
..

ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1.

1

.

Journal of

Language
Modelling

.

volume 2 issue 1
june 2014

.

Institute of Computer Science
Polish Academy of Sciences
Warsaw

Journal of
Language Modelling

volume 2 issue 1
june 2014

Evaluation of automatic updates of Roget's Thesaurus 1
Alistair Kennedy, Stan Szpakowicz

Bimorphisms and synchronous grammars 51
Stuart M. Shieber

LFG parse disambiguation for Wolof 105
Cheikh M. Bamba Dione

Computational modelling of Yorùbá numerals
in a number-to-text conversion system 167

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

1

journal of
language modelling

ISSN 2299-8470 (electronic version)
ISSN 2299-856X (printed version)
http://jlm.ipipan.waw.pl/

managing editor
Adam Przepiórkowski ipi pan

section editors
Elżbieta Hajnicz ipi pan

Agnieszka Mykowiecka ipi pan
Marcin Woliński ipi pan

statistics editor
Łukasz Dębowski ipi pan

Published by IPI PAN
Instytut Podstaw Informatyki

Polskiej Akademii Nauk
Institute of Computer Science
Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warszawa, Poland

Layout designed by Adam Twardoch.
Typeset in XƎLATEX using the typefaces: Playfair Display
by Claus Eggers Sørensen, Charis SIL by SIL International,

JLM monogram by Łukasz Dziedzic.
All content is licensed under

the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

editorial board

Steven Abney University of Michigan, usa
Ash Asudeh Carleton University, canada;
University of Oxford, united kingdom

Chris Biemann Technische Universität Darmstadt, germany
Igor Boguslavsky Technical University of Madrid, spain;

Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, russia

António Branco University of Lisbon, portugal
David Chiang University of Southern California, Los Angeles, usa

Greville Corbett University of Surrey, united kingdom
Dan Cristea University of Iași, romania

Jan Daciuk Gdańsk University of Technology, poland
Mary Dalrymple University of Oxford, united kingdom

Darja Fišer University of Ljubljana, slovenia
Anette Frank Universität Heidelberg, germany
Claire Gardent cnrs/loria, Nancy, france

Jonathan Ginzburg Université Paris-Diderot, france
Stefan Th. Gries University of California, Santa Barbara, usa

Heiki-Jaan Kaalep University of Tartu, estonia
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, germany

Jong-Bok Kim Kyung Hee University, Seoul, korea
Kimmo Koskenniemi University of Helsinki, finland

Jonas Kuhn Universität Stuttgart, germany
Alessandro Lenci University of Pisa, italy

Ján Mačutek Comenius University in Bratislava, slovakia
Igor Mel’čuk University of Montreal, canada

Glyn Morrill Technical University of Catalonia, Barcelona, spain

Stefan Müller Freie Universität Berlin, germany
Reinhard Muskens Tilburg University, netherlands

Mark-Jan Nederhof University of St Andrews, united kingdom
Petya Osenova Sofia University, bulgaria

David Pesetsky Massachusetts Institute of Technology, usa
Maciej Piasecki Wrocław University of Technology, poland

Christopher Potts Stanford University, usa
Louisa Sadler University of Essex, united kingdom

Ivan A. Sag † Stanford University, usa
Agata Savary Université François Rabelais Tours, france
Sabine Schulte im Walde Universität Stuttgart, germany

Stuart M. Shieber Harvard University, usa
Mark Steedman University of Edinburgh, united kingdom

Stan Szpakowicz School of Electrical Engineering
and Computer Science, University of Ottawa, canada
Shravan Vasishth Universität Potsdam, germany

Zygmunt Vetulani Adam Mickiewicz University, Poznań, poland
Aline Villavicencio Federal University of Rio Grande do Sul,

Porto Alegre, brazil
Veronika Vincze University of Szeged, hungary

Yorick Wilks Florida Institute of Human and Machine Cognition, usa
Shuly Wintner University of Haifa, israel

Zdeněk Žabokrtský Charles University in Prague, czech republic

Evaluation of automatic updates
of Roget’sThesaurus

Alistair Kennedy1 and Stan Szpakowicz2,1
1 School of Electrical Engineering and Computer Science

University of Ottawa, Ottawa, Ontario, Canada
2 Institute of Computer Science

Polish Academy of Sciences, Warsaw, Poland

abstract
Keywords:
lexical resources,
Roget’s Thesaurus,
WordNet,
semantic
relatedness,
synonym
selection,
pseudo-
word-sense
disambiguation,
analogy

Thesauri and similarly organised resources attract increasing interest
of Natural Language Processing researchers. Thesauri age fast, so there
is a constant need to update their vocabulary. Since a manual update
cycle takes considerable time, automated methods are required. This
work presents a tuneable method of measuring semantic relatedness,
trained on Roget’s Thesaurus, which generates lists of terms related to
words not yet in the Thesaurus. Using these lists of terms, we experi-
ment with three methods of adding words to the Thesaurus. We add,
with high confidence, over 5500 and 9600 new word senses to ver-
sions of Roget’s Thesaurus from 1911 and 1987 respectively.
We evaluate our work both manually and by applying the up-

dated thesauri in three NLP tasks: selection of the best synonym from
a set of candidates, pseudo-word-sense disambiguation and SAT-style
analogy problems. We find that the newly added words are of high
quality. The additions significantly improve the performance of Ro-
get’s-based methods in these NLP tasks. The performance of our sys-
tem compares favourably with that of WordNet-based methods. Our
methods are general enough to work with different versions of Roget’s
Thesaurus.

Journal of Language Modelling Vol 2, No 1 (2014), pp. 1–49

Alistair Kennedy, Stan Szpakowicz

1 introduction

Thesauri and other similarly organised lexical knowledge bases play
a major role in applications of Natural Language Processing (NLP).
While Roget’s Thesaurus, whose original form is 160 years old, has been
applied successfully, the NLP community turns most often to Word-
Net (Fellbaum 1998).WordNet’s intrinsic advantages notwithstanding,
one of the reasons is that no other similar resource, including Roget’s
Thesaurus, has been publicly available in a suitable software package.
It is, however, important to note that WordNet represents one of the
methods of organising the English lexicon, and need not be the supe-
rior resource for every task. Roget’s Thesaurus updated with the most
recent vocabulary can become a competitive resource whose quality
measures up to WordNet’s on a variety of NLP applications. In this
paper, we describe and evaluate a few variations on an innovative
method of updating the lexicon of Roget’s Thesaurus.
Work on learning to construct or enhance a thesaurus by cluster-

ing related words goes back over two decades (Tsurumaru et al. 1986;
Crouch 1988; Crouch and Yang 1992). Few methods use an existing
resource in the process of updating that same resource. We employ Ro-
get’s Thesaurus in two ways when creating its updated versions. First,
we construct a measure of semantic relatedness between terms, and
tune a system to place a word in the Thesaurus. Next, we use the re-
source to “learn” how to place new words in the correct locations. This
paper focusses on finding how to place a new word appropriately.
We evaluate our lexicon-updating methods on two versions of Ro-

get’s Thesaurus, with the vocabulary from 1911 and from 1987. Printed
versions are periodically updated, but new releases – neither easily
available to NLP researchers nor NLP-friendly – have had little ef-
fect on the community. The 1911 version of Roget’s Thesaurus is freely
available through Project Gutenberg.1 We also work with the 1987
edition of Penguin’s Roget’s Thesaurus (Kirkpatrick 1987). An open Java
API for the 1911 Roget’s Thesaurus and its updated versions – includ-
ing every addition we discuss in this paper – are available on the Web
as the Open Roget’s Project.2 The API has been built on the work of
Jarmasz (2003).

1http://www.gutenberg.org/ebooks/22
2http://rogets.eecs.uottawa.ca/

[2]

Evaluation of Automatic Updates of Roget’s Thesaurus

..Raw Text
(Wikipedia).

Parsed Text

.

Word-Context
Matrix

.

Generate
Neighbouring
Words

.

Add Words
to Roget’s

.

Parser
(Minipar)

.

PMI,
Dice, etc.

.

Roget’s
Thesaurus

.

unsupervised

.

supervised

.

tune parameters

.

repeat

Figure 1:
The process of adding new words
to Roget’s Thesaurus

Figure 1 outlines the process of updating Roget’s Thesaurus. We
work with Wikipedia as a corpus and with the parser MINIPAR (Lin
1998a). Raw text is parsed, and a word–context matrix is constructed
and re-weighted in both a supervised and an unsupervised manner.
The nearest synonyms of each word in the matrix are generated and a
location for them in Roget’s Thesaurus is deduced using it as a source
of tuning data. The last step can be applied iteratively to update the
lexicon of Roget’s Thesaurus.
This work makes six main contributions:
• apply the supervised measures of semantic relatedness from
(Kennedy and Szpakowicz 2011) and (Kennedy and Szpakow-
icz 2012) to the updating of Roget’s Thesaurus, and evaluate it
carefully;
• propose and compare three methods of automatically adding
words to Roget’s Thesaurus;
• build the updated editions of the 1911 and 1987 versions of Ro-
get’s Thesaurus;
• create new datasets for pseudo-word-sense disambiguation and
the selection of the best synonym;

[3]

Alistair Kennedy, Stan Szpakowicz

• propose and evaluate a new method for solving SAT-style analogy
problems;
• compare semantic similarity calculation with Roget’s Thesaurus
and WordNet on accuracy and on runtime.

1.1 About Roget’s Thesaurus
In the early 1800s, Peter Mark Roget, a physician, began to categorise
terms and phrases for his personal use in writing. The ensuing Roget’s
Thesaurus, first published in 1852, has gone through many revisions
continuing to this day (Kendall 2008). A nine-level hierarchy makes
up most of the structure of Roget’s Thesaurus:

1 Class 6 Part of Speech
2 Section 7 Paragraph
3 Sub-Section 8 Semicolon Group
4 Head Group 9 Words and Phrases
5 Head

Eight classes are subdivided into Sections and Sub-Sections. There
are around 1000 Heads – the main category in Roget’s Thesaurus, cor-
responding to major concepts. Heads with opposing or complemen-
tary concepts form a Head Group. A Part of Speech (POS) groups all
noun/verb/adjective/adverb realisations of the Head’s concept. The
closest counterpart of WordNet’s synsets is a Semicolon Group (SG).
An SG contains closely related words (usually near-synonyms); a Para-
graph contains related SGs. Note the division by part-of-speech quite
low in the hierarchy, not at the very top as in WordNet. We define a
Roget’s grouping to be the set of words contained within an instance of
any of these levels. A Section or even a Class is also a Roget’s grouping,
but usually we talk about words in the same POS, Paragraph or SG.
Figure 2 shows an example of a Head. Head #586 in the 1911 Ro-

get’s Thesaurus contains terms pertaining to language. A number before
a word refers to a Head in which that word-sense may also be found.
Although a thorough update of Roget’s Thesaurus should include such
cross-references, they are beyond the scope of this work.3

3They do not figure in any of the applications we consider here to test the
quality of the updated versions of the Thesaurus.

[4]

Evaluation of Automatic Updates of Roget’s Thesaurus

Class 5: Intellect: communication of ideas
Section 3: Means of communicating ideas
Sub-Section: Conventional means
Head Group: 586 Language
Head: 586 Language
N. language; 595 phraseology; 608 speech; tongue, lingo, vernacular;
mother tongue, vulgar tongue, native tongue; household words; King’s En-
glish, Queen’s English; 589 dialect.
confusion of tongues, Babel, pasigraphie; sign 576 pantomime; onomatopoeia;
betacism, mimmation, myatism, nunnation; pasigraphy.
lexicology, philology, glossology, glottology; linguistics, chrestomathy; pale-
ology, paleography; comparative grammar.
literature, letters, polite literature, belles lettres, muses, humanities, literae
humaniores, republic of letters, dead languages, classics; genius of language;
scholar 516 scholarship.
VB. 592 express by words.
ADJ. lingual, linguistic; dialectic; vernacular, current; bilingual; diglot,
hexaglot, polyglot; literary.

Figure 2:
Head 586:
Language from
the 1911 Roget’s
Thesaurus

1.2 Where to add new words to Roget’s Thesaurus
The number of Heads and POSs per Head have changed little between
the 1911 and 1987 versions of Roget’s Thesaurus. We can aim to add
new words in three different ways:
• in an existing SG,
• in a new SG in an existing Paragraph,
• in a new SG in a new Paragraph.

Evaluation of a new semantic distance measure should then be useful
at identifying words in the same POS, Paragraph and SG.

2 previous work on updating thesauri

There have been few attempts to expand the lexicon of Roget’s The-
saurus thus far. Cassidy (2000) added manually a few hundred words
to the 1911 edition of Roget’s Thesaurus. Kennedy and Szpakowicz
(2007) disambiguated hypernym instances in the 1987 Roget’s The-
saurus. Both projects augmented Roget’s Thesaurus, but did not offer
insight into how to update the lexicon automatically.

[5]

Alistair Kennedy, Stan Szpakowicz

Other related work includes mapping word senses between Roget’s
Thesaurus, WordNet and LDOCE (Procter 1978). The contexts where a
word appears, whether it is words in the same Paragraph, WordNet
synset or an LDOCE definition, are used to deduce which words are
likely to be related (Kwong 1998a,b; Nastase and Szpakowicz 2001).
2.1 Updating WordNet
The automatic expansion of WordNet’s lexicon has been attempted
several times. Snow et al. (2006) extracted thousands of new words
from a corpus for possible inclusion in WordNet (though that expan-
sion never materialised in practice due to its low accuracy). Many of
the new terms were proper nouns found in a corpus by a machine
learning system (Snow et al. 2005) which was used to discover is-a
relations using dependency paths generated byMINIPAR (Lin 1998b).
Pantel (2005) created semantic vectors for each word inWordNet

by disambiguating contexts which appeared with different senses of a
word. The building of semantic vectors is described in (Pantel 2003).
WordNet’s hierarchy was used to propagate contexts where words may
appear throughout the network. A word sense was then represented
by contexts from its semantic vector not shared with its parents. Pantel
did not attempt to place new words into the resource, only evaluated
the method on existing words. This technique was only examined for
nouns. It presumably applied to verbs as well, but could not be tried
on adjectives or adverbs, for which there was no usable hypernym
hierarchy.
A folksonomy is a Web service which allows users to annotate

Web sites (among other things) with strings of their choice. One such
folksonomy was Delicious where users categorised Web pages. Hy-
pernym/Hyponym relations can be extracted from folksonomies by
identifying tags subsuming other tags. Zheng et al. (2008) describe
how to use folksonomies to discover instances of hypernymy and so
help put new words into WordNet.
Not directly applicable but relevant to our work is semi-automatic

enhancement ofWordNet with sentiment and affect information. Esuli
and Sebastiani (2006) used machine learning to build SentiWordNet by
labelling synsets in WordNet 2.0 as objective, positive or negative. In
WordNet Affect (Strapparava and Valitutti 2004), synsets got one or
more labels, often related to emotion. An initial set of words marked

[6]

Evaluation of Automatic Updates of Roget’s Thesaurus

with emotions was built manually. Next, those emotions were propa-
gated to other synsets via WordNet relations. This work was based on
WordNet Domains (Magnini and Cavagliá 2000), a framework which
allows a user to augmentWordNet by adding domain labels to synsets.
No new words were added, but these projects highlight some of the
more successful experiments with enhancing WordNet.
There is a reasonable amount of work on mining hypernym rela-

tions from text, which could then be used to updateWordNet. This in-
cludes using set patterns (Hearst 1992; Sombatsrisomboon et al. 2003)
or discovering new patterns using a few seed sets of hypernyms (Morin
and Jacquemin 1999). Languages other than English for which hyper-
nym mining has been attempted include Swedish (Rydin 2002), Dutch
(Sang 2007) and Japanese (Shinzato and Torisawa 2004). There also
has been research on hierarchically related verbs (Girju et al. 2003,
2006).
2.2 Wordnets in other languages
There has been much work on building wordnets for languages other
than English, loosely coordinated by the Global Wordnet Association.4
One strategy is to take the Princeton WordNet (Fellbaum 1998) as a
starting point. That was the mode of operation in the EuroWordNet
project (Vossen 1998), an early initiative meant to build wordnets for
several European languages. One of its offshoots is BalkaNet.5
The other wordnet-building strategy is to avoid the influence

of Princeton WordNet. Polish WordNet (Piasecki et al. 2009) is one
such resource built from scratch. Its development was supported,
among others, by WordNet Weaver, a tool which helps increase the
vocabulary of a wordnet. The tool implements a two-phase algorithm.
Phase I identifies a network vicinity in which to place a new word,
while phase II connects possible candidate synsets. Phase II is semi-
automatic: it is the linguists who decide what additions are ultimately
made to the growing Polish WordNet.

4See http://globalwordnet.org/wordnets-in-the-world/ for an up-
to-date list of available wordnets.

5 “The Balkan WordNet aims at the development of a multilingual lexical
database comprising of individual WordNets for the Balkan languages.” (http:
//www.dblab.upatras.gr/balkanet/)

[7]

Alistair Kennedy, Stan Szpakowicz

Lemnitzer et al. (2008) discuss adding semantic relationships
between nouns and verbs to GermaNet, a German wordnet. Those
were verb–object relationships believed to be useful in applications
such as text summarisation or anaphora resolution. Sagot and Fišer
(2011) present an automatic, language-independent method (tested
on Slovene and French) of extending a wordnet by “recycling” freely
available bilingual resources such as machine-readable dictionaries
and on-line encyclopaedias.

3 measuring semantic relatedness

Distributional measures of semantic relatedness (MSRs) use a word’s
context to help determine its meaning. Words which frequently appear
in similar contexts are assumed to have similar meaning. Such MSRs
usually re-weight contexts by considering some measure of their im-
portance, usually the association between a context and the terms it
contains. One of the most successful measures is Pointwise Mutual In-
formation (PMI). PMI increases the weight of contexts where a word
appears regularly but other words do not, and decreases the weight
of contexts where many words may appear. Essentially, it is unsuper-
vised feature weighting.
Kennedy and Szpakowicz (2011, 2012) discussed introducing su-

pervision into the process of context re-weighting. Their method iden-
tifies contexts where pairs of words known to be semantically related
frequently appear, and then uses a measure of association to re-weight
these contexts by how often they contain closely related words. The
method, very general, can work with any thesaurus as a source of
known synonym pairs and with measures of association other than
PMI. Here, this measure will help update Roget’s Thesaurus. This sec-
tion describes in general how this method is applied.
3.1 Building a word–context matrix for semantic relatedness
We used Wikipedia6 as a source of data and parsed it with MINI-
PAR (Lin 1998a). The choice of dependency triples instead of all
neighbouring words favours contexts which most directly affect a
word’s meaning. Examples of triples are 〈time, mod, unlimited〉 and

6A dump of August 2010.

[8]

Evaluation of Automatic Updates of Roget’s Thesaurus

〈time, conj, motion〉: “time” appears in contexts with the modifier “un-
limited” and in a conjunction with “motion”. Some 900 million de-
pendency triples generated by parsing Wikipedia took up ≈20GB.
Three matrices were built, one each for nouns, verbs and adjec-

tives/adverbs.7 For each word–relation–word triple 〈w1, r, w2〉we gen-
erated two word–context pairs (w1, 〈r, w2〉) and (w2, 〈w1, r〉). Words w1

and w2 could be of any part of speech. All relations r were considered,
with the direction of r retained.When w1 or w2 was an individual term,
it had to be a noun, verb, adjective or adverb, written in lower case
(MINIPAR only leaves proper nouns capitalised).
With these constraints we used all of the Wikipedia dump when

building the matrices for verbs and adjectives/adverbs, but only 50%
for nouns. This limit was chosen both because it was the most data
which could be held in a system with 4GB of RAM and because the
leftover data could be used in later evaluation.
Very infrequent words and contexts tend to be unreliable, and of-

ten appear because of spelling errors. We established thresholds for
how often a word or context needs to appear. We measured the qual-
ity of synonyms generated for a set of randomly selected words which
appear with different frequencies in the matrix. Next, in a series of
straightforward experiments, we selected a cutoff after which the qual-
ity of the synonyms does not appear to improve: 35 for nouns and for
adjectives, 10 for verbs. Also, an entry must appear in a context at least
twice for the context to count. Table 1 shows the counts of words and
contexts in each matrix before and after the cutoff. Non-zero entries
are cells with positive values. While the reduction of the matrix di-
mensionally was quite large, the decrease in the number of non-zero
entries was very small. So, we lost little information, but created a
much denser and more informative matrix.
3.2 Measures of semantic relatedness
We explored two complementary methods of re-weighting the word-
context matrix. An unsupervised method measures association be-
tween words and contexts; a supervised method uses known pairs of
synonyms in Roget’s Thesaurus to determine which contexts have a

7We have decided to work with MINIPAR’s labelling system, which does not
distinguish between adjectives and adverbs.

[9]

Alistair Kennedy, Stan Szpakowicz
Table 1:

Counts of the
rows, columns
and non-zero

entries
for each
matrix

POS Matrix Words Contexts Non-zero % non-zeroentries

Noun Full 359 380 2 463 001 30 994 968 0.0035%
(≥ 35) Cutoff 43 834 1 050 178 28 296 890 0.0615%

(% of full) (12.2%) (42.6%) (91.3%)

Verb Full 9 294 2 892 002 26 716 709 0.0994%
(≥ 10) Cutoff 7141 1 423 665 25 239 485 0.2483%

(% of full) (76.8%) (49.3%) (94.5%)

Adj/Adv Full 104 074 817 921 9 116 741 0.0107%
(≥ 35) Cutoff 17 160 360 436 8 379 637 0.1355%

(% of full) (16.5%) (44.1%) (91.9%)

higher tendency to contain pairs of known synonyms (Kennedy and
Szpakowicz 2011, 2012). Supervision can be conducted on each indi-
vidual context, or on groups of contexts with a syntactic relation in
common. It was found that supervision at the context level worked
best for nouns and verbs, while grouping contexts by relation worked
best for adjectives (Kennedy and Szpakowicz 2012).
Both supervised and unsupervised methods employ measures of

association; Kennedy and Szpakowicz (2012) found that in all cases
PMI was the most successful. These two kinds of methods can actu-
ally be complementary. It is possible to use the supervised method of
matrix re-weighting and then apply the unsupervised method on top
of it. This was generally found to yield the best results; so this is how
we report the results.
To evaluate this work, we created a random set of 1000 nouns,

600 verbs and 600 adjectives and generated lists of neighbouring
words for each of them.8 Those words were left out of the training
process. We then measured the precision – how many neighbouring
words appeared in the same SG, Paragraph or POS – in the 1987 Ro-
get’s Thesaurus. Precision was measured at several recall points: the
top 1, 5, 10, 20, 50 and 100 words retrieved from the 1987 Thesaurus.
Table 2 shows the results for the unsupervised baseline, using

PMI weighting and the results for the combined supervised methods
using synonyms from either the 1911 or the 1987 version of Roget’s

8There were not enough adverbs to construct such a set. Adverbs will be left
for future work.

[10]

Evaluation of Automatic Updates of Roget’s Thesaurus

Year POS Group Top Top Top Top Top Top
1 5 10 20 50 100

SG 0.358 0.236 0.179 0.130 0.084 0.059
N. Para 0.560 0.469 0.412 0.352 0.279 0.230

POS 0.645 0.579 0.537 0.490 0.423 0.374
SG 0.302 0.206 0.162 0.126 0.086 0.065

– V. Para 0.513 0.445 0.407 0.358 0.304 0.264
POS 0.582 0.526 0.487 0.444 0.396 0.357
SG 0.345 0.206 0.156 0.115 0.069 0.046

Adj. Para 0.562 0.417 0.363 0.304 0.231 0.185
POS 0.600 0.480 0.431 0.368 0.295 0.247
SG 0.358 0.225 0.175 0.132 0.084 0.058

N. Para 0.568 0.472 0.418 0.361 0.286 0.234
POS 0.659 0.588 0.548 0.501 0.431 0.382
SG 0.310 0.207 0.163 0.124 0.086 0.064

1911 V. Para 0.550 0.456 0.414 0.362 0.307 0.268
POS 0.605 0.533 0.500 0.455 0.401 0.362
SG 0.343 0.209 0.157 0.114 0.069 0.046

Adj. Para 0.563 0.422 0.365 0.304 0.232 0.184
POS 0.602 0.484 0.431 0.368 0.296 0.247
SG 0.359 0.229 0.177 0.134 0.085 0.059

N. Para 0.564 0.471 0.419 0.365 0.285 0.234
POS 0.651 0.584 0.549 0.501 0.430 0.381
SG 0.308 0.211 0.167 0.127 0.087 0.064

1987 V. Para 0.525 0.457 0.417 0.362 0.305 0.266
POS 0.588 0.537 0.499 0.453 0.399 0.360
SG 0.343 0.208 0.158 0.115 0.069 0.046

Adj. Para 0.565 0.421 0.365 0.304 0.232 0.184
POS 0.603 0.483 0.431 0.367 0.296 0.247

Table 2:
Evaluation
results for
the combined
measure
with PMI.
Significant
improvement
over unsuper-
vised PMI
in bold,
significantly
worse results
in italics

Thesaurus as training data. Statistically significant improvement over
the baseline appears in bold, while significantly worse results are ital-
icised; we applied Student’s t-test. With a few small exceptions, we
found that the supervised system performs better. The number of times
the scores were better, unchanged, or worse can be found in Table 3.
In general, we concluded that the combination of supervised and un-
supervised context weighting created a superior MSR, better suited to

[11]

Alistair Kennedy, Stan Szpakowicz
Table 3:

The number of statistically
improved/unaffected/

decreased results for both
sources of training data

Resource Nouns Verbs Adjectives All
1911 Roget’s 8/8/2 6/12/0 2/16/0 16/36/2
1987 Roget’s 9/8/1 7/11/0 1/17/0 17/36/1

updating Roget’s Thesaurus than the unsupervised method alone. We
used the supervised method of generating lists of related words when
adding new terms to the Thesaurus.

