
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
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Minimal phrase structure: a new
formalized theory of phrase structure

John J. Lowe1 and Joseph Lovestrand2
1 University of Oxford

2 SOAS, University of London

ABSTRACT

Keywords:
phrase structure,
X′ theory, Bare
Phrase Structure,
Lexical-Functional
Grammar

X′ theory was a major milestone in the history of the development of
generative grammar.1 It enabled important insights to be made into
the phrase structure of human language, but it had a number of weak-
nesses, and has been essentially replaced in Chomskyan generativism
by Bare Phrase Structure (BPS), which assumes fewer theoretical prim-
itives than X′ theory, and also avoids several of the latter’s weaknesses.
However, Bare Phrase Structure has not been widely adopted outside
the Minimalist Program (MP), rather, X′ theory remains widespread.
In this paper, we develop a new, fully formalized approach to phrase
structure which incorporates insights and advances from BPS, but does
not require the Minimalist-specific assumptions that come with BPS.
We formulate our proposal within Lexical-Functional Grammar (LFG),
providing an empirically and theoretically superior model for phrase
structure compared with standard versions of X′ theory current in LFG.

1We are grateful to the audiences at the University of Oxford Syntax Working
Group (8 June 2016), at SE-LFG23 (13 May 2017), and at LFG17 (25 July 2017),
where earlier versions of these proposals were presented. In particular we are
grateful to Adam Przepiórkowski for insightful criticisms and helpful suggestions.
We also thank the editors and anonymous reviewers. All remaining errors are
our own.
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John J. Lowe, Joseph Lovestrand

1 INTRODUCTION

X′ theory, first introduced in Chomsky (1970) and elaborated in Jack-
endoff (1977) among other works, was a major milestone in the his-
tory of the development of generative grammar. It provided, for the
first time, a mechanism for capturing generalizations and constraints
on possible phrase structures in language. X′ theory originated as a
means of generalizing over sets of phrase structure rules (PSRs), but
in the early 1980s, within the Principles & Parameters model, it led
to the abandonment of PSRs as a part of the grammar of individual
languages. X′ theory encapsulated important insights into the phrase
structure of human language, but it had a number of weaknesses,
and has been essentially replaced in Chomskyan generativism by Bare
Phrase Structure (Chomsky 1995). Bare Phrase Structure (BPS) as-
sumes fewer theoretical primitives than X′ theory, and is therefore
preferable from a minimalist perspective; it also avoids several of
the empirical and theoretical weaknesses of X′ theory. However, Bare
Phrase Structure is unavoidably associated with a number of assump-
tions which are theory-specific to the Minimalist Program (MP) – most
obviously perhaps, its derivational nature – and for this reason has not
been widely adopted outside the MP.

Where Bare Phrase Structure is not adopted, X′ theory remains
the most widespread approach to phrase structure, and it remains the
standard means of approaching phrase structure in most introductory
text books. The grammatical framework of Lexical-Functional Gram-
mar (LFG: Kaplan and Bresnan 1982) retains X′ theory in largely its
original form (i.e. as a set of cross-linguistic generalizations over PSRs
in the grammars of individual languages), and thus retains both the
benefits and weaknesses of this approach to phrase structure. We take
the version of X′ theory currently utilized in LFG to be the most elab-
orate and precisely formalized version of X′ theory currently in use.

In this paper, we develop a new, fully formalized approach to
phrase structure within LFG which avoids the major weaknesses of X′
theory and incorporates many of the advantages of BPS.2 While for-

2An early version of our proposal was made in Lovestrand and Lowe (2017).
The present version differs in significant ways, most importantly in its use of
distributive features (Section 3.3) to eliminate redundancy in labelling.

[ 2 ]



Minimal phrase structure

malized within LFG, our proposal is easily extensible to other theories.
Our model has been tested within the computational implementation
of LFG, the Xerox Linguistic Environment (XLE: Crouch et al. 2011).3

2CONSTRAINING PHRASE STRUCTURE

Since the introduction of PSRs by Chomsky (1957) as a central compo-
nent of the theory of formal syntax, there has been significant progress
constraining this formal mechanism to approximate the actual types
of phrase structures that are attested in languages, and to prevent the
theory from being able to produce unattested phrase structures. The
most significant milestone in the development of the theory of phrase
structure was the development of X′ theory. However, X′ theory had
a number of inadequacies which ultimately led to its replacement in
the mainstream Chomskyan tradition. In this paper, we focus on seven
features lacking from X′ theory which should form a part of an ade-
quate theory of phrase structure; most but not all of these are found in
BPS. An adequate theory of phrase structure should (in contrast with
existing formalized versions of X′ theory):
(1) a. Utilize only as much structure as required to model con-

stituency, avoiding nonbranching dominance chains.
b. Avoid the assumption of massive/default optionality in
PSRs.

c. Avoid redundancy in category labelling, ensuring that endo-
centric phrases necessarily share the category of their head
without stipulation.

d. Lack a distinct notion of X′.
e. Incorporate a notion of Xmax distinct from ‘XP’, and a notion
of the highest projection distinct from Xmax.

3Being formulated within LFG, our model functions as a set of constraints
on language-specific PSRs, but it is important to note that our proposal could
without difficulty be reinterpreted within different frameworks purely as a set of
constraints on phrase structure more generally, with no language-specific PSRs
as such.

[ 3 ]
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f. Incorporate a principled account of exocentricity.
g. Incorporate a principled account of nonprojecting cate-
gories.

Most of the desiderata in (1) address specific issues that have
arisen in the development of X′ theory. BPS has addressed many of
these issues, though not all. The last two desiderata expand the cov-
erage of the theory of phrase structure to include two types of non-
X′-theoretic structures: nonprojecting words and exocentric structures
are adopted in X′-theoretic approaches to phrase structure in LFG, but
have not been formally incorporated in the theory. Our proposal be-
low is the first fully formalized theory of phrase structure that satisfies
all of the desiderata in (1).

In the following sections, we discuss two contemporary ap-
proaches to phrase structure: the version of X′ theory current within
LFG, which we take to be the most fully developed version of X′ theory
currently in use; and BPS, the standard approach to phrase structure
within the Chomskyan generative tradition.

2.1 Current X′ theory in LFG

X′ theory began as a means of stating generalizations over sets of
PSRs.4 Following Stowell (1981), X′ theory was reconceived within
the Principles & Parameters framework as a set of universal constraints
on phrase structure, and subsequently language-specific PSRs them-
selves were eliminated; language-specific characteristics of phrase
structure were instead constrained by syntactic processes, such as the
assignment of Case. This final step was not taken in LFG. In LFG, X′ the-
ory remains a means of generalizing over and stating constraints on
sets of PSRs. PSRs themselves cannot be eliminated, because they con-
stitute the main body of non-lexical constraints in a grammar. A min-
imal Lexical-Functional Grammar consists of a set of lexical entries
and a set of PSRs; grammatical structure is, and can only be built by
the application of specific PSRs (which ultimately license insertion of
lexical information).

4A detailed introduction to X′ theory and its development is provided by
Carnie (2010, chapter 7). See also Carnie (2000) and Kornai and Pullum (1990).
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The advantage of LFG’s phrase-structure based approach to struc-
ture building is its computational efficiency: despite being a unifica-
tion-based system, which therefore in principle has the power of an
unrestricted rewriting system, the structure-building component of an
LFG is a context-free phrase structure grammar; as shown by Maxwell
and Kaplan (1996), appropriate interleaving of context-free parsing
and f-structure unification can be computed in cubic time.

Despite the obvious strengths which led to its great success, and
which were largely adopted into BPS, X′ theory suffers from a number
of weaknesses; see Kornai and Pullum (1990) for a detailed examina-
tion of the theoretical weaknesses of X′ theory. We focus here on X′
theory as it is currently conceived and used within LFG, which admits
a number of extensions to and alterations of the strict principles of X′
theory in its original formulation.

We focus on four main weakness of X′ theory as utilized within
LFG, all of which are evident in (2), a standard LFG constituent struc-
ture for the sentence Spot runs: nonbranching dominance chains, op-
tionality of daughters (related to the existence of nonbranching domi-
nance chains, of course, but including heads), redundancy in category
labelling, and the need to assume intermediate (X′) nodes as an in-
dependent theoretical construct (cf. (1a–d)). We discuss these issues
in turn.
(2) ....IP.....

..I′...

..VP...

..V′...

..V...

..runs

.

..

..DP...

..D′...

..NP...

..N′...

..N...

..Spot
As discussed in Section 3.1, the LFG representation of phrase

structure, c(onstituent)-structure, models only surface constituency re-
lations, while functional syntactic relations are modelled at a separate
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level of structure, f(unctional)-structure. Thus phrases which consist
of only one word, like the DP Spot and the VP runs, can only be mod-
elled within LFG’s approach to X′ theory by assuming nonbranching
dominance chains, such as the DP chain in (2), where we have four
nonbranching nodes dominating the N. There can be no silent speci-
fier, head or complement positions hosting functional features to fill
out the tree, because such features are represented at f-structure and,
as stated, the tree models only the surface constituency relations of
the overt elements of the sentence.5 Even within syntactic theories
which admit empty nodes, adherence to X′ theory would still involve
some nonbranching dominance chains (though perhaps not as long
as in (2)).

Although nonbranching chains as in (2) do model relevant prop-
erties of the structure, such as the dual maximality (phrasality) and
minimality of the individual words, the resulting structure, involving
ten nonterminal nodes, seems inordinately complex as a representa-
tion of the surface constituency of a two word sentence. This con-
stituency could be equally well captured by the tree in (3), which is
considerably more in the spirit of BPS. Our proposal below licenses
structures equivalent to (3).
(3) ....V.....

..V...

..runs.

..

..N...

..Spot
Related to this problem is the issue of optionality of phrase struc-

ture nodes (cf. (1b)). Clearly, dominance chains like XP–X′–X re-
quire that specifier and complement positions be optional. But as
can be seen in (2), heads can also be optional. This must be possi-

5There is some debate within LFG over the existence of traces, i.e. whether
there may be some terminal nodes in a c-structure which do not correspond to
any overt element. Arguments against traces were made by Kaplan and Zaenen
(1989), and widely accepted within the LFG community; traces are accepted by
Bresnan (1995, 1998, 2001) and Bresnan et al. (2016) only in order to account
for weak crossover, but analyses of weak crossover which do not involve traces
are offered by Dalrymple et al. (2001, 2007), Nadathur (2013) and Dalrymple
and King (2013).
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ble for functional categories like I and D, on the assumption, stan-
dard in LFG, that V and N are necessarily dominated by these cat-
egories (as in (2)). But many analyses also require heads of lexical
phrases to be optional. Most work in LFG, therefore, including the
standard textbooks of Bresnan (2001) and Dalrymple (2001), assume
that all phrase structure positions are in principle optional, heads and
nonheads alike. However, there are certain structures in some lan-
guages in which optionality must be suppressed; see Snijders (2012)
and Dalrymple et al. (2015, 386–388) for detailed discussion of such
cases.6

Optionality as the default situation, ruled out in certain circum-
stances, is widely assumed in existing LFG analyses, but has never been
properly formalized: in LFG, the right-hand side of a PSR must be a
regular expression; in regular expressions it is optionality (defined as
disjunction with the empty set), not obligatoriness, which has to be
specified. In contrast, it would be more intuitive, and PSRs would be
considerably less ambiguous, if optionality were the exception, rather
than the rule. The model we present below avoids the need for mass
optionality, treating optionality as an occasional necessity, rather than
a default.

A further weakness of X′ theory involves another type of redun-
dancy in representation: each node is independently specified with
a category label, but given the inherent constraints on X′-theoretic
structures, each node in a projection chain necessarily has the same
category label, meaning that it ought not to be necessary to specify
this information more than once for each projection chain. That is,
the notion that a phrasal node necessarily has the same category la-
bel as its head ought to fall out naturally, rather than by stipulation,
which is essentially the way it has to be done in X′ theory. Our pro-
posal makes use of the concept of distributive features to ensure that
only a single instance of category labelling applies for each projec-
tion chain.

The fourth major weakness of X′ theory is that it entails the ex-
istence of the intermediate node type X′ as an independent theoret-
ical construct (cf. (1d)). However, a wealth of research has demon-
strated that there is no clear evidence of syntactic processes which

6See further Lovestrand and Lowe (2017, 289–290).
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make reference to the X′ level, suggesting that it is not an indepen-
dent concept in human language.7

2.2 Further problems: augmenting X′ theory

In attempting to provide a sufficiently flexible model of phrase struc-
ture to adequately capture the wide range of crosslinguistic variation
in surface configurational syntactic structure, LFG has been forced to
admit certain augmentations to the basic X′-theoretic structures it in-
herited. These augmentations are not problematic in themselves, but
they have never been properly integrated into existing formal analyses
of X′ theory.

In addition to endocentric phrase structures, LFG also admits ex-
ocentric structures, most commonly the exocentric clausal category S
(Bresnan 1982; Kroeger 1993; Bresnan 2001). S is not subject to
ordinary X′-theoretic constraints: it is a non-headed category that may
contain a predicate along with any or all of its arguments. S is most
commonly utilized in the analysis of non-configurational languages
(Austin and Bresnan 1996; Nordlinger 1998), but it is also utilized
in some analyses of languages with relatively fixed word order, such
as Welsh (Sadler 1997) and Barayin (Lovestrand 2018).8 While S, and
sometimes other exocentric categories, are widely admitted in LFG, re-
cent formalizations of X′ theory find no place for exocentricity, leaving
it outside the formal system while nevertheless remaining crucial to
actual grammars and analyses.

A further concept widely adopted within LFG is that of nonpro-
jecting categories. Toivonen (2003) argues that alongside the tradi-
tional projecting lexical categories, there exist also nonprojecting cate-
gories, represented as X̂, which adjoin to X0 (projecting) heads. Non-
projecting words do not head phrases, and so it is not possible for
another phrase to stand in a specifier, complement or adjunct relation
to such a word. Nonprojecting words are often particles and/or clitics.
Toivonen argues in detail that verb particles in Swedish are nonpro-

7Early arguments in Travis (1984), see also Carnie (2000, 2010).
8See example (38) below.
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jecting P̂s, giving the example in (4), and proposing the augmentation
to X′ theory shown in (5).9

(4) Eric
Eric

har
has
slagit
beaten

ihjäl
to.death

ormen
snake.DEF

‘Eric has beaten the snake to death.’ ....IP.....

..I′.....

..VP...

..V′.....

..NP...

..N0...

..ormen.

..

..V0.....

..P̂...

..ihjäl.

..

..V0...

..slagit

.

..

..I0...

..har.

..

..NP...

..N0...

..Eric

(5) X0 → X0 , Ŷ
The possibilities for nonprojecting words have been further

broadened by other authors, relaxing Toivonen’s (2003) assumption
that nonprojecting words adjoin only to X0 heads. Spencer (2005) ar-
gues for adjunction of nonprojecting words to phrasal categories, as
well as to X0 heads, in order to capture the properties of case clitics in
Hindi. Duncan (2007) and, more recently, Arnold and Sadler (2013),
propose that nonprojecting categories may also adjoin to nonproject-
ing categories. Arnold and Sadler (2013) base their proposals on the
relatively familiar features of prenominal modification in English.
Building on work by Poser (1992) and Sadler and Arnold (1994),
they argue that prenominal modification in English should be anal-
ysed in terms of nonprojecting categories; this accounts for the fact
that prenominal adjectives cannot take postpositioned complements
or modifers, unlike adjectives in other positions. But since prenominal
modification is recursive, this requires that nonprojecting categories

9The comma in the templatic PSR in (5) is the ‘shuffle’ operator, indicating
variable order of the sequences on either side. For its use in LFG see Dalrymple
et al. (2019, 204–205).
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can be adjoined not only to X0, but also to nonprojecting X̂s. That is,
we require a rule of the kind in (6); the analysis proposed by Arnold
and Sadler (2013) for prenominal modification in English is shown
in (7).

(6) X̂ → Ŷ X̂ (7) ....NP.....

..N′...

..N0.....

..N0...

..man

.

..

..dAdj.....

..dAdj...

..happy.

..

..ÔAdv...

..very

.

..

..D...

..a

Here the nonprojecting categorydAdj adjoins to N0, while nonpro-
jectingÔAdv adjoins todAdj.

Once again, existing formalizations of X′ theory within LFG do not
adequately account for nonprojecting categories. Our proposal does
so, and we model our approach to nonprojecting categories with re-
spect to English prenominal modification, adopting the proposals of
Arnold and Sadler (2013) illustrated here. Our model also allows in
principle for adjunction of a nonprojecting node (or any kind of node)
to a phrasal category, XP, as proposed by Spencer (2005).10

2.3 BPS

The origins of BPS have been discussed in detail by a number of au-
thors, including Carnie (2010, 135–167), and here we will focus only
on the major innovations and insights which distinguish BPS from X′
theory.11 In general, and in line with the Minimalist Program, BPS

10This possibility is not modelled below, but it could be achieved by mod-
ifying the adjunction rule in (36b) so that the template @LOM is replaced by
@LPM. For English prenominal modification, this would be necessary to capture
the constituency of phrases like [small [book of poems]].

11Formalizations of the principles of BPS are given by e.g. Stabler (1997),
Gärtner (2002) and Collins and Stabler (2016). We discuss the latter work below.
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aims to incorporate the major insights of X′ theory not as stipulations
but as the natural consequences of deeper principles. In doing this,
certain problematic aspects of X′ theory have been discarded.

One early identification of a major weakness in X′ theory was by
Fukui (1986), who shows that the amount of structure found with par-
ticular types of projection may vary crosslinguistically; in particular,
in some languages functional categories lack specifiers. Fukui draws
the conclusion that there is a difference between XP (understood as X′′)
and Xmax, a maximal projection: some maximal projections are equiv-
alent to X′. Thus, if there is cross- or even intra-language variation
in the amount of structure admitted in different projections, X′ the-
ory provides no coherent notion of a maximal projection. As noted by
Lovestrand and Lowe (2017, 288–289), this weakness persists in X′
theory as utilized within LFG; for example, Bresnan et al. (2016, 130)
permit phrases to lack specifiers “as a parametric choice”, without ad-
dressing the formal problems this raises.

Similar problems with distinguishing Xmax from the top projec-
tion, in cases of adjunction, are discussed by Hornstein and Nunes
(2008): if the properties of mother and head daughter are identical
in adjunction structures, then adjunction to Xmax results in multiple
Xmax projections; only one Xmax is the top projection, but this cannot
be formally distinguished from the others.12 Our proposal below can
capture both the distinction between XP and Xmax, and between Xmax
and the top projection.

The consequence of Fukui’s separation of XP from Xmax is a rela-
tivization of the notion of maximal category, and a concurrent weak-
ening of the status of bar levels as absolute notions. A similarly rela-
tivized approach to projection levels was taken by Speas (1986). The
underlying intuition is that the amount of structure in a phrase is only
as much as needed to account for the constituency; maximal projec-
tions may correspond to X′′, X′, or even X, depending on the phrase
in question. Thus, a node may be both maximal and minimal at the

12An alternative and more standard way of approaching adjunction within
BPS involves the notion of ‘pair-merge’ (Chomsky 2001). We do not see how
‘pair-merge’ could be treated coherently within the framework adopted in this
paper, and note that it has been criticized within the Chomskian tradition, e.g.
by Hornstein and Nunes (2008).
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same time; it is primarily this intuition which motivates X′ theoretic
structures like (2) to be simplified into structures more like (3). The
relativized approach to X′ theoretic notions proposed by Speas (1986)
provides a coherent definition of Xmax, which is lacking in X′ theory.13
But at the same time, this approach eliminates a coherent notion of X′.
Speas (1986) shows that this is a valid elimination, since there are no
syntactic phenomena which necessarily make reference to the X′ level
(see also footnote 7).

The insights of Fukui (1986) and Speas (1986) fed into the theory
of BPS as developed by Chomsky (1995). One of the fundamental fea-
tures of BPS is the notion that all structure building can be attributed
to a single basic syntactic operation, Merge. Merge takes two elements
and forms them into a set, which is labelled with one of the two ele-
ments. The element which provides the label is the head.

The labelling mechanism is a further aspect of BPS relevant to
the present discussion. For Chomsky (1995), the label of a merged
structure is automatically derived from one of the merged elements.
Thus labelling is a part of the definition of Merge, and as such the
notion that a phrase necessarily has the same category label as its head
falls out without further stipulation, given the definition of Merge. In
contrast, as noted above, in X′ theory the fact that a head X necessarily
heads a phrase XP (rather than YP) falls out only by stipulation: PSRs,
or constraints on PSRs, are stated in such a way that this intuition is
not violated, but in principle different rules or constraints might have
been stated which did violate the intuition. Following Collins (2002),
some approaches to BPS go further, attempting to eliminate labelling
altogether. While this is not universally accepted, it reflects the deeper
aims of the MP to eliminate as far as possible all redundant elements
of analysis.

Another central element of BPS is the concern with accounting
for linearization patterns, building on the work of Kayne (1994). In
the PSR-based approach we use as the basis for our proposals in this
paper, linear order is a given, stipulated in the PSRs wherever deter-
minate, with variable ordering a marked possibility. We therefore do
not consider this aspect of BPS further here.

13Speas’ definition of maximal projection, as emended by Carnie (2010, 139),
runs: “X = XP if ∃G, immediately dominating X, the head of G 6= the head of X.”
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2.4Conclusion

In the foregoing discussion, we have identified seven main ways in
which a theory of phrase structure should improve upon existing
formalizations of X′ theory and/or should incorporate insights from
BPS. A formal model of phrase structure should avoid non-branching
chains, and the default optional nodes associated with them. It should
not stipulate a mid-level X′ node, and should include a mechanism to
distinguish a maximal node, in the sense of the mother of a structure
including all specifiers and complements, from a higher node includ-
ing adjunction structures. The theory should naturally produce endo-
centric structures in which heads and mothers share category infor-
mation, while at the same time successfully modeling nonprojecting
and exocentric structures.

3A NEW MODEL:
MINIMAL PHRASE STRUCTURE

3.1Underlying architecture

As stated, our proposal is formalized within LFG. LFG is a constraint-
based, non-derivational framework for grammatical analysis; hand-
books include Dalrymple (2001), Falk (2001), Bresnan et al. (2016)
and Dalrymple et al. (2019). A central aspect of the LFG framework
is that it distinguishes different types of grammatical information and
models them as distinct levels of grammatical representation. These
levels are related to one another by means of projection functions.

One level of grammatical representation, central to the present
topic, is the c(onstituent)-structure, which represents the phrasal
structure of a clause. C-structure is represented as a phrase-structure
tree, and constraints on possible c-structures are stated as PSRs. As dis-
cussed above, c-structure represents only the surface constituency of
a clause or phrase, while more abstract functional syntactic properties
and relations, such as grammatical functions, long-distance dependen-
cies and agreement features, are dealt with at the level of f(unctional)-
structure. F-structure is represented as an attribute-value matrix, and
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understood in set-theoretic terms as a set of attribute-value pairs (Dal-
rymple 2001, 30).

So, for the English sentence Spot runs, the c-structure can be repre-
sented as in (2), assuming for the moment standard X′ theoretic struc-
tures; the f-structure for the same sentence, representing the abstract
grammatical structure of the clause, can be represented as in (8).14

(8)
PRED ‘run〈SUBJ〉’
SUBJ
�
PRED ‘Spot’
�

These two levels of grammatical representation are related via the
projection function ϕ, which maps c-structure nodes to correspond-
ing f-structures. Functional descriptions (f-descriptions) constrain the
possible relations between c-structures and f-structures. The relations
between c- and f-structure are stated by reference to c-structure nodes,
their mothers, and the f-structures projected from those nodes and
their mothers. So, any c-structure node can be referred to by the vari-
able ∗, and its mother by the variable ∗̂. The f-structure projected from
any c-structure node is therefore obtained by the application of the
function ϕ to the variable ∗, that is ϕ(∗), and likewise the f-structure
projected from a c-structure node’s mother is obtained by the applica-
tion of ϕ to ∗̂, that is ϕ(∗̂). Reference to these f-structures is abbrevi-
ated using the metavariables ↓ and ↑:
(9) a. ↓ ≡ ϕ(∗)

b. ↑ ≡ ϕ(∗̂)
Using these metavariables it is possible to concisely state constraints
on the relation between c-structure and f-structure. For example, in
English the specifier of IP is associated with the grammatical role of
subject. The following PSR captures this constraint:
(10) IP → DP I′

(↑SUBJ)=↓ ↑=↓
14Following standard LFG conventions, we represent only those features of f-

structure that are relevant for the discussion at hand, omitting features encoding
information about person, number, gender, tense, aspect, and other grammatical
information. More complex f-structures containing more features appear below,
e.g. (23) and (24).
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The annotation (↑SUBJ)=↓ on the specifier of IP states that the
f-structure projected from the DP (↓) is the value of the attribute SUBJ
in the f-structure projected from the DP’s mother (↑). The annotation
↑=↓ on the I′ states that the f-structure projected from the I′ (↓) is
the same f-structure as that projected from the IP (↑). Ex. (11) repeats
the c-structure in (2), but augmented with the functional descriptions
specified for each node in the PSRs, and shows the projection func-
tion ϕ relating the c-structure to the f-structure (from (8)) by means
of arrows between the two structures.

(11) ....IP.....

..I′↑=↓...

..VP↑=↓...

..V′↑=↓...

..V↑=↓...

..runs

.

..

..DP
(↑SUBJ)=↓...

..D′↑=↓...

..NP↑=↓...

..N′↑=↓...

..N↑=↓...

..Spot

.

PRED ‘run〈SUBJ〉’
SUBJ
�
PRED ‘Spot’
�

..

Importantly, c-structure and f-structure are not the only two lev-
els of grammatical representation, and ϕ is not the only projection
function. For example, the function σ maps f-structures to s(emantic)-
structures. Kaplan (1989) generalized the concept of projection func-
tions between levels of grammatical representation, resulting in a ‘pro-
jection architecture’ of different levels of linguistic structure. Much
recent work has debated the full inventory of projections and projec-
tion functions, including e.g. Bögel et al. (2009), Dalrymple and My-
cock (2011), Dalrymple and Nikolaeva (2011), Giorgolo and Asudeh
(2011), Asudeh (2012, 53), and Mycock and Lowe (2013).

For our purposes, the details of the projection architecture are
not important. But one additional projection is vital to the present
discussion. While c-structure representations standardly incorporate
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information on category labels and projection level in represent-
ing nodes as IP, N′, V, etc., this is to be understood as a short-
hand. Following Kaplan (1989), category information and projec-
tion level are not directly encoded in c-structure, but are projected
from c-structure nodes via a projection λ. That is, the representa-
tion in (12) must be understood as a shorthand for something like
(13). We refer to the structure projected by λ as the l-structure.
Note that the l-structures in (13) are for illustrative purposes only;
the feature BAR is not an element of the analysis we propose
below.15

(12) ....IP.....

..I′.

..

..NP

(13) ..CAT N
BAR 2

.
.

....∗......

..∗..

..

..∗.

. .
CAT I
BAR 2


.
CAT I
BAR 1



..
λ

..

λ

..

λ

Since projection level and category information are not actually
a part of c-structure, but are projected from it just like f-structure fea-
tures, it follows that projection level and category information must
be constrained in PSRs by means of functional descriptions on nodes,
rather than as inherent properties of nodes. For example, just as (12)
is an abbreviation for (13), so the PSR in (14) can be understood as an
abbreviation for something like (15); recall that ∗ represents a phrase
structure node.

(14) IP → NP I′
(↑SUBJ)=↓ ↑=↓

(15) ∗ → ∗ ∗
(↑SUBJ)=↓ ↑=↓
(λ(∗)CAT)=N (λ(∗)CAT)=I
(λ(∗)BAR)=2 (λ(∗)BAR)=1

(λ(∗̂)CAT)=I
(λ(∗̂)BAR)=2

15On BAR see Section 4.1 below.
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3.2Main features

Clearly, the functional descriptions specifying category and projection
level in (15) are highly inadequate, and fail to capture most or all of
the desiderata for a formal model of phrase structure as set out above.
In particular, the feature BAR with values 0, 1, 2, does no more than
model the X′-theoretic distinction between X, X′ and XP, retaining all
the problems with these notions discussed above.

Our proposal goes beyond the basic assumptions in (13) in two
major ways; the first of these will be discussed in this section, the
second in Section 3.3. Firstly, we propose that a relatively minor al-
teration of the feature set seen in (13) is sufficient to license a model
of phrase structure which incorporates most of the desiderata set out
above. We propose three l-structure features instead of two: CAT,
which represents category labelling just as in (13); L, which intuitively
represents the ‘level’ of any node, roughly corresponding in tradi-
tional terms to whether the node is a zero, one or two bar level node;
and P, which intuitively represents the maximum projection level of
the word/projection concerned.
(16) ..

∗.
.

.
CAT V
L 0/1/2
P 0/1/2


..

λ

The values of L and P are integers, e.g. 0, 1, 2.16 We assume that
the value 2 is a sufficient maximum for English, but our formalization
below does not enforce either a maximum or minimum value, mean-
ing that if higher values are justified for some phrase types in some
languages, or if some phrase types require only two values, 0 and 1
(for example because they lack specifiers), this will fall out unprob-
lematically without further stipulation.

In order to make our proposal as clear as possible, we illustrate the
l-structures we assume for the phrases books, the book, and Bill’s books.
However, the l-structure relations indicated here are not yet final, be-
cause we have not yet discussed our second innovation over (13); in

16But see footnote 21.
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order to simplify the presentation, we integrate that into our model
separately, in Section 3.3.

The phrase books in the sentence I read books will have the fol-
lowing structure:
(17)

....∗....

..books

. .
CAT N
L 0
P 0


..

λ

As a phrase consisting of a single word, books is both maximal
and minimal. In our system, the definition of a minimal projection
is any node with the feature 〈L,0〉, while the definition of a maximal
projection is any node with the feature set {〈L,n〉,〈P,n〉}, that is any
node whose L and P features have identical values. A node which is
both maximal and minimal therefore has the feature set {〈L,0〉,〈P,0〉}.
The phrase the books in the sentence I read the books will have the

following (preliminary) structure:
(18)

..CAT D
L 0
P 1

.
. ....∗......

..∗....

..books.

..

..∗....

..the

. .
CAT D
L 1
P 1


.
CAT N
L 0
P 0



..
λ

..

λ

..

λ

Once again, the noun books is both maximal and minimal as the
noun phrase complement of D. The head D is a minimal projection, so
has the feature 〈L,0〉, but it is not maximal. The maximal projection of
the determiner phrase is the node that directly dominates the D head
and the N complement. Since there are only two words in the phrase,
we require only a single projection up from the preterminal nodes, just
as in a BPS analysis. The maximal projection is one projection level
up from the head; it therefore has the feature 〈L,1〉. As a maximal
projection, its L and P values must be identical; it therefore also has
the feature 〈P,1〉. The feature P represents the maximal projection level
for the entire projection, and is shared by all nodes in the projection
chain. Thus as the head of the determiner phrase, the head D must
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have the same P value as the maximal projection, meaning that it also
has the feature 〈P,1〉.

Now, consider the phrase Bill’s books. Let us assume (purely for
the sake of argument) that the possessive marker ’s is a separate word
which fills the head of the determiner phrase, and that Bill appears in
the specifier of the determiner phrase.
(19)

..CAT N
L 0
P 0

.
CAT D
L 0
P 2

.

.
....∗......

..∗......

..∗....

..books.

..

..∗....

..’s

.

..

..∗....

..Bill

.

.
CAT D
L 2
P 2


.
CAT D
L 1
P 2


.
CAT N
L 0
P 0



..
λ

..

λ

..

λ

..

λ

..

λ

Once again the noun books is simultaneously maximal and mini-
mal, and the same is true of the other noun in the phrase, Bill. But now
the DP consists of three words, and thus necessarily has more struc-
ture. Since there is both a specifier and complement to D, the maximal
projection is two projection levels higher than the head, and therefore
has the feature set {〈L,2〉,〈P,2〉}. The head, as a minimal projection, has
the feature 〈L,0〉, and since the maximal projection from the head has
the feature 〈P,2〉, the head also has this feature. The intermediate node
is one projection up from the head, and is part of a projection chain
which extends two levels of projection above the head (i.e. which has
the feature 〈P,2〉); the intermediate node therefore has the feature set
{〈L,1〉,〈P,2〉}.

3.3Sets and distributive features

Although the system illustrated in the previous section enables us
to formalize an approach to phrase structure which eliminates non-
branching dominance chains, and achieves several of the other
desiderata set out above, it nevertheless incorporates a degree of
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redundancy, particularly as regards the CAT and P features. Essen-
tially, in any projection chain the values for CAT and P for every node
are identical, as e.g. with the three l-structures projected from the
head, intermediate and maximal D projections in (19). It is possible to
stipulate this identity, by means of constraints which require the head
daughter of any node to have the same CAT and P values as its mother.
But as discussed above, it would be preferable if the necessarily shared
properties of such nodes were shared as a natural consequence of the
model (as in BPS), rather than by stipulation (as in X′ theory).

Happily, the LFG framework provides the mechanism we seek.
L-structures are represented as attribute-value matrices, and just like
f-structures, as discussed above, are understood in set-theoretic terms
as sets of attribute-value pairs. It is also possible, and sometimes neces-
sary, to assume sets of f-structures, that is sets of sets of attribute-value
pairs. By extension, sets of l-structures are formally unproblematic.

Features (or attributes) interact with sets of f-structures in inter-
esting ways, such that it becomes necessary to distinguish two types
of features, distributive and non-distributive features. The need for this
distinction has been most clearly demonstrated in relation to coordi-
nation and agreement; we therefore take a small detour to justify the
difference between distributive and nondistributive features, before
demonstrating their use for the present topic.

3.3.1 Agreement and (non)distributive features

Consider the following data, based on King and Dalrymple (2004):
(20) a. This boy and girl eat/*eats pizza.

b. *These boy and girl eat/eats pizza.
c. A boy and girl eat/*eats pizza.
d. *This boy and girls eat/eats pizza.

In English, a single determiner can occur with two conjoined sin-
gular nouns, and in this case the determiner must be singular. Yet the
verb agreement with such a subject phrase must be plural. In LFG,
coordinated phrases are analysed at f-structure as a set, whose mem-
bers are the f-structures of the individual coordinated phrases. It is
also possible for sets to have their own features, independent of the
f-structures they contain; for example, a conjunction provides a feature
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such as 〈CONJFORM,AND〉, but this feature is a feature of the whole
conjoined phrase, not of either (or both) of the embedded phrases.
So for the sentence this boy and girl eat pizza the f-structure will look
something like this:

(21) This boy and girl eat pizza.

..



PRED ‘eat〈SUBJ,OBJ〉’

SUBJ s:


SPEC THIS
CONJFORM ANDb:
�
PRED ‘boy’
�

g:
�
PRED ‘girl’
�



OBJ
�
PRED ‘pizza’
�


The structure labeled s is a hybrid set: it is a set containing both

individual attribute-value pairs (features) and f-structures. The repre-
sentation of s, with square brackets enclosing the features and braces
enclosing the f-structures, is potentially misleading. It is not the case
that the set of f-structures {b, g} is contained within and distinct
from s, but the square brackets and braces together identify the hy-
brid set s, which contains four elements: two features (〈SPEC,THIS〉
and 〈CONJFORM,AND〉), and two f-structures (b and g).

In order to deal with the simultaneously singular and plural agree-
ment of the conjoined noun phrase, King and Dalrymple (2004) adopt
the proposal of Wechsler and Zlatić (2003) that there are actually two
types of agreement feature for nouns: CONCORD and INDEX features.
Informally, CONCORD is more morphological, and is generally rel-
evant for agreement between nouns and their immediate specifiers
and modifiers (e.g. determiners and adjectives). On the other hand,
INDEX is more semantic, and is relevant for agreement outside the
noun phrase, e.g. verb agreement.

Singular this, boy and girl specify both their CONCORD NUM and
INDEX NUM as SG, while plural these, boys and girls specify their
CONCORD NUM and INDEX NUM as PL. This is sufficient to account
for the grammaticality/ungrammaticality of this boy/these boys/*this
boys/*these boy etc. But to account for the grammaticality of this boy
and girl, and the ungrammaticality of *these boy and girl, we now
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require the distinction between distributive and nondistributive fea-
tures. Distributive features are defined as follows (Dalrymple and Ka-
plan 2000):
(22) If a is a distributive feature and s is a set of f-structures, then

(s a = v) holds iff ( f a) = v for all f-structures f which are
members of s.
Informally, a nondistributive feature may hold of a set of f-struc-

tures (making the set a hybrid set) independently of whether it holds of
each or any of the members of that set. In contrast distributive features
cannot hold of a set independently, but must hold for every member of
the set. If CONCORD agreement features are distributive, then any CON-
CORD feature specified of a set must hold of all f-structures within that
set. So when this modifies two conjoined nouns, and hence maps to a
set of f-structures, its specification (↑ CONCORD NUM)=SG holds only
if all f-structures within the set have the feature 〈CONCORD NUM,SG〉.
(23) This boy and girl eat pizza.

..



PRED ‘eat〈SUBJ,OBJ〉’

SUBJ s:



SPEC
�
PRED ‘this’
�

CONJFORM AND

b:
PRED ‘boy’
CONCORD
�
NUM SG
�

g:
PRED ‘girl’
CONCORD
�
NUM SG
�




OBJ
�
PRED ‘pizza’
�


Correspondingly, *these boy and girl is ruled out because these

will require every member of its set to have the feature 〈CONCORD
NUM,PL〉, which will not be compatible with the singular concord of
the nouns. Singular or plural determiners with nouns of mismatched
number, e.g. *this boy and girls, are also ruled out, since the definition
of distributivity requires that when a distributive feature is applied to
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a set, every member of that set must necessarily have the same value
for that feature.

As for verb agreement, this depends on INDEX. INDEX is a non-
distributive feature. Any non-3SG present tense verb specifies that the
value of its SUBJ INDEX NUM is PL, or else that the value of its SUBJ
PERS is not 3; only the first disjunction is relevant here. If the subject is
an ordinary, non-conjoined noun phrase, then the noun must be plural
(since plural nouns specify their INDEX NUM as PL, while singular
nouns specify it as SG, as discussed above). If the subject is a set, then
the feature 〈INDEX NUM,PL〉 must hold of the set, but need not hold of
any of the members of the set. Thus s has the feature 〈INDEX NUM,PL〉,
which is different from the INDEX NUM feature of the members of s.
This is exactly what we require to account for sentences like (20a):
(24) This boy and girl eat pizza.

..



PRED ‘eat〈SUBJ,OBJ〉’

SUBJ s:



SPEC
�
PRED ‘this’
�

CONJFORM AND
INDEX
�
NUM PL
�



b:


PRED ‘boy’
CONCORD
�
NUM SG
�

INDEX
�
NUM SG
�


g:


PRED ‘girl’
CONCORD
�
NUM SG
�

INDEX
�
NUM SG
�





OBJ
�
PRED ‘pizza’
�


3.3.2Back to phrase structure

How does the difference between distributive and nondistributive fea-
tures help with modelling projection chains? Although, in coordi-
nation, sets of f-structures are necessarily sets of more than one f-
structure, it is of course also possible to have singleton sets, i.e. sets
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containing a single member.17 Now, if a distributive feature applies
to an f-structure, or l-structure, which is a singleton member of a set,
that feature necessarily holds of the set as well. Likewise, if a distribu-
tive feature is specified of a singleton set, it necessarily holds of the
member of that set.18

Now let us revisit the projection structure for the phrase the books.
In (18) we treated the three l-structures projected from the three nodes
as structurally independent of each other. But now let us assume that
in any projection chain the l-structure of the head daughter is con-
tained within the l-structure of the mother, the mother’s l-structure
therefore being a hybrid set. The intuition we are trying to model is
that CAT and P values are necessarily identical for any node in a pro-
jection chain.19 If projection chains are modelled using set inclusion,
then we can achieve the desired outcome simply by defining the rele-
vant features as distributive. So instead of (18), we now propose:
(25) ..

a:


L 1b:
CAT D
L 0
P 1

.



.

.
....∗......

..∗..

..

..∗.

.
.
c:

CAT N
L 0
P 0


..

λ

..

λ

..

λ

That is, if CAT and P are distributive features, and if the l-structure
for any head daughter is a member of the (hybrid, singleton) set that
constitutes the mother l-structure, then CAT and P features are nec-
essarily shared between any mother and head daughter. This means
we require no stipulation to ensure that, say, a head of category D
projects a phrase of category D: the distributive nature of the CAT

17This is a regular outcome in LFG analyses of adjunction.
18Recently, Andrews (2018) has explored the potential of singleton hybrid

sets at f-structure for dealing with long-standing problems of scope in LFG, and
our proposal is inspired by his work.

19We do not address coordination in this paper, but note that coordination
of unlike categories is unproblematic, as we do not need to assume that set in-
clusion holds between coordinated nodes and their mother. To deal with unlike
categories will require a more complex representation of categories, such as that
proposed by Dalrymple (2017), which is entirely compatible with the model pro-
posed here.

[ 24 ]



Minimal phrase structure

feature and the nature of l-structure inclusion enforces this. The fea-
ture L, of course, must be defined as nondistributive, since mothers
and daughters in a projection chain may have different values for this
feature. Set inclusion can be recursive, so the principles illustrated in
(25) will equally well account for a phrase which projects two levels
(or more) above the head, as in Bill’s books:
(26)

..


L 2


L 1
CAT D
L 0
P 2

.



.




.

.
....∗......

..∗......

..∗....

..books.

..

..∗....

..’s

.

..

..∗....

..Bill

.
.
CAT N
L 0
P 0


.
CAT N
L 0
P 0


..

λ

..

λ

..

λ

..

λ

..

λ

3.4Phrase structure rules and templates

In the previous section, we showed the desired outcome of our model.
Now the question is how to state the relevant constraints which will
realise that model. The constraints which derive l-structure values are
realised as functional descriptions on PSRs and in lexical entries, i.e.
the standard locus of constraints in LFG.

We require a fixed number of f-descriptions to model l-structure,
which occur in different combinations in different contexts; in order
to generalize over multiple instances of these f-descriptions, we de-
fine them as templates (Dalrymple et al. 2004; Asudeh et al. 2013);
templates function like macros, allowing the same combinations of
f-descriptions to be applied together wherever appropriate. For exam-
ple, some projections require that the L and P values for a particular
node are identical (i.e. a maximal projection), others require that the
L value for a particular node is identical to the mother node’s L value.
We assume the following basic templates:20

20These templates use an alternative representation for projection functions
from that introduced above: ∗λ is the same as λ(∗).
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(27) Basic templates:
a. L-structure inclusion LSTRIN ≡ ∗λ ∈ ∗̂λ
b. Maximal phrase LP ≡ (∗λ L) = (∗λ P)
c. Mother node is a maximal phrase LPM ≡ (∗̂λ L) = (∗̂λ P)
d. L of node = L of its mother LUD ≡ (∗̂λ L) = (∗λ L)
e. L of mother node = 1 LIM ≡ (∗̂λ L) = 1
f. L is one less than L of mother LDOWN ≡ (∗λ L)

= (∗̂λ L) −1

g. L = 0 LO ≡ (∗λ L) = 0
h. L of mother node = 0 LOM ≡ (∗̂λ L) = 0
i. Mother node has a P value PXM ≡ (∗̂λ P)
j. Node does not have a P value PNX ≡ ¬(∗λ P)
k. Mother does not have P value PNXM ≡ ¬(∗̂λ P)
The first template here, LSTRIN, defines the l-structure inclu-

sion relation: the l-structure of the current node is a member of the
l-structure of the mother of the current node (the latter l-structure by
consequence therefore being a set). Other templates refer directly to
L and P values: they either specify that two features have the same
value, or specify an absolute or relative value for a particular feature,
or state existential constraints on the feature P.
The template LDOWN specifies a relative value for L: the value

of L of the current node is one less than the value of L of the mother
node. This crucial template is what drives the increase/decrease of
L values up/down a projection chain. Note that technically nat-
ural numbers play no role in the LFG formalism; feature values
like 0, 1, 2, are symbols, not natural numbers, so mathematical
statements like L − 1 are not strictly possible. It is, however, un-
problematic to formalize addition/subtraction using the successor
function, and we retain the mathematical statement as in (27f) for
readability.21

21 In Lovestrand (2018, 153) the @LDOWN template is defined as: @LDOWN
≡ (∗̂λ L PLUS) = (∗λ L). In this approach, the value of L is either 0 or an attribute-
value matrix with the attribute PLUS. In the l-structure, what is informally rep-
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The constraint in (27i) requires the feature P to exist in the l-struc-
ture of the mother node; PNX requires that P does not exist as a feature
of the l-structure of the current node, and PNXM requires the same of
the mother’s l-structure. These existential constraints are required to
account for nonprojecting categories, as discussed in Section 3.6.

