is chosen as the winner, the grammar terminates here. We say
that the grammar has converged to the output [ʔifʕal], so it is chosen
as the final SR for the UR /fʕal/.

Applications of HS in OT phonology are typically motivated by
phonological phenoma that are most elegantly explained by decom-
posing the UR–SR mapping into several derivational steps. Such phe-
nomena famously include examples of opacity. Elfner (2009, 2016),
for example, studies opaque interactions between vowel insertion
and stress assignment, and adopts an HS analysis that implements
the two processes separately, allowing them to interfere with one
another. Other arguments in favor of HS note that phonological
processes seem to be composed of small, incremental operations.
Pruitt (2008), for example, argues that locality effects in foot pars-
ing are best explained by the gradual nature of Gen in HS. A brief
survey of phonological research in HS can be found in McCarthy
(2010).

The remainder of this section declares the assumptions about HS
that I make in order to construct the non-rational HS grammar in Sec-
tion 5. Subsection 4.1 formally defines the version of HS studied in
this paper. Subsection 4.2 defines the basic operations of Gen this
paper utilizes, as well as a restrictive class of markedness constraints
that includes the constraints appearing in Section 5.

4.1 Formalization of Harmonic Serialism
For completeness, this section presents a formal definition of HS. The
formalization here roughly follows Ellison’s (1994) formalization of
standard OT, which forms the basis of other formalizations appearing
in finite-state OT. There, Gen is taken to be an FST producing candi-
dates. Each constraint is modelled by an FST that reads candidates and
emits numbers in unary notation. The behavior of Eval is described
by an ordering relation on candidates induced by the constraint rank-
ing mechanism.
Definition 11. A constraint overΣ is a rational function c :

�
Σ≤1×Σ≤1
�∗

→ N. A constraint ranking over Σ is a sequence 〈c1, c2, . . . , cn〉, where
each ci is a constraint over Σ. For each i, j, we say that ci outranks c j

and write ci ≫ c j if i < j.
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Definition 12. An HS Grammar is an ordered triple 〈Σ,Gen,Con〉,
where

• Σ is an alphabet;
• Gen : Σ∗→ �Σ≤1 ×Σ≤1

�∗ is a rational relation; and
• Con is a constraint ranking over Σ.
The above definition departs from Ellison (1994) in that candi-

dates are represented as strings of pairs rather than strings of alpha-
bet symbols. This kind of representation allows Definition 12 to model
faithfulness constraints (Chen-Main and Frank 2003), which depend
on both the input and the potential output represented by a candidate.
The pair-string representation is also standardly used in OT analyses
following Correspondence Theory (McCarthy and Prince 1995). I follow
Riggle (2004) in modelling constraints as FSTs that read pair strings
and emit violations.
Definition 13. A candidate over Σ is a string in �Σ≤1 ×Σ≤1

�∗. We may
sometimes denote the candidate 〈x1, y1〉〈x2, y2〉 . . . 〈xn, yn〉 using the
notation x1 x2 . . . xn 7→ y1 y2 . . . yn.

Eval was formalized by Samek-Lodovici and Prince (1999,
2002), who noted that the behavior of an HS grammar towards a can-
didate x 7→ y is completely dependent on the number of violations
assigned to x 7→ y by each constraint. To that end, Samek-Lodovici
and Prince identify candidates with their violation profiles, or costs.
Definition 14. Let C = 〈c1, c2, . . . , cn〉 be a constraint ranking over Σ.
For x 7→ y ∈ �Σ≤1 ×Σ≤1

�∗, the cost of x 7→ y with respect to C is the
vector

cC(x 7→ y) := 〈c1(x 7→ y), c2(x 7→ y), . . . , cn(x 7→ y)〉 ∈ Nn.

Candidates violating lower-ranked constraints are preferred over
candidates violating higher-ranked constraints, and candidates incur-
ring few violations of a particular constraint are preferred over can-
didates incurring many violations of that constraint. This preference
relation is represented by an ordering over cost vectors.
Definition 15. Let a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉 be vec-
tors in Zn. We say that a is more harmonic than b, and write a ≻H b, if
there exists j ∈ {1, 2, . . . , n} such that a j < b j and for all i < j, ai ≤ bi.
We write a ⪰H b if a ≻H b or a = b.7

7Note that ≻H is the lexicographic ordering on Zn.
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Under Definition 15, candidates with more harmonic cost vectors
are preferred over candidates with less harmonic cost vectors. There-
fore, among a set of candidates, Eval chooses the candidate with the
most harmonic cost vector as the winner.
Definition 16. Let C be a constraint ranking over Σ. The function
EvalC : P
��
Σ≤1 ×Σ≤1
�∗�→ P(Σ∗) is defined by

EvalC(K) :=
�

y
��x 7→ y ∈ K , cC(x 7→ y) = max

α7→β∈K
cC(α 7→ β)
	
,

where max is taken with respect to ⪰H .8
Finally, let us conclude this subsection by defining the UR–SR

mapping H+G generated by an HS grammar G.
Definition 17. Let G = 〈Σ,Gen,Con〉 be an HS grammar. The relation
HG is defined as follows: x HG y if and only if y ∈ EvalCon(Gen(x)).
The relation H+G is defined as follows: x H+G y if and only if y HG y
and there exist x1, x2, . . . , xn such that x1 = x , xn = y, and for each i,
x i HG x i+1. If x HG y, then we say that y is an output of G on input x .
If x H+G y, then we say that G converges to y on input x .
Example 18. Fix Σ= {a, b}. Let us construct a simple HS grammar in
order to illustrate how Gen and Con may be implemented using FSTs.
Suppose Gen inserts, deletes, or substitutes a single symbol from its
input, and suppose Con consists of a single constraint, shown below.
(19) *CC: Assign one violation for each instance of bb in the output.
Intuitively, *CC declares a dispreference for outputs containing con-
sonant clusters.

Gen is implemented by the FST in (20).
(20) FST for Gen (x , y ∈ Σ≤1; x ̸= y)

q0start q1

x : 〈x , x〉

x : 〈x , y〉

x : 〈x , x〉

*CC is implemented by the FST in (21). Here, • represents any
symbol from Σ≤1, so that an arc from state q to state r labelled with

8Note that despite the notationmaxx ′ 7→y ′∈K cC (x ′ 7→ y ′), EvalC is not choosing
the candidate with the “maximum cost,” since what is maximal is the harmonicity
of the cost vector.
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〈•, y〉 : z means that q
〈a,y〉:z−−−→ r, q

〈b,y〉:z−−−→ r, and q
〈λ,y〉:z−−−→ r are all possible

transitions of the FST.
(21) FST for *CC (x ∈ Σ∪ {λ})

q0start q1

〈•, a〉 :
〈•, b〉 :

〈•, a〉 :

〈•, b〉 : ∗

On input abbba, Gen produces candidates such as abbba 7→
abbba, abbba 7→ ababba, and abbba 7→ abba.9 For the candidate
abbba 7→ abbba, the FST for *CC outputs ∗∗; for abbba 7→ ababba
and abbba 7→ abba, it outputs ∗. Thus, *CC(abbba 7→ abbba) = 2,
while *CC(abbba 7→ ababba) = *CC(abbba 7→ abba) = 1. Since
*CC is the only constraint, we have cCon(abbba 7→ abbba) = 〈2〉 and
cCon(abbba 7→ ababba) = cCon(abbba 7→ abba) = 〈1〉. Observe that
〈1〉 ≻H 〈2〉.
4.2 Assumptions about HS
The previous subsection defined an HS grammar as a tuple 〈Σ,Gen,
Con〉, but did not address the question of what kinds of FSTs may
implement Gen or constraints of Con. This subsection presents the
following weak assumptions about HS grammars, which suffice to con-
struct the non-rational HS grammar in Section 5.

• Gen can insert a single symbol, delete a single symbol, or change
a single symbol to another symbol.

• Markedness constraints are strictly local.
• Each faithfulness constraint is defined by a set of banned opera-
tions, assigning one violation to any candidate produced by ap-
plying a banned operation.

These assumptions are made explicit in Subsections 4.2.1, 4.2.2, and
4.2.3, respectively.

9Technically, the notation abbba 7→ abba does not specify which of the bs is
deleted. This is not consequential for the rest of the paper.
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4.2.1 Basic operations of Gen
I assume that Gen performs at least the following basic operations.
Definition 22. Let Σ be an alphabet. An operation over Σ is an ordered
pair 〈a, b〉, denoted a 7→ b, where a, b ∈ Σ≤1 and ab ̸= λ. We refer to
a 7→ b simply as an operationwhen the alphabetΣ is clear from context.
Additionally, we say that a 7→ b is

• an insertion if a = λ,
• a deletion if b = λ,
• a substitution if λ ̸= a ̸= b ̸= λ, and
• an identity if a = b.

Definition 23. Let Σ be an alphabet, and define the string of pairs

ω := 〈x1, y1〉〈x2, y2〉 . . . 〈xn, yn〉 ∈
�
Σ≤1 ×Σ≤1
�∗

.

For any operation a 7→ b over Σ, we say that ω is an application of
a 7→ b if there exists i ∈ {1, 2, . . . , n} such that a 7→ b = x i 7→ yi and
x j 7→ y j is an identity as long as j ̸= i. When ω is an application of an
operation a 7→ b, we may denote ω by ω = x1 x2 . . . xn 7→ y1 y2 . . . yn.
Without explicitly specifying the operation a 7→ b, we may refer to
ω as a change. If a 7→ b is an identity, then we say that ω is faithful;
otherwise, ω is unfaithful.

A change, as defined above, is an insertion, a deletion, or a sub-
stitution of a single input symbol. In practice, HS grammars consid-
ered in OT phonology rely on much richer operations. For example,
the syllable-building operations of Elfner (2009, 2016) and the foot-
building operations of Pruitt (2008, 2012) may change multiple sym-
bols of the input, depending on how syllables and feet are represented.
However, the availability of richer operations does not change the re-
sult of Section 5 as long as the basic operations above are available.

4.2.2 Markedness constraints
I assume that markedness constraints are strictly local in the following
sense.
Definition 24. A constraint c is a markedness constraint if for every
x 7→ z and y 7→ z, c(x 7→ z) = c(y 7→ z). Otherwise, c is a faithfulness
constraint.
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Definition 25. A markedness constraint c over Σ is strictly k-local
(k-SL) if there exists a set S ⊆ (Σ ∪ {⋊,⋉})k such that for any can-
didate x 7→ y, c(x → y) is the number of unique decompositions of
the string ⋊k−1 y⋉k−1 into substrings l, s, r such that ⋊k−1 y⋉k−1 = lsr
and s ∈ S. We say that c bans s if s ∈ S. A markedness constraint is
strictly local (SL) if it is k-SL for some k.

SL constraints are constraints of the form “Assign one violation
for each instance of ….” Thus, the constraint *CC from Example 18 is
a 2-SL constraint that bans the substring bb. Other markedness con-
straints may be SL even if they are stated differently. For example,
NoCoda from (2) is a 2-SL constraint banning substrings of the form
x⋉, where x is a consonant. Similarly, *CO from (7) is a 3-SL constraint
banning substrings of the form ⋊x y, where x and y are both conso-
nants. Observe also that the constraint Agr from the non-rational stan-
dard OT grammar of (4) is a 2-SL constraint banning the substrings ab
and ba. Therefore, non-rational mappings in OT may be implemented
using only markedness constraints that are SL.

The definition of SL constraints above is based on the strictly local
languages of McNaughton and Papert (1971), a small subclass of the
regular languages belonging to the subregular hierarchy. Intuitively, a
language L is k-strictly local (k-SL) if there exists a k-SL markedness
constraint c such that c(x 7→ x) = 0 for every x ∈ L. A related sub-
regular class of languages is the tier-based strictly local (TSL) languages,
a generalization of the SL languages in which banned substrings may
be interrupted by symbols from a designated subset of the alphabet.
The class of TSL languages was defined by Heinz et al. (2011), who
propose it as a formal characterization of the kinds of phonotactic
dependencies that may occur in natural language phonology. Vari-
ous forms of justification have been given for this hypothesis. Local
phonotactic restrictions on what kinds of phonemes can occur adja-
cent to one another are clearly SL, and therefore TSL. Additionally,
Heinz (2007), Edlefsen et al. (2008), Heinz (2009), and Heinz (2014)
study the typology of stress patterns across languages, showing that
they are usually TSL, while McMullin (2016) and McMullin and Hans-
son (2016) show that long-distance consonant interactions are tier-
based strictly 2-local. Experimentally, Rogers and Pullum (2011), Lai
(2012), Lai (2015), and McMullin (2016) investigate the ability of hu-
mans and non-human animals to learn linguistic and non-linguistic
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patterns, and find that patterns that are learned successfully can be
modelled by TSL languages.

4.2.3 Faithfulness constraints
Finally, I assume that each faithfulness constraint c is associated with
a set O of operations such that c(x 7→ y) = 1 if x 7→ y is an application
of an operation in O, and c(x 7→ y) = 0 otherwise. For each o ∈ O, we
say that c bans o.

The faithfulness constraints Dep, Max, and Id are all of this form,
since they ban all insertions, all deletions, and all substitutions, re-
spectively. Section 5 will make use of faithfulness constraints that ban
deletions of a particular alphabet symbol.

5 non rational mappings in hs

Define the function f :
�
a2 b2
�+

a2ca2
�
b2a2
�+→ Σ∗ as follows.

f
��

a2 b2
�m+1

a2ca2
�
b2a2
�n+1�

:=

(�
a2 b2
�m−n

a2ca2, m≥ n

a2ca2
�
b2a2
�n−m

, m≤ n

This function is defined on inputs consisting of a c preceded by a string
in �a2 b2
�+

a2 and followed by a string in a2
�
b2a2
�+. The behavior of

f is to delete an integer number of b2a2 units to the left of the c,
along with the same number of a2 b2 units to the right of the c. The
function deletes as many b2a2 and a2 b2 units as possible, so that the
total number of units deleted depends on the length of the material
to the left of the c or the material on the right of the c, whichever is
shorter. Since the number of b2a2s deleted must match the number of
a2 b2s deleted, I refer to f as the matching deletion function.

The goal of this section is to show that matching deletion is not
finite-state, and that HS can implement it under the weak assumptions
from Subsection 4.2. Intuitively, computing f requires comparing the
lengths of two substrings of its input, separated by the special char-
acter c. Since FSTs are not capable of this kind of computation, f is
non-rational. I begin this section by making this argument rigorous
in Subsection 5.1. In Subsection 5.2, I construct an HS grammar with
6-SL markedness constraints that maps an underlying form x to the
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surface form f (x) as long as x is within the domain of f . Since ratio-
nal relations are closed under domain restriction to regular subsets,
the relation described by this HS grammar is not rational.
5.1 Non-rationality of matching deletion
The non-rationality of matching deletion can be proven using a
straightforward application of the Pumping Lemma, a standard tool in
formal language theory.10
Lemma 26 (Pumping Lemma). Let L be a regular language. There exists
an integer p ≥ 1 such that every string ξ ∈ L of length at least p may be
decomposed into three substrings ξ = αβγ such that |β | > 1, |αβ | < p,
and αβ+γ ⊆ L. The number p is called the pumping length of L.

Intuitively, the Pumping Lemma describes the behavior of FSAs
when reading long strings. Since an FSA A only has finitely many
states, when ξ is sufficiently long, there must be some state q that
A enters at least twice when reading ξ. The substring β is the sub-
string that is read during the two occurrences of q; i.e., q

β−→∗ q. Since
q
β−→∗ q

β−→∗ q, the substring β may be repeated arbitrarily many times
without producing a string not accepted by A.

To adapt the Pumping Lemma to rational relations, observe that
an FST over input alphabet Σ and output alphabet Γ may be thought of
as an FSA over the alphabet Σ≤1×Γ≤1 by replacing each FST transition
q

x:y−→ r with an FSA transition q
〈x ,y〉−−→ r (Kaplan and Kay 1994). Thus,

the matching deletion function f may be thought of as a language by
encoding each pair 〈x , f (x)〉 as a string of pairs. Unlike in Subsection
4.2.1, here we cannot make any assumptions regarding which sym-
bols of x are aligned with which symbols of f (x) in the pair-string
representation. Instead, since the representation of f as a language is
not unique, we must show that no language representing f is regular.

The proof will proceed as follows. We will consider an input x
with a long left-hand side and an even longer right-hand side, so that
the left-hand side is completely deleted by f . We will show that the
substring β represents some number of a2 b2 units from the input and
some number of b2a2 units from the output. Thus, repeating β results
in increasing the number of a2 b2s in x and b2a2s in f (x). However,

10A complete treatment of the Pumping Lemma may be found in formal lan-
guage theory textbooks such as Sipser (2013).
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since the left-hand side is much shorter than the right-hand side, the
number of b2a2s on the right-hand side of f (x) must decrease when
the number of a2 b2s on the left-hand side of x increases, whence a
contradiction.
Theorem 27. The matching deletion function f is not rational.
Proof. Suppose that f were computed by an FST T . Thinking of T as
an FSA, let p be the pumping length of T . Let

x :=
�
a2 b2
�2p

a2ca2
�
b2a2
�4p

, so that
f (x) = a2ca2
�
b2a2
�2p

,

and let ξ be the string over Σ≤1 × Σ≤1 corresponding to the pair
〈x , f (x)〉 ∈ [T].

By the Pumping Lemma, since |ξ| > p, there exist α,β ,γ such
that ξ = αβγ, |β | > 1, |αβ | < p, and αβ+γ ⊆ [T]. Writing β =
〈y1, z1〉〈y2, z2〉 . . . 〈yn, zn〉, let y := y1 y2 . . . yn and z := z1z2 . . . zn, so that
β represents T reading the substring y and emitting the substring z as
output.

Now, observe that the domain of f is �a2 b2
�+

a2ca2
�
b2a2
�+, and

the range of f is �a2 b2
�+

a2ca2∪a2ca2
�
b2a2
�+. Any string in either the

domain or the range of f contains an integer number of a2 b2s or b2a2s
surrounding an a2ca2 in the middle. Therefore, since αβ+γ ⊆ [T], and
since y must be a substring of the first p-many symbols of x , there
must exist i and j such that the pair-string αββγ represents the pair
〈x ′, f (x ′)〉, where

x ′ =
�
a2 b2
�2p+i

a2ca2
�
b2a2
�4p and

f (x ′) = a2ca2
�
b2a2
�2p+ j

.

Since |αβ | < p, we must have i < p, so 2p + i < 4p. According to the
definition of f ,

f (x ′) = a2ca2
�
b2a2
�4p−(2p+i)

= a2ca2
�
b2a2
�2p−i

,

so j = −i. Since a string cannot have a negative length, we must
have j = i = 0. However, this implies that |β | = 0, contradicting the
Pumping Lemma, so we conclude that f cannot be computed by an
FST.
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5.2 Matching deletion in HS
Having shown that f is not rational, let us now implement f in HS.
We shall do this by constructing a grammar that, given a UR of the
form �a2 b2
�m+1

a2ca2
�
b2a2
�n+1, behaves as follows.

• First, delete the a immediately to the right of the c:�
a2 b2
�m+1

a2ca2
�
b2a2
�n+1⇝
�
a2 b2
�m+1

a2ca
�
b2a2
�n+1

.

• Next, delete the a immediately to the right of the c:�
a2 b2
�m+1

a2ca
�
b2a2
�n+1⇝
�
a2 b2
�m+1

a2c
�
b2a2
�n+1

.

• Next, delete the a immediately to the left of the c:�
a2 b2
�m+1

a2c
�
b2a2
�n+1⇝
�
a2 b2
�m+1

ac
�
b2a2
�n+1

.

• Next, delete the a immediately to the left of the c:�
a2 b2
�m+1

ac
�
b2a2
�n+1⇝
�
a2 b2
�m+1

c
�
b2a2
�n+1

.

• Next, do the same with the bs adjacent to the c; delete the two bs
immediately to the right, and then the two bs immediately to the
left: �

a2 b2
�m+1

c
�
b2a2
�n+1⇝ · · ·⇝ �a2 b2

�m
a2ca2
�
b2a2
�n

.

The effect of these eight derivational steps is to delete a full b2a2 from
the right and a full a2 b2 from the left. This process continues until
either the left side has no more a2 b2s or the right side has no more
b2a2s. If m ≤ n, then the total number of b2a2s and a2 b2s deleted is
m+ 1, so the SR is a2ca2

�
b2a2
�n−m. If m≥ n, then the total number of

b2a2s and a2 b2s deleted is n+ 1, so the SR is �a2 b2
�m−n

a2ca2.
To obtain this behavior, the grammar we construct must fulfill

three criteria. Firstly, the grammar needs to contain markedness con-
straints against substrings occurring near the c. This is because HS
grammars can only perform unfaithful operations in order to repair
violations of markedness constraints, so the deletions performed by
the grammar must destroy banned substrings. Secondly, the gram-
mar must contain a mechanism for ensuring that the symbols adja-
cent to the c are deleted in the correct order – first to the right of
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the c, and then to the left of the c. If the grammar were allowed
to delete symbols adjacent to the c in an arbitrary order, then there
would be no non-rational dependency between the number of a2 b2s
deleted to the left of the c and the number of b2a2s deleted to the
right of the c. Finally, the grammar must ensure that no more dele-
tions occur when all the material either to the left or to the right
of the a2ca2 center marker has been deleted. Otherwise, the gram-
mar would associate each UR with the SR a2ca2, resulting in a ratio-
nal map.

These three components of the construction are presented in Sub-
sections 5.2.1, 5.2.2, and 5.2.3, respectively. Subsection 5.2.4 shows
how the three components are combined together to form an HS gram-
mar implementing f .
5.2.1 Motivating deletion
Let us assume that faithfulness constraints are ranked so that the only
possible actions of the grammar are to delete an a, to delete a b, or to
do nothing. The behavior we wish to implement is for the grammar
to delete symbols adjacent to the c. These deletions are driven by two
markedness constraints, ranked in the order shown below.
(28) a. *ab: Assign one violation for each occurrence of ab or ba.

b. *caa: Assign one violation for each occurrence of caa, aac,
cbb, or bbc.

Consider a string �a2 b2
�m+1

a2ca2
�
b2a2
�n+1 in f ’s domain. Every sym-

bol of this string other than those comprising the aca in the mid-
dle forms part of an ab or ba sequence banned by *ab. Since each
a2 b2 segment and each b2a2 segment introduces one ab substring and
one ba substring, the total number of violations assigned by *ab is
2(m + 1) + 2(n + 1) = 2(m + n) + 4. The a2ca2 segment in the middle
consists of two overlapping instances of substrings banned by *caa,
namely a2c and ca2. Thus, *caa assigns 2 violations in total.

Since every a is adjacent to another a and every b is adjacent to
another b, deleting a single a or a single b cannot repair a violation
of *ab. This is seen in candidate d of tableau (29a): there, an a is
deleted from the last a2 b2 segment to the left of the c, but the number
of violations of *ab does not change. On the other hand, deleting one
of the as adjacent to the c results in the destruction of either the ca2

[ 71 ]



Yiding Hao

segment or the a2c segment, so the number of violations assigned by
*caa is reduced by 1. Thus, the first step of the derivation is to delete
an a adjacent to the c.

The result of the first step is a string in which the c is flanked by
two as on one side and a single a on the other. These are shown in
candidates b and c of (29a).11 Since the single a is no longer adjacent
to another a, it now forms an ab segment with the neighboring b that
is vulnerable to deletion. This is shown in candidate b of (29b). While
it is still possible to repair a violation of *caa by deleting an a on
the other side of the c, as in candidate c of (29b), repairing *caa is
dispreferred to repairing *ab because the latter constraint outranks
the former. Thus, the second step of the grammar’s derivation is to
delete the single a that occurs between the c and a b.
(29) a. First repair *caa…

(a2 b2)m+1a2ca2(b2a2)n+1 *ab *caa

a. (a2 b2)m+1a2ca2(b2a2)n+1 2(m+ n) + 4 2!

� b. (a2 b2)m+1a2ca(b2a2)n+1 2(m+ n) + 4 1

� c. (a2 b2)m+1aca2(b2a2)n+1 2(m+ n) + 4 1

d. (a2 b2)mab2a2ca2(b2a2)n+1 2(m+ n) + 4 2!

b. …then repair *ab

(a2 b2)m+1a2ca(b2a2)n+1 *ab *caa

a. (a2 b2)m+1a2ca(b2a2)n+1 2(m+ n) + 4! 1

� b. (a2 b2)m+1a2c(b2a2)n+1 2(m+ n) + 3 2

c. (a2 b2)m+1aca(b2a2)n+1 2(m+ n) + 4! 0

Observe that while destroying the ab segment in (29b), the gram-
mar has created a cb2 segment, which is banned by *caa. This is per-
missible because *ab outranks *caa, so introducing a new violation
of the latter is justified by removing a violation of the former. The
result of the two derivational steps is again a string in which *caa is
violated twice and *ab cannot be repaired. In general, the effect of the
two constraints of (28) is to ensure that deletions occur two at a time:

11Both candidates have been marked as winning candidates, but in the next
subsection candidate c will be eliminated as a possible winner.
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first an a or a b to the left or to the right of the c, and then the other
a or b on the same side of the c.
5.2.2 Enforcing directionality
The constraints of (28) create a mechanism by which the grammar is
now required to delete as and bs adjacent to the c two at a time. The
next step is to ensure that these pairs of deletions occur in the correct
order: first the as on the right, then the as on the left, then the bs on the
right, then the bs on the left. This particular ordering of the deletions
ensures that every eight derivational steps, exactly one complete a2 b2

segment to the left of the c and one complete b2a2 segment to the right
of the c are deleted. Therefore, no partial a2 b2 or b2a2 segment may
remain at the end of the derivation, and the number of a2 b2s deleted
must always match the number of b2a2s deleted.

In (29b), we see that a deletion repairing *ab must always occur
on the same side of the c as the previous deletion repairing *caa. How-
ever, in (29a) we see that the constraints of (28) allow for a choice be-
tween two possible actions: destroying a ca2 or cb2 segment by delet-
ing to the right of the c, or destroying an a2c or b2c segment by delet-
ing to the left. The goal of this subsection is to remove this choice by
imposing a preference for correct deletions over incorrect ones.

To that end, consider the possible strings that may be obtained
from �a2 b2
�m+1

a2ca2
�
b2a2
�n+1 by deleting symbols adjacent to the c in

the manner described in Subsection 5.2.1. Any such string containing
two violations of *caa and no repairable violations of *ab must adhere
to one of the following patterns.
(30) a. Σ∗a2ca2Σ∗

b. Σ∗a2cb2Σ∗

c. Σ∗b2cb2Σ∗

d. Σ∗b2ca2Σ∗

After a *caa violation is repaired, the resulting string contains either
an a sandwiched between the c and a b or a b sandwiched between the
c and an a. The location of the single a or b reflects the location of the
*caa-repairing deletion: either both occur to the left of the c or both
occur to the right of the c. (31) shows that eight unique configurations
can be reached from one of the patterns in (30) by deleting either on
the left or on the right.
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(31) a. Σ∗a2ca2Σ∗⇝ Σ∗baca2Σ∗ (left)/Σ∗a2cabΣ∗ (right)
b. Σ∗a2cb2Σ∗⇝ Σ∗bacb2Σ∗ (left)/Σ∗a2cbaΣ∗ (right)
c. Σ∗b2cb2Σ∗⇝ Σ∗abcb2Σ∗ (left)/Σ∗b2cbaΣ∗ (right)
d. Σ∗b2ca2Σ∗⇝ Σ∗abca2Σ∗ (left)/Σ∗b2cabΣ∗ (right)

Since the eight configurations are unique, from each configuration on
the right-hand side of an ⇝ above it is possible to recover both the
pattern from (30) on the left-hand side and whether the configuration
was obtained by deleting on the left or the right.

When the deletions are performed in the correct order, the inter-
mediate strings encountered in the derivation of the grammar cycle
through the four patterns of (30), in the order shown. Because of this,
whether the correct deletion occurs to the left or the right of the c is
completely determined by whether the input matches pattern (30a),
(30b), (30c), or (30d). Four of the eight configurations in (31) reflect
the result of performing the correct action based on the pattern from
(30). The remaining four configurations are obtained when incorrect
actions are performed. Therefore, the correct order of the deletions
can be enforced using a markedness constraint against the four con-
figurations reflecting incorrect deletions.
(32) *baca: Assign one violation for each occurrence of baca, acba,

abcb, or bcab.
To illustrate, consider again the tableau of (29a), but this time

including the constraint *baca. For considerations of space, let M :=
2(m+ n) + 4. While both candidates b and c were marked as winners
in (29a), in (33) candidates b and c are distinguished by the latter’s
violation of *baca. Thus, only candidate b, in which deletion occurs
to the right of the c, is a winner in (33).
(33) *baca distinguishes between candidates b and c

(a2 b2)m+1a2ca2(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1a2ca2(b2a2)n+1 M 2! 0

� b. (a2 b2)m+1a2ca(b2a2)n+1 M 1 0

c. (a2 b2)m+1aca2(b2a2)n+1 M 1 1!
d. (a2 b2)mab2a2ca2(b2a2)n+1 M 2! 0
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Since the purpose of *baca is to distinguish between candidates
that are treated identically by the other markedness constraints, the
ranking of *baca relative to *ab and *caa is inconsequential. This
is indicated by the dashed line in tableau (33) separating the *baca
column from the other columns. For convenience, tableaux in the re-
mainder of this section will show the three markedness constraints in
the order presented in (33).
5.2.3 Stopping condition
We have now seen that (28) and (32) together create the eight-step
effect of deleting a full b2a2 to the right of the c and a full a2 b2 to the
left of the c. The final step of the construction is to force the grammar
to converge to a final SR when one of the two sides runs out of a2 b2s or
b2c2s. This has occurred when the string matches one of the following
patterns.
(34) a. Σ∗ba2ca2

b. a2ca2 bΣ∗

c. a2ca2

Pattern (34c) occurs when the original UR �a2 b2
�m+1

a2ca2
�
b2a2
�n+1

contains the same number of a2 b2s to the left of the c as b2a2s to the
right of the c; i.e., when m= n. (34a) occurs when m> n, and therefore
the right side runs out of b2a2s before the left side runs out of a2 b2s.
(34b) occurs when m< n.

As in Subsection 5.2.2, we can consider the configurations that re-
sult when a symbol adjacent to the c is deleted from a string matching
one of the patterns in (34).
(35) a. Σ∗ba2ca2⇝ Σ∗baca2 (left)/Σ∗ca (right)

b. a2ca2 bΣ∗⇝ acΣ∗ (left)/a2cabΣ∗ (right)
c. a2ca2⇝ aca2 ∈ acΣ∗ (left)/a2ca ∈ Σ∗ca (right)

Since no further deletions should occur when one of the patterns in
(34) is reached, all the configurations on the right-hand side of an
⇝ above reflect incorrect deletions, so all the configurations must be
banned by a markedness constraint.
(36) Stop: Assign one violation for each occurrence of baca2⋉, ca⋉4,

⋊4ac, or ⋊a2cab.
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Each of the deletions shown in (35) repairs a violation of *caa, so
Stop must rank above *caa.

To confirm that Stop behaves as intended, let us consider a string
in which the left side contains no a2 b2 segments, but the right side
contains at least one b2a2 segment.
(37) Converging to a final UR

a2ca2(b2a2)n+1 Stop *ab *caa F
� a. a2ca2(b2a2)n+1 0 2n+ 2 2 0

b. aca2(b2a2)n+1 1! 2n+ 2 1 1

c. a2ca(b2a2)n+1 1! 2n+ 2 1 1

d. a2ca2 ba2(b2a2)n 0 2n+ 2 2 1!
Since no violation of *baca can be introduced by deleting a single a or
b from a2ca2(b2a2)n+1, *baca is not shown in the tableau above. Can-
didate b, obtained by deleting an a to the left of the c, contains the
banned substring ⋊4ac, so it violates Stop. Candidate c, obtained by
deleting an a to the right of the c, contains ⋊a2cab, so it also violates
Stop. These violations of Stop eliminate b and c as potential win-
ners. Observe that none of the markedness constraints distinguishes
between candidate a, the faithful candidate, and candidate d, obtained
by deleting a b not adjacent to the c. Instead, candidates like d are
eliminated by low-ranking faithfulness constraints against deleting as
and bs, represented collectively in the column labelled “F.”
5.2.4 Constraint ranking
To complete the construction, all that remains is to arrange the
markedness constraints of (28), (32), and (36) and relevant faithful-
ness constraints to form a ranking that produces the desired behavior.
Let us briefly summarize the ranking requirements identified in the
previous subsections.

• *ab≫ *caa.
• The ranking of *baca is inconsequential.
• Stop≫ *caa.