4 placing new words
in roget’s thesaurus

In this section, we evaluate a variety of systems for adding new words
to Roget’s Thesaurus. The baseline method places a word in the same
POS, Paragraph and Semicolon Group as its closest neighbour in the
Thesaurus. We improve on this baseline usingmultiple words to deduce
a better location or better locations.
4.1 Methods of adding new words
We took advantage of the hierarchy of Roget’s Thesaurus to select the
best place to add words. We found first the POS, then the Paragraph,
then the SG.9 We refer to the word to be added to Roget’s Thesaurus
as the target word. A word already in the Thesaurus may be an anchor,
acting as a “magnet” for a given target. For every target word t, we
generated a list of nearest neighbours NN(t), along with similarity
scores, and identified anchors using NN(t).
We experimented with three methods, evaluated against the fol-

lowing baseline: the target t is placed in the same POS, Paragraph and
SG as wi, where wi is the first word in NN(t) found in Roget’s Thesaurus.
Since wi may be polysemous, t can go into multiple locations in Ro-
get’s Thesaurus. Often wi will be w1 if the first neighbour of t is found
in the Thesaurus. For the values in Table 4, this baseline has been cal-
culated using the MSRs built with combined weighting, trained with
the 1911 or the 1987 Thesaurus. The results show one number for the
count of POSs, Paragraphs and SGs where the target t was placed and
the precision of placing the word into the POSs, Paragraphs and SGs.

9 Identifying the POS effectively gives us the correct Head as well.

[12]

Evaluation of Automatic Updates of Roget’s Thesaurus

The first method is to apply a nearest-neighbour model. X nearest
neighbours from NN(t) are identified for each target word t. If W of
these X words appear in the same Roget’s grouping, the target word is
placed there. It is a weakness that this method considers – somewhat
unrealistically – the same number of neighbours for every target word.
In the second method, scores replace rank. Words with scores of Y

or higher are identified. If W of them are in the same Roget’s grouping,
the target word is placed there. This allows for varying numbers of
neighbours, but similarity scores partially depend on the target word,
so the same score between two different word pairs may indicate dif-
ferent degrees of similarity. A very frequent word which appears in
many contexts may have more highly related neighbours than a word
which appears in few contexts. Such a frequent word may thus have
inordinately many synonyms.
The third method considers relative scores. It assumes that the

first similar word w1 is very closely related to t, then takes all syn-
onyms within Z% of the similarity score for w1. This means that if
wi has a score of within Z% of w1, then it can be used as an anchor
of t for determining the correct Roget’s grouping. Once again, if W of
these words in the same Roget’s grouping have a relative score of Z%
or higher, then the target word can be placed there as well.
We also considered how to optimise the measures. In placing

words into a Roget’s grouping, the method has two parameters to op-
timise, W and one of X , Y or Z . One possibility is to base F-measure
on the precision with which words are placed in Roget’s Thesaurus and
recall on the number of words from the test set which could actually
be placed. Another possibility of counting recall would be to iden-
tify the number of places where a word appears in the Thesaurus and
see in how many of them it was placed. This measure has some prob-
lems.
For one, rare senses are not well represented by the vectors in

the word–context matrix, so synonyms for only the most dominant
senses will be found. Also, an even balance of precision and recall is
not appropriate for this task. Adding incorrect words could be quite
detrimental, so we assume that identifying the POS must weight preci-
sion more highly than recall. We set a 0.33 ratio of recall to precision
(an F0.33 measure rather than F1). Once the POS has been identified,
the Paragraph and SG will be identified using the F1 measure. The

[13]

Alistair Kennedy, Stan Szpakowicz
Table 4:

Baseline for identifying
the POS of a word on

the tuning and test data

Year POS Data Words P R F0.33

1987

Noun Tuning 1000 0.281 0.486 0.293
Test 1000 0.295 0.487 0.307

Verb Tuning 600 0.204 0.468 0.216
Test 600 0.245 0.455 0.257

Adjective Tuning 600 0.250 0.460 0.262
Test 600 0.232 0.435 0.244

1911

Noun Tuning 817 0.232 0.296 0.237
Test 840 0.267 0.344 0.273

Verb Tuning 542 0.167 0.271 0.174
Test 538 0.196 0.297 0.203

Adjective Tuning 489 0.246 0.288 0.249
Test 497 0.201 0.262 0.206

choice of F0.33 is somewhat arbitrary, but favouring precision over
recall should mostly bring advantages. A high-precision system is, in
theory, more likely to place words in the correct Roget’s grouping at
the cost of lower recall. Any method of adding new words to Roget’s
Thesaurus, however, could be run iteratively and thus make up for the
lower recall. Rather than attempting to add a lot of words in one pass,
our method will add fewer words in each of multiple passes.
When using this method to actually add new words, sometimes

it is necessary to create new Paragraphs or SGs. If a POS is identified
but no Paragraph, then a new Paragraph will be created. Likewise, if
a Paragraph but not an SG can be identified, then the word is placed
in a new SG in the selected Paragraph.
The methods were tuned on the same dataset as that used to eval-

uate the MSR in Section 3. For evaluation, we constructed a test set
equal in size to the tuning set. We evaluated all methods on the task of
identifying the correct POS to place a target word t. The best method
is then applied to the task of placing a word in the appropriate Para-
graph and SG.
4.2 Baseline
Table 4 shows the results of the baseline experiments, measured

for the 1911 and 1987 versions of Roget’s Thesaurus. The former did
not contain all the words for evaluation that the latter did – hence

[14]

Evaluation of Automatic Updates of Roget’s Thesaurus

1987 1911
Parameter POS X/Y /Z W -POS X/Y /Z W -POS

Noun 26 10 10 4
X Verb 22 7 6 3

Adjective 19 6 8 3
Noun .08 15 .07 14

Y Verb .09 9 .13 2
Adjective .13 3 .10 4
Noun .82 4 .93 2

Z Verb .89 3 .98 2
Adjective .82 3 .91 2

Table 5:
Optimal values
for parameters
X (the number of
nearest neighbours),
Y (the minimal
relatedness score)
and Z (the relative
score)

Year POS Data Words P R F0.33

1987

Noun Tuning 1000 0.746 0.267 0.633
Test 1000 0.758 0.262 0.637

Verb Tuning 600 0.565 0.285 0.514
Test 600 0.536 0.252 0.482

Adjective Tuning 600 0.658 0.273 0.577
Test 600 0.590 0.233 0.512

1911

Noun Tuning 817 0.613 0.171 0.488
Test 840 0.659 0.182 0.522

Verb Tuning 542 0.484 0.131 0.381
Test 538 0.471 0.097 0.340

Adjective Tuning 489 0.571 0.184 0.472
Test 497 0.503 0.141 0.400

Table 6:
Precision, Recall and
F0.33-measure when
optimising for X , the
number of nearest
neighbours

the differences in word counts. The results show a small advantage of
adding words to the 1987 Thesaurus over the 1911 version.
4.3 Tuning parameters for adding new words
Table 5 shows the parameters, optimised for F0.33, for the three non-
baseline methods. Tables 6–8 present the results on the tuning and
test data.
When optimising for the X nearest neighbours (Table 6), the re-

sults show a large improvement over the baseline (Table 4). The results
for nouns were actually better on the test dataset than on tuning data,

[15]

Alistair Kennedy, Stan Szpakowicz
Table 7:

Precision, Recall and
F0.33-measure when
optimising for Y ,

the minimal
relatedness score

Year POS Data Words P R F0.33

1987

Noun Tuning 1000 0.596 0.182 0.486
Test 1000 0.507 0.160 0.417

Verb Tuning 600 0.477 0.078 0.316
Test 600 0.573 0.062 0.313

Adjective Tuning 600 0.529 0.122 0.396
Test 600 0.421 0.103 0.322

1911

Noun Tuning 817 0.420 0.120 0.336
Test 840 0.367 0.110 0.297

Verb Tuning 542 0.211 0.096 0.189
Test 538 0.234 0.063 0.184

Adjective Tuning 489 0.480 0.084 0.326
Test 497 0.274 0.066 0.209

but somewhat worse for verbs and adjectives. As with the baseline,
the results were better for the 1987 Roget’s Thesaurus than the 1911
version. Generally about one third to half of the words found in the
top X needed to be present in the same Roget’s grouping in order to
accurately select the correct grouping.
Table 7 shows optimising word placement with scores Y or

higher. The optimal scores were noticeably lower than when we op-
timised for X nearest neighbours (Table 6). The minimum score Y
appeared to be lower for nouns than for verbs or adjectives, though
more words were required in order to identify the Roget’s grouping
positively. This method is not as successful as simply selecting the X
nearest neighbours. For verbs added to the 1911 Roget’s Thesaurus,
there was actually no improvement over the baseline (Table 4). This
is the least successful method of the three.
Table 8 reports on optimising for the relative score Z . We found

that most neighbouring words had to be within 80–90% of the closest
neighbour in terms of score. This improved the results noticeably over
a simple selection of a hard score cut-off (Table 7). Nonetheless, we
did not improve on simply taking the X nearest neighbours (Table 6).
For determining relatedness, it would appear, rank is often a feature
more important than score. With this in mind, we applied the nearest-
neighbour function using X to find the best parameters for identifying
the POS, Paragraph and SG. The parameter W shown in Table 5 was

[16]

Evaluation of Automatic Updates of Roget’s Thesaurus

Year POS Data Words P R F0.33

1987

Noun Tuning 1000 0.643 0.190 0.519
Test 1000 0.595 0.215 0.506

Verb Tuning 600 0.468 0.147 0.384
Test 600 0.492 0.163 0.410

Adjective Tuning 600 0.512 0.215 0.450
Test 600 0.463 0.200 0.409

1911

Noun Tuning 817 0.468 0.200 0.413
Test 840 0.542 0.219 0.473

Verb Tuning 542 0.438 0.118 0.344
Test 538 0.389 0.091 0.293

Adjective Tuning 489 0.478 0.145 0.389
Test 497 0.434 0.129 0.351

Table 8:
Precision, Recall and
F0.33-mesure when
optimising for Z ,
the relative score

Year POS X W -POS W -Para W -SG
Noun 26 10 5 2

1987 Verb 22 7 4 3
Adjective 19 6 4 2
Noun 10 4 3 3

1911 Verb 6 3 2 2
Adjective 8 3 2 2

Table 9:
Optimal parameters for X
(the number of nearest neighbours)
and W (neighbours needed to insert
a word into a Roget’s grouping) at
the POS, Paragraph and SG levels

for the POS level. We have three versions, W -POS, W -Para and W -SG
for the POS, Paragraph and SG respectively.
Table 9 shows the optimal values of X ,W -POS,W -Para andW -SG.

The same value of X was used for identifying groupings at the POS,
Paragraph and SG levels. There is a bit of variance in the measures.
The values of W -POS, W -Para and W -SG decrease as the groupings
become smaller. To identify the correct SG, only 2 or 3 words were
used. For the 1911 Roget’s Thesaurus, the same number of words were
used to identify the Paragraph as the SG. More words could be used
to identify the POS for the 1987 Thesaurus than for the 1911 version.
Tables 10 and 11 show the precision, recall and F1 measure at

the POS, Paragraph and SG level for the 1987 and 1911 Thesauri. The
results show clearly that the F1 measure is highest when identifying
the Paragraph level; this is largely because the POS level is optimised
for the F0.33 measure. Once again, the scores for the 1987 version

[17]

Alistair Kennedy, Stan Szpakowicz
Table 10:

Identifying best
POS, Paragraph
and SG using

optimised values
for X , W -POS,

W -Para and
W -SG, using the
F1 measure for
evaluation on

the 1987 Roget’s
Thesaurus

Data RG P R F1

Noun

Tuning POS 306/410 (0.746) 267/1000 (0.267) 0.393
Tuning Para 225/402 (0.560) 189/267 (0.708) 0.625
Tuning SG 104/664 (0.157) 92/189 (0.487) 0.237
Test POS 304/401 (0.758) 262/1000 (0.262) 0.389
Test Para 234/416 (0.562) 196/262 (0.748) 0.642
Test SG 101/659 (0.153) 93/196 (0.474) 0.232

Verb

Tuning POS 227/402 (0.565) 171/600 (0.285) 0.379
Tuning Para 186/413 (0.450) 137/171 (0.801) 0.577
Tuning SG 34/129 (0.264) 32/137 (0.234) 0.248
Test POS 185/345 (0.536) 151/600 (0.252) 0.343
Test Para 148/339 (0.437) 114/151 (0.755) 0.553
Test SG 18/103 (0.175) 17/114 (0.149) 0.161

Adj

Tuning POS 227/345 (0.658) 164/600 (0.273) 0.386
Tuning Para 182/312 (0.583) 136/164 (0.829) 0.685
Tuning SG 75/381 (0.197) 63/136 (0.463) 0.276
Test POS 193/327 (0.590) 140/600 (0.233) 0.334
Test Para 152/294 (0.517) 116/140 (0.829) 0.637
Test SG 59/351 (0.168) 51/116 (0.440) 0.243

tend to be better than those for the 1911 version. Most of the time it
is possible to identify the correct POS with at least 40% accuracy. The
recall for the 1987 Thesaurus was 0.233 or higher at the POS level.
This is important, because it indicates how many new word additions
to the Thesaurus can be expected. For the 1911 Thesaurus, the results
tend to be much lower, with scores from 0.097 to 0.182 on the test set.
The number for verbs is very low; for nouns and adjectives it is better,
but still lower than the corresponding results for the 1987 thesaurus.
4.4 Adding words to the Thesaurus
We now show how the method described in Section 4.3 adds words to
Roget’s Thesaurus. In practice, a few small modifications were needed.
First, we only let a word be placed in a POS if it was not already
present in either that POS or in another POS within the same Head
Group. This reduced the possibility of entering antonyms, which may
be distributionally similar, into the same POS. Within each POS, we
let a word be placed only in one Paragraph. We also did not allow

[18]

Evaluation of Automatic Updates of Roget’s Thesaurus

Data RG P R F1

Noun

Tuning POS 157/256 (0.613) 140/817 (0.171) 0.268
Tuning Para 89/163 (0.546) 83/140 (0.593) 0.568
Tuning SG 31/62 (0.500) 29/83 (0.349) 0.411
Test POS 162/246 (0.659) 153/840 (0.182) 0.285
Test Para 83/155 (0.535) 78/153 (0.510) 0.522
Test SG 29/55 (0.527) 28/78 (0.359) 0.427

Verb

Tuning POS 76/157 (0.484) 71/542 (0.131) 0.206
Tuning Para 55/136 (0.404) 53/71 (0.746) 0.525
Tuning SG 24/86 (0.279) 24/53 (0.453) 0.345
Test POS 57/121 (0.471) 52/538 (0.097) 0.160
Test Para 39/112 (0.348) 35/52 (0.673) 0.459
Test SG 22/76 (0.289) 19/35 (0.543) 0.378

Adj

Tuning POS 109/191 (0.571) 90/489 (0.184) 0.278
Tuning Para 80/188 (0.426) 71/90 (0.789) 0.553
Tuning SG 23/107 (0.215) 22/71 (0.310) 0.254
Test POS 79/157 (0.503) 70/497 (0.141) 0.220
Test Para 46/148 (0.311) 42/70 (0.600) 0.409
Test SG 14/91 (0.154) 13/42 (0.310) 0.206

Table 11:
Identifying best
POS, Paragraph
and SG using
optimised values
for X , W -POS,
W -Para and
W -SG, using the
F1 measure for
evaluation on
the 1911 Roget’s
Thesaurus

adding the same word to multiple SGs within the same Paragraph or
indeed to multiple Paragraphs in the same POS.
Once a new word has been added to Roget’s Thesaurus, it can be

used as an anchor to help add subsequent words. We built two updated
versions of each Thesaurus, one with a single pass to update the The-
saurus, another with five updating passes. We considered each word
in each matrix, excluding stop words,10 to be a target and generated
a list of the nearest 100 neighbours for each of these words.11 It was
from these lists that we attempted to add new words to the Thesaurus.
Several measures are of interest when adding new words to the

Thesaurus. The first is the number of times a target word has suffi-
cient X and W values to be placed in Roget’s Thesaurus, regardless of
whether it was already present. The second measure is the total num-

10We applied a 980-element union of five stop lists first used in Jarmasz
(2003): Oracle 8 ConText, SMART, Hyperwave, a list from the University of
Kansas and a list from Ohio State University.

11Only the top X of those 100 helped identify the best place for a new word.

[19]

Alistair Kennedy, Stan Szpakowicz

ber of words added to the Thesaurus. The third measure is the number
of unique words added. These two are likely to be similar since most
often a target word is only added to a single location in the Thesaurus.
The fourth measure counts new words whose derivational form al-
ready exists in the Thesaurus. The fifth measure counts new words
which have no derivationally related words in the Thesaurus. The last
measure is the number of Heads where a new word was added. The
results for all five passes can be seen in Table 12.
In addition to the five passes of adding new words, we experi-

mented with random addition. All process parameters are the same, up
to the point when our system determines a location where it believes
a word belongs. Before checking whether that word already appears
at this location, it is swapped for a random word. The counts appear
in Table 13. Since the random word is selected after a location has
been decided, it is very rare for this word already to be in that Head
Group. As a result, the number of attempted placements is very close
to the total number of words added, much closer than for the counts
from Table 12.
Ultimately three updated version each of the 1911 and 1987 ver-

sions of the Thesaurus were created, those updated with one pass, five
passes and one random pass – X1, X5 and R in Table 14. The up-
dated versions are referred to as 1911X1, 1911X5, 1911R, 1987X1,
1987X5 and 1987R. The new thesauri have been evaluated manually
(Section 5) and through selected NLP applications (Section 6).
Another statistic to consider is the total number of words, SGs

and Paragraphs added to each version of Roget’s Thesaurus, shown in
Table 14. Overall, some 5500 new words were added to 1911X5 and
9600 to 1987X5. In the 1911 Thesaurus, approximately two thirds of
the new words were placed in a new SG, while about a quarter were
added to a new Paragraph. For the 1987 Thesaurus, a little under half
of the new words were placed in new SGs, while around one fifth were
added to new Paragraphs.

5 manual evaluation

To determine the quality of the additions reliably, one needs manual
evaluation. In the next subsection, we describe several possibilities
and explain how we chose our evaluation method.

[20]

Evaluation of Automatic Updates of Roget’s Thesaurus

P Year POS Matches Total Unique Derived New Heads
Words Words Words Words Affected

1

Nouns 6755 1510 1414 175 98 206
1987 Verbs 2870 893 735 52 45 129

Adj 3053 858 713 15 10 183
Nouns 3888 1259 1193 148 68 274

1911 Verbs 1069 407 378 22 19 133
Adj 1430 539 480 18 16 198

2

Nouns 8388 774 742 37 14 139
1987 Verbs 4335 747 653 23 16 92

Adj 4412 612 549 4 4 114
Nouns 5315 762 719 65 13 164

1911 Verbs 1530 247 238 14 14 71
Adj 2083 287 262 6 5 95

3

Nouns 9213 499 478 16 6 88
1987 Verbs 5303 600 543 16 14 61

Adj 5275 532 463 7 2 80
Nouns 6109 549 520 35 11 100

1911 Verbs 1761 147 142 6 6 36
Adj 2393 205 191 5 4 57

4

Nouns 9767 384 378 11 2 60
1987 Verbs 6068 523 496 11 9 49

Adj 5926 451 404 6 6 55
Nouns 6652 417 395 20 5 76

1911 Verbs 1898 106 105 0 0 21
Adj 2571 139 129 1 0 35

5

Nouns 10210 330 324 12 2 49
1987 Verbs 6689 464 422 6 3 39

Adj 6509 424 382 3 1 38
Nouns 7026 295 288 22 10 54

1911 Verbs 1979 76 74 0 0 14
Adj 2710 119 115 1 0 22

Table 12:
New words
added after the
1st , 2nd , 3rd , 4th

and 5th pass (P)

[21]

Alistair Kennedy, Stan Szpakowicz
Table 13:

Random words
added after
one pass

Year POS Matches Total Unique Derived New Heads
Words Words Words Words Affected

Nouns 6755 6189 5007 3923 3593 306
1987 Verbs 2870 2238 1366 734 715 186

Adj 3053 2631 1670 1547 1488 278
Nouns 3888 3718 3203 2736 2554 379

1911 Verbs 1069 946 759 468 465 195
Adj 1430 1349 1051 952 926 276

Table 14:
New Paragraphs,
SGs and words
in the updated
versions of

Roget’s Thesaurus

Resource New New New
Paragraphs SGs Words

1911X1 633 1442 2209
1911X5 1851 3864 5566
1911R 1477 3803 6018
1987X1 653 1356 3261
1987X5 2063 4466 9601
1987R 1672 3731 11058

5.1 Methods considered
The first evaluation method would test how well people can identify
newly added words. Given a set of Paragraphs from Roget’s Thesaurus,
the annotator would be asked to identify which words she thought
were added automatically and which were originally in the Thesaurus.
The percentage of times the annotator correctly identifies newly added
words can be used to evaluate the additions. If a word already in the
Thesaurus were as likely to be picked as one newly added, then the
additions would be indistinguishable – an ideal outcome. We could
also perform a “placebo test”: the annotator gets a Paragraph where
no words have been added, and decides whether to remove any words
at all. A drawback is that the annotator may be more likely to select
words whose meaning she does not know, especially in the 1911 The-
saurus, where there are many outdated words. Even the 1987 version
has many words infrequently used today.
The second method of manual evaluation we considered was to

ask the annotator to assign a new word to the correct location in the
Thesaurus. A weighted edit-distance score could then tell how many
steps the system’s placement is from that location. We would also mea-

[22]

Evaluation of Automatic Updates of Roget’s Thesaurus

Score Roget’s Paragraph
Head 25: Agreement, noun

fitness, aptness;
relevancy;
pertinence, pertinencey;

(word fits sortance;
in this SG) case in point;

aptitude, coaptation, propriety, applicability,
admissibility, commensurability, compatibility;
cognation.

Figure 3:
Example of the
annotator task
for adding
a word to
a Paragraph

sure how often the annotator needed to create a new Paragraph or SG
for the word, and how many SGs and Paragraphs were automatically
created but should not have been. Such a method would be labour-
intensive: the annotator would need to read an entire Head before
deciding how far a word is from its correct location. Larger Heads,
where most new words are added, could contain thousands of words.
Identifying whether there is an SG more appropriate for a given word
could also take a fair bit of effort. It might not be feasible to annotate
enough data to perform a meaningful evaluation.
The strategy we finally adopted combines elements of the two pre-

ceding methods. The first step of this evaluation exercise is to decide
whether new words added to an existing SG or a new SG in an existing
Paragraph are in the correct location. The annotator is given the name
of the Head, the part of speech and the text of the Paragraph where the
word has been added. The new term is specially highlighted, and other
terms in its SG are in bold. The annotator is asked to decide whether
the new word is in the correct SG, wrong SG but correct Paragraph,
wrong Paragraph but correct Head, or incorrect Head. Figure 3 shows
a sample question.
The second evaluation step determines whether a word added to

a new Paragraph is in the correct Head. As context, we provide the
first word in every Paragraph in the same POS. It is too onerous to de-
termine precisely in which SG or Paragraph a new word would belong,
because some POSs are very large. Instead, we only ask whether the
word is in the correct Head. A sample question appears in Figure 4.

[23]

Alistair Kennedy, Stan Szpakowicz
Figure 4:

Example of the
annotator task
for adding a
word to a POS

Score Roget’s Paragraph
Head 25: Agreement, noun

(closely related) agreement.. / conformity.. / fitness.. / adaption.. /
consent;

We manually evaluated only the additions to the 1911 Roget’s
Thesaurus. As Paragraph size, we allowed at most 250 characters, thus
limiting the number of words the annotators had to look at. The evalu-
ation was completed by the first author and four volunteers. We chose
enough samples to guarantee a 5% confidence interval at a 95% con-
fidence level.12 We also included a high baseline and a low baseline:
words already present in the Thesaurus13 and words randomly added
to it. There are enough samples from the baselines to guarantee a 5%
confidence interval at a 95% confidence level if the samples from all
three parts of speech are combined, though individually the confi-
dence interval exceeds 5%.
Every new word in 1911X1 appears in 1911X5,14 so a percentage

of the samples needed to evaluate 1911X5 can be selected from the
samples used to evaluate 1911X1. We thus must evaluate only a selec-
tion of the words from 1911X5 not present in 1911X1. We randomly
selected words from the sample set for 1911X1 to make up the rest of
the samples for the 1911X5 evaluation.
Random selection was made from each annotator’s dataset: 40

tests for adding words to existing Paragraphs and 40 tests for adding
words to new Paragraphs. These data points were added to each an-
notator’s test sets so that there would be an overlap of 200 samples
for each experiment, on which to calculate inter-annotator agreement.
The positive examples are words already present in Roget’s Thesaurus.
The negative examples are words randomly placed in the Thesaurus.

12http://www.macorr.com/sample-size-calculator.htm
13They are referred to as “pre-existing” in Tables 15–16, in Figures 5–6 and

in the discussion in Section 5.2
14We remind the reader that X1 and X5 denote updating with one pass and

five passes respectively.