The constraints in (27) are the only constraints needed to model
the phrase structure of natural language. Given these, and only these,
constraints, certain features of the system fall out unproblematically.
For example, in our system, intuitively, for any l-structure the value
of L is never greater than the value of P: ∀∗λ, P ≥ L. Given only the
templates in (27), an l-structure that violates this intuitive general
constraint cannot be generated, so the constraint need not be inde-
pendently stated.

Common phrase structure positions require particular combina-
tions of the constraints in (27). We therefore define further templates
for convenience, which call combinations of the templates in (27).
(28) Complex templates:

a. Head of an endocentric projection:
HEADX ≡ @LDOWN ∧ @LSTRIN

b. Head of an adjunction structure:
HEADA ≡ @LUD ∧ @LSTRIN

c. Specifier or adjunct: EXT ≡ @LPM ∧ @LP
d. Complement: INT ≡ @LIM ∧ @LP
e. Nonprojecting node: NONPRJ ≡ @LO ∧ @PNX
f. Nonprojecting mother: NONPRJM ≡ @LOM ∧ @PNXM
g. Projecting mother: PRJM ≡ @LOM ∧ @PXM
HEADX applies to heads in specifier and complement structures,

HEADA applies to heads in adjunction structures. EXT and INT ap-
ply to specifier/adjunct phrases and complement phrases respectively.
We can now rewrite the standard schematic PSRs of X′ theory in our
system:

resented as the number 1 is formally represented as [L [PLUS 0]], the informal
number 2 is formally [L [PLUS [PLUS 0]]], and so on.

[ 27 ]



John J. Lowe, Joseph Lovestrand

(29) Schematic phrase structure rules:

a. Specifier rule: ∗ → ∗
@EXT

, ∗
@HEADX

b. Complement rule: ∗ → ∗
@HEADX

, ∗
@INT

c. Adjunction rule: ∗ → ∗
@HEADA

, ∗
@EXT

Notice the generality of these rules with respect to category shar-
ing. There is no need for category label to be specified on the left-
hand side of a rule (or indeed on the right-hand side), because the
category of the mother automatically follows from the category of
the head daughter (by the constraint LSTRIN called by the templates
HEADX and HEADA). In other words, once the head of an endocen-
tric structure is identified by its template, there is no further need
to stipulate what the category of the mother node is. However, this
differs from exocentric structures, where the category of the mother
node may need to be specified as an additional constraint on one of
the daughters. Given this explicit formal restriction on the category
of the mother node in our approach, the left-hand side of traditional
PSRs, and the arrow, are redundant; we could equally well rewrite
(29) as:22

(30) Schematic phrase structure constraints:

a. Specifier structure: [ ∗
@EXT

, ∗
@HEADX

]

b. Complement structure: [ ∗
@HEADX

, ∗
@INT

]

c. Adjunction structure: [ ∗
@HEADA

, ∗
@EXT

]

Such a representation accords more closely with the constraint-
based conception of LFG, which interprets PSRs not as procedural
rules, but as constraints on possible structures.

22The square brackets in (30) serve to indicate the left and right edges of the
relevant constituents.
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3.5Example

As an illustration of our model, we give the necessary phrase structure
constraints and lexical entries to derive the sentence Bill read a book
of poems. In these constraints, we specify category labels on the right-
hand side in the traditional way, but this is to be understood as a
shorthand for an f-description defining the CAT value of the relevant
node’s l-structure.

(31) Phrase structure constraints:
a. [ {N|D}

(↑SUBJ) =↓
@EXT

{ I
↑=↓

@HEADX

| V
↑=↓
@INT

(∗̂λ CAT)= I

} ]

b. [ V
↑=↓

@HEADX

{N|D}
(↑OBJ)=↓
@INT

]

c. [ D
↑=↓

@HEADX

N
↑=↓
@INT

]

d. [ N
↑=↓

@HEADX

P
(↑OBL)=↓
@INT

]

e. [ P
↑=↓

@HEADX

{N|D}
(↑OBJ)=↓
@INT

]

The constraint in (31a) equates to a traditional specifier rule for
IP; it is formulated so as to license optionality of the functional head I
(notice that optionality is not a default, but has to be specifically li-
censed in this way). The constraint in (31b) equates to the comple-
ment rule for VP; that in (31c) equates to the complement rule for DP;
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(31d) is the complement rule for NP, and (31e) is the complement rule
for PP.23

The PSRs in (31), together with the lexical entries in (32), pro-
duce the phrase structure in (33). Although we understand the fea-
tures CAT, L and P as features within the ‘l-structure’ projected from
a node, for ease of representation in trees such as (33), we propose
an abbreviatory notation whereby L and P values are shown as super-
scripts on category node labels. Each node, represented by its category
label, appears with superscript numbers separated by a slash. The first
number represents the L value, the second the P value for that node.
So, a node which has the features 〈CAT,V〉, 〈L,0〉 and 〈P,1〉, will be
represented as V0/1.
(32) Lexical entries:

a. Bill: N
(↑PRED) = ‘Bill’
@PRJM

b. book: N
(↑PRED) = ‘book〈OBL〉’
@PRJM

c. poem: N
(↑PRED) = ‘poem’
@PRJM

23Note that we adopt a simplified approach to category labels in this paper,
treating N and D as fully distinct labels, but the rules provided here imply a more
sophisticated approach, following e.g. Grimshaw (1991) and Bresnan (2001). We
assume that in fact N and D share the same category label N, but are distinguished
in terms of another feature ±F. The value of F may be specified in a given rule or
not; so in (31a), {N|D} is really to be understood as N with underspecified value
for F; but in (31c), which constrains the structure within a determiner phrase,
the +F value of the head, and the −F value of the non-head, are crucial ele-
ments of the rule. The underspecification of certain nodes improves the resulting
analyses by eliminating the need for certain nonbranching nodes. For example,
with the subject position in (31a) underspecified, both This and Bill can serve
as single word subject phrases requiring only a single c-structure node, D0/0 in
the former case, N0/0 in the latter. For the present purposes, so as not to fur-
ther complicate our presentation, we abstract away from the details of this, and
present our analysis as though N and D are fully distinct categories, modelling
the underspecification via optionality.
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d. read: V
(↑PRED) = ‘read〈SUBJ,OBJ〉’
@PRJM

e. a: D
(↑SPEC) = ‘a’
@PRJM

f. of: P
(↑PRED) = ‘of〈OBJ〉’
@PRJM

(33) ....I1/1.....

..V1/1.....

..D1/1.....

..N1/1.....

..P1/1.....

..N0/0...

..poems.

..

..P0/1...

..of

.

..

..N0/1...

..book

.

..

..D0/1...

..a

.

..

..V0/1...

..read

.

..

..N0/0...

..Bill

L and P values are determined ‘bottom up’. So poems attaches
to a node N0/0, since there are no higher levels of projection in this
phrase. In contrast, book attaches to a node N0/1, since there is one
level of projection above the head; the word read attaches to a node
V0/1, since there is one level of projection within the verb phrase. The
L value is determined from the bottom up, with all words specifying
L=0 of their preterminal node. The head of an X′-theoretic projection
is associated with the template LDOWN (via the template HEADX),
meaning that every mother node in a headed projection chain has L
value one greater than that of its head daughter.

The P value is determined by the number of projection levels
in the phrase. All maximal projections are associated with the tem-
plate LP, meaning that the P value for every maximal node is iden-
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tical to the value of L for that node. So in a two-level projection,
where the preterminal head daughter has the feature 〈L,0〉 and the
mother therefore has the feature 〈L,1〉 (by LDOWN), the value of P
for the mother node will be the same as its L feature, i.e. 1. The
inclusion relation specified for the l-structures of heads in a projec-
tion chain ensures that all nodes in any projection chain automati-
cally and necessarily share the same value for CAT and P, as discussed
above.
Regarding the top node, the constraint in (31a) licenses an I node

with specifier and complement, but no head, daughters. This models
the headless24 IP structure standardly assumed in LFG for clauses
without auxiliaries, but without requiring nonbranching projections.
Only maximal projections (L=P) can have specifier daughters (as con-
strained by the template EXT); only nodes with the feature L = 1 can
have complement daughters (as constrained by the template INT); the
top node must therefore be I1/1, satisfying both constraints simultane-
ously.25

3.6 Dealing with nonprojecting categories

As discussed in Section 2.2, no existing formalization of phrase struc-
ture adequately accounts for the existence of nonprojecting categories.
Following Arnold and Sadler (2013), we model the difference between
prenominal and nonprenominal adjectives in English in these terms:
prenominal adjectives, which cannot take complements or other post-
modifiers, and hence appear not to be able to head full phrases, are
treated as nonprojecting adjectives, while adjectives in other positions
(predicative or predicated) can head full phrases and so are projecting.
24Headless, but not exocentric, as the IP serves as the extended projection of

the V.
25There is a partial parallel here between our approach and the exocentric

treatment of CP by Jayaseelan (2008) and Putnam and Stroik (2009, 2010);
our treatment of headless CP structures, which we do not have space to dis-
cuss here, would fully parallel the approach to headless IPs set out here, and
would thus be very close to these exocentric treatments of CP. An alternative to
the headless IP assumed here would be to adopt the older analysis of an exocen-
tric clausal node S, as assumed e.g. in HPSG (Pollard and Sag 1994) and in LFG
by Bresnan et al. (2016).
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Many adjectives in English can appear in both prenominal and other
positions, e.g. small, and for such cases we assume that the grammar
licenses both variants; some adjectives are restricted to one or the
other position, however, and we analyse this by assuming that such
adjectives have only nonprojecting (e.g. former), or only projecting
(e.g. asleep), variants.

(34) a. The small dog eats biscuits.
b. The dog is small.
c. The former president eats biscuits.
d. *The president is former.
e. *The asleep dog eats biscuits.
f. The dog is asleep.

Our model fully captures the grammaticality judgments in (34).
The l-structure feature set of a nonprojecting category must be fully
distinguishable from the possible feature sets available to projecting
categories. For example, one might think that as a necessarily minimal
and maximal projection, a nonprojecting category should necessarily
have the features {〈L,0〉,〈P,0〉} (as is assumed for clitics within BPS).
However, this is a possible feature set for projecting words, when-
ever they happen to appear alone constituting a phrase. We must
therefore allow adjectives in predicate position to have the features
{〈L,0〉,〈P,0〉}, so this feature set cannot be attributed to nonprojecting
adjectives, otherwise we would not be able to prevent e.g. former from
appearing in predicate position.

We propose that as necessarily minimal projections, nonproject-
ing adjectives have the feature 〈L,0〉, but that as categories which nec-
essarily do not project, they have no value for the feature P. This is
the purpose of the templates PNX and PNXM in (27j–k). The lexical
specification for a nonprojecting word includes the template PNXM
(called by NONPRJM), which ensures that the preterminal c-structure
node dominating the word lacks the feature P. The template PNX ap-
pears in PSRs (called by NONPRJ) on nodes which are restricted to
nonprojecting categories.

We thus assume the following lexical entries for small, former, and
asleep:

[ 33 ]



John J. Lowe, Joseph Lovestrand

(35) Lexical entries:
a. small Adj

(↑PRED) = ‘small’
{ @PRJM | @NONPRJM }

b. former Adj
(↑PRED) = ‘former’
@NONPRJM

c. asleep Adj
(↑PRED) = ‘asleep’
@PRJM

The constraints in (36) license predicate adjectives and prenom-
inal adjectives. (36a) defines a standard complement structure, and
therefore the Adj complement has the specification LP (called by
@INT), meaning that nonprojecting adjectives cannot stand in predi-
cate position. (36b) requires that a prenominal adjective lack a feature
P, thereby restricting the prenominal position to nonprojecting adjec-
tives. A tree illustrating a noun phrase with nonprojecting adjective is
given in (37).
(36) a. Predicate adjective: [ I

@HEADX
Adj
@INT

]

b. Non-proj. adjunction: [ Adj
@LOM
@NONPRJ

N
@HEADA

]

(37) ....D1/1.....

..N0/0.....

..N0/0...

..dog.

..

..Adj0/...

..small
.

..

..D0/1...

..the

3.7 Exocentric categories

As discussed in Section 2.2, exocentric projections are another widely
accepted possibility in LFG which have nevertheless never been ade-
quately formalized within a theory of phrase structure.
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Our proposal enables a neat and insightful analysis of exocentric-
ity. For the purposes of illustration, we adopt the analysis of Welsh
proposed by Sadler (1997), which involves the following basic clause
structure (stated in traditional, X′-theoretic, terms):
(38) ....IP.....

..S.....

..VP.

..

..NP
.

..

..I

The clause-initial finite verb, often an auxiliary, appears in I, and
the complement of I is an exocentric phrase which includes both the
subject phrase (the NP in (38)) and the VP (often containing the lexical
verb, and any object, etc.).

In our model, S will be licensed as a complement daughter of I;
the functional constraints placed on S in the PSR will be fully parallel
to those placed on any other complement, so the template INT will
apply to the S node:
(39) [ I

↑=↓
@HEADX

S
↑=↓
@INT

]

The template INT calls the templates LIM and LP. The first spec-
ifies the value of L for the mother node, while the second requires
that the values of L and P for the S node be identical. Now consider
the rule that introduces the daughters of S. Since S is exocentric, no
daughter of S is the head, nor is any daughter a specifier, a comple-
ment, or even an adjunct; therefore none of the standard endocentric
templates above apply to any of the daughter nodes. The daughters of
S may themselves be specified as necessarily projecting, but no daugh-
ter need make any specification about the L/P values of S.
(40) [ N

@LP
V
@LP

(∗̂λ CAT) = S

]

When we try to construct a tree based on these rules parallel
to (38), it is impossible to assign values to S for its L and P features.
As a complement of I, S must satisfy the requirement L=P, and in the
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absence of specific values, this can only be satisfied if neither value
exists. That is, we get the following:
(41) ....I1/1.....

..S.....

..V0/0...

..verb.

..

..N0/0...

..subject
.

..

..I0/1...

..aux

Since S is an exocentric category, its daughters lack the typical
endocentric specifications introduced above. The result is that S lacks
L/P values. Since these features are used to define and constrain en-
docentric projections, we take this to be an intuitive definition of exo-
centricity: exocentric categories lack L/P features.26

3.8 Comparison with traditional X′ theory

In (1) we gave seven desiderata for a formal model of phrase structure.
All seven are achieved by our model. The use of two features with nu-
merical values, L and P, enable us to define PSRs in such a way that
nonbranching chains are eliminated: a node can be both maximal and
minimal at the same time, and more complex phrases have only the
nodes required to model constituency. Our proposal also eliminates
the need for default optionality in PSRs, as standardly assumed in LFG.
Standard LFG takes optionality to be a default, because in any projec-
tion heads (particularly, but not only, functional heads), specifiers and
complements may be absent. In our model, however, optionality is an
exception rather than the rule: if a phrase lacks a complement and/or

26This conclusion is not without complication. According to the formulation
of Kaplan and Bresnan (1982), a constraint such as L=P is violated if neither L nor
P are assigned a value, and thus a derivation based on (39) and (40) would fail.
On the other hand, in the computational implementation of LFG, XLE (Crouch
et al. 2011), the constraint L=P is satisfied if ¬L ∧ ¬P. The rationale for Kaplan
and Bresnan’s approach is not clear to us; it has been suggested to us (Adam
Przepiórkowski, p.c.) that the theory could be unproblematically emended to
fall in line with XLE, and we adopt that emendation here.
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specifier, the PSRs introducing those positions are simply not utilized,
and a simpler structure results.

Our definition of a maximal phrase, L=P, avoids the problem
raised by Fukui (1986) regarding the ambiguity of the label ‘XP’,
since a maximal phrase may be e.g. X0/0, X1/1 or X2/2. At the same
time, our approach to projection chains, involving inclusion of l-
structures, avoids the ambiguity between Xmax and the top node of
a projection chain noted by Hornstein and Nunes (2008). Consider
the following VP:

(42)
....V1/1
.
.....

..Adv0/0...

..quickly

.

..

..V1/1.....

..D1/1.....

..N0/0...

..book.

..

..D0/1...

..the
.

..

..V0/1...

..read

.
.



L 1


L 1
CAT V
L 0
P 1










..

λ

Both the top node of the VP and its head daughter are maximal
nodes in the sense defined above (being V1/1), but the top node is
distinct (and therefore distinguishable), because its l-structure alone
is not included within another l-structure. Thus the top node in any
projection satisfies the equations (∗λ L) = (∗λ P) and the negative
existential constraint ¬(∈ ∗λ) (in words: there is no set of which my
l-structure is a member), whereas other maximal nodes in a projection
satisfy only the first.

Our proposal also lacks any distinct notion comparable to X′. Sup-
pose we wanted to define adjunction to X′, i.e. adjunction of phrases
closer to the head than any specifiers, but further from the head than
any complements. A head which has a complement is, in our system,
either 0/1 or 0/2 (depending on whether there is also a specifier). So
nodes with the L/P values 0/1 and 0/2 must be excluded from the set
of nodes to which X′ adjuncts could adjoin. But a head which has a
specifier, but no complement, and to which wemight therefore wish to
permit X′ adjunction, will in our system be 0/1. Thus 0/1 nodes some-
times correspond to the size of an X′ and sometimes do not. Therefore,
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a notion equivalent to X′ adjunction is unformalizable in our system,
because there is no coherent set of L/P values which correspond to the
traditional notion of X′.

Given our set-inclusion approach to projection chains, our model
also reduces redundancy in category labelling and in specification of
P values; that a phrase necessarily has the same values for CAT and P
as its head is a necessary consequence of the model, requiring no ad-
ditional stipulation. As shown in the previous sections, our model also
affords principled accounts of nonprojecting categories and exocen-
tric categories, which are lacking in existing formalizations of phrase
structure.

4 OTHER PROPOSALS

In this section, we discuss three alternative formalizations of phrase
structure, two within LFG and one within Minimalism. These ap-
proaches are simpler alternatives to the model presented above, in
the sense that they use fewer formal features. However, their relative
simplicity comes at the cost of failing to meet the theoretical desirata
laid out in (1), and incomplete coverage of attested phrase structures
types.

4.1 Bresnan (2001)

We take Bresnan (2001; unmodified in Bresnan et al. 2016) as repre-
sentative of standard assumptions regarding the formal properties of
phrase structure in LFG.27 Bresnan (2001, 100) describes the formal
properties of c-structure nodes thus: “Formally, X′ categories can be
analyzed as triples consisting of a categorical feature matrix, a level
of structure, and a third, privative feature F, which flags a category
as ‘function’ (F) or unspecified as to function (lexical).” The “level of
structure” feature, which we call BAR following Andrews and Man-
ning (1999), has three values: 0, 1, 2. These digits each correspond

27Bresnan’s decomposition of syntactic categories builds on earlier work, e.g.
King (1995).
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to a level of structure which is represented notationally using the tra-
ditional X-bar symbols: X0 for [BAR 0], X′ for [BAR 1], and XP for
[BAR 2]. The use of integers in this context implies that, in an en-
docentric projection, a mother must have a BAR value higher than
its daughter. The question of dominance is not discussed formally by
Bresnan, but the familiar templatic description of X-bar principles (43)
makes it clear that some undefined, and presumably stipulatory, mech-
anism is intended to enforce the dominance sequence.
(43) a. Specifier phrase structure rule

XP → X′ , YP
b. Complement phrase structure rule
X′ → X0 , ZP

This model is distinctly simpler than the model proposed in this
paper, but it has a number of shortcomings. Most obviously, the use of
a single numerically valued feature to model projection levels means
that Bresnan’s proposal is essentially a formalization of X′ theory, and
thus it inherits all the failings of X′ theory. There is no principled dis-
tinction between XP and Xmax (see Lovestrand and Lowe 2017, 288–
289), nor betwen Xmax and the top node of a projection; there is an
independent notion corresponding to X′ (a node with 〈BAR,1〉); op-
tionality is necessarily the default in PSRs, and by consequence non-
branching dominance chains are widespread.

Bresnan (2001, 91) realises that nonbranching dominance chains
are unsatisfactory, and proposes a derivational process which Dalrym-
ple et al. (2015) call “X′ Elision”, to ‘prune’ unnecessary nodes from a
well-formed c-structure so that it is as small as possible. As a deriva-
tional process this ‘X′ elision’ is not well integrated into the constraint-
based assumptions of LFG, and although it does for the most part give
the right results, it is preferable to avoid generating unnecessary nodes
in the first place, as in our model, rather than generating them and
then eliding them.

Bresnan’s model also does not avoid redundancy in category la-
belling, and provides no formal account of exocentric or nonprojecting
categories; the latter are not admitted in Bresnan (2001). They are ad-
mitted in Bresnan et al. (2016), but with no formal integration into the
theory of phrase structure, which is unchanged from Bresnan (2001).
There is no value of BAR which would both capture the minimality
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of nonprojecting categories and would not also render them indistin-
guishable from zero level categories. These issues are discussed further
in Lovestrand and Lowe (2017).

4.2 Marcotte (2014)

Marcotte (2014) simplifies Bresnan’s (2001) model by removing ref-
erence to bar levels, and thus requiring fewer theoretical primitives.
Marcotte (2014, 417) explicitly likens his proposal to Chomsky’s
(1995) BPS; we therefore provide a detailed comparison of this pro-
posal with our own.

While Marcotte’s proposal can be said to reduce the number of
formal devices needed to account for c-structure nodes, there are sev-
eral syntactic structures that it cannot account for, and it does not
meet all the desiderata set out in (1).

4.2.1 Marcotte’s proposal

Marcotte’s proposal is to remove the BAR feature, and to instead define
the relationships between nodes in terms of dominance relationships
and shared category features. Marcotte proposes to label what we (fol-
lowing Kaplan 1989) have called l-structure as “x-structure”, and as-
sumes a function χ from nodes to x-structures, equivalent to our (and
Kaplan’s) λ. The functionM is the function that relates the daughter
node to its mother; as usual ∗ represents the node in question, and n
represents any other node. There are three basic definitions of types
of nodes.28

(44) Marcotte’s (2014) “Bare phrase structure for Lexical-Functional
Grammar”
a. PROJECTING NODE: A node projects iff its x-structure is
identical with its mother’s x-structure.
Proj(∗) ⇐⇒ χ(∗) = χ(M (∗))

28Marcotte’s model is very similar to that of Speas (1986), cf. the definition
of maximal projection in footnote 13.
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b. MAXIMAL PROJECTION: A node is a maximal projection iff
it is not a projecting node.
Max(∗) ⇐⇒ ¬Proj(∗)

c. TERMINAL: A node is a terminal iff no node has it as a
mother.
Term(∗) ⇐⇒ ¬∃n.M (n) = ∗

In this system, there are four types of nodes, roughly equivalent
to X0, X′, XP and X̂. A projecting head (roughly equivalent to an X0)
is a node that meets the definitions of PROJECTING NODE (it has the
same category as its mother) and the definition of TERMINAL (it is not
the mother of any node).29 A maximal projection (roughly equivalent
to XP) is any node that meets the definition of MAXIMAL PROJEC-
TION (it does not have a mother with identical features), and is not
a TERMINAL. Intermediate nodes (roughly X′) meet the definition of
PROJECTING NODE, but do not meet the definition of TERMINAL (it
is the mother of another node). A nonprojecting node (roughtly X̂) is
a node that is both a MAXIMAL PROJECTION and a TERMINAL.

Marcotte applies his approach to c-structure to the structure-
function principles. He provides definitions for where it should be
expected to find nodes that are functional co-heads with their sis-
ter (annotated as ↑=↓), and definitions for where we should expect
to find subjects, objects, obliques and possessors. Notably absent is a
definition of adjuncts.30
(45) Marcotte (2014) “Endocentric c- to f-structure mappings”

a. A projecting node shares the f-structure of its mother:
Proj(∗) =⇒ ↑= ↓

b. A SUBJ is a DP daughter of IP:
Max(∗)
χ(∗) = D

Max(M (∗))
χ(M (∗)) = I =⇒ (↑SUBJ)=↓

29For Marcotte, the lexical information at the bottom of the tree is not con-
sidered a node, so his ‘terminal’ nodes are equivalent to what we (and Bresnan
2001) call preterminal nodes.
30Marcotte decomposes lexical and functional categories using his own system

of privative features, Pr, Tr and f such that: V: {Pr, Tr}, A: {Pr}, P: {Tr}, N: { },
I: {Pr, Tr, f}, and D: {f}. This part of his system has been simplified for readability.
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c. An OBJ is a DP with a V(P) or P(P) mother:
Max(∗)
χ(∗) = D {V | P} ⊏ χ(M (∗)) =⇒ (↑OBJ)=↓

d. An OBL is a non-verbal/adjectival XP with a non-functional
mother:
Max(∗) {V | A | I} 6⊏ χ(∗) {D | I} 6⊏ χ(M (∗)) =⇒ (↑OBL)=↓

e. A POSS is a DP daughter of a DP:
Max(∗)
χ(∗) = D

Max(M (∗))
χ(M (∗)) = D =⇒ (↑POSS)=↓

The first definition is the simplest. A PROJECTING NODE (any
node that has the same category features as its mother) can be anno-
tated as a functional co-head (↑=↓). A SUBJ annotation can be added
to aMAXIMAL PROJECTION that has the category feature D. That node
must also have a mother that is a MAXIMAL PROJECTION with the fea-
tures of the category I. Likewise, the annotation for OBJ can be added
to a MAXIMAL PROJECTION with the features of the category D. The
mother of this node must have the feature V or P. An OBL annotation
again requires a MAXIMAL PROJECTION. The node cannot be V, A or
I, and its mother node must not be a functional node. Finally, for a
POSS annotation, the MAXIMAL PROJECTION must have the features
for the category D, and its mother must be a MAXIMAL PROJECTION
with the feature for a D as well.

Marcotte ingeniously creates a set of structure-function associa-
tion principles very similar to those proposed by Bresnan (2001), but
without referring to any bar levels directly. He restricts himself to re-
ferring only to whether a node has identical category features to its
mother (PROJECTING NODE) or not (MAXIMAL PROJECTION), and to
what type of category features can be associated with which grammat-
ical functions. However, there are problems with the proposal which
would require significant modifications to the system in order to solve,
modifications which would severely compromise the elegance of the
system.

4.2.2 Issues

While it does have a notion of nonprojecting categories, Marcotte’s
(2014) model cannot deal with recursive adjunction of nonproject-
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ing words to nonprojecting words, as we have assumed for nonpro-
jecting adjectives in English, following Arnold and Sadler (2013). Ex.
(46) shows a prenominal adjective structure in English translated into
Marcotte’s proposed system. The point of Arnold and Sadler’s anal-
ysis is that there are a number of generalizations that can be made
about prenominal modifiers in English which can be captured by ana-
lyzing those nodes as nonprojecting words. This generalization is lost
in translation to Marcotte’s system. The modifiers very and happy do
not meet Marcotte’s definition of nonprojecting words. According to
Marcotte, a nonprojecting word is both a TERMINAL and a MAXIMAL
PROJECTION. A MAXIMAL PROJECTION is defined as a node that does
not have the same category features as its mother. In this particular
structure, both modifiers have the same category as their mother, so,
by definition, they are PROJECTING NODES, not MAXIMAL NODES.31
Another difference between the two analyses is that in Arnold and
Sadler’s analysis, the node adjoined to the head noun is a nonpro-
jecting node. This preserves their generalization that only nonproject-
ing modifiers can occur in this position. This generalization is lost
in Marcotte’s system. The mother of the two modifiers is, by defini-
tion, a MAXIMAL PROJECTION, but it is not a TERMINAL since it has
a daughter node that shares the same features. In Marcotte’s system,
the mother of two nonprojecting nodes can never be a nonprojecting
node itself.

(46) ....NMax.....

..NProj.....

..NProj,Term...

..people

.

..

..AMax.....

..AProj,Term...

..happy.

..

..AProj,Term...

..very

.

..

..DMax,Term...

..those

31This example would not be a problem if, following e.g. Payne et al. (2010),
adjectives and adverbs were treated as part of separate c-structure categories.
But the point remains valid, e.g. in the phrase those really very happy people the
same problem would apply to the relationship between really and very.
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Marcotte (2014) also fails to make the correct distinction between
Xmax and the top node of a projection, as found in XP adjunction struc-
tures. In XP adjunction, a maximal phrase (XP) is the mother of an-
other maximal phrase of the same category features. Such a structure
is not possible in Marcotte’s proposed system because, by definition, if
a node’s mother has the same category features, that node cannot be a
MAXIMAL PROJECTION: it is a PROJECTING NODE. Ex. (47) shows the
analysis of “topicalization” from Bresnan et al. (2016, 196) on the left,
with a translation into Marcotte’s proposed system on the right. The
structure on the left has an IP in the topmost position dominating an
identical IP node. On the right, in Marcotte’s system, only the topmost
I node is aMAXIMAL PROJECTION. The I node below the topmost node
is, by definition, a PROJECTING NODE since it shares its category fea-
tures with its mother. Thus, althoughMarcotte (2014) does distinguish
the top node of a projection from lower nodes, no node below the top
node may be classified as Xmax. This poses very real practical problems
because, for example, in Marcotte’s system the position annotated for
SUBJ must be dominated by a MAXIMAL PROJECTION. In the tree on
the left, the DP subject is dominated by IP, so it meets the structural re-
quirement for a subject. On the right, the D node that dominates what
should be the subject is not the daughter of a MAXIMAL PROJECTION
so it does not meet the structural requirement for a subject position;
this tree, therefore, cannot be generated in Marcotte’s system.
(47) ....IP.....

..IP.....

..VP.....

..IP...

..he likes.

..

..V...

..think.

..

..DP...

..D...

..I

.

..

..NP...

..Ann

....IMax.....

..IProj.....

..VMax.....

..IMax...

..he likes.

..

..VProj,Term...

..think.

..

..DMax...

..IProj,Term...

..I

.

..

..DMax...

..Ann

4.2.3 Summary

Marcotte’s model is clearly an improvement on that of Bresnan (2001),
capturing more of the desiderata we have been considering for a the-
ory of phrase structure. His model eliminates nonbranching nodes,
with trees that have only the structure required to model constituency.
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Marcotte also avoids the need for default optionality in phrase struc-
ture rules, and lacks a distinct notion equivalent to X′. However, Mar-
cotte’s model does not correctly model the distinction between Xmax,
XP, and the top node of a projection, nor does it offer an adequate
account of nonprojecting categories, nor any account of exocentric
categories. It also does not avoid redundancy in category labelling.

Marcotte’s proposal is in some respects very similar to that of
Muysken (1982), who proposed to reformulate X′ theory in terms of
two binary valued features, [±projection] and [±maximal]. The weak-
nesses of Marcotte’s model apply equally to the proposals of Muysken
(1982).

4.3Collins and Stabler (2016)

As part of their mathematically precise formalization of Minimalism,
Collins and Stabler (2016, 62–66) define a labelling algorithm which
they state allows natural definitions of all the X′ theory concepts. De-
spite the fact that Collins and Stabler (2016) is one of the most com-
plete and precise formalizations of mainstream Minimalism, their for-
malization of phrase structure is limited in certain respects. Given the
much less flexible approach to phrase structure adopted in minimal-
ism, some of the desiderata given in (1), notably the requirement for
principled accounts of exocentricity and nonprojecting categories, are
not relevant for Collins and Stabler (2016), and hence have no place
in their system. As a formalization of BPS, it naturally captures most
of the other desiderata. However, their system also lacks any account
of adjunction, which would be crucial for a complete account of min-
imalist phrase structure, and does not provide any way to distinguish
the highest projection from Xmax.

Collins and Stabler (2016, 65) define a labelling function from
syntactic objects to lexical item tokens, such that a. for all lexical item
tokens LI, Label(LI) = LI, and b. for all complex syntactic objects, the
label of the object is the label of its head.32 As a labelling function this
is similar to LFG’s λ projection, but differs in a number of ways. The
32 In some sense b. is similar to our definition of CAT above as a distribu-

tive feature in order to propagate category information automatically from head
daughter to mother.
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most important difference for the present purposes is that there are no
distinct labels such as N and C, but it is lexical item tokens themselves
which function as labels.

Given this notion of labelling, Collins and Stabler (2016) define
maximal, minimal and intermediate projections:

(48) a. For all C a syntactic object and LI a lexical item token both
contained in a derivable workspace W, C is a maximal pro-
jection of LI iff Label(C) = LI and there is no D contained
in W which immediately contains C such that Label(D) =
Label(C).

b. For all C, C is aminimal projection iff C is a lexical item token.
c. For all syntactic objects C contained in workspace W, LI a
lexical item token, C is an intermediate projection of LI iff
Label(C) = LI, and C is neither a minimal nor a maximal
projection in W.

They further define the complement as the first element merged
with a head, and a specifier as any further element merged with a
projection of the head.

The definition of maximal projection defines what we have called
the highest projection, but does not allow any distinction between this
and Xmax. This distinction is relevant where adjunction to the maximal
projection is admitted; since Collins and Stabler do not formalize ad-
junction, the failure to distinguish these notions is understandable.
The definition of a minimal projection is unproblematic, and differs
from the analysis presented above most significantly in that in BPS
lexical item tokens are themselves the terminal nodes of the phrase
structure, whereas in our model lexical item tokens are distinct from
the terminal nodes of the c-structure.

The definition of complement as the first element merged with a
head is not too dissimilar from our own definition, which effectively
defines complement as the sister of a head with 〈L,0〉. In defining spec-
ifier as any further element merged with a projection of the head,
Collins and Stabler license multiple specifiers, but leave little room
for a notion of adjunction.

Overall, Collins and Stabler’s formalization of BPS captures the
most important notions of BPS discussed above and integrated into our
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model but, partly due to the less enriched notion of phrase structure
which they are modelling, does not appear immediately extensible to
cover adjunction and all the other phrase structure phenomena which
we have attempted to model in this paper.

5CONCLUSION

Hitherto, LFG has continued to utilize a model of phrase structure
which is largely unchanged from the 1970s, and does not incorporate
the insights and advances made within BPS and other theories. Our
proposal offers a newmodel of phrase structure within LFG which cap-
tures the central insights of the last forty years of work on phrase struc-
ture in a fully formalized, and potentially theoretically broad, way.
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This article explores the distinction between paradigmatic seman-
tic relations, both from a cognitive and a computational linguistic
perspective. Focusing on an existing dataset of German synonyms,
antonyms and hypernyms across the word classes of nouns, verbs and
adjectives, we assess human ratings and a supervised classification
model using window-based and pattern-based distributional vector
spaces. Both perspectives suggest differences in relation distinction
across word classes, but easy vs. difficult class–relation combinations
differ, exhibiting stronger ties between ease and naturalness of class-
dependent relations for humans than for computational models.

In addition, we demonstrate that distributional information is in-
deed a difficult starting point for distinguishing between paradigmatic
relations but that even a simple classification model is able to manage
this task. The fact that the most salient vector spaces and their suc-
cess vary across word classes and paradigmatic relations suggests that
combining feature types for relation distinction is better than applying
them in isolation.
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1 INTRODUCTION

Paradigmatic semantic relations such as synonymy, antonymy, hyper-
nymy and (co-)hyponymy define relations between words that can be
found in the same position in a syntagma (de Saussure 1916). They
are central to the organisation of the mental lexicon (Deese 1965;
Miller and Fellbaum 1991; Murphy 2003), by providing a structure
for the lexical concepts that words express. According to Miller and
Fellbaum (1991), this relational structure differs across word classes,
as “no single set of semantic relations [...] is adequate for the entire
lexicon: nouns, adjectives, and verbs each have their own semantic rela-
tions and their own organisation determined by the role they must play
in the construction of linguistic messages”. For example, while hyper-
nymy is considered a natural relation for organising the noun lexi-
con, it is regarded as less important for organising the verb lexicon,
and as rather unnatural for organising the adjective lexicon. In con-
trast, antonymy is taken to represent the core relation for organising
the adjective lexicon, and next to hypernymy, synonymy and entail-
ment, antonymy also plays an important role in the mental lexicon
for verbs.

From a computational point of view, modelling paradigmatic
semantic relations is important for any application in natural lan-
guage processing (NLP) such as machine translation and textual en-
tailment, which go beyond the general notion of semantic related-
ness and require distinguishing between specific semantic relations.
Distributional semantic spaces (also known as vector space models)
present a method of determining the meaning and the semantic re-
latedness between target words within a geometric setting (Budan-
itsky and Hirst 2006; Turney and Pantel 2010). These models rely
on the Distributional Hypothesis and exploit corpus co-occurrences
in vector space models to describe and compare the meanings of
linguistic units such as words, phrases and sentences (Harris 1954;
Firth 1957). Paradigmatic relations are notoriously difficult to be
distinguished by standard distributional models, however, because
the first-order co-occurrence distributions of the related words tend
to be very similar across the relations. For example, in the sen-
tence variants “The boy/girl/person loves/hates the cat”, the nominal
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co-hyponyms boy and girl and their hypernym person, as well as
the verbal antonyms love and hate, occur in identical contexts, res-
pectively.

Our research presented in this article brings together perspectives
from cognitive semantics and distributional semantics, and explores
and compares the distinction of three major paradigmatic semantic
relations across the three word classes of nouns, verbs and adjectives.
We deliberately chose synonymy, antonymy and hypernymy as our
target relations because (a) as illustrated above, they play a major
role in the organisation of the mental lexicon but nevertheless differ
in how natural and important they are for the organisation of the
lexica across word classes, and because (b) they are notoriously dif-
ficult to be distinguished by distributional models. The questions we
address in the current study are the following:

• Can humans and distributional approaches reliably distin-
guish between synonyms, antonyms and hypernyms across word
classes?
• Which class–relation combinations are easy/difficult for humans
and which are easy/difficult for distributional approaches?
• Does the ease in relation distinction reflect the naturalness of a
relation type for a word class?

We expected that differences in the naturalness of relations across
word classes should be reflected by (a) how humans perceive and
distinguish semantic relatedness, and by (b) how successful stan-
dard distributional approaches are in modelling semantic related-
ness.

For the cognitive perspective, we rely on an existing dataset of
paradigmatic semantic relation pairs for German (Scheible and Schulte
im Walde 2014). Most crucially, the dataset contains ratings of rela-
tion strength provided by human judges, for positive as well as for
negative relation instances; in addition, the selection of relation pairs
across word classes in the dataset is balanced for the number of posi-
tive and negative instances, semantic class, frequency and polysemy.
For the computational perspective, we rely on distributional similar-
ity scores from standard vector space models as obtained from a large
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web corpus, and a simple supervised classification model.1 Our study
demonstrates that the reliable distinction between relations indeed
depends on word classes, both for humans and for distributional ap-
proaches. Easy vs. difficult class–relation combinations however differ
for humans vs. computational models, with stronger ties between ease
and naturalness of class-dependent relations for humans.

More specifically regarding our distributional approaches, we
demonstrate not only that (a) the models behave differently across
word classes, but also that (b) distributional similarity by itself is
indeed a difficult starting point for distinguishing paradigmatic re-
lations; nevertheless, (c) even a simple classification model is able
to distinguish between relations. Last but not least, we demonstrate
that the distributional feature types in the computational models have
different strengths and weaknesses in distinguishing between specific
paradigmatic relations for specific word classes, which is why ex-
ploring feature variants is still a worthwhile subtask in this line of
research.

In the remainder of this article we first provide an in-depth
overview of previous work on paradigmatic semantic relations in the
(mental) lexicon as well as variants of human rating collections and
computational approaches regarding paradigmatic relation distinc-
tion (Section 2). In Section 3 we describe the human ratings and the
distributional information underlying our analyses and classification
experiments in the main body of this article (Section 4).

2 RELATED WORK

2.1 Paradigmatic semantic relations in the lexicon

The term ‘paradigmatic’ goes back to de Saussure (1916), who intro-
duced a distinction between linguistic elements based on their posi-
tion relative to each other. This distinction derives from the linear

1Note that in this study we do not aim to offer in-depth comparisons of mul-
tiple distributional representations and algorithms but rather focus on simple
standard approaches, given that our goal is not an optimisation of representa-
tions and algorithms but exploring the ground distributional information.
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nature of linguistic elements, which is reflected in the fact that speech
sounds follow each other in time. Saussure refers to successive linguis-
tic elements that combine with each other as ‘syntagma’, and thus the
relation between these elements is called ‘syntagmatic’. On the other
hand, elements that can be found in the same position in a syntagma,
and which could be substituted for each other, are in a ‘paradigmatic’
relationship. While syntagmatic and paradigmatic relations can occur
between a variety of linguistic units (such as phonemes, morphemes,
words, clauses, sentences), the focus of this research is on paradig-
matic relations between words.

A long-standing methodology to explore semantic relations in the
mental lexicon makes use of free association norms: Researchers have
analysed the (semantic) relationships between target stimuli and their
associations, where participants were requested to provide the first
word(s) that came to mind when presented with the stimuli. Depend-
ing on the collected norms, the stimuli were drawn from just one or
across several word classes. Given that the provided associations also
vary across word classes, association norms provide a means to in-
vestigate the relationships between the stimuli and their associations,
among which paradigmatic relations represent a dominant role. In this
vein, we provide a brief overview of prominent association norms and
relevant semantic analyses.

Following an idea originally suggested by Francis Galton in 1880,
the first association normswere collected by Kent and Rosanoff (1910),
for 100 English noun and adjective stimuli. The Kent and Rosanoff
stimuli were translated into German, allowing for the collection of
parallel association norms in German (Russell and Meseck 1959; Rus-
sell 1970). Another well-studied collection was assembled by Palermo
and Jenkins (1964), comprising associations for 200 words across
various parts-of-speech. The Edinburgh Association Thesaurus (Kiss
et al. 1973) was a first attempt to collect association norms on a larger
scale, and to create a network of stimuli and associates, starting from a
small set of stimuli derived from the Palermo and Jenkins norms. On a
much larger scale, the association norms from the University of South
Florida (Nelson et al. 1998) were compiled over the course of more
than 20 years. More than 6,000 participants produced nearly three-
quarters of a million responses to 5,019 stimulus words. The currently
largest-scale norms are being collected by de Deyne and colleagues,
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who run an online2 collection of associations across 13 languages,
containing already >10 million stimulus-associate pairs (de Deyne
et al. 2013).

A major line of research has relied on association norms to in-
vestigate the relations between the stimuli and their associations. Re-
garding paradigmatic and syntagmatic relations, Clark (1971) cate-
gorised stimulus-association relations into sub-categories by establish-
ing rules, such as the paradigmatic minimal-contrast rule asserting that
humans produce associations which are antonymous to the stimuli
across word classes, and the syntagmatic selectional feature realisation
rule asserting that humans produce selectionally preferred comple-
ments, also across word classes. Heringer (1986) focused on syntag-
matic associations to a small selection of 20 German verbs. He asked
his subjects to provide question words as associations (e.g., wer ‘who’,
warum ‘why’), and used the responses to investigate the valency be-
haviour of the verbs. Bagger Nissen and Henriksen (2006) systemat-
ically distinguished between syntagmatic and paradigmatic relations
across word classes when comparing associations to nouns, verbs and
adjectives for English L1 and L2 adult speakers. They observed differ-
ent response patterns across the word classes: Regarding paradigmatic
relations, for both L1 and L2 they found more paradigmatic responses
for nouns than for adjectives, and more for adjectives than for verbs.

To the best of our knowledge, only a small number of investi-
gations distinguished between paradigmatic relations in association
norms. Schulte im Walde et al. (2008) collected and analysed free
associations to 409 German nouns and 330 German verbs. They per-
formed detailed analyses at the syntax-semantics interface, and quan-
tified the part-of-speech categories of the associate responses, the syn-
tagmatic co-occurrences, and the syntagmatic and paradigmatic rela-
tionships between the stimuli and the associations. Regarding paradig-
matic relations, they relied on GermaNet (Hamp and Feldweg 1997;
Kunze 2000), the German equivalent of WordNet (Fellbaum 1998b),
where they found paradigmatic relationships for 47% of the verb-
verb stimuli-associate tokens and for 17% of the noun-noun stimuli-
associate tokens. Most of the verb-verb pairs were in some hyper-
nymy relation (43% co-hyponymy, 26% hyponymy, 21% hypernymy);

2https://smallworldofwords.org/en/project/stats
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ditto for the noun-noun pairs (47%, 6%, 29%, respectively). Guida
and Lenci (2007) replicated most of their analyses on verb associ-
ation norms for 312 Italian verbs. They found a much larger pro-
portion of verb-verb synonymy (38.3%) and antonymy (4.5%) and
a smaller number of hypernymy relations (11.7% co-hyponymy, 5.9%
hyponymy, 22.8% hypernymy).