The faithfulness constraints need to ensure that the only permissible
actions, other than doing nothing, are deleting an a or a b. The con-
straints Id and Dep can be used to ban substitutions and insertions, re-
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*ab

*caa

*Maxa *Maxb

*MaxcStop

Id Dep

*baca

Figure 4:
Required ranking relations
among constraints

spectively. The constraint Max will be replaced with three constraints,
each of which bans deletion of a particular alphabet symbol.
(38) a. Id: Assign one violation for each symbol from the input that

is changed to a different symbol in the output.
b. Dep: Assign one violation for each symbol inserted into the

input.
c. Maxa: Assign one violation for each a deleted from the

input.
d. Maxb: Assign one violation for each b deleted from the

input.
e. Maxc: Assign one violation for each c deleted from the

input.
To allow deletions to occur, Maxa and Maxb must rank below *caa,
and to ban substitutions and insertions, Id and Dep must rank above
*ab. Since deleting a c cannot repair a violation of *ab, Maxc needs
to rank above *caa, but not necessarily above *ab. These ranking re-
quirements, along with the requirements for markedness constraints,
are shown visually in Figure 4. Any ranking compatible with Figure
4 produces the desired behavior, so let us simply assume the ranking
shown below.
Id≫ Dep≫Maxc ≫ Stop≫ *ab≫ *caa≫ *baca≫Maxa≫Maxb

Theorem 39. There exists an HS grammar with strictly local marked-
ness constraints that generates a non-rational mapping between underlying
forms and surface forms.
Proof. Let us confirm that the HS grammar we have constructed be-
haves as expected. Given a UR x = (a2 b2)m+1a2ca2(b2a2)n+1, the gram-
mar should produce f (x) as the SR. As mentioned before, since the
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restriction of a rational function to a regular subset of its domain is
still rational, any grammar that computes f on its domain implements
a non-rational function in general.

I will proceed by first showing that the grammar implements the
eight-step derivational process that deletes exactly one a2 b2 to the
left of the c and one b2a2 to the right of the c. Then, I show that
Stop correctly implements the stopping condition that terminates the
derivation.

Subsections 5.2.1 and 5.2.2 showed that the first two steps of the
eight-step process behave as expected. The following tableaux show
the remaining six steps. As before, let us define M := 2(m+ n) + 4.
(40) a. Deleting an a on the left

(a2 b2)m+1a2c(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1a2c(b2a2)n+1 M − 1 2! 0

� b. (a2 b2)m+1ac(b2a2)n+1 M − 1 1 0

c. (a2 b2)m+1a2cba2(b2a2)n M − 1 1 1!

b. Deleting another a on the left
(a2 b2)m+1ac(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1ac(b2a2)n+1 M − 1! 1 0

� b. (a2 b2)m+1c(b2a2)n+1 M − 2 2 0

c. Deleting a b on the right
(a2 b2)m+1c(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1c(b2a2)n+1 M − 2 2! 0

� b. (a2 b2)m+1cba2(b2a2)n M − 2 1 0

c. (a2 b2)ma2 bc(b2a2)n+1 M − 2 1 1!

d. Deleting another b on the right
(a2 b2)m+1cba2(b2a2)n *ab *caa *baca

a. (a2 b2)m+1cba2(b2a2)n M − 2! 1 0

� b. (a2 b2)m+1ca2(b2a2)n M − 3 2 0
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e. Deleting a b on the left
(a2 b2)m+1ca2(b2a2)n *ab *caa *baca

a. (a2 b2)m+1ca2(b2a2)n M − 3 2! 0

� b. (a2 b2)ma2 bca2(b2a2)n M − 3 1 0

c. (a2 b2)m+1ca(b2a2)n M − 3 1 1!

f. Deleting another b on the left
(a2 b2)ma2 bca2(b2a2)n *ab *caa *baca

a. (a2 b2)ma2 bca2(b2a2)n M − 3! 1 0

� b. (a2 b2)ma2ca2(b2a2)n M − 4 2 0

Tableaux (40a), (40c), and (40e) are analogous to tableaux (29a)
and (33): *caa is violated twice, *ab violations cannot be repaired,
and *baca causes the grammar to choose the correct deletion to re-
pair *caa over the incorrect one. Tableaux (40b), (40d), and (40f),
like (29b), repair a violation of *ab while introducing a violation of
*caa. The winner in (40f), after the eighth step of the derivation, is
(a2 b2)ma2ca2(b2a2)n – the result of deleting exactly one a2 b2 and one
b2a2 from x .

The final part of the proof is to show that the stopping con-
dition behaves as expected. (37) showed that Stop correctly ter-
minates the derivation when m < n. The following tableaux show
that the derivation terminates correctly when m > n and when
m= n.
(41) a. Converging when m> n

(a2 b2)m+1a2ca2 Stop *ab *caa F
� a. (a2 b2)m+1a2ca2 0 2m+ 2 2 0

b. (a2 b2)m+1a2ca 1! 2m+ 2 1 1

c. (a2 b2)m+1aca2 1! 2m+ 2 1 1

d. (a2 b2)ma2 ba2ca2 0 2m+ 2 2 1!
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b. Converging when m= n

a2ca2 Stop *ab *caa F
� a. a2ca2 0 0 2 0

b. aca2 1! 0 1 1

c. a2ca 1! 0 1 1

Candidate b of (41a) is eliminated by Stop because it contains
the offending substring ca⋉4. Similarly, candidate c contains baca2⋉.
As in (37), candidate d is eliminated by low-ranking faithfulness con-
straints. In (41b), b and c are the only candidates that may be obtained
by deleting an a. These candidates contain ⋊4ac and ca⋉4, respec-
tively, so they are eliminated by Stop.

6 canonical non rational mappings
We have now seen that in general, HS grammars with SL marked-
ness constraints can produce non-rational relations. Computing the
matching deletion function requires the ability to enforce dependen-
cies between arbitrarily many nesting pairs of a2 b2 and b2a2 units
separated by arbitrarily long distances. While the markedness con-
straints *caa and *ab are only sensitive to the material immediately
adjacent to the c, deletion was able to extend the reach of these con-
straints by moving a2 b2 and b2a2 units close to the c. The carefully
choreographed manner in which the deletions were carried out al-
lowed the grammar to maintain nesting dependencies reminiscent of
context-free grammars.

The result of the previous section raises the question of what kinds
of non-rational mappings HS can generate. The goal of this section
is to argue that all non-rational relations generated by HS involve
coordinated deletions that occur on opposite sides of some center
marker. Thus, the matching deletion function is a canonical exam-
ple of a non-rational mapping in HS, just as majority-rules mappings
may be seen as canonical examples of non-rational mappings in stan-
dard OT.

Hao (2017) attempted to construct a finite-state model of HS by
first showing that HG is rational for any HS grammar G, and then ap-
plying an algorithm due to Abdulla et al. (2002, 2003) that takes an
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FST as input and attempts to construct an FST computing its transi-
tive closure. Subsection 6.1 reviews this algorithm in detail, includ-
ing sufficient conditions for its termination. Subsection 6.2 argues
that HS grammars violate these conditions exactly when performing
coordinated deletions. In particular, I will show that HS grammars
with SL markedness constraints are rational if they cannot perform
deletion.
6.1 Transducer iteration
Computing the transitive closure of a relation is a difficult prob-
lem. Since transitions between Turing machine configurations can
be modelled by rational relations, the halting problem can be re-
duced to finding the transitive closure of a rational relation. Nonethe-
less, the problem of computing transitive closures, or approxima-
tions thereof, is of substantial practical interest. The field of model
checking, for example, is concerned with determining what states of
a program or other computational system can be reached from an
initial configuration, and in particular whether any of these reach-
able states indicate undesirable behavior. Several studies in this area
have explored the possibility of performing reachability analysis us-
ing FSTs by modelling state transitions as rational relations. To that
end, partial algorithms have been developed that attempt to pro-
duce FSTs computing the transitive closures of rational relations. One
approach, developed by Bouajjani et al. (2000), Jonsson and Nils-
son (2000), Abdulla et al. (2002), and Abdulla et al. (2003), consid-
ers infinite-state transducers computing transitive closures and de-
fines a behavior-preserving equivalence relation under which the
state set has a finite quotient. Another approach, due to Dams et al.
(2001a,b, 2002), also attempts to produce a finite quotient of an in-
finite state set, but the equivalence relation is constructed algorith-
mically while computing increasingly large compositions of an FST
with itself.

The transducer iteration algorithm used in Hao (2017) is the
quotient-based algorithm of Abdulla et al. (2002) and Abdulla et al.
(2003). Since this algorithm is only compatible with FSTs that perform
substitutions, Hao’s construction simulates insertions and deletions by
thinking of them as substitutions involving a designated alphabet sym-
bol representing λ. Abdulla et al.’s technique relies on the observation
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that for any FST T , the composition of [T] with itself n times for some
fixed n is a rational relation. An infinite-state transducer for [T]+ is
produced using a construction for the n-fold composition of T by tak-
ing n to infinity. The size of the state set is reduced by identifying states
with the same behavior and merging them. The algorithm terminates
if finitely many states remain after merging is complete. This termina-
tion condition gives us a sufficient condition for the rationality of [T]+.

Subsection 6.1.1 describes the construction for the infinite-state
transducer computing [T]+. Subsection 6.1.2 presents the equivalence
relation used to collapse the infinite state set into a possibly finite one.
6.1.1 Column transducers
To understand the construction for the n-fold composition of an FST,
let us consider a concrete example.
Example 42. Consider the following FST over the alphabet Σ= {a, b}.
(43) An FST that changes the first b to an a

q0start q1

a : a

b : a

a : a
b : b

The behavior of FST (43) is to change the first b it encounters to an
a. The transitive closure of this relation would change the first n in-
stances of b to as, where the value of n is chosen nondeterministically.
This is clearly finite-state, since it can be computed by the FST shown
below in (44).
(44) An FST that changes the first n-many bs to as

q0start q1

a : a
b : a

b : a

a : a
b : b

The intuition behind Abdulla et al.’s technique is as follows. We
can understand the behavior of an FST on a particular input by in-
specting its run – the sequence of states entered into during the course
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of the computation. For example, (45) shows the runs of (43) when it
is applied twice to the input aabb, producing first aaab and then aaaa.
(45) Runs of FST (43) on input aabb

Time: 0 1 2 3 4

Input 1: a a b b

Run 1: q0 q0 q0 q1 q1

Input 2: a a a b

Run 2: q0 q0 q0 q0 q1

Input 3: a a a a

During the first run of (43), the FST is in state q0 for three time steps,
and then state q1 for two time steps. During the second run, (43) is
in state q0 for four time steps, and then state q1 for one time step.
The behavior of (43) when it is applied twice to some input can be
described by inspecting the columns of table (45). These columns de-
scribe, for each time step, the state of the FST during each of its it-
erations. Based on this, we may construct an FST that simulates two
iterations of (43) by taking each state to represent a column of (45).
The run of such a transducer, shown in (46), resembles table (45), ex-
cept that the “Input 2” row is omitted and the “Run 1” and “Run 2”
rows are merged.
(46) Combining the two runs of (45)

Time: 0 1 2 3 4

Input: a a b b

Run: q0 q0 q0 q1 q1

q0 q0 q0 q0 q1

Output: a a a a

Whenever the transitions p
x:y−→ q and r

y:z−→ s occur in (43), an FST
whose behavior is described by (46) has the transition pr

x:z−→ qs. For
example, between time steps 2 and 3, (45) shows that (43) undergoes
the transition q0

b:a−→ q1 during its first run and q0
a:a−→ q0 during its

second run. Accordingly, (46) shows that the 2-fold iteration of (43)
undergoes the transition q0q0

b:a−→ q1q0 from time step 2 to time step
3. By combining all possible transitions of (43) in this way, we obtain
the FST shown below.
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(47) The composition of (43) with itself

q0q0start q1q0 q1q1

a : a

b : a

a : a

b : a

a : a
b : b

The three states of (47) represent the three possible values that might
appear in a column of table (45). The FST is in state q0q0 when it
has not seen any bs. The FST enters state q1q0 after seeing the first
b. This represents the fact that (43) enters state q1 on upon seeing b
in its first iteration. However, because the b is changed to an a, (43)
does not enter state q1 in its second iteration until the second b of the
original input is seen. When this happens, (47) enters state q1q1. It is
clear that the behavior of (47) is to change the first two bs of its input
to as.

Note that the state q0q1 does not appear in (47). This is be-
cause (43) can only be in state q0 at time t if it has not emit-
ted any bs, so the output of the first run cannot contain any bs
before time t. However, (43) can only be in state q1 if it has
seen at least one b. Since the input to the second run, which is
the output of the first run, does not contain any bs before time
t, (43) cannot enter state q1 during its second run until after
time t.

The ideas discussed in Example 42 are formalized as follows.
Definition 48. An FST 〈Q,Σ, Γ , I , F,→〉 is same-length if for every q, r ∈
Q, q

a:b−→ r implies that |a|= |b|= 1.
Definition 49. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. For each
n > 1, the n-fold column transducer for T is defined as the transducer
T n := 〈Qn,Σ,Σ, In, F n,→n〉, where for each q1q2 . . . qn, r1r2 . . . rn ∈Qn,

q1q2 . . . qn
a:b−→n r1r2 . . . rn

holds if and only if there exist a0, a1, . . . , an ∈ Σ such that a0 = a, an = b,
and for each i ∈ {1,2, . . . , m}, qi

ai−1:ai−−−→ ri.
For each n, [Tn] is the n-fold composition of [T] with itself. A

transducer for [T]+ is created by taking the union of all the Tns.
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Definition 50. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. The
column transducer for T is defined as the transducer T+ := 〈Q+,Σ,Σ, I+,
F+,→+〉, where

→+ =→∪
�∞∪

n=2

→n

�
.

Since T+ has infinitely many states, it is not an FST. The next sub-
section shows how we can attempt to reduce the size of the state set by
taking its quotient under an equivalence relation. An FST equivalent
to T+ is obtained if the quotient is finite.
6.1.2 Quotient transducers
The technique for merging states is based on eliminating repetitions
of copying states – states whose behavior is to copy the input.
Definition 51. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. A state
q is left-copying if for every start state q0 ∈ I , q0

a:b−→∗ q implies a = b.
A state q is right-copying if for every accept state q f ∈ F , q

a:b−→∗ q f

implies a = b. A state q is non-copying if it is neither left-copying nor
right-copying. A state q is copying if it is not non-copying.

For a state q to be left-copying means that the only way to reach
q is for the transducer to copy its input. For q to be right-copying
means that once q has been reached, the only possible action of the
transducer is to copy its input. The equivalence relation on the states
of T+ is defined by merging any two columns that are identical except
for repetitions of copying states of T .
Definition 52. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. Define
the equivalence relation ≃T over Q+ as follows. We say that q ≃T r if
and only if we can write

q = qp1
1 qp2

2 . . . qpm
m

r = qr1
1 qr2

2 . . . qrm
m ,

where pi = ri whenever qi is non-copying and for each j, p j > 0 and
r j > 0. The quotient transducer for T is defined as the transducer T≃ :=

〈Q+/≃,Σ,Σ, I/≃, F/≃,⇒〉, where [q]≃T

a:b
=⇒ [r]≃T

if and only if q
a:b−→+ r.

Since ≃ does not distinguish between multiple repetitions of the
same copying state, a canonical notation for equivalence classes of
≃ can be defined by replacing qpi

i and qri
i with q+i whenever qi is a
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copying state. For example, if q is copying but p and r are not, then
the column p8q5r9 belongs to the equivalence class p8q+r9.
Example 53. Consider again the FST (43). The state q0 is left-copying,
since the only transition reaching q0 copies an a to the output stream.
The state q1 is right-copying, since the unique transition from q1 copies
an a or a b to the output stream. In (47), we saw that the columns of
length 2 for the column transducer of (43) are q0q0, q1q0, and q1q1. In
general, columns obtained by iterating (43) are of the form q∗1q∗0. Since
q1 is right-copying and q0 is left-copying, the quotient transducer for
(43), shown below, contains three states: q+0 , q+1 q+0 , and q+1 .
(54) Quotient transducer for (43)

q+0start q+1 q+0 q+1

a : a

b : a

a : a
b : a

b : a

a : a
b : b

It is easy to see that the transducer above has the same behavior as
(44), the transducer computing the transitive closure of (43).

Abdulla et al. (2002) prove that merging states in this way does
not change the behavior of T+ under the condition that no reachable
column in Q+ contains a substring of the form pq, where p ̸= q and
p and q are both left-copying or both right-copying. They ensure that
this condition is fulfilled by requiring that T be deterministic. Abdulla
et al. (2003) relaxes the assumption of determinism by introducing an
algorithm that makes the portion of T containing only the left-copying
states deterministic, and the portion of T containing only the right-
copying states reverse-deterministic. FSTs preprocessed in this man-
ner are called bideterministic, and any same-length FST can be bideter-
minized. Once an FST has been bideterminized, it can be safely used
to construct a quotient transducer without changing the behavior of
the column transducer.
Theorem 55 (Abdulla et al. 2002, 2003). If T is same-length and bide-
terministic, then [T≃] = [T+] = [T]+.

The algorithm for constructing T≃ from an FST T is as follows.
First, T is made bideterministic. Then, the algorithm constructs T n

for n increasingly large, while taking the quotient of the state set
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after each iteration. The algorithm terminates when T n = T n+1 after
columns have been merged based on ≃.
1: procedure Closure(T )
2: Initialize T≃← T , but with each state q replaced with [q]≃.
3: Make T≃ bideterministic.
4: do
5: Set T ′≃← T≃.
6: for each transition [q]≃

a:b
=⇒ [r]≃ of T≃ and s

b:c−→ t of T do
7: Add the transition [qs]≃

a:c
=⇒ [r t]≃ to T≃.

8: Remove unreachable states from T≃.
9: while T≃ ̸= T ′≃
10: return T≃.

Algorithm 56:
Constructing T≃
from T , Abdulla
et al. (2002,
2003)

Each iteration of the algorithm discovers equivalence classes of
T≃ with increasingly longer canonical names. If the length of the
canonical name of a reachable state in T≃ is bounded by some n ∈
N, then after the nth iteration all reachable states of T≃ will have
been discovered, and the exit condition for the while-loop on line
9 will be satisfied. This gives us the termination condition for the
algorithm.
Theorem 57 (Abdulla et al. 2002, 2003). Let T = 〈Q,Σ,Σ, I , F,→〉 be a
same-length FST. If the following conditions are met, then [T]+ is rational.

• There is a bound on the number of non-copying states from Q appear-
ing in the reachable states of T+.

• There is a bound on the number of alternations between left-copying
and right-copying states from Q appearing in the reachable states
of T+.

Example 58. Let G be the HS grammar described at the beginning
of Section 4. Recall that this grammar describes a process of Classical
Arabic wherein an SR receives the prefix [ʔi] if the UR begins with a
consonant cluster. The behavior of HG is as follows. If the input be-
gins with a consonant cluster, then HG adds an i to the beginning.
If the input begins with a vowel, then HG adds a ʔ to the beginning.
For example, the SR [ʔifʕal] for the UR /fʕal/ “do!” is derived as fol-
lows: fʕal HG ifʕal HG ʔifʕal HG ʔifʕal. An FST T with this behav-
ior is shown below. To ensure that T is same-length, the symbol ⊥
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represents λ, and insertions are represented as substitutions of ⊥ for
other symbols. Let us assume that for each state q, T has the transition
q
⊥:⊥−−→ q.

(59) An FST for HG (C is a consonant, V is a vowel)

q0start q3

q1

q4

q2

⊥ : i

⊥ : ʔ
C : C

C : C

C : C

C : C

C : C

V : V

V : VV : V

V : V

The start state q0 is a left-copying state, while q1, q2, q3, and q4 are
right-copying states. Observe that the sub-automaton containing only
state q0 is deterministic, while the sub-automaton excluding state q0

is reverse-deterministic. Therefore, T is already bideterministic.
Let us apply Abdulla et al.’s algorithm to T . The equivalence class

q+0 is the start state of T≃. Bideterminism guarantees that no equiv-
alence class of T≃ has a canonical name containing pq where p ̸= q
and p and q are both left-copying or both right-copying. Therefore,
after the first iteration, the new states added to T≃ are q+0 q+1 , q+0 q+2 ,
q+0 q+3 , q+0 q+4 , q+1 q+0 , q+2 q+0 , q+3 q+0 , and q+4 q+0 . Starting from the start state
q+0 , the new transitions q+0

⊥:i
=⇒ q+0 q+1 and q+0

⊥:c
=⇒ q+0 q+3 , with c = ʔ, are

added to T≃ based on the condition in line 6. From q+0 q+3 , the transi-
tion q+0 q+3

⊥:i
=⇒ q+1 is added. No other new transitions begin at one of the

currently reachable states, so the first iteration terminates here. The
new transitions are shown below.
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(60) Transitions added during the first iteration (the dashed arrow
represents an existing transition)

q+0start

q+1 q+0 q+3q+0 q+1

⊥ : i ⊥ : ʔ⊥ : i

⊥ : i

In the second iteration, the new states added are q+0 q+3 q+0 and
q+0 q+1 q+0 . Note that (60) has no transitions originating from q+0 q+1 , and
the sole transition originating from q+0 q+3 emits a vowel as output.
However, the no transition T from q0 reads a vowel as input, so no
new transitions are added. Since T≃ has not changed during the sec-
ond iteration, the algorithm terminates, returning an FST with the
transitions in both (59) and (60). Observe that the behavior of this
FST is to either simulate (59) or to add ʔi before a consonant cluster
– exactly the behavior of [T]+.
6.2 Matching deletion and copying-state alternations
Theorem 57 identifies two conditions under which the transitive clo-
sure [T]+ of a same-length rational relation [T] is rational. This
subsection applies Theorem 57 to FSTs computing HG, developing
some intuition on when the transitive closure of HG is rational. Ob-
serve first that Theorem 57 is simplified in the case of FSTs imple-
menting a single change because the first condition is automatically
satisfied.
Proposition 61. Suppose T is a same-length FST such that x [T] y if
and only if x 7→ y is a single change. Then, every reachable state of T is
left-copying or right-copying.
Proof. Suppose q is a reachable non-copying state of T . Then, there
exist a starting state q0 and an accepting state q f such that

• q0
a:b−→∗ q with a ̸= b and

• q
c:d−→∗ q f with c ̸= d.
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Thus, ac [T] bd. However, since a ̸= b and c ̸= d, at least two symbols
of ac must differ from their counterparts in bd, so ac 7→ bd cannot be
a change. Thus, T cannot have any reachable non-copying states.

The remaining condition of Theorem 57 is a bound on the num-
ber of alternations between left-copying and right-copying states
in the reachable columns of T+. Suppose T is a same-length FST
implementing a single change. If T enters a left-copying state at
time t, then it has copied its input between time steps 0 and t,
so the single change that T implements occurs after time t. Sim-
ilarly, if T enters a right-copying state at time t, then the single
change occurs before time t, since T can only copy its input af-
ter time t. This means that a bound on the number of alterna-
tions between left-copying and right-copying states corresponds to a
bound on the number of times T can make a change before time t
followed by a change after time t and vice versa, for each time
step t.
Example 62. Define the matching substitution function g as follows.

g
��

a2 b2
�m+1

a2ca2
�
b2a2
�n+1�

:=

(�
a2 b2
�m−n �⊥4
�n+1

a2ca2
�⊥4
�n+1

, m≥ n�⊥4
�m+1

a2ca2
�⊥4
�m+1 �

b2a2
�n−m

, m≤ n

This function is like the matching deletion function, except that in-
stead of deleting symbols adjacent to the c, g replaces themwith⊥. Let
G be the HS grammar for the matching deletion function constructed
in Section 5, and let T be a same-length FST that implements HG,
except that deleted symbols are replaced with ⊥.

On input �a2 b2
�m+1

a2ca2
�
b2a2
�n+1, T reads the symbol c between

time steps t = 4(m+ 1) + 2= 4m+ 6 and t + 1= 4m+ 7. For each a2 b2

unit and b2a2 unit that is changed to ⊥4, T makes two substitutions
after time t and two substitutions before time t. Thus, at time t, T≃ is
in the state �q+L q+R

�k, where qL is left-copying, qR is right-copying, and
k is the total number of a2 b2 and b2a2 units deleted. Since k can be
arbitrarily large for large values of m and n, there is no bound on the
number of alternations between right-copying and left-copying states
in the reachable columns of T+, so T does not fulfill the termination
conditions for Abdulla et al.’s (2002) algorithm.
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As Example 62 shows, the kind of single-change behavior that
is incompatible with Theorem 57 – the kind that alternates between
making changes before and after a certain position in the string – is ex-
actly the kind of behavior forHG that is used to implement the match-
ing deletion function. This justifies the claim that non-rational map-
pings in HS with strictly local markedness constraints consist of coor-
dinated changes occurring on opposite sides of some center marker.
The following example illustrates how deletion makes such behavior
possible.
Example 63. Recall that, in Section 5, the markedness constraint
*baca was used to ensure that deletions occurred in the correct or-
der. By specifying a set of banned substrings containing the c, *baca
is able to enforce a dependency between the choice of which deletion
is carried out and the material that exists on each side of the c.

Now, consider the matching substitution function. It is straight-
forward to modify the grammar from Section 5 for the matching dele-
tion function so that substitions of a or b for ⊥ are performed in place
of deletions. However, as more and more symbols are changed to ⊥,
the a2 b2 and b2a2 units closest to the c become arbitrarily far away
from each other. This suggests that no finite set of banned substrings
can enforce a dependency between the two sides of the c, since for long
inputs the number of ⊥s adjacent to the c will exceed the maximum
length of a banned substring attempting to enforce the dependency. In
other words, deletion makes coordinated changes possible by making
the dependency between the deletions local.

7 conclusion

In the preceding sections, we have seen that HS can generate a
non-rational mapping by performing deletions that occur on oppo-
site, alternating sides of some center marker. These deletions cre-
ate context-free nesting dependencies between various portions of the
deleted material. Although SL constraints by definition can only en-
force dependencies across a bounded distance, we saw that deletion
was able to extend the reach of SL constraints by moving far-away
material into their domains of influence.

The matching deletion function defined in Section 5 differs qual-
itatively from the majority-rules deletion mappings presented in
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Section 3. Majority-rules deletion reflects the ability of standard OT
to perform global optimization. Because standard OT does not assume
Gen to be limited to one change at a time, faithfulness constraints
have the ability to measure the degree to which SRs differ from URs.
Thus, in the example from Section 3, Max is responsible for deter-
mining which symbol should be deleted from the input string. This
determination itself is not rational, since FSTs cannot distinguish be-
tween large numbers of as and bs. It is not obvious whether or not HS
can implement majority-rules deletion using SL constraints because
the limited nature of Gen strips faithfulness constraints of the abil-
ity to count the number of symbols deleted across the string, so that
both markedness constraints and faithfulness constraints are limited
to a local domain of influence. However, as Lamont (2018a,b) shows,
majority-rules mappings are possible in HS if markedness constraints
are given global scope, compensating for the limited power of faith-
fulness constraints.

While the majority-rules mapping reflects the global nature of op-
timization in standard OT, the matching deletion function reflects the
derivational nature of HS and the propensity of HS derivations to con-
verge to a fixed point.12 The constraints *baca and Stop are able to
control the deletion process powered by *ab and *caa by exploiting
the fact that intermediate strings can encode the previous action of
the grammar. Thus, despite the limited power of constraints in HS,
complex computations are still made possible if state is encoded into
the intermediate strings produced in a derivation. This kind of tech-
nique has been used in the HS phonology literature to derive certain
complex patterns. For example, McCarthy (2008) gives an HS deriva-
tion of rhythmic syncope, a mapping in which every second vowel is
deleted, by first organizing phonemes into two-syllable feet, then as-
signing stress to the first syllable in each foot, and then deleting the
unstressed vowels. This cascade of processes serves to mark up the UR
with syllable boundaries, foot boundaries, and stress markers, so that
it is possible for an SL constraint to determine by inspection whether
or not a vowel belongs to an even-numbered position within the string.
While McCarthy presents this analysis of rhythmic syncope as an ad-

12Moreton (1999, 2004) shows that derivations driven by OT-style ranked
constraint systems must always converge to a fixed point.
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vantage of HS over standard OT, the construction of Section 5 shows
that encoding state in intermediate strings can enable computations
that are too complex for phonology.

While this paper has shown that HS is not rational, I have left open
the question of finding a suitable limitation of HS that would elim-
inate the possibility of generating non-rational mappings. Using Ab-
dulla et al.’s algorithm on Hao’s (2017) model would provide a method
to construct an FST for an HS grammar, although there is no guarantee
that the algorithm would terminate. Thus, the approach to finite-state
OT studied here is similar to Riggle’s (2004) OTCA, which does not im-
pose any a priori restrictions on standard OT, but also does not have a
guarantee of termination. One possibility for a finite-state restriction
might be to replace recursive calls to the grammar with a bounded
cascade of distinct phonological processes, in the style of McCarthy’s
implementation of rhythmic syncope. I leave the development of such
ideas for future work.
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Out-of-vocabulary (OOV) words can pose serious challenges for ma-
chine translation (MT) tasks, and in particular, for low-resource lan-
guage (LRL) pairs, i.e., language pairs for which few or no parallel
corpora exist. Our work adapts variants of seq2seq models to per-
form transduction of such words from Hindi to Bhojpuri (an LRL in-
stance), learning from a set of cognate pairs built from a bilingual
dictionary of Hindi-Bhojpuri words. We demonstrate that our models
can be effectively used for language pairs that have limited parallel
corpora; our models work at the character level to grasp phonetic
and orthographic similarities across multiple types of word adapta-
tions, whether synchronic or diachronic, loan words or cognates. We
describe the training aspects of several character level NMT systems
that we adapted to this task and characterize their typical errors. Our
method improves BLEU score by 6.3 on the Hindi-to-Bhojpuri transla-
tion task. Further, we show that such transductions can generalize well
to other languages by applying it successfully to Hindi-Bangla cognate
pairs. Our work can be seen as an important step in the process of:
(i) resolving the OOV words problem arising in MT tasks; (ii) creat-
ing effective parallel corpora for resource constrained languages; and
(iii) leveraging the enhanced semantic knowledge captured by word-
level embeddings to perform character-level tasks.
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1 introduction

With recent advances in the field of machine translation (MT) – and
in neural machine translation (NMT) in particular – there has been
an increasing need to shift focus to out-of-vocabulary (OOV) words
(Wu et al. 2016; Sennrich et al. 2016). In the case of low resource
languages (LRLs), which lack linguistic resources such as parallel cor-
pora, most words are OOV words; this is problematic. Current data-
intensive translation systems work poorly with OOV words for such
languages, purely because of a severe lack of resources. Hence, for
such languages, it becomes necessary to deal with OOV words in spe-
cific ways, outside the ambit of general-purpose NMT systems. Even in
the case of resource-rich languages, methods to deal with OOV words
are still being actively researched (Pham et al. 2018; Luong and Man-
ning 2016).

Many approaches (as elaborated upon in Section 2) have been in-
vestigated to deal with the OOV problem. In this paper, we use the
method of ‘transduction’, learned from a dictionary of cognate word
pairs from Hindi and Bhojpuri. The fundamental guiding principle of
our approach is the fact that Bhojpuri and Hindi are closely related
languages, and hence have a good amount of vocabulary overlap,
while sharing orthographic and phonetic traits. These two languages
have common ancestors, and both of them employ the orthographi-
cally shallow alpha-syllabic Devanagari script. Tracing the origin of a
considerable portion of the modern Bhojpuri vocabulary could weakly
suggest that many of Hindi words got adapted to the local Bhojpuri
phonology with the passage of time. This is a well-known phenomenon
and it can be observed in other pairs of closely related languages
(Macedonian – Bulgarian; Spanish – Catalan; Turkish – Crimean Tatar;
Czech – Slovak; Irish – Scottish Gaelic) which share a close ancestor
within the language family they belong to.

The Indian linguistic space, as reported by Grierson (1928), has
179 independent languages and 544 dialects. Similarly, the survey of
Mahapatra et al. (1989) demonstrates that there are at least 50 In-
dian languages in which writing and publishing are done in substantial
quantity. However, a majority of these languages lack proper linguistic
resources. Hindi – being the lingua franca of the ‘Hindi belt’ (most parts
of the north) of India – is a commonly spoken language in more than
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10 states and has (according to one of the views1) seven major closely
related languages, often called ‘dialects’ or ‘sub-languages’, (namely,
Awadhi, Bagheli, Bhojpuri, Bundeli, Haryanvi, Kanauji and Khari Boli)
(Mishra and Bali 2011). Despite it having 33 million native speakers
in India and over 6 million native speakers outside India,2 Bhojpuri
still suffers from the lack of language resources. So far, very little
work has been done towards developing language resources (Singh
and Jha 2015), resulting in scarcity of resources such as a Bhojpuri
lexical database or parallel corpus that could have made state-of-the-
art machine translation (MT) systems accessible to this language.

Due to the lack of such resources, neither traditional phrase based
machine translation (PBMT) (Chiang 2005) nor NMT (Bahdanau et al.
2014) are feasible for Bhojpuri, as such approaches require large par-
allel corpora. In their recent work, Sharma and Singh (2017) intro-
duce a ‘word transduction’ approach to deal with the presence of un-
known (or out of vocabulary) words for MT systems involving such
resource-scarce languages. The concept of word transduction is some-
what similar to Hajič (2000), where the author suggests that the use of
word-for-word translation for very closely related languages provides
a good solution for MT of such language pairs.

Furthermore, for the task of language translation, it is neces-
sary to take into account the fact that not all languages possess the
same morphological features. For example, Finnish has more than
2000 possible inflected noun forms (Ekman and Järvelin 2007); Hindi
and Bhojpuri have more than 40 inflectional forms (Singh and Sarma
2010); while English has a mere 7–8 (these numbers indicate the dif-
ferent possible valid combinations of morphological tags that nouns
can possess). Therefore, a good MT system designed for such mor-
phologically rich languages must be intricate enough to deal with
their diverse inflectional morphology. In order to address this issue,
we adapt character-level NMT systems to our task in order to ex-

1There is no consensus about the meaning of the word ‘Hindi’ and so differ-
ent scholars have different views. For example, some other sub-languages like
Rajasthani, Maithili and Magahi are also often included in the Hindi spectrum.
However, the usual meaning of the word ‘Hindi’ in literature refers to standard
Hindi, whose base is Khari Boli and which is an official language of India.