[24]

Evaluation of Automatic Updates of Roget’s Thesaurus

5.2 Manual annotation results
Tables 15 and 16 show the combined manual annotation results for
new words added to existing Paragraphs and for new Paragraphs. A
number of interesting observations can be taken from Table 15. The
results are summarised in Figure 5. In the case of pre-existing exam-
ples, around 60% of the time the annotators could correctly determine
when a word belonged in the SG in which it was found. The annota-
tors agreed on the correct Head approximately 80–90% of the time.
One reason why annotators might believe the words belonged in a
different grouping was that many of the words were difficult to un-
derstand. A high number of words which the annotators could not
label fell into the pre-existing category. For the randomly assigned
words, 70–80% of the time the annotators correctly stated that those
words did not belong in that Head. For nouns there were numerous
cases when the annotators could not answer. It would appear that
the meaning of words pre-existing in the Thesaurus, and of those ran-
domly added, is harder to determine than the meaning of automati-
cally added words.
We now turn to the quality of additions. The distribution of

1911X1 scores in Table 15 is very close to that of the distribution
for words pre-existing in Roget’s Thesaurus. This suggests that after
one pass the added words are nearly indistinguishable from those al-
ready in the Thesaurus. This is very good news: it confirms that our
process of updating the lexicon has succeeded. The distribution of
1911X5 scores suggests that those additions were less reliable. The
scores are worse than for 1911X1, but still much closer to the pre-
existing baseline than the random baseline. Multiple passes increase
the error, but not by much.
The results are a bit different when it comes to inserting words

into new Paragraphs. These results are summarised in Figure 6. Once
again the high and low baselines appeared to be fairly easy for the
annotators, who usually got around 80% of the questions right. Also,
a solid majority of the unknown words appeared in these two groups.
The additions to 1911X1 showed high scores, too, comparable to the
high baseline, sometimes even exceeding it slightly. It may be that for
this baseline the annotators were unaware of the sense of some words,
so they mistakenly labelled those words as incorrect.

[25]

Alistair Kennedy, Stan Szpakowicz

Table 15:
Manual

evaluation
results

for words added
to previously

existing
Paragraphs

Task POS Correct Correct Correct Wrong N/ASG Para Head Head
Pre- Noun 117 (.600) 20 (.103) 22 (.113) 21 (.108) 15 (.077)
existing Verb 59 (.562) 14 (.133) 10 (.095) 16 (.152) 6 (.057)
Words Adj. 55 (.611) 16 (.178) 6 (.067) 7 (.078) 6 (.067)

Random
Words

Noun 6 (.031) 2 (.010) 20 (.103) 144 (.738) 23 (.118)
Verb 9 (.086) 2 (.019) 18 (.171) 73 (.695) 3 (.029)
Adj. 3 (.033) 4 (.044) 8 (.089) 71 (.789) 4 (.044)
Noun 159 (.624) 52 (.204) 22 (.086) 19 (.075) 3 (.012)

1911X1 Verb 92 (.511) 37 (.206) 24 (.133) 24 (.133) 3 (.017)
Adj. 135 (.628) 44 (.205) 17 (.079) 17 (.079) 2 (.009)
Noun 181 (.576) 59 (.188) 44 (.140) 25 (.080) 5 (.016)

1911X5 Verb 107 (.412) 45 (.173) 53 (.204) 52 (.200) 3 (.012)
Adj. 147 (.507) 52 (.179) 32 (.110) 56 (.193) 3 (.010)

Figure 5:
Evaluation on
words added to

previously
existing

Paragraphs
in the 1911

Roget’s Thesaurus

...

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Pre-existing noun

.

Pre-existing verb

.

Pre-existing adjective

.

Random noun

.

Random verb

.

Random adjective

.

1911X1 noun

.

1911X1 verb

.

1911X1 adjective

.
1911X5 noun

.1911X5 verb .1911X5 adjective .

. ..Correct SG . ..Correct Para . ..Correct Head

. ..Wrong . ..NA

[26]

Evaluation of Automatic Updates of Roget’s Thesaurus

Task POS Correct Head Wrong Head N/A
Pre- Noun 158 (.810) 33 (.169) 4 (.021)
existing Verb 87 (.829) 17 (.162) 1 (.010)
Words Adj 75 (.833) 14 (.156) 1 (.011)

Random
Words

Noun 18 (.092) 151 (.774) 26 (.133)
Verb 17 (.162) 83 (.790) 5 (.048)
Adj 13 (.144) 74 (.822) 3 (.033)
Noun 189 (.859) 27 (.123) 4 (.018)

1911X1 Verb 50 (.833) 10 (.167) 0 (.000)
Adj 48 (.873) 7 (.127) 0 (.000)
Noun 207 (.674) 94 (.306) 6 (.020)

1911X5 Verb 64 (.533) 55 (.458) 1 (.008)
Adj 61 (.616) 37 (.374) 1 (.010)

Table 16:
Manual
evaluation
results for words
added to
new Paragraphs

...

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Pre-existing noun

.

Pre-existing verb

.

Pre-existing adjective

.

Random noun

.

Random verb

.

Random adjective

.

1911X1 noun

.

1911X1 verb

.

1911X1 adjective

.
1911X5 noun

.1911X5 verb .1911X5 adjective .

. ..Correct Head . ..Wrong Head . ..NA

Figure 6:
Evaluation on
words added to
new Paragraphs
in the 1911
Roget’s Thesaurus

[27]

Alistair Kennedy, Stan Szpakowicz

The 1911X5 results – multi-pass update – clearly fall a fair dis-
tance from the scores for 1911X1. It would appear that multiple
passes introduce considerable error into the Thesaurus, when words
are placed into new Paragraphs. This is in stark contrast to the re-
sult of adding words to existing Paragraphs, when the drop in scores
between 1911X1 and 1911X5 was relatively small.
5.3 Inter-annotator agreement
Each annotator was given 200 examples which reoccurred between
the annotations. Inter-annotator agreement was measured on these
overlaps, using Krippendorff’s α (Krippendorff 2004), a measure de-
signed to work with various kinds of data, including nominal, ordinal
and interval annotations. We used ordinal in our experiments. The
value of αwas calculated for adding words both to existing Paragraphs
and to new Paragraphs. When adding words to an existing Paragraph,
we obtained a score of α = 0.340; when adding words to new Para-
graphs, the score was α = 0.358. Such scores are often considered a
“fair” amount of agreement (Landis and Koch 1977).

6 automatic evaluation

We now examine how the various versions of Roget’s Thesaurus, as well
as WordNet 3.0, perform on several NLP applications. The problems
we selected are designed to evaluate Roget’s Thesaurus on a diverse
cross-section of NLP tasks: synonym identification, pseudo-word-sense
disambiguation and SAT-style analogy problems. We useWordNet 3.0
and all available versions of the Thesaurus: 1911, 1911X1, 1911X5,
1911R, 1987, 1987X1, 1987X5 and 1987R. Although the updated ver-
sions of Roget’s Thesaurus are larger than the original, and new words
have been added with relatively high precision, there is no a priori
guarantee that they will give higher scores on any NLP applications.
Before we harness these resources into NLP applications, we will very
briefly compare the structure of Roget’s Thesaurus to that ofWordNet.15
A major difference betweenWordNet and Roget’s Thesaurus is that

the former is built around a hypernym hierarchy of arbitrary depth.
Words appear at all levels, rather than only at the bottom level, as in

15For a detailed presentation of WordNet, see (Fellbaum 1998).

[28]

Evaluation of Automatic Updates of Roget’s Thesaurus

Roget’s Thesaurus. Words are grouped into synsets. Synsets are similar
to SGs in the Thesaurus, but are often smaller and contain only close
synonyms. Synsets are linked by a variety of explicitly named semantic
relations, while in the Thesaurus the SGs in a Paragraph are loosely
related by a variety of possible implicit relations.
6.1 Synonym identification
Synonym identification is a means of evaluating the quality of newly
added words in Roget’s Thesaurus. In this problem one is given a term q
and seeks its best synonym s in a set of words C . The system from Jar-
masz and Szpakowicz (2003b, 2004) identifies synonyms using the
Thesaurus as the lexical resource. This method relies on a simple func-
tion which counts the number of edges in the Thesaurus between q and
words in C . In Equation 1, 18 is the highest possible distance in the
Thesaurus, so the closest words have the highest scores (edgesBetween
simply counts the edges). We treat a word X as a lexeme: a set of word
senses x ∈ X .

edgeScore(X , Y) = max
x∈X , y∈Y

[18− edgesBetween(x , y)] (1)

The best synonym is selected in two steps. First, we find a set of
terms B ⊆ C with the maximum relatedness between q and each word
sense x ∈ C (Equation 2).

B =
�

x | argmax
x∈C

edgeScore(x , q)
	 (2)

Next, we take the set of terms A ⊆ B where each a ∈ A has the
largest number of shortest paths between a and q (Equation 3).

A=
�

x | argmax
x∈B

numberOfShortestPaths(x , q)
	 (3)

The correct synonym s has been selected if s ∈ A and |A|= 1. Often
the sets A and B will both contain one item, but if s ∈ A and |A| > 1,
there is a tie. If s /∈ A, the selected synonyms are incorrect. If an n-word
phrase c ∈ C is found, its words c1, c2..., cn are considered in turn; the
ci closest to q is chosen to represent c. A sought word can be of any
part of speech, though only some WordNet-based methods allow for
adjectives or adverbs, and none can measure distance between differ-
ent parts of speech. In these problems, we do not consider a word and
its morphological variant to be the same.

[29]

Alistair Kennedy, Stan Szpakowicz

We generated synonym selection problems specifically for words
newly added to Roget’s Thesaurus. We took all words which appeared
either in 1987X5 or in 1911X5, but were not present in the original
1987 or 1911 versions, and used them as query words q for the new
problems. We then found in WordNet synsets which contain at least
one of q’s synonyms found in the original (not updated) version of
the Thesaurus. We completed the problem by finding in the original
Thesaurus three detractors from q’s co-hyponym synsets. This was done
for nouns and for verbs, but not for adjectives, for whichWordNet does
not have a strong hypernym hierarchy.
Four different versions of this problem were generated for the

1911 and 1987 Roget’s Thesauri using nouns and verbs. The linking
structure for adjectives in WordNet precludes the creation of a data
set in this manner. We present the final scores as precision and recall.
The precision excludes questions where q is not in Roget’s Thesaurus,
and recall is the score over the entire data set. Precision is thus the
proportion of correct guesses out of the questions attempted, while
recall is the proportion of correct guesses out of the maximum num-
ber of attempted questions. This method of evaluating such work was
proposed by Turney (2006).
Table 17 shows the results for nouns and verbs added to both the

1987 and the 1911 versions of Roget’s Thesaurus. The results are quite
similar for all four data sets. Obviously, a precision and recall of 0 is
attained for the original versions of the Thesaurus. The randomly up-
dated versions did poorly as well. Versions updated after one pass had
recall between 18% and 26%, while the versions updated in 5 passes
had 40% or more. The random baseline is 25% if all of the questions
can be answered. The thesauri updated in 5 passes significantly beat
this baseline.16 The thesauri updated in one pass tended not to show
statistically significant improvement, though many problems were un-
solvable (q was absent from 1911X1 or 1987X1).
The recall improvement for Roget’s Thesaurus updated in 5 passes

was significantly better (at p < 0.05) than for the Thesaurus updated in
one pass. In turn, the Thesaurus updated in one pass was significantly
better than the original Thesaurus (again at p < 0.05). The exception
was the 1911 verb data set, for which the improvement could only

16Significance was established with Student’s T-test with p < 0.05.

[30]

Evaluation of Automatic Updates of Roget’s Thesaurus

Resource Correct Wrong Ties N/A Precision Recall
1911 0 98 0 98 0 0

1911 1911X1 18 70 10 44 40.13 22.11
Nouns 1911X5 30 45 23 0 39.63 39.63

1911R 3 93 2 88 39.98 4.08
1911 0 27 0 27 0 0

1911 1911X1 6 20 1 13 46.42 24.07
Verbs 1911X5 11 14 2 0 44.44 44.44

1911R 0 27 0 26 0 0
1987 0 57 0 57 0 0

1987 1987X1 11 38 8 18 38.03 26.02
Nouns 1987X5 18 29 10 0 39.77 39.77

1987R 0 56 1 52 10.03 0.88
1987 0 36 0 36 0 0

1987 1987X1 5 27 4 20 41.67 18.52
Verbs 1987X5 12 15 9 0 44.91 44.91

1987R 1 35 0 29 14.29 2.78

Table 17:
Evaluation of
identifying
synonyms from
WordNet

be measured as significant at p < 0.065. This is largely because the
dataset was fairly small. Another observation is that the randomly up-
dated Thesaurus only once had a significant improvement over the
original Thesaurus, in the case of the 1911 noun data set.
These results suggest that the words newly added to Roget’s The-

saurus are close to the correct location. The newly added words and
their synonyms were closer than the newly added words and their co-
hyponyms. Generally the precision measure showed words added to
the 1911X1 and 1987X1 thesauri to be approximately as accurate as,
if not slightly more accurate than, those added in passes 2–5. The ran-
domly updated Thesaurus did not perform as well, usually falling be-
low the 25% baseline on the precision measure. The results for nouns
added to the 1911 Thesaurus are a noticeable exception. In the other
datasets at most one question was answered correctly by the randomly
updated Thesaurus, but in this case there were three correct answers. It
should be noted, however, that the evaluated sample was very small,
so this is likely to have been a coincidence.

[31]

Alistair Kennedy, Stan Szpakowicz

6.2 Pseudo-word-sense disambiguation
Pseudo-word-sense disambiguation (PWSD) is a somewhat contrived
task, meant to evaluate the quality of a word-sense disambiguation
(WSD) system. The set-up for this task is to take two words and merge
them into a pseudo-word. A WSD system, then, has the goal of iden-
tifying which of the two words actually belongs in a given context
in which the whole pseudo-word appears. We have had a chance to
create a very large dataset for PWSD. This is an opportunity to con-
sider WordNet and the versions of Roget’s Thesaurus in PWSD, and to
compare them not only for accuracy but also for runtime.
We used PWSD instead of real WSD for two main reasons. Firstly,

as far as we know, there is no WSD data set annotated with Roget’s
word senses and so one would have to be built from scratch. Worse
still, to compare WSD systems built using Roget’s Thesaurus andWord-
Net we would need a dataset labeled with senses from both. Secondly,
PWSD gives us a fast way of building a dataset which can be used to
evaluate the WSD systems based on the Thesaurus and on WordNet.
A common variation on this task is to make triples out of a noun

and two verbs, then determine which of the verbs takes the noun as
its object. The aim is to create a kind of verb disambiguation system
which incorporates the edge count distance between nouns. In theory,
this measure can help indicate how well a system identifies contexts
(verb object) in which a verb appears. That can be useful in real WSD.
Others who have worked on variations of PWSD include Gale et al.
(1992); Schütze (1998); Lee (1999); Dagan et al. (1999); Rooth et al.
(1999); Clark and Weir (2002); Weeds and Weir (2005); Zhitomirsky-
Geffet and Dagan (2009). The methodology we followed was similar
to that of Weeds and Weir.
The data set was constructed in four steps.

1. Parse Wikipedia with MINIPAR (Lin 1998a).
2. Select all object relations and count the frequency of each noun–
verb pair 〈n, v〉.

3. Separate the noun–verb pairs into a training set (80%) and a test
set (20%).

4. For each pair 〈n, v〉 in the test set find another verb v′ with the
same frequency as v, such that 〈n, v′〉 appears neither in the train-
ing set nor the test set; replace 〈n, v〉 with the test triple 〈n, v, v′〉.

[32]

Evaluation of Automatic Updates of Roget’s Thesaurus

This creates two data sets. One is a training set of noun–verb
pairs 〈n, v〉. The other is a test set made up of noun–verb–verb triples
〈n, v, v′〉. Examples of such triples are 〈task, assign, rock〉 and 〈data, ex-
tract, anticipate〉. We selected v′ so that its frequency is v’s frequency
± 1. We also ensured that the pair 〈n, v′〉 does not appear anywhere
in the training or test data. To reduce noise and decrease the overall
size of the dataset, we removed from both the test and training set
all noun–verb object pairs which appeared less than five times. This
produced a test set of 3327 triples and a training set of 464,303 pairs.
We only used half of Wikipedia to generate this data set, the half not
used in constructing the noun matrix.
We employed edgeScore (Equation 1) for all versions of Roget’s

Thesaurus. The methods implemented in the WordNet::Similarity soft-
ware package (Pedersen et al. 2004) determine how close two words
are in WordNet. These methods are J&C (Jiang and Conrath 1997),
Res (Resnik 1995), Lin (Lin 1998a), W&P (Wu and Palmer 1994), L&C
(Leacock and Chodorow 1998), H&SO (Hirst and St-Onge 1998), Path
(counts edges between synsets), Lesk (Banerjee and Pedersen 2002),
and finally Vector and Vector Pair (Patwardhan et al. 2003). The mea-
sure most similar to the edgeScore method is the Path measure in
WordNet. J&C, Res, Lin, W&P, L&C and Path can only measure re-
latedness between nouns and verbs, because they only make use of
hypernym links. H&SO uses all available WordNet relations in find-
ing a path between two words. The Lesk and Vector methods use
glosses and so might be just as easily implemented using a dictio-
nary. They need not take advantage of WordNet’s hierarchical struc-
ture.
To perform the PWSD task for each triple 〈n, v, v′〉, we found in the

training corpus k nouns which were the closest to n. Every such noun
m got a vote: the number of occurrences of the pair 〈m, v〉 minus the
number of occurrences of 〈m, v′〉. Any value of k could potentially be
used. This means comparing each noun n in the test data to every noun
m in the training set if these nouns share a common verb v or v′. Such
a computation is feasible in Roget’s Thesaurus, but it takes a very long
time for any WordNet-based measure.17 To ensure that a fair value is

17We ran these experiments on an IBM ThinkCenter with a 3.4 GHz Intel
Pentium 4 processor and 1.5GB 400 MHz DDR RAM.

[33]

Alistair Kennedy, Stan Szpakowicz
Table 18:

Pseudo-word-sense disambiguation
error rates and run-time

Method Error
p-value Change Time

Rate in seconds
1911 0.257 – – 58
1911X1 0.252 0.000 +1.9% 59
1911X5 0.246 0.000 +4.3% 60
1911R 0.258 0.202 −0.6% 58
1987 0.252 – – 135
1987X1 0.250 0.152 +0.8% 135
1987X5 0.246 0.010 +2.3% 134
1987R 0.252 0.997 0.0% 134
J&C 0.253 – – 23 208
Resnik 0.258 – – 23 112
Lin 0.251 – – 19 840
W&P 0.245 – – 38 721
L&C 0.241 – – 23 445
H&SO 0.257 – – 2 452 188
Path 0.241 – – 22 720
Lesk 0.255 – – 47 625
Vector 0.263 – – 32 753
Vct Pair 0.272 – – 74 803

selected, we divided the test set into 30 sets. We use 29 folds to find
the optimal value of k and apply it to the 30th fold.
The score for the PWSD task is typically measured as an error rate

where T is the number of test cases (Equation 4).

Error rate=
1
T

�
incorrect choices+ # ties

2

�
(4)

Table 18 shows the results of this experiment. The improvement
on 1911X1 and 1911X5 over the original 1911 version of the Thesaurus
was statistically significant at p < 0.05, according to Student’s T-test.
The improvement on the updated 1987 version was not statistically
significant for 1987X1with p ≈ 0.15, but it was significant for 1987X5.
The 1911X5 version gave results comparable to the 1987 version. The
Roget’s-based methods were comparable to the best WordNet-based
methods.
When it comes to the values of k, k = 1 was always found to be

the optimal value on this dataset. So, the best way to perform PWSD

[34]

Evaluation of Automatic Updates of Roget’s Thesaurus

is to select the nearest noun taken as the object of either v or v′.
The CPU usage was perhaps the most pronounced difference with

Roget’s-based methods, which ran in a tiny fraction of the time which
WordNet-based methods required. H&SO took around 28 days to run,
so this measure simply is not an option for large-scale semantic relat-
edness problems. Even Lin, the fastest WordNet-based method, took
around 5.5 hours, over 340 times longer than than the method based
on the 1911 Thesaurus.
For all systems, a total of 193192 word pairs must be compared.

We also examined the number of necessary comparisons between
word senses. If one resource contains a larger number of senses of
each word it is measuring distance on, then it will necessarily have to
perform many more comparisons. The method based on the 1987 The-
saurus required nearly 120 million comparisons. The method based on
the 1911 Thesaurus needed 14.7 million comparisons. For the Word-
Net-based methods only 3.5 million comparisons were necessary.
Clearly the implementation of Roget’s Thesaurus has a very strong
advantage when it comes to runtime.
6.3 SAT analogies
The last class of problems to which we applied Roget’s Thesaurus were
analogy problems in the style of Scholastic Aptitude Tests (SAT). In an
SAT analogy task, one is given a target pair 〈A, B〉 and then from a list
of possible candidates selects the pair 〈C , D〉 most similar to the target
pair. Ideally, the relation between the pair 〈A, B〉 should be the same
as the relation between the pair 〈C , D〉. For example:

Target pair word, language
Candidates paint, portrait

poetry, rhythm
note, music
tale, story
week, year

Roget’s Thesaurus performs well on problems of selecting syn-
onyms and pseudo-word-sense disambiguation, but it is not clear just

[35]

Alistair Kennedy, Stan Szpakowicz
Table 19:

Scores in the
analogy problem

solved by
matching kinds
of relations

(P = precision,
R = recall,

WN = WordNet)

System Correct Ties Incorrect Filtered P R F1
1911 14 21 39 300 0.307 0.061 0.102
1911X1 15 23 39 297 0.321 0.066 0.110
1911X5 15 27 39 293 0.330 0.072 0.118
1911R 14 21 39 300 0.307 0.061 0.102
1987 18 85 81 190 0.271 0.133 0.179
1987X1 19 85 81 189 0.273 0.135 0.181
1987X5 21 85 81 187 0.278 0.139 0.185
1987R 18 86 80 190 0.271 0.133 0.179
WN 3.0 20 4 12 338 0.600 0.058 0.105

how well it will do on tasks of identifying analogies. That is because
relations in the Thesaurus are unlabelled. We explore two methods of
solving such problems with both the Thesaurus andWordNet. The first
method attempts to identify a few kinds of relations in the Thesaurus
and then apply them to identifying analogies. The second method
uses edge distance between the pairs 〈A, B〉–〈C , D〉 and 〈A, C〉–〈B, D〉
as a heuristic for guessing whether two word pairs contain the same
relation.
The dataset contains 374 analogy problems extracted from real

SAT tests and practice tests (Turney 2005). A problem contains a target
pair 〈A, B〉 and several pairs to choose from: testi = 〈X i , Yi〉, i = 1..5. In
evaluation, we consider seven scores: correct, ties, incorrect, filtered
out, precision, recall and equal-weighted F-score. We define precision
and recall in the same way as in Section 6.1. In the case of an n-way tie,
the correct answer counts as 1/n towards the precision and recall. We
consider recall as the most important measure, because it evaluates
each method over the entire data set.
6.3.1 Matching relations
Unlike WordNet, Roget’s Thesaurus contains no explicitly labelled

semantic relations, but certain implicit relations can be inferred from
its structure. Near-synonyms tend to appear in the same SG. Near-
antonyms usually appear in different Heads in the same Head Group.
One can also infer a hierarchical relation between two words if (1)
they are in the same Paragraph and one of them is in the first SG, or
(2) they are in the same POS and one of them is in the first SG of the

[36]

Evaluation of Automatic Updates of Roget’s Thesaurus

first Paragraph. So, three relations can be deduced from the Thesaurus.
Two words can be near-synonymous, near-antonymous or hierarchi-
cally related. From WordNet, we allow words to be related by any of
the explicit semantic relations. We also apply hypernymy/hyponymy
transitively.
Using these semantic relations, the analogy problem is solved by

identifying a candidate analogy which contains the same relation as
the target pair. There will be no solution if no relation can be found
for the target pair. This experiment is interesting in that it helps test
whether narrower semantic relations in WordNet are more useful or
less useful than the broader relations in Roget’s Thesaurus. Table 19
shows the results; “Filtered” shows the number of pairs which were
not scored because no relation could be established between the words
in the target or candidate pairs.
The WordNet-based method has high precision, but recall is low

compared to that of the Roget’s-based versions. Interestingly, the pre-
cision and recall both increase as more words are added to the 1911
and 1987 versions of Roget’s. We consider recall as more important in
this evaluation, so it is clear that the most updated versions of Roget’s
Thesaurus outperform WordNet by a fair margin. Although the origi-
nal 1911 version gave a lower F-score thanWordNet, all other versions
performed better. The existence of very specific semantic relations in
WordNet did give it an edge in precision, but WordNet was only able
to answer a few questions. This suggests that the relations between
pairs in analogy tests are not only of the type encountered in Word-
Net. While the broader relations identified in the Thesaurus appear to
be less reliable and give lower precision, the recall is much higher.
6.3.2 Edge distance
The second method of solving analogy problems uses edge distance
between words as a heuristic. Analogy problems have been solved in
this way using Equation 5 proposed by Turney (2006).

score(〈A, B〉 : 〈X i , Yi〉) = 1
2

�
sima(A, X i)+ sima(B, Yi)

� (5)

The highest-scoring pair 〈X i , Yi〉 is guessed as the correct anal-
ogy. This method assumes that A and X i should be closely related and

[37]

Alistair Kennedy, Stan Szpakowicz

so should B and Yi. An illustrative example is 〈carpenter, wood〉 and
〈mason, stone〉.
In Equation 5, sima is the attributional similarity. We replaced

it with an edge distance measure r, either edgeScore (Equation 1) or
one of the measures built onWordNet. Because edgeScore only returns
even numbers between 0 and 18, it tends to give many ties. We used a
formula with a tie breaker based on the edge distance between A and
B and between X i and Yi:18

score(〈A, B〉, 〈X i , Yi〉) = r(A, X i) + r(B, Yi) +
1

|r(A, B)− r(X i , Yi)|+ 1
(6)

The last term of the sum in Equation 6 acts as a tie-breaker which
favours candidates 〈X i , Yi〉 with an edge distance similar to the target
〈A, B〉. We include another constraint: A and X i must be in the same
part of speech, and so do B and Yi. Only one sense of each of A, B, X i

and Yi can be used in the calculation of Equation 6. For example, the
same sense of A is used when calculating r(A, X i) and r(A, B).
We applied Equation 6 to the 374 analogy problems using all ver-

sions of Roget’s Thesaurus and the WordNet-based edge distance mea-
sures. The results are shown in Table 20. The “Filtered” column shows
how many SAT problems could not be solved because at least one of
the words needed was absent in either the Thesaurus or WordNet. Un-
fortunately, expanding Roget’s Thesaurus did not reduce the number
of filtered results. That said, both precision and recall increased when
more words were added to the Thesaurus. Overall, we found that in
absolute numbers the updated 1987X5 Roget’s Thesaurus performed
better than any other resource examined. Even the updated versions
of the 1911 Thesaurus performed on par with the best WordNet-based
systems. We must note, however, that none of the improvements of
the 1987X5-based method over any givenWordNet method are statis-
tically significant.