Apart from research on paradigmatic relations that relied on word
association norms, there is an enormous body of work that provides
theoretical conceptualisations of these relations in the mental lexi-
con. A seminal description of lexical relations (with a strong focus
on antonymy) can be found in Cruse (1986). He states that paradig-
matic relations “reflect the way infinitely and continuously varied expe-
rienced reality is apprehended and controlled through being categorised,
subcategorised and graded along specific dimensions of variation”. Cruse
describes and exemplifies types and sub-types of paradigmatic rela-
tions across word classes. Murphy (2003) focuses on the representa-
tion of paradigmatic relations in the lexicon, discussing synonymy,
antonymy, contrast, hyponymy and meronymy, also across word
classes. In her view, antonymy is a sub-type of contrast within a binary
paradigm, and as in Cruse (1986) her analyses on antonymy are “over-
represented, since it is the most controversial semantic relation in terms of
whether it is an arbitrary relation among words or a predictable relation
among word meanings or concepts”. Most of her discussions concern
linguistic vs. meta-linguistic representations of relations, reference of
relations to words vs. concepts, and lexicon storage.

In addition, a series of linguistic and psycholinguistic studies in
the 1980s and 1990s investigated paradigmatic relations, typically re-
stricted to either nouns or adjectives, and to a selection of relations.
For example, Lehrer and Lehrer (1982), Charles and Miller (1989),
Gross et al. (1989), Justeson and Katz (1991, 1992) and Murphy and
Andrew (1993) studied antonymy and synonymy of adjectives. Chaf-
fin and Herrmann (1981, 1984) looked at various relations mainly
for nouns and adjectives, and a selection of syntagmatic verb-noun
relations. Winston et al. (1987) developed a taxonomy for nominal
meronymy, and Chaffin and Glass (1990) explored reading time dif-
ferences for nominal hypernyms vs. synonyms.

Closest to our work and, as far as we know, the only studies that
systematically explored and compared types of paradigmatic relations
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across word classes, are those related to the organisation of the Prince-
ton WordNet. While the most detailed descriptions are available from
a special issue in the Journal of Lexicography (Miller et al. 1990; Gross
and Miller 1990; Fellbaum 1990), Miller and Fellbaum (1991) provide
a meta-level summary of relational structures and decisions across
word classes. As basis for the WordNet organisation, Miller and Fell-
baum state that “the mental lexicon is organised by semantic relations.
Since a semantic relation is a relation between meanings, and since mean-
ings can be represented by synsets, it is natural to think of semantic re-
lations as pointers between synsets”. The semantic relations in WordNet
include the paradigmatic relations synonymy, hypernymy/hyponymy,
antonymy, and meronymy. Because “no single set of semantic relations
[...] is adequate for the entire lexicon: nouns, adjectives, and verbs each
have their own semantic relations and their own organisation determined
by the role they must play in the construction of linguistic messages”, these
paradigmatic relations are instantiated across word classes to vari-
ous degrees. For nouns, WordNet implements a hierarchical organi-
sation of synsets (i.e., sets of synonymous word meanings) relying on
hypernymy relations, and it also provides meronymy relations. For
adjectives, Miller and Fellbaum regard antonymy as the central or-
ganisational relation. Verbs are considered the most complex and pol-
ysemous word class. They are organised on a verb-specific variant of
hypernymy, i.e., troponymy: v1 is to v2 in some manner, that operates on
semantic fields which are instantiated as synsets. Troponymy itself is
conditioned on entailment and temporal inclusion. In addition to syn-
onymy and troponymy, antonymy is also considered an important re-
lation for verbs. Overall, the WordNet specifications for paradigmatic
relation between word classes – which themselves rely on a large body
of earlier explorations – are taken as the theoretical basis for our work.

2.2 Human ratings of paradigmatic relations

Over the years a number of datasets have been made available for
studying and assessing semantic relatedness. Regarding the most fa-
mous judgements on similarity, Rubenstein and Goodenough (1965)
obtained data from 51 subjects on 65 English noun pairs, a semi-
nal study which was later replicated by Miller and Charles (1991)
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and Resnik (1995). Finkelstein et al. (2002) created WordSim353,
a set of 353 English noun-noun pairs rated by 16 subjects accord-
ing to their semantic relatedness on a scale from 0 to 10. For Ger-
man, Gurevych (2005) replicated Rubenstein and Goodenough’s ex-
periments after translating the original 65 word pairs into German.
Schmidt et al. (2011) translated a subset of 280 target pairs from
WordSim353 into German, however keeping the ratings from the En-
glish source.

TOEFL (Test of English as a Foreign Language) is a common dataset
for distinguishing synonymy from other relations. Each similarity
question represents a multiple choice, with four alternatives for a
given stem. Landauer and Dumais (1997) collected 80 TOEFL ques-
tions for English; Mohammad et al. (2007) collected 426 questions
for German.

BLESS (Baroni and Lenci 2011) represents one of the earliest col-
lections containing several semantic relations. It focuses on nouns
and includes 200 distinct English concrete nouns as target concepts,
equally divided between living and non-living entities, and grouped
into 17 broad classes. For each target concept, BLESS provides re-
lated concepts connected through a semantic relation (hypernymy, co-
hyponymy, meronymy, attribute, event), or through a null-relation. A
similar dataset, EVALution, was induced from ConceptNet and Word-
Net and subsequently filtered (Santus et al. 2015). The SimLex-999
dataset (Hill et al. 2015) was one of the first collections contain-
ing information across word classes. It contains 999 word pairs (666
noun, 222 verb and 111 adjective pairs) and was explicitly built
to test models on capturing similarity rather than relatedness or
association.

While these collections represent state-of-the-art datasets of hu-
man ratings of semantic similarity or relatedness, we are interested in
judgements on specific types of relatedness and across word classes,
which is covered by none of the collections. WordNet represents the
resource that is most strongly relevant for our purposes but heavily
biased towards hypernymy, while synonymy – and even more so –
antonymy are represented to a much smaller degree. In addition, the
strength of related pairs in WordNet is not quantified. Therefore, we
rely on a dataset where humans first generated and then rated noun,
verb and adjective pairs for synonymy, antonymy and hypernymy.
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2.3 Automatic classification of paradigmatic relations

Although not many approaches in NLP have explicitely addressed the
distinction between several paradigmatic semantic relations, there is a
rich tradition on identifying synonyms, antonyms or hypernyms, and
on distinguishing between subsets of two paradigmatic relations.

Prominent work on identifying synonyms was conducted by Ed-
monds, who employed a co-occurrence network and second-order co-
occurrence (Edmonds 1997, 1998, 1999; Edmonds and Hirst 2002),
and Curran who explored word-based and syntax-based co-occurrence
for thesaurus construction (Curran 2002, 2003)). Van der Plas and
Tiedemann (2006) compared a standard distributional approach
against cross-lingual alignment; Erk and Padó (2008) defined a vector
space model for word meaning in context, to identify synonyms and
the substitutability of verbs.

Most computational work addressing hypernyms was performed
for nouns, cf. the lexico-syntactic patterns by Hearst (1992) and an ex-
tension of the patterns by dependency paths (Snow et al. 2004). Weeds
et al. (2004), Lenci and Benotto (2012), Santus et al. (2014a), Levy
et al. (2015), Shwartz et al. (2016) and Nguyen et al. (2017) represent
systems that identify hypernyms in distributional spaces. Examples of
approaches that addressed the automatic construction of a hypernym
hierarchy (for nouns) are Caraballo (2001), Velardi et al. (2001), Cimi-
ano et al. (2004) and Snow et al. (2006). Hypernymy between verbs
was discussed by Fellbaum (1990), Fellbaum and Chaffin (1990) and
Fellbaum (1998a).

There are comparably few approaches to the automatic induc-
tion of antonyms. A number of studies in the early 90s tested the co-
occurrence hypothesis, e.g., Charles and Miller (1989), Justeson and
Katz (1991), Fellbaum (1995), and another set of approaches in the
last decade elaborated on the distributional properties of antonyms
regarding syntagmatic co-occurrence, their discourse functions, and
their canonicity (Paradis et al. 2009; Jones et al. 2012; Paradis 2016).
In natural language processing, approaches to antonymy were to a
large extent driven by text understanding efforts, or embedded in a
larger framework aiming to identify contradiction (Lucerto et al. 2004;
Harabagiu et al. 2006; Mohammad et al. 2008; deMarneffe et al. 2008).
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A main emphasis regarding the distinction between paradigmatic
semantic relations has been on systems addressing synonyms vs. an-
tonyms. Lin et al. (2003) used patterns and bilingual dictionaries to
retrieve distributionally similar words, and relied on clear antonym
patterns such as ‘either X or Y’ in a post-processing step to distin-
guish synonyms from antonyms. Yih et al. (2012) developed a Latent
Semantic Analysis (LSA) approach incorporating a thesaurus. Chang
et al. (2013) extended this approach to induce vector representations
that can capture multiple relations. The study by Mohammad et al.
(2013) evaluated a thesaurus-based approach, where word pairs that
occurred in the same thesaurus category were assumed to be close in
meaning and marked as synonyms, while word pairs occurring in con-
trasting thesaurus categories or paragraphs were marked as opposites.
Whereas the above-mentioned approaches rely on additional knowl-
edge sources, Turney (2008) developed a corpus-based approach to
model relational similarity, addressing (among other tasks) the dis-
tinction between synonyms and antonyms. In a similar vein, Scheible
et al. (2013) showed that with the use of appropriate features, the
distributional difference between adjectival antonyms and synonyms
can be identified via a simple word space model, and Santus et al.
(2014c,b) used average precision to distinguish between antonyms
and synonyms in standard vector spaces.

Most recently, the problem of synonym/antonym distinction
has also been addressed with word embedding models. Adel and
Schütze (2014) integrated coreference chains extracted from large
corpora into a skip-gram model to create word embeddings that iden-
tified antonyms. Ono et al. (2015) proposed using thesaurus-based
word embeddings to detect antonyms. They suggested the imple-
mentation of a model that trains word embeddings on thesaurus
information, and one model that incorporated distributional infor-
mation into the thesaurus model. Pham et al. (2015) introduced
a multitask lexical contrast model by incorporating WordNet into
a skip-gram model to train semantic vectors to predict contexts.
Nguyen et al. (2016a) proposed two approaches that make use of
lexical contrast information in distributional standard vs. word em-
beddings vector spaces. One approach strengthened word features
that were most salient for determining word relatedness, assuming
that feature overlap in synonyms is stronger than feature overlap in
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antonyms; the other model was an extension of a skip-gram model
with negative sampling (Mikolov et al. 2013) that integrated the lex-
ical contrast information into the objective function. Nguyen et al.
(2016b) presented a neural network model that exploited lexico-
syntactic patterns from syntactic parse trees and in addition inte-
grated the distance between the related words along the syntactic
path as a feature.

Regarding pattern-based approaches to identify and distinguish
lexical semantic relations in more general terms, Hearst (1992) was
the first to propose lexico-syntactic patterns as empirical pointers to-
wards relation instances, focusing on hyponymy. Girju (2003) ap-
plied a single pattern to distinguish pairs of nouns that are in a
causal relationship from those that are not, and Girju et al. (2006)
extended the work towards part-whole relations, applying a super-
vised, knowledge-intense approach. Chklovski and Pantel (2004) were
the first to apply pattern-based relation extraction to verbs, distin-
guishing five non-disjoint relations (similarity, strength, antonymy,
enablement, happens-before). Pantel and Pennacchiotti (2006) devel-
oped Espresso, a weakly-supervised system that exploits patterns in
large-scale web data to distinguish between five noun-noun relations
(hypernymy, meronymy, succession, reaction, production). Similarly
to Girju et al. (2006), they used generic patterns, but relied on a
bootstrapping cycle combined with reliability measures, rather than
manual resources.

Whereas each of the aforementioned approaches considered max-
imally two paradigmatic relations and one word class, only a small
number of approaches were systematically explored across these
relations and classes: Yap and Baldwin (2009) employed syntac-
tic pre-processing and an SVM-based classifier, and experimented
with different corpora, to distinguish antonymy, hypernymy and syn-
onymy, while focusing on English nouns. Schulte im Walde and
Köper (2013) relied on standard corpus-based patterns to distin-
guish between the same three paradigmatic relations, proposing a
unified framework for German nouns, verbs and adjectives. Roth
and Schulte im Walde (2014) extended the pattern-based approach
by incorporating discourse markers and applied their model across
the same relations and the three word classes, both for English and
for German.
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3DATA

The following two subsections describe the two types of data our
explorations rely on: the cognitive resource with human ratings of
paradigmatic relations (Section 3.1), and the distributional informa-
tion used in the computational models (Section 3.2).

3.1Human ratings of paradigmatic relations
Our database of semantic relations for German adjectives, nouns and
verbs focuses on the three types of paradigmatic relations referred
to as sense-relations by Lyons (1968, 1977): synonymy, antonymy,
and hypernymy. For the collection of the database, we implemented
two experiments involving human participants (Scheible and Schulte
im Walde 2014). Starting with a set of target words, in the first
experiment participants were asked to propose suitable synonyms,
antonyms, and hypernyms for each of the targets. For example, for
the target verb befehlen (‘to command’), participants proposed syn-
onyms such as anordnen (‘to order’), antonyms such as gehorchen (‘to
obey’), and hypernyms such as sagen (‘to say’). In the second experi-
ment, participants were asked to rate the strength of a given semantic
relation with respect to a word pair on a given scale. For example,
participants would be presented with the pair befehlen–gehorchen and
asked to rate the strength of antonymy between the two words. All
word pairs were assessed with respect to all three relation types.

In the following, Section 3.1.1 provides an overview of GermaNet,
fromwhich the set of target words was drawn. Section 3.1.2 introduces
the platform used to implement the experiments, Amazon Mechani-
cal Turk. Sections 3.1.3 and 3.1.4 then describe the two experiments
to collect the human rating data. The dataset is publicly available at
http://www.ims.uni-stuttgart.de/data/sem-rel-database.

3.1.1Target source: GermaNet

GermaNet is a lexical-semantic word net that provides information
on semantic relations for German nouns, verbs, and adjectives. Ger-
maNet has been modelled along the lines of the Princeton WordNet
for English (Miller et al. 1990; Fellbaum 1998b) and shares its gen-
eral design principles (Hamp and Feldweg 1997; Kunze and Wagner

[ 65 ]



Sabine Schulte im Walde

1999; Lemnitzer and Kunze 2007). For example, lexical units denot-
ing the same concept are grouped into synonym sets (‘synsets’). These
are in turn interlinked via conceptual-semantic relations (such as hy-
pernymy) and lexical relations (such as antonymy). For each of the
major word classes, the databases further take a number of seman-
tic categories into consideration, expressed with top-level nodes in
the semantic network (such as Artefakt ‘artifact’, Geschehen ‘event’,
Gefühl ‘feeling’). In contrast to WordNet, GermaNet also includes so-
called ‘artificial concepts’ to fill lexical gaps and thus enhance network
connectivity, and to avoid unsuitable co-hyponymy (e.g. by providing
missing hypernyms or hyponyms). GermaNet also differs from Word-
Net in the way in which it handles parts-of-speech. For example, while
WordNet employs a clustering approach for structuring adjectives,
GermaNet uses a hierarchical structure similar to the one employed for
the noun and verb hierarchies. Finally, WordNet and GermaNet also
differ in size: While WordNet 3.0 contains a total of 117,659 synsets
and 155,287 lexical units, the respective numbers for GermaNet 6.0
(which we used in the current study) are considerably smaller, with
69,594 synsets and 93,407 lexical units.

Since GermaNet is the largest database of its kind for German,
and given that it encodes all types of relations that are of interest for
us (synonymy, antonymy, and hypernymy), it represented a suitable
starting point for our purposes.3 Relying on GermaNet version 6.04
and the respective JAVA API, we used a stratified sampling technique
to randomly select 99 nouns, 99 adjectives and 99 verbs from the Ger-
maNet files. The random selection was balanced for:
1. the size of the semantic classes,5 accounting for the 16 semantic
adjective classes and the 23 semantic classes each for nouns and
verbs, as represented by the file organisation;

3For reasons why we did not use GermaNet to directly extract relation pairs
(i.e., it is unbalanced regarding relation types; does not contain relation quan-
tification or negative evidence; etc.), see the end of Section 2.2.

4When we started the collection, GermaNet 6.0 represented the latest ver-
sion. Information about current statistics can be found at http://www.sfs.
uni-tuebingen.de/GermaNet/.

5For example, if an adjective GermaNet class contained 996 word types, and
the total number of adjectives over all semantic classes was 8,582, and with
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2. three polysemy classes according to the number of GermaNet
senses: I) monosemous, II) two senses and III) > two senses;

3. three frequency classes according to the type frequency in the
German web corpus SdeWaC (Faaß and Eckart 2013), which
contains approx. 880 million words: I) low (200–2,999), II) mid
(3,000–9,999) and III) high (≥10,000).

The total number of 99 targets per word class resulted from distin-
guishing 3 polysemy classes and 3 frequency classes, 3× 3 = 9 cate-
gories, and selecting 11 instances from each polysemy–frequency cat-
egory, in proportion to the semantic class sizes.

3.1.2Experimental platform: Mechanical Turk

The experiments described below were implemented in Amazon Me-
chanical Turk (AMT),6 a web-based crowdsourcing platform which al-
lows simple tasks (so-called HITs) to be performed by a large number
of people in return for a payment. In our first experiment, human as-
sociations were collected for different semantic relation types, where
AMT workers were asked to propose suitable synonyms, antonyms,
and hypernyms for each of the targets. The second experiment was
based on a subset of the generated synonym/antonym/hypernym
pairs and asked the participants to rate each pair for the strength
of synonymy, antonymy, and hypernymy between them, on a scale
between 0 (minimum strength) and 5 (maximum strength). To con-
trol for non-native speakers of German and spammers, each batch
of HITs included two examples of ‘non-words’ (i.e., invented words
following German morphotactics) in random positions. If partici-
pants did not recognise the invented words, we excluded all their
ratings from consideration. While we encouraged participants to com-
plete all HITs in a given batch, we also accepted a smaller number
of submitted HITs, as long as the workers had a good overall feed-
back score.
99 stimuli collected in total, we wanted that proportion out of 99 stimuli that
corresponded to the proportion of the class size relative to the total number of
adjectives 996/8,582 and thus randomly selected 11 adjectives from this class:
99 ∗ 996/8,582 ≈ 11.49.

6https://www.mturk.com

[ 67 ]



Sabine Schulte im Walde

3.1.3 Generation experiment

The goal of the generation experiment was to collect human associ-
ations for the semantic relation types synonymy, antonymy, and hy-
pernymy. For each of our 3 × 99 adjective, noun, and verb targets,
we asked 10 participants to propose a suitable synonym, antonym,
and hypernym. Targets were bundled randomly in 9 batches per word
class, each including 9 targets plus two invented words. The experi-
ment consisted of separate runs for each relation type to avoid con-
fusion between them, with participants first generating synonyms,
then antonyms, and finally hypernyms for the targets, resulting in
3 word classes × 99 targets × 3 relations × 10 participants = 8,910
target–response pairs. Table 1 provides some examples of the gener-
ated target–response pairs for each word class and each paradigmatic
relation, accompanied by the number of times a specific response was
given (with a maximum of 10 responses).

3.1.4 Rating experiment

In the second experiment, Mechanical Turk workers were asked to
rate a given semantic relation with respect to a word pair on a 6-point
scale between 0 (minimum strength) and 5 (maximum strength). The
main purpose of this experiment was to identify and distinguish be-
tween “strong” and “weak” examples for specific relations across word
classes. The number of times a specific response was given in the gen-
eration experiment does not necessarily indicate the strength of the
relation. This is especially true for responses that were suggested by
only one or two participants, where it is difficult to tell if the response
is an error, or if it relates to an idiosyncratic sense of the target word
that the other participants did not think of in the first instance. Cru-
cially, in the rating experiment all word pairs were assessed with re-
spect to all three relation types, thus asking not only for positive but
also for negative evidence of semantic relation instances.

The set of word pairs used as an input was a carefully selected
subset of responses acquired in the generation experiment. For each
of the 99 targets and each of the semantic relations (antonymy, syn-
onymy, and hypernymy), we included two responses: the response with
the highest frequency (random choice if several available) and a response
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with a low frequency (2, if available, otherwise 1; random choice if sev-
eral available). Multi-word responses and blanks were excluded.

In theory, each target should have 6 associated pairs (2×ANT,
2×HYP, 2× SYN). In practice, there are sometimes fewer than 6 pairs
per target in the dataset, because (a) for some targets, only one re-
sponse was available for a given relation (e.g., if all 10 participants
provided the same response), or (b) no valid response of the required
frequency type was available. The resulting dataset includes 1,684
target–response pairs altogether, 546 of which are adjective pairs, 574
noun pairs, and 564 verb pairs. To avoid confusion, the ratings were
collected in separate experimental settings, i.e., for each word class
and each relation type, all generated pairs were first evaluated for the
strength of one relation, and then for the strength of another relation.
Table 2 provides some examples of mean ratings for target–response
pairs and the three semantic relations, together with the original re-
lation (see column Generation) and the strength of generation (1–10).

3.2 Corpora and distributional information

As a corpus for our distributional models we relied on one of the cur-
rently largest German web corpora, DECOW14AX, with approx. 12 bil-
lion words (Schäfer and Bildhauer 2012). It was already lemmatised
and assigned part-of-speech tags by the Tree Tagger (Schmid 1994).

We induced two types of distributional information from the web
corpus in order to create two types of vector space models (Bulli-
naria and Levy 2007; Turney and Pantel 2010), one using window
co-occurrence and one using lexico-syntactic patterns. Regarding win-
dow co-occurrence, we created a standard vector space for all target
and response words that were part of our relation pairs. We relied
on co-occurrence frequencies from a sentence-internal 20-word win-
dow (i.e., 20 words to the left and 20 words to the right of a word
in the corpus but not going beyond sentence borders, as sentences in
DECOW14AX are scrambled) to determine the co-occurring content
words and the strengths of co-occurrence. For example, if schnurren
‘to purr’ occurred a total of 235 times in the context of Katze ‘cat’ –
where the context of Katze is defined as the 20 preceding and the 20
following words – then the dimension schnurren for the target word
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Katze in the vector space was assigned the frequency 235. To compare
different windows sizes and vector space strengths, we also used co-
occurrence information from a 5-word window, and we also compared
co-occurrence frequencies with local mutual information (lmi) scores,
cf. Evert (2005), which often provide better estimates for word co-
occurrence strength. The window co-occurrence information refers to
words (i.e., it provides co-occurrence vectors for target or response
words such as Katze ‘cat’) rather than to target–response word pairs
(such as Katze–Tier ‘cat–animal’), so Section 4.2 will explain how to
induce vectors for word pairs from the vectors of individual words.

Regarding lexico-syntactic patterns, we directly induced a vector
space for the word-relation pairs (Hearst 1992; Chklovski and Pantel
2004, i.a.). I.e., we relied on the linear word sequences l1 . . . ln in the
corpus between any two related words wi and w j (representing syn-
onyms, antonyms or hypernyms) to initiate the vector space dimen-
sions for the relation pair wi–w j. For example, if we saw the hyper-
nymy pair Katze–Tier ‘cat–animal’ in the token sequence “. . . Tier wie
Huhn, Taube, Katze . . .”, the respective lexico-syntactic pattern (and,
correspondingly, one dimension in the vector space) was the inter-
mediate sequence “wie Huhn, Taube,”. We distinguished between two
sub-types of patterns in our vector representations, those taking into
account the linear order of the words wi and w j (i.e., patterns distin-
guishing between wi l1l2 . . . lnw j and w j l1l2 . . . lnwi), and those without
taking the direction into account.

4DISTINGUISHING
PARADIGMATIC RELATIONS

As outlined in the Introduction, our research brings together perspec-
tives from cognitive lexical semantics and distributional semantics,
and compares the distinction of paradigmatic semantic relations for
German across the three word classes of nouns, verbs and adjectives:
• Can humans and distributional approaches reliably distin-
guish between synonyms, antonyms and hypernyms across word
classes?
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• Which class–relation combinations are easy/difficult for humans
and which are easy/difficult for distributional approaches?
• Does the ease in relation distinction reflect the naturalness of a
relation type for a word class?
We expect that differences in the naturalness of paradigmatic re-

lations across word classes are reflected in how humans perceive and
distinguish semantic relatedness (Section 4.1), and in the performance
of corpus-based distributional approaches (Section 4.2).

4.1 Human distinction

For the cognitive perspective, we rely on the dataset of human-
generated paradigmatic semantic relation pairs rated for their relation
strength as described in the rating experiment in Section 3.1.4. We
disregarded relation pairs that were originally generated only once,
and we also disregarded ambiguous pairs, i.e. pairs that were gen-
erated for more than one relation type. For example, the noun Erde
(‘soil’) was generated both as synonym (3 times) and as hypernym
(twice) for the target noun Torf (‘peat’).

Table 3 shows the numbers of relation pairs across word classes
and relation types with respect to the originally generated relation.
The table also compares pairs excluding vs. including ambiguity
(−/+amb, respectively). It is already interesting to observe that for
relation pairs involving hypernymy and synonymy (HYP and SYN)
there was considerably more ambiguity among the generated rela-
tion pairs than for antonymy (ANT): For verbs and adjectives, for
which hypernymy represents a less natural semantic relation than
for nouns, only 29.3–34.2% of the considered generated pair types

Table 3:
Number of relation pairs

in the dataset
ANT HYP SYN all

NOUN − amb 101 91 82 274
+ amb 118 159 151 428

VERB − amb 122 66 63 251
+ amb 132 193 193 518

ADJ − amb 127 54 58 239
+ amb 133 184 189 506
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were unambiguous, while for nouns the unambiguous pairs corre-
spond to ≈ 55%. As mentioned above, the −amb dataset represents
the basis for exploring differences in relation distinction across word
classes by humans. For completeness, Appendix A.1 provides the hu-
man distinction results for ambiguous pairs, in comparison to those
for unambiguous pairs.

In order to assess how well the experiment participants could dis-
tinguish between the paradigmatic relations, we calculated the differ-
ences in mean ratings for a specific relation pair. For example, we ob-
tained a mean rating of 4.4 on our scale 0–5 from the experiment par-
ticipants for the antonym pair befehlen–gehorchen (‘command–obey’)
regarding antonymy, and we obtained a mean rating of only 0.3 for
this pair regarding hypernymy, so the difference in the mean ratings
was 4.1. Obviously, the experiment participants were rather sure that
the target pair represented antonymy, and they were also rather sure
that the target pair did not represent hypernymy. In contrast, the
difference in mean ratings for the antonym pair bedürfen–verzichten
(‘require–abstain’) regarding antonymy vs. hypernymy ratings was
only 2.1, demonstrating that the latter antonym pair represented a
weaker instance of antonymy for the experiment participants. Ta-
ble 2 provides differences in mean ratings for further example target–
response pairs (see column ‘Difference’).

Figures 1 and 2 present these mean differences for each word class
and across all relation pairings. Figure 1 provides a coarse view on
relation distinction and does not tell us which relation was the orig-
inal relation and which was the rated relation (e.g., whether a pair
has been generated as a synonym pair and then rated for synonymy
vs. antonymy, or whether a pair has been generated as an antonym
pair and then rated for antonymy vs. synonymy); Figure 2 then incor-
porates this distinction.

The figures illustrate that the experiment participants found it
easier to distinguish between antonyms and hypernyms (ANT–HYP,
blue boxes) as well as between antonyms and synonyms (ANT–SYN,
red boxes), where the differences in mean ratings between the origi-
nal and the rated relation are larger, in comparison to distinguishing
between hypernyms and synonyms (HYP–SYN, yellow boxes), where
the differences in mean ratings for the two relations are smaller. These
findings hold across word classes, but we can also see that the ten-
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dency is stronger for adjectives and verbs (in comparison to nouns)
where the differences are ≈0, i.e., the mean ratings for synonyms and
hypernyms regarding a specific word pair were nearly identical.

The fine-grained analysis in Figure 2 in addition demonstrates
that adjectival HYP–ANT is more difficult for the humans than adjec-
tival ANT–HYP, and that adjectival HYP–SYN is more difficult than
adjectival SYN–HYP (in both cases the boxes do not even overlap); to
a lesser degree we find the same dispute between verbal HYP–ANT and
ANT–HYP (where the median of the former is outside the box of the
latter). Interestingly, in all these three cases the differences between
mean ratings were lower when the original relation was hypernymy,
which represents a less natural semantic relation for verbs and adjec-
tives than for nouns, i.e. the experiment participants did not perceive
the generated hypernyms as strong instances of that relation type in
comparison to the respective other paradigmatic relation.

Overall, the differences in mean ratings suggest (a) that humans
clearly distinguish antonyms from synonyms and also from hyper-
nyms, but have more difficulties in distinguishing between synonyms
and hypernyms, and (b) that distinguishing hypernymy from the other
two relations is more difficult for adjectives and verbs (in comparison
to nouns), for which hypernymy represents a less natural semantic re-
lation. The boxplots in Appendix A.1 – which compare the coarse- and
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Figure 2:
Human
distinction of
paradigmatic
relations (fine)

fine-grained analyses in Figures 1 and 2 against the respective analyses
on relation pairs including ambiguity – confirm these insights.

4.2Distributional classification models

For the computational perspective, we explore two levels of process-
ing the distributional co-occurrence information in the standard vector
space models introduced in Section 3.2. We start out with cosine dis-
tances between any two word pairs within the set of target–response
pairs, in order to illustrate the difficult basis of a distributional model
for distinguishing between paradigmatic relations (Section 4.2.1). In
a series of supervised classification experiments we then present the
results of automatically categorising the target–response pairs into se-
mantic relations (Section 4.2.2).

4.2.1Cosine similarities between relation pairs

As explained in Section 3.2, we rely on corpus co-occurrences to ac-
tivate and quantify dimensions in word vectors (Bullinaria and Levy
2007; Turney and Pantel 2010). The geometric distance between two
word vectors then determines the distance between the two words.
The closer two vectors are in the vector space, the more semantically
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related we expect the represented words to be, based on the Distribu-
tional Hypothesis (Harris 1954; Firth 1957).

Regarding paradigmatic semantic relations, the generally agreed
upon assumption is that the related word pairs are relatively close
to each other in word space across the relation types, because for all
paradigmatic relations the related words are distributionally similar
to each other. In the following, we explore this assumption for our
dataset.

We calculated the cosine scores between the target words and
the response words for each target–response pair. The cosine score
specifies the angle between two vectors, with 1 indicating minimal
distance (i.e., identity, and therefore maximal relatedness) between
the vectors. We used the same set of unambiguous rated pairs as ex-
ploited by Figures 1 and 2, together with the respective co-occurrence
vector spaces. Figures 3 and 4 present boxplots of cosine scores for
all word pairs across word classes and semantic relations, relying on
co-occurrence frequencies within 20-word windows, and on the cor-
responding vectors with lmi scores.

The plots illustrate that the cosine values are indeed very simi-
lar across our three paradigmatic relations for a specific word class,
with slightly lower scores for verb relatedness. The lmi scores obvi-
ously influence the magnitudes of the cosine scores, and they manage

Figure 3:
Boxplots of
cosine scores
across classes
and relations
(window 20,
frequencies)
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Figure 4:
Boxplots of
cosine scores
across classes
and relations
(window 20,
lmi scores)

to disperse them. Appendix A.2 illustrates that the same tendencies
can be observed for 5-word co-occurrence windows, and also when
extending the underlying dataset with ambiguous word pairs.

4.2.2Automatic classification of relation pairs

In a series of classification experiments relying on the distributional
word spaces we explored whether automatic approaches are able to
categorise word pairs according to their paradigmatic semantic re-
lations, even though the vectors of the word pairs are all very close
in vector space. In the following, we present classification results of
a simple nearest-centroid classifier (also known as Rocchio classifier,
cf. Manning et al. 2008) that compares window-based co-occurrence
features against pattern-based co-occurrence features. A subset of the
classification experiments was previously described by Schulte im
Walde and Köper (2013) and David (2014), but was re-implemented
and re-run for the current article to ensure the same underlying target
pairs and corpus data across approaches.

The classification was done as follows. For each word class sepa-
rately, we calculated three mean vectors: one for each lexical seman-
tic relation (synonymy, antonymy, hypernymy), as based on a set of
training pairs. We then predicted the semantic relation for a set of test
pairs, by choosing for each test pair the most similar class mean vector
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as determined by the respective cosine scores. Across the experiments,
we used 5-fold cross-validation for training and testing.

The classification setup for the pattern-based vectors is straight-
forward, because a pattern vector represents a word pair. The window
co-occurrence vectors however represent words and not word pairs
and thus require a preprocessing step to obtain vectors for word pairs.
We applied two variants to initiate window co-occurrence vectors for
the target–response pairs, as based on their individual word vectors:
WINDOW-DIFF: For each target–response word pair, we calculated
the difference vector between the two involved word vectors, i.e.,
the value of each dimension in the difference vector is computed
as the absolute difference between the respective values in the
two word vectors. The centroids of the relation classes correspond
to mean difference vectors.

WINDOW-PROD: For each target–response word pair, we calculated
the product vector for the two involved word vectors, i.e., the
value of each dimension in the product vector is computed as the
product of the respective values in the two word vectors. The cen-
troids of the relation classes correspond to mean product vectors.
Figures 5 and 6 present the results of the nearest-centroid clas-

sifier across word classes, relations, and types of distributional infor-
mation. While Figure 5 shows the results in terms of precision (i.e.,
the average proportion of correct class assignments among all classi-
fied instances of relation pairs), Figure 6 shows the results in terms

Figure 5:
Classification re-
sults (precision)
using lmi-based

window
co-occurrence vs.
lexico-syntactic

pattern
information
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Figure 6:
Classification re-
sults (accuracy)
using lmi-based
window
co-occurrence vs.
lexico-syntactic
pattern
information

of accuracy (i.e., the average proportion of correct class assignments
among all existing instances of relation pairs).

Both Figures 5 and 6 compare vector spaces with lmi scores for
pattern-based features with direction (i.e., patterns distinguishing be-
tween wi〈pattern〉w j and w j〈pattern〉wi), and window-based features
relying on a 20-word co-occurrence window. We decided in favour of
lmi-score vector spaces rather than frequency vector spaces, because
our analyses in Section 4.2.1 indicated that lmi scores disperse the co-
sine scores in the vectors. Results of other classification variants (i.e.,
relying on frequencies; pattern-based features without direction in-
formation; window-based features relying on a 5-word co-occurrence
window) are described in Appendix A.3.

Figure 5 shows that – regarding precision – pattern information
in most cases outperforms not only the respective majority baseline
but also the two variants of window information. The only exception
takes place for distinguishing between adjectival HYP–SYN. And also
except for this very case, classification based on window features is
consistently worse than the baselines. WINDOW-DIFF and WINDOW-
PROD results do not show consistent differences, except for verbal
ANT–HYP, for which WINDOW-PROD clearly outperforms WINDOW-
DIFF. Figures 14 and 15 in Appendix A.3 illustrate that the same ten-
dencies are found for frequency-based vector spaces, which are how-
ever overall worse than lmi-based vector spaces.

Figure 6 shows that – regarding accuracy – most of the classifi-
cation results are below the majority baseline. Pattern-based results
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Figure 7:
Classification

results
(precision)

using lmi-based
pattern

information

are only above baseline results for nominal ANT–HYP and HYP–SYN
as well as for verbal HYP–SYN distinctions; window-based results do
not outperform the baselines in any of the scenarios. In cases where
both pattern-based and window-based results are below the baselines,
pattern-based results outperform window-based results for all verbal
relation distinctions; window-based results outperform pattern-based
results for all adjectival relation distinctions, and for nominal ANT–
SYN. In most cases, WINDOW-DIFF clearly outperforms WINDOW-
PROD.

Figure 7 provides a view that is quite alike Figure 5, zooming into
the overall best results7 when using pattern-based information. First
of all, Figure 7 compares the classification results with/without using
pattern direction information. We can see that there are no consistent
differences between the two representations: the patterns without di-
rectional information are slightly better for verbs; and the patterns
with directional information are slightly better for adjectives. The re-
sults for nouns depend on the relation types. Appendix A.3 provides
additional information illustrating in the same manner that lmi-based
patterns in general outperform lmi-based window information, both
for a 20-word and a 5-word window.

Moreover, comparing our pattern-based classification results in
Figure 7 with the coarse view on human relation distinction in Figure 1,

7For the remainder of the paper, we will explore precision rather than accu-
racy results because we are interested in the qualitative feature potential, disre-
garding data sparsity issues.
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we do not see much overlap in general tendencies. In relation to the
respective baselines, nominal ANT–HYP and nominal and verbal HYP–
SYN distinctions are handled particularly well in the automatic clas-
sifications; adjectival HYP–SYN distinction is particularly bad. This
provides a very different story than the human distinctions, where
HYP–SYN were consistently distinguished more poorly than the other
relation combinations, across word classes.

Tables 4–9 provide confusion matrices for a more detailed view
on correct and wrong relation classifications. Here we took into ac-
count all class assignments of relation pairs in the respective 5-fold
cross-validation, a total of N = 1,528 across word classes and rela-
tion combinations. For each word class and relation, we calculated
the number of pairs classified correctly/wrongly, or not at all.8 The
diagonal numbers in bold font indicate the correct class assignments,
and the accuracy accN indicates the proportion of those correct classi-
fications regarding N .

Comparing the lmi-based Tables 4–6, the accN scores confirm that
pattern-based information outperforms both variants of window-based
information. We can also observe differences across word classes and
relation types. For example, the patterns are extremely useful for iden-
tifying verbal antonyms, while WINDOW-DIFF is crucial for discover-

8A word pair was not classified at all if all vector feature values of at least
one of the words were zero. This happened if one or both of the words did not
occur in the corpus, or if the words did not co-occur (in the case of patterns), or
after multiplying feature values.

ANT HYP SYN NONE all

NOUN
ANT 101 21 24 56 202
HYP 10 135 9 28 182
SYN 33 34 54 43 164

VERB
ANT 152 31 18 43 244
HYP 21 90 15 6 132
SYN 21 21 51 33 126

ADJ
ANT 139 21 20 74 254
HYP 7 44 25 32 108
SYN 11 11 52 42 116

accN = 0.5353 N = 1,528

Table 4:
Confusion matrix for class
assignment using
lmi-based pattern features
(with direction)
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Table 5:
Confusion matrix

for class assignment using
lmi-based WINDOW-DIFF

features

ANT HYP SYN NONE all

NOUN
ANT 118 77 7 0 202
HYP 32 145 5 0 182
SYN 79 78 7 0 164

VERB
ANT 73 91 80 0 244
HYP 18 91 23 0 132
SYN 29 46 51 0 126

ADJ
ANT 189 25 40 0 254
HYP 42 27 39 0 108
SYN 41 19 56 0 116

accN = 0.4954 N = 1,528

Table 6:
Confusion matrix

for class assignment using
lmi-based

WINDOW-PROD features

ANT HYP SYN NONE all

NOUN
ANT 79 51 20 52 202
HYP 27 97 16 42 182
SYN 47 49 23 45 164

VERB
ANT 117 29 65 33 244
HYP 38 29 38 27 132
SYN 27 21 68 10 126

ADJ
ANT 135 21 34 64 254
HYP 28 33 23 24 108
SYN 28 18 45 25 116

accN = 0.4097 N = 1,528

Table 7:
Confusion matrix

for class assignment using
frequency-based pattern
features (with direction)

ANT HYP SYN NONE all

NOUN
ANT 132 19 17 34 202
HYP 17 136 7 22 182
SYN 46 47 43 28 164

VERB
ANT 135 47 32 30 244
HYP 18 94 18 2 132
SYN 26 27 51 22 126

ADJ
ANT 140 34 33 47 254
HYP 7 67 31 3 108
SYN 10 25 62 19 116

accN = 0.5628 N = 1,528
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ANT HYP SYN NONE all

NOUN
ANT 121 42 39 0 202
HYP 36 121 25 0 182
SYN 51 47 66 0 164

VERB
ANT 136 58 50 0 244
HYP 36 65 31 0 132
SYN 32 30 64 0 126

ADJ
ANT 151 41 62 0 254
HYP 39 34 35 0 108
SYN 33 16 67 0 116

accN = 0.5399 N = 1,528

Table 8:
Confusion matrix
for class assignment using
frequency-based
WINDOW-DIFF features

ANT HYP SYN NONE all

NOUN
ANT 109 43 32 18 202
HYP 40 101 29 12 182
SYN 42 43 61 18 164

VERB
ANT 44 99 97 4 244
HYP 10 103 19 0 132
SYN 14 43 67 2 126

ADJ
ANT 108 62 62 22 254
HYP 22 57 29 0 108
SYN 18 32 60 6 116

accN = 0.4647 N = 1,528

Table 9:
Confusion matrix
for class assignment using
frequency-based
WINDOW-PROD features

ing verbal hypernyms. WINDOW-PROD seems to overall classify more
poorly than the other two feature types; it slightly outperforms them
in only one case, for verbal synonyms. WINDOW-DIFF has a partic-
ular strength in that it classifies all N relation pairs (NONE = 0 for
all class–relation combinations). Obviously the vectors are less sparse
than for the patterns, and they do not become more sparse in the vec-
tor pair creation, differently to the WINDOW-PROD vectors.

Looking at the frequency-based Tables 7–9, we find the same
tendencies regarding accN as for Tables 4–6, but the frequency-based
accN values are consistently higher than the respective lmi-based accN

values. This is in contrast to what the precision results presented in
Appendix A.3 show, where the frequency-based precision results for
the patterns are worse than the respective lmi-based precision results,
and the results for the window-based vector spaces vary. Comparing
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Tables 7 and 8, we can observe that both patterns and WINDOW-
DIFF are strong in identifying antonyms across word classes; that
the patterns are also strong in identifying hypernyms (and WINDOW-
DIFF is less strong) across word classes; and that WINDOW-DIFF is
strong in identifying synonyms (and the patterns are less strong) across
word classes. Thus, the confusion matrices demonstrate in more detail
than the plots that the most successful vector spaces each have their
strengths and weaknesses regarding specific relation types.

5 CONCLUSION

In this article, we explored the distinction between the three paradig-
matic semantic relations of synonymy, antonymy, and hypernymy,
both from a cognitive linguistic perspective and a computational lin-
guistic perspective. We expected differences in how natural relations
are across word classes to be reflected in how humans perceive and
distinguish semantic relatedness, and in the extent that corpus-based
distributional approaches are successful in modelling semantic relat-
edness. More specifically, we addressed the following questions in this
study:
• Can humans and distributional approaches reliably distin-
guish between synonyms, antonyms and hypernyms across word
classes?
• Which class–relation combinations are easy/difficult for humans
and which are easy/difficult for distributional approaches?
• Does the ease in relation distinction reflect the naturalness of a
relation type for a word class?
Regarding the human distinction between the three paradigmatic

relations, we first of all observed that among the human-generated
relation pairs involving hypernymy and synonymy there was consid-
erably more ambiguity than for antonymy. Especially for verbs and
adjectives, for which hypernymy represents a less natural semantic
relation than for nouns, a large proportion of the considered gener-
ated pair types were ambiguous between hypernymy and synonymy.
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In addition, when looking at the differences in mean relation rat-
ings we found (a) that humans clearly distinguished antonyms from
synonyms and also from hypernyms, but had more difficulties in dis-
tinguishing between synonyms and hypernyms, and (b) that distin-
guishing hypernymy from the other two relations was more difficult
for adjectives and verbs (in comparison to nouns), for which hyper-
nymy represents a less natural semantic relation.

When comparing our best automatic classification results with hu-
man relation distinction, we did not find much overlap in general ten-
dencies. Distinguishing between hypernyms and antonyms/synonyms
for nouns worked particularly well, just as distinguishing hypernyms
and synonyms for verbs. Overall, this provides a very different story
than in the case of human distinctions, where hypernyms and syn-
onyms were consistently distinguished more poorly than the other re-
lation combinations across word classes.

The most interesting insights from the computational perspective
arose from comparing the various feature types, where each of them
showed rather different strengths and weaknesses. Overall – regarding
precision – the pattern-based vector spaces clearly outperformed not
only the respective majority baselines but also the two variants of win-
dow information (WINDOW-DIFF and WINDOW-PROD) for both 20-
word and 5-word windows and across almost all class–relation com-
binations. When taking a more fine-grained look at the confusion ma-
trices for all 1,528 individual class assignments of relation pairs, the
picture was more diverse: The patterns were extremely useful in iden-
tifying verbal antonyms, while WINDOW-DIFF was crucial in discov-
ering verbal hypernyms. WINDOW-PROD seemed to generally classify
more poorly than the other two feature types; it slightly outperformed
them in only one case, for verbal synonyms. WINDOW-DIFF showed a
particular strength in that it classified all relation pairs; obviously the
vectors were less sparse than for the patterns, and they did not become
more sparse in the vector pair creation, differently to WINDOW-PROD
vectors.