2http://www.censusindia.gov.in/Census_Data_2001/Census_Data_
Online/Language/data_on_language.aspx
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ploit morphological information encoded in inter-character interac-
tions and intra-word patterns. As observed by (Nakov and Tiedemann
2012): “character-level models combine the generality of character-
by-character transliteration and lexical mappings of larger units that
could possibly refer to morphemes, words or phrases, as well as to
various combinations thereof” (Nakov and Tiedemann 2012). We also
introduce a novel pre-trained character-level embedding (Bojanowski
et al. 2017) for Devanagari alphabets derived from the 300 dimen-
sional Hindi fastText embeddings.3

As regards the phonetic considerations of transduction, we make
use of the fact that Hindi and Bhojpuri have a phonetic writing system,
meaning there is an almost one-to-one mapping between phonemes
(pronunciation) and graphemes (transcription). This is due to the fact
that they both derive from common ancestor languages such as Prakrit
and then Apabhramsha (Choudhury 2003). Hence, it suffices to work
in either one of the spaces – orthographic or phonetic, and we choose
the orthographic space since it does away with the need to convert
the graphemes of text to and from phonemes.

Although Bhojpuri phonology is close to that of Hindi, it is not the
same. There are notable differences between the two. While Hindi has
a symmetrical ten vowel system, Bhojpuri has six vowel phonemes and
ten vocoids. Similarly, Hindi has 37 consonants (including those in-
herited from earlier Indo-Aryan and those from loan words), whereas
Bhojpuri has 31 consonant phonemes and 34 contoids. As is usual with
any pair of languages, there are many phoneme sequences which are
allowed in Hindi, but not found in Bhojpuri and vice-versa. This will
be evident in examples given in the paper later. More details about the
Bhojpuri phonology are available in the article by Trammell (1971).
1.1 A note on Roman representations and English glosses of Hindi
Throughout this paper, we have used the WX notation (Gupta et al.
2010) to represent (in a transliteration-like fashion) Hindi and Bho-
jpuri characters in English, for the benefit of readers who are not fa-
miliar with the Devanagari script. A ready reference table of the WX
notation can be found in its Wikipedia page.4 Every non-English word

3https://github.com/facebookresearch/fastText/blob/master/
docs/pretrained-vectors.md

4https://en.wikipedia.org/wiki/WX_notation
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used in this paper is followed by its WX notation in square brackets
([]) and its italicized English gloss, in parenthesis (()).
1.2 Transduction and translation
Our usage of the word ‘transduction’ distinguishes it from translation,
in that transduction is a task which is trained exclusively on cognates,
and in that sense, the dataset it uses is a subset of the dataset that a
translation system would use. Cognates are word pairs that not only
have similar meaning but are also phonetically (and, in our case, or-
thographically) similar. The underlying observation that guides the
usage of our proposed method of ‘transduction’ of OOV words as a
possible substitute for their translation is as follows:

As stated earlier, Bhojpuri is a language closely related to Hindi.
In the case of an OOV Hindi word (or any Hindi word for that mat-
ter), there is a good chance that the Bhojpuri translation of the word
is a cognate of the Hindi word adapted to the phonological and or-
thographic space of Bhojpuri due to the presence of borrowed words,
common origins, geographic proximity, socio-linguistic proximity, etc.
A phonemic study of Hindi and Bundeli (Acharya 2015), mainly fo-
cusing on the prosodic features and the syllabic patterns of these two
languages, (unsurprisingly) concluded that the borrowing of words
from Hindi to Bundeli generally follows certain (phonological) rules.
For instance if a word in Hindi begins with the character य [ya], it is
replaced by character ज [ja] in its Bundeli equivalent as यजमान [yaja-
maan] (host) becomes जजमान [jajamaan], यमुना [yamunaa (name of a
river)] becomes जमुना [jamunaa], etc. We observe that a similar pro-
cess happens for Hindi-Bhojpuri. This category of word pairs is our
main motivation behind the work described in this paper.

Our model is agnostic to what sort of words are considered to
be OOV (based on their unigram probabilities, their parts-of-speech
(POS), or whether named entities, etc.) because the above assump-
tions hold uniformly across the language pair. Section 2 specifies some
of the metrics that have been used earlier to identify OOV words in
related work.

Further, the above assumption (of transduction improving over-
all translation performance) has been demonstrated to be valid in the
case of many closely related language pairs, in a number of previous
works. For instance, Kondrak et al. (2003) extracted a parallel list of
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cognate word pairs and re-appended them to the parallel list of all
word translations, thereby increasing the training weights of cognate
words. Giving added importance to these cognate words, “resulted in a
10% reduction of the word alignment error rate, from 17.6% to 15.8%,
and a corresponding improvement in both precision and recall.” (Kon-
drak et al. 2003). Mann and Yarowsky (2001) used cognates to expand
translation lexicons, Simard et al. (1993) to align sentences in a par-
allel translation corpora, and Al-Onaizan et al. (1999) used cognate
information to improve statistical machine translation.

Finally, transduction induces less sparsity in the model as com-
pared to translation, because the hypothesis space is restricted to only
functions that map words to their possible cognates. For closely re-
lated languages, the added reduction in sparsity also comes from the
fact that there are consistent variations between how a source word
transduces to its cognate target word. Hence, transduction is a task
that performs better with a small training set than translation would
when using a similarly complex model. This reduced sparsity enables
transduction models to perform well on OOV words.

The ensuing section provides background about NMT systems and
the manner in which we have adapted them to our task.

1.3 Neural machine translation
Neural machine translation (NMT) has delivered promising results in
large-scale translation tasks such as Chinese-to-English (Tu et al. 2017)
and English-to-French (Chen and Wu 2017). Initially, NMTs were used
as a sub-component of the PBMT system such as for generating the
conditional probabilities of phrase pairs (Cho et al. 2014), for gener-
ating (machine learning) features for the PBMT, or for re-ranking the
n-best hypotheses produced by the system (Kalchbrenner and Blunsom
2013; Sutskever et al. 2014a). Such combined systems produced state-
of-the-art results. One most appealing feature of NMTs is that they are
largely memory efficient. Unlike PBMT systems, an NMT system does
not require keeping track of phrase pairs or language models. Addi-
tionally, the work of Bentivogli et al. (2016) pointed out that NMTs
offer a range of other superior attributes including:
• generation of outputs that require considerably lower post-edit
efforts
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• better translation quality in terms of BLEU score, Translation Edit
Rate, and good performance on longer sentences

• fewer and/or less-severe errors in terms of morphology and word
order
Most NMT systems today make use of the encoder-decoder based

approach (e.g. Forcada and Ñeco 1997; Cho et al. 2014; Kalchbren-
ner and Blunsom 2013; Sutskever et al. 2014a), which consists of
two recurrent neural networks (or their variants). The first encodes
a variable-length source token x into a fixed length vector and the
second decodes the vector into a variable-length target token y. NMT
approaches were initially designed to work at the word-level and
translate sentences. However, noting the encouraging results of adapt-
ing NMTs to character-level translation by Vilar et al. (2007), we
adapt NMTs to our character-level transduction. Figure 1 shows the
architecture of such an encoder-decoder based NMT system perform-
ing character-level transduction. The model is trained over a paral-
lel corpus to learn the maximum conditional probability of y given
x , i.e., arg maxy p(y | x). Once trained, the model can then be
used to generate the corresponding transduction for a given source
word.

However, the performance of NMT degrades largely in the case
of longer length sequences (words, in our case) due to the vanishing

Figure 1:
Encoder-decoder network
architecture transducing the Hindi
word डरना [darnA] (to be scared)
to Bhojpuri डरल [darala]
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gradient problem (Bengio et al. 1994) arising during the training of
the underlying RNN. So far, the use of an attention mechanism, as
stated by Bahdanau et al. (2014), Luong et al. (2015a), Vinyals et al.
(2015) and Yang et al. (2016) has been the most plausible solution to
the aforementioned problem for RNNs and its variants. The concept
of ‘attention’ takes into account the fact that in the task of translation,
different tokens in a sequence are differentially informative, with the
information carried by them being highly context dependent. Thus, for
predicting each corresponding token, the model looks at the current
context of the source token that is relevant to predicting the target
token.
1.4 Summary
We adapt NMT models to perform ‘transduction’ of a Hindi word to
a Bhojpuri word. These word-transduction models work with char-
acters as the fundamental units. They are trained on Hindi-Bhojpuri
cognate pairs. This task is important because it helps to solve the OOV
problem in larger downstream tasks, the most prominent example of
which is machine translation for low resource languages. To improve
machine translation of Hindi to Bhojpuri, we first identify OOV words
in Hindi texts and then use our model to transduce them to their Bho-
jpuri counterparts. All other words are translated, and not transduced.
Using such separate treatment of OOVwords, we obtain improvements
in BLEU score with respect to the originally translated texts. The sec-
tion on Related Work (Section 2) elaborates previous approaches to
transduction and the OOV problem.

2 related work

A number of methods have been proposed to handle the OOV prob-
lems in machine translation of unknown or rare words. Luong et al.
(2015a) simply use a shortlist of 30,000 most frequent words and map
all other less frequent words to an UNK (unknown) token. Sutskever
et al. (2014b) use a vocabulary of 80,000 words and achieve better
performance. However, any UNK-based approach is problematic be-
cause in larger sentences, UNK tokens heavily degrade performance
(Cho et al. 2014; Jean et al. 2015) make model specific improvements,
using a smaller batch for normalization and including only frequent
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words in the denominator of this normalization. They fall back to other
translation and alignment models to replace UNK tokens.

Other approaches to handle OOV words include using a back-
off dictionary look-up (Jean et al. 2015; Luong et al. 2015b) but as
observed by Sennrich et al. (2016), these techniques make impracti-
cal assumptions. One such assumption is a one-to-one source – target
word correspondence, which is unwarranted. Further, some of these
methods assume the existence of a parallel corpus of source-target
word pairs, which is not always available in the case of low resource
languages. Sennrich et al. (2016), in turn, use a Byte-Pair Encoding
for transduction, which is very similar to character-level encoding of
sequences as strings of characters.

We also borrow ideas from previous approaches that have used
cognates. Simard et al. (1993) use cognates to align sentences in a par-
allel corpus and report 97.6% accuracy on the alignments obtained,
when compared to reference alignments. Mann and Yarowsky (2001)
use cognates extracted based on edit distances for inducing transla-
tion lexicons based on transduction models. Scannell (2006) presents
a detailed study on translation of a closely related language pair, Irish-
Scottish Gaelic. They learn transfer rules based on alignment of cog-
nate pairs, and use these rules to generate transductions on newwords.
They use a fine-grained cognate extraction method, by first editing
Scottish words to ‘seem like’ Gaelic words, and then using edit string
similarity on the new word pairs and choosing only close words with
the additional constraint that both words in the pair should share a
common English translation. However since we use linguistic experts
to extract cognates from our dataset, we do not need to encode string
similarity measures explicitly to extract cognates.

We borrow insights from character-level machine transliteration
and translation models that have been proposed in the past, as trans-
duction can be viewed as a variation of transliteration (which is,
in turn, viewed as character-level translation in many works), albeit
working within the same script. Alternatively, it can also be thought
of simply as a translation of ‘true friend’ cognates.

Vilar et al. (2007) work on transliteration at the character level
(and translation at the word level) to build a combined system that
shows increasing gains over just the word-level system, as the cor-
pus size grows smaller. This is because the character-level transliter-
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ation takes into account the added morphological information such
as base forms and affixes. Tiedemann (2012) experimented with dif-
ferent types of alignment methods and learning models, and showed
that in each type of method, there exists at least one character-level
model that performs better than word-level models (in the case of
closely related language pairs). Denoual and Lepage (2006) also show
merits of using characters as appropriate translations, and highlight
issues with making assumptions about words being natural units for
the task. Finch and Sumita (2009) view transliteration as a character-
level machine translation, and use Phrase-Based SMT for bidirection-
ally encoding source sequences. They observe the lack of necessity
to model phonetics of source or target language, due to the use of
direct transformations. One point of difference between some of the
related work on cognates and ours is that we do not perform context-
sensitive transduction simply due to lack of annotated data that is
context-sensitive.

3 methodology

We run experiments on four different benchmark encoder-decoder net-
works, namely:

• a simple sequence-to-sequence model (Cho et al. 2014) – abbre-
viated as ‘seq2seq’.

• the alignment method (Bahdanau et al. 2014) incorporated with
the seq2seq model – abbreviated as ‘AM’.

• the Hierarchical Attention Network (Yang et al. 2016) incorpo-
rated with the seq2seq model – abbreviated as ‘HAN’.

• the Transformer Network (Vaswani et al. 2017) solely based on
attention – abbreviated as ‘TN’.

In the basic seq2seq RNN encoder-decoder model (Cho et al. 2014)
we incorporate a ‘peek’ at the context vector at every time step. How-
ever, the model performed poorly on this translation task, with the
validation accuracy plateauing at a low value early on in the training
process. Section 3.1, Section 3.2 and Section 3.3 describe the models
– AM, HAN and TN, respectively – in detail.
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Figure 2:
Schematic of the alignment model
adapted from Bahdanau et al. (2014)

3.1 Alignment model (AM)
As shown in Figure 2, the alignment model (AM) proposed by Bah-
danau et al. (2014) facilitates searching through the source sequence
during the decoding phase using a unique context vector for each to-
ken. Specifically, given a translation yi and the source sequence x,
the decoder decomposes the conditional probability over all the pre-
viously predicted tokens (y1, ..., yi−1) as:
(1) p(yi |y1, ..., yi−1,x) = g(yi−1, si , ci),

where si is the hidden state of the decoder model computed for time
i, ci is the distinct context vector for each target token yi and g is a
non-linear function that outputs the probability of yi being the correct
translation at time i.

In addition to the use of a unique context vector for each decoding
time step, all hidden states computed so far contribute to the context
vector ci with weight α.

(2) ci =
Tx∑
j=1

αi jh j

α thus serves as a normalized importance weight, measuring the
degree of importance of the context tokens around position j in pre-
dicting the translation of the current source token at the output posi-
tion i (Bahdanau et al. 2014). Figure 2 shows the architecture of the
encoder-decoder network incorporating the alignment-based attention
decoder.
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Figure 3:

Encoder–decoder network architecture
with HAN: n and m denote the number
of characters in input and output words

respectively

3.2 Hierarchical attention network (HAN)
Proposed by Yang et al. (2016), Hierarchical Attention Networks
(HAN) exploit the hierarchical nature of documents (i.e., characters
form words, words form sentences and sentences form a document)
and are comprised of two levels of attention mechanisms (Bahdanau
et al. 2014; Lai et al. 2015) – the first at the word level while the
other at the sentence level. In our case, the former attention can be
thought of as being effective at the character level, while the latter
at the word level, thus allowing the model (Figures 3 and 4) to dis-
cover the amount of attention required to be paid to the individual
characters and words to form a character-level transduction.
3.3 Self-attentional transformer network (TN)
The Transformer Network (Vaswani et al. 2017) consists of an encoder
made up of a stack of six identical layers. Each layer further con-
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Figure 4:
The HAN framework
adapted from Yang et al.
(2016)

sists of two sub-layers: a multi-head self-attention and a simple position-
wise fully connected feed-forward network (FFN). The decoder too has
a similar architecture except for an additional sub-layer performing
multi-head attention over the output of the encoder stack. Both the
encoder and the decoder unit employ a residual connection (He et al.
2016) in between their respective sub-layers, followed by layer nor-
malization (Ba et al. 2016).

As shown in Figure 5, the positional embeddings serve to make the
representation at time step i independent from the other time steps.
The multi-head attention layer serves to replace recurrent dependen-
cies by repeatedly applying self-attention over the same inputs using
separate parameters (attention heads) followed by combining the re-
sults. This combination acts as an alternative to applying a single pass
of attention with more parameters so that the model can easily learn
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Figure 5:

The transformer
architecture as described
in Vaswani et al. (2017)

and adapted from Li et al.
(2018)

to attend to different types of relevant information in parallel with
each head. In other words, the decoder can now use multiple encoder-
attention mechanisms in each of its layers resulting in a significantly
faster training than architectures based on recurrent or convolutional
layers. Inspired by the success of the Transformer in sequence genera-
tion tasks (such as achieving state-of-the-art results on both WMT2014
English-German andWMT2014 English-French translation tasks5), we
use the Transformer Network in our task.

5http://www.statmt.org/wmt14/
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4 experiments

For the AM and HAN models, we consider various parameters while
training, such as LSTM/GRU as encoding/decoding units, sequence
chunking and batch sizes, optimization methods, regularization, and
we report that there is a huge variance in the transduction perfor-
mance depending on the combinations of the parameters used (for
details of these experiments, the interested reader may refer to the
Appendix section in the pre-print of this work6). As regards the TN
model, due to computational and implementation limitations, we
could not perform such an extensive hyperparameter search. Never-
theless, we take care of the basic parameter settings (as suggested in
Popel and Bojar 2018) by limiting our model to a single-GPU base, set-
ting batch size to 512, maximum sequence length to the length of the
longest token in the parallel corpus followed by a final averaging of
the last 6 training checkpoints while leaving the learning rate and the
number of warm up steps at their default values. Finally, the extracted
character embeddings are used to train the AM and HANmodels while
the TN model is left void of these mainly because of its inherent de-
pendency on segmenting the training tokens into semantically useful
sub-tokens which are hard to be reproduced in varying experiments
(Popel and Bojar 2018), and thus cannot be easily assigned such em-
beddings. We compare the results of the TNmodel with the best results
(among various hyperparameter settings) of the AM and HAN models.

The implementation of the Alignment model (AM) and the Hi-
erarchical attention network (HAN) is based on Keras-2.0.6 (Chol-
let et al. 2015); that of the Transformer Network (TN) is based on
tensorflow-1.4.1 (Abadi et al. 2015) and tensor2tensor-1.4.3.7 Exper-
iments were run on x86_64 GNU/Linux with 8G memory, using one
NVIDIA GeForce 840M with CUDA v8.0.61, and Python 3.5.2+.

4.1 Dataset
In order to be able to compare our results with the state of the art
(SOTA) – described in Section 4.3 – we use the same dataset as
Sharma and Singh (2017), which was the state-of-the-art method at
the time of writing. This dataset consists of 4220 Hindi-Bhojpuri word

6https://arxiv.org/ftp/arxiv/papers/1811/1811.08816.pdf
7https://github.com/tensorflow/tensor2tensor

[ 115 ]



Saurav Jha, Akhilesh Sudhakar, Anil Kumar Singh

cognate pairs chosen from a pre-compiled lexicon of Hindi-Bhojpuri
word translations. This dataset was compiled by three linguistic ex-
perts (who are native speakers of both Bhojpuri and Hindi) who came
to consensus on the annotations. Cognate pairs were identified from
this set using domain expertise by linguistic experts. This method of
cognate extraction is in contrast to possibly sub-optimal rule-based
and similarity-based approximations, such as those used by Mann and
Yarowsky (2001). In summary, the training data has Hindi-Bhojpuri
word pairs, each of which comprises a Hindi and a Bhojpuri word
that have the same meaning, as well as similar pronunciations. We
split the dataset into 3:1 ratio for training and testing our models.
A validation split of 0.1 was further made on the train set compris-
ing of 3165 word pairs. This test is held-out and is used for reporting
only the final results. All hyperparameter tuning is done on the val-
idation set. The validation set is not fixed and the training is cross-
validated, with a new random validation-set being used at each iter-
ation of tuning. Table 1 consolidates these statistics. We perform a
random shuffle of the train and validation set prior to each training
epoch.

Table 1:
Transduction

corpus statistics
Training set Validation set Test set

Total number of words 2849 316 1055
% of words of full dataset 67.5% 7.5% 25%

4.1.1 Semantic ambiguity when selecting cognates
It is worthwhile to mention that not all Hindi words in the train-
ing dataset have just one possible corresponding Bhojpuri cognate.
Around 3.85% of Hindi words in the Hindi-Bhojpuri cognate pairs
have more than one corresponding Bhojpuri cognate. The same ap-
plies the other way too, i.e., not all Bhojpuri words have just one pos-
sible corresponding Hindi cognate. Around 3.37% of Bhojpuri words
in the Hindi-Bhojpuri cognate pairs have more than one corresponding
Hindi cognate. When either a Hindi word or a Bhojpuri has multiple
corresponding cognates, only two possible cases arise, as described
next.
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1. The multiple possible cognates have the same semantic sense and
are different in only surface forms (spellings). For instance, the
Bhojpuri word हलुवा [haluVA] (a sweet dish) has two Hindi cog-
nates – हल्वा [halVA] and हलवा [halaV] – both meaning the same,
but differing in surface forms due to the presence of the diacritic
in one and absence in the other. The diacritic is a character ex-
plained in Section 6.1.1.

2. They are different inflected forms of the same root word. For in-
stance, the Bhojpuri word राखल [rAKala] (kept, or to keep) has two
Hindi cognates – रखा [raKA] (kept) and रखना [raKanA] (to keep)
– both of which are different inflected forms of the root word रख
[raKa] (keep).

Since multi-cognate words together form only a small percentage of
the dataset, they are not accorded any special treatment, and the
model learns from the multiple forms.

We plan to work more on the deeper change in ambiguity from
source to target word in the case of ‘true friend’ cognates, particularly
for the Hindi-Bhojpuri language pair.

4.2 Evaluation measures
We report the accuracy of each experiment using the BLEU score and
Levenshtein distance-based string similarity (SS) measure, as in Equa-
tion 3.8 After obtaining the optimum hyperparameter set for AM and
HAN, we compare the word accuracy (WA, Equation 4) report defined
by the percentage of correctly translated words for all the models in-
cluding the SOTA. SS, WA and BLEU score formulae for two arbitrary
strings ‘s1’ and ‘s2’ are given below. The averaged score across the
validation/test set are reported in the tables in ensuing sections. We
employ the character n-grams version of BLEU score (as used in De-
noual and Lepage 2005) as our work is at the word-level, instead of
document-level. Using this metric also alleviates the comparison with
other state-of-art transduction methods since other popular metrics
such as CHRF and TER correlate well with the character n-gram ver-
sion of BLEU score (as observed by Popović 2015).

8https://pypi.python.org/pypi/python-Levenshtein/0.12.0
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(3) SS(s1, s2) =
�

1− Levenshtein Edit Distance(s1, s2)
len(s1) + len(s2)

�
∗ 100

(4) WA(s1, s2) = {1 if s1 == s2 ; 0 otherwise}
4.3 State of the art
We consider the results of Sharma and Singh (2017) to be state of
the art, and to the best of our knowledge, the only relevant one on
Hindi-Bhojpuri transduction or even any form of OOV word handling
technique for this language pair. While their work builds upon tra-
ditional PBMT approaches, they first convert lexical word represen-
tations into phoneme strings followed by the alignment of phonemes
in these strings. The word is then segmented into phoneme chunks
which thus facilitates the extraction of weighted rewrite rules for these
chunks.

Since the work of Sharma and Singh (2017) extensively compares
and contrasts their own work to the related work in transduction, we
refrain from such an elaborate comparison, and suggest their work to
the reader for more comparisons to other techniques. We show im-
provements in performance over their results.
4.4 Common aspects across models
Our adaptations of each of the models (i.e., seq2seq, AM, HAN and
TN) use Bidirectional LSTMs (BLSTM) as encoder-decoder units unless
specified otherwise. A detailed analysis of hyperparameter tuning and
training aspect for each model can be found in the Appendix section
in the pre-print of this work.9 The analyses document the experiments
motivating our decisions on using LSTM vs GRU, sizes of encoding and
decoding layers, number of layers, batching, optimization methods,
regularization methods and pre-training embeddings for each of the
three models. We hope that these results may be useful for future work
in morphology-related tasks.
4.5 Character embeddings
Since the atomic token in our models is the character (and not the
word), we explore two pre-training strategies – ‘LM-LSTM-Embed’ and

9https://arxiv.org/ftp/arxiv/papers/1811/1811.08816.pdf
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‘fT-Avg-Embed’ – to represent characters as dense vector embeddings.
These embeddings are used only as pre-trainings, and the transduction
models are allowed to update these weights during training, i.e., they
are not frozen. The followings sections describe methods used to create
these embeddings.

4.5.1 Creating embeddings using LSTM
Taking cues from Sundermeyer et al. (2012), we use a simple one-
layered Bi-LSTM of hidden dimension 75 and a dropout of 0.5 to train
a character-level language model for Hindi. Working at the character-
level, we formulate the problem as a character prediction task – given
a sequence of 29 characters, predict the next one, i.e., the 30th charac-
ter. We found 30 to be the optimumwindow size after varying window
sizes from 5 to 40, keeping in mind memory requirements as well as
perplexity. We randomly sample 3000 Hindi Wikipedia articles as a
train set (with a validation split of 0.2) and another random 600 arti-
cles as a held-out test set. With a train set size of over 19M characters,
a vocabulary of 397 distinct characters (including special characters
and code-mixed characters10), and having trained for 31 epochs mon-
itored upon validation loss convergence with a patience of 7 epochs,
the model resulted in a perplexity score of 5.18 over the test set. The
weights of the character embedding layer were then extracted to be
used as pre-trained yet trainable character embeddings for our trans-
duction models. We refer to this method of pre-training as ‘LM-LSTM-
Embed’. The embedding weights are allowed to be trained along with
the hyperparameters of the models as freezing these lead to a decrease
in performance – a plausible reason being the orthographic and gram-
matical distinction of Hindi (on which the character embeddings are
based) from Bhojpuri (the target language whose orthography and
grammar must be reflected by modifying the pre-trained embedding
weights).

4.5.2 Creating embeddings by averaging fastText embeddings
While using the LM-LSTM-Embed embeddings gives the best perfor-
mance, we also introduce a novel pre-trained character-level embed-
dings set for the Devanagari script; these are derived from the 300-D

10Characters borrowed from other languages.
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Hindi fastText embeddings (Bojanowski et al. 2017). We choose the
fastText embeddings over other benchmark embeddings because of
their inherent sub-word information preserving property that arises
from representing each word as a bag of character n-grams11 and
not as an atomic token itself. As has been observed by Bojanowski
et al. (2017), such subword-level representation of words is highly
useful in capturing morphological structure of words. We start with
the existing word embeddings for Hindi.12 These fastText embed-
dings have been constructed for each word by averaging the em-
beddings of the character n-grams that make up the word. We de-
rive the pre-trained embedding of a character by averaging over all
word vectors of words in which the character occurs, weighted by the
number of times it occurs in each word. We refer to this method of
pre-training as ‘fT-Avg-Embed’. We outline the reason to support this
method.

For character n-grams, in the case when n = 1 (and loosely ex-
tending for n > 1), each existing word embedding would have been
the average of all its characters’ embeddings (or when n> 1, groups of
characters’ embeddings). An approximation of ‘re-obtaining’ the char-
acter embeddings from the word embeddings would then be to average
over all word vectors of words in which the character occurs. This lin-
ear transformation would preserve the ‘component’ of the embedding
of the particular character, as the components of all the other char-
acters would cancel each other out. This justification also takes into
account the fact that the components of all characters that are not
‘close’ (in the sense of co-occuring in the same context, i.e., word) to
the particular character would cancel out each other since their vec-
tors can be thought of as being spatially randomly distributed with
respect to the vector of the character in question. This also implies
that the resulting character embedding will have contributions from
the components of characters that are ‘close’ to it. We propose this
method of computing character embeddings as follows.

11Consequently, we observe that using the fastText derived embeddings pro-
vides highly consistent results in comparison to using GloVe (Pennington et al.
2014) or word2vec (Mikolov et al. 2013) character adaptations over monolingual
Hindi corpora.

12https://github.com/facebookresearch/fastText/blob/master/
docs/pretrained-vectors.md
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Initialization methods AM HAN
BLEU SS ep BLEU SS ep

ft-Avg-Embed 87.32 85.56 59 83.14 80.89 21
LM-LSTM-Embed 89.71 88.03 22 85.94 84.05 17

Random 73.51 71.68 16 64.11 61.33 12
Zero 68.44 63.10 14 60.83 59.20 13

Table 2:
Effect of pre-trained
character embeddings:
ep indicates the number
of epochs until convergence

(a) It allows us to circumvent the need for extensive lexical and com-
putational resources required for training character embeddings
on a large Hindi monolingual corpus from scratch (while making
small compromises on overall downstream accuracy).

(b) It uses pre-existing vectors that have been successfully tested
upon a range of tasks (Chaudhary et al. 2018), lending the method
of deriving character embeddings (from word embeddings) in this
manner to any pre-trained word vectors that have been them-
selves composed from sub-word representations.

(c) It provides scope to study the notion of character embeddings,
vis-a-vis word embeddings, since the semantic notion of a word
and its embedding is well understood but the notion of a dense
representation of a character is not fully understood yet.
It is important to note that pre-training using the LM-LSTM-

Embed method results in the best transduction performance, and also
that using the fT-Avg-Embed pre-trainings does significantly better
than random initializations, while incurring lesser computation costs
than LM-LSTM-Embed. These differences are shown in Table 2 for
Hindi-Bhojpuri and in Table 3 for Hindi-Bangla (additional experi-
ments on this language pair will be described in Section 5.3). In both
these tables, we observe that the performance improvements across
the metrics alongside the increase in training epochs before conver-
gence of the models remain consistent, i.e., LM-LSTM-Embed is a bet-
ter pre-training strategy than ft-Avg-Embed.

5 results

5.1 Comparing our models to the state-of-the-art model
Table 4 compares the performances of the best AM and HAN models
(after the hyperparameter search) with those of the standard encoder-
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Table 3:

Effect of pre-trained
character embeddings for

Hindi-Bangla cognate pairs

Initialization methods AM HAN
BLEU SS ep BLEU SS ep

ft-Avg-Embed 78.49 77.10 56 73.65 70.22 26
LM-LSTM-Embed 81.03 79.72 33 75.28 73.15 24

Random 72.66 72.25 19 60.07 58.46 10
Zero 70.39 69.88 19 59.21 55.33 12

Table 4:
Comparison of evaluation

metrics among
encoder–decoder models

Metric (%) seq2seq AM HAN TN SOTA
BLEU 52.89 89.71 85.94 90.89 79.82

SS 57.22 88.03 84.05 90.23 –
WA 16.32 67.22 59.77 75.71 64.41

decoder model, the TN model and the current state-of-the-art (SOTA)
model (Sharma and Singh 2017). The BLEU scores of AM, HAN and
TN are higher than that of the phoneme-chunk based model used by
Sharma and Singh (2017). While TN outperforms the SOTA model in
terms of word accuracy (WA), AM and HAN lag behind. The simple
seq2seq model performs the worst among all our models, and fails to
match up to SOTA.

TN performs the best due to two main reasons:
1. Residual connections that connect the input character embed-

dings to the final decoder of the output word: The transduction
of a Hindi word can be thought of as making character level ed-
its upon the Hindi word, in the same orthographic space. The
residual connections, hence, help in learning these edits by con-
ditioning the final decoder not only on the attention-based repre-
sentation of the input word but also directly the input word itself.

2. The multi-head attention mechanism of TN helps to model the de-
pendencies of characters in the input and output words, regard-
less of their distances from each other. This would otherwise have
to be learnt from a restricted fixed-sized representation, which is
usually an LSTM.
The simple seq2seq model performs the poorest because, perhaps,

the generic architecture is not adapted to the task in any manner,
based on knowledge about the linguistic properties between cognate-
pairs. This simple architecture fails to capture long-range dependen-
cies for 1) longer words, and 2) words in which the dependencies be-
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tween orthographic segments in the source and target word are not
very obviously aligned.

The performance improvements of HAN and AM could be at-
tributed to their attention mechanisms that facilitate better captur-
ing of the intricacies of phonetic and orthographic dependencies of
cognates. It is interesting to see that HAN performs worse than the
AM, and this might be because of the over-parametrization of HAN.
HAN is over-parameterized since it was originally proposed for build-
ing a hierarchy over documents where a layer of attention is effected
across words in sentences of the document, and another layer is ef-
fected across characters in words of sentences. In our case we only
deal with individual words, and not documents. This, combined with
the fact that we have a small training set, perhaps causes HAN to over-
fit to the training data and perform poorly on the test set. We observed
that the HAN transductions commonly had erroneous repeated char-
acters at the ends of words; we thus employ a post-processing step to
remove all but the first recurring character appended to these words.
This will be referred to in later sections as the ‘post-processing’ step.

An elaborate account of errors made on different word-pair types
by each of these models is presented in Section 6. These differences in
errors occur due to the differences in the models as expounded above.
5.2 Gains over the state of the art
Table 4 depicts the performance of the aforementioned models us-
ing both the pre-trained character embeddings obtained using aver-
aging (AVG) and that built from the language model (LM). It is ev-
ident that TN performs best across all accuracy metrics. This is our
best model and using this model achieves gains over SOTA of 11.07
BLEU score points (a percentage gain of 13.9%) and a Word Accuracy
gain of 11.3% (a percentage gain of 17.5%). The SOTA paper did not
provide information of SS scores, and hence we have not made this
comparison.
5.3 Additional experiments on Hindi - Bangla cognate pairs
We extend our experiments to transducing from Hindi to Bangla by
training on a corpus of Hindi-Bangla cognate pairs comprised of 3220
word pairs. We carried out the same 3:1 split upon this corpus to hold
out the test set while making a further split of 0.1 upon the train set
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Table 5:

Comparison of evaluation metrics
between seq2seq, AM, HAN, and TN

for Hindi-Bangla cognate pairs

Metric (%) seq2seq AM HAN TN
BLEU 41.88 78.49 73.65 83.76

SS 55.12 77.10 70.22 82.59
WA 9.87 59.27 47.19 71.11

(2415 word pairs) to obtain a validation set. The results of the Hindi
– Bangla experiments are presented in Table 5.