18We owe this formula to a personal communication with Dr. Vivi Nastase. It
was also used in (Kennedy and Szpakowicz 2007)

[38]

Evaluation of Automatic Updates of Roget’s Thesaurus

System Correct Ties Misses Filtered P R F1
1911 98 11 214 51 0.319 0.276 0.296
1911X1 98 17 208 51 0.329 0.284 0.305
1911X5 97 20 206 51 0.330 0.285 0.306
1911R 97 12 218 47 0.313 0.274 0.292
1987 101 35 232 6 0.318 0.313 0.316
1987X1 102 38 228 6 0.324 0.319 0.322
1987X5 102 39 227 6 0.325 0.320 0.323
1987R 103 34 233 4 0.320 0.316 0.318
Path 85 5 166 118 0.342 0.234 0.278
J&C 80 0 176 118 0.312 0.214 0.254
Resnik 91 16 149 118 0.385 0.263 0.313
Lin 82 3 171 118 0.325 0.222 0.264
W&P 90 1 165 118 0.354 0.242 0.287
L&C 91 4 161 118 0.363 0.249 0.295
H&SO 96 39 212 27 0.321 0.298 0.309
Lesk 113 0 234 27 0.326 0.302 0.313
Vector 113 0 234 27 0.326 0.302 0.313
Vector Pair 106 0 241 27 0.305 0.283 0.294

Table 20:
Scores in the
analogy problem
solved using
semantic
distance
functions
(P = precision,
R = recall)

7 conclusion

7.1 Summary
We have described a method of automatically updating Roget’s The-
saurus with new words. The process has two main steps: lists of se-
mantically related words are generated, and next those lists are used
to find a place for a new word in the Thesaurus. We have enhanced
both steps by leveraging the structure of Roget’s Thesaurus.
When creating lists of related words, we have evaluated a tech-

nique for measuring semantic relatedness which enhances distribu-
tional methods using lists of known synonyms. We have shown this
to have a statistically significant effect on the quality of measures of
semantic relatedness.
In the second step, the actual addition of new words to Roget’s

Thesaurus, we generated a list of neighbouring words and used them
as anchors to identify where in the Thesaurus to place a newword. This
process benefits from tuning on the actual Thesaurus. The task here is
to find words which will be good anchors for determining where to

[39]

Alistair Kennedy, Stan Szpakowicz

place a new term. We experimented with three methods of finding an-
chors, using the rank, the relatedness score and a relative relatedness
score. We found that rank worked best. The process of adding new
words to Roget’s Thesaurus is hierarchical. First the Part of Speech in
the Thesaurus is identified, then the Paragraph, then the Semicolon
Group. A new Paragraph or Semicolon Group can be created if needed.
A manual evaluation of our methodology found that added words

were almost indistinguishable from words already present in the The-
saurus. Even after multiple passes the words seemed to find fairly ac-
curate placing in an existing Paragraph. When adding words to a new
Paragraph, after one pass the words were highly accurate, but the ac-
curacy fell after additional passes. In total, some 5500 words were
added to the 1911 version and some 9600 words to the 1987 version.
We also performed an application-based evaluation to compare

the original and updated versions of Roget’s Thesaurus and, when pos-
sible, WordNet. The tasks were synonym identification, pseudo-word-
sense disambiguation and SAT-style analogy problems. On all tasks
the updates to the Thesaurus showed a noticeable improvement. In
our evaluations, Roget’s Thesaurus also performed as well as, or better
than,WordNet. In particular, it could perform calculations many times
faster than the WordNet::Similarity software package (Pedersen et al.
2004).
Most of our experiments show that the 1987 version of Roget’s

Thesaurus outperforms the 1911 version. There are two reasons. First,
for our measure of semantic relatedness, the evaluation was conducted
on words in the same Roget’s grouping from the 1987 version. Since the
structure of the Thesaurus is used to train our MSR, it is natural that
scores are higher when training and evaluation are done on the same
version. The second reason is simply that the 1987 version is larger.
When adding new words to Roget’s Thesaurus, a larger thesaurus gives
more potential anchor words to help find an appropriate placement
for a new word. For our task-based evaluation, the applications we
chose will naturally benefit from a larger thesaurus as well.
7.2 Future work
The supervised measure of semantic relatedness provides an interest-
ing method of re-weighting contexts. Recent work has shown that
similar techniques make it possible to find a weighted mapping be-

[40]

Evaluation of Automatic Updates of Roget’s Thesaurus

tween the context space in two different languages (Kennedy and Hirst
2012). Methods of this kind could be used to emphasise similarities
between words based on sentiment, emotion or formality, rather than
simply on synonymy. Using emotionally related words as a source of
training data could enable the creation of a measure of semantic relat-
edness which favours words of the same emotional class over other,
nearer, synonyms conveying a different emotion.
Perhaps other more complex methods of adding new words to

Roget’s Thesaurus can be considered. For example, mixing rank and
score (maybe using machine learning) might lead to an even more
accurate method. Other methods of identifying where in the Thesaurus
to place a word could also be considered. In particular, Pantel’s (2005)
method could potentially be modified to work for Roget’s Thesaurus.
Our method only adds individual words to Roget’s Thesaurus. It

should be possible to expand it into adding multi-word phrases. Many
dependency parsers can identify noun phrases and so can be used
to create distributional vectors for such phrases. Adding multi-word
phrases to verb or adjective Roget’s groupings may be possible by iden-
tifying n-grams which are frequent in a text. Two problems arise. One
is determining whether high frequency alone is a good enough rea-
son to add a multi-word phrase. The second is how to represent such
multi-word phrases. It could be possible to represent them by vectors
of word–relation pairs for syntactically related words in the same sen-
tence, but outside of the phrase being considered. The meaning of a
phrase may also be deduced by composing the distributional vectors of
its individual words. There is ongoing, and very interesting, research
in this area (Mitchell and Lapata 2008; Turney 2012).
A problem which we have not tackled yet is that of adding cross-

references: if the same word appears in two places in Roget’s Thesaurus,
then often a cross-reference links the two occurrences. Making use of
these cross-references could be a considerable undertaking, because
it requires, amongst other things, some form of effective word-sense
disambiguation.
The manual annotation has only been conducted on the 1911 ver-

sion of Roget’s Thesaurus, because it is the only version which can be re-
leased to the public, and because the annotation experiment has been
very time-consuming. In the interest of completeness, the updates to
the 1987 version could be evaluated similarly. We expect that those

[41]

Alistair Kennedy, Stan Szpakowicz

updates should actually be more accurate, because the 1911 version
is both older and smaller. This would be in line with the automatic
evaluation from Section 4, but it is yet to be confirmed manually.
It should be possible to adapt our methods of placing words in

Roget’s Thesaurus to work for WordNet. Instead of identifying words
in the same POS, then Paragraph, then SG, word groupings could be
created from WordNet’s hypernym hierarchy. We envisage two ways
of doing this. The first would be to pick a relatively high level within
the hierarchy and classify each word into one or more of the synsets
at that level, much as we did with the POS level. A synset could be
represented by all the words in the transitive closure of its hyponym
synsets. Next, the word would be propagated down the hierarchy – as
we do with Paragraphs and SGs – until it can go no further, and then
added to the synset there.
This method could not (yet) be applied to adjectives, and would

only take one kind of relation into account when placing a word in
WordNet. Another option is to create a neighbourhood of words for
each synset, based on a variety of relations. A word could then be
placed in a larger grouping of multiple synsets before the particular
synset it belongs to is determined. If no synset can be picked, then a
new synset can be created with some sort of ambiguous link joining it
to the other synsets in its neighbourhood. A hybrid of these two meth-
ods is also possible. Our first method could be enhanced by using not
only a synset’s terms, but also its close neighbours. This would expand
the set of anchor words at the cost of introducing words common to
multiple synsets.
It should also be possible to port our method to thesauri and word-

nets in other languages. The main problem might be our method’s re-
liance on a dependency parser. Such parsers are not available yet for
many languages. Nonetheless, it could be possible to replicate much
of the relevant functionality of a dependency parser using a part-of-
speech tagger – and taggers are quite widely available. For example,
one may assume that a noun can only be modified by other nouns or
adjectives in its vicinity, and so only use those terms in constructing
a distributional vector.
Another direction which this kind of research could take would

be to test the methods on adding words in a particular domain. Most
of the words in Roget’s Thesaurus are from everyday English, as op-

[42]

Evaluation of Automatic Updates of Roget’s Thesaurus

posed to, say, medical terms. The nearest synonyms of such technical
words will be other technical words. This could make it more diffi-
cult to actually add domain-specific terms to Roget’s Thesaurus. That
said, the trainable measure of semantic relatedness from Kennedy and
Szpakowicz (2011, 2012) could be built using words of a particular
domain. If domain-specific and everyday words could be grouped as
near-synonyms, then an MSR could be trained for adding domain-
specific terms to Roget’s Thesaurus.
Similar to adding domain-specific words is the challenge of adding

brand new coinage to Roget’s Thesaurus. Very new words may not have
close synonyms in the Thesaurus, which is why we add words in mul-
tiple passes. It would be interesting to investigate how many passes
are required before, say, the word “iPhone” is added to the Thesaurus.
Closely related phrases like “mobile phone” or “smart phone” would
need to already be present. Other terms, such as “cellular network”,
“texting” or “Apple”, could also be useful in choosing where to place
a word like “iPhone”.
Finally, note that we have only applied Roget’s Thesaurus to three

NLP tasks, to demonstrate value in both its structure and language
coverage. Many other applications of the Thesaurus are possible. Some
obvious ones include real word-sense disambiguation and lexical sub-
stitution. Roget’s Thesaurus has already been used in the construction
of lexical chains (Morris and Hirst 1991; Jarmasz and Szpakowicz
2003a). Lexical chains might be applied to summarisation or text seg-
mentation. Since the Thesaurus contains a large number of opposing
concepts, it may be possible to apply it to lexical entailment as well.
NLP researchers are always on the hunt for newer and larger data

sets on which to train and evaluate their experiments. Many of these
experiments will require measuring semantic distance among huge
sets of words. In the coming years, the trend towards analyzing big
data will drive the need for fast semantic relatedness calculation. Ro-
get’s Thesaurus is uniquely suited for that.

[43]

Alistair Kennedy, Stan Szpakowicz

references
Satanjeev Banerjee and Ted Pedersen (2002), An Adapted Lesk Algorithm
for Word Sense Disambiguation Using WordNet, in Proceedings of the 3rd
International Conference on Intelligent Text Processing and Computational
Linguistics – CICLing 2002, pp. 136–145, Mexico City, Mexico.
Patrick J. Cassidy (2000), An Investigation of the Semantic Relations in the
Roget’s Thesaurus: Preliminary Results, in Proceedings of the Conference on
Intelligent Text Processing and Computational Linguistics – CICLing 2000,
pp. 181–204, Mexico City, Mexico.
Stephen Clark and David Weir (2002), Class-based Probability Estimation
Using a Semantic Hierarchy, Computational Linguistics, 28(2):187–206.
Carolyn J. Crouch (1988), A Cluster-based Approach to Thesaurus
Construction, in Proceedings of the 11th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval – SIGIR 1988,
pp. 309–320, Grenoble, France.
Carolyn J. Crouch and Bokyung Yang (1992), Experiments in Automatic
Statistical Thesaurus Construction, in Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval – SIGIR 1992, pp. 77–88, Copenhagen, Denmark.
Dagan, Ido, Lillian Lee, and Fernando Pereira (1999), Similarity-based
Models of Word Co-occurrence Probabilities, Machine Learning, 34(1-3):43–69.
Andrea Esuli and Fabrizio Sebastiani (2006), SentiWordNet: A Publicly
Available Lexical Resource for Opinion Mining, in Proceedings of the 5th
Conference on Language Resources and Evaluation – LREC 2006, pp. 417–422,
Genoa, Italy.
Christiane Fellbaum, editor (1998), WordNet: an Electronic Lexical Database,
MIT Press, Cambridge, MA, USA.
William A. Gale, Kenneth W. Church, and David Yarowsky (1992), A
Method for Disambiguating Word Senses in a Large Corpus, Computers and the
Humanities, 26:415–439.
Roxana Girju, Adriana Badulescu, and Dan Moldovan (2003), Learning
Semantic Constraints for the Automatic Discovery of Part–Whole Relations, in
Proceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics – HLT-NAACL
2003, pp. 1–8, Edmonton, Canada.
Roxana Girju, Adriana Badulescu, and Dan Moldovan (2006), Automatic
Discovery of Part–Whole Relations, Computational Linguistics, 32(1):83–136.
Marti A. Hearst (1992), Automatic Acquisition of Hyponyms from Large Text
Corpora, in Proceedings of the 14th International Conference on Computational
Linguistics – COLING 1992, pp. 539–545, Nantes, France.

[44]

Evaluation of Automatic Updates of Roget’s Thesaurus

Graeme Hirst and David St-Onge (1998), Lexical Chains as Representation of
Context for the Detection and Correction of Malapropisms, in Christiane
Fellbaum, editor, WordNet: An Electronic Lexical Database, pp. 305–322, MIT
Press, Cambridge, MA, USA.
Mario Jarmasz (2003), Roget’s Thesaurus as a Lexical Resource for Natural
Language Processing, Master’s thesis, University of Ottawa, Canada.
Mario Jarmasz and Stan Szpakowicz (2003a), Not as Easy As It Seems:
Automating the Construction of Lexical Chains Using Roget’s Thesaurus, in 16th
Conference of the Canadian Society for Computational Studies of Intelligence – AI
2003, Halifax, Canada, number 2671 in Lecture Notes in Computer Science,
pp. 544–549, Springer, Berlin/Heidelberg, Germany.
Mario Jarmasz and Stan Szpakowicz (2003b), Roget’s Thesaurus and
Semantic Similarity, in Proceedings of the Conference on Recent Advances in
Natural Language Processing – RANLP 2003, pp. 212–219, Borovets, Bulgaria.
Mario Jarmasz and Stan Szpakowicz (2004), Roget’s Thesaurus and
Semantic Similarity, in N. Nicolov, K. Bontcheva, G. Angelova, and
R. Mitkov, editors, Recent Advances in Natural Language Processing III: Selected
Papers from RANLP 2003, volume 260 of Current Issues in Linguistic Theory,
pp. 111–120, John Benjamins, Amsterdam, The Netherlands/Philadelphia, PA,
USA.
Jay J. Jiang and David W. Conrath (1997), Semantic Similarity Based on
Corpus Statistics and Lexical Taxonomy, in Proceedings of the 10th International
Conference on Research on Computational Linguistics – ROCLING X, pp. 19–33,
Taipei, Taiwan.
Joshua C. Kendall (2008), The Man Who Made Lists : Love, Death, Madness,
and the Creation of Roget’s Thesaurus, G.P.Putnam’s Sons, New York, NY, USA.
Alistair Kennedy and Graeme Hirst (2012), Measuring Semantic Relatedness
Across Languages, in xLiTe: Cross-Lingual Technologies, workshop collocated with
the Conference on Neural Information Processing Systems – NIPS 2012, Lake
Tahoe, NV, USA.
Alistair Kennedy and Stan Szpakowicz (2007), Disambiguating Hypernym
Relations for Roget’s Thesaurus, in Proceedings of the 10th International
Conference on Text, Speech and Dialogue – TSD 2007, Pilsen, Czech Republic,
number 4629 in Lecture Notes in Artificial Intelligence, pp. 66–75, Springer,
Berlin/Heidelberg, Germany.
Alistair Kennedy and Stan Szpakowicz (2011), A Supervised Method of
Feature Weighting for Measuring Semantic Relatedness, in Proceedings of the
Canadian Conference on Artificial Intelligence – AI 2011, St. John’s, Canada,
number 6657 in Lecture Notes in Artificial Intelligence, pp. 222–233, Springer,
Berlin/Heidelberg, Germany.

[45]

Alistair Kennedy, Stan Szpakowicz

Alistair Kennedy and Stan Szpakowicz (2012), Supervised Distributional
Semantic Relatedness, in Proceedings of the 15th International Conference on Text,
Speech and Dialogue – TSD 2012, Brno, Czech Republic, number 7499 in Lecture
Notes in Artificial Intelligence, pp. 207–214, Springer, Berlin/Heidelberg,
Germany.
Betty Kirkpatrick, editor (1987), Roget’s Thesaurus of English Words and
Phrases, Longman, Harlow, UK.
Klaus Krippendorff (2004), Content Analysis: An Introduction to Its
Methodology, Sage Publications Inc., Los Angeles, CA, USA, 2nd edition.
Oi Yee Kwong (1998a), Aligning WordNet with Additional Lexical Resources,
in Proceedings of the COLING/ACL Workshop on Usage of WordNet in Natural
Language Processing Systems, pp. 73–79, Montréal, Canada.
Oi Yee Kwong (1998b), Bridging the Gap Between Dictionary and Thesaurus,
in Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics – ACL 1998, pp. 1487–1489, Montréal, Canada.
Robin J. Landis and G. G. Koch (1977), The Measurement of Observer
Agreement for Categorical Data, Biometrics, 33:159–174.
Claudia Leacock and Martin Chodorow (1998), Combining Local Context
and WordNet Sense Similarity for Word Sense Disambiguation, in Christiane
Fellbaum, editor, WordNet: An Electronic Lexical Database, pp. 265–284, MIT
Press, Cambridge, MA, USA.
Lillian Lee (1999), Measures of Distributional Similarity, in Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics – ACL 1999,
pp. 25–32, College Park, MD, USA.
Lothar Lemnitzer, Holger Wunsch, and Piklu Gupta (2008), Enriching
GermaNet with Verb–Noun Relations – a Case Study of Lexical Acquisition, in
Proceedings of the 6th International Conference on Language Resources and
Evaluation – LREC 2008, Marrakech, Morocco.
Dekang Lin (1998a), Automatic Retrieval and Clustering of Similar Words, in
Proceedings of the 17th International Conference on Computational Linguistics –
COLING 1998, pp. 768–774, Montréal, Canada.
Dekang Lin (1998b), Dependency-Based Evaluation of MINIPAR, in Proceedings
of the Workshop on the Evaluation of Parsing Systems at the 1st International
Conference on Language Resources and Evaluation – LREC 1998, Granada, Spain.
Bernardo Magnini and Gabriela Cavagliá (2000), Integrating Subject Field
Codes into WordNet, in Proceedings of the 2nd International Conference on
Language Resources and Evaluation – LREC 2000, pp. 1413–1418, Athens, Greece.
Jeff Mitchell and Mirella Lapata (2008), Vector-based models of semantic
composition, in Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies – ACL 2008: HLT,
pp. 236–244, Columbus, OH, USA.

[46]

Evaluation of Automatic Updates of Roget’s Thesaurus

Emmanuel Morin and Christian Jacquemin (1999), Projecting Corpus-Based
Semantic Links on a Thesaurus, in Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics – ACL 1999, pp. 389–396, College Park,
MD, USA.
Jane Morris and Graeme Hirst (1991), Lexical Cohesion Computed by
Thesaural Relations as an Indicator of the Structure of Text, Computational
Linguistics, 17(1):21–48.
Vivi Nastase and Stan Szpakowicz (2001), Word Sense Disambiguation in
Roget’s Thesaurus Using WordNet, in Proceedings of the NAACL Workshop on
WordNet and Other Lexical Resources, pp. 12–22, Pittsburgh, PA, USA.
Patrick Pantel (2003), Clustering by Committee, Ph.D. thesis, University of
Alberta, Canada.
Patrick Pantel (2005), Inducing Ontological Co-occurrence Vectors, in
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics – ACL 2005, pp. 125–132, Ann Arbor, MI, USA.
Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen (2003),
Using Measures of Semantic Relatedness for Word Sense Disambiguation, in
Proceedings of the 4th International Conference on Intelligent Text Processing and
Computational Linguistics – CICLing-2003, pp. 241–257, Mexico City, Mexico.
Ted Pedersen, Siddhart Patwardhan, and Jason Michelizzi (2004),
Wordnet::Similarity - Measuring the Relatedness of Concepts, in Proceedings of
the 19th National Conference on Artificial Intelligence – AAAI 2004,
pp. 1024–1025, San Jose, CA, USA.
Maciej Piasecki, Bartosz Broda, Michał Marcińczuk, and Stan
Szpakowicz (2009), The WordNet Weaver: Multi-criteria Voting for
Semi-automatic Extension of a Wordnet, in Proceedings of the 22nd Canadian
Conference on Artificial Intelligence – AI 2009, Kelowna, Canada, number 5549 in
Lecture Notes in Artificial Intelligence, pp. 237–240, Springer,
Berlin/Heidelberg, Germany.
Paul Procter (1978), Longman Dictionary of Contemporary English, Longman
Group Ltd., Essex, UK.
Philip Resnik (1995), Using Information Content to Evaluate Semantic
Similarity, in Proceedings of the 14th International Joint Conference on Artificial
Intelligence – IJCAI 1995, pp. 448–453, Montréal, Canada.
Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn Carroll, and Franz
Beil (1999), Inducing a Semantically Annotated Lexicon via EM-based
Clustering, in Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics – ACL 1999, pp. 104–111, College Park, MD, USA.
Sara Rydin (2002), Building a Hyponymy Lexicon with Hierarchical Structure,
in Proceedings of the ACL-02/SIGLEX Workshop on Unsupervised Lexical
Acquisition – ULA 2002, pp. 26–33, Philadelphia, PA, USA.

[47]

Alistair Kennedy, Stan Szpakowicz

Benoît Sagot and Darja Fišer (2011), Extending wordnets by learning from
multiple resources, in Proceedings of the 5th Language and Technology Conference
– LTC 2011, pp. 526–530, Poznań, Poland.
Erik Tjong Kim Sang (2007), Extracting Hypernym Pairs from the Web, in
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics – ACL 2007 (Interactive Poster and Demonstration Sessions),
pp. 165–168, Prague, Czech Republic.
Hinrich Schütze (1998), Automatic Word Sense Discrimination, Computational
Linguistics, 24(1):97–123.
Keiji Shinzato and Kentaro Torisawa (2004), Acquiring Hyponymy
Relations from Web Documents, in Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for
Computational Linguistics – HLT-NAACL 2004, pp. 73–80, Boston, MA, USA.
Rion Snow, Daniel Jurafsky, and Andrew Y. Ng (2005), Learning Syntactic
Patterns for Automatic Hypernym Discovery, in Lawrence K. Saul, Yair Weiss,
and Léon Bottou, editors, Advances in Neural Information Processing Systems
17, pp. 1297–1304, MIT Press, Cambridge, MA, USA.
Rion Snow, Daniel Jurafsky, and Andrew Y. Ng (2006), Semantic Taxonomy
Induction from Heterogenous Evidence, in Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics – COLING/ACL 2006, Sydney, Australia.
Ratanachai Sombatsrisomboon, Yutaka Matsuo, and Mitsuru Ishizuka
(2003), Acquisition of Hypernyms and Hyponyms from the WWW, in Procedings
of the 2nd International Workshop on Active Mining – AM 2003 (in Conjunction
with the International Symposium on Methodologies for Intelligent Systems),
pp. 7–13, Maebashi City, Japan.
Carlo Strapparava and Alessandro Valitutti (2004), WordNet-Affect: an
Affective Extension of WordNet, in Proceedings of the 4th International Conference
on Language Resources and Evaluation – LREC 2004, pp. 1083–1086, Lisbon,
Portugal.
Hiroaki Tsurumaru, Toru Hitaka, and Sho Yoshida (1986), An Attempt to
Automatic Thesaurus Construction from an Ordinary Japanese Language
Dictionary, in Proceedings of the 11th Conference on Computational Linguistics –
COLING 1986, pp. 445–447, Bonn, Germany.
Peter Turney (2005), Measuring Semantic Similarity by Latent Relational
Analysis, in Proceedings of the 19th International Joint Conference on Artificial
Intelligence – IJCAI-05, pp. 1136–1141, Edinburgh, Scotland.
Peter Turney (2006), Similarity of Semantic Relations, Computational
Linguistics, 32(3):379–416.

[48]

Evaluation of Automatic Updates of Roget’s Thesaurus

Peter Turney (2012), Domain and Function: A Dual-Space Model of Semantic
Relations and Compositions, Journal of Artificial Intelligence Research,
44:533–585.
Piek Vossen, editor (1998), EuroWordNet: a Multilingual Database with Lexical
Semantic Networks, Kluwer Academic Publishers, Norwell, MA, USA.
Julie Weeds and David Weir (2005), Co-occurrence Retrieval: A Flexible
Framework for Lexical Distributional Similarity, Computational Linguistics,
31(4):439–475.
Zhibiao Wu and Martha Palmer (1994), Verb Semantics and Lexical Selection,
in Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics – ACL 1994, pp. 133–138, Las Cruces, NM, USA.
Hao Zheng, Xian Wu, and Yong Yu (2008), Enriching WordNet with
Folksonomies, in Proceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining – PAKDD 2008, number 5012 in Lecture Notes in
Artificial Intelligence, pp. 1075–1080, Springer, Berlin/Heidelberg, Germany.
Maayan Zhitomirsky-Geffet and Ido Dagan (2009), Bootstrapping
distributional feature vector quality, Computational Linguistics, 35(3):435–461.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[49]

Bimorphisms and
synchronous grammars

Stuart M. Shieber
School of Engineering and Applied Sciences
Harvard University, Cambridge MA, USA

abstract
Keywords:
synchronous
grammars,
tree transducers,
tree-adjoining
grammars,
tree-substitution
grammars

We tend to think of the study of language as proceeding by char-
acterizing the strings and structures of a language, and we think of
natural-language processing as using those structures to build systems
of utility in manipulating the language. But many language-related
problems are more fruitfully viewed as requiring the specification of
a relation between two languages, rather than the specification of a
single language.