Overall, even though distributional similarity per se represents
a difficult starting point for distinguishing paradigmatic relations
(which we illustrated for our dataset), our computational explo-
rations demonstrated that distributional classification models suc-
cessfully distinguish between them. The most salient feature types
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and their success varied across word classes and paradigmatic rela-
tion types.

So both for humans and for the automatic approaches, the reliable
distinction between relations depends on the specific class–relation
combinations. However, easy vs. difficult class–relation combinations
differ for humans and computational models, exhibiting stronger ties
between ease and naturalness of class-dependent relations for humans
than for computational models on the one hand, and strong ties be-
tween vector space parameters and relation types on the other hand.
For future work on automatic relation distinction, the latter suggests
combining feature types (for example, in an ensemble) rather than
applying them in isolation.

A APPENDIX

A.1 Human distinction of relation pairs in-/excluding
ambiguity

Figures 8 and 9 compare human distinctions of relation pairs exclud-
ing ambiguity (left panels, identical to Figures 1 and 2) against human
distinctions of relation pairs including ambiguity (right panels). The
plots suggest that our conclusions for relation distinction regarding
relation pairs excluding ambiguity (cf. Section 4.1) apply similarly
to relation pairs including ambiguity: (a) humans clearly distinguish
antonyms from synonyms and also from hypernyms, but have more
difficulties in distinguishing between synonyms and hypernyms, and
(b) distinguishing hypernymy from the other two relations is more
difficult for adjectives and verbs (in comparison to nouns), for which
hypernymy represents a less natural semantic relation.

A.2 Cosine similarities between relation pairs

Figures 10 to 13 illustrate that neither (a) relying on 5-word instead
of 20-word window co-occurrences nor (b) relying on lmi scores in-
stead of co-occurrence frequencies nor (c) including ambiguous rela-
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tion pairs changes the overall picture that cosine scores are indeed
very similar across our three target paradigmatic relations for a spe-
cific word class, cf. our conclusions in Section 4.2.1.

A.3 Automatic classification of relation pairs

Figures 14 and 15 illustrate the differences in classification results
when relying on vector spaces with lmi scores (Figure 14, identical
to Figure 5) vs. raw frequencies (Figure 15). Using pattern-based fea-
tures, the plots clearly show consistently better results when using
lmi scores in comparison to frequencies. Using window-based fea-
tures, the results differ more strongly: the WINDOW-20-DIFF results

Figure 14:
Classification

results
(precision) using

lmi-based
window

co-occurrence vs.
lexico-syntactic

pattern
information

Figure 15:
Classification

results
(precision) using

frequency-
based window

co-occurrence vs.
lexico-syntactic

pattern
information
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are better for frequency-based vector spaces than for lmi-based vector
spaces, and while they are rather similar to the WINDOW-20-PROD
results in the lmi-based spaces, they generally outperform them in the
frequency-based spaces.

Figures 16–18 compare lmi-based pattern and window spaces.
They once more illustrate that the patterns in Figure 16 (identical to
Figure 7) outperform window information, both for a 20-word and a
5-word window. Comparing Figures 17 and 18, we can also see that
there are no strong differences regarding the window sizes (20 vs. 5).

The 5-word windows relying on frequencies (right panel in Fig-
ure 10) slightly lower the range of the cosine scores, and enlarge the
second and third quartiles while the medians stay highly similar, when
comparing against the corresponding 20-word windows relying on

Figure 16:
Classification
results
(precision) using
lmi-based
pattern
information

Figure 17:
Classification
results
(precision) using
lmi-based
window-20
information
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Figure 18:
Classification

results
(precision) using

lmi-based
window-5
information

frequencies (left panel in Figure 10). The lmi scores in comparison to
the frequencies strongly influence the magnitudes of the cosine scores,
and slightly disperse them (see left and right panels in Figure 11 in
comparison to the corresponding ones in Figure 10).

Figures 12 and 13 show for 20-word windows relying on frequen-
cies and lmi scores, respectively, that including ambiguous relation
pairs (right panels) hardly changes the overall picture at all, in com-
parison to the left panels which are identical to those in Figures 10
and 11 and exclude ambiguous pairs.
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This paper1,2 argues that if phonological and phonetic phenomena
found in language data and in experimental data all have to be ac-
counted for within a single framework, then that framework will have
to be based on neural networks. We introduce an artificial neural net-
work model that can handle stochastic processing in production and
comprehension. With the “inoutstar” learning algorithm, the model is
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able to handle two seemingly disparate phenomena at the same time:
gradual category creation and auditory dispersion. As a result, two
aspects of the transmission of language from one generation to the
next are integrated in a single model. The model therefore addresses
the hitherto unsolved problem of how symbolic-looking discrete lan-
guage behaviour can emerge in the child from gradient input data
from her language environment. We conclude that neural network
models, besides being more biologically plausible than other frame-
works, hold a promise for fruitful theorizing in an area of linguistics
that traditionally assumes both continuous and discrete levels of rep-
resentation.

1 WHY A COMPREHENSIVE MODEL
MUST BE BASED

ON NEURAL NETWORKS

What will be the ultimate model of phonology and phonetics and their
interactions? It will have to be a model that accounts for at least four
types of valid behavioural data, namely 1) the generalizations that
phonologists have found within and across languages, 2) the phe-
nomena that psycholinguists and speech researchers have found by
observing speakers, listeners, and language-acquiring children, 3) the
mergers, splits, chain shifts and other sound change phenomena found
by historical phonologists and dialectologists, and 4) the phenomena
that have been observed when languages come in contact, such as
loanword adaptations. Besides having to account for all these types of
behavioural data, the model will have to be compatible with what is
known about the biology of the human brain, because that is where
language is produced and comprehended. In this paper we argue that
the ultimate model has to be reductionist, i.e. that it has to consist
of artificial neural networks. We provide a first proposal of a neural
network model that can handle two important aspects of the trans-
mission of a sound system from one generation to the next, namely
category creation and auditory dispersion, and we simulate the model
on a range of synthetic data.
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1.1A model of phonological and phonetic representations
and knowledge

If the model contains levels of representation, it may look like Fig-
ure 1, which can be thought of as containing the minimum number
of levels needed for a sensible description: phonetics seems to require
at least an Auditory Form (AudF, specifying a continuous stream of
sound) and an Articulatory Form (ArtF, specifying muscle activities),
and phonology seems to require at least an Underlying Form (UF, con-
taining at least lexically contrastive material) and a Surface Form (SF,
containing a whole utterance divided up in prosodic structure such as
syllables); the Morpheme level connects the phonology to the syntax
and the semantics in the lexicon.

<Morphemes>

|Underlying Form|

/Surface Form/

[[Auditory Form]]

[Articulatory Form]

lexical-phonological knowledge

morpheme-structure restrictions

faithfulness knowledge

structural restrictions

cue knowledge

sensorimotor knowledge

articulatory restrictions

phonological
representations{

phonetic
representations{

Figure 1:
Levels of
representation
and stored
knowledge
in a model
of phonology
and phonetics

The five levels in Figure 1 are a simplified combination of what
phonologists have been proposing in models of phonological pro-
duction (e.g. van Wijk 1936: 323; Trubetzkoy 1939; Kiparsky 1982)
and what psycholinguists have been proposing in models of compre-
hension (e.g. McClelland and Elman 1986; Cutler et al. 1987) and
production (e.g. Levelt et al. 1999). These specific five levels, and
the special way in which they are connected in Figure 1, were pro-
posed by Boersma (1998, 2007) and Apoussidou (2007). In numerous
papers, Boersma and co-workers have investigated the capability of
this “Bidirectional Phonology and Phonetics” (BiPhon) model to ac-
count for experimental as well as linguistic data (for an overview, see
Boersma 2011). The model has hitherto used the decision mechanism
of Optimality Theory (OT) and can therefore be called BiPhon-OT.
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The present paper introduces the neural-network (NN) edition of the
model, which we call BiPhon-NN.

Language users have knowledge of the relationships between
levels of representation. In Figure 1, such relationships exist between
adjacent levels only, so that the language user has knowledge about
sensorimotor, cue, faithfulness (phonological) and lexical relation-
ships. The language user also has knowledge about restrictions within
levels: the articulatory, structural and morpheme-structure restric-
tions. In OT, all this knowledge is represented as a grammar consisting
of ranked constraints; in NN models, this knowledge is represented as
a long-term memory consisting of connection weights.

1.2 Phonological and phonetic processes

A comprehensive model has to take into account the behaviour of the
speaker, the listener, and the learner. Figure 2 shows the various pro-
cesses that can be distinguished when travelling the levels of repre-
sentation of Figure 1. Globally, the path from AudF to Morphemes
following the upward arrows in Figure 2 is comprehension, i.e. the
task of the listener, and the path from Morphemes to ArtF follow-
ing the downward arrows is production, the task of the speaker. More
locally, there are partial processes. The local mapping from UF to SF
is phonological production, an example being the mapping from an un-
derlying two-word sequence |an#pa| (“#” denotes a word boundary)
to the phonological surface structure /.am.pa./ (“.” denotes a syllable
boundary) in a language with nasal place assimilation. At the interface
between phonetics and phonology, the local mapping from AudF to SF
is (prelexical) perception, an example being the mapping from concrete
continuous formant values to abstract discrete vowel categories.

The partial processes and their acquisition have been modelled in
various frameworks. Phonologists have been modelling phonological
production within OT since Prince and Smolensky (1993/2004), and
its acquisition since Tesar and Smolensky (1998). Word recognition
was modelled with neural networks by Norris (1994) in the Shortlist
model, and prelexical perception was modelled with neural networks
by Weenink (2006) and within BiPhon-OT by Boersma (1997) and Es-
cudero and Boersma (2004). The present paper in Section 5 models
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COMPREHENSION PRODUCTION

<Morphemes>

|Underlying Form|

/Surface Form/

[[Auditory Form]]

[Articulatory Form]

word recognition{
prelexical perception

lexical retrieval,
allomorph selection

phonological production

}phonetic implementation

Figure 2:
Processes in
a comprehensive
model of
phonology
and phonetics

the development of category creation in the AudF-to-SF mapping. The
emergence of an early stage of category creation, namely the percep-
tual magnet effect (which was observed in the lab by Kuhl 1991), has
been modelled before with neural networks by Guenther and Gjaja
(1996) and with BiPhon-OT by Boersma et al. (2003).

The way in which the language user’s knowledge is represented
in Figure 1 suggests that the same knowledge is used for both di-
rections of processing in Figure 2, i.e. for comprehending and pro-
ducing speech. Within OT, this bidirectionality was first argued for
by Smolensky (1996). Specifically, it has often been argued that the
same structural constraints play a role in comprehension as well as in
production (Tesar 1997; Tesar and Smolensky 1998, 2000; Boersma
1998, 2000, 2007, 2009; Pater 2004), sometimes with very dissim-
ilar effects (Boersma and Hamann 2009). For the present paper it
is relevant that the “cue knowledge” at the interface of phonology
and phonetics is bidirectional, i.e. used in both prelexical percep-
tion and phonetic implementation (Boersma 2009): the same knowl-
edge that allows one to perceive a loud high-frequency noise as /s/
forces one to implement the surface phoneme /s/ as a sound with
a loud high-frequency noise. In Section 6 we model within BiPhon-
NN the acquisition of auditory dispersion, i.e. the evolution of opti-
mal distances at AudF between the members of phoneme inventories
at SF. This acquisition has been modelled before within exemplar
theory by Wedel (2004, 140–169; 2006, 261–269) and in BiPhon-
OT by Boersma and Hamann (2008); in both cases, bidirectionality
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was a crucial element of the explanation, as explained in detail in
Section 6.

Thus, the perceptual magnet effect and auditory dispersion have
both been modelled before, although rarely within the same frame-
work (with BiPhon-OT as a possible exception).

1.3 The need to model it all at the same time

There are at least two reasons why one would want to model all the
processes of Section 1.2 within a single comprehensive model. One
reason is that there are phenomena whose complete explanation nec-
essarily requires all levels of representation, and the other reason is
that there seem to exist processes that require an interaction between
levels that are far away from each other in Figure 1 or 2. We discuss
these reasons now, with the goal of finding candidate comprehensive
modelling frameworks.

1.3.1 Comprehensive processes

There exist seemingly unitary processes whose explanation neverthe-
less requires all levels of representation. One such process is loanword
adaptation, where the input (the foreign stream of sound that impinges
on the borrower’s ear) and the output (the borrower’s phonetic pro-
duction) are the only direct observables. If one wants to understand
this phenomenon solely on the basis of acquired L1 behaviour, one
has to assume that the borrower starts by filtering the incoming au-
ditory form through L1-specific cue knowledge and L1-specific struc-
tural constraints into a phonological surface structure (see Figures 1
and 2), then stores it as a new morpheme in the lexicon with an ap-
propriate underlying form. When speaking, the borrower takes this
morpheme and underlying form, filters the latter with her L1-specific
phonological knowledge, then filters the result again with her pho-
netic implementation device, which computes an auditory form and
an articulatory form, perhaps filtered by L1-specific articulatory re-
strictions. An explanation of loanword adaptation, therefore, requires
all arrows in Figure 2, as has been argued in detail by Boersma and
Hamann (2009). Another phenomenon whose explanation requires
all levels of representation is first-language acquisition. This happens
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much more slowly than the initial adaptation of a loanword, but is
also much more central to linguistic theory and experimentation. The
search we have to embark on, therefore, is for a single comprehensive
framework.

1.3.2Distant interactions

The arrows in Figure 2 only connect levels that are adjacent. Thus, an
incoming sound at AudF first activates a representation at SF, which
then activates a representation at UF, which then activates one or more
morphemes at the topmost level; there are no more direct routes that
skip a level.

However, there is evidence that the partial processes are not en-
tirely sequential. Feedback from “later” to “earlier” levels of represen-
tation has been identified experimentally and theoretically in several
locations of processing, and several models that exhibit such interac-
tions have already been proposed. In comprehension, lexical influence
(from the Morpheme level) back to prelexical perception (AudF-to-
SF) was attested by Ganong III (1980), who found that an auditory
sequence that is ambiguous between /dæ/ or /tæ/ (for English listen-
ers) is perceived as /dæ/ if followed by [ʃ] and as /tæ/ if followed by
[sk], simply because |dæʃ| and |tæsk| correspond to English words,
while |tæʃ| and |dæsk| do not; this effect was modelled with neural
networks by McClelland and Elman (1986) and with BiPhon-OT by
Boersma (2009, 2011). Likewise, semantic considerations above the
Morpheme influence the access of underlying forms in the mapping
from SF to UF (Warren and Warren 1970). In production, allomorph
selection at UF or higher is sometimes determined by “later” consider-
ations at SF: the choice between |vjø| and |vjɛj| ‘old-MASC’ in French
is determined by whether the next word happens to start with a con-
sonantal segment or not, as modelled with BiPhon-OT by Boersma and
van Leussen (2017). Likewise, phonetic considerations such as artic-
ulatory effort (at ArtF) and cue quality (between SF and AudF) may
influence choices in the phonology (between UF and SF), as modelled
by Boersma (1998, 2007). Also, cue knowledge and articulatory con-
straints must interact with each other in the phonetic implementation
process.

As a result of these examples of interactive processing, most of
the arrows in Figure 2 are two-sided. Levels that are activated “later”
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in comprehension or production can thereby influence “earlier” lev-
els backwards. In NN models, interactivity is implemented by hav-
ing activity spread bidirectionally (McClelland and Elman 1986); in
BiPhon-OT the interactivity is implemented by having candidates be
entire paths from AudF to Morpheme in comprehension or from Mor-
pheme to ArtF in production (Boersma 2007, 2009, 2011; Apoussidou
2007; Berent et al. 2009).

The existence of such feedback in processing is controversial in
some locations (Norris et al. 2000 deny the influence of the lexicon
on prelexical perception, and Hale and Reiss 2000 deny any influ-
ence of phonetic considerations on phonological production). For the
time being, however, we assume interactivity is everywhere. The need
for a comprehensive model does not depend on whether such inter-
activity is only apparent or is an integral element of the underlying
mechanism.

1.4 Choosing the framework that models it all:
neural networks

When discussing existing models in Section 1.1 through Section 1.3,
we identified three frameworks: neural networks, exemplar theory,
and OT.

At first sight, BiPhon-OT might seem to be the best framework,
because it provided an account of all of the processes mentioned. How-
ever, this is deceptive, because it did not provide an account of all
the processes combined. When modelling phonological category cre-
ation (Boersma 1998: ch.8; Boersma et al. 2003), the BiPhon model
shares with NN category creation models (Guenther and Gjaja 1996)
the assumption that phonological categories emerge from the distri-
butions of auditory forms in the child’s environment. Both computa-
tional models successfully arrive at a stage of continuous perceptual
warping (an incoming sound is received as a slightly different sound
because of distributional learning), but linguistic modelling in OT has
to stop there, because it has to assume that categories are discrete.
This discrepancy between the gradience (continuity) of category cre-
ation that is needed in an emergentist model, and the discreteness of
categories that is needed to do OT phonology entails the failure of OT
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as a comprehensive framework for emergentist phonology and pho-
netics. Moreover, OT’s biological plausibility is low, because it works
with nearly infinite lists of candidates, which is especially problem-
atic if we have five levels of representation; typically, the number of
candidate paths to evaluate is exponential in the length of the input
(both in comprehension and in production) as well as exponential in
the number of levels of representation.

Superficially, exemplar theory (Goldinger 1996) might be ex-
pected to do better with respect to a transition from continuous to
discrete, because this theory can at least be seen to handle the reverse
transition when massive storage of single discrete events leads to ob-
served continuous knowledge. However, despite its long existence, the
theory has not yet been able to model even the most straightforward
of phonological processes, such as productive nasal place assimila-
tion (Boersma 2012). More crucially, work specifically addressing the
acquisition of categories (Kruschke 1992; Pierrehumbert 2001) pre-
supposes pre-existing category labels, i.e. it models the emergence of
the link between categories and sound but not the emergence of the
category labels themselves.

This leaves neural network modelling as the only option. If Fig-
ure 1 is implemented in a neural network, each of the five levels of
representation should be thought of as a large set of network nodes,
each of which can be active or inactive (or, in a time-smoothed view,
more active or less active). The pattern of activity of these nodes forms
the current representation at that level. The processes of Figure 2 can
be regarded as the spreading of activity between and within levels;
the knowledge in Figure 1 is stored as connection weights, i.e. the
strengths of the connections between the nodes. We show in Section 5
that if the elements of representations are distributed over multiple
nodes, they can start out as continuous and gradually come to exhibit
more discrete behaviour during acquisition, thus ensuring the com-
patibility between underlying continuity and observed discreteness.
One and the same framework, then, succeeds in accounting for both
symbolic and subsymbolic behaviour. As far as biological plausibility
goes, neural networks form the best of the three frameworks as well:
the number of connections in a NN model tends to rise linearly with
the number of levels of representation, and linearly or quadratically
with the size of the representations.
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We confess here that we choose NN modelling not only because
it wins out by elimination, but also because it is reductionist: in the
end, it is uncontroversial that humans represent language in neural
networks in their brains, and both OT and exemplar theory work at a
higher level of abstraction. If the abstractions fail, one has to go one
level of concreteness deeper.

Artificial neural networks differ in their structure, in their acti-
vation spreading rules, and in their learning rules. To assess the ap-
propriateness of various neural networks for bidirectional phonology
and phonetics, Sections 2 through 4 start by looking at a traditional
toy example of phonological production, and then establish what com-
mon elements of artificial neural networks are needed or unnecessary
and why. Readers who want to skip these justifications and are also
thoroughly familiar with neural net modelling can jump ahead to the
conclusion and summary in Section 4.8. Sections 5 and 6 then show
that with these elements we can build a shallow network that can
create categories (Section 5) and exhibits auditory dispersion (Sec-
tion 6). Let’s proceed to looking at the ingredients of our linguistic
NN model.

2 NODES, CONNECTIONS, WEIGHTS
AND ACTIVITIES

The neural network type of our choice should at least be able to share
the properties that made BiPhon-OT successful in modelling language
phenomena: stochasticity (it should replicate environmental probabil-
ities) and bidirectionality (it should work both top-down and bottom-
up). This section shows that these two desirable properties can be
achieved in a network architecture with probabilistic nodes and bidi-
rectional connections. For initial simplification, we work with “lo-
cal” representations in this section, because these allow us to inves-
tigate (in Section 4) the theoretical asymptotic behaviour of our net-
works, i.e. to investigate what kinds of general cognitive problem our
networks must be able to solve after learning; our real proposal in
later sections has “distributed” representations instead, for reasons we
make clear in Section 5.
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2.1A toy example: phonological production

Following Figure 2, phonological production, viewed in isolation, is
the mapping from Underlying Form (UF) to Surface Form (SF). Using
terms that are familiar from both the neural network literature (Rosen-
blatt 1958) and OT (Prince and Smolensky 1993/2004, Section 1.1),
the Underlying Form is the input of this mapping and the Surface Form
is the output. For simplification, we start with a toy language that mod-
els only the relationship between UF and SF, although we do so in both
directions of processing.

Our toy language has only four possible underlying utterances,
each of which consists of two words. The first word is either under-
lyingly |an| or |am|, and the second word is either |pa| or |ta|. The
four underlying utterances are therefore |an#pa|, |an#ta|, |am#pa|
and |am#ta|, where “#” stands for the word boundary. In the surface
form, the language exhibits nasal place assimilation in a manner remi-
niscent of Dutch: an underlying coronal nasal tends to assimilate to the
place of any following consonant, so that underlying |an#pa| becomes
/ampa/ on the surface; meanwhile, an underlying labial nasal tends
not to assimilate: |am#ta| becomes /amta/. As in real languages, the
tendencies are not true 100% of the time: the assimilation of the coro-
nal nasal is optional, and likewise, the labial nasal does assimilate in a
small minority of cases. For our example we suppose that underlying
|an#pa| becomes assimilated /ampa/ on the surface 70% of the time,
but the “faithful” form /anpa/ 30% of the time, and that underlying
|am#ta| becomes faithful /amta/ 95% of the time, and assimilated
/anta/ 5% of the time.

This probabilistic state of affairs is a situation that (Stochastic)
OT is known to be able to represent (e.g. Boersma and Hayes 2001),
because an existing learning algorithm for Stochastic OT (the “GLA”)
typically turns a learner into a probability matcher. In comprehension,
an auditory form that was intended by the speaker as the surface form
/A/ in 70% of the cases and as the surface form /B/ in 30% of the
cases, will come to be perceived by the GLA perception learner as /A/
in 70% of the cases and as /B/ in 30% of the cases (Boersma 1997).
In production, an underlying form that is produced in the learner’s
language environment as the surface form /C/ in 70% of the cases and
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as the surface form /D/ in 30% of the cases will come to be produced
by the GLA production learner as /C/ in 70% of the cases and as /D/
in 30% of the cases (Boersma and Hayes 2001). Our NN model should
be able to replicate this or a similar kind of optimal behaviour.

There are several ways to represent this toy language in a neural
network. The most straightforward and OT-like (and probably least
realistic) way is to represent each possible underlying utterance (in-
put) with one node, and each possible output utterance as one node.
This is done in Figure 3, where each of the four possible underlying
forms shows up as a single node along the top and each of the four
surface candidates shows up as a single node along the bottom.

Figure 3:
A network

that performs
phonological
production

|an#pa| |an#ta| |am#pa| |am#ta|

/anpa/ /anta/ /ampa/ /amta/

0.
30

0.70 1.
00

1.
00

0.05

0.
95

|UF|

/SF/

Biologically, a node can be regarded as representing a neuron
(or small group of neurons) in the cerebral cortex. Representing an
entire linguistic form with a single node (a local representation), as
we do here, is an unrealistic oversimplification, employed here only
for purposes of illustration; more realistic distributed representations,
where a single phonological category is represented bymultiple nodes,
appear in Section 5.

In Figure 3, each node is visualized as a dotted circle. Each of
the four UF nodes is connected to each of the four SF nodes, although
only six of the 16 connections are visible. Biologically, a connec-
tion corresponds to a synapse (point of contact) between an outgo-
ing branch of one neuron and a receiving branch of another neu-
ron. Such a synapse is unidirectional: it permits an electric signal
to flow from one neuron to another. In general, therefore, the total
strength of the synapses that carry signals from neuron A to neuron
B is not equal to the total strength of the synapses that carry signals
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from neuron B to neuron A. Nevertheless, we maintain in this pa-
per the simplification that the strength of the connection from node
A to node B equals the strength of the connection from node B to
node A, and that it can therefore be called the strength of the con-
nection between nodes A and B. Such bidirectional connections are
known to provide stability in neural network models (Hopfield 1982;
O’Reilly 1996), and they guarantee the bidirectionality (Section 1.2)
of the BiPhon model, thus providing the desired dispersion effect
in Section 6. The present paper can do with, and indeed crucially
employs, bidirectional connections; if in future modelling this sim-
plification turns out to be untenable, bidirectionality should then be
dispensed with.

In NN modelling, connection strengths are called weights. The
weight of the connection between the input node |an#pa| and the
output node /anpa/ is 0.30, and this is visualized in Figure 3 in two
ways: the number 0.30 is written next to this line, and the thickness
of the connection line is 0.30. Biologically, the connection weight
indeed corresponds to the thickness of the synapse, i.e. the area
with which the sending neuron is connected to the receiving neu-
ron. When a biological neuron fires, a neuron with which it has a
thick (strong) synapse will be influenced more strongly than a neu-
ron with which it has a thinner (weaker) synapse (our simplified
artificial neurons do not actually fire; see Sections 2.2–2.5). In the
figure, therefore, thicker lines denote stronger information flows than
thinner lines. For instance, the weight of the connection between
|an#pa| and /ampa/ is 0.70, which is stronger than that between
|an#pa| and /anpa/, because the underlying form |an#pa| should
send stronger signals to /ampa/ than to /anpa/ in this toy language.
Likewise, the weight of the connection between |an#pa| and /anta/
is zero, because we never want |an#pa| to be realized as /anta/; this
zero-weight connection is not visible in the figure (the line has zero
width). Also, an underlying “homorganic” |an#ta| is always realized
as /anta/, and this is reflected with the number 1.00 next to the rel-
evant connection line in the figure. We will show that with these
chosen connection weights, the network in Figure 3 can indeed sim-
ulate the data of the toy language if the network has four common
additional properties: all-or-none activation of the input nodes (Sec-
tion 2.2), additive excitation of the output nodes (Section 2.3), a linear
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Figure 4:
The production
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excitation-to-activity function (Section 2.4), and a linear activity-
to-probability function (Section 2.5). We illustrate these concepts
with Figure 4, which shows the production of underlying |an#pa|.

2.2 All-or-none activation of the input nodes

To compute how the network handles an incoming underlying form,
we apply an activity pattern to UF and compute from it the activity
pattern that will arise at SF. To see what the network does to an un-
derlying |an#pa|, we activate the |an#pa| node by setting its activity
to 1.00. This is shown in two ways in Figure 4: by painting the whole
node in black, and by drawing the number 1.00 above the node. At
the same time, we set the activities of the three remaining underly-
ing forms to 0, which is indicated in the figure by not painting these
three nodes.

Biologically, an activity can be thought of as a firing rate. A node
with an activity of 1.00 can be seen as a neuron (or group of neu-
rons) with a maximum firing frequency of, say, 10 spikes per second
(Buzsáki and Mizuseki 2014); a node with an activity of 0 can be seen
as a neuron (or group of neurons) with a minimum firing frequency
(say, 0.1 spikes per second). In this paper we ignore the separate spikes
and employ only continuous activities, usually between 0 and 1 (see
Section 2.5).
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The circles for the UF nodes in Figure 4 look different from
those for the SF nodes. In the phonological production process, the
UF level is the input, so that the activities of the four UF nodes
will be held constant during evaluation. In neural-network termi-
nology, the UF nodes are clamped (kept fixed). This is indicated in
the figure by the circles for the UF nodes now having solid rather
than dotted edges. By contrast, the SF level is the output of the
process, so that the activities of the four SF nodes must be free to
adapt themselves to the activities of the input nodes; dotted cir-
cles in the figure visualize the fact that the output nodes are un-
clamped.

2.3Additive excitation of the output nodes

When an input node is activated, as node |an#pa| is in Figure 4, the
information about its activity will spread toward the nodes with which
it is connected: the activity will excite every connected node to some
extent. For instance, in Figure 4, node |an#pa| has activity 1.00 and
the connection between |an#pa| and /ampa/ has weight 0.70. The
amount to which |an#pa| will excite /ampa/ is the product of the
input activity and the connection weight, i.e. 1.00 · 0.70 = 0.70.
Likewise, node |am#pa| has activity 0 and the connection between
|am#pa| and /ampa/ has weight 1.00; |am#pa| will therefore excite
/ampa/ by an amount 0 ·1.00= 0. Node |an#ta| excites /ampa/ by an
amount 0 (the activity of |an#ta|) times 0 (the weight of the connec-
tion from |an#ta| to /ampa/), which is 0 ·0= 0, and so does |am#ta|.
Biologically, these four excitations can be regarded as “post-

synaptic potentials”, rises in the potential (in millivolts) of the mem-
brane of the receiving neuron. These rises tend to be additive, i.e. all
the small excitations add up to yield the total excitation of the receiv-
ing neuron (Lorente de Nó 1938). Artificial neural network models
also tend to assume additive excitation. Thus, the total excitation of
/ampa/ becomes 0.70+ 0+ 0+ 0 = 0.70. In a formula, the excitation
of the output nodes, i.e. nodes 5 through 8, can be computed as

(1) e j =
4∑

i=1

wi jai (for j = 5..8)
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where ai is the activity of UF node i, and wi j is the weight of the
connection between UF node i and SF node j.

2.4 Activity of the output nodes

When a node is excited, it becomes active itself. Biologically, this
corresponds to the fact that if the membrane potential of a neuron
rises, the probability that it will fire increases; in a continuous (and
simplified) view of neuronal activity (Perkel and Bullock 1969) this
means that if the time-averaged membrane potential rises, the firing
frequency of the neuron will rise as well. The simplest assumption
about the relation between excitation and activity is that it is linear,
i.e. the activity rises and falls with the excitation by a constant factor.
If this factor is 1, the activity of an SF node in our example becomes
equal to its excitation:

(2) a j = e j (for j = 5..8)

With this identity activation function, activating |an#pa| causes an
activity of 0.70 in node /ampa/. This number is written over the
node in the figure and is also visible as the size of the black disk in
that node. Likewise, activating |an#pa| causes an activity of 0.30 in
node 5, which is visualized in the figure as the small black disk in
that node.

Other excitation-to-activity functions are possible. If one wants to
make sure that the activities of the SF nodes do not become negative,
(which seems reasonable, given the biological interpretation of the
activity as a firing frequency), one could simply clip the activity from
below, maintaining linearity of all activities above 0:

(3) a j =max
�
0, e j

�
(for j = 5..8)

For our toy example, this rectifying activation function (Hahnloser et al.
2000) works in the same way as the identity activation function of (2),
because all excitations are non-negative; in Sections 5 and 6, however,
the clipping will be crucial (see Section 5.9.5 for details). Finally, if
one wants to take into account that biological firing frequencies have
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not just a minimum but also a maximum, one could apply a “top-
sigmoid” clipping, which is linear for small excitations and goes to 1
smoothly for large excitations:

(4) a j =max
�

0,
2

1+ e−2e j
− 1
�

(for j = 5..8)

For our toy example, combining the assumption of additive excitation
(the contributions from the four underlying forms are added up) and
the assumption of the identity excitation-to-activity function (the ac-
tivity of an output node equals its excitation) causes the activity of
an SF node to become the sum of the activities from the input nodes,
weighted by the weights of the connections.

2.5Probabilistic interpretation of the activity
of the output nodes

Having computed the activities of the output nodes is not the end
of the story. If we want to use neural networks to model linguistic
behaviour, we will have to provide a behavioural interpretation of the
result in Figure 4. After all, there is no third level of representation
that the activities on nodes 5 through 8 could feed into (in this toy
example). The only behaviour one can then think of is that the virtual
speaker chooses one of the four surface forms to actually produce. The
question is: which SF will the virtual speaker choose?

One possible answer is that the speaker chooses the node that
has the highest activity, i.e. the node /ampa/. This is an option often
found in neural network modelling, especially in competitive learning
(Grossberg 1976, 1987; Rumelhart and Zipser 1985). Here, however,
this option would throw away the /anpa/ candidate entirely, and such
nonstochastic behaviour is not desirable if wewant tomodel the 70–30
variation of our toy language.

Another possible answer is that the speaker somehow produces
both /ampa/ and /anpa/. Such a mix might be imaginable at a contin-
uous level of representation such as ArtF, where we can imagine what
mixed gestures would look like, but the notion of mixed phonological
representations at SF is difficult to envision (but see Section 5.6).

The third possible answer is that the activities denote probabil-
ities: /ampa/, with an activity of 0.70, is chosen with a probability

[ 119 ]



Paul Boersma, Titia Benders and Klaas Seinhorst

of 70%, and the only other competing candidate /anpa/, which has
an activity of 0.30, is chosen with a probability of 30%. This means
that if we ask the network to produce an SF from the input |an#pa|
1000 times, the network will say “/ampa/” approximately 700 times,
and “/anpa/” approximately 300 times. In general, then, the probabil-
ity of output candidate j is its activity, scaled by the sum of all output
activities:
(5) Pj =

a j

8∑
k=5

ak

(for j = 5..8)

Thus, since the candidate /ampa/ has an activity of 0.70 and the other
candidates have activities of 0.30, 0, and 0, the probability of /ampa/
can be computed under the linear activity-to-probability assumption
of (5) as 0.70/(0.30+ 0.70+ 0+ 0) = 70%. Equation (5) is known in
psychology as Luce’s choice axiom (Luce 1959: 23), and it can apply
to any type of non-negative numbers a j that represent strengths (or
weights, or activations, or saliences) of the candidates j.

Such an interpretation of an activity as a relative probability has
a biological correlate. If activity can be regarded as firing frequency,
and /ampa/’s activity is 0.70 while /anpa/’s activity is 0.30, then node
/ampa/ fires 2.333 times as often as node /anpa/ in any given period
of time. This means that if, from a certain moment in time on, one
waits until either node /ampa/ or node /anpa/ fires, the odds will
be 7 to 3 that node /ampa/ fires earlier than node /anpa/. In other
words, there will be a probability of 70% that node /ampa/ fires first,
and a probability of 30% that node /anpa/ fires first. If the first node
to fire determines the speaker’s behaviour, the relative activities have
apparently determined the relative probabilities of the behaviour.

Different interpretations of the relation between activity and
probability are nevertheless possible. In the Boltzmann machine (Ack-
ley et al. 1985), the probabilities are

(6) Pj =
ea j/T

8∑
k=5

eak/T

(for j = 5..8)

where T is called the temperature. Equation (6), known in modern ma-
chine learning as softmax, is due to Boltzmann (1868), is a special
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case of Luce’s choice axiom, and can apply to any type of numbers a j

(even negative ones) that represent strengths of the candidates j. The
simpler linear relation of (5), however, suffices for the present paper,
because we work solely with non-negative activities (see especially
Section 5.6).

2.6Bidirectionality violated?

The network of Figure 3 works correctly in the production direction,
i.e. with UF as the input and SF as the output. In the spirit of the BiPhon
model we would like it to work equally well in the comprehension
direction, i.e. with SF as the input and UF as the output. To model
the recognition of an incoming /ampa/ as an underlying sequence of
words, we can start by clamping the four SF nodes by keeping the
/ampa/ node at a constant activity of 1.00 and the other three nodes
constantly at zero. According to Figure 3 and the procedure of (1)
and (2), the underlying form |an#pa| will get an activity of 0.70 and
the underlying form |am#pa| will get an activity of 1.00. Apparently,
the network prefers |am#pa| over |an#pa| when it listens.

This situation is fine if the underlying forms |an#pa| and |am#pa|
occur equally often in the language environment: the network’s prefer-
ence thenmimics the likelihoodwith which each of the two underlying
forms was intended, given the surface form /ampa/. If, however, coro-
nals occur in word-final position three times more often than labials
do (which is approximately true for Dutch and English), the underly-
ing form |an#pa| is three times more likely a priori than |am#pa| is.
According to Bayes (Laplace 1812), this should shift the preference of
a listener toward |an#pa|, but in the network of Figure 3 this is not
taken into account. In fact, the weights are conditional probabilities
on UF only, not on SF.

This asymmetry between comprehension and production is a
general property of symmetric connections. It cannot be completely
solved, but it can be made equally (un)problematic for both directions
of processing, as we do in Section 4.

Section 2 has shown that an artificial neural network can replicate the
decision mechanism of (Stochastic) OT or (Noisy) HG; in other words,
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the network mimics the decision mechanism of a probabilistic gram-
mar. It is unsatisfying, though, that each full utterance is represented
as a single node. In a more realistic network, the representation of each
phonological element will be distributed over multiple nodes. Such a
network is discussed in Section 5. Understanding such a network, how-
ever, requires understanding how the activities of equation (1) come
about in processing (Section 3), and how the weights in Figure 3 come
about in learning (Section 4).

3 ACTIVITY SPREADING

In the example of Section 2, the initially unknown activities of the un-
clamped (output) nodes could be computed directly by equations (1)
and (2) from the given activities of the clamped (input) nodes. Such
a direct computation is possible for simple two-level mappings as in
that example, but with larger networks, in which information flows
bottom-up, top-down and within levels simultaneously, a direct com-
putation is no longer possible, because the activities of some un-
clamped nodes come to depend on the activities of other unclamped
nodes that themselves are not known from the start.

The general solution is to compute the activity in the unclamped
nodes iteratively, i.e. in small steps, from the given activities of the
clamped nodes, and let the network gradually approach its equilib-
rium, i.e. a final state in which its activities stop changing. Such grad-
ual activity spreading bears similarities with how activity spreads
through biological neural networks, and proceeds as follows. After
applying some known activities to the clamped nodes, we let the ex-
citations (and activities) of the unclamped nodes start at zero, and
we then update these excitations in small steps several hundreds of
times. In the example of Section 2, the excitation in the output nodes
5 through 8 starts at zero, and is incremented at every time step (say,
every millisecond) by an amount ∆e j given by

(7) ∆e j = 0.01 ·
� 4∑

i=1

wi jai − e j

�
(for j = 5..8)

where the factor of 0.01 is the spreading rate.
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For our specific toy example, it is easy to show that the general
equation (7) indeed produces the end result of equation (1) after some
time. Consider the situation for the output node /ampa/ at time 0. We
already know that Σ4

i=1wi7ai = 0.70, so at time zero, when e7 = 0,
∆e7 will be 0.01 · (0.70 − 0) = 0.007. Therefore, e7 becomes 0 (its
previous value) plus 0.007 (the increment), which makes 0.007. At
the next time step, Σ4

i=1wi7ai is still 0.70, but e7 is 0.007, so that the
increment ∆e7 is 0.01 · (0.70 − 0.007) = 0.00693, just 1% smaller
than the previous increment. As a result, the new value of e7 becomes
0.007+0.00693= 0.01393. Figure 5 shows what happens if this pro-
cedure is repeated 500 times (i.e. for, say, half a second): while the
increment decreases exponentially by a factor of 0.99 at each time
step, the excitation (and therefore the activity) of output node 7 grows
asymptotically toward 0.70.
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ci

ta
tio

n 
of

 n
od

e 
7

0

0.7

1 Figure 5:
The time path of the excitation
(and activity) of node /ampa/.
Bottom curve: starting from 0.
Top curve: starting from 1.00

One could have predicted the end state of our toy example directly
from (7), by realizing that in the equilibrium situation ∆e7 goes to
zero. Equation (7) tells us that in that case Σ4

i=1wi7ai − e7 must go to
zero as well. This means that e7 goes to Σ4

i=1wi7ai, i.e. to 0.70, so the
activity, by (2), also goes to 0.70, which is the activity in Figure 4. This
also shows that the starting value of the excitation does not matter: the
excitation will go to 0.70 no matter where it started; as an illustration,
Figure 5 also shows how the excitation develops if it starts at 1.00. This
kind of reasoning from zero increments is a general trick to predict
what the final situation will look like, given a formula for increments.

The evolution of the activities toward a constant final state, as in
Figure 5, is general for symmetric networks (Hopfield 1982; Ackley
et al. 1985). After enough time, each node j reaches a stable equi-
librium state where its excitation stops changing, i.e. where ∆e j ap-

[ 123 ]



Paul Boersma, Titia Benders and Klaas Seinhorst

proaches zero. As a result, the whole network reaches equilibrium, i.e.
the excitations of all its nodes stop changing. Symmetric networks,
where wi j equals w ji, are guaranteed to move toward such a stable
final state.

The general formula for the activity spreading toward an un-
clamped node j from its (clamped or unclamped) neighbours i is

(8) ∆e j = ηa

� ∑
connected nodes i

(wi j − shunting e j) ai − excitationLeak e j

�
Here, ηα is the spreading rate, which in our simulations is kept con-
stant at a value of 0.01. The excitation leak factor was set to 1 in (7),
but could be set to higher values if we want to reduce the ultimate
activity values. The shunting factor (Grossberg 1976) is included here
only for completeness; it is set to 0 in all simulations in this paper.

4 A LEARNING RULE
FOR BIDIRECTIONAL LINGUISTICS:

INOUTSTAR

The representations and processes discussed in Sections 2–3 are tran-
sient things: they come and go every few seconds as the listener re-
ceives more speech or the speaker produces more speech. The connec-
tion weights contain more persistent information, namely the aspects
of knowledge seen in Figure 1. These weights can learn from experi-
ence: they change only slowly over the months and years as the child
is acquiring her language. In this section we identify a learning rule
for our stochastic bidirectional artificial networks: we show that out of
a family of Hebbian-like learning rules the only rule that meets the re-
quirements of stochasticity and symmetric bidirectionality is what we
call inoutstar. Learning rules that are more familiar from the literature
are either not stochastic at all (clipped learning) or do not match the
conditional probabilities in the environment (leaky learning, instar,
outstar).
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4.1Learning the toy language from UF–SF pairs

Suppose we have the toy language of Section 2.1, with the coronal bias
of Section 2.6: the UF |an#pa| occurs 37.5% of the time, of which the
SF will be /ampa/ 70% of the time and /anpa/ 30% of the time; the
UF |an#ta| occurs 37.5% of the time, yielding the SF /anta/ 100% of
the time; the UF |am#pa| occurs 12.5% of the time, yielding the SF
/ampa/ 100% of the time; and the UF |am#ta| occurs 12.5% of the
time, yielding the SF /amta/ 95% of the time and /anta/ 5% of the
time. The task for the virtual learner is to start with the network of
Figure 3, but with all weights set to 0 (or a small random number), and
then to adapt these weights under supervision from the language data.

For this purpose, we feed the network with a large number, say
100,000, of UF–SF pairs randomly drawn from the language environ-
ment. Thus we feed the learner with the pair |an#ta|–/anta/ in 37.5%
of these 100,000 cases, and with |an#pa|–/ampa/ 26.25% of the time
(70% of 37.5% is 26.25%); also with |am#pa|–/ampa/ 12.5% of the
time, with |am#ta|–/amta/ 11.875% (95% of 12.5%) of the time,
with |an#pa|–/anpa/ 11.25% (30% of 37.5%) of the time, and with
|am#ta|–/anta/ the remaining 0.625% (5% of 12.5%) of the time. In
Figure 3 we see that the five most common pairs are represented in
the working network with the five strongest weights (though not in
exactly the same order). The intuition, then, is that the learning algo-
rithm should make those weights strong that connect nodes that are
associated with each other in the data.

Now, what does it mean to “feed” UF–SF data to the network? It
means that if at a certain point during learning wewant to feed the net-
work with, say, the pair |an#pa|–/ampa/, we set the activity of nodes
1 (|an#pa|) and 7 (/ampa/) to 1.00 and the activities of the other six
nodes to 0. This is the situation in Figure 6. We then let activity settle
down by having the activity spread 500 times (this does nothing in
this case, because all eight nodes are clamped). After this, we change
all 16 connection weights by a small amount. This whole procedure
of selecting an UF–SF pair, setting the activities, vacuously spreading
the activities, and changing the weights, is repeated 100,000 times,
as said. In Section 4.2 through Section 4.7 we discuss six ways to do
the weight changes and compare their suitability for implementing
bidirectional probability matching.
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Figure 6:
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two-level

learning: all
nodes are

clamped, and
only one node
is on in UF
as well as SF

1.00

|an#pa|
(node 1)

0

|an#ta|
(node 2)

0

|am#pa|
(node 3)

0

|am#ta|
(node 4)

0

/anpa/
(node 5)

0

/anta/
(node 6)

1.00

/ampa/
(node 7)

0

/amta/
(node 8)

0.
09

9

0.240 0.
33

6

0.
12

2

0.011

0.
12

0

|UF|

/SF/

4.2 Unbounded linear learning

The simplest way to react to the shared activity of nodes 1 and 7 is
to raise the weight of their connection (w1,7) by a small amount, say
0.01, and not change the weight of any of the other 15 connections.
This can be achieved by the following “Hebbian learning” formula:
(9) ∆wi j = ηwaia j (for i = 1..4, j = 5..8)

where ηw is the learning rate, which is 0.01 here. This works correctly,
because for i = 1 and j = 7, aia j equals 1 (because both ai and a j are
1.00), whereas for all 15 remaining i– j combinations either ai is 0, or
a j is 0, or both ai and a j are 0. So w1,7 is indeed the only weight that
changes. The rule is named after Hebb (1949), who proposed that a
synaptic strength increases when two neurons fire together, though he
did not actually propose formula (9).