The decline in the scores of all four models across the metrics in
Table 5 (compared to Table 4) could be boiled down to two major
reasons:
1. Word formation methods: Bangla has its roots in the Prakrit or mid-

dle Indo-Aryan language, which in turn descended from the old
Indo-Aryan language, of which Sanskrit is a standardized form.
Hindi also shares roots with Sanskrit. Bangla is therefore neither a
dialect nor an immediate sibling of Hindi. This is unlike Bhojpuri.
This also means that Bangla, which has its own Brahmi-derived
script (namely, the Bangla script) has possible word formation
rules that are quite different from Hindi. One such instance is the
Bangla consonant clustering mechanism. For example, the name
Vishnu, written as िवष्णु [viRNu] in Hindi, has the consonant clus-
ter ṣa+ ṇa [RN]. While the Hindi consonant cluster (ष + ण) can
easily be decomposed into its constituent letters, the Bangla clus-
ter can form a new character in itself.

2. Smaller size of the training corpora: The training corpora for Hindi-
Bangla cognate pairs comprises 2415 word pairs, i.e., 1000 in-
stances less than that of Hindi-Bhojpuri train set. The aforemen-
tioned grammatical restrictions shared by Hindi and Bangla make
it very demanding to discover more such cognate pairs between
the two languages, thus constraining the training corpora for our
experiments.

6 error analysis

We analyse the outputs of each model to study a pattern in the most
common errors made by each of them. We identify six types of ortho-
graphic and lexical errors, and four types of errors related to overall
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translation quality for a word. While orthographic errors are moti-
vated with respect to the types of graphemes generated by character
patterns, quality-related errors focus on overall aspects of the trans-
duction being close to the correct translation. Further, we have been
able to make some preliminary correlations between the model archi-
tectures (AM, HAN, TN) and the errors they make. The main weakness
of the AM model is that since it is predominantly bidirectional LSTM-
based and only weakly attention-based as compared to HAN and TN, it
tends to bias character predictions towards either the early characters
or the later characters in the input sequence, sometimes giving poor
results towards the mid-sections. Since it processes input in a sequen-
tial manner, it also tends to lose out some orthographic information
in the process. The TN model’s weakness lies in the fact that it is in-
famously bad at performing copy mechanisms (Dehghani et al. 2018),
and hence it fails in places where characters/character-groups have to
be preserved in the transduction. The HAN model’s trade-off between
the LSTM’s influence and the attention weights’ influence lies between
the AM and the TN, and the behaviour it shows with respect to errors
it leads to, reflects this is in certain ways. However, these are only
approximate inferences that we make retrospectively, with the actual
behaviour varying on a case-by-case basis.
6.1 Orthographic and lexical errors
6.1.1 Halant
Halants refer to diacritics used to signify the lack of an inherent vowel
in written Devanagari scripts. In Devanagari, the halant is represented
by a diacritic below the consonant it applies on (e.g., द)्, while it is rep-
resented by not using any vowel after the consonant it applies on in the
WX notation (e.g., द् is represented as simply ‘x’). In most of the cases,
halants are preserved during translation of Hindi to Bhojpuri words,
except a few (e.g. पर्था [praWA] (tradition) becomes परथा [paraWA]).
We study the capability of each model to handle the translation of
halants (see Table 6). While HAN and TN perform reasonably well
at translating halants, AM tends to replace the character possessing
halant with some ligature combined with a neighbouring character,
e.g. त्क [wka] in पत्कारनन [pawkAranana] and त् [wwa] in पिवत्ा [pavi-
wwA]. The possible reason for this could be the better attention ca-
pabilities of the HAN and the TN, which helps these models force the
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Table 6: Handling halant

Hindi Bhojpuri (correct) AM HAN TN
पर्था परथा पररा परथा परथा

[praWA] [paraWA] [pararA] [paraWA] [paraWA]
(tradition)

पिवतर्ता पिवतर्ता पिवत्ा पिवतर्त पिवतर्ता
[paviwrawA] [paviwrawA] [paviwwA] [paviwraw] [paviwrawA]

(purity)
पतर्कार पतर्कारन पत्कारनन पतर्ाा पतर्कारन

[pawrakAroM] [pawrakArana] [pawkAranana] [pawrA] [pawrakArana]
(journalists)

halant to be appended in the right place, thus ensuring that the imme-
diate neighbouring character of the halant in Hindi is joined with the
previous character in the Bhojpuri transduction. The AM, having only
limited attention influence in comparison, skips the immediate neigh-
bouring character and combines the halant with a later character as
the LSTM layer in the AM has seen the later character more recently.
6.1.2 Handling vowels
Vowels play an important role in the translation of Hindi words to
their closely related languages. Our investigations show that TN per-
forms the worst in recognising appropriate vowel translations for vow-
els used in Hindi words. While the outputs of HAN are the most rea-
sonable ones after the post-processing step (described in Section 5.1)
of removing repeating characters at the end of the word, the AMmodel
performs moderately well in learning correct vowel translations. We
attribute this to the fact that a Hindi word’s vowels are mostly re-
tained in its Bhojpuri cognate. The TN perhaps performs the worst at
retaining vowels as it is infamous for being bad at copy mechanisms
(Dehghani et al. 2018). These examples are shown in Table 7.
6.1.3 Handling anusvāra
An anusvāra is a diacritic used in a variety of written Indic scripts to
denote a nasal sound, either a nasalized vowel or a nasal consonant
that is not followed by a vowel. Anusvāra is used often in Hindi, but is
absent in Bhojpuri writing. In Devanagari, the anusvāra is represented
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Table 7: Handling vowels

Hindi Bhojpuri (correct) AM HAN TN
आना आइला अयना आना अयन
[AnA] [AilA] [ayanA] [AnA] [ayana]

(to come)
घुमाना घुमावल घुहावल घुमावल घोमावल

[GumAnA] [GumaAvala] [GuhAvala] [GumaAvala] [GomaAvala]
(to stir)

मौसी मउसी मउसी मउसी मउसी
[mOsI] [mausI] [mausI] [mausI] [mausI]

(maternal aunt)

by a dot (◌ं) above a character, while it is represented by the letter
‘M’ in the WX notation. The two general patterns for translation of
anusvāra are:
1. replacing them by adding an extra ‘न [na]’ in front of the conso-

nant, e.g. लेख [leKoM] (writings)-> लेखन [leKana],
2. completely removing them, e.g. भेंट [BeMta] (offering)-> भेट

[Beta].
Our study shows that all three models get confused at choosing the
correct rule and generally end up choosing the former one. Table 8
shows a few examples of this. Comparatively, the AM based model
performs better than the other two.
6.1.4 Handling conjuncts for क्ष [kRa] and ज्ञ [jFa]
Conjuncts are formed when successive consonants, lacking a vowel
in between them, physically join together. The conjuncts for क्ष [kRa]
and ज्ञ [jFa] are special cases in that they are not clearly derived from
the letters making up their components, i.e., the conjunct for क्ष [kRa]
is क् [k] + ष [Ra] and for ज्ञ [jFa] it is ज् [j] + ञ [Fa]. The rules
for translation of such conjuncts from Hindi to Bhojpuri are difficult
to model (e.g. in the translation वृक्ष [vqkRa] (plant) to िब रछ [biriCa],
क्ष [kRa] becomes छ [Ca], while it remains as क्ष [kRa] in other cases);
and therefore we explore the capability of the models in learning such
translations. Our study shows that while the translation for क्ष [kRa] is
easily learned by the models in most cases, the translation for ज्ञ [jFa]
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Table 8: Handling anusvāra

Hindi Bhojpuri (correct) AM HAN TN
किठनाइय किठनाइयन किठनाइयन किठनाइयन किठनाइन

[kaTinAyioM] [kaTinAyiana] [kaTinAyiana] [kaTinAyiana] [kaTinAyiana]
(hardships)

लेख लेखन लेखन लेखन लेखन
[leKoM] [leKana] [leKana] [leKana] [leKana]
(writings)

भेंट भेट भेन्ट भेन्◌् भेन्ट
[BeMta] [Beta] [Benta] [Ben] [Benta]
(offering)

Table 9: Handling conjuncts for क्ष [kRa] and ज्ञ [jFa]

Hindi Bhojpuri (correct) AM HAN TN
बरकै्षा बरइक्षा बरबक्धा बरइक्षा बरइक्षा

[barEkRA] [baraikRA] [barabakDa] [baraikRA] [baraikRA]
(village’s name)

अवजै्ञािनक अबजै्ञािनक अवजैज्◌ािनक अबजै्ि◌ािनक अवजै्ञािनक
[avEjFAnika] [abEjFAnika] [avEjajAnika] [abEjianika] [avEjFAnika]
(unscientific)

वृक्ष िब रछ ब क्छ् िबक्षष िब रछ
[vqkRa] [biriCa [bakC] [bikRiRa] [biriCa]
(plant)

often results in ambiguity. Overall, TN performs the best in learning
such translations while AM performs the worst. This, and many of the
other errors mentioned in this section, are due to the nature of the
writing system used. Table 9 shows a few examples of how different
models handle conjuncts.

6.1.5 Handling the diacritic ‘reph’ for र् [r]: वर् [rva], वार् [rvA], स्पर् [rspa]
र् [r] in certain contexts is written as a special diacritic that takes the
form of a curved upward dash above the preceding consonants. While
translating the Hindi words containing such diacritics to their Bhojpuri
counterparts, the diacritic is either replaced completely by र or simply
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Table 10: Handling the diacritic for र् [a]

Hindi Bhojpuri (correct) AM HAN TN
अिहसंापूवर्क अिहन्सापूवर्क अिहन्सापूरन् अिहन्सपूरसक अिहन्सापर्वक

[ahiMsApUrvaka] [ahinsApUrvaka] [ahinsApUrvan][ahinsApUrasaka][ahinsApravaka]
(nonviolently)

नाचपाटीर् नाचपारटी नाचपाटर् नाचपारप नाचपारी
[nAcapArtI] [nAcpaAratI] [nAcapArta] [nAcapArapa] [nAcapArI]
(dance party)

फनीर्चर फरनीचर फ◌र्ीचर फि◌र् फरनीचर
[ParnIcara] [ParanIcara] [ParIcara] [Pari] [ParanIcara]
(furniture)

kept unchanged. Our results show that, in most cases, the AM model
learns to preserve the diacritic as is; whereas the HAN and the TN
models generally replace it by a complete र [ra]. Table 10 shows a
few examples of how different models handle these diacritics.
6.1.6 Handling hrsva and deergha varna (short and long vowels)
The Bhojpuri transliterations of most Hindi words show the same long
and short vowels appearing after the corresponding consonants (words
such as दसूरा [xUsarA] (second) can be treated as exceptions). We ob-
serve that for words preserving the nature of vowels (long or short),
the AM and HAN based models perform better than that of the TN
model while all the models fail to learn the cases where the nature
of vowels (long or short) is switched upon translation. Interestingly,
the TN model actually recognizes words in which the long vowel has
to be switched to the short vowel and vice versa (we deduce this be-
cause it does not preserve the long/short nature in these cases) but
it does not perform the switch correctly, and instead shows ambigu-
ous behaviour on predictions. Table 11 shows a few examples of how
different models handle short and long vowels.
6.2 Transduction-based properties
6.2.1 Performance on long words
We consider words exceeding six characters in length to be long words.
We found that while the translation quality of each model degrades as
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Table 11: Handling hrasva (short) and deergh (long) varna (letter)

Hindi Bhojpuri (correct) AM HAN TN
िहम [hima] (snow) िहम [hima] िहम [hima] िहम [hima] हीम [hIma]

दसूरा [dUsrA] (second) दसुर [dusar] दसूर [dUsar] दसूर [dUsar] दोसर [dosar]
घी [GI] (ghee) घीव [GIva] घी [GI] घी [GI] िघ [GI]

Table 12: Performance on long words

Hindi Bhojpuri (correct) AM HAN TN
िव ा थर्य िव ार थयन िब ाथर्यन िब ारि सयन िब ा रयन

[vidyArWiyoM] [vidyAraWiyana] [vidyArWayana] [vidyArasiiyana] [vidyAriyana]
(students)
सुरक्षाकमीर्य सोरक्षाकरिमयन सुरक्ञाकररनन सुरक्षाकि◌र्ीयन सुरक्षारन

[surakRAkarmIyoM][sorakRAkaramiyana][surakFAkararanana][surakRAkairIyana] [surakRArana]
(guards)
ह थयारबन्द ह थयारबन्द ह थयारबन्द ह थयारबन्द ह थयारब्द

[haWiyArabanda] [haWiyAraband] [haWiyArabanda] [haWiyArabanda] [haWiyArabda]
(armed)

word length increases, the AM based architecture is able to maintain
the most sensible outputs, followed by the TN and the HAN based
models. Table 12 shows examples of the behaviour of different models
when they encounter long words.
6.2.2 Identical transduction
For words in Hindi that are written identically in Bhojpuri, we observe
that the HAN based model gives the best results after post-processing
(described in Section 5.1). The TN model fails in cases of longer words
while the performance of the AM based model deteriorates for shorter
words as well as vowels. Examples of behaviour in cases of identical
transductions are presented in Table 13.
6.2.3 Sensible yet erroneous translations
We individually study the translations made by each model which
sound legitimate when compared to the translations of other similar
words but are actually wrong. For example, for diphthongs, while the
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Table 13: Performance on identical translations

Hindi Bhojpuri (correct) AM HAN TN
मौलवी मौलवी मउ िब मउलवी मउलवी

[mOlavI] [mOlavI] [maubi] [maulavI] [maulavI]
(Muslim doctor)

झट झट झछट झट झट
[Jata] [Jata] [JaCata] [Jatatatata], [Jata] [Jata]
(instant)
ह थयारबन्द ह थयारबन्द ह थयारबन्द ह थयारबन्द ह थयारब्द

[haWiyArabanda] [haWiyArabanda] [haWiyArabanda] [haWiyArabanda] [haWiyArabda]
(armed)

Bhojpuri translation for भयैा [BEyA] is भइया [BaiyA] (elder brother) (भै
[BE] replaced by भइ [Bai]), the translation for कैमरा [kEmarA] (camera)
does not follow such approach, whereby the character कै [kE] remains
preserved. We observe that each model has its own types of erroneous
translations due to such ambiguities as shown in Table 14.

Table 14: Some sensible yet erroneous translations

Model Hindi Bhojpuri (correct) Predicted
AM तन्मयता [wanmayawA] तन्मयता [wanmayawA] तनमयता [wanamayawA]

(concentration)
AM कैमेरा [kEmerA] कैमेरा [kEmerA] कइमरा [kaimerA]

(camera)
HAN तरबूजा [warabUjA] तरबूजा [warabUjA] तरबूज [warabUja]

(watermelon)
HAN यमुना [yamunA] यमुना [yamunA] जमुन [jamun]

(yamuna)
TN खलाड़ी [KilAdI] खेलारी [KelAdI] खेलाड़ी [KelAdI]

(player)
TN उपकरण [upkaraNa] उपकरन [upakaraNa] ओपकरन [opkaraNa]

(equipment)

[ 131 ]



Saurav Jha, Akhilesh Sudhakar, Anil Kumar Singh

6.2.4 Phonetically/orthographically invalid translations
These are predicted transductions which do not follow the necessary
phonetic rules in order to be pronounced. We study the type of such
words individually for each model. Our findings suggest that the TN
performs excellently in learning such rules since we did not notice any
such instance of unpronounceable words present in the outputs of TN.
Overall, HAN produced the most unpronounceable translations as can
be seen from Table 15.
Table 15: Phonetically/orthographically invalid translations: for invalid predic-
tions, a closest approximation of the WX notation is given

Model Hindi Bhojpuri (correct) Predicted
AM धमार्न्तरण धरमान्तरन धमार्न्ि◌

[XarmanwaraNa] [Xaramanwarana] [Xarmaani]
(religious conversion)

AM सुरक्षाकमीर्य सोरक्षाकरिमयन सुरक्षाकि◌र्ीयन
[surakRAkarmIyoM] [surakRAkaramIyana] [surakRAkairIyana]
(security guards)

AM व जर्त वर जत बरििम
[varjiwa] (contraband) [varajiwa] [baraimi]

HAN कंुजी कुन्जी कंु◌ी
[kuMjI] (key) [kunjI] [kuMI]

HAN अवजै्ञािनक अबजै्ञािनक अवजैज्◌ािनक
[avEjFAnika] (unscientific) [abEjFAnika] [avEjajAnika]

6.3 Limitations of the method
While training the system on cognate pairs ensures that the model
does not require exhaustive resources such as a parallel corpora, the
fact remains that cognate-property is inherently confined to the case of
closely-related languages. As described in Section 1, Bhojpuri is closely
related to Hindi; it is a dialect/immediate sibling and shares the same
script.13 By contrast, Bangla (Section 5.3) is a direct descendant of

13Although Bhojpuri was historically written in Kaithi scripts, those have be-
come obsolete; Devanagari is now the primary script.
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Sanskrit-family or Pali14 to Prakrit and Apabhramsha (Chatterji 1926;
Bali 2016) but is only loosely related to Hindi: it is neither a dialect
nor an immediate sibling of Hindi; it has its own script; and it has word
formation rules that are sometimes contrary to Hindi. The effects of
such increased ‘language distance’ are apparent from Table 4 (Hindi-
Bhojpuri) and Table 5 (Hindi-Bangla) where Hindi-Bhojpuri cognate
pairs show far better transduction quality than Hindi-Bangla.

Further, with the increased distance between the source and the
target language in a language pair, it is safe to say that the set of cog-
nates shared by these dwindles (Beel and Felder 2014), since cognates,
by definition, are word pairs that not only have similar meaning and
phonetics but also reflect an allied linguistic derivation. We observed
this even in our own cognate datasets: the Hindi-Bangla dataset had
25% fewer cognates than the Hindi-Bhojpuri dataset (see Section 5.3).
Having fewer real-world cognate pairs means that even if a nominally
complete dataset of all cognates were to be compiled, there would
still be comparatively less data to train models on, hence exhibiting
another limitation in extending the method to language pairs of arbi-
trary distance.

7 improvements on hindi bhojpuri machine
translation

This section talks of the improvements we make on machine transla-
tion from Hindi to Bhojpuri. The authors would like to mention two
key points here. First, this section stands distinguished from the rest
of the paper in that the methods and results discussed thus far hold
for word-to-word transduction. In contrast, we now depict how such
transductions can be used to improve the accuracy of a machine trans-
lation system. Second, we must mention that to the best of our knowl-
edge, no prior machine translation systems have been trained on a
Hindi-Bhojpuri parallel corpus of a trainable size, simply because such
a corpus does not exist.

14Hindi descended from Prakrit, Apabhramsha and Perso-Arabic while Bangla
and Bhojpuri inherited the regional dialects of Apabhramsha. Consequently,
Bangla and Bhojpuri, sharing several regional boundaries of Northern India,
Bangladesh and Nepal, can be thought of having similar ancestral languages to
Hindi.
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For our purposes, we build an artifical parallel corpus in the
following manner. We first scrape four Bhojpuri blogs for Bhojpuri
sentences: Anjoria,15 TatkaKhabar,16 Bhojpuri Manthan,17 and Bho-
jpuri Sahitya Sarita.18 From these, we collect a set of approximately
40,000 Bhojpuri sentences. We then follow a two-step process for ob-
taining Hindi translations of these sentences using the Google Trans-
late API. Since the API does not offer Bhojpuri as a source language, we
first use the Hindi-English API for translating the Bhojpuri sentences
to English (as an intermediate language). We then translate these En-
glish sentences to Hindi using the English-Hindi API. Although this
process gives us noisy translations between Bhojpuri and Hindi, this
method is based upon the hypotheses that:
1. in the absence of an actual reported machine translation system

between these languages, back-translation can be used as the only
available substitute for showing improvement due to word trans-
duction;

2. that this is the best available solution in the absence of Hindi-
Bhojpuri parallel corpora, let alone a pre-trained Hindi-Bhojpuri
translation system; and

3. that Bhojpuri is sufficiently similar to Hindi that its linguistic
properties remain preserved satisfactorily throughout the inter-
mediate processing.

Also, the choice of English as an intermediate language is based on the
fact that it gives the best BLEU scores when Hindi is fixed as the other
language in the translation pair. At the time of writing this work, there
is no Bhojpuri-Hindi API (or publicly reported Hindi-Bhojpuri ma-
chine translation system), while trivially translating using the Hindi-
Hindi API does not seem to work as the API simply copies the inputs
to outputs. For reporting the machine translation results, we use the
standard document-level BLEU score as suggested by Papineni et al.
(2002).

For the held-out test set, we curated 1000 sentences for which
ground truth translations were manually obtained from experts, and

15https://www.anjoria.com/
16http://khabar.anjoria.com/
17http://bhojpurimanthan.com/
18http://www.bhojpurisahityasarita.com/
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Training set Test set
Number of sentences 40,000 1,000

Total number of tokens 812,070 19,689
Number of unique tokens 20,551 620

Table 16:
Machine translation corpus statistics

not artificially generated. Statistics on training and test sentences can
be found in Table 16.

We train a Bi-LSTM based encoder-decoder network (500 units)
with Luong attention, as described in Luong et al. (2015a) (we use
OpenNMT’s global attention implementation) on the training set for
Hindi-Bhojpuri translation. The model thus trained resulted in a BLEU
score of around 7.1 on the test set, which is not surprising given the
method of training. With this as the baseline, we make corrections to
this model’s output. We first align each Hindi sentence and its Bho-
jpuri translation, by aligning pairs of source-target words based on
their pairwise weights in the attention matrix. Following this, we iden-
tify OOV Hindi words using a simple dictionary-based approach as has
been suggested by Bahdanau et al. (2014). We use a shortlist of 15,000
most common words in Hindi, obtained from the Hindi Wikipedia
monolingual corpus, and treat all other words as OOV. We experi-
ment with 5000, 10,000, 15,000, and 20,000 most common words,
and find the 15,000 word shortlist produced the best BLEU score im-
provements. We then replace the translation (as obtained by the align-
ments using the attention matrix) of each OOV word with its corre-
sponding transduction generated by our word transduction model. Re-
placing the translation of OOV words with that of their transductions
leads to an improvement of 6.3 points in the BLEU score, which is
substantial considering that we are translating to a low-resource lan-
guage. We obtain a BLEU score of 13.4 with such a basic translation
set-up followed by simple correction of OOV translations using trans-
ductions.

More importantly, the improvement in the MT BLEU score shows
that even though the task of transduction is a focused one, it gener-
alizes well to OOV Hindi words that are not part of a Hindi-Bhojpuri
cognate pair. This stands as an important aspect of our work. Our
transduction model, despite being trained on a dataset that is con-
strained to cognate pairs, lends reasonable improvements to the highly
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generalized machine translation task by exploiting the closeness of
Hindi and Bhojpuri.

8 conclusion

We propose a character-level transduction of OOV words between
a pair of closely related languages, out of which at least one is a
low-resource language. Word transduction aims to predict the ortho-
graphic form of the word in the target language, given the word in
the source language. We restrict the training space to a set of cog-
nates, since in the case of closely-related languages, a cognate can be
a good approximation to a translation, if not the translation itself. We
present three different models for the same, each of which performs
well on handling certain types of grapheme transformations, while
performing sub-optimally on others. While all our models19 outper-
form the current state of art for Hindi-Bhojpuri transduction, the TN
model gives the overall best performance. We suggest a two-step pro-
cedure to improve a low-resource NMT system by:
1. identifying the need to handle OOV words separately; and
2. transducing them to their target equivalents, instead of translat-

ing.
In the process, we also propose a primitive yet useful MTmethod using
Google Translate APIs for a pair of languages which has no known
MT system. In the future, we would like to test our models on more
closely related language pairs. Further, we would like to build a state-
of-the-art MT pipeline for low resource languages, which incorporates
our method to handle OOV words. We would also like to compare the
effect of transduction as a solution to the OOV problem faced by word-
level MT systems by comparing it to a character-level MT system.
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We introduce algorithms that, given a finite-state automaton (FSA),
compute a minimal set of forbidden local factors that define a Strictly
Local (SL) tight approximation of the stringset recognised by the FSA
and the set of forbidden piecewise factors that define a Strictly Piece-
wise (SP) tight approximation of that stringset, as well as a set of
co-SL factors that, together with the SL and SP factors, provide a set
of purely conjunctive literal constraints defining a minimal superset
of the stringset recognised by the automaton.

Using these, we have built computational tools that have allowed
us to reproduce, by nearly purely computational means, the work of
Rogers and his co-workers (Rogers et al. 2012) in which, using a mix
of computational and analytical techniques, they completely charac-
terised, with respect to the Local and Piecewise Subregular hierar-
chies, the constraints on the distribution of stress in human languages
that are documented in the StressTyp2 database.

Our focus, in this paper, is on the algorithms and the method
of their application. The phonology of stress patterns is a particularly
good domain of application since, as we show here, they generally fall
at the very lowest levels of complexity. We discuss these phonological
results here, but do not consider their consequences in depth.

1 introduction

That phonology is finite-state – characterised by patterns and func-
tions that can be recognised by finite-state automata of varying types –
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is uncontroversial. Over the last several years, a growing body of work
has emerged characterising the complexity of phonological phenom-
ena within a more finely resolved hierarchy of Subregular stringsets1
and functions, focusing, in particular, on the lowest levels of the hier-
archy. (For a comprehensive survey, see Heinz 2018.)

In this paper we present two main results. One is a set of algo-
rithms that are capable of automatically analysing finite-state accep-
tors in terms of these classes. We have incorporated these into a com-
putational workbench for exploring systems of Subregular constraints
both automatically and interactively.

Using that, we have completed a longterm program of character-
ising the complexity of suprasegmental stress patterns in human lan-
guages. This yields our second result, which strengthens previous char-
acterisations and places these patterns almost exclusively at the very
bottom levels of the hierarchy: the Strictly Local, Locally Testable,
Strictly Piecewise and Piecewise Testable stringsets. These classes are
significant cognitively because they depend only on information that
is explicit in the string itself without requiring inference of additional
structure.2

A stringset L is Strictly k-Local (SLk) if and only if (iff) it is strictly
determined by its local k-factors: the substrings of length at most k that

1Following Sampson (1975), we distinguish between stringsets and lan-
guages when our topic extends to both formal and natural languages. In these
situations, the formal languages serve as models for aspects of natural languages.
To fail to distinguish the stringsets (or others sets of structures) that are the mod-
els from the phenomena they are modelling is falling into one of the most basic
fallacies of mathematical modelling. Conclusions that are valid in the realm of
the models are only valid in the realm of the phenomena to the extent that the
models are faithful. That their faithfulness is limited is the very essence of the
modelling process.

This is not just a pedantic issue: the history of formal linguistics is peppered
with examples in which the failure to distinguish the two has led to erroneous
conclusions. For discussion of specific examples see, inter alia, Pullum and Scholz
(2001) or Rogers (1996). As the scope of this journal is, specifically, language
modelling, it seems appropriate to us to be careful in maintaining the distinction.

2Regular stringsets, for example, from a purely declarative perspective, re-
quire a mechanism to infer a sequence of states (abstract categories) in parallel
with a string, corresponding to a run of an automaton, and then classify the string
based on that run.
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occur in strings ⋊ ·w ·⋉ for w ∈ L. (The ‘⋊’ and ‘⋉’ are endmarkers.) By
“strictly determined” we mean that L contains all and only the strings
that are generated by the (inverse) substring relation from that set of
k-factors.3 A string is in the set as long as its k-factors are a subset of
the generating set. The class of stringsets that are Strictly k-local for
some k is known as SL.

A stringset is k-Locally Testable (LTk) iff it is a Boolean combina-
tion of SLk stringsets. While they are also determined by the set of
local k-factors that occur in the strings in the set, the stringset is not
generated by the substring relation from a single set of factors. Rather,
there are multiple SLk stringsets that interact in complex ways. Never-
theless, constraints of this form depend only on the information that is
explicit in the string, in this case the particular subset of k-factors that
occurs; various combinations of factors can be forbidden, permitted
or required.

A stringset L is Strictly k-Piecewise (SPk) iff it is strictly deter-
mined by its k-pieces: the subsequences of length at most k that occur
in strings w for w ∈ L, where v is a subsequence of w iff the symbols
in v occur in w in order, but not necessarily adjacently. That is to say,
L contains all and only the strings that are generated by the (inverse)
subsequence relation from that set of k-pieces. The class of stringsets
that are Strictly k-Piecewise for some k is known as SP.

The class of k-Piecewise Testable (PTk) stringsets is analogous to
the class of LTk stringsets, but based on subsequences rather than sub-
strings.

These classes are at the bottom of the local and piecewise sides
of a collection of classes of stringsets, all strict subclasses of the class
of Regular stringsets, which are hierarchically related and are char-
acterised by finite sets of either substrings (the Local Hierarchy) or
subsequences (the Piecewise Hierarchy) or by combinations of the
two. The Local hierarchy was established primarily by the work
of McNaughton and Papert (1971) and Thomas (1982) (with many
others); the Piecewise Hierarchy was established primarily by the
work of Simon (1975), Lothaire (1983), Rogers et al. (2010) and Fu
et al. (2011) (and many others). Rogers et al. (2012) argue that these

3Specifically, all and only those strings that include no substrings other than
those in the given set.
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hierarchies provide a robust notion of cognitive complexity for con-
straints on strings.

Our work here was inspired by the work carried out by the The-
ory Group at Earlham College in which they characterised all of the
stress patterns collected in Goedemans et al. (2015) – a wide-coverage
database of stress patterns occurring in human languages – with re-
spect to this hierarchy. In Edlefsen et al. (2008), they established that
roughly 75% of these patterns are SLk for k ≤ 6 and that half are
SLk for k ≤ 3. Subsequently, they derived a set of “primitive” con-
straints sufficient to define all of the non-SL patterns by co-occurrence
and classified them into abstract categories (Fero et al. 2014). Most of
these constraints were, in fact, SL, and their main result was that all
of the patterns could be defined by co-occurrence of constraints at the
bottom two levels of the hierarchies – the Strict and Testable levels de-
scribed above. Recent work by Heinz and his co-workers (Heinz 2018,
2010; Chandlee 2014; Jardine 2016) suggests that much of phonology
may be characterisable by correspondingly simple sets of structures or
functions.

The work on primitive constraints, however, did not provide the
factors of the SL stringsets because the algorithm for determining if
a given finite-state automaton recognises an SL stringset, and deter-
mining k if it does, does not yield the set of k-factors that define the
stringset. We resolve that problem in this work. Moreover, the work
on non-SL constraints was largely based on the English glosses of the
constraints included in the database and were tailored specifically to
capturing those specific non-SL lects. This potentially misses SP con-
straints that may not be explicit in these glosses.

In this paper we specifically address the piecewise classes as well
as the class of co-SL constraints, complements of SL constraints. Com-
binations of SL and co-SL constraints define stringsets in terms of
both forbidden and required local factors, but remain a weak frag-
ment of LT. Working with this range of constraints we can sharpen
the earlier result, which established LT+SP as an upper-bound for all
but two lects in the database: 98 of the 106 lects are SL+co-SL+SP, an-
other six require combinations of three properly LT constraints (rather
than the nine identified in the earlier work) and the two properly Reg-
ular lects share a single Regular constraint, which entails counting
modulo two.
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While our working domain in developing these algorithms has
been phonotactics, and stress patterns in particular, the algorithms are
applicable to any Regular stringset. On the other hand, the algorithms
are of relatively high complexity, exponential in the size of the au-
tomaton if it recognises a Strictly Local stringset and doubly exponen-
tial for the SL approximations of non-strict stringsets; the Piecewise
algorithms are singly exponential in either case. But these are optimal
for algorithms that return the set of forbidden factors of the stringset.
In our corpus all of the automata are of moderate size – the largest
has 33 states – and they are quite feasible; running on hardware that
is unremarkable for modern desktop computers, without aggressive
optimisation, it takes less than one minute to process all of the 106
lects of the StressTyp2 corpus of automata.

2 overview of this paper

In the next section we introduce our notation and basic formal defini-
tions. In Section 3.1 we introduce the notion of local and piecewise fac-
tors and in Section 3.2 we consider stringsets from a model-theoretic
perspective, which exposes the underlying relationship between these.
From that perspective both the substring and the subsequence rela-
tions are just restricted variants of a more general is-a-factor-of re-
lation. Henceforth, we will refer to substrings and subsequences as
factors of either the local or piecewise type, except when the type is
clear from the context. (In Sections 4 and 5, if the type is not specified,
“factor” refers to local factors; in Sections 6 and 7 it refers to piecewise
factors.)

In Section 4 we formally define Strictly Local stringsets and dis-
cuss their formal properties. In Sections 4.1–4.3 we distinguish five
types of forbidden local factors – factors in the complement of the set
of factors that generate the stringset – and develop the foundations
of our algorithms for extracting those local factors given a finite-state
automaton. We give details of these algorithms in the remainder of
Section 4.

We adapt these algorithms to work on non-SL stringsets in Sec-
tion 5. While the sets of factors we extract are, of course, insufficient
to generate the stringset, they do generate an SL approximation of the
stringset. We then introduce the notion of a residue set, the difference
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between the original stringset and our approximation. This becomes
the basis of our further computational analysis.