In this paper, we provide a synthesis and extension of work that
unifies two approaches to such language relations: the automata-
theoretic approach based on tree transducers that transform trees
to their counterparts in the relation, and the grammatical approach
based on synchronous grammars that derive pairs of trees in the re-
lation. In particular, we characterize synchronous tree-substitution
grammars and synchronous tree-adjoining grammars in terms of bi-
morphisms, which have previously been used to characterize tree
transducers. In the process, we provide new approaches to formaliz-
ing the various concepts: a metanotation for describing varieties of
tree automata and transducers in equational terms; a rigorous for-
malization of tree-adjoining and tree-substitution grammars and their
synchronous counterparts, using trees over ranked alphabets; and gen-
eralizations of tree-adjoining grammar allowing multiple adjunction.

Journal of Language Modelling Vol 2, No 1 (2014), pp. 51–104

Stuart M. Shieber

1 introduction

We tend to think of the study of language as proceeding by char-
acterizing the strings and structures of a language, and we think of
natural-language processing as using those structures to build systems
of utility in manipulating the language. But many language-related
problems are more fruitfully viewed as requiring the specification of a
relation between two languages, rather than the specification of a sin-
gle language. The paradigmatic case is machine translation, where the
translation relation between the source and target natural languages
is itself the goal to be characterized. Similarly, the study of semantics
involves a relation between a natural language and a language of se-
mantic representation (phonological form and logical form in one par-
lance). Computational interpretation of text, as in question-answering
or natural-language command and control systems, requires comput-
ing that relation in the direction from natural language to semantic
representation, and tactical generation in the opposite direction. Sen-
tence paraphrase and compression can be thought of as computing a
relation between strings of a single natural language. Similar examples
abound.

The modelling of these relations has been a repeated area of
study throughout the history of computational linguistics, proceed-
ing in phases that have alternated between emphasizing automata-
theoretic tools and grammatical tools. On the automata-theoretic side,
the early pioneering work of Rounds (1970) on tree transducers was
intended to formalize aspects of transformational grammars, and led
to a long development of the formal-language theory of tree transduc-
ers. Grammatical approaches are based on the idea of synchronizing
the grammars of the related languages. We use the general term syn-
chronous grammars for the idea (Shieber and Schabes 1990), though
early work in formalizing programming-language compilation uses
the more domain-specific term syntax-directed transduction or transla-
tion (Lewis and Stearns 1968; Aho and Ullman 1969), and a variety
of specific systems – inversion transduction grammars (Wu 1996,
1997), head transducers (Alshawi et al. 2000), multitext grammars
(Melamed 2003, 2004) – forgo the use of the term. The early work
on the synchronous grammar approach for natural-language applica-
tion involved synchronizing tree-adjoining grammars (TAG). A recent

[52]

Bimorphisms and synchronous grammars

resurgence of interest in automata-theoretic approaches in the ma-
chine translation community (Graehl and Knight 2004; Galley et al.
2004) has led to more powerful types of transducers (Maletti et al.
2009) and a far better understanding of the computational properties
of and relationships among different transducer types (Maletti et al.
2009). Synchronous grammars have also seen a rise in application
in areas such as machine translation (Nesson et al. 2006; DeNeefe
and Knight 2009), linguistic semantics (Nesson and Shieber 2006;
Han and Hedberg 2008), and sentence compression (Yamangil and
Shieber 2010).

As these various models were developed, the exact relationship
among them had been unclear, with a large number of seemingly un-
related formalisms being independently proposed or characterized. In
particular, the grammatical approach to tree relations found in syn-
chronous grammar formalisms and the automata-theoretic approach
of tree transducers have been viewed as contrasting approaches.

A reconciliation of these two approaches was initiated in two
pieces of earlier work (Shieber 2004, 2006), which the present paper
unifies, simplifies, and extends. That work proposed to use the formal-
language-theoretic device of bimorphisms (Arnold and Dauchet 1982),
previously little known outside the formal-language-theory commu-
nity, as a means for unifying the two approaches and clarifying the in-
terrelations. It investigated the formal properties of synchronous tree-
substitution grammars (STSG) and synchronous tree-adjoining gram-
mars (STAG) from this perspective, showing that both formalisms,
along with traditional tree transducers, can be thought of as varieties
of bimorphisms. This earlier work has already been the basis for fur-
ther extensions, such as the synchronous context-free tree grammars
of Nederhof and Vogler (2012).

The present paper includes all of the results of the prior two pa-
pers, with notations made consistent, presentations clarified and ex-
panded, and proofs simplified, and therefore supersedes those papers.
It provides a definitive presentation of the formal foundations for TSG,
TAG, and their synchronous versions, improving on the earlier pre-
sentations. To our knowledge, it provides the most consistent defini-
tion of TAG and STAG available, and the only one to use trees over
ranked rather than unranked alphabets. It also, in passing, provides a
characterization of transducers in terms of equational systems using

[53]

Stuart M. Shieber

a uniform metagrammar notation, a new characterization of the re-
lation between tree-adjoining grammar derivation and derived trees,
and a new simpler and more direct proof of the equivalence of tree-
adjoining languages and the output languages of monadic macro tree
transducers, formal contributions that may have independent utility.
Finally, it extends the prior results to cover more linguistically appro-
priate variants of synchronous tree-adjoining grammars, in particular
incorporating multiple adjunction.

After some preliminaries (Section 2), we present a set of known
results relating context-free languages, tree homomorphisms, tree au-
tomata, and tree transducers to extend them for the tree-adjoining
languages (Section 3), presenting these in terms of restricted kinds
of functional programs over trees, using a simple grammatical nota-
tion for describing the programs. We review the definition of tree-
substitution and tree-adjoining grammars (Section 4) and synchronous
versions thereof (Section 5). We prove the equivalence between STSG
and a variety of bimorphism (Section 6).

The grammatical presentation of transducers as functional pro-
grams allows us to easily express generalizations of the notions:
monadic macro tree homomorphisms, automata, and transducers,
which bear (at least some of) the same interrelationships that their
traditional simpler counterparts do (Section 7). Finally, we use this
characterization to place the synchronous TAG formalism in the bi-
morphism framework (Section 7.3), further unifying tree transduc-
ers and other synchronous grammar formalisms. We show that these
methods generalize to TAG allowing multiple adjunction as well (Sec-
tion 8).1

The present work, being based on and synthesizing work from
some ten years ago, is by no means the last word in the general area.
Indeed, since publication of the earlier articles, the connections among
synchronous grammars, transducers, and bimorphisms have been con-
siderably further clarified. The relation between bimorphisms and tree
transducers has benefitted from a notion of extended top-down tree
transducers, which have been shown to be strongly equivalent to the
B(LC , LC) bimorphism class we discuss below (Maletti 2008). Koller

1Much of the content in Sections 2–7 of this paper is based on material in
previous papers (Shieber 2004, 2006), and is used by permission.

[54]

Bimorphisms and synchronous grammars

and Kuhlmann (2011) provide an elegant generalization of monolin-
gual and synchronous systems in terms of interpreted regular tree
grammars (IRTG), in spirit quite close to the idea here of reconstruct-
ing synchronous grammars as bimorphism-like formal systems. Their
IRTG can be used for CFG, TSG, TAG, and synchronous versions of
various sorts. Of especial interest are the formalizations of Büchse
et al. (2012, 2014), which modify the definitions of TAG to incorporate
state information at substitution and adjunction sites. This modifica-
tion eliminates much of the inelegance of the formalization here that
accounts for our having to couch the various equivalences we show
in terms of weak rather than strong generative capacity. The presen-
tation below should be helpful in understanding the background to
these works as well.

2 preliminaries

We start by defining the terminology and notations that we will use
for strings, trees, and the like.
2.1 Basics
We will notate sequences with angle brackets, e.g., 〈a, b, c〉, or where
no confusion results, simply as abc, with the empty string written ε.

We follow much of the formal-language-theory literature (and in
particular, the tree transducer literature) in defining trees over ranked
alphabets, in which the symbols decorating the nodes are associated
with fixed arities. (By contrast, formal work in computational linguis-
tics typically uses unranked trees.) Trees will thus have nodes labeled
with elements of a ranked alphabet, a set of symbols F, each with
a non-negative integer rank or arity assigned to it, determining the
number of children for nodes so labeled. To emphasize the arity of a
symbol, we will write it as a parenthesized superscript, for instance
f (n) for a symbol f of arity n. Analogously, we write F(n) for the set
of symbols in F with arity n. Symbols with arity zero (F(0)) are called
nullary symbols or constants. The set of nonconstants is written
F(≥1).

To express incomplete trees, trees with “holes” waiting to be
filled, we will allow leaves to be labeled with variables, in addition
to nullary symbols. The set of trees over a ranked alphabet F

[55]

Stuart M. Shieber

and variables X, notated T(F,X), is the smallest set such that

Nullary symbols at leaves f ∈ T(F,X) for all f ∈ F(0);
Variables at leaves x ∈ T(F,X) for all x ∈ X;
Internal nodes f (t1, . . . , tn) ∈ T(F,X) for all f ∈ F(n), n ≥ 1, and

t1, . . . , tn ∈ T(F,X).

Where convenient, we will blur the distinction between the leaf and
internal node notation for a nullary symbol f , allowing f () as synony-
mous for the leaf node f .

We abbreviate T(F,;), where the set of variables is empty, as
T(F), the set of ground trees over F. We will also make use of
the set of n numerically ordered variables Xn = {x1, . . . , xn}, and write
x , y, z as synonyms for x1, x2, x3, respectively.

Trees can also be viewed as mappings from tree addresses,
sequences of integers, to the labels of nodes at those addresses. The
address ε is the address of the root, 1 the address of the first child,
12 the address of the second child of the first child, and so forth. We
write q ≺ p to indicate that tree address q is a proper prefix of p, and
p− q for the sequence obtained from p by removing prefix q from the
front. For instance, 1213− 12= 13.

We will use the notation t/p to pick out the subtree of the node at
address p in the tree t, that is, (using · for the insertion of an element
on a sequence)

t/ε= t

f (t1, . . . , tn)/(i · p) = t i/p for 1≤ i ≤ n .

The notation t@p picks out the label of the node at address p in the
tree t, that is, the root label of t/p.

Replacing the subtree of t at address p by a tree t ′, written t[p 7→
t ′] is defined as

t[ε 7→ t ′] = t ′

f (t1, . . . , tn)[(i · p) 7→ t ′] = f (t1, . . . , t i[p 7→ t ′], . . . , tn)

for 1≤ i ≤ n .

[56]

Bimorphisms and synchronous grammars

The height of a tree t, notated height(t), is defined as follows:
height(x) = 0 for x ∈ X

height(f (t1, . . . , tn)) = 1+
n

max
i=1

height(t i) for f ∈ F(n)
We can use trees with variables as contexts in which to place

other trees. A tree in T(F,Xn) will be called a context, typically de-
noted with the symbol C . The notation C[t1, . . . , tn] for t1, . . . , tn ∈ T(F)
denotes the tree in T(F) obtained by substituting for each x i the cor-
responding t i.

More formally, for a context C ∈ T(F,Xn) and a sequence of n
trees t1, . . . , tn ∈ T(F), the substitution of t1, . . . , tn into C , notated
C[t1, . . . , tn], is defined inductively as follows:

(f (u1, . . . , um))[t1, . . . , tn] = f (u1[t1, . . . , tn], . . . , um[t1, . . . , tn])

x i[t1, . . . , tn] = t i

2.2 A grammatical metanotation
We will use a grammatical notation akin to BNF to specify, among
other constructs, equations defining functional programs of various
sorts. As an introduction to this notation, here is a grammar defining
trees over a ranked alphabet and variables (essentially identically to
the definition given above):

f (n) ∈ F(n)
x ∈ X ::= x1 | x2 | · · ·

t ∈ T(F,X) ::= f (m)(t1, . . . , tm)

| x

The notation allows definition of classes of expressions (e.g., F(n)) and
specifies metavariables over them (f (n)). These classes can be primi-
tive (F(n)) or defined (X), even inductively in terms of other classes or
themselves (T(F,X)). We use the metavariables and subscripted vari-
ants on the right-hand side to represent an arbitrary element of the
corresponding class. Thus, the elements t1, . . . , tm stand for arbitrary
trees in T(F,X), and x an arbitrary variable in X. Because numerically
subscripted versions of x appear explicitly and individually enumer-
ated as instances of X (on the right hand side of the rule defining
variables), numerically subscripted variables (e.g., x1) on the right-

[57]

Stuart M. Shieber

hand side of all rules are taken to refer to the specific elements of X
(for instance, in the definition (1) of tree transducers), whereas oth-
erwise subscripted elements within the metanotation (e.g., x i, t1, tm)
are taken as metavariables.

3 tree transducers,
homomorphisms, and automata

We review the formal definitions of tree transducers and related con-
structions for defining tree languages and relations, making use of
the grammatical metanotation to define them as functional program
classes.
3.1 Tree transducers
The variation in tree transducer formalisms is extraordinarily wide
and the literature vast. For present purposes, we restrict attention to
simple nondeterministic tree transducers operating top-down, which
transform trees by replacing each node with a subtree as specified by
the label of the node and the state of the transduction at that node.

Informally, a tree transducer (specifically a nondetermin-
istic top-down tree transducer (↓T T)) specifies a nondetermin-
istic computation from T(F) to T(G) defined such that the symbol at
the root of the input tree and a current state determines an output
context in which the recursive images of the subtrees are placed. For-
mally, we can define a transducer as a kind of functional program,
that is, a set of equations characterized by the following grammar for
equations Eqn. (The set of states is conventionally notated Q, with
members notated q. One of the states is distinguished as the initial
state of the transducer.)

q ∈Q

f (n) ∈ F(n)
g(n) ∈ G(n)

x ∈ X ::= x1 | x2 | · · ·
Eqn ::= q(f (n)(x1, . . . , xn))

.
= τ(n)

τ(n) ∈ R(n) ::= g(m)(τ(n)1, . . . ,τ(n)m)

| q j(x i) where 1≤ i ≤ n

(1)

[58]

Bimorphisms and synchronous grammars

Intuitively speaking, the expressions in R(n) are right-hand-side terms
using variables limited to the first n.

Given this formal description of the set of equations Eqn, a tree
transducer is defined as a tuple 〈Q,F,G,∆, q0〉 where2

• Q is a finite set of states;
• F is a ranked alphabet of input symbols;
• G is a ranked alphabet of output symbols;
• ∆⊆ Eqn is a finite set of equations;
• q0 ∈Q is a distinguished initial state.

Conventional nomenclature refers to the equations as transitions,
by analogy with transitions in string automata. We use both terms in-
terchangeably. To make clear the distinction between these equations
and other equalities used throughout the paper, we use the special
equality symbol .

= for these equations.
The equations define a derivation relation as follows. Given a tree

transducer 〈Q,F,G,∆, q0〉 and two trees t ∈ T(F∪G∪Q) and t ′ ∈ T(F∪
G∪Q), tree t derives t ′ in one step, notated t

.
= t ′ if and only if there

is an equation u
.
= u′ ∈ ∆ with u ∈ T(F ∪Q,Xn) and u′ ∈ T(G∪Q,Xn),

and a tree C ∈ T(F∪G∪Q,X1) in which the variable x1 occurs exactly
once and trees u1, . . . , un ∈ T(F ∪G), such that

t = C[u[u1, . . . , un]]

and
t ′ = C[u′[u1, . . . , un]] .

We abuse notation by using the same symbol for the transition equa-
tions and the one-step derivation relation they define, and will further
extend the abuse to cover the derivation relation’s reflexive transitive
closure.

The tree relation defined by a ↓T T 〈Q,F,G,∆, q0〉 is the set of
all tree pairs 〈s, t〉 ∈ T(F)×T(G) such that q0(s)

.
= t. By virtue of nonde-

terminism in the equations, multiple equations for a given state q and
symbol f , tree transducers define true relations rather than merely
functions.

2We assume without loss of generality that F, G, and Q are disjoint so that
their union can itself be taken to be a well-formed ranked alphabet. The elements
of the set Q are taken to be ranked symbols of arity 1.

[59]

Stuart M. Shieber

By way of example, the equation grammar above allows the def-
inition of the following set of equations defining a tree transducer:3

q(f (x))
.
= g(q′(x), q(x))

q(a)
.
= a

q′(f (x)) .
= f (q′(x))

q′(a) .
= a

This transducer allows for the following derivation:

q(f (f (a)))
.
= g(q′(f (a)), q(f (a)))
.
= g(f (q′(a)), g(q′(a), q(a)))
.
= g(f (a), g(a, a))

3.2 Subvarieties of transducers
Important subvarieties of the basic transducers can be defined by re-
stricting the trees τ that form the right-hand sides of equations, the
elements of R(n) used.

Recall that each equation is of the form

q(f (n)(x1, . . . , xn))
.
= τ(n) .

A transducer is
• linear if for each such equation defining the transducer, τ is
linear, that is, no variable is used more than once;

• complete if τ contains every variable in Xn at least once;
• ε-free if τ ̸∈ Xn;
• symbol-to-symbol if height(τ) = 1; and
• a delabeling if τ is complete, linear, and symbol-to-symbol.
3We will, in general, leave off the explicit specification of the set of states, in-

put and output ranked alphabet, and initial state when providing example trans-
ducers, in the expectation that the sets of states and symbols can be inferred from
the equations, and the initial state determined under a convention that it is the
state defined in the textually first equation.

Note also that we avail ourselves of consistent renaming of the variables x1,
x2, and so forth, where convenient for readability.

[60]

Bimorphisms and synchronous grammars

f

f

a f

b a

f

a b

f

f

f

f

a b

a

a

b

(a) (b)

Figure 1:
Local rotation computed by
a nonlinear tree transducer.
Trees (a) and (b) are in
the tree relation of the
transducer defined
in Section 3.3.

3.3 Nonlinearity deprecated
The following rules specify a transducer that recursively “rotates” sub-
trees of the form f (t1, f (t2, t3)) to the tree f (f (t1, t2), t3), failing if the
required pattern is not found.

q(f (x , y))
.
= f (f (q(x), q1(y)), q2(y))

q1(f (x , y))
.
= q(x)

q2(f (x , y))
.
= q(y)

q(a)
.
= a

q(b)
.
= b

The tree f (f (a, f (b, a)), f (a, b)) is transduced to f (f (f (f (a, b), a), a), b)
(as depicted graphically in Figure 1) according to the following deriva-
tion:

q(f (f (a, f (b, a)), f (a, b)))
.
= f (f (q(f (a, f (b, a))), q1(f (a, b))), q2(f (a, b)))
.
= f (f (f (f (q(a), q1(f (b, a))), q2(f (b, a))), q(a)), q(b))
.
= f (f (f (f (a, q(b)), q(a)), a), b)
.
= f (f (f (f (a, b), a), a), b)

A variant transducer can allow f subtrees to remain unchanged (rather
than failing) when the second argument is not itself an f tree. We add
a (nondeterministic) equation to allow nonrotation,

q(f (x , y))
.
= f (q(x), q′(y)) ,

[61]

Stuart M. Shieber
Figure 2:

Example of local rotation
in language translation

divergence. Corresponding
nodes are marked with

matched subscripts.

S

N P1

I

V P

V2

like

N P3

cake

S

N P3

Kuchen

V P

V2

gefällt

N P1

mir
(a) (b)

which puts the proper constraint on its second subtree y through the
new state q′ defined by

q′(a) .
= a

q′(b) .
= b .

This allows, for instance, the “already rotated” tree in Figure 1(b) to
transduce to itself.

Note that intrinsic use is made in these examples of the ability
to duplicate variables on the right-hand sides of rewrite rules. Trans-
ducers without such duplication are linear. Linear tree transducers are
incapable of performing local rotations of this sort.

Local rotations are typical of natural-language applications. For
instance, many of the kinds of translation divergences between lan-
guages, such as that exemplified in Figure 2, manifest such rotations.
Similarly, semantic bracketing paradoxes can be viewed as necessitat-
ing rotations. Thus, linear tree transducers are insufficient for natural-
language modeling purposes.

Nonlinearity per se, the ability to make copies during transduc-
tion, is not the kind of operation that is characteristic of natural-
language phenomena. Furthermore, nonlinear transducers are compu-
tationally problematic. The following nonlinear transducer generates
a tree that doubles in both width and depth.

q(f (x))
.
= g(f (f (q(x))), f (f (q(x))))

q(g(x , y))
.
= g(q(x), q(y))

q(a)
.
= a

For instance, the tree f (a) transduces to
g(f (f (a)), f (f (a)))

[62]

Bimorphisms and synchronous grammars

which in turn transduces to
g(g(f (f (g(f (f (a)), f (f (a))))),

f (f (g(f (f (a)), f (f (a)))))),

g(f (f (g(f (f (a)), f (f (a))))),

f (f (g(f (f (a)), f (f (a))))))) .
Notice that the number of a’s in the i-th iteration is 22i−1. The size
of this transducer’s output is exponential in the size of its input. (The
existence of such a transducer constitutes a simple proof of the lack
of composition closure of tree transducers, as the exponential of an
exponential grows faster than exponential.)

In summary, nonlinearity seems inappropriate on computational
and linguistic grounds, yet is required for tree transducers to express
the kinds of simple local rotations that are typical of natural-language
transductions. By contrast, STSG, as described in Section 6, is intrin-
sically a linear formalism but can express rotations straightforwardly.
3.4 Tree automata and homomorphisms
Two subcases of tree transducers are especially important. First, tree
transducers that implement a partial identity function over their do-
main are tree automata. These are delabeling tree transducers that
preserve the label and the order of arguments. Because they compute
only the identity function, tree automata are of interest for the do-
mains over which they are defined, not the mappings they compute.
This domain forms a tree language, the tree language recognized by
the automaton. The tree languages so recognized are the regular
tree languages (or recognizable tree languages). Though
the regular tree languages are a superset of the tree languages de-
fined by context-free grammars (the local tree languages), the string
languages defined by their yield are coextensive with the context-free
languages. We take tree automata to be quadruples by dropping one
of the redundant alphabets from the corresponding tree transducer
quintuple.

Second, tree homomorphisms are deterministic tree transduc-
ers with only a single state, hence essentially stateless. The replace-
ment of a node by a subtree thus proceeds deterministically and inde-
pendently of its context. Consequently, a homomorphism h : T(F)→

[63]

Stuart M. Shieber

T(G) is specified by its kernel, a function ĥ : F → T(G,X∞) such that
ĥ(f) is a context in T(G,Xarity(f)) for each symbol f ∈ F. The kernel ĥ
is extended to the homomorphism h by the following recurrence:

h(f (t1, . . . , tn)) = ĥ(f)[h(t1), . . . , h(tn)]

that is, ĥ(f) acts as a context in which the homomorphic images of the
subtrees are substituted.

As with transducers (see Section 3.2), further restrictions can be
imposed to generate the subclasses of linear, complete, ε-free, symbol-
to-symbol, and delabeling tree homomorphisms.

The import of these two subcases of tree transducers lies in the
fact that the tree relations defined by certain tree transducers have
been shown to be also characterizable by composition from these
simplified forms, via an alternate and quite distinct formalization, to
which we now turn.
3.5 The bimorphism characterization of tree transducers
Tree transducers can be characterized directly in terms of equations
defining a simple kind of functional program, as above. Bimorphisms
constitute an elegant alternative characterization of tree transducers
in terms of a constellation of elements of the various subtypes of trans-
ducers – homomorphisms and automata – we have introduced.

A bimorphism is a triple 〈L, hin, hout〉 consisting of a regular tree
language L (or, equivalently, a tree automaton) and two tree homo-
morphisms hin and hout (connoting the input and output respectively).
The tree relation L defined by a bimorphism is the set of tree pairs
that are generable from elements of the tree language by the homo-
morphisms, that is,

L(〈L, hin, hout〉) = {〈hin(t), hout(t)〉 | t ∈ L} .

Depending on the type of tree homomorphisms used in the bimor-
phism, different classes of tree relations are defined. We can limit at-
tention to bimorphisms in which the input or output homomorphisms
are restricted to a certain type: linear (L), complete (C), ε-free (F),
symbol-to-symbol (S), delabeling (D), or unrestricted (M). We will
write B(I , O)where I and O characterize a subclass of homomorphisms
for the set of bimorphisms for which the input homomorphism is in the

[64]

Bimorphisms and synchronous grammars

subclass indicated by I and the output homomorphism is in the sub-
class indicated by O. For example, B(D, M) is the set of bimorphisms
for which the input homomorphism is a delabeling but the output ho-
momorphism can be arbitrary.

The tree relations definable by bottom-up tree transducers (closely
related to the top-down transducers we use here) turn out to be ex-
actly this class B(D, M). (See the survey by Comon et al. (2008, Section
6.5) and works cited therein.) The bimorphism notion thus allows us
to characterize certain tree transductions purely in terms of tree au-
tomata and tree homomorphisms.

As an example, we consider the rotation transducer of Section 3.3,
expressed as a bimorphism. The tree relation for the bimorphism ex-
presses an abstract specification of where the rotations are to occur,
picking out such cases with a special symbol R of arity 3, its arguments
being the three subtrees participating in the rotation.

q(A)
.
= A

q(B)
.
= B

q(R(x , y, z))
.
= R(q(x), q(y), q(z))

The input homomorphismmaps these trees onto trees prior to rotation.

q(A)
.
= a

q(B)
.
= b

q(R(x , y, z))
.
= f (q(x), f (q(y), q(z)))

Notice that the trees rooted in R map onto a tree configuration that
should be rotated.