There is a problem with learning rule (9). If it goes on for 1000
times, w1,7 will change approximately 250 to 275 times, because the
network will be fed the |an#pa|–/ampa/ pair 26.25% of the time. A
simulation with 2000 randomly drawn pairs is shown in Figure 7. We
see that wi j increases linearly with time, and goes on to do so with-
out bounds. It has been known from the beginning of neural network
modelling that the “pure Hebbian learning” of (9) exhibits this patho-
logical behaviour (Rochester et al. 1956). Various devices have been
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proposed in the literature to keep wi j within bounds; in Sections 4.3–
4.7 we discuss their suitability for our bidirectional toy case.

4.3Clipped linear learning

A brute-force method to keep wi j within bounds is to clip wi j from be-
low by a value wmin (e.g. 0) and from above by a value wmax (e.g. 1).
This method has the tendency of ultimately pushing most weights to-
ward either wmin or wmax . If the input is such that a single node i is
on (and all other input nodes are off), and there are 10 output can-
didates (= nodes), then e.g. 3 output candidates will be maximally
activated (namely those for which wi j equals 1) and 7 candidates will
be off (namely those for which wi j equals 0). This means that under the
first or third scenario from Section 2.5, three output candidates have a
probability of 1/3 to win, and the remaining seven output candidates
have a probability of 0 to win (the second scenario from Section 2.5
is not interpretable). This situation is not good for stochastic decision-
making, where we want probabilities to move gradually from 0 to 1
or the reverse. In our simulations in Sections 5 and 6 we therefore
work with activities that are not clipped from above (although they
are clipped from below at 0, so we get some zero probabilities).

4.4Leaky learning

A more gradual way to keep wi j within bounds is to introduce leak:

(10) ∆wi j = ηw

�
aia j −wi j

�
(for i = 1..4, j = 5..8)
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The weights now start to rise exactly as in Figure 6, but after some
time they start to rise more slowly, growing exponentially toward an
equilibrium in very much the same way as in Figure 5, albeit with
never-ending fluctuations because of the stochasticity of the input.
After many pieces of data (UF–SF pairs), the weights come to hover
around those in Figure 8.

Figure 8:
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in the language
environment
of Section 4.1
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In this final (asymptotic) situation after learning, each weight
has become exactly the probability of the relevant UF–SF pair as men-
tioned in Section 4.1; the sum of all the weights in Figure 8 is 1. We
could have predicted this result theoretically by realizing that in the
equilibrium situation the expected weight change 〈∆wi j〉 must be 0
for each connection; in other words: for each i and j the average of
∆wi j over all possible UF–SF pairs that could come in next, weighted
by the probabilities of these pairs according to Section 4.1, must be
zero. Equation (10) then tells us that the expectation value 〈aia j−wi j〉
will then move toward zero, so that the weight wi j will ultimately go
toward the correlation between ai and a j:
(11) wi j →


aia j

�
Thus, the asymptotic behaviour of wi j can be predicted if we know
the statistics of the activity pattern. For instance, 26.25% of the
time node 1 is on (a1 = 1) and node 5 is off (a5 = 0), 11.25%
of the time nodes 1 and 5 are both on (a1 = a5 = 1), 62.5 per-
cent of the time nodes 1 and 5 are both off (a1 = a5 = 0), and 0%

[ 128 ]



Neural network models for phonology and phonetics

of the time node 1 is off (a1 = 0) and node 5 is on (a5 = 1); the
weight of the connection between nodes 1 and 5 will therefore go to
〈aia j〉 = 0.2625 · 1 · 0+ 0.1125 · 1 · 1+ 0.625 · 0 · 0+ 0 · 0 · 1 = 0.1125.
Since three of the four terms are zero if node 1 and node 5 are not
both on, this expectation value necessarily equals the probability that
both node 1 and node 5 are on simultaneously. This is a general result
if all activities can take on only the values 0 and 1:

(12) wi j → P
�
ai = 1∧ a j = 1
�

Such pure correlation learning looks nicely simple, but has a
disadvantage. Relatively rare inputs will lead to weak connections:
|am#pa| has a three times weaker connection in Figure 8 than the
three times more common input |an#ta|. This disregards the perfect
degree to which the SF /ampa/ can be predicted from |am#pa|. The
frequency difference between |am#pa| and |an#ta| thus leads to a
large difference in the activities at SF, which means that further on
in processing the rare UF counts much less heavily than the more
frequent UF. A learning rule that focuses on reliability rather than fre-
quency alone may fare better in this respect. Another problem is that
the small output activities for rare inputs (such as 0.125 for /ampa/)
do not reflect the full activity that occurred during learning (which
was 1 for /ampa/).

4.5Outstar learning

The cause of the problems with leaky learning is that the algorithm
leaks too much: connections get weaker even if their two nodes are
both inactive. One way to remedy the problem is to use the outstar
learning rule (Grossberg 1969):

(13) ∆wi j = ηw

�
aia j − aiwi j

�
(for i = 1..4, j = 5..8)

This learning rule does nothing with a connection if its input node is
off (ai = 0). A property that none of the learning algorithms discussed
above share is that for outstar learning we have to assign a direction to
the process, for instance to define UF as the input level and SF as the
output level; so we choose the production view here, as in Section 2.
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For the example in Figure 6, outstar learning will strengthen the
connection between nodes 1 and 7, weaken the connections 1–5, 1–6
and 1–8, and leave the remaining 12 connections alone. After many
learning steps with UF–SF pairs from our toy language, the weights
come to hover around the equilibrium values in Figure 9.

Figure 9:
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In the end, the weights turn out to have become the conditional
probabilities of SF given UF (as in Figure 3), so outstar learning ex-
hibits the probability-matching behaviour that we wanted; the sum of
the weights going out from each UF node is 1. This could have been
predicted theoretically, by realizing that in the equilibrium situation
0 = 〈aia j − aiwi j〉 = 〈aia j〉 − 〈ai〉wi j, so if learning converges, it must
move the weights asymptotically toward

(14) wi j →


aia j

�
〈ai〉

For cases where all activities during learning can only be 0 and 1,
equation (14) reduces to the conditional probability that output node
j is on given that input node i is on:

(15) wi j → P
�
ai = 1∧ a j = 1
�

P (ai = 1)
= P
�
a j = 1 | ai = 1
�

Outstar learning has several advantages. As the weights in out-
star learning come to reflect conditional probabilities, the weights
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naturally stay within the limits of 0 and 1. Furthermore, outstar learn-
ing fares better than correlation learning with respect to reliability,
mimicking the GLA for Stochastic OT: the connections from |am#pa|
and |an#ta| are now equally strong, reflecting the fact that their
SF outputs can be equally reliably predicted from the UF. Also, the
activities at SF will now be 1 for these two inputs, just as during
learning.

Outstar learning also has a disadvantage over the leaky learning
model in (10): it loses all dependency of SF activity on the frequency
of the input. A way to have both reliability and frequency influences
could be to somehow combine (10) with (13). There is a problem with
both (10) and (13), though: some nodes at SF, such as /anpa/, are very
specific for certain UF forms, and this is not rewarded with a strong
connection; in other words, (15) does not take into account whether
or not output node j is on if input node i is off. One can look at this in
terms of the reliability of the reverse process, i.e. the mapping from
SF to UF in word recognition: the connection in Figure 9 from the
SF /anpa/ to the UF |an#pa| is only 0.300, although the UF can be
predicted with 100% reliability from the SF. We tackle this problem
in Section 4.6.

Outstar learning is close to the delta rule of supervised learning
algorithms (Widrow and Hoff 1960), where the weight update is pro-
portionate to the error that the network would make when allowed to
run freely (i.e. with UF clamped but SF unclamped); the error is the
difference between the desired activity at SF (i.e. the number of 0 or 1,
as used as a j in the SF clamping above) and the activity that the SF
node j would get when only the input UF nodes are clamped, which
is Σaiwi j in the examples of Section 2:

(16) ∆wi j = ηw

�
aia j − ai

4∑
k=1

akwk j

�
(for i = 1..4, j = 5..8)

This, together with the property of probabilities conditional to the
input, makes this algorithm a good candidate for replicating results
previously found with Stochastic OT. This algorithm is therefore ex-
pected to be of use when in Section 6 we model auditory dispersion,
a phenomenon previously modelled successfully with Stochastic OT
(Boersma and Hamann 2008).
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4.6 Instar learning

To take the specificity of SF (Section 4.5) into account, we can apply
the instar learning rule (Grossberg 1969, 1976; Rumelhart and Zipser
1985),3 which is the outstar learning rule in the opposite direction of
processing:
(17) ∆wi j = ηw

�
aia j − a jwi j

�
(for i = 1..4, j = 5..8)

This learning rule does nothing with a connection if its output node
is off (a j = 0). As with outstar, we explicitly have to define what the
input and what the output level are (again, we take the production
view, with UF as input and SF as output). For the example in Figure 6,
instar learning will strengthen the connection between nodes 1 and 7,
weaken the connections 2–7, 3–7 and 4–7, and leave the 12 remaining
connections alone. For our toy language, the weights come to hover
around the values in Figure 10.

Figure 10:
The average
end state

of instar learning
in the language
environment
of Section 4.1
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/anpa/
(node 5)

/anta/
(node 6)
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(node 7)
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Asymptotically, the weights turn out to become the conditional
probabilities of UF given SF; the sum of the weights coming in at each
SF node is 1. In the theoretical equilibrium situation,

(18) wi j →


aia j

�

a j

�
3Oja (1982) has a formulation in which the second a j is squared.
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For cases where all activities during learning can only be 0 and 1,
equation (18) reduces to the conditional probability that input node i
is on given that output node j is on:

(19) wi j → P
�
ai = 1∧ a j = 1
�

P
�
a j = 1
� = P
�
ai = 1 | a j = 1
�

The two problems with rare inputs are not addressed, but the
specificity problem is solved: the connection from the SF /anpa/ to its
only possible UF |an#pa| has a weight of 1. The effect of the different
frequencies of the different underlying forms has also returned, with
the connection from /ampa/ to |an#pa| now being stronger than the
connection from /ampa/ to |am#pa|, as in leaky learning but not as in
outstar learning. The drawback is that the infrequent UF |am#pa| will
now produce a much smaller activity pattern in SF (a total of 0.323)
than the more frequent UF |an#pa| (a total of 1.677). We address this
problem in Section 4.7.

Instar learning is known from work on competitive learning
(Grossberg 1976, 1987; Rumelhart and Zipser 1985). This algorithm is
therefore expected to be of use when in Section 5 we model phonolog-
ical category creation, a phenomenon that has been partially modelled
before with competitive learning (Guenther and Gjaja 1996).

4.7Inoutstar learning

Tomodel category creation we seem to need unsupervised instar learn-
ing (Section 4.6), and to model auditory dispersion we seem to need
supervised outstar learning (Section 4.5). However, both processes oc-
cur in the AudF–SF interface, so the same network will have to model
them both. Our goal, therefore, is to model both category creation
and auditory dispersion with a single learning algorithm, perhaps a
compromise between instar and outstar. We call this the “inoutstar”
learning rule:

(20) ∆wi j = ηw

�
aia j − ai + a j

2
wi j

�
(for i = 1..4, j = 5..8)

This learning rule does nothing with a connection if both of its nodes
are off. For the example in Figure 6, inoutstar learning will strengthen
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the connection between nodes 1 and 7, weaken the connections where
one node is on and the other off (1–5, 1–6, 1–8, 2–7, 3–7 and 4–7),
and leave the remaining nine connections alone. For our toy language,
the weights come to hover around the values in Figure 11.

Figure 11:
The average
end state

of inoutstar
learning

in the language
environment
of Section 4.1
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Asymptotically, each weight turns out to become the harmonic
mean of the weights of Figures 9 and 10. In the theoretical equilibrium
situation,

(21) wi j → 2


aia j

�

ai + a j

�
For cases where all activities during learning can only be 0 and 1,
equation (21) reduces to the harmonic mean of the two conditional
probabilities:

(22) wi j → 2 P
�
ai = 1∧ a j = 1
�

P (ai = 1) + P
�
a j = 1
�

=
2 P
�
ai = 1 | a j = 1
�
P
�
a j = 1 | ai = 1
�

P
�
ai = 1 | a j = 1
�
+ P
�
a j = 1 | ai = 1
�

Inoutstar learning was used before by McMurray et al. (2009) to
simulate word–object mappings. It combines the desirable properties
of instar and outstar: it tackles all problems mentioned to some extent,
though none of them perfectly: it does some probability matching, it
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has some specificity, and it is even a bit frequency-dependent in both
directions (because instar and outstar are both frequency-dependent
in one direction). It has the additional advantage over both instar and
outstar learning that it is symmetric in input and output: the formula
stays the same if i and j are swapped, i.e. the inoutstar learning rule
does not care about the direction of processing. This will even be true
if there are separate weights in the beginning, i.e. if wi j is not equal
to w ji at the beginning of learning: equation (22) shows that inout-
star learning causes the weights to become symmetric. Inoutstar can
therefore be expected to implement quite well the bidirectionality of
models such as the one in Figure 2.

4.8Conclusion

A general formula for the change in the weight between input node i
with activity ai and output node j with activity a j could be

(23) ∆wi j = ηw

�
aia j − instar a jwi j − outstar aiwi j −weightLeak wi j

�
We investigated pure Hebbian learning (instar = 0, outstar = 0,
weightLeak = 0), leaky learning (instar = 0, outstar = 0, weightLeak =
1), instar learning (instar = 1, outstar = 0, weightLeak = 0), outstar
learning (instar = 0, outstar = 1, weightLeak = 0), and inoutstar learn-
ing (instar = 0.5, outstar = 0.5, weightLeak = 0). Of these, inoutstar
learning combines to some extent some of the good properties of
the other learning algorithms, such as symmetry (insensitivity to the
direction of processing), probability matching in both directions of
processing, specificity in both directions of processing, and sensitivity
to the frequency of the input in both directions. In Sections 5 and 6
we investigate the suitability of this algorithm for two hitherto sepa-
rately modelled phenomena, namely category creation and auditory
dispersion.

The equations from Sections 2 through 4 that we use for the sim-
ulations in Sections 5 and 6 are only the simplest ones that meet the
requirements above, namely (7), (3) and (20). We summarize them
here in their generalized forms that work not only for the toy example
of Sections 2 through 4 but for any network with a combination of
clamped and unclamped nodes, including the networks of Sections 5
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and 6. As for activation spreading, every clamped node j has a con-
stant activity a j, and every unclamped node j starts with excitation
e j = 0 and activity a j = 0 after which its excitation changes 100 or
500 times according to

(24) ∆e j = 0.01 ·
�∑

i

wi jai − e j

�
where the index i runs over all nodes connected to j. After each of
these time steps, the activity of every unclamped node j is immedi-
ately determined from its excitation by the simple rectifying excitation
function, which prevents negative activities:

(25) a j =max
�
0, e j

�
After cycling through all the time steps, the activities of all unclamped
nodes should almost have settled, and the weight of the connection
between any pair of nodes i and j is updated by the (symmetric and
bidirectional) inoutstar learning rule:

(26) ∆wi j = ηw

�
aia j − ai + a j

2
wi j

�

5 PHONOLOGICAL CATEGORY CREATION

In this section we present a neural network that can model the emer-
gence of simple phonological categories in the language-acquiring
child. In terms of Figures 1 and 2, phonological categories, such as
feature values, are present in the adult phonological Surface Form
(SF). In the comprehension direction of Figure 2, the cue knowledge
at the adult phonology–phonetics interface classifies the thousands of
different sounds that can occur in the Auditory Form (AudF) into a
small number of discrete categories at SF. In terms of neural networks,
a “category” can only be defined as a stable, or “attractive”, activity
pattern. That is, an adult network at the phonetics–phonology inter-
face should “filter” the thousands of possible activity patterns at AudF
into only a small number of possible activity patterns at SF.
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In existing models of phonology category learning (Guenther and
Gjaja 1996; Boersma et al. 2003) the adult state of the grammar or net-
work comes about by training the grammar or network with a large
number of auditory values at AudF, without telling the grammar or
network what the intended category was. Such “unsupervised” learn-
ing is also employed here. In Section 5.3 we describe how this learning
proceeds, after having described the network structure in Section 5.1
and the AudF input in Section 5.2. The resulting adult network is pre-
sented in Section 5.4 and understood in Section 5.5, after which we
investigate its behaviour in perception (Section 5.6) and production
(Section 5.7) and compare this behaviour to the existing literature
(Section 5.8). In-depth investigations of the underlying mechanism
(Section 5.9) and its response to variable environments (Section 5.10)
follow. Finally, we compare the network’s performance and assump-
tions to the existing literature (Section 5.11).

5.1A network for category emergence

Figure 12 shows the structure of the network that should learn the task
of categorizing auditory input. The network contains only two levels
of representation: the phonetic Auditory Form, which is the input for
the listening learner, and the phonological Surface Form, which is the
listener’s perceptual output. As we model only the phonological part
of comprehension, we do not include the higher levels of Figures 1
and 2 (Underlying Form and Morphemes). Moreover, as most of Sec-
tion 5 models only the comprehension direction and not the produc-
tion direction (the exception being Section 5.7), we do not include the

[[AudF]]

/SF/

Figure 12: The initial state of a network for category creation, with continu-
ous sound coming in at clamped AudF and discrete behaviour emerging at un-
clamped SF
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Articulatory Form (see Section 6 for that), although including such a
level would not change any of the perception or category creation
simulations, as we explain in Section 5.7.

The Auditory Form represents an auditory continuum, such as
the frequency spectrum along the basilar membrane. While the basilar
membrane has 3,500 inner hair cells, each of which is connected to
a fiber in the auditory nerve, we represent the spectrum here with
only 30 nodes for reasons of visualizability (and computation time).
Figure 12 arranges the nodes in a natural order, with the leftmost node
(node 1) representing the lowest audible frequency of the continuum,
and the rightmost node (node 30) representing the highest audible
frequency.

As a simplification we allow the incoming sound to activate only
one small region of AudF (as e.g. in Figure 14); this means that AudF
can only represent a unitary spectral continuum, and for this we
choose the spectral centre of gravity (CoG).

The Surface Form in Figure 12 will come to represent phonolog-
ical “sibilant place”, because that is the feature that has CoG as its
main auditory correlate. Every category that the SF in Figure 12 has
to be able to represent, is therefore a value of the feature sibilant place.
Languages seem to have between one and four primary sibilant place
values, so our SF should be able to represent between one and four
categories. Even if we restrict the activity patterns at SF in such a way
that each node is either “on” (1) or “off” (0), the SF in Figure 12 can
represent as many as 210 = 1024 different categories; and if “on” nodes
cannot be shared between categories, the SF in Figure 12 can repre-
sent 10 different categories. In either case, our 10 nodes should be
more than enough to represent any number of feature values between
one and four in a distributed way.

As can be seen in Figure 12, AudF and SF are fully connected
to each other: there are 300 connections between them, one for each
pair of AudF node and SF node. Initially, these weights are small and
random: uniformly distributed between 0 and 0.1, as shown as black
lines in the figure. This randomness is meant to ensure that in its ini-
tial state the network is poor at classifying incoming sounds into stable
categories: in perception (with a clamped AudF and an unclamped SF,
as in Figure 12), any local activity peak in AudF will just lead to a small
and random pattern at SF (as can be seen for example in Figure 14).
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As illustrated in Section 5.4, this situation will change when the net-
work learns from incoming sounds at AudF: the weights will become
larger and less random. As Section 5.6 shows, the result is the desired
emergence of categorical behaviour in the network.

Finally, Figure 12 shows 45 connections within SF: one for each
pair of SF nodes (i.e. not just between nodes that happen to look “ad-
jacent” in the visually one-dimensional set-up of Figure 12). These
connections have negative weights of −0.1 (shown in light gray) in
order to make sure that the SF nodes inhibit each other’s activities.
As a result, learning causes the SF nodes to become connected to
different AudF patterns, which is illustrated in Section 5.4 and ex-
plained in 5.5. This ensures that different categories from the net-
work’s language environment lead to different categorical patterns in
the learner’s own SF. This mutual inhibition is a mechanismwe borrow
from competitive learning models (Grossberg 1976, 1987; Rumelhart
and Zipser 1985). The negative weights do not change during learning.

5.2An input distribution for sibilant place

As said, the network will be trained with the auditory distribution
alone, i.e. it will have to learn from incoming CoG values from a lan-
guage environment, without supervision. Thus, the virtual learner re-
peatedly hears an incoming sound but is never told to what category
it belongs and is never told any of the associated higher levels of rep-
resentation, such as meaning. Neither is the learner told how many
categories the language has.

For the coming sections of this paper, we investigate a very simple
language environment that consists of three sibilant fricatives, namely
/ʂ/, /ɕ/ and /s/, as in Polish or Mandarin. The spectral centre of grav-
ity of each sibilant is distributed according to a Gaussian distribution,
as in the three dotted curves in Figure 13. The distance between the
peaks is one third of the range of the continuum, i.e. 9.667 nodes,
and the standard deviation of each peak is one third of that (i.e. 3.222
nodes). The three sibilants are equally frequent in the language envi-
ronment, so that the total distribution of CoG values is the solid curve
in Figure 13.
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Figure 13:
A CoG distribution in a language
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The beginning learner does not yet know that there are three
curves; she only hears input tokens one by one without category la-
bels, and the summed distribution of these input tokens gradually and
incrementally grows toward the total CoG distribution. The valleys in
this curve are rather shallow, namely approximately 64% of the av-
erage height of the three peaks. In the end, it is on the basis of input
drawn from the summed distribution, with its shallow valleys, that the
learner will have to figure out that there are three categories.

5.3 Unsupervised learning from the distribution

A full description of a language learning procedure involves describ-
ing how each input is applied to the learner, how the learner processes
this input, and how the learner then changes her grammar. In our case,
the input to the network is formed by the learner’s language environ-
ment repeatedly producing a single CoG value randomly drawn from
the summed distribution (equivalently, the language environment ran-
domly selects one of the three sibilants, then randomly draws a CoG
value from that sibilant’s Gaussian distribution; the important restric-
tion is that the learner is not told which sibilant was selected). The
learner receives this CoG value as an activity at AudF, then processes
it by spreading this activity to SF, and finally updates the connection
weights between AudF and SF on the basis of the activities at AudF
and SF. We will show here that after 20,000 or so incoming CoG val-
ues, this procedure leads to the emergence of categorical behaviour
at SF.

Whenever a CoG value is applied to AudF, this produces an activ-
ity pattern at AudF of the form shown in Figure 14. The CoG value
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[[AudF]]

/SF/ Figure 14:
Applying
an input

is an (unrounded) node number between 1.0 and 30.0. In Figure 14,
the CoG value is 12.3. The nodes in the vicinity of location 12.3 are
then activated according to a Gaussian shape with a height of 1 and
a standard deviation of 4 percent of the extent of the continuum (i.e.
0.04 · 29 = 1.16 nodes), mirroring the width of a region of activity
on the basilar membrane.4 This activates node 12 most strongly (at
a distance of 0.3), node 13 a bit less strongly (distance 0.7), node 11
(distance 1.3) even less strongly, and so on; the activities of nodes
further away than nodes 14 and 10 are too weak to be visible in the
figure. Independently of whether the centre of the Gaussian bump is
located on a node or somewhere between two nodes, the total activity
in AudF is always around 2.908 (if the CoG value is very close to the
left or right edge, the total activity is less, because a part of the bump
is cut off).

After the input is applied to AudF, the AudF nodes in Figure 14 are
clamped (as shown by the solid edges of their circles), i.e. their activi-
ties are kept at the applied values (those seen in the figure) throughout
the spreading of activities. The SF nodes, by contrast, are unclamped
(as shown by their dotted circumferences), i.e. their activities adapt
to the activities of the AudF nodes as well as to the activities of other
SF nodes throughout the spreading of activities. The activities at SF
start at zero, after which the activities of AudF excite the nodes at SF
according to equation (24) (with positive wi j); as SF activity grows,
the SF nodes start to inhibit each other, again according to equation
(24) (with negative wi j). These excitations and inhibitions occur with
a spreading rate of 0.01, with the summation in (24) running over all
AudF and SF nodes. The computation of activity from excitation fol-

4If node 1 is at 16 ERB (1095 Hz), and node 30 is at 33 ERB (9611 Hz), then
this standard deviation is 0.04 · 17= 0.68 ERB.
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lows equation (25): the activities are clipped from below at zero (i.e.
negative activities are not allowed, but large positive activities are).
Spreading goes on in this way for 100 time steps. The result is that
ultimately the whole network would move toward equilibrium, if the
spreading were not truncated after 100 time steps.

After activity spreading, the network is allowed to learn by the
inoutstar rule, i.e. equation (26) applied to all 300 connections be-
tween AudF and SF, with a learning rate of ηw = 0.01. There is only
one learning step per incoming CoG value.

5.4 Result after learning: the perception of three categories
has emerged

After 20,000 incoming CoG values, the weights of the network have
become those in Figure 15. At SF, nodes 2, 6 and 9 (i.e. the three that

Figure 15:
A network that
has been trained
on three peaks
and has thereby
become capable
of categorizing [[AudF]]

/SF/

are on in the figure) have become associated to low ([ʂ]-like) CoG
values, nodes 4, 5 and 8 to intermediate ([ɕ]-like) CoG values, and
nodes 1, 3, 7 and 10 to high ([s]-like) CoG values. In other words,
each node at SF has specialized in one of three areas of AudF, and
each of these three areas of AudF is associated with approximately
one third (i.e. three or four) of the SF nodes.

This situation of dedication of SF nodes to AudF areas causes the
trained network to behave categorically in perception. We can see this
by applying a large number of different input patterns to AudF and
examining the resulting output patterns at SF. In Figure 16 we pace
a local activity pattern through the whole auditory continuum from
the lowest values (top-left picture) to the highest values (bottom-right
picture). We see that the output at SF favours exactly three patterns of
activity. For any low auditory value, only SF nodes 2, 6 and 9 switch
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on; for anymid value, only nodes 4, 5 and 8 switch on, and for any high
value, only nodes 1, 3, 7 and 10 switch on. Since activity patterns are
the brain’s way of representing behaviour, the favoured 2–6–9, 4–5–8
and 1–3–7–10 patterns at SF represent favoured (or “attractive”, or
“stable”) types of behaviour at SF, or, in other words, three categories
(when the information proceeds up toward Underlying Form, Mor-
phemes, and perhaps higher semantic areas of the brain, there will still
be only three types of behaviour in those higher regions, because ac-
cording to the adjacency property illustrated in Figure 1, those higher
levels of representation cannot “look through” SF toward AudF). We
can therefore call the first favoured behaviour at SF the “2–6–9 cat-
egory”; it replicates the /ʂ/ category of the language of the parents.
Likewise, the 4–5–8 category represents the parents’ /ɕ/ and the 1–3–
7–10 category represents the parents’ /s/.

The final network of Figure 15 differs from the networks we dis-
cussed in Sections 2 through 4 in that the network of Figure 15 no
longer represents a phonological category as a single node, but repre-
sents phonological categories in a distributed manner, namely as two
or three SF nodes each. The same is true of AudF: every incoming
sound activates more than one node at AudF. A biologically desirable
property that such a network displays is redundancy in the represen-
tation of patterns: if a couple of AudF nodes die, and one SF node
dies, the network will still perform its classification task quite well. In
Figure 15, for example, every incoming sound will still generate one
of three stable patterns at SF. For purposes of category creation, it is
even more important that having 10 SF nodes allows any number of
categories to be created: rather than forcing the existence of 10 cate-
gories, as would be the case for the networks in Sections 2 through 4,
the 10 nodes are divided roughly equally among the two or three or
five categories that the peaky language distribution suggests there are.

We conclude that there come to be three types of stable behaviour
at SF, to be interpreted as three phonological categories. This categor-
icality comes about gradually during learning. On the way to the final
state of the network, the categoricality of the behaviour increases from
nothing (the random behaviour at SF that the network of Figure 14
exhibits) to almost perfect (the behaviour of the eighth picture in Fig-
ure 16, which has the same input). Thus, categoryhood is gradient
in this model: during development, the patterns gradually grow from
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being less attractive to being more attractive, without there being a
moment at which one can say that a category has just come into exis-
tence. During the acquisition period, the behaviour therefore changes
from random via slightly categorical toward very categorical.

5.5How does category creation work?

After seeing that category creation works, we would like to understand
why it works.

The most crucial aspect of the network is the competition at SF.
This is known from competitive learning models (Grossberg 1976,
1987; Rumelhart and Zipser 1985; Guenther and Gjaja 1996), which
typically implement competition by “manually” setting the most ac-
tive output node (the “winner”) to an activity of 1 and all other nodes
(the losers) to an activity of 0. This winner-takes-all procedure is an
extreme version of what we use in this paper, and could be imple-
mented in our case as follows: if after 100 steps of activity spreading
to SF (as in Figure 14) we drastically severed all connections between
the SF level and the AudF level, and thereby allowed activity to spread
only between the nodes of SF, then the inhibitory connections within
SF would reduce the activities of all nodes as long as more than one
node were on; one by one, the weakest nodes would drop to zero ac-
tivity, and this reduction would stop when only a single node were
left, which would have some nonzero activity remaining; this node
would be the one that had the highest activity to start with. Our ex-
haustive inhibitory connection scheme, which does not use winner-
takes-all, can be seen as a gradual version of the original competitive
learning models; it is a more “automatic” version of competition, be-
cause no artificial temporary connection severing is necessary; still,
the competition is guaranteed by the existence of inhibitory connec-
tions within SF.

In the original competitive-learning models, the winner-takes-all
step is followed by a learning step in which the weight(s) of the con-
nection(s) between the active input node(s) and the winner are in-
creased and the weights of the connections between the inactive input
nodes and the winner are decreased, a procedure identical or similar
to instar learning. Our gradual version of competitive learning with
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inoutstar learning creates distributed categories by the same cause,
which we try to explain now.

First imagine that there is only one node at SF. In Figure 14 this
node will be active whenever a part of AudF is switched on. The
connections from this node to AudF regions that are often on will
strengthen more than the connections to AudF regions that are rarely
on. After some time, the connection weights for the various AudF
nodes will come to follow a pattern similar to the summed curve in
Figure 13. This means that if we pace through AudF as in Figure 16,
the activity of the single SF node will go up and down along with
the peaks in the summed distribution. Hence, activity in the single SF
node will be highest at the three tops of Figure 13. Imagine now that
there are 10 nodes at SF, but there is no inhibition between them. Ev-
ery node at SF will come to be connected to AudF in the same way as
the single SF node in the previous imaginary network. Consequently,
each node will be activated by AudF according to the summed curve
in Figure 13. Imagine finally that an inhibition between all the nodes
at SF is introduced. This inhibition militates against different SF nodes
being on at the same time. As a result, assuming small random differ-
ences in activities between SF nodes (caused by the different random
initial weights), different SF nodes will come to specialize in different
regions of AudF, so that they can be on at different times (the sum of
all activities at SF will still follow Figure 13; see Figure 17). A further
question is: why does an SF node specialize in a contiguous region of
AudF, rather than, say, in the left half of the first peak and the right
half of the second peak? This is because of the width of the activity
on AudF: the left half of the first peak tends to be active when the
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right half of the first peak is somewhat active as well. In other words,
(spectrally) adjacent nodes at AudF have correlated activities, just as
(spatially) adjacent hair cells on the basilar membrane do. If in our
simulations we had instead activated only the node nearest to the se-
lected CoG, no categorization of regions would have occurred.

The assignment of each SF node to an AudF region is not ran-
dom: in fact, the SF nodes tend to become equally divided between
the three categories. If each SF node were independently tuned to a
region of its choice, we would find that in 5.2% of the experiments an
ambient category would be presented by 0 nodes. We never find this;
the division 4–3–3 is by far the most common. The cause of this equal
division is the inhibition.

5.6Investigating the network’s detailed perceptual behaviour

In Figure 16 we can see that when the incoming sound paces through
the auditory continuum, the degree of the activities within a category
at SF is not always the same. The activities of the 2–6–9 (/ʂ/) category
are much higher if AudF node 6 is on (where the peak of the first
category is located, as can be seen in Figure 13) than if AudF nodes 2
or 10 (where the margins of the first peak are located) are on. Thus,
the first category is much more strongly activated by the relatively
common AudF patterns around node 6 than for the less frequent AudF
patterns around nodes 2 and 10.

At the category boundaries, a mixed type of behaviour appears.
For AudF nodes around 10 and 11, SF shows a combination of the
2–6–9 (/ʂ/) category and the 4–5–8 (/ɕ/) category: apparently, both
categories are activated to some (small) extent. Observationally, this
situation can correspond to an uncertainty in the listener about what
the category is; an interpretation of this is that the SF candidates /ʂ/
and /ɕ/ both move on toward UF, activating in the lexicon words with
underlying |ʂ| as well as words with underlying |ɕ|. Since AudF node
11 can indeed represent either of two categories from the language en-
vironment (speakers produce such auditory values sometimes when
intending /ʂ/, sometimes when intending /ɕ/), such uncertainty is
adaptive and appropriate (e.g. the Ganong effect mentioned in Sec-
tion 1.3.2). Something similar happens for AudF nodes around 20 and
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21: the listener’s reaction at SF is a mixture of the 4–5–8 (/ɕ/) and
1–3–7–10 (/s/) categories.

Figure 17 shows how strongly every possible location of the Gaus-
sian input bump at AudF activates each of the three categories at SF
(after 100 spreading steps, with a spreading rate of 0.01). Thus, a
bump centred at AudF node 10 causes activities of approximately 0.37
in nodes 2, 6, and 9, so that the summed activity for category 1 (=
nodes 2–6–9) is 1.1, as shown in the figure. Likewise, category 2 (=
nodes 4–5–8) has a summed activity of 0.4 in its three nodes, and
category 3 has no activity for AudF node 10 in any of its SF nodes
1–3–7–10. In Figure 17 the activity was measured for 581 centre loca-
tions, namely for AudF nodes 1 to 30 in steps of 0.05 node.5 The peak
is higher for category 3 than for the other two categories, because this
category is formed by four SF nodes instead of three.

The activity curves follow the input distributions of Figure 13
closely, with the tops at approximately the same locations. A differ-
ence with the distributions is that the activities go to zero at a distance
of approximately 7 nodes from the tops. This is due to the inhibitory
behaviour of the negative connection weights within SF, which e.g.
renders the excitation of category 1 negative for all AudF locations
above 13. The zero values then follow from the clipping mentioned in
Section 5.3.

If we interpret the activities of Figure 17 as relative probabilities
of perceiving a certain incoming AudF as any of the three categories
(Section 2.5), we can draw the identification curves of Figure 18. These
curves tell us how likely any incoming AudF is perceived as category
1, 2 or 3. For each category, the curve is computed by dividing the
activity curve for that category (Figure 17) by the sum of the three
activity curves.

The shapes of the identification curves are similar to those found
with human participants in the lab; for this reason, Figure 18 labels
the three categories with the language-specific phoneme labels that
human participants would have to choose from (a difference with the

5The smoothness of the curve shows that there is no major influence of the
discretization of the input continuum on the activity curves. This desirable be-
haviour is caused by the fact that the bumps at AudF have a Gaussian shape.
With different input shapes, the activity curves at SF may display ripple.
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human curves is that the curves in Figure 18 go to their extreme values
abruptly; this difference vanishes when we realize that sounds played
in the lab are supplied with transmission noise before they are con-
verted to AudF values in the listener; another difference is that the
extremes in Figure 18 are exactly 0 and 1, which is because we as-
sumed a perfect reporting mechanism).

In the lab, humans can report not only the category they think
they hear, but also how good the sound heard is as a token of that
category. Such goodness judgments can be thought of as following the
curves in Figure 17: if the listener has access to an inspection device
that computes the total activity of a category at SF,6 she will be able
to calculate any activity value in Figure 17 and trivially employ that
value as a reportable category goodness between 0 (poor fit to the
category) and 1 (perfect fit). Relatedly, since the peaks of the curves
in Figure 17 are at or near the most frequent exemplars of the cate-
gories (Figure 13), the best exemplars in a prototype task will be those
same most frequent exemplars (this statement will be amended in Sec-
tion 6.5).

5.7Investigating the network’s behaviour: production

The network is bidirectional, so it can be used to model not only per-
ception, as in the previous section, but production as well. To measure

6A goodness computation for e.g. the 2–6–9 category of Section 5.4 can be
performed by a simple network connected to SF, with connection weights of 1
to SF nodes 2, 6 and 9, and connection weights of 0 to the other seven SF nodes.
Follow-up simulations by Chládková (2014) have shown that such weights are
learnable in a three-level BiPhon model.
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the production of a category, we can clamp the SF nodes of that cate-
gory (i.e. nodes 2–6–9 or 4–5–8 or 1–3–7–10) at an activity of 0.8 and
compute what the activity at AudF will be after 100 spreading steps.
The three results are in Figure 19.

Figure 19:
The activity
at AudF,

as a function
of a three-
or four-node
input at SF

SF input 2–6–9 SF input 4–5–8 SF input 1–3–7–10

5 10 15 20 25 301
0

0.25

0.5

0.75

1

1.25

AudF node

ac
tiv

ity
 a

t A
ud

F

The learner turns out to produce the categories in much the same
way as her parents, if the activities of Figure 19 are interpreted as rela-
tive probabilities. As a result of the inhibition, the standard deviation
is somewhat smaller than that of the parents, but this will be coun-
teracted (as it was in the OT model by Boersma and Hamann 2008)
by the transmission noise that has to be added to the AudF values
drawn from Figure 19 once we want to model multiple generations of
learners.

The result in Figure 19 is not realistic. Considerations of articu-
latory effort will shy the learner’s production away from the edges.
We can model this with the network in Figure 20, in which the influ-
ence of the sensorimotor knowledge and the knowledge of articulatory
effort is summarized (and extremely simplified) as a single clamped
ArtF node that has strong inhibitory connections to peripheral AudF
nodes and weak inhibitory connections to central AudF nodes. If the
inhibitions follow a parabola, with a weight of –0.1 in the centre and
–1.6 at the edges, the AudF output of the 2–6–9 category will be that
shown in Figure 20.

The AudF activity for all three categories is summarized in Fig-
ure 21. The auditory realizations of the two outer categories now avoid
the edges: when compared with Figure 19, their peaks slightly moved
inward, and their medial tails are much longer than their lateral tails.
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This means that the learner will on average produce rather more cen-
tral AudF values than her parents.

If the sound shift of Figure 21 goes on for a number of generations,
the three peaks will come so closely together that a new learner cannot
create three categories any longer. Inevitably, iterated learning with
the procedure of Section 5 must lead to merger. However, information
from above SF will come to the rescue, as Section 6 will show.
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It is important to note that the network of Figure 20 is compatible
with the results of the two-layer network of Figure 12. That is, the net-
work of Figure 20 works in exactly the same way as that of Figure 12
for the purposes of Sections 5.4–5.6 (and also Sections 5.8–5.10), be-
cause adding an articulatory representation below AudF cannot influ-
ence the perception process in our simulations, where the auditory
representations, which lie in between the higher and the articulatory
representations, are clamped (held constant) during activation spread-
ing. An interesting variant of our simulations would appear if we let
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the auditory representations settle freely instead (as in e.g. McClel-
land and Elman 1986), in which case their connection to the articu-
latory representations (i.e. sensorimotor knowledge) will slowly (dur-
ing activation spreading) move the auditory representations toward
gestures that the listener finds easy to pronounce, which again will
influence the higher (e.g. phonological) representations. With this in-
teractive scenario, low-level perception from AudF to SF would partly
go through articulatory representations, without articulatory represen-
tations having to lie between AudF and SF. Hence, several phenomena
that have been brought forward by proponents of motor theory (Liber-
man and Mattingly 1985) or direct realism (Fowler 1986; Best 1995)
in favour of articulatory representations mediating between AudF and
SF can also be explained when articulatory representations lie out-
side the direct AudF–SF path, as was pointed out by Boersma (2012).
Simulations of such phenomena fall outside the scope of the present
paper. The main point we want to make here is that the network of
Figure 20, not that of Figure 12, is the complete network that exhibits
all the properties discussed in Sections 5 and 6.

5.8 Replicating experimental data: categorical perception

It is known that listeners can more easily discriminate two auditory
forms that map to different phonological categories than two audi-
tory forms that map to the same category (Liberman et al. 1957). The
trained network of Figure 15 can replicate this behaviour, under the
assumption that a listener’s report whether two sounds are the same
or different rests on her inspecting her SF, not her AudF. That is, when
responding to the task of reporting whether two sounds are the same
or not, the listener is actually reporting how different she judges the
two surface forms instead.

To replicate this with the network of Figure 15, we first compute
the average absolute difference between the activities of the SF nodes
in the first two pictures in Figure 16. Node 1 (at SF) is activated equally
(namely, 0) in both pictures, but node 2 is activated a bit more (by 0.2)
in picture 2 than in picture 1. On average, the activity of a node in pic-
ture 2 differs from the activity in a node in picture 1 by an amount of
0.03. The difference between picture 3 and picture 4 is even smaller,
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namely less than 0.01. The difference between picture 6 and picture 7
is much larger, namely 0.05, because many nodes switch on or almost
off when going from picture 6 to picture 7. Figure 22 displays all the
19 differences. It can be seen that the difference between the SF activ-
ities for adjacent AudF nodes around the category boundaries is much
greater than the difference between the SF activities for adjacent AudF
nodes around the category centres. This discrimination curve illustrates
the categorical perception effect as originally observed by Liberman
et al. (1957).
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The discrimination curve.
The peaks at the edges
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between nodes 1 and 20

5.9Why and when does this work?

Now that the mechanism is more or less understood, we like to know
the circumstances under which the category creation procedure suc-
ceeds or fails. That is, for what kind of input data (valley depth, num-
ber of categories) do our results hold? How sensitive are our results
to the hyperparameters of the network, such as the number of nodes
and the amount of inhibition? Are the elements of our network de-
sign, such as rectification and the inoutstar learning rule, crucial to
our results?

5.9.1Valley depth

The first question is about the data themselves. Not all one-dimension-
al auditory continua come with the pooled distribution of Figure 13,
i.e. with a valley depth of 0.64. If we reduce the standard deviation
of the ambient peaks in Figure 13 from one third to one quarter of
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the distance between adjacent peaks, the depth of the valleys becomes
0.27, and the network learns as well as before (and on average slightly
faster), coming up with three clear categories (4–3–3 or 4–4–2) in all
(20 out of 20) replications; the same goes for data with a valley depth
of 0.02. This is not surprising: sharper peaks yield better category dis-
criminability, so we expect better learning, if anything. On the other
hand, raising the standard deviation of the data to 40% of the peak
distance increases the valley depth to over 0.80, and our network no
longer learns equally fast: in half of the replications, the situation af-
ter 20,000 data is four insecure categories that continuously slide into
each other while scanning; however, this is simply a common interme-
diate learning stage (also often seen after 10,000 data in the simula-
tions of Section 5.4), and correct triple categorization always emerges
when we continue to train the network toward 100,000 data (two of
the four categories gradually merge). Generalizing, we can say that
our network can learn three categories if the distribution shows any
visible valley, although learning is faster if the valley is deeper.

To see whether having a valley-depth cut-off is bad, we compare
our network to results from the literature with human subjects. Ex-
periments that showed distributional learning have usually been per-
formed with only two peaks, with a valley depth of 0.25 (e.g. Maye
et al. 2008). For two categories with the same standard deviation as in
Figure 13 (i.e. with a much deeper valley of 0.16, because the peaks
are spaced 14.5 nodes apart), our network always (in 20 out of 20
replications) succeeds in learning the two categories perfectly, with
5–5, 6–4 or 7–3 divisions of SF. For two categories with a valley depth
of 0.65 (i.e. a standard deviation 1.5 times that of the peaks in Fig-
ure 13), our network also learns well, although in a minority of repli-
cations it does so via temporarily (after 20,000 data) having a small
additional category on the shoulder of a big category (when learning
continues toward 100,000 data, this shoulder category merges with
the main one, so this is just a sign of the expected slower learning).
For valley depths used in experiments with human participants, our
network therefore performs well.