In Section 6 we formally define Strictly Piecewise stringsets, dis-
cuss their formal properties and develop our algorithms for extracting
forbidden piecewise factors given a finite-state automaton that recog-
nises an SP stringset. In Section 7 we adapt these to obtain optimal SP
approximations of non-SP Regular sets.

In Section 8 we combine these algorithms in a way that allows
us to extract co-SL constraints, which enables us to fully characterise
92% of the lects in StressTyp2 purely computationally.

We close by summarising our results, discussing complexity issues
and sketching plans for recoding the factors we collect in a way that
is more useful than their current form, a flat enumeration.

3 formal preliminaries
Let Σ be an alphabet. For strings v, w ∈ Σ∗ we say v is a substring of
w (v ≼ w) iff w = u1vu2 for u1, u2 ∈ Σ∗. We say v is a subsequence of w
(v ⊑ w) iff the symbols of v occur in w in order, but not necessarily
adjacently:

if v = σ1σ2 . . .σn then v ⊑ w
def⇐⇒ w= u0σ1u1σ2u2 . . .σnun | ui ∈ Σ∗.

We denote the reversal of w by wR. We use this same notation for the
reversal of a stringset.

A finite-state automaton (FSA) is an edge-labelled directed graph
with distinguished vertices, that we will represent by a five-tuple
〈Σ,Q,δ, I , F〉 where Σ is the alphabet of the language of the automa-
ton, Q is the set of states, δ ⊆ (Σ×Q×Q) is a transition relation where
〈σ, q1, q2〉 ∈ δ iff there is an edge labelled σ from q1 to q2, I is the set of
initial states, and F is the set of accepting states. LetA = 〈Σ,Q,δ, I , F〉.

Let w = σ1σ2 . . .σn ∈ Σ∗ be a string and let q1, qn+1 ∈ Q. Then
there is a path q1

w⇝ qn+1 iff there exists some sequence of edges:
〈〈σi , qi , qi+1〉 ∈ δ | 0< i ≤ n,

w= σ1σ2 . . .σn〉 .
This is an accepting path on w if q1 is in I and qn+1 is in F , else it is a
non-accepting path.
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The automatonA is total iff for every symbol σ ∈ Σ and for every
state q ∈ Q, there exists some q′ such that 〈σ, q, q′〉 ∈ δ. It is (partial)
functional iff δ is functional in its first two places. That is, given a
state q ∈ Q and a symbol σ ∈ Σ, there is at most one q′ ∈ Q such that
〈σ, q, q′〉 ∈ δ. An FSA is (fully) deterministic (a proper DFA) iff it has
exactly one initial state and it is both total and functional.

An automaton is trim iff for all states q ∈Q there is some accepting
path from q. Though trim automata may not be total, we still consider
them to be deterministic if they have a single start state and are partial
functional.

An automaton is minimal iff it is deterministic and no two states
are Nerode-equivalent.4 Further, it is normalised iff it is both minimal
and trim.

The reversal of A , that is, an automaton that accepts a string iff
the reversal of that string is accepted by A , is denoted A R.

The powerset graph of the automaton A , PSG(A ) = 〈V, E〉, is
another edge-labelled directed graph where:

V = P (Q) and
E = {〈σ, S1, S2〉 | σ ∈ Σ,

S2 = {q′ ∈Q | (∃q ∈ S1)[〈σ, q, q′〉 ∈ δ]}} .
Often we are interested only in the subgraph of this generated from a
given set of initial subsets.
Lemma 1. If A is deterministic, then the sizes of the sets along any path
in PSG(A ) are monotonically non-increasing.

This is because ifA is deterministic δ maps each state in S1 to at
most one state in S2.
Corollary 1. All sets in any cycle are equal in size.
Corollary 2. All in-edges to Q and all out-edges from ; are self-edges.
3.1 Local and piecewise factors
Let Σ be the alphabet of L and let Σk = {v ∈ Σ∗ | |v|= k} and Σ≤k =∪

1≤i≤k[Σ
k].

4States q1 and q2 are Nerode-equivalent iff for all strings w, there is an ac-
cepting path on w from q2 iff there is an accepting path on w from q1 (Hopcroft
and Ullman 1979).
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Definition 1 (Local k-factors). For any string w ∈ Σ∗, the local k-
factors of w are:

FÃk (w) =
� {w} if |w| ≤ k,�

v ∈ Σk | v ≼ w
	 otherwise.

Similarly for FÃ≤k(w). This lifts to sets of strings in the obvious way.
Definition 2 (Shuffle ideal). Let v = σ1σ2 . . .σn ∈ Σ∗. The shuffle ideal
of v is defined as the set SI(v) = {w ∈ Σ∗ | v ⊑ w}.5
Definition 3 (Piecewise k-factors). For any string w ∈ Σ∗, the piece-
wise k-factors of w are:

F<k (w) = {v ∈ Σ∗ | v ⊑ w∧ |v|= k} .
Similarly for F<≤k(w). Again, this lifts to sets of strings in the obvious
way.

3.2 A unifying perspective
There is a fundamental regularity between the Local and Piecewise
hierarchies that becomes apparent if one looks at strings as ordinary
first-order structures. From this perspective, a string is just a labelled
finite discrete linear order:

W = 〈D,Ã,<, Pσ〉σ∈Σ.

Where D is a finite domain, Ã is the successor relation (as well as the
relation symbol denoting it), < is the less-than relation (and symbol)
and the Pσ are unary relations picking out the subset of the positions
in the domain at which the symbol σ appears.

From this perspective a local factor is just a structure generated by
a subset of the domain that is connected, in the graph-theoretic sense,
by the Ã relation and a piecewise factor is just a similar structure
connected by the < relation. The size of the factor is just the size of
the subset.

The testable classes of local and piecewise stringsets turn out
to be the class of all and only those stringsets that are definable

5The term “shuffle ideal” appears to have been coined by J. Sakarovitch and
I. Simon in Lothaire (1983).
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in a propositional logic in which the atomic propositions are fac-
tors (Rogers et al. 2012). The strict classes are the class of stringsets
definable by conjunctions of negative literals in this same logic.

This model-theoretic machinery extends to factors that incorpo-
rate both successor and less-than as well as to any class of relational
structures, although here we will consider only local and piecewise
formulae along with conjunctions of the two. It is this model-theoretic
perspective that leads us to refer to both substrings and subsequences
as factors, local factors and piecewise factors, respectively.

4 strictly local stringsets
An anchored string is one that has been augmented with one or both
of the endmarkers ‘⋊’ (left end) and ‘⋉’ (right end).

A stringset L is Strictly k-Local (L ∈ SLk) iff it is strictly determined
by the local k-factors of its fully anchored strings.

Let Σ∗⋊⋉ = {⋊} ·Σ∗ · {⋉}.
Let GÃL,k ⊆ FÃ≤k(Σ

∗
⋊⋉) be the set of local factors that occur in fully

anchored strings in L. Then the stringset generated by GÃL,k is:
L(GÃL,k) =
�

w ∈ Σ∗ | FÃ≤k(⋊ ·w ·⋉) ⊆ GL,k

	
.

L(GÃL,k) is, by definition, SLk. If L is also SLk then L(GÃL,k) = L.
Since Σ is assumed to be finite, FÃ≤k(Σ

∗) is also finite, and an SLk

language can equivalently be defined in terms of its forbidden factors:
GÃL,k = FÃ≤k(Σ

∗
⋊⋉) − GÃL,k. This is more natural in many applications,

including many linguistic ones (as in “no pair of unstressed syllables
occur adjacently”).

A stringset is said to be SL if it is SLk for any finite k.
The following proposition characterises SLk.

Proposition 1 (Suffix Substitution Closure). (SSC)
L ∈ SLk iff
(∀x ∈ FÃk−1(Σ

∗
⋊⋉))[ if w1 = u1 · x · v1 ∈ {⋊} · L · {⋉}

and w2 = u2 · x · v2 ∈ {⋊} · L · {⋉}
then u1 · x · v2 ∈ {⋊} · L · {⋉} ].

This is because if a symbol σ can follow x in some string of L(A )
then x ·σ is a permitted local factor and σ can follow x in any string
of L.
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One consequence of this is that if L(A ) ∈ SLk andA is determin-
istic, then for each length k− 1 string x , all states in the set¦

q′ ∈Q | (∃q ∈Q)[q
x⇝ q′]
©

are Nerode-equivalent. IfA is minimal as well, then all paths that end
with the same (k− 1)-factor lead to the same state. The computations
of the automaton synchronise after at most k− 1 steps.

This is the basis of the algorithm used by Edlefsen et al. (2008)
to determine if a givenA recognises an SL stringset and, if it does, to
find the parameter k.
Proposition 2. Suppose A is a normalised DFA. Then L(A ) ∈ SLk iff
every path from Q in PSG(A ) that is of length k− 1 leads to a vertex that
is either a singleton subset of Q or empty. If that is the case, then k is one
plus the length of the longest path from Q to a singleton (that does not
include other singletons). If there is no such longest path (i.e., there is an
infinite path) then there is some cycle of non-singleton vertices, in which
case L(A ) does not satisfy SSC for any k and it is not SL.

In practice, it is not necessary to build even just the subgraph
of PSG(A ) generated by Q. All that one needs for a counter-example
to SSC is a single pair of strings in which SSC fails. So it suffices to
just explore the subgraph of PSG(A ) that is generated by doubleton
subsets of Q. The size of this subgraph is only Θ(card(Q)2), in contrast
to the subgraph generated by Q, which is Θ(2card(Q)).6

The following is an immediate consequence of this proposition.
Corollary 3. If A is a normalised DFA and L(A ) ∈ SLk then all cycles
in PSG(A ) are cycles of singletons.
4.1 Classes of forbidden local factors
Local factors may or may not include a left-end marker at the begin-
ning or a right-end marker at the end or both. In the case that a factor
contains neither, it can occur anywhere in a string (including, possi-
bly, at the beginning or end) and we say that it is a free factor or, if
forbidden, free forbidden factor. If the length of a free forbidden factor

6The pair-graph algorithm appears to have been first published in Caron
(2000).
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is one, then it has somewhat different status than free forbidden fac-
tors of greater length; it is, in essence, a restriction to the alphabet.
We will refer to these as forbidden units. If the first symbol of a for-
bidden factor is ‘⋊’, then it can only occur at the left end of the word;
this is an initial forbidden factor. If the last symbol is ‘⋉’, then it can
only occur at the right end of the word; it is a final forbidden factor.
Note that the length of the string that these anchored factors match is
k− 1. An SLk definition can restrict prefixes and suffixes of length up
to k − 1, but not, in general length k prefixes and suffixes.7 Finally,
if a factor contains both endmarkers it is a forbidden word, where the
(unanchored) word it forbids is actually of length k− 2.

4.2 Free forbidden factors
Suppose A is a DFA. A factor w is a free forbidden factor of L(A ) iff
there is no path in the transition graph of A from q0 to an accepting
state that includes w as a substring. If A is normalised, this will be
the case iff there is no path at all that is labelled w from any state of
A , as all such paths would necessarily lead to the sink state which
has been trimmed. Thus, in PSG(A ) the path from Q that is labelled w
leads to ;. Again, the converse holds.

So the members of the set of all labels of paths from Q to ; in
PSG(A ) are free forbidden factors of L(A ). Moreover, that set in-
cludes all free forbidden factors of L(A ). Since in general PSG(A )
may include cycles and even in the case that L(A ) is SL it may in-
clude cycles of singleton vertices, in general this set of paths will be
infinite. (In fact, since PSG(A ) invariably includes a trivial cycle on ;
for each σ ∈ Σ, it will always be infinite.) The paths including trivial
cycles on ; are labelled with strings in w ·Σ∗, where w is a free forbid-
den factor. We are interested in the set of paths that are minimal in
the sense that the label of the path does not include the label of any
other such path as a substring.

Note that, by Corollary 2, any such path that includes an in-edge
to Q or an out-edge from ; includes another path from Q to ; that is

7 In the original definition of SLk (McNaughton and Papert 1971) prefix and
suffix factors and forbidden words could be of length k. But the definition we use
is equivalent in all significant aspects and accounts for the information contained
in an anchored factor; it has become the prevailing definition in most of the
literature.
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strictly shorter. Thus none of those paths are minimal free forbidden
factors. Note, also, that if L(A ) ∈ SL, then there are no cycles on Q,
although there will always be trivial cycles on ; for each σ ∈ Σ.

The next two lemmas establish that if L(A ) is SL then there is
some bound such that all cyclic paths from Q to ; in PSG(A ) with
length greater than that bound will be labelled with a string that in-
cludes, as a suffix, the label of an acyclic path from Q to ;. Thus the
set of minimal free forbidden factors of L(A ) is just the set of labels
from paths from Q to ; in PSG(A ) that do not include the label of any
other such path as a suffix and that do not include self-edges on ;. This
allows us to collect forbidden factors with a breadth-first bottom-up
traversal of PSG(A ).
Lemma 2. If v and w label paths from Q to ; in PSG(A ) that do not
include loops on ; and v ≼ w, then w= uv for some u ∈ Σ∗.
Proof. v ≼ w iff, by definition, w= uvx for some u, x ∈ Σ∗. Since Q

v⇝ ;
and all vertices S of PSG(A ) are subsets of Q, for all vertices S, S

v⇝ ;
as well, and, in particular, Q

u⇝ S
v⇝ ;. Hence x is either ϵ or the path

it labels is a self-loop on ;.
Lemma 3. LetA be a DFA such that L(A ) ∈ SL. If a path from Q to ; in
PSG(A ) includes a cycle other than a trivial cycle on Q or ;, then there is a
finite bound on the number of times the cycle can be taken before the label
of the path includes the label of an acyclic path from Q to ; as a suffix.
Proof. Since L(A ) is SL, any cycle must be a cycle of singletons. Sup-
pose then that there is a path:

Q
u⇝ {q0} v⇝ {q1} w⇝ {q0} x⇝ ;

where, possibly, v may be a prefix of x . Since q0, q1 ∈Q there must be
a path:

Q
u⇝ S0

v⇝ S1
w⇝ S2

v⇝ S3 · · ·
where q0 ∈ S2i and q1 ∈ S2i+1 for i ≥ 0. Since there are no cycles of
non-singletons, by Lemma 1 the sequence of Sis must ultimately be
decreasing in size. Thus, for some n it resolves to:

Q
v⇝ S1

w⇝ S2
v⇝ S3 · · · w⇝ S2n = {q0} x⇝Q

So (vw)n x labels a path from Q to ; and will be a suffix of all paths Q
to ; that take the {q0}⇝ {q1} cycle at least 2n times.
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An example of this lemma, taken from the PSG of the canonical
automaton for Cairene Arabic, is shown in Figure 1.
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Figure 1:
Lemma 3: The cyclic path is labelled S(L)∗ĹS.
The acyclic path is labelled LĹS

Theorem 1. If L(A ) ∈ SL then a string w is a free forbidden factor of
L(A ) ∈ SL iff it labels a path in PSG(A ) from Q to ;. It is minimal if that
path does not include any cycles other than cycles of singletons and w does
not include the label of any other such path as a suffix.
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Note that if L(A ) ∈ SL then the only cycles of non-singletons will
be trivial cycles on ;. Labels of paths including these will include some
free forbidden factor as a prefix and are thus not minimal.

Paths including cycles of singletons are necessary since none of
the paths labelled u(vw)i x as in the proof of Lemma 3 is labelled with
a factor of any of the others; they are minimal with respect to each
other. It is only the label of the acyclic path that subsumes the labels
of further iterations.
4.3 Final forbidden factors
Suppose A is a DFA. A factor w is a final forbidden factor of L(A ) iff
there is no path from q0 to an accepting state in the transition graph
of A that includes w as a suffix but there is some path from q0 to
an accepting state that includes w as a proper substring. (If there is
no such accepting path, then w is a free forbidden factor.) If A is
normalised then w is a final forbidden factor iff all paths labelled w
from any state inQ end at a non-accepting state and there is some such
path. This will be the case iff the path from Q in PSG(A ) labelled w
ends at a non-empty vertex that is disjoint with F .
Proposition 3. No final forbidden factor of any stringset includes a free
forbidden factor of that stringset as a substring.

This is because no string includes a free forbidden factor any-
where, whereas final forbidden factors are forbidden only as suffixes;
to be final but not free, there must be some string that includes the
factor as a non-suffix.

In terms of the PSG free forbidden factors label paths from Q to ;,
so as long as we only consider paths that lead to non-empty vertices,
we don’t have check to see if the factor is subsumed by a free forbidden
factor. Note, though, that a final forbidden factor may include another
as a suffix. (It is irrelevant whether it includes a final forbidden factor
as a non-suffix, since final forbidden factors are, by definition, only
relevant as suffixes.)
Lemma 4. If a path from Q to a non-empty vertex disjoint from F in
PSG(A ), with L(A ) ∈ SL, includes a cycle other than a trivial cycle on Q,
then there is a finite bound on the number of times the cycle can be taken
before the label of the path includes the label of an acyclic path from Q to
a non-empty vertex disjoint from F as a suffix.
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Theorem 2. If L(A ) ∈ SL then a string w is a final forbidden factor of
L(A ) ∈ SL iff it labels a path in PSG(A ) from Q to a non-empty vertex
disjoint from F . It is minimal if that path does not include any cycles other
than cycles of singletons and w does not include the label of any other such
path as a suffix.

The proofs are essentially the same as the proof of Lemma 3 and
Theorem 1.
4.4 Algorithms for extracting forbidden local factors
Theorem 1 guarantees that if we do a breadth-first bottom-up traversal
of PSG(A ) then we will discover each minimal forbidden factor before
we discover any of its proper suffixes. Expanding the frontier of the
search in discrete stages, every (reverse) path from ; to Q found in the
kth stage will be a minimal forbidden k-factor.

There may be more than one such path so we do need to avoid
gathering more than one instance of the factor. In general, there will
be open paths (not reaching Q) that are labelled with the same factor.
Extended to Q, they would include the factor as a proper suffix. So we
exclude these from the frontier for the next stage.

We structure the bottom-up traversal of PSG(A ) as a top-down
traversal of PSGR(A ), in which each of the edges of PSG(A ) is re-
versed. For convenience (and convergence) we trim self-edges on ;
and Q while reversing the graph. Since we are traversing bottom-up,
we actually find wR of each factor w, but we gather these in a list
structure, inserting at the head, which reverses the factor again as we
construct it.

For the purposes of the algorithm, a Path in an edge-labelled graph
〈V, E〉, as a computational structure, is a three-tuple 〈v, S, w〉, where
v ∈ V is the final vertex of the path, S ⊆ V is the (unordered) set of
vertices along the path and w ∈ Σ∗ is the sequence of labels of the edges
in the path, in reverse order. A Frontier is a set of paths. Forbidden
factors are gathered in stages, with Stagei expanding Frontieri−1 to
Frontieri, gathering the set FFi of all minimal forbidden i-Factors in
the process.

The initial frontier Frontier0, when searching for free forbidden
factors, includes just the trivial (0-length) path from ;. When searching
for final forbidden factors, Frontier0 includes the trivial path from each
vertex that is a subset of Q− F .
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Theorem 1 guarantees that, if we eliminate paths labelled with a
forbidden i-Factor from Frontieri the search will converge after finitely
many iterations, k, with Frontierk empty. (Note it is an empty set of
Paths, not a set including a path ending at ;.) The set of minimal free
forbidden factors will be the union of the sets of factors gathered at
stages 2 through k, where L(A ) ∈ SLk. (Forbidden 1-factors are not in-
cluded, since they are forbidden units.) The search for final forbidden
factors will terminate after k − 1 iterations, with the minimal k-final
forbidden factors including the right-end marker.

The time complexity of these algorithms is Θ(card(Σ)k), which is
optimal for algorithms that return sets of k-factors. For an arbitrary
automaton that recognises an SL stringset, we know from the pair-
graph algorithm that k is no more than card(Q)2. Thus the complexity
is O(card(Σ)(card(Q)2)).
4.5 Initial forbidden factors
The initial forbidden factors of L(A ) are just the final forbidden fac-
tors of L(A )R. We identify these by constructing A R and applying
the algorithm for identifying final forbidden factors. This adds a de-
terminisation step prior to generating the PSG, so this ends up being
doubly exponential in the size of the automaton, O(card(Σ)(2(card(Q)2))).
As a practical matter, this was not an issue in our application, so we
did not pursue a direct algorithm, but it would be worthwhile to do
so in future work.
4.6 Forbidden words for SL stringsets
If L(A ) ∈ SLk andA is deterministic, then the words it forbids are just
the labels of paths of length k− 2 (to allow for the endmarkers) from
the (single) initial state to a state in Q − F . These can be gathered by
doing a bounded traversal ofA . The time complexity of this traversal
is Θ(card(Σ)k), thus O(card(Σ)(card(Q)2)).
4.7 Forbidden units
IfA is normalised (minimal and trim), the forbidden units of L(A ) are
just the symbols of Σ that do not label any edge in δ. In PSG(A ) these
will label edges Q to ; and will be gathered in Stage1 while gathering
free forbidden factors. But these may not be the only forbidden units of
interest. In many applications there will be an alphabet that includes
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all symbols that occur in any of a collection of stringsets and the subset
of that alphabet that is not included in the alphabet of the FSA will
also be significant. This is the case in many linguistic applications, for
example (as in “this lect forbids unstressed heavy syllables”).

In those applications we need to include the difference between
some default alphabet and the set of symbols that label edges in A .
Since we are building PSG(A ) anyway, the simplest way of doing this
is to just take the difference between the default alphabet and the la-
bels of the out-edges from Q. If we union that with the labels of the
subset of those edges that lead to ; we get the free forbidden 1-factors
as well. We can avoid gathering the latter in both the set of free for-
bidden factors and the set of forbidden units by not including the for-
bidden factors gathered in Stage1. (Or, in order to simplify the code,
by removing them from the set of free forbidden factors.)

Both of these approaches involve constructing the PSG and are
consequently exponential in the number of states in the automaton.
Alternatively, if all that is needed is the set of forbidden units, the set
of permitted units can be gathered from the set of transitions of the
automaton in time Θ(card(Q)2 ·card(Σ)). The forbidden units are then
the difference between the default alphabet (plus the alphabet of the
automaton, if it is not known to be a subset of the default) and the set
of permitted units.

5 approximating regular stringsets in sl
Every stringset can be fully defined by the conjunction of a set of SL
constraints (possibly trivial: Σ∗, ; and Σ+ are SL1, SL1 and SL2, respec-
tively) along with a set of properly non-SL constraints. In applications
that are exploring constraints across a collection of stringsets – most
linguistic applications for instance – these SL constraints are signifi-
cant. If the stringset is Regular we can factor the constraints so that
the non-SL constraints capture just the non-strictly-local aspects of the
patterns.

The problem isn’t finding factors that characterise the stringset;
the problem is that there are too many of them. Σ∗− L(A ), augmented
with left and right endmarkers, is a set of forbidden factors that char-
acterises L(A ) exactly. It is, of course, in general infinite.

The algorithms for SL stringsets are still partially correct for non-
SL stringsets. The problem is that if L(A ) is non-SL, then there will be
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non-singleton cycles (in addition to those on ;) and the traversal will
not terminate. These non-singleton cycles actually localise the reason
that the stringset is not SL. They capture circumstances under which
the automaton fails to synchronise ever; they identify places in which
SSC (Proposition 1) fails for L(A ).

As with the set of forbidden words, the set of labels of the paths in
PSG(A ) fromQ to ; that include non-singleton cycles are all legitimate
forbidden factors of L(A ), but again there are infinitely many of them.
The stringset they define is what we would like to isolate as the non-SL
fragment of L(A ).

It is tempting to try modifying the traversal so it follows only
singleton cycles. But, unfortunately, if there are non-singleton cy-
cles the chain of the proof of Lemma 3 may be infinite, so there
is no guarantee of termination even when following only singleton
cycles.

Even if this were not the case, in general forbidden factors that
label paths that take a non-singleton cycle one or more times can
be necessary constraints in defining the SL fragment of a stringset.
The reason is that it may be the case that there are acyclic paths
that eventually subsume, in the sense of being included as a substring
(specifically, being a suffix: see Lemma 2), paths with further itera-
tions of the cycle. The subsuming path may be longer than the cyclic
one and it may take several iterations of the cycle to form the acyclic
path as a suffix.

The issue is termination. How many times must a cycle be taken
before it has yielded all of the additional forbidden factors that are not
just instances of an unbounded pattern? Note that if the cyclic paths
will ultimately be subsumed, there will be at least one path fromQ that
will eventually be a suffix of that path. Traversing the PSG bottom-up,
these paths will share the same initial sequence of labels.
Lemma 5. Let A be any DFA. If a path from Q to ; in PSG(A ) includes
a cycle other than a trivial cycle on Q or ;, then either:

• there is a finite bound on the number of times the cycle can be taken
before the label of the path includes the label of an acyclic path from
Q to ; as a suffix

• or there is a finite bound on the number of times the cycle can be
taken before all paths with labels that share the same suffix as this
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one, beginning at the first iteration of the cycle, are instances of a
non-SL pattern.
This is simply because if there is no acyclic path with labels that

share the same suffix, then the label of the path is an instance of
a factor that contains a substring that can be iterated unboundedly
many times.

In order to identify the factors that label cyclic paths from Q to
; which will eventually be subsumed by an acyclic path, i.e., that are
not simply instances of an unbounded pattern, we modify the bottom-
up algorithm to follow all paths in parallel.8 Rather than a frontier
that is a set of paths, the frontier becomes a set of equivalence classes
of paths with each path in a class sharing the same sequence of labels.
If a class includes a path that reaches Q, then all paths in the class are
subsumed by that path; the class is removed from the frontier of the
traversal. On the other hand, if a class includes only cyclic paths, then
it will never be subsumed in this way, the paths in the class are in-
stances of unbounded patterns and we drop them; hence this traversal
can be limited to acyclic paths and is guaranteed to terminate in time
bounded by the size of the PSG, i.e. Θ(2card(Q)).

The same strategy suffices for initial and final factors with the
initial frontier taken to be the single class of trivial paths from subsets
of Q that are disjoint with F , all of which are labelled ϵ. Note that
the naïve algorithm for initial forbidden factors is in this case triply
exponential in the size of the automaton.

In gathering forbidden words of non-SL stringsets the bound k
is not known from building the PSG, but it can be estimated by the
maximum of the length of the longest free forbidden factor minus
2, the length of the longest forbidden final or initial factor minus 1
and the length of the longest acyclic path from a start state to a non-
accepting state in the automaton. This bound can be found implicitly
while gathering the forbidden words. Once all words shorter than the
bounds provided by the free, final and initial forbidden factors have
been collected, all cyclic paths can be trimmed.

Unlike the case of SL stringsets, there is no smaller bound on the
size of the factors in the approximation. The time complexity of the

8The reversed PSG is non-deterministic and this is just the same strategy used
in determinising an NFA using the powerset construction.
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traversals of these algorithms is O(card(Σ)(2card(Q))). The number of for-
bidden factors of an SL approximation of a non-SL Regular stringset
is similarly bounded above, although we leave open the question of
whether there are DFAs that witness this complexity (i.e., whether it is
a big-Ω bound, as well). But relative to this upper bound the algorithm
is optimal, and if a smaller bound can be established the traversal will
almost certainly be bounded in the same way. The following theorem
shows that the approximation is optimal in the sense of producing a
stringset of minimal size.
Theorem 3. If L(A ) is non-SL, the free, final and initial forbidden factors
gathered by the modified bottom-up traversal of PSG(A ), when combined
with the forbidden words up to the bound given above, define the minimal
SL superset of L(A ) that does not include the effect of arbitrarily many
instances of properly non-SL constraints.
Proof. By Theorems 1 and 2, every path fromQ to ; or a vertex disjoint
from F is either a free forbidden or final forbidden factor of L(A ),
respectively. The same is true for the initial forbidden factors and the
forbidden words. Thus the approximation does not exclude any string
that is not also excluded by L(A ).

Those paths that are trimmed in the traversal either include an-
other such path as a suffix or are instances of an unbounded pattern,
i.e., include iterations of non-singleton cycles that may be iterated ar-
bitrarily many more times without being subsumed by an acyclic path.
These instances of unbounded patterns are the (infinite) set of forbid-
den factors defined by a properly non-SL constraint. Since the con-
straints are all negative, these instances can only reduce the stringset
defined by the constraints. Including all of them yields L(A ); includ-
ing none of them yields the SL approximation that is minimal in the
sense of the theorem.
5.1 Residue automata
As noted in the proof of Theorem 3, the approximation, if not exact,
will overgenerate. We turn now to the problem of characterising the
strictly non-SL constraints that it omits.

Most work on approximating stringsets with stringsets in a weaker
complexity class has focused on approximating CFLs with Regular
stringsets (Nederhof 2000 includes a good survey) or Tree-Adjoining
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Stringsets (TALs) with CFLs (Schabes and Waters 1993; Rogers 1994).
Whenever the class of stringsets that is being approximated includes
CFLs, the (symmetric) difference between the approximation and the
target will not, in general, be a decidable set. Consequently, there is
little that can be determined about that difference.

We have the advantage that all of our stringsets are Regular, and
so the difference is not only decidable but an automaton recognising
it is effectively constructible. Moreover, in this case, we know that
every string excluded by the approximation is necessarily excluded by
the target. The approximation never undergenerates. To isolate the
non-SL characteristics of the target, we construct an automaton that
recognises exactly the set of strings that are overgenerated by the SL
approximation.

Using well-known algorithms for combining automata, an au-
tomaton AFF that recognises the set of strings licensed by the set of
forbidden factors can be constructed. One starts with deterministic
automata that recognise each of the given factors, complements them
and then builds the automaton that recognises the intersection of
those complements. It is then straightforward to construct Ares, the
residue automaton,9 which recognises exactly L(AFF) − L(A ). This
residue automaton captures exactly the non-SL aspects of L(A ).

6 strictly piecewise stringsets

A stringset L is Strictly k-Piecewise (L ∈ SPk) iff it is strictly determined
by its k-subsequences.

Let G<L,k
def
= F<≤k(L) be the set of piecewise factors that occur in L.

Then the stringset generated by G<L,k is:

L(G<L,k) =
¦

w ∈ Σ∗ | F<≤k(w) ⊆ G<L,k

©
.

If L ∈ SPk then L(G<L,k) = L.
9The term “residue” is motivated from the perspective of factoring con-

straints. These automata should not be confused with the residual automata of De-
nis et al. (2002), NFAs in which every state corresponds to the residual stringset
w.r.t. some prefix. “Residual” in that context is justified from the perspective of
factoring strings.
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Let G<L,k = F<≤k(Σ
∗) − G<L,k, the set of forbidden piecewise factors

of L. This is more natural in many applications, including many lin-
guistic ones (as in “no syllable with primary stress occurs following
another such syllable”). Given G<L,k, the stringset L can be described
as the intersection of the complements of finitely many shuffle ideals:

L =
∩

w∈G<L,k

�
SI(w)
�
.

A stringset is said to be SP if it is SPk for any finite k. The following
propositions characterise SP and SPk.
Proposition 4 (Subsequence Closure). A stringset L is SP iff

(∀w ∈ L, v ∈ Σ∗)[v ⊑ w =⇒ v ∈ L].
This is because if v ⊑ w and w is in L, then v is a permitted factor

and thus cannot be excluded from the stringset.
Proposition 5. An SP stringset L is SPk iff�∀w ̸∈ L

���∃v ̸∈ L
�� |v| ≤ k ∧ v ⊑ w

��.
In other words, if L ∈ SPk and a string w is forbidden in L, then w

contains a subsequence v of length less than or equal to k such that v
is also forbidden in L.

The properties of Strictly Piecewise stringsets combine to allow
efficient extraction of G<L,k from the automaton representation of such
a stringset.
Theorem 4. If A is a DFA representing an SP stringset, then a factor w
is a forbidden subsequence of L(A ) iff there is no path labelled w from the
initial state, q0, to an accepting state.
Proof. Let w ∈ Σ∗ be a string. We first show that if there is no path
labelled w from the initial state q0 to an accepting state, then w is a
forbidden subsequence of L(A ). Suppose the hypothesis; i.e., that for
all accepting states q f , there is no path q0

w⇝ q f . Then w ̸∈ L(A ), and
by the contrapositive of Proposition 4, for all strings x ∈ Σ∗, if w ⊑ x ,
then x ̸∈ L(A ). Then w is by definition a forbidden subsequence.

Next, we show that if w is a forbidden subsequence of L(A ), then
there is no path labelled w from the initial state q0 to an accepting
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state q f . Let w be a forbidden subsequence. Since A is deterministic,
there is exactly one path from q0 labelled w. Since w is a forbidden
subsequence and necessarily a subsequence of itself, w ̸∈ L(A ). So the
final state of this path must not be accepting. In other words, there is
no path labelled w from the initial state, q0, to an accepting state.

A direct consequence of Theorem 4 is that, ifA is a DFA that rep-
resents an SP stringset, then its forbidden factors can be extracted by
a simple traversal of the graph, collecting the strings that do not end
in an accepting state. One concern is that a graph may have cycles,
but in the case of a cyclic path q0

w⇝ q1
x⇝ q1

y⇝ q2 there is also a path
q0

w⇝ q1
y⇝ q2 that avoids the cycle, and in this case wx y is a permit-

ted subsequence iff wy is. So an acyclic traversal of a DFA of an SP
stringset L is sufficient to extract G<L,k. This extraction algorithm is thus
Θ(card(Σ)card(Q)). Since the maximum length of a piecewise factor of
the SP stringset recognized by A is card(Q), this is also the num-
ber of possible forbidden factors of that stringset and this algorithm
is optimal for algorithms that return the set of subsequences. To re-
duce the result to a minimal set of forbidden factors is quadratic in the
same measure, as each extracted factor must be tested for subsequence
against each longer one. Given this minimal set of forbidden factors,
the necessary factor width k is simply the size of the longest factor.