The output homomorphism maps each tree onto the correspond-
ing post-rotation tree:

q(A)
.
= a

q(B)
.
= b

q(R(x , y, z))
.
= f (f (q(x), q(y)), q(z))

Again, to allow the option of nonrotating configurations, we can
add to the control trees nodes labeled F that should map onto config-
urations that cannot be rotated. (New equations are marked with⇐.)

[65]

Stuart M. Shieber

The new q′ state guarantees this constraint on the F trees.

q(A)
.
= A

q(B)
.
= B

q(F(x , y))
.
= F(q(x), q′(y)) ⇐

q(R(x , y, z))
.
= R(q(x), q(y), q(z))

q′(A) .
= A ⇐

q′(B) .
= B ⇐

The input homomorphism maps the new F states onto f trees

q(A)
.
= a

q(B)
.
= b

q(F(x , y))
.
= f (q(x), q(y)) ⇐

q(R(x , y, z))
.
= f (q(x), f (q(y), q(z)))

as does the output homomorphism.

q(A)
.
= a

q(B)
.
= b

q(F(x , y))
.
= f (q(x), q(y)) ⇐

q(R(x , y, z))
.
= f (f (q(x), q(y)), q(z))

4 tree-substitution and
tree-adjoining grammars

Tree-adjoining grammars (TAG) and tree-substitution grammars (TSG)
are grammar formalisms based on tree rewriting, rather than the string
rewriting of the Chomsky hierarchy formalisms. Grammars are com-
posed of a set of elementary trees, which are combined according to
simple tree operations. In the case of TAG, these operations are sub-
stitution and adjunction, in the case of TSG, substitution alone. Syn-
chronous variants of these formalisms extend the base formalism with
the synchronization idea presented in earlier work (Shieber 1994). In
particular, grammars are composed of pairs of elementary trees, and
certain pairs of nodes, one from each tree in a pair, are linked to indi-

[66]

Bimorphisms and synchronous grammars

cate that operations incorporating trees from a single elementary pair
must occur at the linked nodes.

We review here the definition of tree-substitution and tree-ad-
joining grammars, and their synchronous variants. Since TSG can be
thought of as a subset of TAG, we first present TAG, describing the
restriction to TSG thereafter. Our presentation of TAG differs slightly
from traditional ones in ways that simplify the synchronous variants
and the later bimorphism constructions.
4.1 Tree-adjoining grammars
A tree-adjoining grammar is composed of a set of elementary trees,
such as those depicted in Figure 4, that are combined by operations
of substitution and adjunction. Traditional presentations of TAG, with
which we will assume familiarity, take the symbols in elementary and
derived trees to be unranked; nodes labeled with a given nonterminal
symbol may have differing numbers of children. (Joshi and Schabes
(1997) present a good overview.) For example, foot nodes of auxiliary
trees and substitution nodes have no children, whereas the similarly
labeled root nodes must have at least one. Similarly, two nodes with
the same label but differing numbers of children may match for the
purpose of allowing an adjunction (as the root nodes of α1 and β1 in
Figure 4). In order to integrate TAG with tree transducers, however,
we move to a ranked alphabet, which presents some problems and
opportunities. (In some ways, the ranked alphabet definition of TAGs
is slightly more elegant than the traditional one.)

We will thus take the nodes of TAG trees to be labeled with sym-
bols from a ranked alphabet F; a given symbol then has a fixed arity
and a fixed number of children. However, in order to maintain infor-
mation about which symbols may match for the purpose of adjunction
and substitution, we take the elements of F to be explicitly formed as
pairs of an unranked label e and an arity n. (For notational consis-
tency, we will use e for unranked and f for ranked symbols.) We will
notate these elements, abusing notation, as e(n), and make use of a
function |·| to unrank symbols in F, so that |e(n)|= e.

To handle foot nodes, for each non-nullary symbol e(i) ∈ F(≥1),
we will associate a new nullary symbol e∗, which one can take to be
the pair of e and ∗; the set of such symbols will be notated F∗. Simi-
larly, for substitution nodes, F↓ will be the set of nullary symbols e↓

[67]

Stuart M. Shieber

for all e(i) ∈ F(≥1). These additional symbols, since they are nullary,
will necessarily appear only at the frontier of trees. We will extend
the function |·| to provide the unranked symbol associated with these
symbols as well, so |e↓|= |e∗|= e.

A TAG grammar (which we will define more precisely shortly) is
based then on a set P of elementary trees, a finite subset of T(F∪F↓∪
F∗), divided into the auxiliary and initial trees depending on whether
they do or do not possess a foot node, respectively. In order to al-
low reference to a particular tree in the set P, we associate with each
tree a unique name, conventionally notated with a subscripted α or
β for initial and auxiliary trees respectively. We will abuse notation
by using the name and the tree that it names interchangably, and use
primed and subscripted variants of α and β as variables over initial
and auxiliary trees, with γ serving for elementary trees in general.

Traditionally in TAG grammars, substitutions are obligatory at
substitution nodes (those with labels from F↓) and adjunctions are op-
tional at nodes with labels from F. This presents two problems. First,
the optionality of adjunction makes it tricky to provide a canonical
fixed-length specification of what trees operate at the various nodes
in the tree; such a specification will turn out to be helpful in our def-
initions of derivation for TAG and synchronous TAG. (This is not a
problem for substitution, as the obligatoriness of substitution means
that there will be exactly as many trees substituting in as there are
substitution nodes.) Second, it is standard within TAG to provide fur-
ther constraints that disallow adjunction at certain nodes. So far, we
have no provision for such nonadjoining constraints. To address
these problems, we use a TAG formalism slightly modified from tradi-
tional presentations, one that loses no expressivity in weak generative
capacity but is easier for analysis purposes.

First, we make all adjunction obligatory, in the sense that if a
node in a tree allows adjunction, an adjunction must occur there. To
get the effect of optional adjunction, for instance at a node labeled
B, we add to the grammar a nonadjunction tree naB, a vestigial
auxiliary tree of a single node B∗, which has no adjunction sites and
therefore does not itself modify any tree that it adjoins into. These
nonadjunction trees thus found the recursive structure of derivations.4

4 In traditional TAG, all adjunction is optional; adding nonadjunction trees

[68]

Bimorphisms and synchronous grammars

B

A

B

A⇤B#a b

2

3

1

Figure 3:
Sample TAG tree marked with diacritics to show the
permutation of operable nodes. Note that the node at
address 1 is left out of the set of operable sites; it is
thus a nonadjoining node.

Second, now that it is determinate whether an operation must
occur at a node, the number of children of a node in a derivation
tree is determined by the elementary tree γ at that node; it is just the
number of adjunction or substitution sites in γ, the operable sites,
which we will notate γ. We take γ to be the set of adjunction and
substitution nodes in the tree, that is, all nodes in the tree with the
exception of the foot node. (Below, we will allow for nodes to be left
out from the set of operable sites, and in Section 8, we generalize this
to allow multiple adjunctions at a single site.)

All that is left is to provide a determinate ordering of operable
sites in an elementary tree, that is, a permutation π on the opera-
ble sites γ (or equivalently, their addresses). This permutation can be
thought of as specified as part of the elementary tree itself. For ex-
ample, the tree in Figure 3, which requires operations at the nodes
at addresses ε, 12, and 2, may be associated with the permutation
〈12,2,ε〉. The permutation can be marked on the tree itself with nu-
meric diacritics i , as shown in the figure.

A nonadjoining constraint on a node can now be implemented
merely by removing the node from the operable sites of a tree, and
hence from the tree’s associated permutation. In the graphical depic-
tions, nonadjoining nodes are those non-substitution nodes that bear
no numeric diacritic.

Formally, we define E(F), the elementary trees over a ranked
alphabet F, to be all pairs □γ = 〈γ,π〉 where γ ∈ T(F ∪F↓ ∪F∗) and π
is a permutation of a subset of the nodes in γ. As above, we use the
notation γ to specify the operable sites of γ, that is, the domain of π.
The operable sites γ must contain all substitution nodes in γ.
for all elements of F is consistent with that practice. Our approach, however,
opens the possibility of leaving out nonadjunction trees for one or more symbols,
thereby implementing a kind of global obligatory adjunction constraint, less ex-
pressive than those variants of TAG that have node-based obligatory adjunction
constraints, but more so than the purely adjunction-optional approach.

[69]

Stuart M. Shieber

We further require that the tree γ whose root is labeled f contain
at most one node labeled with | f |∗ ∈ F∗ and no other nodes labeled in
F∗; this node is its foot node, and its address is notated foot(β). The
foot node is not an element of γ. Trees with a foot node are auxiliary
trees; those with no foot node are initial trees. The set E(F) is the
set of all possible such elementary trees.

The notation □γ is used to indicate an elementary tree, the box as
a mnemonic for the box diacritics labeling the permutation. We use
similar notations for the particular cases where the elementary tree is
initial (□α) or auxiliary (□β). For convenience, for an elementary tree
□γ, we will use γ for its tree component when no confusion results,
and will conflate the tree properties of an elementary tree □γ and its
tree component γ.

A TAG grammar is then a triple 〈F, P, S〉, where F is a ranked al-
phabet; P is the set of elementary trees, a finite subset of E(F);
and S ∈ F↓ is a distinguished initial symbol. We further partition
the set P into the set I of initial trees in P and the set A of auxiliary
trees in P. A simple TAG grammar is depicted in Figure 4; α1 and α2

are initial trees, and β1 and β2 are auxiliary trees.
4.2 The substitution and adjunction operations
We turn now to the operations used to derive more complex trees
from the elementary trees. It is convenient to notationally distinguish
derived trees that have the form of an initial or auxiliary tree, that
is, (respectively) lacking or bearing a foot node. We use the bolded
symbols α and β for derived trees in T(F ∪F↓ ∪F∗) without and with
foot nodes, respectively, again using γ when being agnostic as to the
form.

The trees are combined by two operations, substitution and
adjunction. Under substitution, a node labeled e↓ (at address p) in a
tree γ can be replaced by an initial-form tree αwith the corresponding
label f at the root when | f |= e. The resulting tree, the substitution of
α at p in γ, is

γ[substp α]≡ γ[p 7→ α] .

Under adjunction, an internal node of γ at p labeled f ∈ F is split apart,
replaced by an auxiliary-form tree β rooted in f ′ when | f |= | f ′|. The

[70]

Bimorphisms and synchronous grammars

T#

S

c

a1 : a2 :

S⇤

a S

a

b1 :

S⇤

b S

b

b2 :

1 11

2 naS : S∗SST Figure 4:
Sample TAG for
the copy language
{wcw | w ∈ {a, b}∗ }.
The initial symbol is S↓.

b1

b2

a1

a2

naS

a

b

S

aS

T

c

b

S

S

S

(a) (b)

Figure 5:
Derivation and derived
trees for the sample
grammar of Figure 4:
(a) derivation tree,
(b) corresponding
derived tree.

resulting tree, the adjunction of β at p in γ, is
γ[adjp β]≡ γ[p 7→ β[foot(β) 7→ γ/p]] .

This definition (by requiring f to be in F, not F∗ or F↓) is consistent
with the standard convention, without loss of expressivity, that ad-
junction is disallowed at foot nodes and substitution nodes.

For uniformity, we will notate these operations with a single op-
erator opp defined as follows:

γ[opp γ
′]≡
¨
γ[substp γ

′] if γ@p ∈ F↓
γ[adjp γ

′] otherwise

4.3 Derivation trees and the derivation relation
A derivation tree D records the operations over the elementary trees
used to derive a given derived tree. Each node in the derivation tree
specifies an elementary tree □γ, with the node’s child subtrees Di

recording the derivations for trees that are adjoined or substituted
into that tree at the corresponding operable nodes.

A derivation for a grammar G = 〈F, P, S〉 is a tree whose nodes
are labeled with elementary trees, that is, a tree D in T(P). We here

[71]

Stuart M. Shieber

interpret P itself as a ranked alphabet, where for each □γ= 〈γ,π〉 ∈ P,
we take its arity to be arity(□γ) ≡ |π|. This requirement enforces the
constraint that nodes in a derivation tree labeled with □γ will have
exactly the right number of children to specify the subtrees to be used
at each of the operable sites in □γ. We add an additional constraint:
Labels match: For each node in D labeled with □γ = 〈γ,π〉, and for

all i where 1 ≤ i ≤ arity(□γ), the root node of the i-th child of □γ,
labeled with □γi, must match the corresponding operable site in
□γ, that is,

|γ@πi |= |γi@ε| .
(The notation γ@πi can be thought of as the node in γ labeled by
diacritic i .)
A derivation is complete if it is rooted in an initial tree that is

itself rooted in the initial symbol:
Initial symbol at root: The tree □αr at the root of the derivation tree

must be an initial tree labeled at its root by the initial symbol;
that is, |αr@ε|= |S|.5
For example, the tree in Figure 5(a) is a well-formed complete

derivation tree for the grammar in Figure 4. Note, for instance, that
|α1@π2| = S = |β1@ε| as required by the label-matching constraint,
and the root is an initial tree α1 whose root is consistent with the
initial symbol S↓.

A simple tree automaton can check these conditions, and there-
fore define the set of well-formed complete derivation trees. This au-
tomaton is constructed as follows. The states of the automaton are the
set {qN | N ∈ |F|}, one for each unranked vocabulary symbol in the de-
rived tree language. The start state is q|S|. For each tree □γ= 〈γ,π〉 ∈ P,
of arity n and rooted with the symbol N , there is a transition of the
form

q|N |(□γ(x1, . . . , xn))
.
= □γ(q|γ@π1|(x1), . . . , q|γ@πn|(xn)) . (2)

The set of well-formed derivation trees is thus a regular tree set.
5The stripping of ranks and diacritics is necessary to allow, for instance, the

initial symbol to match root nodes of differing arities.

[72]

Bimorphisms and synchronous grammars

For the grammar of Figure 4, the automaton defining well-formed
derivation trees is given by

qS(α1(x , y))
.
= α1(qT (x), qS(y))

qT (α2)
.
= α2

qS(β1(x))
.
= β1(qS(x))

qS(β2(x))
.
= β2(qS(x))

qS(naS)
.
= naS

which recognizes the tree of Figure 5(a):
qS(α1(α2,β1(β2(naS))))

.
= α1(qT (α2), qS(β1(β2(naS))))
.
= α1(α2,β1(qS(β2(naS))))
.
= α1(α2,β1(β2(qS(naS))))
.
= α1(α2,β1(β2(naS)))

The derivation relation D, that is, the relation between
derivation trees and the derived trees that they specify, can be simply
defined via the hierarchical iterative operation of trees at operable
sites. In particular, for a derivation tree with root labeled with the
elementary tree □γ= 〈γ,π〉 of arity n, we define

D(□γ(t1, . . . , tn))≡ γ[opπ1
D(t1),opπ2

D(t2), . . . ,opπn
D(tn)]

where, following Schabes and Shieber (1994), the right-hand side
specifies the simultaneous application of the specified operations. We
define this in terms of the sequential application of operations as fol-
lows:
γ[opp1

γ1,opp2
γ2, . . . ,oppn

γn]

≡ γ[opp1
γ1][opupdate(p2,γ1,p1) γ2, . . . ,opupdate(pn,γ1,p1) γn] (3)

The update function adjusts the paths at which later operations take
place to compensate for an earlier adjunction. (Recall the notations
q ≺ p for q a proper prefix of p and p−q for the sequence obtained by
removing the prefix q from p.)

update(p,γ, q)≡

p if γ is an initial-form tree
p if γ is an auxiliary-form tree and q ̸≺ p
q · foot(γ) · (p− q)

if γ is an auxiliary-form tree and q ≺ p

[73]

Stuart M. Shieber
Figure 6:

Grammar for a tiny
English fragment.

α1: S

2 N P↓ V P

V

like

1 N P↓

α2: N P

I

α3: N P

cake

Schabes and Shieber (1994) prove that adjunctions at distinct
sites commute: if p ̸= q then

γ[. . . ,adjp γ1,adjq γ2, . . .] = γ[. . . ,adjq γ2,adjp γ1, . . .] (4)

that is, that the order of adjunctions is immaterial according to this
definition. The proof applies equally well to substitution and mixtures
of operations. This proves that the order of the permutation over op-
erable sites is truly arbitrary; any order will yield the same result. (In
Section 8, the introduction of multiple adjunction presents the poten-
tial for noncommutativity. We address the issue in that section.)

As the base case, this definition gives, as expected,

D(□γ)≡ γ
for elementary trees of arity 0, that is, trees with no operable sites.
4.4 Tree-substitution grammars
Tree-substitution grammars are simply tree-adjoining grammars with
no auxiliary trees, so that the elementary trees are only combined by
substitution.

As a simple natural-language example, we consider the grammar
with three elementary trees of Figure 6 and initial symbol S. The arities
of the symbols should be clear from their usage and the associated
permutations from the link diacritics.

As in Section 4.3, the derived tree for a derivation tree D is gener-
ated by performing all of the requisite substitutions. In this section, we
provide a new definition of the derivation relation between a deriva-
tion tree and the derived tree it specifies as a simple homomorphism
hD, and prove that this definition is equivalent to that of Section 4.3.

[74]

Bimorphisms and synchronous grammars

We define hD in equational form. For each elementary tree □α ∈ P,
there is an equation of the form

hD(□α(x1, . . . , xn))
.
= ⌊□α⌋

where the right-hand-side transformation ⌊·⌋ is defined by
⌊A(t1, . . . , tn)⌋= A(⌊t1⌋, . . . , ⌊tn⌋)

⌊ k A↓⌋= hD(xk) . (5)

Essentially, this transformation replaces each operable site πi by the
homomorphic image of the corresponding variable x i, that is,

⌊α⌋= α[π1 7→ hD(x1)] . . . [πn 7→ hD(xn)]

for a tree α with n substitution sites in its permutation π.
4.5 An example derivation
Returning to the example, the equations corresponding to the elemen-
tary trees of Figure 6 are

hD(α1(x1, x2))
.
= S(hD(x2), V P(V (l ike), hD(x1)))

hD(α2)
.
= N P(I)

hD(α3)
.
= N P(cake) .

We define the derived tree corresponding to a derivation tree D
as the application of this homomorphism to D, that is hD(D). For the
example above, the derived tree is that shown in Figure 2(a):

hD(α1(α3,α2))
.
= S(hD(α2), V P(V (l ike), hD(α3))
.
= S(N P(I), V P(V (l ike), N P(cake)))

By composing the automaton recognizing well-formed derivation
trees with the homomorphism above, we can construct a single trans-
ducer doing the work of both. We do this explicitly for TAG in Sec-
tion 7.1.

Note that, by construction, each variable occurs exactly once on
the right-hand side of a given equation. Thus, this homomorphism hD

is linear and complete.

[75]

Stuart M. Shieber

4.6 Equivalence of D and hD

We can show that this definition in terms of the linear complete ho-
momorphism hD is equivalent to the traditional definition D:

D(D) = hD(D) (6)
The proof is by induction on the height of D. Since hD is the identity
function everywhere except at operable sites,

D(□α) = α= hD(□α) .
This serves as the base case for the induction.

Now suppose, that Equation (6) holds for trees of height k, and
consider tree □α(D1, . . . , Dn) of height k+ 1. Then
D(□α(D1, . . . , Dn)) = α[substπ1

D(D1), . . . ,substπn
D(Dn)]

= α[substπ1
D(D1)] . . . [substπn

D(Dn)]

= α[π1 7→D(D1)] . . . [πn 7→D(Dn)]

= α[π1 7→ hD(D1)] . . . [πn 7→ hD(Dn)] ⇐
= α[π1 7→ hD(x1)] . . . [πn 7→ hD(xn)][D1, . . . , Dn]

= ⌊α⌋[D1, . . . , Dn]

= hD(□α(D1, . . . , Dn)) .
The marked step applies the induction hypothesis.

Later, in Section 7 we will provide a similar reformulation of the
derivation relation for tree-adjoining grammars. To do so, however,
requires additional power beyond simple tree homomorphisms, which
is the subject of that section.

5 synchronous grammars

We perform synchronization of tree-adjoining and tree-substitution
grammars as per the approach taken in earlier work (Shieber 1994).
Synchronous grammars consist of pairs of elementary trees with a
linking relation between operable sites in each tree. Simultaneous
operations occur at linked nodes. In the case of synchronous tree-
substitution grammars, the composition operation is substitution, so
the linked nodes are substitution nodes.

[76]

Bimorphisms and synchronous grammars

We define a synchronous tree-adjoining grammar, then, as a quin-
tuple G = 〈Fin,Fout , P, Sin, Sout〉, where

• Fin and Fout are the input and output ranked alphabets, respec-
tively,

• Sin ∈ Fin↓ and Sout ∈ Fout↓ are the input and output initial symbols,
and

• P is a set of elementary linked tree pairs, each of the form
〈γin,γout ,⌢〉, where γin ∈ T(Fin ∪ Fin↓ ∪ Fin∗) and γout ∈ T(Fin ∪
Fin↓ ∪ Fin∗) are input and output trees and ⌢ ⊆ γin × γout is a
bijection between operable sites from the two trees.
We define Gin = 〈Fin, Pin, Sin〉 where Pin = {〈γ,πin〉 | 〈γ,γ′,⌢〉 ∈ P};

this is the left projection of the synchronous grammar onto a simple
TAG. The right projection Gout is defined similarly. Recall that the
elementary trees in this grammar need a permutation on their opera-
ble sites. In order to guarantee that derivations for the synchronized
grammars are isomorphic, the permutations for the operable sites for
paired trees should be consistent. We therefore choose an arbitrary
permutation 〈pin,1⌢ pout,1, . . . , pin,n⌢ pout,n〉 over the linked pairs, and
take the permutations πin for γin and πout for γout to be defined as
πin = 〈pin,1, . . . , pin,n〉 and πout = 〈pout,1, . . . , pout,n〉. Since ⌢ is a bijec-
tion, these projections are permutations as required.

A synchronous derivation was originally defined (Shieber 1994)
as a pair 〈Din, Dout〉 where6
1. Din is a well-formed derivation tree for Gin, and Dout is a well-

formed derivation tree for Gout , and
2. Din and Dout are isomorphic.7

The derived tree pair for derivation 〈Din, Dout〉 is then 〈D(Din),D(Dout)〉.
6 In our earlier definition (Shieber 1994), a third condition required that the

isomorphic operations be sanctioned by links in tree pairs. This condition can
be dropped here, as it follows from the previous definitions. In particular, since
the permutations for paired trees are chosen to be consistent, it follows that the
isomorphic children of isomorphic nodes are substituted at linked paths.

7By “isomorphism” here, wemean the normal sense of isomorphism of rooted
trees where the elementary-tree-pairing relation in P serves as the bijection wit-
nessing the isomorphism.

[77]

Stuart M. Shieber

Presentations of synchronous tree-adjoining grammars typically
weaken the requirement that the linking relation be a bijection; mul-
tiple links are allowed to impinge on a single node. One of two inter-
pretations is possible in this case. We might require that if multiple
links impinge upon a node, only one of the links be used. Under this
interpretation, the multiple links at a node can be thought of as abbre-
viatory for a set of trees, each of which contains only one of the links.
(The abbreviated form allows for exponentially fewer trees, however.)
Thus, the formalism is equivalent to the one described in this section
in terms of bijective link relations. Alternatively, we might allow true
multiple adjunction of nontrivial trees, which requires an extended
notion of derivation tree and derivation relation. This interpretation,
proposed by Schabes and Shieber (1994), is arguably better motivated.
We defer discussion of multiple adjunction to Section 8, where we ad-
dress the issue in detail.

6 the bimorphism characterization of stsg

The central result we provide relating STSG to tree transducers is this:
STSG is weakly equivalent to B(LC , LC), that is, equivalent in the char-
acterized string relations. To show this, we must demonstrate that any
STSG is reducible to a bimorphism, and vice versa.
6.1 Reducing STSG to B(LC , LC)

Given an STSG G = 〈Fin,Fout , P, Sin, Sout〉, we need to construct a bimor-
phism characterizing the same tree relation. All the parts are in place
to do this. We start by defining a languageD of synchronous derivation
trees, which recasts synchronous derivations as single derivation trees
from which the left and right derivation trees can be projected via ho-
momorphisms. Rather than taking a synchronous derivation to be a
pair of isomorphic trees Din and Dout , we take it to be the single tree
D isomorphic to both, whose element at address p is the elementary
tree pair in P that includes Din@p and Dout@p. The two synchronized
derivations Din and Dout can be separately recovered by projecting this
new derivation tree on its first and second elements via homomor-
phisms: hin that projects on the first component and hout that projects
on the second, respectively. These homomorphisms are trivially linear
and complete (indeed, they are mere delabelings).

[78]

Bimorphisms and synchronous grammars

We define the set D of well-formed synchronous derivation trees
to be the set of trees D ∈ T(P) such that hin(D) and hout(D) are both
well-formed derivation trees as per Section 4.3. Since tree automata
are closed under inverse homomorphism and intersection, the set D is
a regular tree language.

The fact that for any tree D ∈ D, hin(D) and hout(D) are well-
formed derivation trees for their respective TSGs is trivial by con-
struction. It is also trivial to show that any paired derivation has a
corresponding synchronous derivation tree in D.

For a given derivation tree D ∈ D, the paired derived trees can
be constructed as hD(hin(D)) and hD(hout(D)), respectively. Thus the
mappings from the derivation tree to the derived trees are the compo-
sitions of two linear complete homomorphisms, hence linear complete
homomorphisms themselves. We take the bimorphism characterizing
the STSG tree relation to be 〈D, hD ◦ hin, hD ◦ hout〉. Thus, the tree rela-
tion defined by the STSG is in B(LC , LC).
6.2 Reducing B(LC , LC) to STSG
The other direction is somewhat trickier to prove. Given a bimorphism
〈L, hin, hout〉 over input and output alphabets Fin and Fout , respectively,
we construct a corresponding STSG G = 〈F′in,F′out , P, Sin, Sout〉. By “cor-
responding”, we mean that the tree relation defined by the bimor-
phism is obtainable from the tree relation defined by the STSG via
simple homomorphisms of the input and output that eliminate the
nodes labeled inQ (as described below). The tree yields are unchanged
by these homomorphisms; thus, the string relations defined by the bi-
morphism and the synchronous grammar are identical.