5.9.2 Number of categories

In Section 5.1 we asserted that our network should be able to learn
languages that have between one and four categories along the contin-
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uum. In Section 5.4 we saw that our network learns three categories
from a three-peaked distribution, and in Section 5.9.1 we saw that
it learns two categories from a two-peaked distribution. When con-
fronted with a single broad peak, the network becomes a partly “au-
ditory” listener, with continuously changing output patterns when we
scan along the continuum, and with a discrimination curve, rather dif-
ferent from that of Figure 22, that has either a peak in the middle or
two peaks around the middle (closer together than in Figure 22). This
variation between learners might mirror to some extent the behaviour
of participants confronted with monomodal distributions in a distribu-
tional experiment, although we can make no numerical comparisons
at this point.

Our network works well for four categories with the same valley
depth of 0.65 as in Figure 13, i.e. with a standard deviation of 3/4 of
that of the three peaks in Figure 13: the learner divides up SF as 3–3–
2–2 or sometimes 4–2–2–2, and has three discrimination peaks. With
five categories, most of the learners show so much overlap between
some adjacent categories that their discrimination curve has only one
or two peaks instead of four; this loss of categorizability is OK, because
we know of no languages with more than four CoG categories, which is
why we designed our network with only 10 nodes at SF (Section 5.1).

5.9.3Number of nodes at SF

With 10 nodes at SF, our network can learn up to four categories re-
liably (Section 5.9.2). It is interesting to see whether the limit of four
is inherent to our type of network, or whether more categories can be
learned if we modify its hyperparameters. And indeed, when we raise
the number of SF nodes to 30, we can stably create up to seven cat-
egories (four categories do e.g. 7–7–6–4, with 6 nodes unconnected;
seven categories do e.g. 5–4–4–4–4–4–3, with six clear discrimination
peaks), under the condition that the valley depth is kept low enough
to compensate for the increased effect of the 1.16-node smearing on
the basilar membrane (Section 5.3). Learning eight categories usually
works perfectly, but slightly fails in a minority of cases (overlapping
patterns at SF for adjacent categories; e.g. one of the nodes stays on
for two categories, so that one of the seven discrimination peaks is
lower than the others), apparently because even with very low ambi-
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ent standard deviations, i.e. valley depths close to 0, the pooled dis-
tribution of activities at AudF comes to show rather shallow “basilar
valley depths”. With a much greater granularity both at AudF and at
SF, namely with 100 AudF nodes and 100 SF nodes, up to ten cat-
egories can be learned. We conclude that our number of SF nodes
(namely, 10) limits the number of categories to 4, and the physical
characteristics of our auditory continuum (namely, 0.68 ERB of basi-
lar spreading; see footnote 4) limits the number of categories to 8 or
10.

These numbers do not seem to contradict any known fact about
phonological inventories. For instance, a language with four vowel
heights will have their F1 values spaced 2.1 ERB apart, if high vowels
have an F1 of e.g. 300 Hz (7.3 ERB) and low vowels have an F1 of 800
Hz (13.6 ERB), and the mid vowels are equally spaced between them,
i.e. at 9.4 and 11.5 ERB. This 2.1 ERB is approximately how far the
peaks are spaced in our simulations with eight categories (namely,
a 17-ERB range divided in eight equal steps). This can explain why
languages with five vowel heights are very rare. Precise numerical fits
with vowel data will have to be relegated to future work.

5.9.4 Inhibition within SF

The simulations of Section 5.4 use an inhibitory weight of 0.1 between
nodes at SF. This value of 0.1 works for a great variation of valley
depths and numbers of categories in the data, and for quite varying
numbers of SF nodes. The value itself is not robust. If we lower this
inhibitory weight to 0.01, then all SF nodes are excited equally (no off-
and-on pattern as in the simulations above), and this same egalitarian
pattern appears in exactly the same way for any AudF, so the number
of categories created is zero (or, equivalently, one). If we raise the in-
hibitory weight to 1 or 2 or 10, then in the great majority of replicated
simulations four categories emerge, and each of those categories has
only one node at SF; that is, six of the ten nodes will never switch
on. An inhibitory weight of 0.05 will generally work well, but may
cause, in a sizable minority of learners, a bit of overlap in SF patterns
of adjacent categories, and differences in the heights of the two dis-
crimination peaks (in Figure 22 the two peaks are equally high). An
inhibitory weight of 0.2 makes the two-category case poorly learnable
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(e.g. three discrimination peaks). Thus, the inhibitory weights have to
have a value around 0.1, not very well allowing a factor of 2 off in
either direction. We speculate that this fine-tuning of excitability of
neurons may well correspond to something in biological neural sys-
tems, which function best in a state somewhere between anaesthesia
and epilepsy.

We can conclude that distributional learning on a single contin-
uum is a bit brittle in our network (in the sense of requiring a notable
valley in the distribution of CoG values, and some tuning of the de-
gree of inhibition), an observation that corresponds to what is found in
a literature overview on experiments with human subjects (Wanrooij
2015: 35). In real-life acquisition, there will usually be multiple au-
ditory continua, plus contextual information, which could make cat-
egory learning easier even in cases where distributional valleys are
shallow or even non-existent.

5.9.5The rectifier

The activation function follows (3) or (25), i.e. the activity of a node is
always made non-negative. An arguably simpler activation function is
the identity function, as in (2), i.e. the activity of a node equals its ex-
citation. It turns out that simulations with such an identity activation
do not display stable category creation. To understand this, consider a
network with identity activation that is in an initial situation in which
the input to SF node 1 is 0.1 (e.g. the weights times activities of all
the AudF nodes to SF node 1 sum up to 0.1, which is a possible result
of initial weights being uniformly distributed between 0 and 0.1), and
the inputs to all other nodes are 0 (which can happen, for instance, if
all weights from AudF to these other SF nodes are zero). After the first
activation spreading step with a spreading rate of 0.01, the activity of
SF node 1 will be 0.001, and the activities of all other SF nodes will
still be 0. After the second step, the activity of SF node 1, according
to (24), will be 0.00199, but all other SF nodes will be inhibited by SF
node 1, i.e. each of their activities will be −0.1 · 0.01 · 0.001 (the in-
hibitory weight times the spreading rate times the activity of SF node
1 after one step) = −0.000001. After infinitely many steps, the activ-
ity of SF node 1 will be 2/19, and that of each other SF node will
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be −1/171.7 This example serves to illustrate that if we allow nega-
tive activities, such negative activities will actually occur. Combined
with inhibitory weights, the occurrence of negative activity results in
increasing the positive activity of other nodes, defeating the whole
idea behind inhibition. This has happened here to SF node 1, which
with the rectifying activation function would have ended up with an
activity of only 0.1 instead of 2/19. Also, negative activities defeat the
purposes of inoutstar learning, including the idea that weights reflect
something close to a conditional probability; with negative activities,
weights can easily fall below 0 or rise above 1, and in our simulations
with identity activation they indeed tend to do so without bounds,
leading to chaotic restructurings of the network upon each learning
step. We conclude that no stable learning is possible with an iden-
tity activation function, while stable learning is possible with the next
simplest activation function, namely the rectifying activation function
used throughout Section 5 and 6.

5.9.6 Learning rules

We have seen that category creation works well with the inoutstar
rule. It does not work with the simpler outstar learning rule: weights
and activities blow up. However, category creation turns out to work
well with the equally simpler instar learning rule, if we assume that
AudF is the input and SF is the output. This could be expected on the
basis of earlier competitive learning studies. The only reason why we
use inoutstar instead of instar is that it is symmetric and can therefore
handle the cases of Section 6 as well as those of Section 5.

5.10 Plasticity

After learning three categories in her native language environment,
the learner might move to an area of the world where four categories
are spoken. The network turns out to adapt itself accordingly. If the
middle category has four SF nodes, they will split up 2–2. If the middle

7One can show that if the excitation of SF after 1 activation spreading step is
e j , the final activity will be 1

1−α
�
e j − α

1+α(N−1)Σi ei

�
/spreadingRate, where α is the

inhibitory weight (i.e. 0.1) and N is the number of SF nodes (i.e. 10).
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category has three SF nodes, any of three things can happen: the nodes
of the middle category split 2–1; the nodes split 2–1 but the second
middle category borrows a node from its neighbour; or the category
with four nodes splits 2–2.

If, conversely, a learner with four categories moves to a place with
three, she will merge two categories, typically the two in the middle.

If all three nodes of the second category (4–5–8) die, the remain-
ing seven nodes will divide themselves up between the three cate-
gories. If the whole of the higher-frequency third of AudF dies, its
three nodes will be recruited by the first and second categories.

We conclude that the network has a high degree of plasticity,
adapting itself to changes in the environment as well as to changes in
its own structure.8

5.11Comparison with earlier models

A potential early stage of categorical perception, the perceptual magnet
effect (Kuhl 1991), has beenmodelled with neural nets before by Guen-
ther and Gjaja (1996). This work had four aspects that make it difficult
to use their model for our purposes. First, the learning rule was instar,
which does not work for auditory dispersion (Section 6). Second, the
inputs were only four AudF nodes, with a formant value unrealistically
represented by the activity levels of two AudF nodes rather than by an
array of nodes as here. Third, the state of SF was selected less realisti-
cally (i.e. more “manually”) than here, namely by setting all activities
that did not exceed a certain threshold to zero (rather than by mutual
inhibition). Fourth, the magnet effect was established by computing a
“population vector” based on a computation of auditory distance; in
our case, a “warped” AudF can be directly computed by clamping an
AudF to an incoming CoG value, then computing the output SF, then
clamping the SF at this output, then unclamping AudF and having ac-
tivity spread back to it from SF; this reflection works correctly thanks
to the bidirectionality of the connections, which Guenther and Gjaja
could not implement.

8In human learners, plasticity may well decay with age, so that adaptation to
changing environments slows down as the child grows older. Modelling this lies
outside the scope of the present paper.
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Some aspects of our model are shared with the TRACE model by
McClelland and Elman (1986), the most notable being upward activa-
tion spreading. The critical difference, however, between our model
and TRACE, in the light of Section 5, is that TRACE featured “lo-
cal” (i.e. non-distributed) representations and therefore had to work
with pre-given categories. Even if TRACE had come with a learn-
ing algorithm, which McClelland and Elman did not provide, TRACE
thus could not have handled the main objective of Section 5, which
is the emergence of categories. A phenomenon that TRACE did suc-
cessfully account for is the Ganong effect (Ganong III 1980), by which
low-level perception (for us, the mapping from AudF to SF) is influ-
enced by top–down information (for us, from Morphemes down to
SF) about the existence of lexical items (for us, Morphemes). Simu-
lating the Ganong effect in our model would equally require a third
level of representation that encodes meaning and feeds information
back to SF. This should be possible, because the BiPhon model of Fig-
ure 2 provides the required level of representation (UF and/or Mor-
phemes), and adding such a level above the SF of the present section
would provide the required feedback as a result of the bidirectional-
ity of the connections. While the simulations presented here do not
address the exact effects of the top–down feedback from a third level
(though see Chládková 2014 for showing that top–down effects do
happen when we add a third layer), they do illustrate that our model
satisfies another prerequisite for the Ganong effect, namely ambigu-
ity at the middle level. In TRACE, the Ganong effect is critically de-
pendent on ambiguity at the middle level of representation, which is
resolved by top–down activation from existing lexical items. In our
simulations, ambiguity at SF occurs in the mixed excitations visible
in Figure 16 (e.g. the 4th picture from the bottom in the left column,
and the 4th picture from the top in the right column) and Figure 17
(around nodes 11 and 20), which occur in response to AudF input
that lies in a distributional valley (i.e. near a boundary between two
ambient categories). These two-level simulations in our model thus
lay the foundation for a full simulation of the Ganong effect, which
has to be postponed to future work that investigates three levels of
representation.
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6AUDITORY DISPERSION

Auditory dispersion is a phenomenon in sound change whereby the
auditory correlates of phonological elements become optimally dis-
tributed along one or more auditory dimensions. The emergence of
auditory dispersion over the generations was handled successfully
in BiPhon-OT (Boersma and Hamann 2008). In this section, we test
whether BiPhon-NN is equally capable of doing the job.

6.1Existing work on auditory dispersion

Languages tend to maximize the auditory contrast between elements
in their phonological inventories (e.g. Passy 1890; von der Gabelentz
1901; de Groot 1931; Martinet 1960). In a single auditory dimension,
languages favour symmetric inventories whose members lie at equal
distances along the auditory continuum, often with a preference for
the centre, as in Figure 23. If we take as an example of an auditory

a.

b.

c.

/A/

/A/ /B/

/A/ /B/ /C/

Figure 23:
Typically dispersed
phonological inventories

continuum the voice onset time (VOT) in bilabial plosives, Estonian
would be an example of a language with a single category, namely /p/,
which is realized with zero VOT (Figure 23a), Swedish exemplifies
a language with two categories, namely /b/, realized with negative
VOT, and /ph/, realized with positive VOT (Figure 23b), and Thai
serves to illustrate that a language can have the three categories /b/,
/p/ and /ph/ (Figure 23c).

Inventories as in Figure 23 are optimally dispersed in the sense that
they strike a perfect balance between perceptual clarity and articula-
tory ease (Lindblom 1986; ten Bosch 1991; Boersma 1998). Practically
speaking, optimal auditory dispersion entails that the categories are
sufficiently auditorily distinct to minimize confusion in the listener,
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and that this distinctivity does not come at too large an articulatory
cost for the speaker.

Boersma and Hamann (2008) formalize auditory dispersion with-
in BiPhon-OT as the result of an interaction between cue constraints,
whose ranking is a result of optimizing the learner’s prelexical per-
ception during acquisition, and articulatory constraints, which aim
for articulatory ease. When re-using the perception-optimized cue
constraint ranking in production (phonetic implementation), the dis-
persion effect automatically emerges. With computer simulations,
Boersma and Hamann show that optimally dispersed systems are di-
achronically stable, and that poorly dispersed systems evolve into
stable systems within a small number of generations. The BiPhon-
OT account is devoid of teleological devices, such as the explicit
auditory-distance maximization by Liljencrants and Lindblom (1972),
ten Bosch (1991) or Schwartz et al. (1997), or such as the OT dis-
persion constraints proposed by Flemming (1995/2002: MINDIST),
Kirchner (1998/2001: DISP), and Padgett (2003: SPACE), whose sole
purpose was to preclude categories from approaching each other; in
fact, the listener does not have to compute auditory distances at all,
as was still the case with some less-teleological methods, such as the
agent-based simulations by de Boer (1999) and Oudeyer (2006), and
such as Wedel’s (2006) exemplar-based account.

6.2 A neural network for auditory dispersion

We will try to replicate Boersma and Hamann’s results with BiPhon-
NN. We propose that after the unsupervised bottom-up creation of
categories of Section 5, the learner creates a lexicon of phonologi-
cal word forms (at UF), which is capable of “supervising” perceptual
learning. That is, once the learner has established a lexicon, the lexi-
con can provide top–down information, in effect telling the network
what phonological category to expect, or what phonological category
it should have perceived. To this end, we consider the neural network
in Figure 24, which just as the one we used in Section 5.7 has three
layers: the phonological surface form (SF), the auditory-phonetic form
(AudF), and the articulatory-phonetic form (ArtF).

The network has nine SF nodes for a distributed representation of
the categories. As was approximately the case throughout Section 5,
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[ArtF]

[[AudF]]

/SF/
Figure 24:
The initial state
of the neural
network

each discrete phonological category is represented by three SF nodes:
category 1 corresponds to SF nodes 1, 4, and 7, category 2 to nodes
2, 5, and 8, and category 3 to nodes 3, 6, and 9. As before, there are
inhibitory connections within SF.

The AudF layer again represents the CoG dimension, sampled
again in 30 steps. Each AudF node is connected to all nine SF nodes
by excitatory cue connections (drawn in black) whose initial weights
have random values between 0 and 0.1. Each AudF node is also
connected to the ArtF node by an inhibitory articulatory connec-
tion (drawn in light grey); these connections have the same values
as in 5.7: they are stronger (i.e. drawn thicker) at the edges of the
AudF layer, to represent the idea that the production of a peripheral
value requires more articulatory effort than the production of a central
value.

6.3Learning to perceive

The simulated learner will have to establish the appropriate cue con-
nection weights of the ambient language through a process of percep-
tual learning. Before the learning process begins, we create the initial
language: for every category, we determine a normal distribution of
input probabilities along the auditory continuum. In each learning
step, a combination of a category and an auditory value is selected
at random; if a value has a high input probability given the selected
category, it is more likely to be drawn. We pair each auditory value
with a category because we want the learning process to be supervised
by information from “above”, i.e. from the lexicon at and/or above

[ 163 ]



Paul Boersma, Titia Benders and Klaas Seinhorst

Figure 25:
The neural

network after
50,000 learning

steps

[ArtF]

[[AudF]]

/SF/

UF and perhaps also from the phonology of the UF-to-SF mapping:
somewhat artificially, we assume that the learner’s lexicon is already
in place, i.e. that she knows what category she should have perceived.
We switch on the selected AudF nodes as well as the selected category
nodes at SF; subsequently, all AudF and SF nodes are clamped, and
the weights of the cue connections are updated with the inoutstar
rule (Section 4.7).

After 50,000 tokens (learning rate = 0.01) from a language with
input peaks as in Figure 13, i.e. at 16.667% of the auditory continuum
(category 1), at 50% (category 2) and at 83.333% (category 3), the
network from Figure 24 comes to look as Figure 25. The left third of
the AudF layer is more strongly connected to SF nodes 1, 4 and 7 than
to other SF nodes, so the network has learned that low auditory values
are most likely to be intended as category 1; likewise, mid auditory
values connect to category 2, and high auditory values to category 3,
as the language environment dictated.

6.4 Production: the articulatory effect

The network is bidirectional, so it uses the same connections in pro-
duction as in perception. Figure 26 shows how the network of Fig-
ure 25, which has been trained only to perceive, handles production.
To see how a category is produced, we switched on its three SF nodes
(activity 0.8), as shown by filled disks in the figure, while switching
off the other six SF nodes (activity zero), as shown by empty disks; all
nine SF nodes are clamped at these values, as shown by solid circles.
Now the ArtF node also comes into play, clamped at an activity of 1.0,
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[ArtF]

[[AudF]]

/SF/

[ArtF]

[[AudF]]

/SF/

[ArtF]

[[AudF]]

/SF/

Figure 26:
Output activities
for the three
categories (peaks
in input
distribution
as in Figure 13)
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constraining the activities at the unclamped AudF layer. After activity
spreads from SF and ArtF to AudF for 500 time steps, Figure 26 shows
the resulting activities on the AudF layer (as usual, negative activities
are clipped at zero) in the production of each of the three categories.
The strongest activities in Figure 26 are between nodes 6 and 7 (i.e. at
5.5/29 = 19.0% of the continuum), between nodes 15 and 16 (50%),
and at node 24 (23/29= 79.3% of the continuum).

The locations of the strongest activities are important concepts.
According to Section 2.5, we can regard these locations as the most
probable auditory forms realized in production. When we look at their
values, we see that they are different from what the learner has heard
in her environment. The learner has shifted category 1 by 19.0% −
16.7% = 2.3% toward the centre of the continuum, when compared
to her language environment, and she shifted category 3 toward the
centre by 83.3% − 79.3% = 4.0%. These values of 2.3% and 4.0%
are typical: if we repeat the experiment, we see that learners will on
average shift the two outside categories by 3% toward the centre of
the continuum.

It is clear where this shift comes from. As in 5.7, it comes from
the articulatory constraints: auditory values around 19% and 79% are
just somewhat easier to produce than values around 17% and 83%,
so the learner’s cue constraints might prefer values around 19% and
79%, but her articulatory constraints move the values away from this
effortful periphery.

6.5 Production: the prototype effect

The question is: will learners always shift the categories toward the
centre? That would be bad for the future of the language, because a
sequence of learners would ultimately make all categories pile up in
the very centre of the continuum, where they merge into one.

Fortunately, near the centre of the continuum a different effect
counteracts the articulatory effect. Figure 27 shows a network that
has learned 50,000 times from a “confusing” language where the dis-
tributions of the three categories have peaks at 40%, 50% and 60%.
The strongest cue constraints now connect the three categories at SF
to much more central auditory values than in Figure 25. The produc-
tion, however, works as in Figure 28. The strongest activities are at
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[ArtF]

[[AudF]]

/SF/
Figure 27:
The neural
network after
50,000 pieces of
confusing data

node 12 (i.e. at 11/29 = 37.9% of the continuum), between nodes
15 and 16 (at 50%), and at node 19.3 or so (18.3/29 = 63.1% of
the continuum). The two outside categories, therefore, have shifted
40%−37.9% = 2.1% and 63.1%−60%= 3.1% toward the periphery
of the continuum.

What happened here? The outstar part of the learning algorithm
makes stronger connections between AudF and SF if the probability of
that SF given that AudF is greater; in fact, the weight moves asymptot-
ically toward the conditional probability of that SF given that AudF.
Now, a more peripheral AudF value (say, at 30% of the continuum) is
more likely to have been intended as category 1 than a more central
AudF value (say, at 40% of the continuum), because around 40% of
the continuum we are in a region where the distribution of category
1 overlaps with the distribution of category 2. As a result, the connec-
tion between an AudF of 30% and category 1 will be stronger than the
connection between an AudF of 40% and category 1. As a result, the
production of category 1 will favour an AudF of 30% over an AudF
of 40%. This result replicates the observation that listeners choose
more peripheral tokens as prototypical than they produce themselves
(Johnson et al. 1993; explained with BiPhon-OT by Boersma 2006).
The inoutstar algorithm employed here does not exhibit this “proto-
type effect” (Boersma and Hamann 2008) as strongly as the outstar
algorithm, but it employs it enough to shift the category by several
percent.

Summing up, then, categories whose centres lie near the periph-
ery of the auditory continuum will tend to shift toward the centre,
whereas categories that overlap with other categories will tend to
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Figure 28:
Output activities
for the three

categories (peaks
in input

distribution as in
Figure 27)
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[[AudF]]

/SF/

[ArtF]

[[AudF]]

/SF/

[ArtF]
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move away from those other categories. Over the generations, an equi-
librium will appear where all categories are approximately equally
spaced around the centre of the continuum; the distances between the
category centres will not depend on where they were in the first gen-
eration.

Our simulations show, then, that BiPhon-NN, just as BiPhon-OT, is
capable of replicating the emergence of optimal dispersion in phono-
logical inventories. If the network learns the appropriate weights of
the cue constraints in comprehension and then “produces” sound us-
ing the same connections, any input distribution will evolve into a
stable system within a number of generations. It is thus crucial that
the neural network is symmetric, as it is in other models that involve
both sensory input and production (Kohonen 1984; Wedel 2007).

For more details on the properties of the neural network and
learning procedure used here, and for simulations of other invento-
ries, we refer the reader to Seinhorst (2012), who also subjects to
closer scrutiny the difference between outstar and inoutstar learning
in modelling auditory dispersion.

7DISCUSSION

One and the same network, with a single learning rule, namely “in-
outstar” learning, has turned out to be able to handle both category
creation (in a slightly brittle manner) and auditory dispersion (very
robustly). While the instar rule would have worked fine for category
creation (as Guenther and Gjaja 1996 have shown), and the outstar
rule works fine for the emergence of auditory dispersion (as shown by
Seinhorst 2012), only the inoutstar rule, which is a combination of the
instar and outstar rules, works for both.

On top of the two foci of the present paper (category creation
and auditory dispersion), the BiPhon-NN model replicates several re-
alistic behavioural effects, with minimal assumptions and devices. Al-
though the model does not represent or compute auditory distance
(as earlier models of both category creation and dispersion did do;
see Section 5.11 and Section 6.1), realistic effects of auditory vicinity
emerge both in category creation and in dispersion, because the model
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automatically learns the correlation between adjacent auditory val-
ues in the input (Section 5.5). Although the model employs identical
knowledge in the comprehension and production directions, asymme-
tries between comprehension and production do arise in the realistic
prototype effect (Section 6.5). And although the more comprehensive
model of Figure 1 includes levels that are non-adjacent and there-
fore seems to disallow nonlocal interactions, it can achieve realistic
effects of interactivity across multiple levels, because activity spreads
simultaneously top–down and bottom–up (as in the TRACE model; see
Section 5.11); an example of this in Section 5.7 and Section 6.4 is the
interactive effect of the “later” articulation on the “earlier” mapping
from SF to AudF in production.

On the downside, the model cannot really represent more than
one segment yet, and we have not attempted to supply the networks
with time-varying input at the auditory or surface level. As a result,
no phonological structure beyond single categories can be represented
yet in the distributed versions of the network, and interesting issues in-
volving time-varying perception or production, such as contextual cue
weighting, dynamic sensorimotor knowledge, or coarticulation, could
not be studied yet. Once these sequence restrictions are overcome at
all levels of representation, important questions that can be answered
are whether anything similar to the within-level restrictions of Fig-
ure 1 emerges in these networks, and whether anything emerges that
is similar to the many hierarchical structures that have been proposed
in the literature. Such issues point toward a large-scale programme for
future research.

8 CONCLUSION

The BiPhon-NN model is seen to handle some phenomena that psy-
cholinguists and speech researchers have found in the lab and that
have never been modelled within a single framework before. Also,
the BiPhon-NN model is biologically one step more plausible than an
OT model. One of the main missing areas involves strictly phonolog-
ical phenomena, which will require the model to come to represent
sequential or hierarchical structures at the level of the phonological
surface form.
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This article describes a novel approach to the computational modeling
of reduplication. Reduplication is often treated as a stumbling block
within finite-state treatments of morphology because they cannot ad-
equately capture the productivity of unbounded copying (total redu-
plication) and because they cannot describe bounded copying (par-
tial reduplication) without a large increase in the number of states.
We provide a comprehensive typology of reduplicative processes and
show that an understudied type of finite-state machine, 2-way deter-
ministic finite-state transducers (2-way D-FSTs), captures virtually all
of them. Furthermore, the 2-way D-FSTs have few states, are in prac-
tice easy to design and debug, and are linguistically motivated in terms
of the transducer’s origin semantics or segment alignment. Most of
these processes, and their corresponding 2-way D-FSTs, are available
in an online database of reduplication (RedTyp). We classify these 2-
way D-FSTs according to the concatenation of known subclasses of
regular relations and show that the majority fall into the Concate-
nated Output Strictly Local (C-OSL) class. Other cases require higher
subclasses but are still definable by 2-way D-FSTs.
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1 INTRODUCTION

Reduplication is a cross-linguistically common word-formation pro-
cess involving copying. Given a word, reduplication can copy either a
bounded (1a) or unbounded (1b) number of segments. The symbol ∼
marks the boundary between the two copies.
(1) a. Partial Reduplication Agta (Moravcsik 1978, 311)

takki → tak∼takki ‘leg’ → ‘legs’
b. Total Reduplication Indonesian (Cohn 1989, 308)
buku → buku∼buku ‘book’ → ‘books’

Reduplication is used in the majority of the world’s languages,
and total reduplication is more common than partial reduplication.
The World Atlas of Language Structures (WALS) database documents
that 278 out of 368 (75%) languages have total and partial reduplica-
tion (Rubino 2013). 35 additional languages (10%) use only total, not
partial, reduplication. The 55 (15%) remaining languages do not have
productive reduplication, but this figure is debatable.1 Therefore, de-
veloping analyzable and efficient computational models of reduplica-
tion is important.

Although reduplication is well-studied, it is a computationally
challenging process (Sproat 1992). In computational linguistics, most
morphological and phonological processes can be analyzed with finite-
state calculus in terms of rational languages and transductions (Kaplan
and Kay 1994; Beesley and Karttunen 2003). However, reduplicative
processes cannot be easily modeled with the same finite-state systems.
For total reduplication, this is because those finite-state systems can-
not express unbounded copying in the first place (Culy 1985). As for
partial reduplication, those finite-state systems are often described as
unwieldy because of the state explosion caused by partial reduplica-
tion (Roark and Sproat 2007, 54). Section 2 of this article explains why
reduplication is computationally challenging while reviewing previ-
ous computational approaches to this linguistic phenomenon.

1Most of the exceptional languages are Indo-European, but some argue that
these languages still use total reduplication (Ghomeshi et al. 2004; Stolz et al.
2011).
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In this context, the primary contribution of this article is to show
that a specific understudied type of finite-state technology can ac-
count for virtually all reduplicative processes. This type of transducer
is known as a 2-way Finite-State Transducer or 2-way FST (Savitch
1982; Engelfriet and Hoogeboom 2001; Filiot and Reynier 2016).2
In theoretical computer science, 2-way FSTs are known to be able to
model unbounded copying (Engelfriet and Hoogeboom 2001). To our
knowledge, we are the first to apply 2-way FSTs to computational lin-
guistics.3

The FSTs used in most of computational linguistics are more ac-
curately called 1-way FSTs. They can only read the input once in
one direction. 2-way FSTs are more expressive because the read head
can move back and forth on the input tape. On the other hand, the
write head can only move forward on the output tape. For this rea-
son, they are less expressive than Turing machines. It is this back-and-
forth movement of the read head that allows 2-way FSTs to adequately
model reduplication without the difficulties faced by 1-way FSTs. This
article introduces deterministic 2-way finite-state transducers (2-way
D-FSTs) in Section 3, along with their formal definition (Section 3.1),
illustrative examples of reduplication (Section 3.2), and their compu-
tational properties (Section 3.3).

The fact that the 2-way FSTs used in this article are deter-
ministic is significant. It is well known that deterministic 1-way
FSTs are less expressive than non-deterministic 1-way FSTs (El-
got and Mezei 1965; Schützenberger 1975; Choffrut 1977; Mohri
1997; Heinz and Lai 2013). Similarly, 2-way D-FSTs are less ex-
pressive than non-deterministic 2-way FSTs (Culik and Karhumäki
1986). Consequently, the empirical result that reduplication can
be modeled with deterministic 2-way FSTs is in line with work
which shows that various phonological and morphological pro-
cesses can be described with deterministic finite-state technology
(Chandlee et al. 2012; Gainor et al. 2012; Chandlee and Heinz

2This article builds off of our previous work on using 2-way FSTs for redu-
plication (Dolatian and Heinz 2018a,b, 2019a,b).

32-way finite-state acceptors (2-way FSAs) have been used to model non-
concatenative Semitic morphology (Narayanan and Hashem 1993) and to parse
dependency grammars (Nelimarkka et al. 1984).
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2012; Heinz and Lai 2013; Chandlee 2014; Luo 2017; Payne 2014,
2017).

In the later part of this article, we provide a comprehensive
cross-linguistic survey of reduplicative processes based on earlier ty-
pological studies (Moravcsik 1978; Rubino 2005; Inkelas and Down-
ing 2015a), with reduplication defined as an input-to-output function
(McCarthy and Prince 1995). This survey is documented in a database
we constructed, which we call The RedTyp database. It contains en-
tries for 138 reduplicative processes from 91 languages and a 2-way D-
FST for each entry. Aspects of this survey are presented in Sections 3–
4, and discussed in detail in Section 6.

In Section 4, we compare 2-way D-FSTs to 1-way FSTs in terms
of empirical coverage (Section 4.1), practical utility (Section 4.2), and
linguistic motivation (Section 4.3). We argue that 2-way D-FSTs are
linguistically motivated in that they capture the correspondence rela-
tions underlying the base and the reduplicant in a linguistically natu-
ral way. These correspondence relations are couched in terms of origin
semantics (Bojańczyk 2014). We use origin semantics as a diagnostic
for the strong generative capacity of reduplicative functions. (We do
not claim that origin semantics matches linguistic intuitions exactly in
every case, but rather that it approximately does so in many instruc-
tive cases.)

The final contribution of this article is an attempt to classify redu-
plicative processes according to subclasses of 2-way D-FSTs in Sec-
tion 6. The first result we already mentioned: the full typology of redu-
plicative processes can be modeled with deterministic 2-way D-FSTs.
These subclasses are defined in terms of concatenations of subclasses
of 1-way FSTs. Our next result is that approximately three-quarters of
the typology is expressible with the concatenation of Output Strictly
Local (OSL) functions (Chandlee et al. 2015). The remainder of the ty-
pology is expressible with the concatenation of sequential functions,
with some arguably requiring sweeping transducers or unrestricted
2-way D-FSTs.

We review these contributions and conclude in Section 7.
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2BACKGROUND ON COMPUTATION
OF REDUPLICATION

Within computational linguistics, reduplication has been a challeng-
ing process to model (Culy 1985; Sproat 1992; Roark and Sproat 2007;
Hulden 2009a; Chandlee 2014, 2017). Finite-state technology, as cur-
rently practiced, cannot adequately and elegantly describe many cases
of productive reduplication, especially unbounded total reduplication.
There are three kinds of issues: empirical coverage, practical util-
ity, and matching the intensional description of reduplication. We
discuss these challenges in Section 2.1. In response to these prob-
lems, some have proposed finite-state approximations for reduplica-
tion (Section 2.2) or developing more expressive systems just for total
reduplication (Section 2.3). The latter approach however implies that
total reduplication is ontologically different from partial reduplica-
tion, and thus should be computed differently. In Section 2.4, we dis-
cuss this implication and show that the evidence for it is inconclusive.
We summarize in Section 2.5.

2.1Why reduplication is challenging

Reduplication is challenging because segmental copying entails multi-
ple crossing dependencies between the two copies. When the number
of copied segments (and thus the number of crossing dependencies) is
bound to some maximum number n, the outcome is partial reduplica-
tion. When there is no bound, the outcome is total reduplication.

Partial reduplication can be modeled with 1-way FSTs (Roark and
Sproat 2007; Chandlee and Heinz 2012). However, as we explain in
more detail in Section 4.3, these machines are understood as memoriz-
ing all finitely-many possible forms of the partial reduplicant. Conse-
quently, the transducers suffer from an explosion of states and become
unwieldy. For example, in a language with a medium-sized phonemic
inventory of 22 consonants and 5 vowels, partial reduplication with a
CVCV template would require at least 22+22×5+22×5×22= 2552
states to memorize the first C (22 states), the first V (22 × 5 states),
and the second C (22 × 5 × 22 states). 1-way FSTs likewise arguably

[ 183 ]



Hossep Dolatian, Jeffrey Heinz

do not match the intensional description of reduplication as a copying
process because the FSTs simply memorize all possible reduplicants in
the language (Roark and Sproat 2007, 54). This is discussed in detail
in Section 4.3.

On the other hand, total reduplication cannot be modeled at all
with 1-way FSTs (Culy 1985). This inability is due to the fact that
the output language of total reduplication is not a regular language.
Rather, the copying process of total reduplication can create output
languages that are identical to the non-context-free Lww = {ww|w ∈ Σ*}
(Hopcroft and Ullman 1969). Thus the copying function w 7→ ww
(sometimes called the squaring function) is beyond the expressivity
of 1-way FSTs. In fact, virtually all attested morphological processes
can be described with 1-way finite-state acceptors and transducers,
except for total reduplication (Langendoen 1981; Gazdar and Pullum
1985; Roark and Sproat 2007). In response to this problem, compu-
tational morphologists have often resorted to using either finite-state
approximations (Section 2.2) or non-finite-state tools (Section 2.3).

2.2 Finite-state approximations

The literature on finite-state morphology contains many finite-state
approximations to reduplication (Walther 2000; Beesley and Kart-
tunen 2003; Cohen-Sygal and Wintner 2006; Hulden and Bischoff
2009). Roark and Sproat (2007, 57) and Cohen-Sygal and Wintner
(2006, 52) provide reviews. In general, finite-state approximations are
designed to lessen the burden for the developer in designing redupli-
cation rules. They introduce new operations or tools over 1-way FSTs
but they do not increase their expressivity. In other words, they are
designed to improve on practical utility but they don’t improve on
empirical coverage or intensional description.

Here we briefly review the two main sets of approaches with
details following. One set of approaches checks for identity between
the two copies (Cohen-Sygal and Wintner 2006; Hulden and Bischoff
2009). Another set of approaches essentially ‘postpones’ reduplication
to a run-time task (Walther 2000; Beesley and Karttunen 2000, 2003).
Both try to reduce state complexity either by making a trade-off with
time complexity, by implementing reduplication with a unique 1-way
transducer for each morpheme in the finite lexicon, or both.
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Cohen-Sygal and Wintner (2006) augment 1-way FSAs with
finitely many registers (FSRA). These registers keep track of a bounded
number of segments previously seen in the input. In order to model
the total reduplication of a given word like buku → buku∼buku (1b),
the FSRA has at least as many registers as segments in the base buku:
four. The registers check that the string buku∼buku can be broken
down into identical copies. Similarly, Hulden and Bischoff (2009) de-
sign the EQ function within the foma system (Hulden 2009b) which
checks if a string is divided into two identical copies.

As for run-time procedures, these systems are designed on an in-
put by input basis. Given some input word, they create a reduplication
FST for it on the fly. Given an input buku, the compile-replace operation
(Beesley and Karttunen 2000, 2003) creates an intermediate represen-
tation {buku}^2 via a 1-way FST. This intermediate representation is
then interpreted as a regular expression in run-time, i.e. it is compiled.
By compiling this regular expression, the word bukubuku is outputted.

Within the framework of One-Level Phonology (Bird and Elli-
son 1994), Walther (2000) models reduplication by representing a
potentially-reduplicated morpheme like buku as an FSA with augmen-
tations on the types of transition arcs: content, repeat, and skip arcs.
These transition arcs turn a linear string buku into a multi-linear struc-
ture where the read head can ‘move’ around the string. This enriched
representation is then intersected with a reduplication FSA that is de-
signed to ‘move’ around this enriched representation and generate
buku∼buku.4 Ideally, these operations should be applied in run-time.
Otherwise, if these operations are applied to the entire lexicon and
stored as a single FST, they then suffer from the state explosion that
they were designed to avoid.

As for total reduplication, all four of the above modifications are
approximations. This is because they impose various restrictions which
contradict the linguistic generalization that total reduplication is inde-
pendent of string length. Most notably, all four approximations permit
only a closed finite set of input strings to undergo total reduplication.
This restriction fundamentally alters total reduplication from a process

4Walther (2000) does not give a formal analysis. But, we think that these
augmented transition arcs are similar to 2-way FSAs and are an independently
developed implementation for Precedence-Based Phonology (Raimy 2000).
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which in principle applies to infinitely many words to a process which
applies to only finitely many. Such approximations thus fall short of
capturing how total reduplication is used as a productive process in
natural language.

As for partial reduplication, all of the above four approaches have
the same expressivity and are able to capture the linguistic generaliza-
tion that partial reduplication is independent of string length. How-
ever, although they are designed to avoid state explosion by onemeans
or another, they can still be said to memorize the partial reduplicant
as opposed to copying it (see Section 4.3). In this way they do not
intensionally capture the linguistic generalization of copying.

2.3 Extending formal power

Because of the difficulty in modeling reduplication with finite-state
machinery, various augmentations and expansions of context-free
grammars have been proposed to handle Lww and reduplication.
An early augmentation is Reduplication Context-Free Grammars
(Manaster-Ramer 1986; Savitch 1989) designed to handle context-free
languages and reduplication by using queues instead of stacks. A more
recent augmentation is Multiple-Context Free Grammars (MCFGs)
which can model Lww (Seki et al. 1991, 1993). MCFGs have been
used to model reduplication (Albro 2000, 2005). As an extension of
MCFGs, Parallel MCFGs have been used to model reduplication and
syntactic copying (Kobele 2006; Clark and Yoshinaka 2012, 2014;
Clark 2017).5 Crysmann (2017) explores the use of HPSG to model
total reduplication.

These technologies have had considerably less attention within
mainstream computational morphology than finite-state approxima-
tions. One shortcoming of these approaches is that they model formal
languages, not transformations. They accept well-formed reduplicated
words ww, but they do not generate a reduplicated word ww given
some input w. Thus, they do not model the squaring function w 7→ ww.

5Kobele (2006) shows that syntactic copying can generate languages of the
form a2n , i.e., exponential copying. This isn’t attested in morphological copying.
Note the string a2n is generated as the yield language of a tree transduction over
a derivation tree.

[ 186 ]



Reduplication with 2-way FSTs

2.4Computational distinctions
between total and partial reduplication

The previous sections showed that more expressive mechanisms are
needed to model reduplication. Conceptually, the use of more power-
ful computational formalisms implies that reduplication is ‘different’
from the rest of morpho-phonology which can bemodeled using 1-way
FSTs (Roark and Sproat 2007, 60). This is especially the case for to-
tal reduplication which cannot be exactly modeled with 1-way FSTs,
whereas partial reduplication can. This difference has caused debates
over whether both types of reduplication should be computed with the
same formalism or not. However, this debate is inconclusive.

On one hand, Chandlee (2017) suggests that the inadequacy of
1-way FSTs for total reduplication is evidence for total reduplication
being ontologically different from partial reduplication. There is some
empirical support for this argument. Prosodically, total reduplication
resembles more ‘syntactic’ processes like compounding more often
than partial reduplication (Downing 2006). The two copies in total
reduplication can be stressed separately or have separate tonal con-
tours (Downing 2003).

On the other hand, partial and total reduplication are closely re-
lated processes. Typologically, if a language has partial reduplication,
then it almost always has total reduplication too (Rubino 2013). Di-
achronically, both types of reduplication are typically related to each
other, but not always (Hurch and Mattes 2009). And in linguistic the-
ory, both are modeled with the same tools (Steriade 1988; Raimy
2000; Inkelas and Zoll 2005; McCarthy et al. 2012).

Psycholinguistic work could shed more light on the issue of total
reduplication vis a vis partial reduplication. Sadly, there is little to
no work on the psycholinguistic processing of reduplication. To our
knowledge, existing work focuses on partial reduplication, not total
reduplication (Ohala et al. 1986; Waksler 1999).

Learnability is another factor which could tease apart these pro-
cesses. It is an open question whether both partial and total redupli-
cation can be learned in the same way with the same mechanism. In
terms of stringsets, the formal language of totally reduplicated words
ww can be learned with distributional methods for MCFGs (Clark and
Yoshinaka 2012, 2014, 2016). There is also a substantial body of work
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in cognitive science and connectionism on how to learn reduplicated
words (Marcus et al. 1999; Berent et al. 2014, 2016, 2017; Andan et al.
2018; Alhama 2017; Alhama and Zuidema 2019). Here, the task is
learning words which have repeated substrings (ABB or ABA) where
A and B are syllables.

In contrast, there is little to no work on learning reduplication
as a function (w → ww), whether in machine learning or grammati-
cal inference. To our knowledge, the only algorithm designed specif-
ically for learning reduplication is Nevins (2004) in the principles-
and-parameters tradition. There is some recent work on using neural
networks to learn copying (Gu et al. 2016; Prickett et al. 2018; Wilson
2019; Nelson et al. 2020). We speculate that one reason for the dearth
of learning results is due to the challenges outlined above for finding
natural computational models for reduplication.

2.5 Summary and consequences

All in all, current finite-state treatments of reduplication have issues
regarding their empirical coverage (total reduplication’s productiv-
ity), practical utility (state space explosion), and intensional descrip-
tions (copying vs. remembering). The present study uses a compu-
tational formalism which does not suffer from these three problems:
two-way finite-state transducers (2-way FSTs).

3 2-WAY FINITE-STATE TRANSDUCERS:
DEFINITION AND APPLICATION

TO REDUPLICATION

1-way FSTs read the input once from left to right. Most applications
use non-deterministic 1-way FSTs (Roark and Sproat 2007), though
deterministic 1-way FSTs are largely sufficient (Chandlee 2017). (For
all inputs, deterministic FSTs have at most one path through the trans-
ducer, whereas non-deterministic ones may have more than one path.)
2-way FSTs can move back and forth on the input (Rabin and Scott
1959; Hopcroft and Ullman 1969). This ability makes them more ex-
pressive than 1-way FSTs (Savitch 1982; Engelfriet and Hoogeboom
2001).
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It is useful to imagine a 2-way FST as a machine operating on an
input tape and writing to an output tape. The symbols on the input
tape are drawn from an alphabet Σ and the symbols written to the
output tape are drawn from an alphabet Γ . For an input string w =
σ1 . . .σn, the initial configuration is that the FST is in some internal
state q0, its read head on σ1, and its write head at the beginning of
an empty output tape. After the FST reads the symbol under the read
head, three things occur:
• The internal state of the FST may change.
• The FST writes some string, possibly empty, to the output tape.
• The read head moves in one of three ways: moves to the left (−1),
moves to the right (+1), or stays (0).

This process repeats until the read head “falls off” one of the edges of
the input tape. If for some input string w, the FST falls off the right
edge of the input tape when the FST is in an accepting state after
writing u on the output tape, we say the FST transduces, transforms,
or maps, w to u. If for some input string w, the FST falls off the left
edge, falls off the right edge while in a non-accepting state, or never
falls off either edge, then the FST is undefined at w. The write head
cannot move back along the output tape. It can only advance as strings
are written.