Note that this traversal will not necessarily yield the expected
result on an arbitrary NFA, as an edge could be missing following one
path but present following another with the same label.

7 approximating regular stringsets in sp

The minimal SP superset of any stringset L is just the closure of L
under subsequence: any such superset must include L, and every SP
superset must be closed under subsequence.

In Section 6 we describe an algorithm to extract subsequences
from DFAs that represent SP stringsets. To use this to obtain an SP
approximation of an arbitrary Regular stringset the DFA must first
be closed under subsequence. We can achieve this closure by adding
edges on ϵ in parallel to each existing edge of the automaton; Theo-
rem 5 shows that the set of permitted subsequences of this generated
stringset is exactly the same as that of the input.
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Theorem 5. IfA is a DFA andA ′ is the automaton produced by adding
ϵ-edges in parallel to each existing edge of A (applying the subsequence
closure algorithm), then the set of permitted factors of L(A ) is the same
as that of L(A ′).
Proof. In order to show that these sets are equal, we will show that
each is a subset of the other.

To show that the set of permitted subsequences of L(A ) is a subset
of that of L(A ′), let u ∈ Σ∗ be a permitted subsequence of L(A ). Then
there exists a word v ∈ L(A ) such that u⊑ v, and since L(A ) ⊆ L(A ′)
by construction, it follows that v ∈ L(A ′). Thus u is a permitted subse-
quence in the latter. Since this holds for all such u, the set of permitted
subsequences of L(A ) is a subset of that of L(A ′).

To show that the reverse holds as well, let w ∈ Σ∗ be a permitted
subsequence of L(A ′). Then there exists some string x ∈ L(A ′) such
that w ⊑ x . Since A ′ was formed by allowing a computation to skip
edges in A , there must exist some string y ∈ L(A ) such that x ⊑ y.
By transitivity, it follows that w ⊑ y and thus w is a permitted subse-
quence of L(A ). Since this holds for all such w, the set of permitted
subsequences of L(A ′) is a subset of that of L(A ).

Since each is a subset of the other, these sets are equal.
Since L(A ′) is by construction closed under subsequence, it is

Strictly Piecewise; Theorem 5 guarantees that its permitted subse-
quences are the same as those of L(A ). If the desired outcome is
simply an SP approximation, this algorithm is good: this subsequence
closure is the closest SP approximation that contains its input as a
subset, and the NFA is produced in linear time in the number of node
pairs, Θ(card(Q ×Q)). If all that is needed is the approximation, this
NFA can be determinised and is of size Θ(2card(Q)). The extraction al-
gorithm from Section 6 can then be used, if desired, to extract the set
of forbidden factors from this approximation. The time complexity of
the whole process is Θ(card(Σ)(2card(Q))).

On the other hand, a modified version of the algorithm is more
efficient. Let A be a trim DFA, and create a map ec : Q → {Q} such
that ec(q) is the set of states reachable from q (the ϵ-closure of q). As
finding ec(q) is a graph traversal that touches each edge exactly once,
it is Θ(card(Σ×Q)). In the worst case, we find this for each state, so
finding the ϵ-closure map is Θ(card(Σ×Q×Q)).
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To compute the subsequence closure of A without explicitly in-
cluding any edges on ϵ, we must create new edges and determine the
set of initial and accepting states. For each edge 〈σ, p, q〉, create new
edges {〈σ, p, r〉 | r ∈ ec(q)}. Since every state is reachable from the ini-
tial state, in the subsequence closure the set of initial states is simply
the set of all states. Since A is trim, if there is any accepting state
at all, then every state must be able to reach a final state, and thus
similarly in the subsequence closure the set of accepting states is also
the set of all states. Since the original automaton A is deterministic,
there are at most card(Σ×Q) edges, and since card(ec(q)) is at most
card(Q), assuming sublinear lookup of ec(q), the computation of this
subsequence closure is then Θ(card(Σ×Q×Q)).

Next, add a marked non-accepting sink state ⊥ ̸∈Q and complete
the automaton, adding edges to ⊥ from each state q for each sym-
bol not already labelling an out-edge of q. The time complexity of the
completion is Θ(card(Σ×Q)). BecauseA was trim, this sink will nec-
essarily be the unique non-accepting sink. Then there will be at most
card(Σ×Q) edges out of each state.

From this point, we traverse the automaton nondeterministically
(grouping paths with the same label) from the set of initial states
(equal to Q), where the desired paths are those that end in the unique
non-accepting sink state ⊥ and at least one component path is acyclic.
If all component paths are cyclic, then there is a strictly shorter for-
bidden subsequence that subsumes it, thus the paths are bounded
in length by that of the longest possible acyclic path: card(Q). We
alleviate the concern that in an NFA a factor may appear to be
forbidden along one path but actually be permitted along another
through the requirement that all component paths lead to ⊥. Then
since paths will be at most card(Q) edges long where each may be
any of the Θ(card(Σ×Q)) edges that start at the current state, we
gather Θ(card(Σ×Q)card(Q)) paths. The overall time complexity for
this modified algorithm is then the sum of each step, dominated by
the gathering of paths. In all, it is Θ(card(Σ×Q)card(Q)).

Again, finding aminimal set requires a quadratic-time filter across
the extracted factors, which can either be done during the extraction
or as a post-processing step.

As the longest forbidden factor is of length Θ(card(Q)), there are
Θ(Σcard(Q)) possible minimal forbidden factors and this modified algo-
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rithm for extracting piecewise factors from a non-SP stringset is still
suboptimal, though it is still of lower asymptotic complexity than de-
terminising and using the algorithm of Section 6.

If all that is needed is the Strictly Piecewise approximation, the
NFA of the subsequence closure can be produced in Θ(card(Q×Q))
time, or the DFA in Θ(2card(Q)) time. If the set of forbidden factors
is desired, the algorithm described in this section provides this in
Θ(card(Σ×Q)card(Q)) time. It should be noted that the Strictly Piece-
wise factors of Regular stringsets are derived from the approximation,
in contrast to the Strictly Local factors and approximations where this
relationship is inverted. This saves a considerable amount of time in
practice.

We now demonstrate the application of this procedure by apply-
ing it to the stress pattern of Amele, described in StressTyp2 (Goede-
mans et al. 2015) as follows: “In words of all sizes, primary stress falls
on the leftmost heavy syllable, else on the initial syllable.” This is
shown in Figure 2.

Figure 2:
The application

of the
subsequence

closure
algorithm to

Amele. At left,
the normalised

DFA representing
Amele itself; in

centre, the
addition of

ϵ-edges; and at
right, the

normalised result
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Note that Amele is fully described by a set of forbidden subse-
quences and one additional constraint: that some syllable with pri-
mary stress must occur, which, following Hyman (2009), we will re-
fer to as obligatoriness. The (non-trimmed) residue of the subsequence
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σ́

σ ∗
σ

1 2

Figure 3:
The residue of Amele’s Strictly Piecewise
approximation

closure of Amele with Amele itself is shown in Figure 3. The comple-
ment of this residue (the coresidue) is exactly obligatoriness. While it
does not always work out this cleanly, this certainly motivates further
analysis of the residue in order to obtain additional constraints.

8 local and piecewise testable constraints

As Rogers et al. (2012) showed, three quarters of the lects in the
StressTyp2 database are Strictly Local. They also identified a set of
Strictly Piecewise constraints that enforce aspects of the remaining
lects, although SL and SP constraints are not sufficient by them-
selves. Working analytically from the English glosses of the stress
patterns, they derived a set of nine Locally Testable constraints that,
together with the SL and SP constraints suffice to define 104 of the
106 patterns, the exceptions being Cyrenaican and Negev Bedouin
Arabics, which are properly Regular.10 Thus they established that,
with those two exceptions, all of the stress patterns are, at most,
conjunctions of Locally Testable and Strictly Piecewise (LT+SP) con-
straints.

Most prominent among these LT constraints is the requirement
that primary stress falls on some syllable of every word, i.e. obligatori-
ness. Since SP stringsets are closed under substring and SL stringsets
are closed under substitution of suffixes, this requirement cannot be
enforced, in general, by any conjunction of SL and SP constraints. In
the lects that are SL, primary stress is required to fall within a fixed dis-
tance of either the initial or final syllable which allows obligatoriness
to be enforced by initial or final forbidden factors. But SP constraints
are oblivious to the ends of words, which accounts for the fact that
none of the lects are purely SP.

Note that the complement of obligatoriness – that no primary
stress occurs – is SL1, which puts it in the class of co-SL constraints.

10Regular but not Star-Free. See McNaughton and Papert (1971).
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These are constraints that are disjunctions of positive literals, a sig-
nificantly restricted subset of the full set of LT constraints. From a
cognitive perspective, co-SL constraints are very nearly as simple as
SL constraints. Paraphrasing, SL constraints correspond to “you can’t
say X”, where the X is a fixed string of syllables, while co-SL con-
straints correspond to “you can’t not say X”. Note though that, in gen-
eral, since co-SL constraints are disjunctive, X may be a set of alter-
natives.

In the case of obligatoriness, though, there is a single disjunct.
All that is required is that primary stress is identifiable somewhere.
Adding obligatoriness to the sets of forbidden local and piecewise fac-
tors we extract allows us to characterise another 18 lects: 98 of the 106
lects (92.5%) are SL + SP + obligatoriness and thus extremely simple
in the cognitive resources they require.

This raises the question of whether we can capture the remaining
lects by extracting their co-SL constraints. Unfortunately, this is not as
simple as just complementing the stringset and extracting forbidden
factors. While the original stringset may (in our case, will) enforce a
positive literal constraint, it will be lost in the noise of all of the strings
that fail to be in the original stringset for other reasons.
Proposition 6. If L is a stringset that forbids piecewise or free local fac-
tors, then L cannot forbid piecewise or free, initial or final local factors. If
L forbids only initial local factors, L cannot forbid piecewise, free or final
local factors, although it may forbid initial local factors. The same is true,
mutatis mutandis, of final local factors.

To see why this is so, suppose L has an initial forbidden local
factor v. It follows that for all w ∈ Σ∗, vw is not in L. Since this applies
for all w, L has neither free nor final forbidden local factors, nor does
it have any forbidden piecewise factors.

If v were instead a free forbidden local factor or a forbidden piece-
wise factor, these same conclusions hold. However, it is also true in
that case that for all w ∈ Σ∗, wv is not in L. Since this applies for all
w, L has no initial forbidden factors either.

If v were instead a final forbidden local factor, then LR has an
initial forbidden local factor (vR). Thus LR has neither free nor final
forbidden factors. As they are equivalent, this holds for L

R. Then L has
neither free nor initial forbidden factors.
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The situation is not hopeless, though. Having identified forbid-
den local and piecewise factors, we can look for co-SL or co-SP con-
straints in the residue set, the difference between our approximation
and the original stringset. Since the forbidden factor constraints have
been stripped from this, we can in principle and do in fact get useful
co-SL constraints in this way. This is an extension of the methodology
that is demonstrated in Section 7 which resulted in the isolation of
obligatoriness. This allows us to formally characterise all of the lects
that are SL + SP + co-SL ab initio, fully computationally.

For the non-strict, non-co-strict constraints, we fall back on the LT
constraints identified in the prior work. We treat these as hypotheses
and systematically test each subset of the constraints to see if it suffices
to complete our approximation. In this way, we determined that five of
the eight non-strict, Subregular constraints identified in that work turn
out to be unnecessary. The remaining three are of the form ¬X ∨¬H́⋉
where X ∈ {H, H̀, S}.

Each of the two properly Regular stringsets was associated, in the
prior work, with a specific Regular constraint. But since one of these
constraints is just the conjunction of the other with a fourth LT con-
straint (¬Ĺ ∨ ⋊Ĺ⋉, i.e., primary stress falls on a light syllable only in
monosyllabic words), these can be unified with a single, simple and
linguistically suggestive Regular constraint: that a light syllable with
primary stress is immediately preceded by an uninterrupted sequence
of an odd number of unstressed light syllables that is not itself imme-
diately preceded by more unstressed light syllables. In the actual anal-
ysis from StressTyp2, this shows up as a requirement that unstressed
syllables and those with secondary stress alternate, with the secondary
stress syllables not surfacing.

9 results and prospectus

We have designed and implemented algorithms that, given a finite-
state automaton, compute a set of forbidden words, units, initial, free
and final local factors that define an SL approximation of the stringset
recognised by the FSA, along with a minimal DFA that recognises the
residue set: the set of strings in the approximation that are not in the
stringset recognised by the FSA. Similarly, we have designed and im-
plemented an algorithm that computes a set of forbidden piecewise
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factors that define an SP approximation. The intersection of these ap-
proximations is an SL + SP approximation. Then, working with the
residue automaton, which recognises exactly the set of strings the ap-
proximation accepts that are not in the original stringset, we identify
the forbidden factors in its complement. Those that are consistent with
the original stringset are required factors of that stringset, that is, they
are co-SL constraints. This gives us an SL+SP+co-SL approximation.
If the FSA recognises a stringset that is in the union of these three
types then the approximation is exact.

We have used these algorithms to implement a system that com-
pletely characterises any Regular stringset that is SL+SP+co-SL, fully
computationally. We have applied this to the lects in the StressTyp2
database. SL+SP+co-SL constraints cover 98 (92.5%) of the 106 lects
in the database that have corresponding FSAs.

For the remaining 6 Subregular lects, we have systematically
tested the sufficiency of each of the subsets of the properly LT con-
straints that Rogers et al. (2012) employed in their characterisation.
Of these, only obligatoriness and three other constraints were needed
to fully characterise these lects. The only properly Regular constraint
that is required in characterising the remaining two lects is a hidden
alternation pattern that requires an odd number of syllables to occur
in certain spans of the word. This is about as simple as non-trivial
properly Regular constraints can get and it is reminiscent of the no-
tion of metrical foot that plays an important role in much phonotactic
analysis.

Our results sharpen the results of the prior work in the follow-
ing additional ways. For the individual lects the maximum number
of forbidden words is 20. Since the size of our default alphabet is 15
(five degrees of weight and three degrees of stress) and all lects have
at least one weight and two levels of stress, the maximum number of
forbidden units is 13. The maximum number of forbidden initial fac-
tors is 15. The maximum number of forbidden free and final factors
is 386 and 117, respectively, but these are all due to Pirahã, an out-
lier. Without Pirahã they are 185 and 32, respectively. The maximum
number of forbidden subsequences is 90, but this is due to Bhojpuri
(per Shukla Tiwari), another outlier. Without this lect it is 18.

For the union factor types, there are 14 distinct forbidden units
(only unstressed light syllables occur in every lect), 44 distinct for-
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bidden words, 35 distinct initial forbidden factors, 904 distinct free
forbidden factors and 230 distinct final forbidden factors. The max-
imum width of forbidden words, initial factors and free factors is 5.
The maximum width of final forbidden factors is 6, due to a single lect
(Içuã Tupi) which is also the only example of a properly SL6 stringset,
the other SL patterns all being SL5 or less. There are 126 distinct for-
bidden subsequences with a maximum width of 4, but this again is
due to Bhojpuri (per Shukla Tiwari). Without this lect, the maximum
width is only 3.

That is still a lot of factors, too many to draw much insight from.
But these are all in ground form, with each syllable and stress com-
bination represented by a distinct alphabet symbol. In future work
we plan to adapt the alphabet type to be tuples of features or perhaps
non-reëntrant feature structures (adding full feature structures we will
leave for others), which will provide opportunities to generalise across
those features. We know, just from the phonology, that this will reduce
the total number of exemplars significantly.

The algorithms we have presented here have asymptotic time
complexity that is exponential in the size of the automaton if the
stringset it recognises is Strictly Local or Strictly Piecewise. If it is
not, they obtain an optimal Strictly Local approximation in time dou-
bly exponential in the size of the automaton. (The naïve algorithm
for finding initial forbidden factors, which suffices for our applica-
tion, is doubly exponential.) The complexity of the algorithm for ob-
taining the optimum SP approximation is still just singly exponential.
This relatively high degree of complexity is typical of algorithms in
this domain, most of which are based on properties of the Syntactic
Monoid (or Semigroup), which is exponential in the size of the au-
tomaton; the powerset graph is only marginally smaller than the Syn-
tactic Monoid. With the exception of the naïve algorithm, they are all
optimal for algorithms that return the sets of forbidden factors of the
stringset.

In practice, the algorithms are quite efficient on moderate sized
automata. The full methodology, running on our Haskell workbench,
processes the entire set of 106 lects (≤ 33 states) in under one minute
running on an AMD64 based PC with four cores at 3.7 GHz with 12GB
of RAM, with a disproportionate fraction of that time spent processing
the SL stringsets with large k. Thus the workbench, with only minimal
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optimisation, has proven to be a useful interactive tool for exploring
Regular sets of strings.

Nevertheless, the performance can certainly be improved signif-
icantly. The asymptotic bound is due to the potential size of the set
of factors. This is not, however, the dominant factor in the practical
performance. Rather it is the time it takes to generate a minimal DFA
from the forbidden factors. This is only necessary for construction of
the residue automata. If all that is required is the sets of factors it
can be dispensed with. Moreover, it is an easy target for optimisation
and is of the type of “embarrassingly parallel” algorithms that Haskell
can parallelise extremely effectively. In essence, the performance will
ultimately be bound only by the number of cores one has available.
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A recently proposed balanced-bracket encoding (Yli-Jyrä and Gómez-
Rodríguez 2017) has given us a way to embed all noncrossing depen-
dency graphs into the string space and to formulate their exact arc-
factored inference problem (Kuhlmann and Johnsson 2015) as the best
string problem in a dynamically constructed and weighted unambigu-
ous context-free grammar. The current work improves the encoding
and makes it shallower by omitting redundant brackets from it. The
streamlined encoding gives rise to a bounded-depth subset approxima-
tion that is represented by a small finite-state automaton. When bounded
to 7 levels of balanced brackets, the automaton has 762 states and
represents a strict superset of more than 99.9999% of the noncrossing
trees available in Universal Dependencies 2.4 (Nivre et al. 2019). In
addition, it strictly contains all 15-vertex noncrossing digraphs. When
bounded to 4 levels and 90 states, the automaton still captures 99.2%
of all noncrossing trees in the reference dataset. The approach is flex-
ible and extensible towards unrestricted graphs, and it suggests tight
finite-state bounds for dependency parsing, and for the main existing
parsing methods.

1 introduction
Dependency structures – rooted trees and more general digraphs –
have tremendous importance in multilingual syntactic analysis and
in the related semantic analysis, and its applicability to the world’s
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languages have been demonstrated recently very strongly by the Uni-
versal Dependencies (UD) initiative.1 The main approaches to pro-
duce syntactic dependency structures include graph-based parsers (Eis-
ner and Satta 1999; McDonald et al. 2005) that usually aim at exact
inference, and transition-based parsers (Nivre 2008) that treat parsing
as beam search that runs in linear time with a small risk of missing the
best analysis. Neural network-based parsers, such as Libovický (2016),
Ma and Hovy (2017) and many more, provide additional flexibility
and high accuracy. In the present work, we advance the long-term
development of a new, code-theoretic parsing approach (Yli-Jyrä and
Gómez-Rodríguez 2017) that may lend itself to unforeseen combina-
tions with the existing approaches.
Parsing that leads to noncrossing trees and graphs (Kuhlmann and

Johnsson 2015) is a simplification of more general approaches that
produce nonprojective trees and ordered graphs with crossing edges.
Although such parsing is limited in coverage, it is a very important,
well-understood core for some more general parsing algorithms. Re-
cently, Yli-Jyrä and Gómez-Rodríguez (2017) have explored an ap-
proach that embeds2 the set of noncrossing digraphs (NXDIGRAPHS) into
the string space Σ∗ using an injective encoding morphism between
the noncrossing digraphs and the corresponding set of code strings
(LNXDIGRAPHS) that form an unambiguous context-free language:

NXDIGRAPHS→ LNXDIGRAPHS, LNXDIGRAPHS ⊆ Σ∗.
The embedding can be used to turn the finite, sentence-specific search
space of noncrossing graphs dynamically into a finite string set where
each string corresponds to a distinct element in the search space. This
gives us a code-theoretic parsing approach that has five advantages:
1. Flexibility: Several subfamilies of noncrossing digraphs can be
treated as alternative search spaces that are treated uniformly by

1http://universaldependencies.org/
2 In mathematics, when some object X is said to be embedded in another

object Y , the obtained embedding is given by some injective and structure-
preserving map f : X → Y . In this work, embedding of graphs is based on code
strings over a code alphabet and should not be confused with continuous vector
space representations, although such an embedding is commonly used in natural
language processing and in modern neural network architectures.
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a generic parser whose search space can be restricted to these
subfamilies (Yli-Jyrä and Gómez-Rodríguez 2017).

2. Context-freeness: The search space can be represented com-
pactly with a context-free grammar that can also have weights
(ibid.).

3. Decidability: These grammars are unambiguous and can be re-
lated to a rich calculus of tree automata. These are then connected
to monadic second-order logic whose formulas define linear-time
decidable properties over ordered trees and tree-decompositions
of graphs (Bojańczyk and Pilipczuk 2016).

4. Compatibility: It is probable that the approach can be combined
with existing parsing frameworks such as graph-based parsing
(McDonald et al. 2005; Kiperwasser and Goldberg 2016; Zheng
2017), transition-based parsing (Dyer et al. 2015; Kiperwasser and
Goldberg 2016), encoder-decoder parsing (Vinyals et al. 2015),
parsing as sequence labeling (Strzyz et al. 2019) and parsing with
recurrent neural network grammars (Dyer et al. 2016; Kuncoro
et al. 2017).

5. Extensibility: There is follow-up work that extends the encoding
developed in this paper to all ordered digraphs (Yli-Jyrä 2019).

In the code-theoretic arc-factored parsing approach (Yli-Jyrä 2012;
Yli-Jyrä and Gómez-Rodríguez 2017), the construction of the com-
pact representation of the complete distribution of potential parses
takes cubic time. The construction involves building, dynamically, a
weighted context-free grammar for the complete parse forest. The ex-
act decoding of the optimal parse is then carried out in time that is lin-
ear to the size of the dynamic grammar. Since the combined complex-
ity of these tasks remains in O(n3), the complexity hits the previously
knownworst-case bound for parsing whose output is restricted to some
families of noncrossing graphs (Kuhlmann and Johnsson 2015). But in
today’s terms, parsing through a cubic time procedure is often consid-
ered too expensive as real-time data applications demand low latency
and high throughput. More efficient parsing algorithms are already
available in the established parsing frameworks. Especially transition-
based parsing is a very successful and efficient parsing framework
(Nivre 2008, 2009; Bohnet et al. 2016) that has inspired recent work
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on transition-based neural network parsing (Dyer et al. 2015; Kiper-
wasser and Goldberg 2016).
According to Covington (2001, 101–102), it is important to study

the constrained computational complexity of parsing algorithms when
they are applied to natural language data:
An important principle of linguistics seems to be that the
worst case does not occur, i.e., people do not actually utter
sentences that put any reasonable parsing algorithm into a
worst-case situation. Human language does not use uncon-
strained phrase-structure or dependency grammar; it is con-
strained in ways that are still being discovered.
The code-theoretic parsing approach has a special advantage in

the study of the constrained computational complexity of parsing algo-
rithms because there the constraints are reflected immediately in the
complexity of the search space embedding. The unknown complex-
ity of the sufficiently constrained search space embedding for natural
language gives rise to the following hypothesis:

Hypothesis
The practically occurring (noncrossing) dependency digraphs
can be embedded into a subset approximation that has a very
compact finite-state representation.

The concrete aim of this article is to investigate the existence of a prac-
tical, very compact finite-state representation for the search space of non-
crossing trees and digraphs in dependency syntactic parsing. Given
an encoding morphism and a depth bound that limits the maximal
complexity of dependency digraphs, the corresponding set of digraphs
will be recognized by a minimal deterministic finite automaton, where
each state has a constant number of transitions. The state complexity of
the minimal automaton depends only on the language it recognizes.
Thus, the only way to reduce the state complexity is to improve the
embedding of the digraphs into a regular, i.e. finite-state language.
The hypothesis is valid, if a very compact finite-state representation
for the practically occurring dependency digraphs exists.
Going from the cubic-time algorithms for noncrossing graphs to

the linear-bounded state complexity of a depth-bounded search space
means that that we are slightly closer to linear-time inference over
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arc-factored weighted parses. However, the scope of the current work
does not allow us to study whether also the representation of the
weighted search space with the arc-factored weights actually remains
linear bounded and compactly represented as a finite-state network.
If the number of possible distinct arc weights in the statistical model
is not bounded by a constant, the dynamic finite-state representation
of the weighted search space is super-linear. But since there are tech-
niques for pruning parse forests (Roark and Hollingshead 2008; Zhang
and McDonald 2014; Zheng 2017), and the weights can be also sim-
plified, e.g. by quantisation, we may avoid such super-linearity. It is,
thus, conceivable that the dynamically weighted search space could
also have a good finite-state approximation if there is a dynamic finite-
state representation for the corresponding unweighted search space.
The structure of this article is as follows. Sections 2.1 and 2.2 con-

tain the definitions and basic results required to understand how the
sets of noncrossing graphs and digraphs are embedded into a context-
free string language. Since a finite bound for the bracketing depth
is desirable, Section 3 seeks a streamlined encoding that would im-
prove on the proposal of Yli-Jyrä and Gómez-Rodríguez (2017) by
radically reducing the bracketing depth of an average parse. A pro-
posal for such a streamlined encoding is presented and formally ana-
lysed in Section 4. Finally, the prior and the streamlined encoding are
evaluated in Section 5 from the point of view of state complexity and
coverage. Section 6 concludes the article and identifies some questions
that remain open after the current work.

2 definitions

We assume that the reader is familiar with the basics of formal lan-
guage theory and especially the theory of context-free grammars,
finite-state automata and finite-state transducers. Algorithms will be
written in a pseudo-formal language that mixes Python-like syntax
with mathematical notation. In the following, we give definitions
for noncrossing graphs and digraphs (Kuhlmann 2015) and the cor-
responding encoding that we will call strong bracketing, S. Strong
bracketing for graphs is defined in Section 2.1, and Section 2.2 de-
fines strong bracketing for digraphs and relates these two classes of
structures.
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2.1 Strong bracketing for noncrossing graphs
A (nonempty) graph is a pair (V, E) where V is a finite, nonempty set
of vertices and E ⊆ {{i, j} ⊆ V | i ̸= j} is a set of edges. Each edge in
a graph may have a label or even a multiset of labels. The complete
graph (V, E) has all possible edges E = {{i, j} ⊆ V | i ̸= j}. The vertices
in graphs are usually an ordered set V = [1, . . . , n] with a linear order
≤. Such an ordered graph (V, E) is given more simply as the pair (n, E).
By working on ordered graphs, we avoid the usual difficulty of defin-
ing equality of graphs through isomorphism: graph (3, {{1,2}}) is not
equivalent to graph (3, {{2,3}}) although these graphs are isomorphic.
In an ordered graph, the edge {i, j} ∈ E can be viewed as an ordered
pair (min {i, j},max {i, j}). Two edges (i, j), (k, l) where i < k are said
to be crossing if k < j < l. The concatenation of two ordered graphs
(n, E1) and (m, E2), denoted by (n, E1) · (m, E2), is (n+m− 1, E) where
E = E1 ∪ {{i + n − 1, j + n − 1} | {i, j} ∈ E2}. An ordered graph is non-
crossing if it has no crossing edges. The set of (nonempty) noncrossing
graphs is denoted as NXGRAPH. Together with the trivial graph (1, {})
and concatenation, this set has the structure of a monoid.
Yli-Jyrä and Gómez-Rodríguez (2017) have proposed an encoding

scheme according to which any noncrossing graph (n, E) can be rep-
resented as a string of brackets. For example, the ordered noncrossing
graph (4,
�{1,2}, {2,4}, {1,4}	) is encoded as the string “[[{}][{} {}]]”,

see Figure 1 (the middle row).
Figure 1:

An example of
an ordered graph

Ordered graph (4,
�{1,2}, {2,4}, {1,4}	): 1 2 3 4

Yli-Jyrä and Gómez-Rodríguez (2017): [[ {} ][ {} {} ]]

Our “{}” optimisation in Section 5: [[ • ][ • • ]]

The original reason for using the curly brackets “{}” in Yli-Jyrä and
Gómez-Rodríguez (2017) was that, with them, the code strings respect
the balanced bracketing and form a subset of a Dyck language. They
also encode, intuitively, the successor edges over the vertices. Since
these motivations for the curly brackets are less important in the cur-
rent work, it is plausible to replace “{}” with a single character “-”
to optimise the code strings; see Figure 1 (last row). This optimisa-
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tion will be discussed later in this paper, in Section 5, but we stick
momentarily to the original encoding (Yli-Jyrä and Gómez-Rodríguez
2017) that uses curly brackets. In both encoding schemes, the square
brackets “[” and “]” connect the vertices by spanning the gaps that
separate them. In particular, each pair of matching square brackets
“[...]” correspond to an arc between two vertices. Because the brack-
ets in this encoding always come in pairs, we will call this encoding a
strong bracketing, S.
The encoding function encS that maps the elements of NXGRAPH to

the elements of the monoid {[,], {, }}∗ is implemented by an algorithm
that is given in Figure 2. Since the algorithm is not used during parsing,
we give a simple, unoptimised version that is designed to illustrate the
encoding scheme. This algorithm runs in O(n2) time, but more efficient
algorithms exist.

def encS((n,E) ∈ NXGRAPH):
1 str = ϵ
2 for i in [1,2,...,n]:
3 for j in [i-1,i-2,...,1]:
4 if {j,i} in E:
5 str += “]”
6 for j in [n,n-1,...,i+1]:
7 if {i,j} in E:
8 str += “[”
9 if i<n:
10 str += “{” + “}”
11 return str

def decS(str ∈ LNXGRAPH,S):
1 (n,E) = (1,{})
2 stk = ϵ
3 for c in str:
4 if c == “[”:
5 stk.push(n)
6 if c == “]”:
7 i = stk.pop()
8 E += { {i,n} }
9 if c == “{”:
10 n += 1
11 return (n,E)

Figure 2:
The encoding
and decoding
algorithms
for noncrossing
ordered graphs

Lemma 2.1. The encoding encS maintains an iconic correspondence be-
tween the parts of the graph and the string structure.
Proof. The encoding function, encS, produces a closing square bracket
for the right end of the edge, an opening square bracket for the left
end of the edge and a pair of curly brackets to indicate that adjacent
vertices are in a successor relation with each other. The length of the
code string is exactly 2|E|+ 2n− 2 characters when n > 0. The empty
string ϵ encodes the unit graph that consists of a single vertex. In other
words, the encoding is based on an iconic correspondence between the
graph and the bracketing.
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Figure 3:

An example
sentence with
a noncrossing

parse
[ [ [ ][ [ ][ ]]]][ ]
Ich kann dieses Geschäft nur wärmstens empfehlen .
I can this business only highly recommend .

<nsubj
<aux

<det

<obj

<advmod <advmod punct>

I highly recommend this business.

To see how the encoding applies to a syntactic dependency anal-
ysis of a natural language sentence, such an analysis for an example
sentence is given in Figure 3. The sentence is in German and it reads Ich
kann dieses Geschäft nur wärmstens empfehlen. Under the line contain-
ing this sentence, there are a word-by-word English translation and a
free translation in English. At the top of the figure, there is a diagram
of an undirected graph that indicates the dependencies between the
vertices, i.e. the tokens that constitute the sentence. The label of each
edge specifies the direction of the dependent vertex-token and the cate-
gory of this vertex-token from the perspective of the head vertex-token
that is at the opposite end of the edge.
Between the graph diagram and the German sentence, there is a

line that contains a bracket string. In this bracket string, the iconic cor-
respondence between the brackets and the edge degree of each vertex-
token is clearly recognizable, but this string does not show the curly
brackets that separate the vertices of the graph. With the curly brack-
ets, the bracket string is “[{}[{}[{}][{}[{}][{}]]]][{}]”. It is also possible
to add the edge labels at the corresponding brackets:

[ <nsubj {}[ <aux {}[ <det {}][ <obj {}[ <advmod {}][ <advmod {}]]]][{} punct> ].

The encoding considered in the current article ignores the edge labels
in order to keep the presentation clear. Recall that the current goal is
not to develop a front-end descriptive formalism for linguists but to
investigate the search space of noncrossing dependency graphs from
the perspective of its state complexity.
Lemma 2.2. The encoding function encS is a bijection whose inverse can
be computed in linear time.

[ 184 ]



How to embed trees in a regular language

Proof. The right side of Figure 2 presents a decoding algorithm, decS,
that maps bracket strings to noncrossing graphs. The obtained func-
tion can be easily seen to be the inverse of encS. Thus, the encoding
function is a bijection between its domain and the range.
Since the for-loop in the decoding algorithm decS needs only as

many iterations as there are characters in the argument str, it com-
putes the inverse of encS in linear time.
According to Lemma 2.2, any noncrossing graph is in a 1-to-1 re-

lationship with the corresponding string that encodes the graph. These
strings constitute a subset LNXGRAPH,S of the free monoid {[,], {, }}∗. Since
the input of the decoding algorithm in Figure 2 is restricted to the out-
puts of encS, the algorithm ignores the right curly bracket “}” in code
strings.
Lemma 2.3. The range of encS, LNXGRAPH,S, is an unambiguous context-
free language.
Proof. There is an unambiguous grammar that describes the range of
the encoding function.