As the language L is a regular tree language, it is generable by a
nondeterministic tree automaton hD = 〈Q,Fd ,∆, q0〉. We use the states
of this automaton in the input and output alphabets of the STSG. The
input alphabet of the STSG is F′in = Fin ∪ Q, composed of the input
symbols of the bimorphism, along with the states of the automaton
(taken to be symbols of arity 1), and similarly for the output alpha-
bet. The state symbols mark the places in the tree where substitutions
occur, allowing control for appropriate substitutions. It is these state
symbols that can be eliminated by a simple homomorphism.8

8 In previous work (Shieber 2004), we used a construction that did not in-

[79]

Stuart M. Shieber

The basic idea of the STSG construction is to construct an ele-
mentary tree pair corresponding to each compatible pair of transi-
tions in the transducer hD ◦ hin = 〈Q in,Fd ,Fin,∆in, qin,0〉 and hD ◦ hout =
〈Qout ,Fd ,Fout ,∆out , qout,0〉. For each pair of transitions of the form

qin,i(f (x1, . . . , xn))
.
= τin ∈∆in

and
qout, j(f (x1, . . . , xn))

.
= τout ∈∆out

we construct a tree pair
〈qin,i(⌈τin⌉), qout, j(⌈τout⌉)〉

where the following transformation is applied to the right-hand sides
of the transitions to form the body of the synchronized trees:

⌈ f (t1, . . . , tm)⌉= f (⌈t1⌉, . . . , ⌈tm⌉)
⌈q j(xk)⌉= k q j↓

Note that this transformation generates the tree along with a permuta-
tion of the operable sites (all substitution nodes) in the tree, and that
there will be exactly n such sites in each element of the tree pair, since
the transitions are linear and complete by hypothesis. Thus, the two
permutations define an appropriate linking relation, which we take to
be the synchronous grammar linking relation for the tree pair.

An example may clarify the construction. Take the language of
the bimorphism to be defined by the following two-state automaton:

q(f (x , y))
.
= f (q′(x), q′(y))

q(a)
.
= a

q′(g(x)) .
= g(q(x))

troduce any extra tree structure in the STSG, so that the trees generated by the
bimorphism relation could be recovered by a delabeling rather than a homomor-
phism deleting extra nodes. However, the proof of equivalence was considerably
more subtle, and did not generalize as readily to the case of STAG. Nonetheless,
it is useful to note that even more faithful STSG reconstructions of bimorphisms
are possible.

Alternately, the definition of STSG (and similarly, STAG) can be modified to
incorporate finite-state information explicitly at operable sites. By adding in this
information, the bookkeeping done here can be folded into the states, allowing
for a stricter strong-generative capacity equivalence. This elegant approach is
pursued by Büchse et al. (2014).

[80]

Bimorphisms and synchronous grammars

F

G

F

G

A

G

A

G

A

hin⇐= f

g

f

g

a

g

a

g

a

hout
=⇒ D

E

N

D

E

D

E

N

D

E

N

N

N

Figure 7:
Example of
bimorphism
construction

This automaton uses the states to alternate g’s with f ’s and a’s level
by level. For instance, it admits the middle tree in Figure 7. With input
and output homomorphisms defined by

ĥin(f)
.
= F(x , y) ĥout(f)

.
= D(y, D(x , N))

ĥin(g)
.
= G(x) ĥout(g)

.
= E(x)

ĥin(a)
.
= A ĥout(a)

.
= N

the bimorphism so defined generates the tree relation instance exem-
plified in the figure.

The construction given above generates the elementary tree pairs
in Figure 8 for this bimorphism. The reader can verify that the gram-
mar generates a tree pair which corresponds to that shown in Fig-
ure 7 generated by the bimorphism after deletion of the state sym-
bols.

By placing STSG in the class of bimorphisms, which have already
been used to characterize tree transducers, we synthesize these two
independently developed approaches to specifying tree relations. But
the relation between a TAG derivation tree and its derived tree is not a
mere homomorphism. The appropriate morphism generalizing linear
complete homomorphisms to allow adjunction can be used to provide

[81]

Stuart M. Shieber
Figure 8:

Generated STSG for
previous example of

bimorphism construction
(in Figure 7) α f =

* q

F

1 q′↓ 2 q′↓

q

D

2 q′↓ D

1 q′↓ N

+

αg =

* q′

G

1 q↓

q′

E

1 q↓

+

αa =

*
q

A

q

N

+

a bimorphism characterization of STAG as well, further unifying these
strands of research. It is to this possibility that we now turn.

7 embedded tree transducers

We have shown that the string relations defined by synchronous tree-
substitution grammars were exactly the relations B(LC , LC). Intu-
itively speaking, the tree language in such a bimorphism represents
the set of derivation trees for the synchronous grammar, and each ho-
momorphism represents the relation between the derivation tree and
the derived tree for one of the projected tree-substitution grammars.
The homomorphisms are linear and complete because the tree rela-
tion between a tree-substitution grammar derivation tree and its asso-
ciated derived tree is exactly a linear complete tree homomorphism.
To characterize the relations defined by synchronous tree-adjoining
grammars, it similarly suffices to find a simple homomorphism-like char-

[82]

Bimorphisms and synchronous grammars

acterization of the tree relation between TAG derivation trees and derived
trees. In Section 7.3 below, we show that linear complete embedded
tree homomorphisms (which we introduce next) serve this purpose.

Embedded tree transducers are a generalization of tree trans-
ducers in which states are allowed to take a single additional argu-
ment in a restricted manner. They correspond to a restrictive subcase
of macro tree transducers with one recursion variable. We use the
term “embedded tree transducer” rather than the more cumbersome
“monadic macro tree transducer” for brevity and by analogy with
embedded pushdown automata (Schabes and Vijay-Shanker 1990),
another automata-theoretic characterization of the tree-adjoining lan-
guages.

We modify the grammar of transducer equations to add an extra
optional argument to each occurrence of a state q. To highlight the
special nature of the extra argument, it is written in angle brackets
before the input tree argument. We uniformly use the otherwise un-
used variable x0 for this argument in the left-hand side, and add x0 as
a possible right-hand side itself. Finally, right-hand-side occurrences
of states may be passed an arbitrary further right-hand-side tree in this
argument. (The use of square brackets in the metanotation indicates
optionality.)

q ∈Q

f (n) ∈ F(n)
x ∈ X ::= x0 | x1 | x2 | · · ·

Eqn ::= q〈[x0]〉(f (n)(x1, . . . , xn))
.
= τ(n)

τ(n) ∈ R(n) ::= f (m)(τ(n)1, . . . ,τ(n)m)

| x0

| q j〈[τ(n) j]〉(x i) where 1≤ i ≤ n

(7)

Embedded transducers are strictly more expressive than tradi-
tional transducers, because the extra argument allows unbounded
communication between positions unboundedly distant in depth in
the output tree. For example, a simple embedded transducer can com-
pute the reversal of a string, transducing 1(2(2(nil))) to 2(2(1(nil))),
for instance. (This is not computable by a traditional tree transducer.)
It is given by the following equations:

[83]

Stuart M. Shieber
r〈〉(nil)

.
= nil

r〈〉(1(x)) .
= s〈1(nil)〉(x)

r〈〉(2(x)) .
= s〈2(nil)〉(x)

s〈x0〉(nil)
.
= x0

s〈x0〉(1(x)) .
= s〈1(x0)〉(x)

s〈x0〉(2(x)) .
= s〈2(x0)〉(x)

(8)

This is, of course, just the normal accumulating reverse functional pro-
gram, expressed as an embedded transducer.9 The additional power
of embedded transducers is exactly what is needed to characterize the
additional power that TAGs represent over CFGs in describing tree lan-
guages, as we will demonstrate in this section. In particular, we show
that the relation between a TAG derivation tree and derived tree is
characterized by a deterministic linear complete embedded tree trans-
ducer (DLCETT).

The first direct presentation of the connection between the tree-
adjoining languages and macro tree transducers – the basis for the
presentation here – was given in an earlier paper (Shieber 2006). How-
ever, the connection may be implicit in a series of previous results in
the formal-language theory literature.10 For instance, Fujiyoshi and
Kasai (2000) show that linear, complete monadic context-free tree
grammars generate exactly the tree-adjoining languages via a normal
form for spine grammars. Separately, the relation between context-
free tree grammars and macro tree transducers has been described,
where the relationship between the monadic variants of each is im-
plicit. Thus, taken together, an equivalence between the tree-adjoining

9A simpler set of equations achieves the same end.

r〈〉(x) .
= s〈nil〉(x)

s〈x0〉(nil)
.
= x0

s〈x0〉(1(x)) .
= s〈1(x0)〉(x)

s〈x0〉(2(x)) .
= s〈2(x0)〉(x)

(9)

Unfortunately, this set of equations doesn’t satisfy the structure of an embedded
tree transducer given in Equation (7). Surprisingly, however, the compilation
from equations to TAG presented in Section 7.2 applies to this set of equations
as well, generating a TAG whose derived trees also reverse its derivation trees.

10We are indebted to Uwe Mönnich for this observation.

[84]

Bimorphisms and synchronous grammars

languages and the image languages of monadic macro tree transducers
might be pieced together.

In the present work, we define the relation between tree-adjoining
languages and linear complete embedded tree transducers directly,
simply, and transparently, by giving explicit constructions in both di-
rections. First, we show that for any TAG we can construct a DLCETT
that specifies the tree relation between the derivation trees for the
TAG and the derived trees. Then, we show that for any DLCETT we
can construct a TAG such that the tree relation between the derivation
trees and derived trees is related through a simple homomorphism to
the DLCETT tree relation. Finally, we use these results to show that
STAG and the bimorphism class B(ELC , ELC) are weakly equivalent,
where ELC stands for the class of linear complete embedded homo-
morphisms.
7.1 From TAG to transducer
As the first part of the task of characterizing TAG in terms of DLCETT,
we show that for any TAG grammar G = 〈F, P, S〉, there is a DLCETT
〈{hD}, P,F,∆, hD〉 (in fact, an embedded homomorphism), that trans-
duces the derivation trees for the grammar to the corresponding de-
rived trees. This transducer plays the same role for TAG as the defi-
nition of hD in Section 4.3 did for TSG. We define the components of
the transducer as follows: The single state, evocatively named hD, is
the initial state. The input alphabet is the set of elementary trees P
in the grammar, since the input trees are to be the derivation trees of
the grammar. The arity of a tree (qua symbol in the input alphabet) is
as described in Section 4.3. The output alphabet is that used to define
the trees in the TAG grammar, F.

We now turn to the construction of the equations, one for each
elementary tree □γ ∈ P. Suppose □γ has a permutation π= 〈π1, . . . ,πn〉
on its operable sites. (We use this ordering by means of the diacritic
representation below.) If γ is an auxiliary tree, construct the equation

hD〈x0〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

and if γ is an initial tree, construct the equation

hD〈〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

[85]

Stuart M. Shieber

where the right-hand-side transformation ⌊·⌋ is defined by11

⌊ f (t1, . . . , tn)⌋= f (⌊t1⌋, . . . , ⌊tn⌋)
⌊ k f (t1, . . . , tn)⌋= hD〈⌊ f (t1, . . . , tn)⌋〉(xk)

⌊ f∗⌋= x0

⌊ k f↓⌋= hD〈〉(xk) .

(10)

Note that the equations so generated are linear and complete, because
each variable x i is generated once as the tree α is traversed, namely
at position πi in the traversal (marked with i), and the variable x0 is
generated at the foot node only. Thus, the generated embedded tree
transducer is linear and complete. Because only one equation is gen-
erated per tree, the transducer is trivially deterministic. Because there
is only one state, it is a kind of embedded homomorphism.

As noted for TSG in Section 4.3, by composing the automaton
recognizing well-formed derivation trees from Section 4.3 with the
embedded homomorphism above generating the derived tree, we can
construct a single DLCETT doing the work of both. Where the con-
struction of Section 4.3 would generate a transition of the form in
Equation 2, repeated here as

q|N |(□γ(x1, . . . , xn))
.
= □γ(q|γ@π1|(x1), . . . , q|γ@πn|(xn))

we compose this transition with the corresponding transition from the
previous section

hD〈x0〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

11 It may seem like trickery to use the diacritics in this way, as they are not
really components of the tree being traversed, but merely manifestations of an ex-
trinsic ordering. But their use is benign. The same transformation can be defined,
a bit more cumbersomely, keeping the permutation π separate, by tracking the
permutation and the current address p in a revised transformation ⌊·⌋π,p defined
as follows:

⌊ f (t1, . . . , tn)⌋π,p = f (⌊t1⌋π,p·1, . . . , ⌊tn⌋π,p·n)
⌊ f (t1, . . . , tn)⌋π,p = hD〈⌊ f (t1, . . . , tn)⌋π,p〉(xπ−1(p))

⌊ f∗⌋π,p = x0

⌊ f↓⌋π,p = hD〈〉(xπ−1(p))

We then use ⌊α⌋π,ε for the transformation of the tree α.

[86]

Bimorphisms and synchronous grammars

or
hD〈〉(□γ(x1, . . . , xn))

.
= ⌊γ⌋

for auxiliary and initial trees respectively. The composition construc-
tion generates a transducer with states in the cross-product of the
states of the input transducers. In this case, since the latter transducer
has a single state, we simply reuse the state set of the former, gener-
ating

q|N |〈x0〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

or
q|N |〈〉(□γ(x1, . . . , xn))

.
= ⌊γ⌋

where

⌊ f (t1, . . . , tn)⌋= f (⌊t1⌋, . . . , ⌊tn⌋)
⌊ k f (t1, . . . , tn)⌋= q| f |〈⌊ f (t1, . . . , tn)⌋〉(xk)

⌊ f∗⌋= x0

⌊ k f↓⌋= q| f↓|〈〉(xk) .
(11)

7.1.1 An example derivation
By way of example, we consider the tree-adjoining grammar given by
the following trees:

α : 1 A(e)
βA : A(1 B(a), 2 C(3 D(A∗)))
βB : 1 B(b, B∗)

naB : B∗
naC : C∗
naD : D∗

Starting with the auxiliary tree βA = A(1 B(a), 2 C(3 D(A∗))), the
adjunction sites, corresponding to the nodes labeled B, C , and D at
addresses 1, 2, and 21, have been arbitrarily given a preorder permu-

[87]

Stuart M. Shieber

tation. We therefore construct the equation as follows:

hD〈x0〉(βA(x1, x2, x3))
.
= ⌊A(1 B(a), 2 C(3 D(A∗)))⌋
= A(⌊ 1 B(a)⌋, ⌊ 2 C(3 D(A∗))⌋)
= A(hD〈⌊B(a)⌋〉(x1), ⌊ 2 C(3 D(A∗))⌋)
= A(hD〈B(⌊a⌋)〉(x1), ⌊ 2 C(3 D(A∗))⌋)
= · · ·
= A(hD〈B(a)〉(x1), hD〈C(hD〈D(x0)〉(x3))〉(x2))

Similar derivations for the remaining trees yield the (deterministic
linear complete) embedded tree transducer defined by the following
set of equations:

hD〈〉(α(x1))
.
= hD〈A(e)〉(x1)

hD〈x0〉(βA(x1, x2, x3))
.
= A(hD〈B(a)〉(x1), hD〈C(hD〈D(x0)〉(x3))〉(x2))

hD〈x0〉(βB(x1))
.
= hD〈B(b, x0)〉(x1)

hD〈x0〉(naB())
.
= x0

hD〈x0〉(naC())
.
= x0

hD〈x0〉(naD())
.
= x0

We can use this transducer to compute the derived tree for the deriva-
tion tree

α(βA(βB(naB),naC ,naD))

as follows:

hD〈〉(α(βA(βB(naB),naC ,naD)))
.
= hD〈A(e)〉(βA(βB(naB),naC ,naD))
.
= A(hD〈B(a)〉(βB(naB)), hD〈C(hD〈D(A(e))〉(naD))〉(naC))
.
= A(hD〈B(b, B(a))〉(naB), C(hD〈D(A(e))〉(naD)))
.
= A(B(b, B(a)), C(D(A(e))))

7.1.2 Equivalence of D and hD

We can now show for TAG derivations, as we did for TSG derivations
in Section 4.3, that the embedded homomorphism hD constructed in
this way computes the derivation relation D.

[88]

Bimorphisms and synchronous grammars

In order to simplify the argument, we take advantage of the com-
mutativity of operations (Equation 4), and assume without loss of gen-
erality that each permutation associated with the operable sites of an
elementary tree is consistent with a postorder traversal of the nodes
in the tree. We can then simplify Equation 3 to

γ[opp1
γ1,opp2

γ2, . . . ,oppn
γn] ≡ γ[opp1

γ1][opp2
γ2, . . . ,oppn

γn]

since in a postorder traversal, pi ̸≺ pi+k.
It will also prove to be useful to have a single notation for the

effect of both substitution and adjunction. Recall the definitions of
substitution and adjunction:

γ[substp α]≡ γ[p 7→ α]
γ[adjp β]≡ γ[p 7→ β[foot(β) 7→ γ/p]]

Under the convention that mapping a (nonexistent) “foot” of an initial
tree leaves the tree unchanged, that is,

α[foot(α) 7→ γ]≡ α
the two operations collapse notationally, so that we can write

γ[opp γ
′]≡ γ[p 7→ γ′[foot(γ′) 7→ γ/p]]

for both substitution and adjunction.
We prove that D(D) = hD〈〉(D) for derivations D rooted in an

initial tree, and D(D)[foot(D(D)) 7→ x] = hD〈x〉(D) for derivations
rooted in an auxiliary tree. The proof is again by induction on the
height of the derivation D.

For the base case, the derivation consists of a single tree with
no operable sites. If it is an initial tree α, then D(α) = α = hD〈〉(α)
straightforwardly from the definition of hD, using only the first equa-
tion in Equation (10). Similarly, the base case for auxiliary trees,

D(β)[foot(β) 7→ x] = β[foot(β) 7→ x] = hD〈x〉(β)
requires only the first and third equations in (10).

[89]

Stuart M. Shieber

For the recursive case,

hD〈〉(α(D1, . . . , Dn))

= ⌊α⌋[x1 7→ D1, . . . , xn 7→ Dn]

= α[π1 7→ hD〈α/π1〉(D1)] · · · [πn 7→ hD〈α/πn〉(Dn)]

= α[π1 7→D(D1)[foot(D(D1)) 7→ α/π1]]

· · · [π1 7→D(Dn)[foot(D(Dn)) 7→ α/πn]] ⇐
= α[opπ1

D(D1)] · · · [opπn
D(Dn)]

= α[opπ1
D(D1), · · · ,opπn

D(Dn)]

=D(α(D1, . . . , Dn))

with the marked step appealing to the induction hypothesis.
Similarly, for derivations rooted in an auxiliary tree,

hD〈x〉(β(D1, . . . , Dn))

= ⌊β⌋[x0 7→ x , x1 7→ D1, . . . , xn 7→ Dn]

= β[foot(β) 7→ x][π1 7→ hD〈β/π1〉(D1)]

· · · [πn 7→ hD〈β/πn〉(Dn)]

= β[foot(β) 7→ x][π1 7→D(D1)[foot(D(D1)) 7→ β/π1]]

· · · [π1 7→D(Dn)[foot(D(Dn)) 7→ β/πn]]

= β[foot(β) 7→ x][opπ1
D(D1)] · · · [opπn

D(Dn)]

= β[foot(β) 7→ x][opπ1
D(D1), . . . ,opπn

D(Dn)]

= β[opπ1
D(D1), · · · ,opπn

D(Dn)][foot(D(β(D1, . . . , Dn))) 7→ x]

=D(β(D1, . . . , Dn))[foot(D(β(D1, . . . , Dn))) 7→ x] .

7.2 From transducer to TAG
Having shown how to construct a DLCETT that captures the relation
between derivation trees and derived trees of a TAG, we turn now to
showing how to construct a TAG that mimics in its derivation/derived
tree relation a DLCETT. Given a linear complete embedded tree trans-
ducer 〈Q,F,G,∆, q0〉, we construct a corresponding TAG 〈G∪ Q̇, P, q̇0〉
where the alphabet consists of the output alphabet G of the transducer
together with the disjoint set of unary symbols Q̇ = {q̇1, . . . , q̇|Q|} cor-
responding to the states of the input transducer. The initial symbol of

[90]

Bimorphisms and synchronous grammars

the grammar is the symbol q̇0 corresponding to the initial state q0 of
the transducer.

The elementary trees of the grammar are constructed as follows.
For each rule of the form

q〈[x0]〉(f (m)(x1, . . . , xm))
.
= τ

we build a tree named 〈q, f ,τ〉. Where this tree appears is determined
solely by the state q, so we take the root node of the tree to be the
corresponding symbol q̇. Any foot node in the tree will also need to be
marked with the same label, so we pass this information down as the
tree is built inductively. The tree is therefore of the form q̇(⌈τ⌉q)where
the right-hand-side transformation ⌈·⌉q constructs the remainder of the
tree by the inductive walk of τ, with the subscript noting that the root
is labeled by state q.

⌈ f (m)(t1, . . . , tm)⌉q = f (⌈t1⌉q, . . . , ⌈tm⌉q)
⌈q j〈τ〉(xk)⌉q = k q̇ j(⌈τ⌉q)
⌈q j〈〉(xk)⌉q = k q̇ j↓
⌈x0⌉q = q̇∗

Note that at x0, a foot node is generated of the proper label. (Because
the equation is linear, only one foot node is generated, and it is labeled
appropriately by construction.) Where recursive processing of the in-
put tree occurs (q j〈τ〉(xk)), we generate a tree that admits adjunctions
at q̇ j. The role of the diacritic k is merely to specify the permutation
of operable sites for interpreting derivation trees; it says that the k-th
child in a derivation tree rooted in the current elementary tree is taken
to specify adjunctions at this node.

The trees generated by this TAG correspond to the outputs of the
corresponding tree transducer. Because of the more severe constraints
on TAG, in particular that all combinatorial limitations on putting sub-
trees together must be manifest in the labels in the trees themselves,
the outputs actually contain more structure than the corresponding
transducer output. In particular, the state-labeled nodes are merely
for bookkeeping. A simple homomorphism removing these nodes gives

[91]

Stuart M. Shieber

the desired transducer output:12

rem(q̇(x))
.
= rem(x) for q̇ ∈ Q̇

rem(f (n)(x1, . . . , xn))
.
= f (n)(rem(x1), . . . , rem(xn)) for f (n) ∈ G(n)

An example may clarify the construction. Recall the reversal em-
bedded transducer in (8) above. The construction above generates a
TAG containing the following trees. We have given them indicative
names rather than the cumbersome ones of the form 〈qi , f ,τ〉.

αnil : ṙ(nil)
α1 : ṙ(1 ṡ(1(nil)))
α2 : ṙ(1 ṡ(2(nil)))
βnil : ṡ(ṡ∗)
β1 : ṡ(1 ṡ(1(ṡ∗)))
β2 : ṡ(1 ṡ(2(ṡ∗)))

It is simple to verify that the derivation tree

α1(β2(β2(βnil))))

derives the tree
ṙ(ṡ4(2(ṡ(2(ṡ(1(nil))))))) .

Simple homomorphisms that extract the input function symbols
on the input and drop the bookkeeping states on the output (that is, the
homomorphism rem provided above) reduce these trees to 1(2(2(nil)))
and 2(2(1(nil))) respectively, just as for the corresponding tree trans-
ducer.
7.2.1 Equivalence of DLCETT and TAG
We demonstrate that the compilation from DLCETT to TAG gener-
ates a grammar with the same language as that of the DLCETT by
appeal to the previous result of Section 7.1.2. Consider a DLCETT
T = 〈Q,F,G,∆, q0〉 converted by the compilation above to a gram-
mar G = 〈G∪ Q̇, P, q̇0〉. That grammar may itself be compiled to a

12As noted in Footnote 8, a formalization of a modified form of TAG that di-
rectly incorporates state information at operable sites (Büchse et al. 2014) elimi-
nates this need for bookkeeping through extra nodes in the tree structure, making
the equivalence even stronger.

[92]

Bimorphisms and synchronous grammars

DLCETT using the compilation of Section 7.1.2, previously shown
to be language-preserving. We show that this round-trip conversion
preserves the language that is the range of the DLCETT by showing
that each equation in the original grammar “round-trip” compiles to
an equation that differs only in the tree structure. In particular, a
rule of the form q〈x0〉(f (x1, . . . , xm)) = τ compiles to the equation
q〈x0〉(f (x1, . . . , xm)) = τ′ where τ = rem(τ′). We will write τ′ ≈ τ
when τ= rem(τ′).

For each rule in T of the form q〈x0〉(f (x1, . . . , xm)) = τ, we gen-
erate a tree 〈q, f ,τ〉 in the grammar G of the form q̇(⌈τ⌉q). This tree,
in turn, is compiled as in Section 7.1 to an equation in the output
transducer T ′:

q〈x0〉(〈q, f ,τ〉(x1, . . . , xm)) = ⌊q̇(⌈τ⌉q)⌋
= q̇(⌊⌈τ⌉q⌋)
≈ ⌊⌈τ⌉q⌋

(Here and in the following, we write q for q|q̇| in the ⌊·⌋ construction,
taking advantage of the bijection between the Q̇ symbols and the corre-
sponding states of the generated transducer.) Note that this is exactly
of the required form, so long as ⌊⌈τ⌉q⌋ ≈ τ, which we now prove by
induction on the structure of τ.