We formalize the definition and behavior of 2-way FSTs in Sec-
tion 3.1. They are illustrated for reduplication in Section 3.2. We then
describe their generative capacity and computational complexity (Sec-
tion 3.3).

3.1Preliminaries and formal definition

Given a finite alphabet Σ, the set of all possible strings of finite length
built from Σ is Σ∗. The empty string is represented by λ. The length
of a string w is |w|, so |λ| = 0. For the given strings w1, w2, their con-
catenation is w1w2. Below is a formalization of deterministic 2-way
FSTs based on Filiot and Reynier (2016) and Shallit (2008). We adopt
the convention that inputs to a 2-way D-FST are flanked with the
start (⋊) and end (⋉) boundaries. This larger alphabet is denoted
by Σ⋉.

[ 189 ]



Hossep Dolatian, Jeffrey Heinz

(2) Definition: A 2-way D-FST is a six-tuple (Q,Σ⋉, Γ , q0, F,δ)
where:
• Q is a finite set of states,
• Σ⋉ = Σ∪ {⋊,⋉} is the input alphabet,
• Γ is the output alphabet,
• q0 ∈Q is the initial state,
• F ⊆Q is the set of final states,
• δ : Q×Σ→Q× Γ ∗× D is the transition function where the
direction D = {−1,0,+1}.

A configuration of a 2-way D-FST T is an element of Σ∗⋉QΣ∗⋉ × Γ ∗.
The meaning of the configuration (wqx , u) is that the input to T is wx
and the machine is currently in state q with the read head on the first
symbol of x (or has fallen off the right edge of the input tape if x = λ)
and that u is currently written on the output tape.

If the current configuration is (wqax , u) and δ(q, a) = (r, v,0)
then the next configuration is (wrax , uv), in which case we write
(wqax , u) → (wrax , uv). If the current configuration is (wqax , u) and
δ(q, a) = (r, v,+1) then the next configuration is (war x , uv). In this
case, we write (wqax , u) → (war x , uv). If the current configuration
is (waqx , u) and δ(q, a) = (r, v,−1) then the next configuration is
(wrax , uv). We write (waqx , u)→ (wrax , uv). Observe that since δ is
a function, there is at most one next configuration.

The transitive closure of → is denoted with →+. Thus, if c →+ c′
then there exists a finite sequence of configurations c1, c2 . . . cn with
n> 1 such that c = c1→ c2→ . . .→ cn = c′.
Next we define the function fT that a 2-way D-FST Tcomputes.

For each string w ∈ Σ∗, fT (w) = u ∈ Γ ∗ provided there exists q f ∈ F
such that (q0 ⋊ w⋉,λ) →+ (⋊w ⋉ q f , u). If fT (w) = u then u is unique
because the sequence of configurations is determined deterministi-
cally.

If the configurations of a 2-way D-FST T halt the computation of
T on some input w, then we say T is undefined on w. If the configura-
tion is (qax , u) and δ(q, a) = (r,−1, v) then the derivation crashes and
the transduction fT (ax) is undefined. Likewise, if the configuration is
(wq, u) and q 6∈ F then the transducer crashes and the transduction fT

is undefined on input w. Another way that fT may be undefined for
some input is if the input causes the transducer to go into an infinite
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loop.6 This occurs for input wx ∈ Σ∗⋉ whenever there exist q ∈ Q and
u, v ∈ Γ ∗ such that (q0wx ,λ)→+ (wqx , u)→+ (wqx , uv).

3.2Illustration of two-way transducers for reduplication

Having established what 2-way D-FSTs are, this section illustrates how
they can be used to model reduplication. We provide two examples:
total reduplication and partial initial-CVC reduplication. Both exam-
ples use deterministic 2-way FSTs.

Some useful terms are ‘passes’ and ‘rewinds’. A pass (rewind) is
when a 2-way D-FST moves left-to-right (right-to-left) from some po-
sition to another over the input.

Total reduplication is cross-linguistically the most common redu-
plicative process (Rubino 2005), and it is used in an estimated 85% of
the world’s languages (Rubino 2013). We illustrate it with data from
Indonesian where total reduplication marks plurality (Cohn 1989).
(3) a. buku → buku∼buku ‘book’ → ‘books’

b. wanita → wanita∼wanita ‘woman’ → ‘women’
c. hak → hak∼hak ‘right’ → ‘rights’
d. kəra → kəra∼kəra ‘donkey’ → ‘donkeys’

Figure 1 shows a 2-way D-FST that captures total reduplication.
The boundary symbol ∼ is a symbol in the output alphabet Γ , and is
not necessary. We include it only for illustration. The 2-way D-FST in
Figure 1 operates as follows:
1. First pass: It reads the input tape from left to right and outputs
the first copy.

2. Rewind: When it reaches the end boundary ⋉, it ‘rewinds’ or goes
back to the start of the input tape by moving left until the start
boundary ⋊ is reached.

3. Second pass: It reads the input tape once more from left to right
and outputs the second copy.

6 In practice, infinite loops are not a problem. It can be checked whether an
input leads the 2-way D-FST into an infinite loop during run-time, in which case
the computation can be halted.
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q0start q1 q2 q3 q f
(⋊,λ,+1)

(Σ,Σ,+1)

(⋉,λ,−1)

(Σ,λ,−1)

(⋊,∼,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Figure 1: 2-way D-FST for total reduplication

The transition arcs are interpreted as follows. The symbol Σ is
a variable representation of any alphabet symbol except for {⋊,⋉}.
The arrow from q1 to itself (Σ,Σ,+1) means this 2-way D-FST reads a
symbol from Σ, writes that same symbol, and advances the read head
one step to the right on the input tape.

Table 1 shows an example derivation for buku→ buku∼buku using
the 2-way D-FST in Figure 1. The derivation shows the step-by-step
configurations for the computation. The tuples in Table 1 consist of

Table 1: Derivation of /buku/ → [buku∼buku]

Outputting the first copy

1. ( q0⋊buku⋉, λ, N/A) 2. ( ⋊q1buku⋉, λ, q0
⋊:λ−−→
+1

q1)
3. ( ⋊bq1uku⋉, b, q1

Σ:Σ−−→
+1

q1) 4. ( ⋊buq1ku⋉, bu, q1
Σ:Σ−−→
+1

q1)

5. ( ⋊bukq1u⋉, buk, q1
Σ:Σ−−→
+1

q1) 6. ( ⋊bukuq1⋉, buku, q1
Σ:Σ−−→
+1

q1)

Going back to the start of the tape

7. ( ⋊bukq2u⋉, buku, q1
⋉:λ−−→−1 q2) 8. ( ⋊buq2ku⋉, buku, q2

Σ:λ−−→−1 q2)

9. ( ⋊bq2uku⋉, buku, q2
Σ:λ−−→−1 q2) 10. ( ⋊q2buku⋉, buku, q2

Σ:λ−−→−1 q2)

11. ( q2⋊buku⋉, buku, q2
Σ:λ−−→−1 q2)

Outputting the second copy

12. ( ⋊q3buku⋉, buku∼, q2
⋊:∼−−→
+1

q3) 13. ( ⋊bq3uku⋉, buku∼b, q3
Σ:Σ−−→
+1

q3)

14. ( ⋊buq3ku⋉, buku∼bu, q3
Σ:Σ−−→
+1

q3) 15. ( ⋊bukq3u⋉, buku∼buk, q3
Σ:Σ−−→
+1

q3)

16. ( ⋊bukuq3⋉, buku∼buku, q3
Σ:Σ−−→
+1

q3) 17. ( ⋊buku⋉q f , buku∼buku, q3
⋉:⋉−−→
+1

q f )
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three parts. The first two represent the configuration and the third
part shows the transition exercised to reach this configuration from the
previous one. The underlined input symbol is what the FST will read
next. In the first tuple, there is no transition used (N/A). Transitions
in the other tuples are given in the form shown below.

input state input symbol:output string−−−−−−−−−−−−−−−−−→
direction

output state

Partial reduplication processes are also very common. A common
example is initial-CVC reduplication as in Agta (Moravcsik 1978, 311).
(4) a. takki → tak∼takki ‘leg’ → ‘legs’

b. uffu → uf∼uffu ‘thigh’ → ‘thighs’
The 2-way D-FST in Figure 2 expresses partial initial-CVC redu-

plication. An example derivation of takki→ tak∼takki using our 2-way
D-FST is provided in Table 2. For illustrative purposes, we assume that
the function is undefined for V-initial inputs.

q0start q1 q2 q3

q4 q5 q f

(⋊,λ,+1) (C,C,+1) (V,V,+1)

(C,C,−1)

(Σ,Σ,−1)

(⋊,∼,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Figure 2:
2-way D-FST
for initial-CVC
reduplication

3.3Generative capacity and computational complexity

With respect to acceptors, 1-way and 2-way finite-state acceptors are
equivalent in expressive power. Both define the regular languages
(Hopcroft and Ullman 1969; Shallit 2008). However, with respect to
transducers, 1-way FSTs are strictly less expressive than 2-way D-FSTs
(Savitch 1982; Aho et al. 1969; Filiot and Reynier 2016). For a 1-way
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Table 2: Derivation of /takki/ → [tak∼takki]

Outputting reduplicant Outputting the base
1. (q0⋊takki⋉, λ, N/A) 8. ( ⋊q5takki⋉, tak∼, q4

⋊:∼−−→
+1

q5)
2. (⋊q1takki⋉, λ , q0

⋊:λ−−→
+1

q1) 9. ( ⋊tq5akki⋉, tak∼t, q5
Σ:Σ−−→
+1

q5)

3. (⋊tq2akki⋉, t, q1
C:C−−→
+1

q2) 10. ( ⋊taq5kki⋉, tak∼ta, q5
Σ:Σ−−→
+1

q5)
4. (⋊taq3kki⋉, ta, q2

V:V−−→
+1

q3) 11. ( ⋊takq5ki⋉, tak∼tak, q5
Σ:Σ−−→
+1

q5)
5. (⋊tq4akki⋉, tak, q3

C:C−−→−1 q4) 12. ( ⋊takkq5i⋉, tak∼takk, q5
Σ:Σ−−→
+1

q5)

Going back to the start of the tape 13. ( ⋊takkiq5⋉, tak∼takki, q5
Σ:Σ−−→
+1

q5)

6. (⋊q4takki⋉, tak, q4
Σ:λ−−→−1 q4) 14. ( ⋊takki⋉q f , tak∼takki, q5

⋉:λ−−→
+1

q f )
7. (q4⋊takki⋉, tak, q4

Σ:λ−−→−1 q4)

FST, both the input language and the output language must be regu-
lar languages. Therefore a 1-way FST cannot have its output language
be the non-regular copy language Lww = {ww|w ∈ Σ∗}. In contrast,
the output language of a 2-way D-FST can be a non-regular language
such as Lww.

Figure 3 shows the hierarchy of FSTs, adapted from Filiot and
Reynier (2016, p.8). Different FSTs have different generative capacity,
based on whether the FST is deterministic (D-FST), non-deterministic
(N-FST), 1-way, 2-way, and/or functional (f-FST).

Figure 3:
Hierarchy
of FSTs

2-way N-FST (=Regular Relations)

1-way N-FST (=Rational Relations) 2-way D-FST (=Regular Functions)

1-way fN-FST (=Rational Functions)

1-way D-FST (=Sequential Functions)
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2-way D-FSTs are equivalent in expressivity to string transduc-
tions that are defined in Monadic Second Order logic (Engelfriet and
Hoogeboom 2001) and to streaming string transducers (Alur 2010).7
2-way D-FSTs are less powerful than Turing machines because they
cannot move back and forth on the output tape. They are closed un-
der composition (Chytil and Jákl 1977) and some important classes
are closed under inverse (Courcelle and Engelfriet 2012, 526).

Because of the difference in expressivity between 1-way and
2-way D-FSTs, it makes sense to give different names to the classes
of functions that they compute. We follow Filiot and Reynier (2016)
who identify the class of functions describable with 1-way deter-
ministic FSTs as ‘sequential functions’, with 1-way functional non-
deterministic FSTs as ‘rational functions’, and with 2-way determinis-
tic FSTs as ‘regular functions’. The non-deterministic counterparts for
1-way and 2-way D-FSTs are respectively the ‘rational relations’ and
‘regular relations’.

1-way D-FSTs run in time linear to the length of the input string.
As for 2-way D-FSTs, one useful metric for measuring their complexity
is in terms of the number of times the 2-way D-FST passes through the
input (Baschenis et al. 2016). In the case of the reduplication examples
in Section 3.2, the 2-way D-FSTs used only two passes through the
input, one for each copy. Thus, the run time for those 2-way D-FSTs is
at most 2n·mwhere n is the number of passes and m is the length of the
input. Since n here is fixed at 2, the run time is still linear in the size
of the input string. To our knowledge existing applications of regular
functions have been efficient (Alur and Černý 2011; Alur et al. 2014).

4CONTRASTING 2-WAY D-FSTS
WITH 1-WAY FSTS

Having illustrated how 2-way D-FSTs can model reduplication, here
we contrast 2-way FSTs with 1-way FSTs on three criteria: empirical
coverage, practical utility, and intensional description.

7A streaming-string transducer (SST) is a 1-way FST that uses finitely many
registers of unbounded size. These registers allow the SST to keep track of previ-
ous information on the input tape, thus simulating 2-way D-FSTs.
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4.1 Empirical coverage of the typology and productivity

In terms of empirical coverage, 2-way D-FSTs can effectively model
virtually the entire typology of reduplication as described byMoravcsik
(1978), Hurch (2005), Inkelas and Zoll (2005), Rubino (2005), and
Samuels (2010). We review part of this typology in Section 6. This
stands in stark contrast to 1-way FSTs discussed in Section 2. We say
virtually because there are two cases in the literature which require
further discussion. These are discussed in Section 6.6.2.

4.2 Practical utility and the RedTyp database

To showcase the empirical coverage of 2-way D-FSTs and their practi-
cal utility, we have constructed the RedTyp database (Dolatian and
Heinz 2019a).8 It contains entries for 138 reduplicative processes
from 91 languages. These were gleaned from various surveys (Rubino
2005; Inkelas and Downing 2015a). 50 of these processes were from
Moravcsik (1978), an early survey which is representative of the cross-
linguistically most common reduplicative patterns.

RedTyp contains 57 distinct 2-way D-FSTs that model the 138
processes. Each 2-way D-FST was designed manually, implemented
in Python, and checked for correctness. On average, these 2-way D-
FSTs had 8.8 states. This shows that 2-way D-FSTs are concise and
convenient computational descriptions and models for reduplicative
morphology. This is in contrast to 1-way FSTs which suffer from an
explosion of states when modeling partial reduplication.9

To our knowledge, the only other database on reduplication is
the Graz Database on Reduplication (Hurch 2005 ff.). However, Red-
Typ differs from the Graz Database because the latter does not in-
clude computational representations or implementations of its entries.

8 It can be found on the first author’s GitHub page https://github.com/
jhdeov/RedTyp.

9The largest 2-way D-FST in RedTyp is for verbal reduplication in Kinande
(Downing 2000) with 29 states. This pattern depends on the size of the root and
the number and type of suffixes and prefixes around it. In contrast, we estimate
a deterministic 1-way D-FST would require over 1,000 states for this pattern of
partial reduplication.
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A comparison between the two databases is provided in Dolatian and
Heinz (2019a).

RedTyp offers a useful corpus of reduplicative patterns for re-
search. For example as described in Section 6, we have used this
database to identify subclasses of 2-way D-FSTs for classifying the ty-
pology of reduplication. This corpus could be used to test for other
universal computational properties of reduplication. Since it contains
2-way D-FSTs, it can also be used to generate reduplicated forms. Such
data sets can be used to test morphological learning algorithms.

One shortcoming is that RedTyp under-represents cases of opacity
in reduplication because our main source, Moravcsik (1978), did not
list opaque cases. As discussed further in Sections 6.4.3–6.5, opacity
can be said to occur when phonological processes exceptionally ap-
ply either across both copies or across neither copy because of a drive
to maintain identity between the two copies (McCarthy and Prince
1995). Only 5% of RedTyp displays opacity. Furthermore, RedTyp
focuses on morphological copying, not syntactic copying (cf. Kobele
2006).

4.3Linguistic motivation with origin semantics

Importantly, using 2-way D-FSTs for reduplication is linguistically mo-
tivated and matches the intensional descriptions behind the linguistic
generalizations on reduplication.

2-way D-FSTs do not approximate reduplication like 1-way FSTs
do. 2-way D-FSTs do not copy by remembering strings of segments
(see Section 2). Instead they actively and literally copy.

This contrast between copying and remembering can be formal-
ized with the notion of the origin semantics of a transduction (Bo-
jańczyk 2014).10 Given a string-to-string function, the origin seman-
tics of a function is the origin information of each symbol on in the
output string. This is the position im of the read head on the input
tape when the transducer had outputted on. To illustrate, consider a
partial string-to-string function fab which maps ab to itself:

f (x) = {(ab, ab)}
10For an application of origin semantics to MCFGs and potentially to machine

translation, see Nederhof and Vogler (2019).
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1-way FST q0start q1 q2
a:λ b:ab q0start q1 q2

a:a b:b

Origin information a b

a b

a b

a b
Figure 4: Pair of 1-way FSTs for the function fab and the origin information cre-
ated by them for the mapping ab→ ab

As shown in the top row of Figure 4, this function can be mod-
eled with at least two different 1-way FSTs which differ in when they
output the output symbols a, b. In the bottom row of Figure 4, we
visualize the origin information created by the two FSTs for the map-
ping (ab, ab) as graphs called origin graphs (Bojańczyk et al. 2017).
The FSTs model the same function and are equivalent in their general
semantics of what they output; however, they are not equivalent in
their origin semantics because they use different origin information for
their outputs.

This notion of origin semantics can be used to contrast how 1-way
FSTs and 2-way FSTs model reduplication. Consider the toy example
of initial-CV reduplication with a small alphabetΣ= {p,a,t}. This func-
tion can be modeled by either a 1-way or 2-way FST as in Figure 5.
The two transducers in Figures 5 are equivalent in their general se-
mantics because they can output the same string. For example, given
the input pat, both FSTs will output pa∼pat. However, the two FSTs
differ in their origin semantics for the mapping pat → pa∼pat. Setting
aside boundary symbols ⋊,⋉,∼, the 1-way FST associates the second
pa string of the output with the vowel a of the input as in the bot-
tom middle column of Figure 5. This is because the second pa was
outputted when the 1-way FST was reading the a in the input. In
contrast, the 2-way FST associates each segment in the output with
an identical segment in the input as in the bottom right column of
Figure 5.

The origin information created by the 2-way FST matches theo-
retical treatments of how the reduplicant’s segments are individually
associated with identical segments in the input (Marantz 1982; Inke-
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1-way FST 2-way FST

FSTs q0start q1 q2

q3 q4 q f

⋊:⋊ t:t

p:p a:a∼ta
a:a∼pa

Σ : Σ

⋉:⋉

q0start q1 q2

q3 q4 q f

(⋊,λ,+1) (C,C,+1)

(V,V,-1)

(Σ,Σ,−1)

(⋊,∼,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Origin information p a t

p a p a t

p a t

p a p a t

Figure 5: 1-way and 2-way FSTs for initial-CV reduplication and the origin infor-
mation created by them for the mapping pat → pa∼pat
las and Zoll 2005).11 In contrast, the origin information created by
the 1-way FST does not match linguistic intuitions of reduplication
because non-identical segments are associated. This difference in the
origin semantics of the 1-way FST and 2-way FST formalizes their be-
havior: the 1-way FST simply remembers what strings of segments to
output twice (Roark and Sproat 2007, 54), while the 2-way FST ac-
tively copies.

5LINGUISTIC MOTIVATIONS
FOR SUBCLASSES OF TRANSDUCERS

Having shown the utility of 2-way D-FSTs for reduplication, the next
two sections show that reduplication does not require the full power

11 In Base-Reduplicant correspondence theory or BRCT (McCarthy and Prince
1995), what matters for reduplication is not the relationship or correspondence
between the input and output segments, but between the two copies in the out-
put. Origin semantics might be able to formalize the intuition behind BRCT with
finite-state technology, e.g. output symbols with the same origin are in corre-
spondence. The only computational implementation of BRCT to our knowledge
(Albro 2000, 2005) uses MCFGs to do so. Note however that the empirical valid-
ity of BRCT is questionable (Inkelas and Zoll 2005; McCarthy et al. 2012).
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of 2-way D-FSTs but falls within certain subclasses. This means that
reduplication has a demarcable generative capacity or complexity. In
this section, we discuss the subclasses of 1-way FSTs that have been
proposed to model segmental phonology (Section 5.1), specifically the
Output-Strictly Local (OSL) functions and Sequential (Seq) functions.
In Section 5.2, we discuss subclasses of 2-way FSTs and design new
subclasses based on the concatenation of OSL and Seq functions. We
explain the intuition behind using concatenation-based subclasses for
reduplication (Section 5.3). The next Section 6 goes over the typology
of reduplication and shows how it fits into these subclasses.

5.1 Computational typology of phonology
and 1-way transducers

It is known that 1-way finite-state machines can model all attested
phonological processes (Johnson 1972; Kaplan and Kay 1994; Mohri
1997). However, phonological processes do not require the full power
of 1-way finite-state machines (Heinz 2007; Chandlee 2014). Subclass
hierarchies have been discovered for 1-way FSAs (McNaughton and
Papert 1971; Rogers and Pullum 2011; Heinz and Idsardi 2013) and
1-way FSTs (Garcia et al. 1990; Gainor et al. 2012; Heinz and Lai 2013;
Chandlee et al. 2014). Some of these subclasses have been argued
to characterize different types of phonological well-formedness con-
ditions and transformations (Heinz 2018; Chandlee and Heinz 2018;
Chandlee et al. 2018). We give a brief and informal overview.

A common intuition in linguistic theory is that phonological pro-
cesses are local or subject to adjacency constraints (Odden 1994). For
example, a common phonological process is post-nasal voicing (5a)
whereby voiceless stops are voiced after nasals. This process is local
in the sense that the trigger for voicing (the nasal) is within a finite
bound from the target of voicing (the stop). The symbols N, T, D repre-
sent nasals, voiceless stops, and voiced stops. Another local process is
nasal spread whereby a vowel becomes nasalized after a nasal or nasal-
ized vowel (5b). Nasal spread is iterative in that when a nasal triggers
nasalization on a subsequent vowel, the newly nasalized vowel can
then nasalize its subsequent vowel (5b-iii). The symbols V,Ṽ represent
vowels and nasalized vowels.
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(5) a. Post-nasal voicing
[+stop, −voice] → [+voice]/[+nasal] __ or T → D/N_
i. /ata/ → [ata]
ii. /anta/ → [anda]

b. Nasal spread
[+vowel] → [+nasal]/[+nasal] __ or V → Ṽ/{N,Ṽ}_
i. /atapa/ → [atapa]
ii. /anapa/ → [anãpa]
iii. /anaapa/ → [anããpa]

Both processes are intuitively local. This intuition corresponds
to Strict Locality in formal language theory (McNaughton and Papert
1971; Vaysse 1986; Rogers and Pullum 2011; Chandlee 2014). Formal
definitions can be found in Chandlee et al. (2014, 2015). Informally,
given an input string w, a function is Input-Strictly Local for a natural
number k (k-ISL) if generating the output correspondent of some in-
put symbol wi relies on information about the current input symbol wi

and the k − 1 most recently seen input symbols. Post-nasal voicing is
a 2-ISL function and it is computed by the 1-way FST in Figure 6. The
symbol ? marks any other segment which isn’t in an existing transition
arc (Beesley and Karttunen 2003). The state labels are interpreted as
keeping track of the last seen input symbol. The state labeled as N is
where the post-nasal consonant is generated as voiced. The state label
is interpreted as saying that a nasal was recently seen.

Output-Strictly Local functions for a number k (k-OSL) are anal-
ogously understood. A function is k-OSL if generating the output
correspondent of wi relies on information about the current input
symbol wi and the k − 1 most recently seen output symbols. An
OSL function is L-OSL (R-OSL) if we read the input from the left
(right), and write the output from the left (right). Nasal spread
is a 2-L-OSL function and is computed by the 1-way FST in Fig-
ure 6. The state labels are interpreted as keeping track of the last
recently generated output symbol. The state labeled as N,Ṽ is where
a nasalized vowel is generated; the state label is interpreted as say-
ing that the most recently outputted symbol was a nasal or nasalized
vowel.
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Figure 6:
1-way FSTs
for post-nasal
voicing and
nasal spread

1-way FST for post-nasal voicing 1-way FST for nasal spread

¬Nstart N
N:N

?:? N:N

T:D, ?:?
¬N,Ṽstart N,ṼN:N

?:? N:N,V:Ṽ

ISL and OSL functions are part of a larger hierarchy of func-
tions which are computed by 1-way FSTs. They are shown in Fig-
ure 7. The Sequential functions correspond to 1-way deterministic
FSTs (1-way D-FST), while rational functions correspond to 1-way
functional non-deterministic FSTs (1-way fN-FST) from Figure 3. WD
stands for Weakly Deterministic functions which can compute some
patterns in vowel harmony (Heinz and Lai 2013) and tone (Jardine
2016).

Figure 7:
Hierarchy

of 1-way FSTs
Rational

WD

R-SeqL-Seq

ISL R-OSLL-OSL

An example of an L-OSL function that will prove useful to model
reduplication is truncation, such as nickname formation in English.
This truncation process will output the first (C)VC of the input but
delete everything after.12
(6) English truncation

a. dʒɛfɹi → dʒɛf ‘Jeffrey’ → ‘Jeff’
b. deɪvɪd → deɪv ‘David’ → ‘Dave’
c. ælən → æl ‘Alan’ → ‘Al’

English nickname formation is a 3-L-OSL function because it re-
quires a window of size three in the output tape. The window keeps

12We have simplified the analysis by not considering cases of complex onsets
in the input, e.g. stivɪn → stiv (‘Steven’ → ‘Steve’).
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track of the last 2 symbols on the output tape and the current input
symbol. The 3-OSL 1-way FST function in Figure 8 outputs up until the
first VC of the input; it then stops outputting anything after that.13

q0start λ C CV VC q f
⋊:λ C:C V:V C:C

Σ : λ

⋉:λ

V:V

Figure 8: OSL 1-way FST for English nickname formation

A significant proportion of segmental phonology can be mod-
eled with ISL and OSL functions (Chandlee 2014; Chandlee and Heinz
2018; Chandlee et al. 2018). Long-distance processes in phonology
are however neither ISL or nor OSL. For example, Kikongo nasal har-
mony (7) requires the higher subclass of Sequential functions (Gainor
et al. 2012). In Kikongo, alveolar stops like d or l surface as n if a nasal
precedes them anywhere in the input. There can be any number of
vowels and consonants intervening between the triggering nasal and
the target alveolar (7c). This long-distance information means that
the 1-way FST must keep track of whether a nasal consonant was seen
anywhere in the input stem before it will output the alveolar.
(7) Kikongo nasal harmony

a. /sakid-ila/ → [sakid-ila] ‘to congratulate for’
b. /mant-ila/ → [mant-ina] ‘to climb for’
c. /tunik-idi/ → [tunik-ini] ‘we ground’

The above pattern cannot be modeled by an ISL or OSL function
but requires a Sequential 1-way FST as in Figure 9. A Seq 1-way FST is
a deterministic 1-way FST that will read the input in only one direction
(here left-to-right) and can use any information that it had found in
the input string when processing the next input symbol.

To summarize, different types of phonological processes are com-
puted by different subclasses of rational functions and with different
subclasses of 1-way FSTs. The relatively low complexity of this sub-
classes has opened doors to understanding the cognitive limitations
and learnability of phonological processes (Heinz 2018). In the next

13See Chandlee (2017) on why this function is necessarily OSL and not ISL.
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Figure 9:
Sequential 1-way FST

for Kikongo nasal harmony
q0start q1 q2 q f

⋊:λ

Σ : Σ

N:N

l:n,d:n,Σ : Σ

⋉:λ

⋉:λ

section, we show that extending OSL and Sequential functions into
2-way FSTs opens similar doors for the typology of reduplication.

5.2 Subclasses of 2-way finite-state transducers

Unlike for 1-way FSTs, there is much less work on subclasses for 2-way
FSTs. Some intuitive subclasses have been proposed in the literature.
The typology of reduplication inspired us to devise additional sub-
classes. All of these subclasses, shown in Figure 10, restrict:
1. where the 2-way FST can rewind in the input,
2. what it can output while it is rewinding, and
3. what information can be transferred across multiple passes, i.e.,
if a later pass depends on an earlier pass.
At the top of the hierarchy are 2-way D-FSTs which correspond

to regular functions. In regards to the first restriction, a 2-way FST is
a sweeping transducer if the read head can change direction only at

Figure 10:
Hierarchy of subclasses

for 2-way FSTs

2-way D-FST

Sweeping 2-way D-FST

Rotating 2-way D-FST

Sequential 1-way D-FST

OSL 1-way D-FST

C-Seq 2-way D-FST

C-OSL 2-way D-FST

[ 204 ]



Reduplication with 2-way FSTs

the ends of the input (Baschenis et al. 2015, 2016, 2018). A sweeping
transducer is a generalization of similarly defined sweeping automata
(sweeping 2-way FSAs) (Sipser 1980). For example, the 2-way FST
for total reduplication in Figure 1 is a sweeping transducer. The only
time the FST moves right-to-left is going from the end boundary ⋉ to
the start boundary ⋊. In contrast, the 2-way FST for initial-CVC partial
reduplication in Figure 2 is not a sweeping transducer. It rewinds from
the third input segment C to the beginning ⋊. However, the partial
reduplication function computed by this 2-way FST can be computed
by a sweeping transducer, which we show in the next section.

2-way D-FSTs are more expressive than deterministic sweeping
2-way D-FSTs. Consider the function u1#u2#. . . #un 7→ un...u2u1 where
the input is a sequence of strings ui separated by the special symbol #.
The output is formed by reversing these strings and deleting the #’s.
This function can be computed by a deterministic 2-way D-FST but not
by a sweeping transducer. See Baschenis et al. (2016) for discussion.

In regards to the second restriction, a sweeping transducer is a
rotating transducer if it does not output anything while it’s moving
right-to-left (Baschenis et al. 2017). The 2-way FST for total redu-
plication is a rotating transducer because it outputted nothing while
moving right-to-left. Sweeping transducers are more expressive than
rotating transducers. A sweeping transducer can compute the mirror
function w→ wwr , but a rotating transducer cannot.

As for the third restriction, we develop a set of concatenated-
based subclasses of functions.
(8) Subclasses of Regular Functions

a. C-Seq function: A Concatenated-Sequential function f is
the concatenation of n Sequential functions si, e.g. f (x) =
s1(x) · s2(x) · . . . · sn(x). f is C-L-Seq (C-R-Seq) if the com-
ponent Seq functions read the input left-to-right (right-to-
left).14

14 In terms of function combinatorics for regular string transformations (Alur
et al. 2014; Dave et al. 2018), the class of C-Seq functions involves the use of a
‘sum combinator’⊗ that concatenates the output of two or more Seq functions:
f (x) = s1(x)
⊗

s2(x)
⊗

. . . sn(x) where si is a Seq function. This is similar to the
use of product automata. See Alur et al. (2014) for details.
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b. C-OSL function: A Concatenated-OSL function f is the
concatenation of n Output-Strictly Local functions oi, e.g.
f (x) = o1(x) · o2(x) · . . . · on(x). f is C-L-OSL (C-R-OSL) if
the component OSL functions read the input left-to-right
(right-to-left).

Rotating transducers are more expressive than C-Seq transducers,
which are more expressive than C-OSL transducers. Examples witness-
ing these separations are drawn from the typology of reduplication in
Section 6. C-Seq functions are more expressive than sequential func-
tions (= 1-way D-FSTs) which are more expressive than OSL func-
tions. A set of definitions is provided below for easier reference.
(9) Subclasses of 2-way D-FSTs

a. Sweeping 2-way FST: A 2-way FST which can change di-
rection only at the ends of the input

b. Rotating 2-way FST: A sweeping 2-way FST which out-
puts nothing while moving right-to-left

c. C-Seq 2-way FST: A rotating 2-way FST that computes a
Concatenated Sequential function

d. C-OSL 2-way FST: A rotating 2-way FST that computes a
Concatenated Output-Strictly Local function

We have found that virtually the entire typology of reduplication
can be modeled with deterministic rotating 2-way FSTs. Further, the
bulk of the typology can be modeled with C-OSL functions. A few
minor cases require C-Seq functions; these mostly involve infixal or
internal reduplication. A smaller set of cases require the full power
of rotating transducers; though these cases are not clear-cut. Before
going through the typology in detail in Section 6, we illustrate the
insight behind C-OSL functions and how they compute reduplicative
processes.

5.3 Illustrating C-OSL

Intuitively, a C-OSL function is a function that takes as input the string
x , gives x to nmany separate 1-way FSTs which are OSL, and concate-
nates their output. To illustrate the insight behind C-OSL functions,
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takki

tak ∼ takki

Tr(x) ID(x)

Figure 11:
Initial-CVC reduplication
as a concatenation of functions

consider initial-CVC partial reduplication from Agta again (Moravcsik
1978, 311) from (1a) repeated in (10a).

(10) a. takki → tak∼takki ‘leg’ → ‘legs’
b. takki → takki∼takki

As an input-to-output function, reduplication may be viewed
as submitting the same input to two separate functions in paral-
lel and concatenating their output as in Figure 11. The first func-
tion, here labeled Tr(x), truncates the input to the first CVC while
the second function, ID(x), is the identity function. The outputs of
these two functions, tak and takki, are concatenated to form the
reduplicated output: tak∼takki. In (10b), we explicitly show how
initial-CVC reduplication can be seen as truncating the first copy:
takki → takki∼takki where truncated material is shown in strike-
through.

The truncation function Tr(x) is a 3-L-OSL function because it
outputs a truncation of the input to just the first CVC. This is similar
to English nickname formation from Section 5.1. The identity func-
tion ID(x) is both 1-L-OSL and 1-R-OSL. Thus both Tr(x) and ID(x)
are L-OSL and hence their concatenation is C-OSL. Figure 12 illus-
trates a 2-way D-FST for initial-CVC reduplication which is formu-
lated as a concatenation of these two OSL functions. Contrast this
model of initial-CVC reduplication (shown in Figure 12) with the non-
rotating 2-way D-FST shown in Figure 2. (It is the the additional state
CV1 and its transition arcs in Figure 12 which make this D-FST rota-
ting.)

To summarize this section, understanding reduplicative processes
as C-OSL and C-Seq functions is intuitive. This analysis echoes Steri-
ade (1988)’s treatment of partial reduplication as total reduplication
followed by truncation and Inkelas and Zoll (2005)’s treatment of total
reduplication as morphological doubling.
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q0start λ1 C1 CV1 CVC1

rewind λ2
q f

(⋊,λ,+1) (C,C,+1) (V,V,+1) (C,C,+1)

(Σ,λ,+1)

(⋉,λ,−1)

(Σ,λ,−1) (⋊,λ,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Figure 12: C-OSL 2-way D-FST for initial-CVC partial reduplication

6 COMPUTATIONAL TYPOLOGY
OF REDUPLICATION

This section provides a detailed, comprehensive review of the RedTyp
typology and classifies RedTyp’s reduplicative processes according to
the computational classification introduced in the last section. The
main finding is that most processes are C-OSL (Section 6.2) and most
of the ones that are not are C-Seq (Section 6.3). There are few (and
questionable) cases where reduplication needs the full power of 2-way
D-FSTs (Section 6.4). We give an overview in Section 6.5.

Note that all partial reduplicative processes can be computed by
1-way FSTs. However, in order to get the linguistically-motivated ori-
gin semantics right (Section 4.3), we need the additional power of
2-way FSTs. Thus in this section, when we discuss how partial redu-
plicative cases fit into the subclasses of 2-way FSTs, we mean in terms
of them generating the right origin semantics.

6.1 Preliminaries to the typology

Although reduplication is cross-linguistically ubiquitous, there is a
wide cross-linguistic variation in a) what substring or subsequence
gets repeated, b) where the copied substring or subsequence is placed
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in the output, and c) whether and how phonological processes interact
with copying. This section provides a brief but representative typol-
ogy of reduplication compiled from various surveys (Moravcsik 1978;
Rubino 2005; Inkelas and Downing 2015a).

We emphasize that our reported typology is descriptive and not
theoretical. Various theoretical frameworks have been developed to
account for the range of variation on reduplication (Marantz 1982;
McCarthy and Prince 1995; Spaelti 1997; Raimy 2000; Inkelas and
Zoll 2005; Frampton 2009; Samuels 2010; McCarthy et al. 2012;
Saba Kirchner 2010, 2013). The reader is referred to elsewhere for
theoretical overviews (Raimy 2011; Urbanczyk 2007, 2011; Inkelas
and Downing 2015a,b).

We define the following descriptive terms which will be useful in
categorizing different reduplicative processes:

(11) Terminology for categorizing the typology:
• reduplicant: the substring in the output which was cre-
ated via copying

• base: the substring in the output which was not created
via copying

• target: the substring in the input which will be copied or
duplicated

• anchor point: the position in the input where the target
starts or ends

• source: the morphological or phonological constituent in
the input which contains the target

The output-based terms base and reduplicant are common in the
literature on reduplication (McCarthy and Prince 1995) though their
definition is problematic (Shaw 2005; Haugen 2009). Anchor points
have been proposed for reduplication (Fitzpatrick 2006; Raimy 2009)
and other non-concatenative processes (Yu 2007; Samuels 2010). We
introduce the input-based terms source and target in order to better
fully describe reduplication as an input-to-output function. This sec-
tion goes through the typology of reduplication, organized in terms
of how they vary in the source, target, and/or reduplicant. These
variations align with what type of 2-way FST is needed to com-
pute them.
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6.2 Most reduplication is C-OSL

Most reduplicative processes are C-OSL. We go through common and
some uncommon reduplicative processes and show they are C-OSL.
For a function to be C-OSL, the two copies must be independent of each
other, and the two passes over the input must likewise be independent
of each other. Informally, some criteria for a C-OSL function are that
each of the component functions:
1. reference only a finite and bounded number of the most recently
generated output symbols, meaning that each of the functions,

2. do not depend on any long-distance information in the input,
3. do not use any finite lookahead or finite lookback on the input,
4. do not rely on deleted material, and
5. do not rely on any information from the other function.

6.2.1 Total and word-initial partial reduplication

Total reduplication and word-initial partial reduplication are C-L-OSL,
which means they are the concatenation of two L-OSL functions.

Consider total reduplication first.
(12) a. Total reduplication

Indonesian (Cohn 1989)
buku → buku∼buku ‘book’ → ‘books’

b. Initial-CVC reduplication
Agta (Moravcsik 1978, 311)
takki → tak∼takki ‘leg’ → ‘legs’

For total reduplication, the two OSL functions are identity ID(x).
(Total reduplication is also C-R-OSL.)

For partial reduplication, there is limited variety in the shape of
the copied material, the reduplicant. Some languages have a partial
reduplicative process that copies the first C or consonant of the word
(13a), first CV or consonant-vowel sequence (CV) of the word (13b),
first CVC sequence (13c), or first CV(C)CV sequence (13d). In gen-
eral, the copied material has to fit into some template of a particu-
lar size.
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(13) Common prefixal partial reduplicative patterns
a. Initial-C reduplication

Shilh (Moravcsik 1978, 308)
ɡen → ɡ∼ɡen ‘to sleep’ → ‘to be sleeping’

b. Initial-CV reduplication
Sundanese (Moravcsik 1978, 319)
ɡuyon → ɡu∼ɡuyon ‘to jest’ → ‘to jest repeatedly’

c. Initial-CVC reduplication
Panganisan (Rubino 2005, 11)
baley → bal∼baley ‘town’ → ‘towns’

d. Initial-CV(C)CV reduplication
Dyirbal (McCarthy et al. 2012, 187)
a. baniɲu → bani∼baniɲu ‘come’
b. balɡan → balɡa∼balɡan ‘laugh’

As for the partial reduplication functions in (13), they are all C-L-
OSL just like initial-CVC reduplication from Section 5.3. They involve
the concatenation of a truncation Tr(x) and identity function ID(x).
The truncation function varies in terms of how much word-initial ma-
terial is faithfully outputted.

Table 3 illustrates these examples where the truncated material
is shown in strike-through. The outputs of the two component OSL
function are separated by ∼ for illustration.
Table 3: C-OSL treatment for total and initial partial reduplication

Total Initial-C Initial-CV Initial-CVC Initial-CV(C)CV
(12a) (13a) (13b) (13c) (13d)

Input x buku ɡen ɡuyon baley balɡan
Components ID(x) · ID(x) Tr(x) · ID(x) Tr(x) · ID(x) Tr(x) · ID(x) Tr(x) · ID(x)
Output buku∼buku ɡen∼ɡen ɡuyon∼ɡuyon baley∼baley balɡan∼balɡan
Subclass C-L-OSL C-L-OSL C-L-OSL C-L-OSL C-L-OSL

C-R-OSL

6.2.2Variation in the number and placement of copies

The typology is larger than the above examples. Some languages cre-
ate three copies of the input (triplication) instead of just two (14a).
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Some reduplicative processes are suffixal; they specify that the loca-
tion of the target be a word-final substring (14b) instead of word-
initial substring (13d). Some reduplicative process are wrong-sided
by making the target and the reduplicant not adjacent in the output,
i.e., copying the final CVC and placing it at the beginning of the output
(14c vs. 13c). There are likewise cases where both the base and the
reduplicant are shortened or truncated in the output, e.g., truncating
both copies to CV (14d).
(14) Variation in number and reduplicant placement

a. Total triplication
Mokilese (Moravcsik 1978, 301)
roar → roar∼roar∼roar
‘give a shudder’ → ‘continue to shudder’

b. Final-CVCV reduplication
Siriono (Moravcsik 1978, 308)
erasi → erasi∼rasi
‘he is sick’ → ‘he continues being sick’

c. Initial-CVC reduplication and opposite-edge or wrong-
sided placement
Koryat (Riggle 2004, 3)
qanɡa → qanɡa∼qan ‘fire’ → ‘fire (ABS)’

d. Abbreviated reduplication (Kager-Hamilton Problem)
Guarijio (Caballero 2006)15
toni → to∼to ‘to boil’ → ‘to start boiling’
muhiba → mu∼mu ‘to throw’ → ‘to start throwing’

All these processes are still C-OSL, however. They differ in the
number and order of concatenated functions, the direction in which
the input is read, and whether all or none of the functions are iden-
tity. Their computation is visualized in Table 4. Triplication is C-L-OSL
and C-R-OSL; it involves concatenating three identity functions. Suf-
fixal reduplication like final-CVCV reduplication is C-R-OSL because

15Such reduplication is often argued to be unattested and is called the Kager-
Hamilton Problem (Idsardi and Raimy 2008). See Caballero (2006) for discussion
on what prosodic and morphological factors condition this rare type of redupli-
cation.
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Table 4: C-OSL treatment for less common reduplication patterns

Triplication Final-CVCV Wrong-sided Abbreviated
(14a) (14b) (14c) (14d)

Input x roar erasi qanɡa toni
Components ID(x) · ID(x) · ID(x) ID(x) · Tr(x) ID(x) · Tr(x) Tr(x) · Tr(x)
Output roar∼roar∼roar erasi∼erasi qanɡa∼qanɡa toni∼toni
Subclass C-L-OSL C-R-OSL C-L-OSL C-L-OSL

C-R-OSL

it is the concatenation of an identity function and an R-OSL trunca-
tion function. The truncation function reads the input right-to-left and
deletes everything to the left of the final CVCV. Wrong-sided initial-
CVC reduplication is C-L-OSL. It differs from initial-CVC reduplication
by ordering identity before truncation. Abbreviated reduplication is
C-L-OSL. Unlike initial-CV copying, it is composed of two L-OSL trun-
cation functions instead of just one.