(1) S→Q S | {} S | ϵ S′→Q S′′ | {} S S′′→Q S | {} S

Q→ [S′].

We make three observations of the grammar:
Firstly, this grammar produces balanced bracketing over {[,], {, }}

where the opening and the closing curly brackets are always adjacent,
like in line 10 of the encS algorithm.
Secondly, by the productions for the phrases S′ and S′′, each level

of square brackets “[]” contains one pair of curly bracket of its own
or two or more nested square brackets. Thus we may have substrings
“[{}]”, “[{}[{}]]”, and “[[{}][{}]]” but not substrings “[]” or “[[]]”.
This principle avoids connecting a pair of vertices more than once
and corresponds to the fact that lines 3–8 in the encoding algorithm
(Figure 2) produce exactly one pair of square brackets per edge.
Thirdly, whenever two balanced substrings correspond to two

subgraphs, they can be concatenated without adding any curly brack-
ets or vertices between them. Concatenation corresponds to the S
rule(s) in the grammar and the immediate succession between lines
3–5 and 5–8 in the algorithm.
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These observations can be extended to an inductive formal proof
over well-formed substrings and the corresponding graphs.

Graph concatenation generates the monoid (NXGRAPH, ·, (1, {})) of
noncrossing ordered graphs where the trivial graph (1, {}) is the iden-
tity element. The string concatenation of the encoded noncrossing
graphs generates the monoid (LNXGRAPH,S, ·,ϵ) where the empty string ϵ
is the identity element.
Lemma 2.4. The encoding function encS is a homomorphism between the
concatenation monoid of noncrossing graphs NXGRAPH and the concatena-
tion monoid of code strings LNXGRAPH,S.

Proof. It is is easy to verify that the encoding encS respects the monoid
structure: firstly, the encoding is compositional in the sense that
encS(n, E1) ·encS(m, E2) = encS((n, E1) ·(m, E2)). Secondly, the identity
element of the first monoid is the trivial graph (1, {}) that is encoded
as the empty string ϵ, the identity element of the second monoid. Thus
the encoding is a homomorphism.

In grammars for bracketed graphs, it is often handy to use produc-
tion schemas that are more expressive than the standard context-free
productions. Extended context-free grammars (ECFG) (Salomaa 1973)
extend grammar productions to production schemas whose right-hand
sides are regular languages over the nonterminal and terminal sym-
bols. ECFGs are weakly equivalent to context-free grammars but more
succinct and flexible. In particular, any right linear grammar is equiv-
alent to a ECFG that has just one rule schema and whose derivations
have only one rewriting step. This expressivity of ECFG is very nice
when we do not need too fine-grained derivation trees but rather
want to reduce the height of derivation trees during the recognition
of strings.
Lemma 2.5. There is an extended context-free grammar that generates
the language LNXGRAPH,S with derivation steps that correspond 1–1 to the
pairs of brackets (except the topmost step).

Proof. The original grammar of Lemma 2.3 can be written as an ex-
tended context-free grammar that removes some recursion and uses
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regular expressions instead:
S→ �Q | {}�∗(2)
Q→ [S′] S′→ �Q | {}� S′′ | {} S′′→ �Q | {}�+(3)

By substitution of S′ and S′′, we replace (3) to obtain:
Q→ [
�

{} | �Q | {}
� �

Q | {}
�+�

](4)
Each production schema consists of a left-hand-side (lhs) and a right-
hand side (rhs) – a nonterminal and a regular language.
ECFGs reduce beautifully to the iterated application of finite-state

transducers (FSTs). We prove just the following special case.
Lemma 2.6. There is a finite-state transducer that represents the grammar
of the proof of Lemma 2.3. Its transitive closure generates the language
LNXGRAPH,S when restricted to the start symbol S in the input side and the
terminal symbol string in the output side.
Proof. Starting from the grammar of Lemma 2.5, we will construct one
possible transducer representation. First, the two production schemas
(2) and (3) compile into two finite-state transducers. Each transducer
maps the lhs of the corresponding production to the corresponding rhs.
A larger transducer TG is constructed from these two subtransducers
with additional epsilon transitions and self-loop transitions that accept
any terminal symbols that have been produced in the earlier stages of
the derivation.
The constructed grammar transducer TG is shown in (5).

0

[,],{}

1ε₁ 4

ε

5
ε₂

2ε₍ 10ε₎

6
ε₍

7
Q:[

8ε:Q

9ε:{}

ε:Q,
ε:{}

  ε:Q,  
  ε:{}  

ε:]
3 ε₎

ε:Q, ε:{}
S:ε

(5)

In this transducer, an edge label with a colon indicates that an input
string is replaced with some other factor in the output. For example,
ε:{} indicates that the empty string ε is replaced with the string “{}”.
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There are also some edges that do not have labels with a colon. Such
labels denote a transition that copies its input to the output. Note that
the production schemas (2) and (4) appear as subtransducers in the
whole. The first corresponds to the transducer between states 2 and 3,
and the second corresponds to the transducer between states 6 and 10.
The epsilon symbols ϵ1,ϵ2,ϵ(,ϵ) denote empty strings like ϵ. The first
two avoid cluttering the diagram and the latter two mark the begin-
ning and end of a rule application. From the perspective of the current
proof, these epsilons could have been replaced with ϵ and removed
from the transducer all together (Mohri 1997).
The transitive closure of this transducer maps the start symbol

to all the intermediate (“sentential form”) strings that can be derived
from S with the production schemas. When these strings are restricted
to the terminal alphabet {[,],{,}}, we obtain the string language gen-
erated by the original grammar.
2.2 Strong bracketing for noncrossing digraphs
A (nonempty) digraph is a pair (V,A) where V is a nonempty set of
vertices and A ⊆ {(i, j) ∈ V × V | i ̸= j} is a set of arcs. Each arc (u, v),
written as u→ v, is a directed edge from vertex u to vertex v. A digraph
(V, A) is inverted if (i, j) ∈ A implies ( j, i) ∈ A. The complete digraph (V, A)
has all possible arcs A = {(i, j) ∈ V × V | i ̸= j}. The underlying graph
of a digraph (V, A) is the graph (V, EA) where EA = {{u, v} | (u, v) ∈ A}
is the set of underlying edges. Note that the cardinality |EA| of the set
of underlying edges can be smaller than the cardinality |A | of the set
of arcs. An ordered digraph (n, A) is a digraph (V, A) with ≤-ordered
vertices V = [1, . . . , n] and a noncrossing digraph (n, A) is an ordered
digraph whose underlying ordered graph (n, EA) is noncrossing. The
set of (nonempty) noncrossing digraphs is denoted as NXDIGRAPH. This
set extends to a concatenation monoid in the same way as the carrying
set of the concatenation monoid of noncrossing graphs.
Lemma 2.7. There is a bijection between ordered digraphs and ordered
graphs with 3 labels for edges.
Proof. Let C = {← ,→ ,↔} be the set of three edge labels. Let f
be the trivial function that maps each ordered digraph (n, A) to its
underlying graph (n, EA) and a labelling function λ : EA→ C such that
λ({i, j}i< j) =↔ if (i, j), ( j, i) ∈ A, λ({i, j}i< j) = → if (i, j) ∈ A, ( j, i) /∈ A
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and λ({i, j}i< j) = ← if (i, j) /∈ A, ( j, i) ∈ A. Conversely, the inverse of
fmaps the pair of (n, EA) and a labelling function λ : EA → C back to
a digraph (n, A) where A = {(i, j), ( j, i) | λ({i, j}) = ↔ }∪ {(i, j) | i <
j,λ({i, j}) = ← }∪ {( j, i) | i < j,λ({i, j}) = → }. Since the inverse f −1

is also a function, f is a bijection.

By Lemma 2.7, an encoding for digraphs is available if we can add
labels to edges. In Yli-Jyrä and Gómez-Rodríguez (2017), edge labels
are used to signal the type of their larger configuration context.
Lemma 2.8. There is an iconic, invertible and homomorphic encoding for
digraphs.

Proof. Any noncrossing ordered digraph (n, A) can be encoded with
slight modifications to the encoding algorithm encS for noncrossing
graphs: instead of printing “[. . .]” for an edge {i, j} ∈ EA, i ≤ j, the
algorithm should now print

“/ · · ·>” if (i, j) ∈ A, ( j, i) ̸∈ A;

“< . . . /” if (i, j) /∈ A, ( j, i) ∈ A;

“ [ . . . ] ” if (i, j), ( j, i) ∈ A.

This extends the image of the encoding function to the language of
encoded noncrossing digraphs, LNXDIGRAPH,S. The output of the changed
encoding function respects the concatenation of digraphs. Correspond-
ing changes are introduced to decS to obtain an inverse function for
the encoding function.

By Lemma 2.8, we encode the ordered digraph (4, {(4,1), (1,2),
(4,2)}) as the string “</{}><{}{} //”. Similarly, the digraph in Figure 3
is encoded as the string “<{}<{}<{} /<{}<{} /<{} /////{}>”.
It is not necessary to have two separate encoding functions encS

for noncrossing graphs and noncrossing digraphs. Lemma 2.9 effec-
tively states that we can embed NXGRAPH into NXDIGRAPH.
Lemma 2.9. There is a bijection between graphs and inverted digraphs.

Proof. Let f be a function that maps each inverted digraph (V, A) to a
graph (V, E) where E = {{i, j} | (i, j), ( j, i) ∈ A}. The definition of f is
straightforward. The inverse f −1 of f relates each graph (V, E) to an
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inverted digraph (V, A) where A= {(i, j), ( j, i) | {i, j} ∈ E}. Since this is
also a function, f is a bijection.

By Lemma 2.9, graphs can be treated as special cases of digraphs.
Yli-Jyrä and Gómez-Rodríguez (2017) employ the encoding of non-
crossing digraphs and Lemma 2.9 (implicitly) to construct unambigu-
ous context-free languages that encode important families of digraphs
and graphs. Such context-free languages correspond to the rooted non-
crossing trees, the projective trees, the noncrossing dags, the noncross-
ing weakly connected dags, unoriented noncrossing trees and many
other families of noncrossing digraphs and graphs.
Although digraph bracketing is more general and expressive than

the graph bracketing, it has two practical disadvantages due to which
we prefer to focus, in the rest of this article, on the encoding of (unla-
belled) noncrossing graphs whenever possible.
• Firstly, the ordered digraph bracketing is more difficult to inter-
pret than square brackets that contain less information. To get a
possibly more readable notation, the direction of the edges can be
encoded using subscripted square brackets: plain square brackets
would indicate inverted or undirected edges, but a specific orien-
tation of the corresponding edges is indicated with subscripts as
in “[<{}[<{}[<{}] /[<{}[<{}] /[<{}] /] /] /] /[/{}]>”.
• Secondly, since the different types of left and right brackets must
match each other, bracketing of digraphs require more states
in the finite-state approximation. The increased complexity is
needed to keep track of the open brackets. This consideration
in the encoding complexity may be addressed with one-sided
labelling, e.g., by dropping the subcripts of the right square
brackets:

[<{}[<{}[<{}][<{}[<{}][<{}]]]][/{}],

the left square brackets:

[{}[{}[{}] /[{}[{}] /[{}] /] /] /] /[{}]>,

or, for example, the head side brackets:

[<{}[<{}[<{}][<{}[<{}][<{}]]]][{}]>.
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The families of noncrossing trees and noncrossing rooted trees
can be treated as restrictions of the sets of noncrossing graphs and
digraphs. These families are not treated separately in this article (ex-
cept the observation on the state complexity of the search space of
projective trees on page 205). In fact, the present work on noncross-
ing graphs generalizes to all 50 subfamilies of noncrossing graphs de-
scribed in Yli-Jyrä and Gómez-Rodríguez (2017), although the current
discussion of these is restricted to the most general case.

3 the problem of unbounded depth

Normal-looking natural language sentences may give rise to a surpris-
ingly high complexity when measured in terms of the depth of nested
brackets and overlapping edges.

[ [ [ [ ][[ [ ]][ [ [ [[ [ ]] ][ ]][ ]]] ]][[ [ [ ]] [ [ ]]]]] ...
# For når f.eks. H. frå partiet med det meir eller mindre passande namnet “F.s.partiet” seier at vi har... kan ein spekulere ...
# Since when e.g. H. from the party with the more or less suitable name “FS-Party” says that we have... can one speculate ...

Figure 4: The underlying dependency tree of a Nynorsk (Norwegian) sentence

Figure 4 shows the parse or analysis of a sentence found in a tree-
bank that follows the Universal Dependencies annotation scheme. The
figure does not show all the details of the edge orientation and labels,
but it reveals that the underlying graph of the parse is a noncrossing
tree. The exceptional complexity of this ordered graph comes from its
multiple levels of overlapping edges. These overlapping edges corre-
spond to nested brackets. Due to the overlapping, the original encod-
ing (Yli-Jyrä and Gómez-Rodríguez 2017) requires, in fact, up to 10
levels of square brackets. The sentence demonstrates that natural lan-
guage sentences may involve many levels of overlapping dependency
edges even though no clausal center embedding is clearly present.
Another observation from Figure 4 is that the current visualisa-

tion of overlapping edges is not very readable, and the corresponding
brackets are stacked up to form almost meaningless sequences. It is,
thus, obvious that this kind of bracketing requires many states in a
finite-state approximation. In this section, our objective is to find a
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new, simpler way to encode and draw diagrams of dependency anal-
ysis, and to reduce the state complexity of the encoding.
3.1 Deep nesting outside dependency graphs
Balanced bracketing has been used in many contexts that include but
are not restricted to Generative Grammar, programming languages
and document markup systems. In Generative Grammar, so-called
P-markers have been used to describe phrase-structure trees. In the
Lisp programming language (Teitelman 1978), a large number of
parentheses are typically needed in lists that constitute the funda-
mental data structure of the programming language. The XML markup
language and its predecessor, SGML (Goldfarb 1999), use brackets to
indicate trees.
Deep nesting of brackets is a standard source of difficulties in ap-

plications of balanced bracketing. For example, it is well known that
adding P-markers to context-free grammars changes their tail recur-
sion into center-embedding (Langendoen 1975). The change converts
regular, right- or left-linear context-free grammars into grammars that
generate non-regular languages (except if the grammar is completely
recursion-free and generates a finite language). Also, in Lisp programs
and structured SGML and XML documents, brackets can be nested ar-
bitrarily, and specialized markup editors are needed to keep track of
the open brackets while editing them. Often the problem is in left- or
right-linear recursion whose balanced bracketing is inconvenient due
to the unbounded nesting.
To overcome the challenges of deep nesting in strong balanced

bracketing, there are several approaches and techniques that are
closely related to each other. The techniques make the bracketing
unbalanced in a controlled and reversible ways. As to Generative
Grammar, Chomsky (1963) already proposed omitting left or right
brackets of P-markers in contexts where the original bracketing can
be recovered without ambiguity. This idea of “semibrackets” was
used to turn context-free grammars into grammars that produce weak
bracketing, and to turn any non-self-embedding grammar as a whole
into a finite-state transducer (Langendoen 1975; Krauwer and des
Tombe 1981; Langendoen and Langsam 1984; Yli-Jyrä 2003c; Hulden
and Silfverberg 2014). A complementary idea appears in InterLISP
(Teitelman 1978, Section 2: Using Interlisp, page 2.4) where the pro-
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grammer could close any unfinished round brackets with just one
square bracket (]), a.k.a. “super-parentheses”: “a right square bracket
automatically supplies enough right parentheses to match back to the
last left square bracket (in the expression being read), or if none has
appeared, to match the first left parentheses”. For example, this gives
the following short-hand notations:

short-hand expansion(6)
(A(B(C] = (A(B(C)))

(A[B(C(D]E) = (A(B(C(D)))E)

The role of “super-parentheses” (Teitelman 1978), or “superbrackets”
in the sequel, is complementary to that of “semibrackets” that indi-
cate the location of an initial or a final embedding (Chomsky 1963;
Langendoen 1975): they close arbitrarily many one-sided brackets
It is not always easy to take advantage of weak bracketing that

is based on superbrackets and semibrackets. The SGML standard (ISO
8879:1986) allowed the omission of redundant brackets, but this ca-
pacity of the standard made SGML-documents difficult to validate and
parse, and contributed to the abandoning of the standard, in favour
of XML. Elsewhere, a version of weak bracketing in the framework of
Finite-State Intersection Grammar (Koskenniemi 1990) was used in an
encoding scheme where an unbalanced clause-boundary marker “@/”
indicated left or right recursion of clauses, leaving some unresolved
ambiguity in the encoding on purpose: in (7), the sentence contains
two levels of final clausal embedding, and in (8), there is an initial
clause embedding. Thus, the markup used in the grammar framework
did not indicate which clause is a subordinate clause and which is the
main clause.

It was a dog @/ that ate the mouse @/ that chased the cat.(7)
If the rats ate the cat @/ we were surprised.(8)

Our present discussion does not try to advocate weak bracket-
ing as a markup formalism for annotated data, because the benefits
of weak bracketing for human-computer interaction are controver-
sial. Instead, the focus of the research is on possible benefits for the
state complexity when the subfamilies of graphs or the corresponding
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search spaces are represented as string languages. The prior experi-
ences with weak bracketing, in fact, suggest that its main advantage
is related to the more natural treatment of left- and right-linear recur-
sion and to the computational benefits of such a treatment.
3.2 Tail recursion in dependency bracketing
The idea of weak bracketing has gone almost unrecognised in the con-
text of the dependency or edge bracketing of Yli-Jyrä and Gómez-
Rodríguez (2017) since such bracketing is historically unrelated to
P-markers and their recursion problems. In the dependency bracket-
ing, right-linear embedding corresponds to local bracketing that does
not introduce any recursive center-embedding. For example, tail re-
cursion in (9) does increase the depth of dependency bracketing.

It was a dog[ that[]]ate the mouse[that[]]chased the cat.(9)
Close to the earliest use of dependency bracketing is due to Greibach
(1973) who used brackets to mark “phrase-subphrase” dependen-
cies and to represent context-free languages via specifically brack-
eted Greibach Normal-Form (GNF) grammars. This bracketing main-
tains the regularity of the language although it contains balanced
brackets: since a right-linear grammar (10) is already in a GNF,
adding “phrase-subphrase” brackets converts it to another non-self-
embedding context-free grammar (11) that generates a regular lan-
guage. The same is not true for P-markers, which produce a grammar
(12) that generates a non-regular language.

S→ aSb Sb→ bSb Sb→ ϵ(10)
S→ a [Sb

Sb Sb→ ]Sb
b [Sb

Sb Sb→ ]Sb
(11)

S→ aSb Sb→ [Sb
bSb ]Sb

Sb→ [Sb
]Sb

(12)
Bracketed “phrase-subphrase” dependencies have been rediscovered
in projective dependency parsing by Oflazer (2003) and in nonprojec-
tive dependency parsing by Yli-Jyrä (2003b). The bracketing in pro-
jective dependency parsing has been developed further to obtain a
Chomsky-Schützenberger representation for the string set and the set
of structures generated by a projective dependency grammar (Yli-Jyrä
2005a) and a Link Grammar (Ginter et al. 2006), to obtain a cubic-
time projective dependency parsing algorithm (Yli-Jyrä 2012), and
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finally to obtain a synthesis where the representation and the algo-
rithm are combined and generalised to noncrossing graphs (Yli-Jyrä
and Gómez-Rodríguez 2017). There has also been some research on
bracketing schemes that apply to nonprojective dependency parsing
(Yli-Jyrä 2003b, 2004; Gómez-Rodríguez and Nivre 2010; Yli-Jyrä and
Nykänen 2014).
3.3 Unbounded branching in dependency graphs
It now comes as a surprise that the encoding scheme for noncrossing
(di)graphs generates deeply nested brackets when the scheme is ap-
plied to syntactic analysis of natural language. The key observation
is that multiple sibling edges give rise to adjacent copies of similar
brackets:

0 1 2 3 4(13)
[ {} [ {} [ {} [ {} ]]]]](14)

The encoding of siblings create nested brackets that are similar to
what one obtains in tail recursion. So, if there is no bound for the edge-
degree of vertices, the encoded graphs can require a self-embedding
grammar even if the graphs would be as simple as star-graphs (trees
where one vertex has vertex-degree n − 1 and all other nodes have
vertex-degree 1).

4 new encoding and visualisation
Interestingly, it turns out that we can use “superbrackets” and “semi-
brackets”, introduced for Lisp, P-markers and SGML, when we encode
dependency graphs. The intuitive idea is simple: an outermost edge is
replaced with superbrackets “[[” and “]]” that mark the incident ver-
tices. If the left incident vertex has more edges on the right, their re-
spective end vertices are marked with “]”. If the right incident vertex
has more edges on the left, their respective end vertices are marked
with “[”. The brackets “]” and “[” are called semibrackets. The process
is repeated until all outermost edges and their shorter siblings have
been converted in this way. As a whole, we call this encodingweak (de-
pendency) bracketing. The prototypical example (13) is encoded with
weak bracketing (15).
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[[ {} [ {} [ {} [ {} ]](15)
The weak bracketing separates edges into three categories: The super-
bracketed edges, the left (inner) siblings of superbracketed edges, and
the right (inner) siblings of the superbracketed edge. In the following,
we use this classification to reduce the visual clutter of dependency
diagrams: the inner siblings of the superbracketed edges are drawn
below the line of vertices:

0 1 2 3 4

(16)

The classification of edges is based barely on the graph structure and
is, therefore, not dependent on processing order. However, the cate-
gory of an edge is not a local property: the category of an edge alter-
nates between a superbracketed edge and a sibling edge. Such alterna-
tion starts from the outermost edge and proceeds transitively towards
inner edges:

0 1 2 3 4 5

(17)

[[ {} [[ {} [ {} [ {} ]]] {} ]](18)
The technique extends to situations where one vertex is is connected
to both ends of the outermost edge with sibling edges:

0 1 2 3 4(19)

[[ {} ] {} ][ {} [ {} ]](20)
Figure 5 shows how the improved encoding is applied to a real de-
pendency tree. The obtained graphical representation is immediately
more readable in a very systematic way.
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[[ [ [[ [[ ]][[[ [ ]][[ [ [[ [[ [[ ]]] ]][ ]][ ]] ]][[[ [ [ ]] [ [ ]] ...
# For når f.eks. H. frå partiet med det meir eller mindre passande namnet “F.s.partiet” seier at vi har... kan ein spekulere ...
# Since when e.g. H. from the party with the more or less suitable name “F.s.Party” says that we have... can one speculate ...

Figure 5: The application of the weak bracketing to the Nynorsk parse tree

Lemma 4.1. There is a context-free grammar that generates the relation
between the strong and the weak bracketing for noncrossing graphs.
Proof. In the grammar of Lemma 2.6, we can distinguish three kinds
of occurrences of the nonterminal Q: the initial Q I , the central QC

and the final QF . Each of these will be bracketed differently by the
following grammar whose terminal alphabet is a pair alphabet Σ =
{{:{, }:},[:ϵ,]:ϵ,[:[,]:],[:[[,]:]]}. The pair symbols in this alphabet are
constructed from the empty string ϵ and the input and output symbols,
and from the colon that separates them.

S→ �QC | {:{}:}
�∗(21)

Q I → [:ϵ S′ ]:](22)
QC → [:[[ S′ ]:]](23)
QF → [:[ S′ ]:ϵ(24)
S′→ �Q I | {:{}:}

�
S′′ | {:{}:}(25)

S′′→ �QC | {:{}:}
�∗ �

QF | {:{}:}
�(26)

Each symbol in the terminal alphabet of this grammar is a pair a:b
where a ∈ Σ∗1 is the input factor and b ∈ Σ∗2 is the output factor.
The alphabet of the input strings is Σ1 = {{, },[,]} and the alphabet
of the output strings is Σ2 = {{, },[,],[[,]]}. The factor ϵ, in partic-
ular, is the empty string. Let w = (a1:b1) . . . (an:bn) ∈ Σ∗ be a string
generated by the grammar. The concatenation of the input factors
a1, . . . , an constitutes the input string a1 . . . an and the concatenation of
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the output factors b1, . . . , bn constitutes the output string b1 . . . bn. To-
gether, the input and the output constitute a pair (a1 . . . an, b1 . . . bn) ∈
Σ∗1×Σ∗2. In this way, the grammar defines a relation between the input
strings Σ∗1 and the output strings Σ∗2. For example, the grammar relates
the input “[[{}]{}]” to the output “[[{}]{}]]”.
In contrast to the language of strong bracketing for noncrossing

graphs, LNXGRAPH,S, we denote the language of weak bracketing for non-
crossing graphs with LNXGRAPH,W.
Lemma 4.2. There is an extended context-free grammar that generates
the language of weak bracketing (LNXGRAPH,W) with derivation steps that
correspond 1–1 to the pairs of superbrackets (except the topmost step).
Proof. The language LNXGRAPH,W of the encoded noncrossing graphs is
generated by an extended context-free grammar:

S→ ( {} |Q )∗
Q→ [[ S] E S[ ]] | [[ S! ]](27)

E]→ ϵ | ] E[ → ϵ | [ E→ [ | ][
S!→
�

{}
�

E] Q
�∗

E]
�∗

{}(28)
S]→
�

{}
�

E] Q
�∗

E]
�∗

{}
�

E] Q
�∗(29)

S[→
�

Q E[
�∗

{}
�

E[
�

Q E[
�∗

{}
�∗(30)

To expand the right-hand side of the production schema (27), we sub-
stitute the nonterminal symbols S!, S], S[, E], E[, and E with the right-
hand sides of the corresponding production schemas. One application
of the expanded production schema then corresponds to exactly one
level of superbrackets.
Lemma 4.3. There is a finite-state transducer whose transitive closure
maps the start symbol S to the languageLNXGRAPH,W.
Proof. Figure 6 shows a transducer that represents the grammar of
Lemma 4.2. In this transducer, the transitions that copy the input fac-
tor to the output are indicated with simple labels that do not contain
a colon. Starting from the input string S, the transitive closure of this
transducer generates exactly the language of the grammar when out-
put strings of the closure are restricted to the terminal strings.
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Figure 6:
A finite-state
transducer that
represents the
grammar of
Lemma 4.2

Lemma 4.4. There is a bijective encoding morphism from the monoid of
noncrossing graphs to the language LNXGRAPH,W.

Proof. The left column of Figure 7 contains the algorithm encW that
maps a noncrossing graph (n, E) to an encoding that is based on weak
bracketing. This algorithm works by iterating the vertex index i over
the ordered vertices [1, . . . , n].
• On lines 7–10, the algorithm adds a closing superbracket “]]” if it
is time to remove the corresponding edge from the stack (stk).
• On lines 11–12, the algorithm adds a semibracket “]” if vertex i
ends a shorter sibling of the topmost edge in the stack.

def encW( (n,E) ∈ NXGRAPH ):
1 stk = [(0,n+1)]
2 str = “”
3 for i in [1,2,...,n]:
4 if i > 1:
5 str += “{}”;
6 (l,r) = stk.top()
7 if i == r:
8 str += “]]”
9 stk.pop()
10 (l,r) = stk.top()
11 if {l,i} in E:
12 str += “]”
13 if {i,r} in E:
14 str += “[”
15 for j in [r-1,r-2,...,i+1]:
16 if {i,j} in E:
17 str += “[[”
18 stk.push( (i,j) )
19 break
20 return str

def decW( str ∈ LNXGRAPH,W ):
1 n = 1
2 E = {}
3 stk = []
4 for a in str:
5 if a == “[[”:
6 stk.push([n])
7 elif a == “{”:
8 n += 1
9 elif a == “]”:
10 E += { {stk.top[0],n} }
11 elif a == “[”:
12 stk.top() = stk.top() + [n]
13 elif a == “]]”:
14 for j in stk.pop():
15 E += { {j,n} }
16 return (n,E)

Figure 7:
Functions that
encode/decode
noncrossing
graphs using
weak bracketing
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• On lines 13–14, the algorithm adds a semibracket “[” if vertex i
starts a shorter sibling of the topmost edge in the stack.
• On lines 15–19, the algorithm adds an opening superbracket “[[”
if vertex i starts a superbracketed edge that is not a shorter sibling
of the topmost edge in the stack.
• Between iterations, on lines 4–5, the algorithm adds a vertex
boundary “{}”.

It is easy to see that the algorithm encW always terminates, and
it implements a mapping from all noncrossing graphs to strings in
LNXGRAPH,W. It is also easy to see that the algorithm respects concatena-
tion: encW((n, E1)) · encW((m, E2)) = encW((n, E1) · (m, E2)).
Conversely, the right column of Figure 7 contains the algorithm

decW that maps strings in LNXGRAPH,W to noncrossing graphs. The algo-
rithm reads its input string from left to right.
• On lines 5–6, when the opening superbracket “[[” is read, the
algorithm pushes to the stack a list that just contains the current
vertex n.
• On lines 7–8, when the left curly bracket “{” is read, the algorithm
starts a new vertex by incrementing n. The right curly bracket “}”
is just ignored in the well-formed input.
• On lines 9–10, when the right semibracket “]” is read, the algo-
rithm looks for the first vertex number in the topmost list in the
stack and adds an edge between it and the current vertex.
• On lines 11–12, when the left semibracket “[” is read, the algo-
rithm adds the current vertex to the topmost list in the stack.
• On lines 13–15, when the closing superbracket “]]” is read, the
algorithm pops the topmost list from the stack and adds an edge
between the current vertex and the vertices in this list.
It is easy to verify that the decoding algorithm decW runs in linear

time to the length of the input string.

Lemma 4.5. There is an algorithm to compute the bracketing depth of
graphs in weak bracketing.

Proof. The algorithm for computing the weak bracketing depth of a
graph (n, E) is given in Figure 8.
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def depthW((n,E)):
1 d = maxd = 0
2 for c in encW(n,E):
3 if c == “[[”:
4 d += 1
5 maxd = max(maxd,d)
6 elif c == “]]”:
7 d -= 1
8 return maxd

Figure 8:
An algorithm for measuring
the depth of the balanced brackets
in weak edge bracketing

For example, the algorithm depthW returns value 0 for graph
(2,
�	
) and 1 for graph (3,

�{1, 3}, {2,3}	) because these graphs encode
as “{}” and “[[{}[{}]]”. For (4,

�{1,4}, {2, 3}	), the algorithm returns a
depth of 2 because its code string “[[{}[[{}]]{}]]” contains two levels of
superbrackets.
Lemma 4.6. There is a conventional unambiguous context-free grammar
for the streamlined encoding of noncrossing graphs, LNXGRAPH,W.

Proof. The grammar of Lemma 4.2 is turned into a conventional
context-free grammar

S→ {} S | Q S | ϵ
Q→ [[ S] E S[ ]] | [[ S! ]](31)

E]→ ϵ | ] E[ → ϵ | [ E→ [ | ][
S! → {} | {} T ; T → E] {} T | E] {} | E] Q T(32)
S] → {} | {} U ; U → E] {} U | E] {} | E] Q U | E] Q(33)
S[ → W ; W → Q E[ W | {} E[ W | {}(34)

To obtain this grammar, we take each right-hand-side that describes a
regular language over an alphabet Σ∪V and replace it with a context-
free subgrammar that generates this regular language. In this way, the
production schemas (28)–(30) expand, respectively, to the subgram-
mars (32)–(34). It is now easy to verify that the resulting grammar,
as a whole, is unambiguous. Especially, the production schema (31)
is unambiguous, since S! does not generate [ outside an embedded Q
while E always generates [.
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5 evaluation of the encoding schemes

5.1 Variants of the two encoding schemes
Until now, we have given ECFG grammars for two different encod-
ings for graphs. When these grammars are extended to brackets that
indicate the direction of an edge on both sides, we obtain grammars
for two different encodings for digraphs. For example, in the ECFG
grammar of Lemma 2.6, the grammar is extended with two additional
rules

Q→ /S′> Q→ <S′\(35)

We call the encoding of Yli-Jyrä and Gómez-Rodríguez (2017) the
strong bracketing (S) and the currently proposed encoding the weak
bracketing (W). In addition to these, we identify three optimisations
that are available to both strong and weak bracketing:
1. The first optimisation (“{}”) simplifies the pair of curly brackets
by replacing it with an atomic symbol: a bullet dot “•”:

{ } → •(36)

2. The second optimisation (“1”) is to eliminate the difference be-
tween the symbols used as a left bracket:

[[<→ [[ [[/→ [[ <→ [ /→ [(37)

3. The third optimisation (“[{}]”) introduces new vertex boundaries
“•
[]
”, “•

<\
”, and “•

/>
” in order to compress the edges between adja-

cent vertices as follows:

[•]→ •
[]

[<•]\→ •
<\

[/•]>→ •
/>

(38)
[[•]]→ •

[]
[[<•]]\→ •

<\
[[/•]]>→ •

/>
(39)

[[α•]→ [[α•
[]

[[α•]\→ [[α•
<\

[[α•]>→ [[α•
/>

(40)
[•]]β → •

[]
]]β [<•]]β → •

<\
]]β [/•]]β → •

/>
]]β(41)

where α ∈ {ϵ,<,/} and β ∈ {ϵ,>,\}.
This optimisation implies the “{}”-optimisation.
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These optimisations are meant to optimise the state complexity of
finite-state automata, but they also come with some trade-offs. The
main disadvantage of the “1”-optimisation is that the information
about the direction is no longer locally present at the bracket where
one might need it. The “[{}]”-optimisation suffers from an increased
alphabet size.
The Cartesian product of two encoding schemes and three opti-

misations gives us twelve different bracketing schemes:
{S,W} × {ϵ,“1”} × {ϵ,“{}”,“[{}]”}.

We will not compare all of these schemes in detail, but we will include
some of them in experiments to get an idea of their relative efficiency.
The corresponding bracket alphabets for digraph encoding schemes
are summarised in Table 1.

Strong bracketing Weak bracketing
(Lemma 2.6) (Lemma 4.2)

S [,<,/,],\,>,{,} W [[,[[<,[[/,]],]]\,[[>,[,<,/,],\,>,{,}

S{} [,<,/,],\,>,• W{} [[,[[<,[[/,]],]]\,[[>,[,<,/,],\,>,•
S[{}] [,<,/,],\,>,•, •

[]
, •
<\

, •
/>

W[{}] [[,[[<,[[/,]],]]\,[[>,[,<,/,],\,>,•, •
[]

, •
<\

, •
/>

S1 [,],\,>,{,} W1 [[,]],]]\,[[>,[,<,/,],\,>,{,}

S1{} [,],\,>,• W1{} [[,]],]]\,[[>,[,<,/,],\,>,•
S1[{}] [,],\,>,•, •

[]
, •
<\

, •
/>

W1[{}] [[,]],]]\,[[>,[,<,/,],\,>,•, •
[]

, •
<\

, •
/>

Table 1:
The alphabets
of different
encoding
schemes and
their variants

5.2 State complexity of finite search spaces
Table 2 reports the size and the state complexity of the search spaces
as the function of the number of vertices, n. The first two columns indi-
cate, for example, that there are 1,792 noncrossing 4-vertex digraphs.
The deterministic state complexity of this “4-vertex” search space is
490, 334, 30, 106, 19, or 10 states, depending on the encoding (S
or W) and the additional optimisations (“{}”, “1{}”, “1[{}]”).
We learn from Table 2, firstly, that the state complexity of the

search space grows exponentially with the number of vertices in the di-
graphs, regardless of the encoding scheme. The context-free represen-
tation of Yli-Jyrä and Gómez-Rodríguez (2017) is immune to the state
complexity concerns, but a straightforward depth-bounded finite-state
approximation of the S scheme explodes immediately.
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Table 2:

The DFA state
complexity

of finite search
spaces

n Digraphs S S{} S1{} W W1{} W1[{}]

1 1 1 1 1 1 1 1
2 4 12 8 4 12 4 2
3 64 80 54 12 26 8 6
4 1,792 490 334 30 106 19 10
5 62,464 2,952 2,018 68 207 33 24
6 2,437,120 27,040 12,126 146 704 61 38
7 101,859,328 106,372 72,778 304 1,327 95 72

The rapid growth of the state complexity is explained by the fact
that larger digraphs involve more open brackets and both encodings
(S and W) keep a record of the type of the open brackets as well as
of the intermediate constituent structure of each level, corresponding
to the right-hand-side of the production schemas (4) and (27) that ex-
pand the nonterminal symbolQ in each grammar. In addition, the state
space must keep track of the total number of vertices produced so far.
Overall, the state complexity of the strong bracketing compares poorly
against the superset approximations of context-free phrase structure
grammars (Nederhof 2000).
Secondly, we learn from Table 2 that weak bracketing gives a

clear advantage over the strong bracketing. The state complexity of the
original encoding (S) blows up after 3 vertices and reaches 106,372
DFA states when there are 7 vertices. The state complexity of the weak
bracketing scheme is substantially lower than the strong bracketing
(S). With 7 vertices,W requires only 1,327 states, which is an 80-times
improvement over the strong bracketing scheme. Moreover, it seems
that S simply grows faster and faster in comparison to W when n in-
creases. The lower growth rate of the complexity of W is explained
by the fact that W does not open more than one superbracket “[[” per
every two vertices whereas S opens one pair of brackets per edge.
Similar results are obtained for subfamilies of noncrossing graphs.

Figure 9 compares the state complexity of the search spaces of three
different families of noncrossing graphs as a function of the number
of vertices or words in the sentence. The figure indicates that the ad-
vantage of weak bracketing (W) in contrast to strong bracketing (S)
is relatively robust across different families of noncrossing graphs: di-
graphs, projective trees and graphs are all more compactly presented
with weak bracketing than with strong bracketing.
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Figure 9:
Weak bracketing brings exponential
savings in the size of the DFA
representing the search space
of a sentence when the search space
consists of digraphs, projective trees,
or graphs

In sum, the exponential growth of the state space seems to be
unavoidable for the set of noncrossing graphs, which reflects the fact
that bijective encoding is more difficult than an a superset approxi-
mation of the search space. But the state space complexity improves
dramatically with our new techniques: weak bracketing, search space
restrictions to noncrossing subfamilies, and optimisations in the en-
coding scheme. The columns for S{}, S1{},W1{}, andW1[{}] in Table 2,
on page 204, show the improved state complexity of some combined
optimisations. These indicate that the state complexity drops, quite
dramatically, from S and S{} to S1{} (from 106,372 and 72,778 to 304
states for n=7) and from W to W1{} (from 1,327 to 95 states). A fur-
ther improvement is given by the “[{}]”-optimisation (from 95 to 72
states for 7 vertices).
Along with the weak bracketing, another big improvement in

the state complexity of unweighted search space is due to the “1”-
optimisation: thanks to these two improvements, we are able to build
complete search spaces for relatively large ordered graphs with at least
30-vertices. Table 3 gives an idea of the implications of these improve-
ments. In short, they can now be expressed as follows:
• The complete search space of all 10-vertex noncrossing graphs
and digraphs is represented by a deterministic automaton that
has 254 states.
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Table 3:

State complexity
of larger search

spaces

n Encoded graphs W1 W1{} W1[{}]
10 21,292,032 492 363 254
... ... ... ... ...
19 29,312,424,612,462,592 12,395 9,347 7,569
20 314,739,971,287,154 688 18,276 13,693 10,114
21 3,393,951,437,605,044,224 24,925 18,807 15,228
... ... ... ... ...
30 ≈ 7.681 · 1027 589,598 442,177 327,494

• The complete search space of all 30-vertex noncrossing graphs
and digraphs is represented by a deterministic automaton that
has 327,494 states.

5.3 State complexity of bounded-depth grammars
Bounding the bracketing depth in the encoding schemes turns the re-
spective grammars into subset approximations. Each approximation
is equivalent to a cyclic finite-state automaton that recognises a reg-
ular language. We now turn our focus to the state complexity of such
bounded-depth grammars and their languages.
Table 4 illustrates the relative parsimony of W1{} against S1{}

when the depth of balanced bracketing, d, grows. The table shows
thatW1{} captures the complete 7-vertex search space of 101,859,328
digraphs already with 3 levels of balanced brackets, while S1{} needs 6
levels of brackets to capture the same search space. When we increase

Table 4:
The state

complexity and
the largest
contained

complete search
space of

depth-bounded
grammars

d n-Digraphs n S1{} n-Digraphs n W1{}

0 1 1 1 1 1 1
1 4 2 3 4 2 6
2 64 3 8 62,464 5 18
3 1,792 4 18 101,859,328 7 42
4 62,464 5 38 201,889,939,456 9 90
5 2,437,120 6 78 443,939,433,742,336 11 186
6 101,859,328 7 158 1,041,383,605,688,860,672 13 378
7 4,459,528,192 8 318 ≈ 2 · 1021 15 762
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d Sd S{}d S1{}d W{}d W1d W1{}d W1[{}]d

0 2 1 1 1 2 1 1
1 11 7 3 2 9 6 7

d + 1 6sd+2 6sd+4 2sd+2 6sd+17 2sd+7 2sd+6 2sd+6

2 68 46 8 23 25 18 20
3 410 280 18 155 57 42 46
4 2,462 1,684 38 947 121 90 98
5 14,774 10,108 78 5,699 249 186 202
6 88,646 60,652 158 34,211 505 378 410
7 531,878 363,916 318 205,283 1,017 762 826

Table 5:
The DFA state
complexity of the
bounded-depth
grammar

both these bounds with one more level, the 8-vertex search space in
S1{} is only 44 times larger, whereas the search space captured byW1{}
has 9-vertex graphs and grows 1,998 times larger. Thus, the growth
of the weakly bracketed search space is roughly quadratic to growth
of the strong bracketing. This trend becomes even more striking when
the bracketing gets deeper.
Table 5 shows the state complexity of the bounded-depth gram-

mar as the function of the bracketing depth (d) and the used encod-
ing scheme. The first impression is that strong bracketing (S) and
weak bracketing (W) give rise to very similar state complexity of the
bounded-depth grammars: whileW{} is more compact than S{}with its
34,211 states against 60,652 states, S1{} initially looks more compact
than W1{} with its 158 states against 378 states.
We already learned from Table 4 that two levels in S compare

roughly to one level in W. Besides this, the depth of the latter is not
sensitive to unbounded branching. Therefore, the complexity of the
bounded grammar for weak bracketing is more interesting than the
complexity of the bounded grammar for strong bracketing.
We now have an idea about the state complexity of a deterministic

finite automaton that recognizes languages of different bounded gram-
mars for strong and weak bracketing. As we from now on talk about
the state complexity of bounded grammars, we will focus on the weak
bracketing (W) and on its one-sided variant (W1). Its “{}”-optimisation
is even more succinct, but the “[{}]”-optimisation appears to be harm-
ful to the state complexity of the bounded grammars.
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5.4 Formal coverage of bounded grammars
When the bound d for the depth of bracketing is fixed, the depth of
bracketing does not grow arbitrarily when the length of input sentence
changes. A grammar with a fixed bound will be applied to short sen-
tences as well as to long sentences. This raises the question of what
happens with the coverage and the state complexity of the restricted
search space when the sentence is exceptionally long.
When we process a growing number of vertices, the first con-

sequence of using a bounded-depth grammar is that there will be a
bound k for the number of vertices beyond which the bounded gram-
mar ceases to capture the complete search space of the noncrossing
graphs. Beyond this point, the search space will be limited by the
bounded depth. The state complexity of the limited search space will
then grow linearly with the number of vertices when the number of
vertices continues to grow enough.
For example, let us restrict the depth of bracketing to 6 levels,

which gives us a bounded grammar with 505 states. The largest com-
plete search space captured by this grammar consists of 13-vertex
graphs (or digraphs, whose state complexity is the same under the
W1 encoding scheme).
If we now extract 21-vertex graphs from the same grammar, we

will get only a proper subset of all 21-vertex graphs because graphs
that require more than 6 levels of brackets are missing. Capturing the
complete search space for 21-vertex graphs requires 10 levels of brack-
eting. Table 6 shows in detail what happens to the search space of
21-vertex graphs when we decrease the maximum depth of bracket-

Table 6:
98.96% coverage

of 21-vertex
graphs requires
only 6 bracket
levels and only
1/8th of the full
coverage states

d W1d W1d ∩W1n=21 The number/% of 21-vertex graphs
3 57 929 3.7% 872,294,071,717,330,944 25.70143%
4 121 1,765 7.1% 2,313,578,416,163,258,368 68.16769%
5 249 3,181 12.7% 3,131,655,209,939,369,984 92.27166%
6 505 5,501 22.1% 3,358,682,892,406,358,016 98.96084%
7 1,017 9,117 36.6% 3,391,549,974,785,294,336 99.92924%
8 2,041 14,301 57.4% 3,393,882,839,790,387,200 99.99798%
9 4,089 20,573 82.5% 3,393,950,914,747,301,888 99.99998%

10 8,185 24,925 100.0% 3,393,951,437,605,044,224 100.00000%
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Figure 10:
The state complexity of the limited
search space W1d=6 grows only
linearly with sentence length after
13 vertices, while the exact search
space representation explodes
quickly. At the same time, the
coverage of the limited search space
remains close to 100%
for many more vertices

ing. Quite surprisingly, the 6-bounded grammar still contains 98.96%
of all 21-vertex graphs!
The linear growth of the state complexity of the limited search

space gives a huge advantage over the standard situation where the
complete search space requires an exponentially growing number of
states as a function of the number of vertices. This point is illustrated
by Figure 10. This is also illustrated by Table 6, which shows that
the state complexity of this limited search space is only 1/5 of the
state complexity of the complete search space and the state complexity
of the corresponding bounded grammar is only 6.2% (505 states) of
the state complexity of the 10-bounded grammar (8,185 states). Thus,
limiting the search space of long sentences by depth is an effective
way to reduce the number of states in the grammar and search space
representations. This reduction is necessary in practice because there
is no fixed limit for the length of natural language sentences: as a
challenge for parser developers, the Universal Dependencies treebanks
contain a few really long sentences that have more than 500 tokens.
Table 7 describes the state complexity of extremely large limited

search spaces that contain 8-, 16-, 32-, …, and 512-vertex noncross-
ing graphs bounded to 7 levels of brackets. The 7-bounded grammar
W1d=7 can be represented, according to Table 5, with 762 states. For
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Table 7:

The linear growth of the state complexity
of the limited search space

with at most 7 levels of balanced brackets

n
Upper bound
((2n− 1) · 762) Actual states

8 11,430 157
16 23,622 3,029
32 48,006 15,221
64 96,774 39,605
128 194,310 88,373
256 389,382 185,909
512 779,526 380,981

each integer n ≥ 1, there is a finite-state automaton whose language
W1n constrains the graph size to n vertices. The state complexity of
W1n is exactly (2n − 1) states. By multiplying the state complexities
of the depth-bounded grammar W1d=7 and the graph size constraint
W1n, we obtain an upper bound for the state complexity of the limited
search space of n-vertex noncrossing graphs with a maximum depth
of 7 brackets. However, the actual state complexity of the intersection
of the two languages is slightly smaller: instead of 779,526 states, we
will need only 380,981 states to represent the limited search space
of 512-vertex graphs. Thus, with seven levels of brackets, this can be
summarised as follows:
• The bounded grammar of noncrossing graphs requires at most
762 DFA states.
• The largest complete search space contained in the bounded
grammar consists of noncrossing graphs that have 15 vertices.
• The limited search space for 512-token sentences requires 380,981
DFA states with the W1 encoding scheme.

5.5 Empirical coverage of bounded grammars
An experiment was carried out to apply the bracketing depth measure
to the noncrossing trees in the Universal Dependencies (UD) treebanks
(Nivre et al. 2019). In order to verify that the treebank size does not
significantly affect the results, we carried out the same experiment on
two different releases of UD treebanks. In the v2.4 release, there are
146 treebanks and 83 languages, while in the v2.0 release, there are 70
treebanks and 50 languages and about half the number of the trees. In
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the experiment, we focused on the primary dependencies that define
rooted trees. Of the total 1,234,587 rooted trees in the v2.4 data set,
90.5% (1,117,332) are noncrossing, and typically nonprojective. We
encoded these trees with the W encoding scheme and computed the
depth of the bracketing with the algorithm depthW shown previously
in Figure 8.
For the purpose of succinct reporting of the results, the number

of languages was reduced by grouping some closely related languages
into larger buckets. For example, our “Scandinavian” is a group of
languages containing Bokmål, Danish, Nynorsk, and Swedish, and An-
cient Greek and Old Russian were grouppedwith their moden variants.
However, we did not group Latin with Italian. Although such grouping
might remove the sharpest distinctions between languages, it became
as a surprise that the depth-based cross-lingual complexity differences
decayed so quickly when the depth increased beyond 3 levels. Thus,
the row “noncrossing” describes surprisingly well a language indepen-
dent tendency where the depth of bracketing for noncrossing trees is
mostly very low.
The percentage of noncrossing trees and the coverage of the mea-

sured complexity levels are shown in Table 8. The first two numer-
ical columns show the percentage and the absolute number of non-
crossing trees among all trees for the corresponding language subset.
In other columns, the coverage of depth-bounded bracketing is com-
puted against the number of noncrossing trees for the corresponding
language subset. The row with the label “noncrossing” corresponds to
the set of all languages. Its first two columns tell the percentage and
the absolute number of noncrossing trees in the whole UD data set.
The mixed data set considered all trees equal in weight regardless of
the size of the tree and the size of the containing treebank.
The results in the table are illuminating in two ways. Firstly,

the results indicate that a bounded search space with 7 levels of su-
perbrackets is capable of covering 99.999% of the noncrossing trees
in the v2.0 and v2.4 versions of the UD dataset. Since 7 levels re-
quire only 762 DFA states in “W1{}d”-encoding, this result supports
our hypothesis according to which the practically occurring noncross-
ing dependency digraphs can be embedded in a subset approximation that
has a very compact finite-state representation. Secondly, we observe
that the bounded space with 4 levels of superbrackets and 90 states
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Table 8: The coverage of depth-boundedWd grammars measured against UD v2.0
and v2.4 trees that are noncrossing and do not contain epsilon nodes

Language Noncrossing Depth 1 2 3 4 5 6 7 8

all v2.0 trees 100.0% 630,518
noncrossing 86.7 % 546,492 16.1% 57.7% 91.6% 99.2% 99.95% 99.999% 100.000% 100.000%

all v2.4 trees 100.0% 1,234,587
noncrossing 90.5% 1,117,332 16.6% 57.8% 91.8% 99.2% 99.95% 99.998% 100.000% 100.000%
Arabic 97.2% 27,608 5.0% 21.1% 64.7% 94.5% 99.70% 99.986% 100.000% 100.000%
Catalan 95.5% 15,931 1.7% 23.0% 75.7% 97.2% 99.78% 100.000% 100.000% 100.000%
Czech 88.3% 112,595 15.0% 52.4% 91.4% 99.2% 99.95% 99.999% 100.000% 100.000%
German 92.9% 178,229 10.9% 52.5% 91.9% 99.4% 99.97% 99.998% 100.000% 100.000%
English 94.7% 32,811 16.5% 57.1% 93.5% 99.5% 99.99% 100.000% 100.000% 100.000%
Spanish 94.5% 32,789 2.3% 29.2% 82.1% 98.2% 99.90% 100.000% 100.000% 100.000%
Finnish 93.5% 32,589 39.3% 80.4% 97.3% 99.7% 99.98% 99.997% 100.000% 100.000%
French 91.6% 57,459 20.0% 59.1% 92.2% 99.3% 99.97% 99.995% 100.000% 100.000%
Greek 54.8% 18,364 31.4% 81.7% 97.7% 99.8% 99.99% 100.000% 100.000% 100.000%
Hebrew 97.0% 6,032 2.3% 28.8% 82.6% 98.9% 99.95% 100.000% 100.000% 100.000%
Hindi 86.2% 16,843 3.4% 50.6% 88.5% 98.7% 99.93% 99.988% 100.000% 100.000%
Croatian 91.0% 8,205 3.8% 39.3% 89.3% 99.3% 99.94% 100.000% 100.000% 100.000%
Hungarian 72.9% 1,312 4.0% 32.9% 79.1% 96.5% 99.70% 99.924% 100.000% 100.000%
Italian 98.1% 33,398 5.7% 50.8% 90.9% 98.9% 99.91% 99.997% 100.000% 100.000%
Japanese 99.8% 66,950 25.5% 75.3% 96.8% 99.8% 99.99% 100.000% 100.000% 100.000%
Korean 88.6% 30,758 17.5% 70.5% 96.4% 99.8% 99.99% 100.000% 100.000% 100.000%
Latin 67.2% 28,002 31.5% 74.3% 95.7% 99.6% 99.98% 100.000% 100.000% 100.000%
Latvian 90.4% 11,772 13.5% 52.1% 90.7% 98.9% 99.92% 100.000% 100.000% 100.000%
Dutch 88.3% 18,481 23.8% 68.7% 95.3% 99.4% 99.95% 99.989% 100.000% 100.000%
Polish 96.1% 38,882 16.8% 71.4% 96.2% 99.7% 99.98% 100.000% 100.000% 100.000%
Portuguese 87.1% 19,553 6.2% 42.1% 89.1% 99.2% 99.96% 100.000% 100.000% 100.000%
Romanian 93.1% 20,275 3.8% 37.6% 88.2% 99.1% 99.95% 100.000% 100.000% 100.000%
Russian 90.0% 79,657 16.3% 57.4% 91.8% 99.2% 99.95% 99.996% 99.999% 100.000%
Slovenian 86.7% 9,699 25.7% 66.5% 96.5% 99.8% 100.00% 100.000% 100.000% 100.000%
Scandinavian 91.5% 54,890 16.9% 62.6% 95.2% 99.7% 99.98% 100.000% 100.000% 100.000%
Turkish 92.8% 8,753 43.7% 85.2% 97.3% 99.7% 99.98% 100.000% 100.000% 100.000%
Chinese 99.5% 18,544 46.3% 73.9% 92.1% 98.7% 99.90% 99.995% 100.000% 100.000%
others 91.7% 136,951 18.2% 63.1% 93.6% 99.4% 99.96% 99.996% 99.999% 100.000%
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is so large that it does not necessarily restrict the performance of
state-of-the-art statistical parsers if the gold tree is noncrossing: the
finite-state search space contains almost 99.2% of the gold noncross-
ing trees. The related measure – unlabeled attachment score (UAS) –
of the best dependency parsers is typically below 98%3 but these
parsers and the used benchmarks are not limited to nonprojective
gold trees.
The results prompt further work on statistical explanations of this

phenomenon. It would also seem extremely important to try to de-
velop a more general encoding. If a similar depth limit works well for
an encoding that covers nonprojective trees, the corresponding search
space would become relevant for parser development in the future.
There are already some follow-up results suggesting that this is actu-
ally the case (Yli-Jyrä 2019).

5.6 The contrast between theory and data
There is a striking contrast between the theoretically limited coverage
of depth-bounded grammars and their surprisingly good empirical
coverage:
• From the theoretical point of view, the bounded grammar with
6 levels (Table 6 and Figure 10) is a finite-state approximation
that represents a restricted subspace of parses. The theoretical
coverage of this subspace drops rapidly below 99% when the sen-
tence length grows beyond 20 token-vertices.
• From the empirical point of view (Table 8), six levels of brackets
seem to cover more than 99.998% of the noncrossing trees in the
actual linguistic data.

The contrast between theory and practice calls for an explanation: we
want to know why the limited bracketing depth gives so much bet-
ter practical coverage than what we would expect from a flat distri-
bution. The first explanation for the high coverage of the noncross-
ing trees is that most trees in the data set are short. We do not know
how representative the UD treebanks actually are, as samples, and it
is, indeed, perfectly possible that some treebanks are biased towards
short sentences. The solid curve in Figure 11 shows how the average

3http://nlpprogress.com/english/dependency_parsing.html
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Figure 11: Solid line: the distribution of length ranges; dashed line: the percent-
age of noncrossing trees per length range in the v2.0 dataset

probability of the length range decreases as a function of sentence
length in the data set. The length ranges in this plot were [2,2], …,
[9,9], [10,11], …, [24,25], [26, 28], [29, 31], [32, 35], [36, 41],
[42, 52], [53, 610], and each of them was represented by the me-
dian length, which is 62 for the last length range. The curve roughly
indicates that relatively short sentence lengths are more probable than
wide length ranges. In fact, although the tail range of lengths is quite
long and nonempty, its probability mass is almost invisible in the big
picture.
Another explanation for the extremely good coverage of low

bracketing depths in Table 8 could be that longer and more deeply
bracketed sentences are more likely to have crossing edges. The dashed
curve in Figure 11 indicates that the percentage of noncrossing parse
trees decreases when the sentence length increases. Quickly after the
sentence length becomes long enough to have any crossing edges, the
probability of noncrossing parses steps down to some 90% on aver-
age in the data set. Then, as the sentence length continues to increase
further, this probability drops slowly until it goes below 70% of all
sentences in the length range that contains the longest sentences in
the data set. Thus, the parses of longer sentences are more likely to be
excluded from the set of noncrossing trees than the parses of shorter
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but more common sentences. As the result, a random sentence in the
data set is relatively short and expected to be noncrossing with a high
probability (90.5%).
The observation that the distribution of the noncrossing parses

contains more shorter sentences does not mean that sentences with
crossing edges are otherwise substantially “deeper”. In fact, our pre-
liminary experiments on a more general bracketing scheme for all sen-
tences suggest that the bracketing depth of all sentences differs very
little from the bracketing depth of noncrossing sentences. Longer sen-
tences may simply be more likely to have complex combinations of
edges because they contain more places where a crossing or multiple
overlapping can occur. In further work on encoding for unrestricted
graphs, it would be possible to test how much crossing edges actually
contribute to the local depth of the required bracketing.
The third possible explanation could be based on a psychological

model that would predict the tendency to avoid long-distance depen-
dencies (Gibson 1998) and multiple overlapping of edges when the
sentence length grows arbitrarily. We could also look for an expla-
nation from bounded memory models (Miller 1956; Kornai and Tuza
1992). With such models, it may be possible to understand why the
nesting of superbrackets in the weak bracketing of data is so limited.
The language specific percentages of the noncrossing analyses de-

pend on the choice of the annotation scheme (Havelka 2007). It is very
possible that the uniform principles of the UD annotation scheme are
not optimal for all languages. But we can perhaps interpret the over-
all low bracketing depth in the massively multilingual data set as a
sign of some kind of cross-lingual uniformity in the complexity scale,
which is a surprise because languages differ a lot in their strategies to
minimise syntactic complexity.
The v2.0 data set contains seven sentences whose parses require

seven levels of superbrackets. In the Appendix, we visualise the depen-
dency structures of these seven noncrossing parses. The first observa-
tion from these examples is that their lengths are surprisingly high
considering that these sentences are noncrossing: their lengths are be-
tween 29 and 106 tokens. This indicates that even long sentences can
have noncrossing parses. Secondly, the examples indicate that the new
encoding scheme is practically very effective as superbracketed edges
have many sibling edges. The weak bracketing scheme divides the
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set of edges into two categories, both of which contain a substantial
number of overlapping edges. The divided visualisation of noncross-
ing trees has an advantage that although there are up to 15 overlap-
ping edges and these sentences are pretty long, the paths in the visu-
alised trees are relatively easy to follow from a distance, at a schematic
level.4

5.7 On the errors in the data
It is obvious that treebanks contain a certain number of OCR errors,
preprocessing errors and annotation errors. Annotation errors are typ-
ically due to the limitations or inconsistencies in the annotation man-
ual or to other human factors that cause inconsistencies and mistakes.
Although there is always a reason for annotation errors, we assume
that they distribute almost randomly, having non-systematic effects
on the depth of the dependency trees.
We had no realistic methods to try to estimate how often annota-

tion errors occur. We just inspected a few most complex trees that we
could find and comprehend. In such checking, we found no specific
correlation between depth and errors.

6 conclusion

The topic of this paper was to find a regular language that encodes
noncrossing dependency graphs in treebanks. Our methodological ap-
proach used two different dependency bracketing schemes. The first
encoding scheme – strong bracketing – has been presented previously
and it has been applied to the description of several subfamilies of non-
crossing graphs by Yli-Jyrä and Gómez-Rodríguez (2017). This scheme
is based on balanced bracketing of edges. It uses three disjoint pairs of
brackets to indicate three different orientations of edges. The second
scheme – weak bracketing – does not properly appear in prior work
and it is, therefore, a significant new contribution. In this encoding
scheme, sibling edges are encoded with one-sided, weak brackets. We
also considered optimisations to both bracketing schemes.

4The schematic nature of the Arabic sentence is a gap in the data set used,
not a typographical problem.
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The main result of this paper is that the new encoding scheme
gives rise to a shallower and, in certain sense, less complex balanced
bracketing than the previously known encoding scheme.
When we started the current work we did not know if such a

shallow approach to dependency bracketing would even be possi-
ble and generalizable to noncrossing graphs. Our idea was to reduce
the depth of dependency bracketing by omitting brackets when they
share the same end of an edge. When this idea was conceived, we
did not know if it would bring any practical benefits compared to the
first scheme. But the investigation of the idea led to a few important
results:

1. The discovery of a streamlined dependency bracketing
In this article, the weak dependency bracketing is presented and
evaluated for the first time. Now we know that the scheme ex-
ists and corresponds to an unambiguous context-free language
(Lemma 4.6), and that it has a deterministic, computable bijection
from the set of (di)graphs (Lemma 4.4). This scheme constitutes
a unique continuation to the history of ideas that aim at reducing
complex balanced bracketing.

2. A context-free transduction between the two encodings
Now we also know that the two bracketing schemes can be re-
lated to each other with a context-free (non-deterministic push-
down) transducer (Lemma 4.1). This transducer can be used
to convert between the strong and the weak bracketing and to
reduce the context-free encodable families of graphs (Yli-Jyrä
and Gómez-Rodríguez 2017) to the weak dependency bracketing.
This widens the possibilities of both bracketing schemes. Since
there is a computable transduction between the strong and weak
bracketing, all 50 subfamilies of noncrossing graphs character-
ized in Yli-Jyrä and Gómez-Rodríguez (2017) can be encoded
with context-free languages that describe their weak bracket-
ing. We observe, on page 205, that the search space of projec-
tive trees has a smaller state complexity than the noncrossing di-
graphs, but the state complexity of some specialized search spaces
of noncrossing subfamilies may be also slightly higher than the
state complexity of the search space that contains all noncrossing
graphs.
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3. A low complexity bound with high empirical coverage
In dependency bracketing like Yli-Jyrä and Gómez-Rodríguez
(2017), bounded-depth bracketing does not make the language
finite, but the current work demonstrates that the weak brack-
eting is still useful because it stabilises the empirically ob-
served depth of dependency bracketing: two levels of super-
brackets cover already 58% of the noncrossing trees, three
levels cover 92% and five 99.95%. Seven levels of superbrackets
give the amazing 99.9998% coverage (with two excluded trees)
over the massively multilingual set of dependency treebanks,
UD v2.4.
The current work suggests several directions for further develop-

ments of the presented framework. We conclude this paper by intro-
ducing some of these directions.

6.1 Fast Parsing and Neural Weighting
The new empirical bounds open a door to new optimisations towards
very efficient dependency parsing of multiple families of noncrossing
graphs. An arc-factored, weighted, depth-bounded grammar for the
strongly bracketed search space can be constructed in quadratic time.
However, it is open whether a similar result is true for weakly brack-
eted search spaces.
The current work also demonstrated the existence of a high-

coverage finite-state representation of a bounded grammar for non-
crossing structures. When such a finite-state grammar is matched with
a simplified arc weighting model, we would be very close to a linear-
time graph-based parsing of bounded families of graphs.
In some state-of-the-art graph-based dependency parsers, the arc

weights are computed with neural networks and the statistical infer-
ence is based on an algorithm that finds the maximum spanning tree
(Libovický 2016; Ma and Hovy 2017) or best path (Rastogi et al. 2016).
The current work is compatible with such hybrid models. It remains to
be seen how the models could then be optimised together and how the
search space representation interacts with the training of the weight-
ing model.
Transition-based dependency parsing is mainly based on very ex-

pressive transition systems. If the current work could be extended
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to nonprojective trees, a finite-state model of the bounded grammar
could perhaps be used to handle neural transition systems and to im-
prove nondeterministic strategies in these parsers.
Besides transition-based parsing, there are several other neural

network based parsing models to which the current encoding or its
unrestricted extension (Yli-Jyrä 2019) could be integrated, as men-
tioned in the introduction.
6.2 Generality and Definable Properties of Graphs
Since the noncrossing graphs have bounded treewidth, it is possible to
obtain many efficient algorithms for them. Especially, there is an algo-
rithmic metatheorem (Courcelle 1990) that states that any graph prop-
erty in monadic second order logic (MSO) can be decided in linear time
for bounded-treewidth graphs. Yli-Jyrä and Gómez-Rodríguez (2017)
can be seen as a start for a research that reconstructs this metatheo-
rem via dependency bracketing and context-free grammars in the case
of noncrossing graphs. It is, indeed, possible to create an algorithm li-
brary that implements MSO logic for noncrossing graphs, using the
currently explored encoding schemes.
The currently presented encoding is a crucial step towards more

comprehensive bracket-based encoding of graphs. It is possible to de-
velop similar encoding schemes for unrestricted ordered graphs. In-
deed, we have already worked on an encoding that generalises ele-
gantly to all ordered graphs. The description of the generalised en-
coding will appear separately (Yli-Jyrä 2019).
6.3 Learnability of subregular approximations of syntax
By showing that the positive examples in the training data have a ro-
bust bound for the depth of bracketing in the context-free encoding,
the dependency structures can be seen as a regular language, with
a truncated Chomsky-Schützenberger representation. It has been pre-
viously observed that such regular languages are often star-free (Yli-
Jyrä 2003a, 2005a,b), but their descriptive complexity depends on the
bracketing depth (Yli-Jyrä 2008, 2005c). Thus, they do not belong to
any of the basic subregular classes of languages that have been shown
to be learnable from positive data (Heinz and Rogers 2013). From the
structure of languages in Yli-Jyrä and Gómez-Rodríguez (2017), we
can infer that learning non-local properties of noncrossing graphs also
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requires learning latent labeling of their bracketing. These challenges
put a strain on the research on such subregular language classes that
would allow us to learn finite-state approximations of syntax from
treebanks. This research could be related to representation learning
in neural networks.
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ý
t

38
p
o
d
ep
sá
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ó
l
1
3

k
és
źı
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á
sá
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