6.2.3Copying a morphological subconstituent

In the above examples, the source was the entire input. But unlike
concatenative morphology, reduplication is often sensitive to word-
internal morphological constituents, contra Bracket Erasure (Kiparsky
1982). In these cases, the semantic function of reduplication builds
on the meaning of the entire input while the location of the redupli-
cant is word-internal (cf. Aronoff 1988). For example, some languages
have reduplication target a morphological subconstituent within the
input as the source, such as a root/stem (15a, 15b) or affix (15c),
and whether for total reduplication (15a, 15c) or partial reduplica-
tion (15b). The source and reduplicant are usually adjacent; though
there are some cases where the two copies are non-adjacent in the
output, e.g., Madurese copies the root-final CVC and places it at the
beginning of the output (15d).
(15) Copying from a morphological subconstituent

a. Total reduplication of the stem
KiHehe (Aronoff 1988, 8)
ku-haata → ku-haata∼haata
‘to ferment’ → ‘to start fermenting’
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Table 5: C-OSL treatment for copying morphological subconstituents

KiHehe Bikol Hungarian Madurese
(15a) (15b) (15c) (15d)

Input x ku{rhaata}r na{rmurak}r p{el}pmeɡy pa{r jalan}ran
Components L(x) · R(x) L(x) · R(x) L(x) · R(x) L(x) · R(x)
Output ku{rhaata}r ∼ na{rmurak}r ∼ {pel}pmeɡy ∼ pa{r jalan}r an ∼

ku {rhaata}r na {rmurak}r {pel}pmeɡy pa{r jalan}ran
Subclass C-L-OSL C-L-OSL C-L-OSL C-R-OSL

C-R-OSL C-R-OSL

b. Initial CV reduplication of the stem
Bikol (Mattes 2007, 84)
na-murak → na-mu∼murak
‘to flower’ → ‘decorating with flowers’

c. Total reduplication of an affix (prefix)
Hungarian (Inkelas and Downing 2015a, 505)
a. el-meɡy → el∼el-meɡy
‘he goes there’ → ‘he occasionally goes there’
b. bele-nez → bele∼bele-nez
‘he looks into it’ → ‘he occasionally looks into it’

d. Root-final CVC reduplication and word-initial place-
ment
Madurese (Brown 2017, 964)
pa-jalan-an → lan∼pa-jalan-an
‘pedestrian’ → ‘pedestrians’

More cases of reduplication targeting a morphological subcon-
stituent are well-attested (Shaw 2005; Inkelas and Zoll 2005; Hau-
gen 2009; Hyman 2009; Inkelas 2014). The above cases are C-OSL if
the relevant morphological boundaries are present in the input. Their
computation is visualized in Table 5. Each process uses two functions
L(x),R(x) which generate the two copies, reference the morphological
boundaries, and they crucially output these boundaries.

For total copying in KiHehe and Hungarian, the function is C-L-
OSL and C-R-OSL. For total stem copying in KiHehe, the first function
L(x) outputs everything up until the root right-boundary ‘}r ’. The sec-
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ond function R(x) outputs nothing until it sees the root left-boundary
‘{r ’; it outputs this and everything after it. Both functions are both
L-OSL and R-OSL, thus KiHehe is C-L-OSL and C-R-OSL. Prefix copy-
ing in Hungarian is similarly defined but for the prefix boundaries ‘{p’
and ‘}p’. Partial stem copying in Bikol is only C-L-OSL. The function
L(x) outputs everything up until it outputs the string ‘{r CV ’; it deletes
everything after that. The function R(x) outputs nothing up until it
sees the root left-boundary ‘{r ’; it outputs this and everything after it.
Non-local copying in Madurese is C-R-OSL. The function L(x) reads
the input right-to-left; it outputs nothing until it sees the root right-
boundary ‘}r ’; it outputs this and the first CVC that it sees. After that,
it deletes everything. The function R(x) is the identity function.

Even though some have argued against the use of morpheme
boundaries in morpho-phonological representations (Anderson 1992;
Stump 2001), morphological boundaries must be part of the input for a
finite-state systems like ours (e.g. Karttunen 1983; Koskenniemi 1984;
Roark and Sproat 2007).16 Consider partial stem copying in Bikol:
na{rmurak}r → na{rmu{rmurak}r . Without the root boundaries, we
could not distinguish the prefixed input na{rmurak}r from a hypo-
thetical mono-morphemic input namurak. Without some way to en-
code the relevant morphological constituents in the input, we simply
cannot define this reduplication function with any type of 1-way or
2-way FSTs. The use of such boundaries in finite-state morphology is
standard practice.

6.2.4Copying a prosodic subconstituent

Besides morphological subconstituents, the source can also be a met-
rical or prosodic subconstituent such as the stressed syllable (16a),
the first syllable (16b), or the first foot (16c). The source can also

16 It should be noted though that HPSG-based approaches to computational
morphology (Bonami and Crysmann 2013, 2016; Crysmann and Bonami 2016)
do not need morpheme boundaries as symbols in their alphabet. One reason is
because they can essentially directly capture hidden morphological structure or
constituency. Another strategy is to temporally apply reduplication to the sub-
constituent and then later add the other affixes, e.g., haata→ haata∼haata→ ku-
haata∼haata. This a common strategy in handling morphology-semantics brack-
eting paradoxes (cf. Stump 1995, 2001).
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be a morphophonological constituent, e.g. a prosodic stem (16d). In
Chumash, the prosodic stem (underlined) consists of all the segments
in the morphological stem alongside any prefixal consonants that are
syllabified with the morphological stem.
(16) Copying from a metrical or prosodic subconstituent

a. CV-reduplication of the stressed syllable
Chamorro (Inkelas and Downing 2015a, 507)
hu.ɡán.do → hu.ɡá∼ɡan.do ‘play’ → ‘playing’

b. Total reduplication of the initial syllable
Hiaki (Haugen 2009)
vu.sa → vu∼vu.sa ‘awaken’
vam.se → vam∼vam.se ‘hurry’

c. Total reduplication of the initial foot
Yidiny (Marantz 1982, 453)
(ɡindal)ba → ɡindal∼ɡindalba ‘lizard sp.’→ ‘lizards’

d. Initial-CVC reduplication of the prosodic stem
Chumash (Downing 1998, 101)
s+tʃeq → s-tʃeq∼tʃeq ‘it is very torn’
s+ikuk → s+ik∼s-ikuk ‘he is chopping’

If the relevant prosodic boundaries are in the input, the compu-
tation is C-OSL. The computation proceeds the same as for copying
a morphological constituent. Table 6 shows this with syllable bound-
aries (s)s, foot boundaries ( f ) f , stressed syllable boundaries (S)S, and
prosodic stem boundaries (PS)PS.17

Given an unsyllabified input, these prosodic boundaries can be
generated via a 1-way FST (Hulden 2006; Yu 2017) which can be ISL
because it uses finite lookahead on the input (see also Strother-Garcia
2018, 2019).

However, if the input to reduplication lacks boundaries, then
reduplication is C-Seq because we need finite lookahead to know if
some consonant is part of the relevant prosodic constituent. Consider

17The second function R(x) in stressed syllable CV-copying must change
stressed á to unstressed a. Stressed syllable copying is also C-R-OSL if the first
function L(x) is R-OSL and outputs the right-boundary )S . Generating the prosodic
stem in Chumash requires reference to morphological boundaries too.
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Table 6: C-OSL treatment for copying prosodic subconstituents

Chamorro (16a) Hiaki (16b) Yidiny (16c) Chumash (16d)
Input x huɡándo vusa vamse ɡindalba s+ikuk
Syllabify x hu(Sɡán)Sdo (svu)s(ssa)s (svam)s(sse)s ( f ɡindal) f ba (PSs+ikuk)PS

Components L(x) · R(x) L(x) · R(x) L(x) · R(x) L(x) · R(x) L(x) · R(x)
Output hu(Sɡá )Sndo ∼ (svu)s (ssa)s ∼ (svam)s (sse)s ∼ ( f ɡindal) f ba ∼ (PSsik uk)PS ∼

hu(Sɡan)Sdo (svu)s(ssa)s (svam)s(sse)s ( f ɡindal) f ba (PSsikuk)PS

Subclass C-L-OSL C-L-OSL C-L-OSL C-L-OSL C-L-OSL
C-R-OSL

initial syllable copying in Hiaki vusa → vu∼vusa. In the first function
L(x), the consonant s is not generated because it is part of the next
syllable. We know because it precedes a vowel. In contrast for vamse
→ vam∼vamse, the consonant m is copied because it precedes a conso-
nant. The use of such information from finite lookahead on the input
cannot be computed by an OSL function.

This section presented cases in RedTyp which are C-OSL. They
comprise the bulk of reduplicative typology. Of the 138 reduplicative
processes in RedTyp (Section 4.2), 121 (87%) were C-OSL.

6.3Some reduplication is C-Seq

This section goes through some types of reduplication which are not
C-OSL but are instead C-Seq. Informally, a reduplicative function is
C-Seq if its component functions do not rely on any information from
the other function or its output. A component function can use finite
lookback, finite lookahead, or even long-distance information in the
input.

6.3.1Internal reduplication and gray areas between C-OSL or C-Seq

One problematic area for C-OSL are internal reduplication functions
which seem infixal (Broselow and McCarthy 1983; Gafos 1998; Spaelti
1997). Some of these are C-OSL, some are not. These functions are
C-OSL if the truncation functions can uniquely determine what seg-
ments to delete based on only what was outputted.
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In the previous sections, the reduplication’s target can be thought
of as a contiguous substring that is determined by scanning either the
left or right edge of the source. In those cases, the target was at the
edge of the source and the reduplicant was placed at the left or right
edge of the base. However, there are cases of internal or infixal redu-
plication where the target is a substring inside the source such that the
substring is not strictly adjacent to the source’s edges (17a, 17b) and
the reduplicant is placed inside the base in the output (17c). In (17c),
the word-initial C is copied and placed after the first vowel.
(17) Internal reduplication cases which are arguably not C-OSL

a. Leftmost-VCC* reduplication
Mangarayi (Raimy 2000, 135)
ɡabuji → ɡ-ab∼abuji ‘old person’ → ‘old persons’

b. Rightmost-CV reduplication
Chamorro (Inkelas and Zoll 2005, 107)
nalaŋ → nala∼laŋ ‘hungry’ → ‘very hungry’

c. Initial-C reduplication and internal placement
Quileute (Broselow and McCarthy 1983, 44)
tSiko → tSi∼tko ‘he failed sp.’ → ‘he failed (freq.)’

Table 7 visualizes these processes. A traditional analysis is that
the reduplicant is infixal (Broselow and McCarthy 1983) where <>
marks infixation, e.g., Mangarayi ɡabuji → ɡab<ab>buji. However,
their treatment as C-OSL is somewhat counter-intuitive because a
C-OSL function models these processes as concatenating two trunca-
tion functions: ɡabuji∼ɡabuji. The first function L(x) outputs the first
C*VC* substring and deletes everything after that. The second func-
tion R(x) deletes all word-initial strings of consonants C*; once it sees
a vowel V, it outputs it and everything after it.

6.3.2 Internal or non-contiguous reduplication which is C-Seq

The main reason why Mangarayi and the other functions in Table 7
are C-OSL is because the target and deleted materials do not have the
same shape. Knowing what to delete or generate doesn’t need any fi-
nite lookahead or lookback over the input, just over the output. How-
ever, other cases of internal and non-contiguous reduplication do re-
quire such finite lookback/lookahead over the input. This makes them
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Case Mangarayi (17a) Chamorro (17b) Quileute (17c)
Input x ɡabuji nalaŋ tSiko
Output ɡababuji nalalaŋ tSitko
Infixal treatment ɡab<ab>uji nala<la>ŋ tSi<t>ko
C-OSL treatment ɡabuji∼ɡabuji nalaŋ∼nalaŋ tSiko∼tiko
Subclass C-L-OSL C-R-OSL C-L-OSL

Table 7:
Infixal vs. C-OSL
treatment of
internal
reduplication

C-Seq. In (18a), the penultimate syllable is reduplicated. In (18b), the
word-initial CV is copied and placed before the final C. In most of
these cases, the target is a contiguous substring in the input. In some
cases, the target is not contiguous (18c). In (18c), the input’s first CV
and final C are copied and placed together at the beginning of the
output.
(18) Internal reduplication which are C-Seq

a. Penultimate syllable reduplication
Samoan (Moravcsik 1978, 301,310)
a.lo.fa → a.lo∼.lo.fa ‘he loves’ → ‘they love’
ta.o.to → to.o∼o.to ‘he lies’ → ‘they lie’

b. Initial-CV reduplication and internal placement
Creek (Riggle 2004, 3)
fayatk+iː → fayat∼fa-k+iː ‘crooked’→ ‘crooked (pl.’)

c. Double-sided reduplication
Nisgha (Urbanczyk 2007, 474)18
lúːt’uxw → lúxw∼lút’uxw ‘to value’→ ‘to value (pl.)’

These C-Seq processes are visualized in Table 8. Consider penulti-
mate syllable copying in Samoan with two truncation functions a.lo.fa
→ a.lo.fa∼a.lo.fa. If the input is read left-to-right, the first function
must output everything up until the penultimate syllable: a.lo.fa. This
is not OSL because knowledge about whether some syllable is penul-
timate or not requires finite lookahead on the input. If the input
is instead read right-to-left, the first truncation function is still not
OSL. The function would delete the last vowel and the last conso-
nant; but once it sees the penultimate vowel, the function cannot

18We set aside issues in predicting the quality of the vowel (Shaw 2005).

[ 219 ]



Hossep Dolatian, Jeffrey Heinz

Table 8:
Non-C-OSL
patterns of
internal or

non-contiguous
reduplication

Case Samoan (16a) Creek (18b) Nisgha (18c)
Input x a.lo.fa fayatk lúːt’uxw

Components L(x) · R(x) L(x) · R(x) L(x) · R(x)
Infixal treatment a.lo<lo>fa fayat<fa>k lúxw∼lút’uxw

C-Seq treatment a.lo.fa∼a.lo.fa fayatk∼fayatk lút’uxw∼lút’uxw

Subclass C-Seq C-Seq C-Seq

determine if this vowel is penultimate or not based on only what it
has outputted. The function would need lookback access to the in-
put. In both left-to-right and right-to-left cases, the truncation func-
tions are Seq. The other processes in Table 8 are not C-OSL for similar
reasons.

Although penultimate syllable copying is not C-OSL, Samoan has
penultimate stress (Zuraw et al. 2014). Stressed syllable copying is
C-OSL. This is an argument for reanalyzing Samoan as instead copy-
ing the stressed syllable. This relates to Nelson’s (2003, 117) hypoth-
esis that any references to the penultimate position in reduplication
must be prosodic. Note that for Creek and Nisgha, the component func-
tions are Seq; however they do not generate the right origin semantics
because of unbounded word-internal deletion. The first function for
Nisgha deletes everything except for the first CV and last C lut’uxw. If
read left-to-right, in order to generate the final C, we need to move to
the next symbol and check if it is ⋉; thus the final C is generated as an
output correspondent for the end-boundary ⋉. If read left-to-right, in
order to generate the initial CV, we move on to the preceding symbol
and check if it is ⋊; thus the first CV are generated as output corre-
spondents to the start-boundary ⋊. This is because Seq functions are
deterministic. In contrast, the right origin semantics would be gen-
erated if the component functions were non-deterministic or if the
function was computed by a full 2-way FST.19

19To exactly capture the right origin semantics, it is a possible that a subclass
of Streaming-string transducers (1-way FSTs with registers) (Alur and Černý 2011;
Alur and Deshmukh 2011) are a suitable alternative for modeling infixal redupli-
cation. Discovering subclasses of SSTs and their relations to subclasses of 2-way
D-FSTs is a worthwhile open question.
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6.4Grey areas between C-Seq and rotating transducers

The above cases with infixation showed that capturing the right ori-
gin semantics might require classes which are more expressive than
C-OSL and C-Seq. In this section, we go through more cases. Some are
ambiguously C-Seq depending on the analysis; others must use rotat-
ing or even unrestricted 2-way D-FSTs in order to capture the right
origin semantics.

6.4.1Reduplication with syllable-count

Reduplication that is sensitive to syllables may involve iteration (19a)
or minimality requirements on what is reduplicated (19b). Both exam-
ples are from Mandarin for different reduplicative processes. In (19a),
reduplication is iterative because each syllable undergoes total redu-
plication: an input of the form A.B has A.A.B.B as the output. In (19b),
a word undergoes total reduplication if it is monosyllabic, otherwise
the morpheme meei is added.
(19) Reduplication and syllable number

a. Iterative reduplication of syllables
Mandarin (Moravcsik 1978, 314)
huanɡ.janɡ → huanɡ∼huanɡ-janɡ∼janɡ
‘flustered’ → ‘flustered (vivid form)’

b. Minimality in reduplication
Mandarin (Moravcsik 1978, 305-6).
janɡ → janɡ∼janɡ ‘sheet’ → ‘every sheet’
jia.luen → meei-jia.luen ‘gallon’ → ‘every gallon’

Iterative copying (19a) is C-OSL if the number of iterations
(=number of syllables) is bounded. The individual syllables must also
be uniquely identifiable in the input. For Mandarin, the function is
made up of four concatenated OSL truncation functions. The first two
functions output everything up until the medial syllable boundary ‘.’
while the latter two delete everything up until the ‘.’ boundary.
(20) Mandaring iterative reduplication as C-OSL:

L1(x) · L2(x) · R1(x) · R2(x)
huanɡ.janɡ∼huanɡ.janɡ∼huanɡ.janɡ∼huanɡ.janɡ.
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We are unaware of any examples showing reduplicative processes
which iterate over inputs that have at least three syllables. So while
Mandarin provides examples of A → A∼A and A.B → A.A∼B.B, we
have no examples of *A.B.C → A.A∼B.B∼C.C. We likewise have not
seen cases of trisyllabic iterative copying in other languages. This
is computationally significant. If Mandarin allowed iterative copy-
ing over trisyllabic words, then generating the right origin semantics
would need as many passes over the input as there are syllables in the
input. The function would either need the full power of a 2-way D-FST
in order to generate the right origin semantics, otherwise we could use
a 1-way FST that has the linguistically-unmotivated origin semantics.

As for minimality requirements (19b), this cannot be computed
by a C-Seq transducer with the right origin semantics. In order to redu-
plicate a monosyllabic input: jang → jang∼jang, we use two concate-
nated identity functions. But to block reduplication in a bisyllabic in-
put jia.luen → meei-jia.luen, we need to check that the input does not
contain any medial syllable boundaries. The first function would need
to use to finite lookahead before choosing to output the first segment
j or the prefix meei. As with the infixation cases in Section 6.3.2, a
C-Seq 2-way FST can do so but it then generates the wrong origin
semantics because it associates the output segment j with the input
syllable boundary ‘.’. Generating the right origin semantics needs a
rotating 2-way D-FST that involves three passes. The first pass reads
the input and checks if it is monosyllabic or not. If yes, the second
and third passes apply the identity function: janɡ∼janɡ. If no, the sec-
ond pass outputs the prefix and the base meei-jia.luen; there is no third
pass.

6.4.2 Phonological changes to the reduplicant

The previous section illustrated how C-Seq 2-way FSTs are distinct
from rotating 2-way FSTs. In the latter, a pass can transfer informa-
tion (e.g., is the input monosyllabic) to a later pass. Similar information
transfer is required in certain cases where phonological processes in-
teract with reduplication. We first go over cases where we arguably
do not need such information transfer.

Reduplicative patterns do not only involve copying. In addition to
copying segments, a reduplicative process may involve a host of other
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phonological transformations (Steriade 1988; Raimy 2011). When
reduplication interacts with phonological transformations, the com-
plexity may change. Some of these phonological changes affect only
the reduplicant (21), including prosodic modifications to the redupli-
cant (21a), simplifications of the reduplicant (21b), or creating non-
identity across the two copies (21c).20

(21) Phonological modifications within the reduplicant
a. Vowel lengthening in the reduplicant

Papago (Moravcsik 1978, 308,317)
bana → baa∼bana ‘coyote’ → ‘coyotes’

b. Complex onset reduction in the reduplicant
Tagalog (Rubino 2005, 18)
maɡ-trabaho → maɡ-ta∼trabaho ‘work’→ ‘will work’

c. Pre-specified segment(s) in the reduplicant
Turkish (Moravcsik 1978, 323)
kitap → kitap∼mitap
‘book’ → ‘books and the like’

In (21a), the initial-CV is copied; the reduplicant’s vowel is length-
ened. In (21b), the stem’s initial-CV is copied. If the stem starts with
a complex onset, then the complex onset is reduced to CV. In (21c),
the input undergoes total copying; the second copy starts with /m-/
which replaces any word-initial onset.

These phonological modifications can be understood in terms of
function composition as a formal analog to phonological rule ordering
(Steriade 1988). This is shown in Table 9. Consider Papago lengthen-
ing. This is computed by a C-OSL function which is the concatenation
of modified truncation functionM(Tr(x)) and identity ID(x). The func-
tion M(Tr(x)) is the composition of a truncation function Tr(x) that
deletes the string bana to ba inside a modification function M(x) that
lengthens word-initial ba to baa. Both truncation and modification are

20These simplifications are often called TETU (or the emergence of the un-
marked) effects (McCarthy and Prince 1994, 1995). Cases of echo-reduplication
like (21c) are highly common and found even in Indo-European languages such
as English book-schmook (Nevins and Vaux 2003). It is often sensitive to phrasal
or syntactic factors (Fitzpatrick-Cole 1994; Lidz 2001).
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L-OSL, their composition is L-OSL, and the concatenation with ID(x) is
C-L-OSL. Complex onset reduction in Tagalog and echo reduplication
in Turkish are likewise C-L-OSL and consist of the concatenation of a
composed L-OSL function with some other L-OSL function.

However, this does not mean that all hypothetical cases of
reduplicant modifications are C-OSL. Such processes can be C-Seq
or higher if the composition of a truncation or identity func-
tion with the modification function is Seq or higher. For exam-
ple, if complex onset reduction in the reduplicant deleted the
first consonant: mag-trabaho → mag-ra∼trabaha, this process would
be C-Seq and not C-OSL. In the first copy, the truncation func-
tion would generate maɡ{r trabaho, while the modification func-
tion would generate mag{r tra. Deleting only the root-initial con-
sonant t if it precedes a consonant is not OSL because we need
finite lookahead on the input. Interestingly, this type of cluster re-
duction is argued to be unattested in reduplication (Zukoff 2017,
25). This may either be an accidental gap or evidence that redu-
plication modification must be C-OSL. To our knowledge, there is
no typological survey of attested reduplicant modifications to set-
tle this.

6.4.3 Phonological changes to or across both copies

Phonological changes may likewise affect both copies or apply across
the boundary between the copies (22). Some involve a phonological
process which is productive in the language (22a), others involve a
phonological process which is not found anywhere else in the language
outside of reduplication (22b). The former set of cases are often called
Table 9: C-OSL treatment for phonological changes to the reduplicant

Papago (21a) Tagalog (21b) Turkish (21c)
Input x bana maɡ{r trabaho}r kitap
Components M(Tr(x)) · ID(x) M(Tr(x)) · R(x) ID(x) · M(ID(x))
Innermost function ba na maɡ{r tra baho}r kitap
Composition baa maɡ{r t r a mitap
Concatenation baa ∼ bana maɡ-ta ∼ maɡ {r trabaho}r kitap∼mitap
Subclass C-L-OSL C-L-OSL C-L-OSL
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normal application of phonological rules, while the latter are juncture
effects which are morpheme-specific phonological processes.

(22) Phonological modifications across the two copies
a. Normal application of nasal substitution

Balangao (McCarthy and Prince 1995, 85)
i. /maN+taɡtaɡ/ → [ma+naɡtaɡ] ‘running’
ii. /maN-RED+taɡtaɡ/ → [ma+naɡta∼taɡtaɡ], ‘running

*[ma+naɡta∼naɡtaɡ] everywhere’
b. Phonology across the boundary (juncture effects)

Dakota (Inkelas and Zoll 2005, 101)
i. /skokpá → o-skókpa∼kpa ‘to be scooped out’
ii. /čap/ → čap∼čap-a ‘trot’
iii. /žat/ → žaɡ∼žat-a ‘curved’

In (22a), the prefix maN- can trigger reduplication of the
root/stem. Nasal substitution combines the prefix’s nasal with an ad-
jacent voiceless consonant into a single nasal that has the place of
articulation of the consonant. Nasal substitution applies only to the
segment next to the prefix, regardless of whether that consonant is
part of the reduplicant or not. In (22b), the final syllable of the root
is copied and placed at the left edge of the input. If there are two
coronals across the reduplicative boundary (b), then the first coronal
becomes dorsal. The final /a/ is epenthesized.

We likewise find phonological processes or rules interacting dif-
ferently in the context of reduplication. For example inMadurese, there
is a phonological process of nasal spread in which nasality is spread
from nasals onto sequences of glides and vowels (23a). Reduplication
copies the final CVC and places it at the beginning of the output (23b).
If a vowel in the base is nasalized by a nasal, its nasality will transfer to
the reduplicant as well. Because the reduplicant does not contain any
nasals to trigger nasal spread, nasal spread in the reduplicant is treated
as an over-application of the phonological process of nasal spread.

(23) Over-application of nasal spread
Madurese (McCarthy and Prince 1995, 30; Cohn 1993, 358)
a. /neyat/ → [nẽỹãt] ‘intention
b. [ỹãt∼nẽỹãt] ‘intentions’
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Traditionally, these cases can be thought as a composition of a
morphological rule of reduplication (C-OSL) and a phonological rule
(that is independently ISL, OSL, or Sequential) (Raimy 2000; Inkelas
and Zoll 2005). If the morphological rule precedes the phonological
rule, then we have normal application. If the morphological rule out-
puts reduplicant boundaries and precedes the phonological rule, then
we have juncture effects. And, if the phonological rule precedes the
morphological rule then we have over-application. Table 10 visualizes
these three types of interactions as rule or function composition.

Table 10: Order of compositions for different reduplication-phonology interac-
tions

Normal application Juncture effect Over-application
Language Balangao (22a) Dakota (22b) Madurese (23)
Input x maN{r taɡtaɡ}r žat neyat
Order of composition 1. Copy 1. Copy 1. Modify

2. Modify 2. Modify 2. Copy
Components M(L(x)) · R(x) M(L(x)) · R(x) L(M(x)) · R(M(x))
Innermost functions maN{r taɡtaɡ}r ∼ maŋ {r taɡtaɡ}r žat ∼ žata nẽỹãt
Outer function maN{rŋaɡtaɡ}r ∼ {r taɡtaɡ}r žaɡ ∼ žata nẽỹãt∼nẽỹãt

Computationally, we can treat all these cases as composition of a
C-OSL/C-Seq function for reduplication with an OSL/Seq function for
phonology in either order. We conjecture C-OSL/C-Seq functions are
not closed under composition, but we do not prove it. This means that
composition may create a rotating 2-way FST.

Whether a case of normal application, juncture effect, or overap-
plication is C-OSL, C-Seq, or higher depends on the complexity of the
individual functions. In fact, the above three examples can be done
with a C-Seq transducer. To illustrate, consider over-application in
Madurese. Nasal spread is an L-OSL function M(x). Reduplication is
the concatenation of an R-OSL truncation function L(x) and an L/R-
OSL identity function R(x). To generate overapplication, reduplica-
tion is instead the concatenation of two modified functions L(M(x))
· R(M(x)). The first function is the composition of truncation over
nasal spread. The composition of these two OSL rules of different di-
rections is L-Seq because nasalization relies on deleted information

[ 226 ]



Reduplication with 2-way FSTs

from the input.21 The second function is the composition of identity
over nasal spread; this is L-OSL. Together, Madurese overapplication
is C-L-Seq.

It is an open question if there are cases of normal application,
juncture effects, and over-application which cannot be treated with a
C-Seq formalization but require an unrestricted rotating 2-way FST.
Solving this requires an in-depth knowledge of both the morphology
and phonology of any such example (Inkelas and Zoll 2005).

Under-application and Back-copying In contrast to the over-appli-
cation of phonological processes in reduplication, we likewise find
cases of under-application. For example in Akan, velar consonants be-
come palatalized before nonlow front vowels: /k,ɡ/→ [tɕ, dʝ]/ __ /i,e/
as in (24a). Akan likewise has a process of initial-CV reduplication
where the reduplicant V is a pre-specified non-low front vowel /ɪ/
(24b).22 However if the reduplicant C is a velar, it will not be palatal-
ized before the reduplicant’s non-low front vowel /ɪ/ (24c). Thus the
rule under-applies. The velar will only palatalize if both copies of the
velar in the reduplicant and base are preceded by a non-low front
vowel (24d).
(24) Under-application of palatalization in reduplication

Akan (McCarthy and Prince 1995, 83-93)
(Schachter and Fromkin 1968, 89))
a. /ke/ → [tɕe] ‘divide’
b. /si/ → [si∼siʔ] ‘stand’
c. /kaʔ/ → [kɪ∼kaʔ],*[tɕɪ∼kaʔ] ‘bite’
d. /ɡe/ → [dʝɪ∼dʝe] ‘receive’

Cases of apparent under-application or over-application in redu-
plication are termed opacity effects (cf. the transparency of normal ap-
plication (22a)). They are often understood as being caused by a need
to maintain identity between the two copies that reduplication cre-

21As with infixal reduplication (Section 6.3.2), the C-Seq transducer needs
finite look-ahead into the end boundary ⋉ and this makes it not have the exact
origin semantics that we want.

22The reduplicant V in Akan gets its front/back features from vowel harmony.
For illustration, we represent it simply as /ɪ/.
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ated (Wilbur 1973; McCarthy and Prince 1995). Amore drastic version
of identity is back-copying whereby the reduplicant undergoes some
phonological rule, and then the effects of this rule are transferred onto
the base. It is reported that in Malay, nasality spreads from a nasal con-
sonant onto a sequence of vowels. Nasality can spread over glides and
/h/. Plurality is marked by total reduplication. If nasal spread applies
across the two copies, nasality will transfer onto both copies.

(25) Back-copying of nasal spread
Malay (McCarthy and Prince 1995, 85)
/hamə/ → [hãmə∼̃hãmə]̃,*[hamə∼̃hãmə]̃ ‘germ’ → ‘germs’

These opacity effects are controversial both theoretically and em-
pirically (Inkelas and Zoll 2005; Samuels 2010; Kiparsky 2010; Mc-
Carthy et al. 2012). Many cases of under-application have been re-
analyzed as either unproductive (McCarthy et al. 2012) or due to
morpheme-specific rules (Inkelas and Zoll 2005).23 In fact, Akan
palatalization (24) is the classical case study on under-application
but it is likely a synchronically unproductive and fossilized rule (Sil-
verman 2002; Adomako 2018). Empirically, there have been little
if any convincing cases of back-copying (Bruening 1997) and some
are arguably due to morphological factors outside of reduplication
(McLaughlin 2005). The Malay data itself has not been successively
reproduced (Kiparsky 2010).

Because under-application and back-copying have weak empiri-
cal backing, there is a limited attested typology of these processes. It
is thus unclear whether we can make any computational generaliza-
tions about them. But putting aside these empirical problems, Akan
under-application can be modeled with a C-Seq function which uses
finite lookahead on the input. It is the concatenation of a modified
truncation function and a modified identity function. The first func-
tion truncates the input C1V2Σ

∗ to C1i and applies palatalization if V2

is /i,e/. The second function applies palatalization to the input.
Malay back-copying is not C-Seq. This is because nasalization re-

quires unbounded lookahead on the input. The function requires an

23An exception is Tonkawa (Gouskova 2007) which is arguably a bona fide
case of under-application.
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unrestricted rotating transducer with three passes over the input.24 In
the first pass, we output nothing but we check if the input ends in a
N(V+G)* sequence where G stands for glides and /h/: hamə. If yes,
the second pass applies nasal spread starting from the first segment:
hamə∼hã̃mə.̃ The third pass does the same: hamə∼hã̃mə∼̃hã̃mə.̃

6.5Overview of the typology summary

To summarize, we cataloged a wide variety of attested reduplicative
patterns. All of it can be computed with deterministic 2-way FSTs.
Most common and uncommon types of reduplication can be com-
puted with the subclass of C-OSL functions, including total redupli-
cation (12a), common partial reduplication patterns (13), triplication
(14a), suffixal reduplication (14b), non-local reduplication (14c), and
abbreviated reduplication (14d). Subconstituent reduplication is like-
wise C-OSL if the relevant morphological (15) or prosodic boundaries
(16) are present in the input. In fact, of the 138 reduplicative processes
in RedTyp (§5.2), 121 (87%) are C-OSL.25

We analyzed the typology in terms of generating the right ori-
gin semantics. To do so, some less common types of reduplication are
C-Seq or higher. This is largely because of the need for finite lookahead
on the input. Some but not all types of infixal or non-contiguous redu-
plication are C-OSL (Section 6.3.1) and some are C-Seq (Section 6.3.2).
In the latter case, generating the right origin semantics can require full
2-way FSTs because of the need for finite lookahead. Some cases like
iterative reduplication (19a) are C-OSL if the input is at most bisyl-
labic; otherwise generating the right origin semantics needs an unre-
stricted 2-way D-FST. Minimality requirements (19b) likewise require

24Malay back-copying can likewise be treated as the composition of a C-OSL
function for triplication hamə∼hamə∼hamə, followed by an OSL function for nasal
spread hamə∼̃hãmə∼̃hãmə,̃ followed by an OSL function that deletes everything
before the first ∼ boundary hãmə∼̃hãmə.̃ This analysis is inspired by Reiss and
Simpson (2009).

25Although the cross-linguistic typology on reduplication is overwhelmingly
C-OSL, our numbers from RedTyp do not mean that we estimate that 13% of the
cross-linguistic typology of reduplicative processes is not C-OSL. RedTyp likely
under-represents cases of opacity. Such cases can be non-C-OSL.
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full 2-way D-FSTs. When reduplication interacts with phonological
processes, the computation can range anywhere from C-OSL to full
2-way D-FSTs depending on the individual phonological process and
the order of function composition. We suspect the finite lookahead in
these cases may be resolved with more sophisticated representations
and logical transductions (Dolatian 2020).

This concludes the section on how various subclasses of 2-way
D-FSTs map to certain divisions in the reduplicative typology. The
above cases are representative of common and uncommon reduplica-
tive processes. There are other subtle variations for reduplication in
natural language, such as cases of allomorphy (Spaelti 1997), or multi-
ple reduplicants (Urbanczyk 1999, 2001; Fitzpatrick and Nevins 2004;
Fitzpatrick 2006), among others. We will not discuss these cases be-
cause a full typology is beyond the scope of this paper. However, vir-
tually all attested reduplicative processes can be modeled with 2-way
FSTs. Fitting the entire attested typology into the right subclasses is a
fruitful research direction. The next section looks at cases where 2-way
D-FSTs arguably over-generate or under-generate the typology, even
with these well-defined subclasses.

6.6 Issues in over- and under-generation

Here, we address the questions whether and how 2-way D-FSTs under-
and over-generate reduplicative processes.

6.6.1 Over-generation with 2-way D-FSTs

One way to interpret the contribution we have made is that we are
advocating the following hypothesis:

(26) 2-wayHypothesis: Reduplication is anything that can be com-
puted with 2-way D-FSTs.

This is not, in fact, a position we advocate. We think this hypothe-
sis is false because it overgenerates in ways we consider linguistically
bizarre. For example, 2-way D-FSTs can map words to their reverse
(w 7→ wr) and to a copy of itself and its mirror image (w 7→ wwr). None
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of these transformations are attested morphologically. Some overgen-
eration can be avoided by hypothesizing stronger computational prop-
erties; that is, focusing on subclasses of 2-way D-FSTs which cannot
generate the above unattested patterns.

This leads to another hypothesis.
(27) C-OSL Hypothesis: Reduplication is anything that can be com-

puted with C-OSL 2-way D-FSTs.
The C-OSL hypothesis is well supported because it covers the bulk of
reduplicative typology as shown in Section 6. Rarer reduplicative pat-
terns require more powerful subclasses of 2-way D-FSTs.

Even this hypothesis can be said to suffer from overgeneration.
For example, while this excludes the reversal and mirror image pro-
cesses above, it permits total reduplication of a word up to some large
natural number n (w 7→ wn), or partial reduplication up to some natu-
ral number n of segments.

Nonetheless, not all issues in overgeneration can be reduced to
computation or computability. Some are certainly due to external fac-
tors.26 To illustrate, total reduplication in most spoken languages cre-
ates at most two copies. The creation of three copies (= triplication)
is relatively rare in spoken languages, e.g. Thao (Blust 2001). In sign
languages, we find the reverse situation: creating two copies is rare
but triplication is common, e.g. ASL (Wilbur 2005). The difference
between sign and spoken reduplication is more likely due to modality
and not to the computation.27

6.6.2Under-generation with 2-way D-FSTs

Non-computational factors can also help us understand apparent cases
of under-generation. There are two cases we discuss here: abstract
morphemic copying and reduplication with haplology. Both of these

26Like Potts and Pullum (2002, 375), “we are extremely sceptical of the idea
that formalisms exist that correspond exactly to what linguists wish to say.”

27A similar point can be made for the role of pivot or anchor points in redupli-
cation. Cross-linguistically, most reduplicative processes target specific positions
in the word which are perceptually or psycho-linguistically more salient (Samuels
2010; Raimy 2009; Idsardi and Raimy 2008), e.g. the first syllable and not the
third syllable. The choice of these pivots is likely functional, not computational.
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can be explained as involving interactions between reduplication and
other linguistic modules (the lexicon) or processes (filters).

Undergeneration of abstract morphemic copying Abstract morphemic
copying is when the input to the copying mechanism is not a string
of phonological segments but a more abstract morphological entity,
i.e. a morpheme or morpho-syntactic feature bundle (Inkelas and Zoll
2005). This is in contrast to examples reviewed earlier, where the
source of reduplication was a string of segments which may contain
morpheme boundaries. Such a case occurs in Sye in Table 11.

In Sye, a stem may have multiple suppletive allomorphs used in
different morphological contexts. For example, the abstract morphemepFALL in Table 11a has two allomorphs amol and omol, such that amol
is used after future morpheme and certain other tense morphemes
while omol is used elsewhere. As for reduplication, total reduplication
is used to mark intensification (Table 11b). When total reduplication
applies in a context that requires using one of the allomorphs, we have
an allomorph mismatch between the two copies (Table 11c).

Table 11:
Abstract

morphemic
copying in Sye

Morphemes a. /pFALL/ b. /pFALL+RED/ c. /FUT-pFALL-RED/
Output omol omol∼omol cw-amol∼omol

*cw-omol∼omol
*cw-amol∼amol

Gloss ‘fall’ ‘fall all over’ ‘they will fall all over’

Inkelas and Zoll (2005) analyze Sye as involving morphological
copying. The copies are not in phonological correspondence because
they are different allomorphs of the samemorpheme. What was copied
was an abstract morpheme pFALL. Its two copies were later spelled-
out as two different allomorphs. Inkelas and Zoll’s (2005) analysis for
Sye is controversial (Frampton 2009); but there are a few other lan-
guages which show that the reduplicant is copying an abstract mor-
phological entity (Inkelas and Downing 2015a,b; Hyman et al. 2009).

Cases of morphological copying for suppletive roots can be mod-
eled with a 2-way D-FST that copies an abstract pre-spelled-out mor-
phological entity, e.g. a root morphemepFALL or a root index (Harley
2014) which can be represented as a finite string of symbols. This is
followed by a 1-way FST that models spell-out such that it is equipped
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with knowledge over what all the finite pairs of morphemes and their
suppletive allomorphs are. Wemake the safe assumption that the num-
ber of morphemes in a language that show suppletion is finite.28

Undergeneration of reduplication with haplology Another case of po-
tential under-generation is when reduplication is affected by anti-
homophony constraints or haplology, i.e. when reduplication is
blocked because it would create a sequence of identical syllables or
feet that is dis-preferred by speakers (Yip 1995; Nevins 2012).

For example in Kanuri (Moravcsik 1978, 313), total reduplication
is used to form glossonyms (28b). However reduplication is blocked
if it creates sequence of identical syllables/feet (28b).

(28) Reduplication and haplology in Kanuri
a. kanəmbu ‘Kanembu tribe’
kanəmbu∼kanəmbu ‘language of the Kanembu tribe’

b. karekare ‘Karekare tribe’
*karekare∼karekare ‘language of the Karekare tribe’

A 2-way D-FST can encode this requirement that the input must
not itself be a sequence of identical syllables or feet. However that
would require the 2-way D-FST to know what all the finitely possible
sequences of syllables and feet are in the language.

Two alternatives to this solution are possible. One is using a copy-
and-filter mechanism (Golston 1995). The 2-way D-FST would han-
dle the copying. The output of the copying process would be fed to
a phonological system which would filter out any homophonous se-
quences of syllables or feet. The other alternative is to argue that the
Kanuri input stems which contain a repeated sequence of symbols
/karekare/ are underlyingly already reduplicated via lexical redupli-
cation /kare+RED/. Such arguments have been brought up for super-
ficially similar haplology effects in Manam (Buckley 1997). From this
approach, there is then no haplology problem for 2-way D-FSTs.

In sum, although virtually the entire typology of reduplication
can be modeled with 2-way D-FSTs, there are complications if one

28An FST which handles spell-out would resemble the lexical transducer used
in the xfst finite-state package (Beesley and Karttunen 2003).
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wishes to model the full interface of reduplicative morphology with
other systems. However, as a reviewer point outs, it may not be desir-
able, from a linguistic perspective at least, to model the interfaces in
this way. It is disputable whether complications occurring at the in-
terface of morphology with syntax or phonology should be addressed
within an FST that is intended to account for the computational com-
plexity of the morphology itself. On the other side of the coin, some
conceptual problems arise with over-generation of 2-way D-FSTs be-
cause of the power that they require to handle copying in the first
place.

7 CONCLUSION

The present study has taken a step in formalizing the wide typol-
ogy of reduplicative processes in formal-language theoretic terms. We
showed that 2-way D-FSTs, which are are an understudied type of
finite-state transducer, can easily model reduplication because they
can reread their input multiple times in multiple directions. Computa-
tionally, this means that recognizing whether strings belong to the copy
language {ww | w ∈ Σ∗} (so for any w ∈ Σ∗ determining whether there
is a v ∈ Σ∗ such that w = vv) is a harder problem than the one that
takes any w ∈ Σ∗ as input and returns ww as output (copying). Redupli-
cation studied as recognition is computationally more complex than
reduplication studied as copying.

In addition to modeling reduplicative morphology as copying, 2-
way D-FSTs do not suffer from state explosion nor do they assume
finite bounds on the input, unlike 1-way FSTs. In terms of strong gen-
erative capacity, 2-way FSTs actively copy segments instead of mem-
orizing segments. A diagnostic for copying vs. remembering is the ori-
gin semantics of the function. This article also presented the RedTyp
database, which provides concrete examples of 2-way DFSTs modeling
a range of cross-linguistic reduplicative morphemes.

Furthermore, we showed that the typology of reduplication can
be modeled with subclasses of 2-way FSTs that are essentially defined
as concatenations of simple subclasses of 1-way FSTs. Thus, our work
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showed the role of computational subclasses in carving out the gen-
erative capacity of morphological processes, whether reduplicative or
not. To give more context, most morphological processes can be com-
puted by 1-way finite state automata and transducers (Koskenniemi
1983; Beesley and Karttunen 2003). In fact, substantially less expres-
sive subregular classes are capable of computing most of these mor-
phological processes (Aksënova et al. 2016; Chandlee 2017). So far,
these subclasses have been identified based on considerations of lo-
cality (ISL, OSL) and determinism (Seq, sequentiality). At first, redu-
plication looks like an outlier in that it requires the more expressive
generative capacity of 2-way transducers. However, even within this
larger class of 2-way FSTs, we argued that reduplication only needs
certain subclasses which are also based on the same considerations of
locality (C-OSL) and sequentiality (C-Seq). These subclasses reinforce
the role of locality and determinism as general constraints in linguistic
processes (cf. Heinz 2018).

Having showcased the utility of 2-way D-FSTs for modeling redu-
plication, we conclude with three avenues of future research.

First, we have approached reduplication from the perspective of
morphological generation. Given an input buku, a 2-way D-FST can
generate the output buku∼buku easily. On the other hand, it is an open
question as to how to do morphological analysis with 2-way FSTs to
get the inverse relation of buku∼buku→ buku. As a class, deterministic
2-way FSTs are not invertible. We are currently developing algorithms
for inverting the subclasses (C-OSL, C-Seq) that we have set up.

A second area of research is the integration of 2-way FSTs into nat-
ural language processing. This obviously has many aspects. A first step
may be the integration of 2-way FSTs into existing platforms such as
xfst (Beesley and Karttunen 2003), open-fst (Allauzen et al. 2007),
foma (Hulden 2009b), and pynini (Gorman 2016).29

A third promising area of research is developing learning models
based on the computational models that we proposed here. One ap-
proach builds on Chandlee et al.’s 2015 learning results of OSL func-

29 In fact, the team behind Thrax (Tai et al. 2011) have recently been explor-
ing the use of multi-pushdown transducers (MPDT) to generate reduplication
(Richard Sproat, p.c.). An open question is comparing the generative capacity of
MPDTs and 2-way FSTs.
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tions (Dolatian and Heinz 2018a). Another approach probes the learn-
ability of reduplicative patterns with neural networks (Nelson et al.
2020).
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