• If τ= x0, ⌊⌈x0⌉q⌋= ⌊q̇∗⌋= x0.
• If τ= q j〈〉(xk), ⌊⌈q j〈〉(xk)⌉q⌋= ⌊ k q̇ j↓⌋= q j〈〉(xk).
• If τ= q j〈τ0〉(xk),

⌊⌈q j〈τ0〉(xk)⌉q⌋= ⌊ k q̇ j(⌈τ0⌉q)⌋
= q j〈⌊q̇ j(⌈τ0⌉q)⌋〉(xk)

= q j〈q̇ j(⌊⌈τ0⌉q⌋)〉(xk)

≈ q j〈τ0〉(xk).

The last step follows from the induction hypothesis and the fact
that rem removes the symbol q̇ j.

• If τ= f (m)(t1, . . . , tm),
⌊⌈ f (m)(t1, . . . , tm)⌉q⌋= ⌊ f (m)(⌈t1⌉q, . . . , ⌈tm⌉q)⌋

= f (m)(⌊⌈t1⌉q⌋, . . . , ⌊⌈tm⌉q⌋)
≈ f (m)(t1, . . . , tm).

[93]

Stuart M. Shieber

Again, the last step applies the induction hypothesis.

Writing L(T) for the range string language of the transducer T ,
we have that L(G) = L(T ′) and L(T) = L(T ′). We conclude that L(T) =
L(G). In fact, by the above, the tree languages are identical up to the
homomorphism rem. Most importantly, then, the weak generative ca-
pacity of TAGs and the range of DLCETTs are identical.
7.3 The bimorphism characterization of STAG
The major advantage of characterizing TAG derivation in terms of
tree transducers (via the compilation (10)) is the integration of syn-
chronous TAGs into the bimorphism framework, which follows di-
rectly.

In order to model a synchronous grammar formalism as a bi-
morphism, the well-formed derivations of the synchronous formalism
must be characterizable as a regular tree language and the relation
between such derivation trees and each of the paired derived trees
as a homomorphism of some sort. As shown in Section 6, for syn-
chronous tree-substitution grammars, derivation trees are regular tree
languages, and the map from derivation to each of the paired derived
trees is a linear complete tree homomorphism. Thus, synchronous tree-
substitution grammars fall in the class of bimorphisms B(LC , LC). The
other direction holds as well; all bimorphisms in B(LC , LC) define
string relations expressible by an STSG.

A similar result follows for STAG. Crucially relying on the result
above that the derivation relation is a DLCETT, we can use the same
method directly to characterize the synchronous TAG string relations
as just B(ELC , ELC). We have thus integrated synchronous TAG with
the other transducer and synchronous grammar formalisms falling un-
der the bimorphism umbrella.

8 multiple adjunction

The discussion so far has assumed that derivations allow at most one
operation to occur at any given node in an elementary tree (in fact,
exactly one). This constraint inhered in the original formulations of
TAG derivation (Vijay-Shanker 1987), and had the effect of removing
systematic spurious ambiguities without reducing the range of defin-

[94]

Bimorphisms and synchronous grammars

able languages. Schabes and Shieber (1994) point out the desirability
of allowing multiple adjunctions at a single node, and provide various
arguments for this generalization, most notably as needed for many
applications of synchronous TAG, which is precisely the case that we
are concerned with in this paper. It therefore behooves us to examine
the effect of multiple adjunction on the analysis.

There are various ways in which multiple adjunction can be in-
serted. Most simply, one could specify that the set of operable nodes
of a tree allows for a given node in the set a fixed number of times.
(This could be graphically depicted by allowing more than one dia-
critic at a given node, with each diacritic to be used exactly once.)
In theory, this would allow multiple nontrivial adjunctions to occur
at a single node, inducing ambiguity as to the resulting derived tree,
but we can eliminate this possibility by requiring that nontrivial (that
is, non-na) trees be adjoined at at most one site at a given node. We
start by handling this kind of simple generalization of TAG derivation
in Sections 8.1–8.2.

More generally, Schabes and Shieber (1994) call for allowing an
arbitrary number of adjunctions at a given node. In particular, they
call for distinguishing predicative and modifier auxiliary trees, and
allowing any number of modifier trees and at most one predicative
tree to adjoin at a given node. The derived tree is ambiguous as to
the relative orderings of the modifier trees, but the predicative tree
is required to fall above the modifier trees. We address this major
generalization of TAG derivation in Section 8.3.
8.1 Simple multiple adjunction
We start with a simple generalization of TAG derivation in which op-
erable nodes may be used a fixed number of times. Since the set of
operable nodes may now include duplicates, adjunction nodes may
occur more than once in the permutation π. To guarantee that at most
one of these can be nontrivially adjoined, we need to revise the defini-
tion of derivation tree, that is, fix the tree automaton from Section 4.3
defining well-formed derivation trees, and to prove that the derivation
relation D is still well-defined.

We present an alternative automaton defining the regular tree
language of well-formed derivation trees now allowing the limited
form of multiple adjunction. We double the number of states from

[95]

Stuart M. Shieber

the previous construction. The states of the automaton are the set
{qN△ | N ∈ F} ∪ {qN• | N ∈ F}, two for each unranked vocabulary sym-
bol in the derived tree language. The△ diacritic indicates a nontrivial
tree rooted in the given symbol; the • diacritic requires a nonadjunc-
tion na tree rooted in that symbol. The start state is q|S|△.

For each nontrivial tree (that is, not an na tree) □γ = 〈γ,π〉, of
arity n and rooted with the symbol N , we construct all possible tran-
sitions of the form

q|N |△(γ(x1, . . . , xn))
.
= γ(q1(x1), . . . , qn(xn))

where each qi is either q|γ@πi |• or q|γ@πi |△, subject to the constraint that
for each node η in α, the sequence 〈qi | πi = η〉 contains at most one
△. Because there are many such ways of setting the qi to satisfy this
constraint, there are many (though still a finite number of) transitions
for each γ.

In addition, for na trees, there is a transition
q|N |•(γ)

.
= γ .

The set of well-formed derivation trees is thus still a regular tree
set.

The only remaining issue is to verify that the limited form of
multiple adjunction that we allow still yields a well-defined derived
tree. In general, multiple adjunctions at the same site do not com-
mute. However, the only cases of multiple adjunctions that we al-
low involve all but one of the auxiliary trees being vestigial non-
adjunction trees. Such cases do commute. It suffices to show that
γ[adjp β ,adjp na] = γ[adjp na,adjp β]; we derive this as follows:

γ[adjp β ,adjp na] = γ[adjp β][adjupdate(p,β ,p) na]
= γ[adjp β][adjp na]
= γ[adjp β]

= γ[adjp na][adjp β]

= γ[adjp na][adjupdate(p,β ,p) β]

= γ[adjp na,adjp β]

8.2 Fixed multiple adjunction
What if we allow more than one of the multiple (fixed) occurrences of
a node to be operated on by a nontrivial auxiliary tree? At that point,

[96]

Bimorphisms and synchronous grammars

αjohn: T

john

αtwice: F

twice F∗

αblink: 1 2 F

blink 3 T↓

αintentionally: F

intentionally F∗

Figure 9:
A fragment with
multiple adjunction.

the definition of simultaneous operations no longer commutes, and
which auxiliary tree is used at which position becomes important.

The definition of the derivation tree language given in Section 4.3
allows such derivations to be specified merely by relaxing the con-
straint that a node appears only once in the set of operable sites. If we
move to a multiset of operable sites, with π a permutation over that
multiset, the remaining definitions generalize properly.

We present (Figure 9) a fragment based on the semantic half of
a synchronous TAG presented previously (Shieber 1994, Figure 1) to
exemplify simultaneous adjunction. This grammar uses simultaneous
adjunction at the root of the αblink tree. That tree has three operable
sites, two of which are the root node. We will take the permutation of
operable sites for the tree to be 〈 1 , 2 , 3 〉.

We can examine what the compilation of Section 7.1 provides as
the interpretation for this grammar. Applying it to the output trees
in the grammar generates a DLCETT. We start with the problematic
multiple adjunction tree αblink.

qF 〈〉(αblink(x1, x2, x3))
.
= ⌊αblink⌋
= ⌊ 1 2 F(blink, 3 T)⌋
= qF 〈⌊ 2 F(blink, 3 T)⌋〉(x1)

= qF 〈qF 〈⌊F(blink, 3 T)⌋〉(x1)〉(x2)

= qF 〈qF 〈F(blink, qT 〈〉(x3))〉(x1)〉(x2)

(Here, the second line uses the obvious generalization of the second
equation of (10) to sets of diacritics, that is,

⌊ k · · · f (t1, . . . , tn)⌋= q| f |〈⌊· · · f (t1, . . . , tn)⌋〉(xk) ,
the ellipses standing in for arbitrary further diacritics.)

[97]

Stuart M. Shieber

The second and third steps are notable here, in that the choice
of which of the two operable sites to use first was arbitrary. That is,
one could just as well have chosen to process diacritic 2 before 1 , in
which case the generated rule would have been

qF 〈〉(αblink(x1, x2, x3))
.
= qF 〈qF 〈F(blink, qT 〈〉(x3))〉(x2)〉(x1) .

This is, of course, just the consequence of the fact that multiple adjunc-
tions at the same node do not commute. To manifest the ambiguity,
we can just generate both transitions (and in general, all such tran-
sitions) in the transducer defining the derivation relation. The trans-
ducer naturally becomes nondeterministic. Alternatively, a particular
order might be stipulated, regaining determinism, but giving up anal-
yses that take advantage of the ambiguity.

Completing the compilation, we generate transitions for the other
trees:

qT 〈〉(αjohn)
.
= T (john)

qF 〈x0〉(βtwice)
.
= F(twice, x0)

qF 〈x0〉(βintentionally)
.
= F(intentionally, x0)

The derivation tree αblink(βintentionally,βtwice,αjohn) then derives trees as
follows:

qF 〈〉(αblink(βintentionally,βtwice,αjohn))
.
= qF 〈qF 〈F(blink, qT 〈〉(αjohn))〉(βintentionally)〉(βtwice)
.
= qF 〈qF 〈F(blink, T (john))〉(βintentionally)〉(βtwice)
.
= qF 〈F(intentionally, F(blink, T (john)))〉(βtwice)
.
= F(twice, F(intentionally, F(blink, T (john))))

corresponding to themeaning twice(intentionally(blink(john))). Alterna-
tively, use of the other nondeterministic alternative transition yields

qF 〈〉(αblink(βintentionally,βtwice,αjohn))
.
= qF 〈qF 〈F(blink, qT 〈〉(αjohn))〉(βtwice)〉(βintentionally)
.
= qF 〈qF 〈F(blink, T (john))〉(βtwice)〉(βintentionally)
.
= qF 〈F(twice, F(blink, T (john)))〉(βintentionally)
.
= F(intentionally, F(twice, F(blink, T (john))))

giving the alternative reading for the sentence.

[98]

Bimorphisms and synchronous grammars

αc: 1 S

c

βa: S

a S∗ a

naS: S∗ βb: S

b S∗ b

αc

·
βb ·

βa naS

(a) (b)

Figure 10:
A grammar (a) for
{wcwR | w ∈ {a, b}∗ }
using general multiple
adjunction, and (b) a
derivation of the
string abba.

8.3 General multiple adjunction
Finally, fully general multiple adjunction as described by Schabes and
Shieber (1994) allows for one and the same operable site to be used an
arbitrary number of times. To enable this interpretation of TAG deriva-
tions, major changes need to be made to the definitions of derivation
tree and derivation relation.

Consider the sample grammar of Figure 10 where the two auxil-
iary trees βa and βb are modifier trees (in the terminology of Schabes
and Shieber (1994)) and thus allowed to multiply adjoin at the two
operable nodes in the initial tree. This grammar should generate the
language {wcwR | w ∈ {a, b}∗ }.

Derivation trees must allow an arbitrary number of operations
to occur at a given site. To represent this in a ranked tree, we can
encode the sequence of trees adjoined at a given location with a re-
cursive structure. In particular, we use a binary symbol · (which we
write infix) to build a list of trees to be adjoined at the site, using a
nonadjunction tree to mark the end of the list. Essentially, derivation
trees now contain lists of auxiliary trees to operate at a site rather than
a single tree, with the nonadjoining trees serving as the nil elements of
the list and the binary · serving as the binary constructor. For example,
a derivation for the grammar of Figure 10(a) can be represented by
the tree in Figure 10(b).

The derivation tree language with lists instead of individual trees
is still regular. In fact, the full specification of multiple adjunction
given by Schabes and Shieber (1994) specifies that at a given operable
site an arbitrary number of modifier trees but at most one predicative

[99]

Stuart M. Shieber

tree may be adjoined. Further, the predicative tree is to appear highest
in the derived tree above the adjoined modifiers. This constraint can
be specified by defining the derivation tree language appropriately,
allowing at most one predicative tree, and placing it at the end of the
list of nontrivial trees adjoining at a site. It is a simple exercise to
show that the derivation tree language so restricted still falls within
the regular tree languages.

Finally, we must provide a definition of the derivation relation for
this generalized form of multiple adjunction. In particular, we need
transitions for the new form of constructor node, which specifies the
combination of two adjunctions at a single site. We handle this by
stacking the rest of the adjunctions above the first. We add to the
definition of the derivation transducer of Section 7.1 transitions of the
following form for each symbol N that is the root of some auxiliary
tree:

qN 〈x0〉(x1 · x2)
.
= qN 〈qN 〈x0〉(x1)〉(x2)

Note that the new transition is still linear and complete.
For the grammar of Figure 10(a) we would thus have the follow-

ing transitions defining the derivation relation:
qS〈〉(α(x)) .

= qS〈S(c)〉(x)
qS〈x0〉(naS)

.
= x0

qS〈x0〉(βa)
.
= S(a, x0, a)

qS〈x0〉(βb)
.
= S(b, x0, b)

qS〈x0〉(x1 · x2)
.
= qS〈qS〈x0〉(x1)〉(x2)

Using this derivation relation, the derived tree for the derivation
tree of Figure 10(b) can be calculated as

qS〈〉(αc(βb · βa ·naS))
.
= qS〈S(c)〉(βb · βa ·naS)
.
= qS〈qS〈S(c)〉(βb)〉(βa ·naS)
.
= qS〈S(b, S(c), b)〉(βa ·naS)
.
= qS〈qS〈S(b, S(c), b)〉(βa)〉(naS)
.
= qS〈S(a, S(b, S(c), b), a)〉(naS)
.
= S(a, S(b, S(c), b), a)

corresponding to the string abcba as expected.

[100]

Bimorphisms and synchronous grammars

9 conclusion

Synchronous grammars and tree transducers – two approaches to the
specification of language relations useful for a variety of formal and
computational linguistics modeling of natural languages – are uni-
fied by means of the elegant construct of the bimorphism. This con-
vergence synthesizes the approaches and allows a direct comparison
among these and other potential systems for describing language re-
lations through other bimorphisms. The examination of additional bi-
morphism classes may open up further possibilities for useful model-
ing tools for natural language.

acknowledgements

This paper has been gestating for a long time. I thank the participants
in my course on Transducers at the 2003 European Summer School on
Logic, Language, and Information in Vienna, Austria, where some of
these ideas were presented, and Mark Dras, Mark Johnson, Uwe Mön-
nich, Rani Nelken, Rebecca Nesson, James Rogers, and Ken Shan for
helpful discussions on the topic of this paper and related topics. The
extensive comments of the JLM reviewers were invaluable in improv-
ing the paper. This work was supported in part by grant IIS-0329089
from the National Science Foundation.

references
Alfred V. Aho and Jeffrey D. Ullman (1969), Syntax Directed Translations
and the Pushdown Assembler, Journal of Computer and System Sciences,
3(1):37–56, doi:10.1016/S0022-0000(69)80006-1.
Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas (2000), Learning
Dependency Translation Models as Collections of Finite State Head Transducers,
Computational Linguistics, 26(1):45–60, doi:10.1162/089120100561629.
André Arnold and Max Dauchet (1982), Morphismes et bimorphismes
d’arbres [Morphisms and bimorphisms of trees], Theoretical Computer Science,
20(1):33–93, doi:10.1016/0304-3975(82)90098-6.
Matthias Büchse, Andreas Maletti, and Heiko Vogler (2012),
Unidirectional Derivation Semantics for Synchronous Tree-Adjoining
Grammars, in Developments in Language Theory, volume 7410 of Lecture Notes in
Computer Science, pp. 368–379, Springer, doi:10.1007/978-3-642-31653-1_33.

[101]

Stuart M. Shieber

Matthias Büchse, Heiko Vogler, and Mark-Jan Nederhof (2014), Tree
Parsing for Tree-Adjoining Machine Translation, Journal of Logic and
Computation, 24(2):351–373, doi:10.1093/logcom/exs050.
Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard,
Denis Lugiez, Sophie Tison, and Marc Tommasi (2008), Tree Automata
Techniques and Applications, http://tata.gforge.inria.fr/, release of
November 18, 2008.
Steve DeNeefe and Kevin Knight (2009), Synchronous Tree Adjoining
Machine Translation, in Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pp. 727–736, Association for Computational
Linguistics, Singapore, http://aclweb.org/anthology/D09-1076.
Akio Fujiyoshi and Takumi Kasai (2000), Spinal-Formed Context-Free Tree
Grammars, Theory of Computing Systems, 33:59–83,
doi:10.1007/s002249910004.
Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu (2004),
What’s In a Translation Rule, in Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004, pp. 273–280, Association for Computational
Linguistics, Boston, Massachusetts,
http://aclweb.org/anthology/N04-1035.
Jonathan Graehl and Kevin Knight (2004), Training Tree Transducers, in
Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,
pp. 105–112, Association for Computational Linguistics, Boston, Massachusetts,
http://aclweb.org/anthology/N04-1014.
Chung-Hye Han and Nancy Hedberg (2008), Syntax and Semantics of
It-Clefts: A Tree Adjoining Grammar Analysis, Journal of Semantics, 25:345–380,
doi:10.1093/jos/ffn007.
Aravind Joshi and Yves Schabes (1997), Tree-Adjoining Grammars, in
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
volume 3, pp. 69–124, Springer, Berlin.
Alexander Koller and Marco Kuhlmann (2011), A Generalized View on
Parsing and Translation, in Proceedings of the 12th International Conference on
Parsing Technologies, IWPT ’11, pp. 2–13, Association for Computational
Linguistics, Stroudsburg, PA, USA, ISBN 978-1-932432-04-6,
http://dl.acm.org/citation.cfm?id=2206329.2206331.
Philip M. Lewis II and Richard E. Stearns (1968), Syntax-Directed
Transduction, Journal of the Association for Computing Machinery,
15(3):465–488, ISSN 0004-5411, doi:10.1145/321466.321477.

[102]

Bimorphisms and synchronous grammars

Andreas Maletti (2008), Compositions of Extended Top-down Tree
Transducers, Information and Computation, 206(9-10):1187–1196,
doi:10.1016/j.ic.2008.03.019.
Andreas Maletti, Jonathan Graehl, Mark Hopkins, and Kevin Knight
(2009), The power of extended top-down tree transducers, SIAM Journal on
Computing, 39:410–430, doi:10.1137/070699160.
I. Dan Melamed (2003), Multitext Grammars and Synchronous Parsers, in
Proceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 79–86,
Association for Computational Linguistics, Edmonton, Canada,
doi:10.3115/1073445.1073466.
I. Dan Melamed (2004), Statistical Machine Translation by Parsing, in
Proceedings of the 42nd Annual Conference of the Association for Computational
Linguistics, pp. 653–660, Association for Computational Linguistics, Barcelona,
Spain, doi:10.3115/1218955.1219038.
Mark-Jan Nederhof and Heiko Vogler (2012), Synchronous Context-Free
Tree Grammars, in Proceedings of the 11th International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+11), pp. 55–63, Paris,
France.
Rebecca Nesson and Stuart M. Shieber (2006), Simpler TAG Semantics
Through Synchronization, in Proceedings of the 11th Conference on Formal
Grammar, pp. 129–142, Center for the Study of Language and Information,
Malaga, Spain, http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252595.
Rebecca Nesson, Stuart M. Shieber, and Alexander Rush (2006), Induction
of Probabilistic Synchronous Tree-Insertion Grammars for Machine Translation,
in Proceedings of the 7th Conference of the Association for Machine Translation in
the Americas (AMTA 2006), pp. 128–137, Association for Machine Translation
in the Americas, Cambridge, Massachusetts,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2261232.
William C. Rounds (1970), Mappings and Grammars on Trees, Mathematical
Systems Theory, 4(3):257–287, doi:10.1007/BF01695769.
Yves Schabes and Stuart M. Shieber (1994), An Alternative Conception of
Tree-Adjoining Derivation, Computational Linguistics, 20(1):91–124,
http://aclweb.org/anthology/J94-1004.
Yves Schabes and K. Vijay-Shanker (1990), Deterministic Left to Right
Parsing of Tree Adjoining Languages, in Proceedings of the 28th Annual Meeting
of the Association for Computational Linguistics, pp. 276–283, Association for
Computational Linguistics, Pittsburgh, Pennsylvania,
doi:10.3115/981823.981858.

[103]

Stuart M. Shieber

Stuart M. Shieber (1994), Restricting the Weak-Generative Capacity of
Synchronous Tree-Adjoining Grammars, Computational Intelligence,
10(4):371–385, doi:10.1111/j.1467-8640.1994.tb00003.x.
Stuart M. Shieber (2004), Synchronous Grammars as Tree Transducers, in
Proceedings of the Seventh International Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+7), pp. 88–95, Vancouver, Canada,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2019322.
Stuart M. Shieber (2006), Unifying Synchronous Tree-Adjoining Grammars
and Tree Transducers via Bimorphisms, in Proceedings of the 11th Conference of
the European Chapter of the Association for Computational Linguistics (EACL-06),
pp. 377–384, European Chapter of the Association for Computational
Linguistics, Trento, Italy,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252609.
Stuart M. Shieber and Yves Schabes (1990), Synchronous Tree-Adjoining
Grammars, in Proceedings of the 13th International Conference on Computational
Linguistics, volume 3, pp. 253–258, International Committee on Computational
Linguistics, Helsinki, Finland, doi:10.3115/991146.991191.
K. Vijay-Shanker (1987), A Study of Tree Adjoining Grammars, Ph.D. thesis,
Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, Pennsylvania,
http://repository.upenn.edu/dissertations/AAI8804974/.
Dekai Wu (1996), A Polynomial-Time Algorithm for Statistical Machine
Translation, in Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics, pp. 152–158, Association for Computational
Linguistics, Santa Cruz, California, doi:10.3115/981863.981884.
Dekai Wu (1997), Stochastic Inversion Transduction Grammars and Bilingual
Parsing of Parallel Corpora, Computational Linguistics, 23(3):377–404,
http://aclweb.org/anthology/J97-3002.
Elif Yamangil and Stuart M. Shieber (2010), Bayesian Synchronous
Tree-Substitution Grammar Induction and Its Application to Sentence
Compression, in Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pp. 937–947, Association for Computational
Linguistics, Uppsala, Sweden,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4733833.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[104]

LFG parse disambiguation
for Wolof

Cheikh M. Bamba Dione
University of Bergen

abstract
Keywords:
LFG,
computational
grammar,
Constraint
Grammar,
c-structure
pruning,
discriminant-
based
disambiguation,
Wolof,
underspecification,
optimality marks

This paper presents several techniques for managing ambiguity in LFG
parsing of Wolof, a less-resourced Niger-Congo language. Ambiguity is
pervasive in Wolof and This raises a number of theoretical and practi-
cal issues for managing ambiguity associated with different objectives.
From a theoretical perspective, the main aim is to design a large-scale
grammar for Wolof that is able to make linguistically motivated dis-
ambiguation decisions, and to find appropriate ways of controlling
ambiguity at important interface representations. The practical aim is
to develop disambiguation strategies to improve the performance of
the grammar in terms of efficiency, robustness and coverage.
To achieve these goals, different avenues are explored to manage

ambiguity in the Wolof grammar, including the formal encoding of
noun class indeterminacy, lexical specifications, the use of Constraint
Grammar models (Karlsson 1990) for morphological disambiguation,
the application of the c-structure pruning mechanism (Cahill et al.
2007, 2008; Crouch et al. 2013), and the use of optimality marks for
preferences (Frank et al. 1998, 2001). The parsing system is further
controlled by packing ambiguities. In addition, discriminant-based
techniques for parse disambiguation (Rosén et al. 2007) are applied
for treebanking purposes.

Journal of Language Modelling Vol 2, No 1 (2014), pp. 105–165

Cheikh M. Bamba Dione

1 introduction

This paper deals with the ambiguity problem in the process of analy-
zing texts in Wolof, a less-resourced language.1 Specifically, it reports
on several techniques used to manage ambiguity in a broad-coverage
computational grammar and parser for Wolof. The grammar is imple-
mented in the linguistic framework of Lexical Functional Grammar
(LFG) (Kaplan and Bresnan 1982) using the Xerox Linguistic Environ-
ment (XLE) (Crouch et al. 2013).2 In LFG, traditional analyses focus
on two levels of syntactic representation (Kaplan and Bresnan 1982):
Constituent structure (c-structure) models the surface exponence of
syntactic information (e.g., word order, dominance and phrasal group-
ings), and functional structure (f-structure) represents grammatical
functions like subject and object.
Wolof, like most natural languages, has pervasive ambiguity, that

is, a word or sentence can be analyzed in more than one way. The
language is rich in ambiguities of many kinds, including morpholog-
ical, lexical, syntactic and semantic ambiguities. The ambiguity phe-
nomenon is perhaps the most serious problem faced by natural lan-
guage processing (NLP) systems, and this is true for many reasons.
First, ambiguity typically pertains to all levels of sentence analysis.
As MacDonald et al. (1994) noted, theoretically, linguistic information
can be ambiguous at any given point in a sentence. Furthermore, many
sentences that do not seem ambiguous to humans, due to their exten-
sive world knowledge, may present ambiguities to automatic parsers
(and to other NLP systems as well in general). Accordingly, large-scale,
linguistically motivated grammars tend to be massively ambiguous.
Ambiguities can arise, for example, via alternative definitions of mor-
phological and lexical entries, from syntactic or semantic ambiguities,
and the interaction of the different ambiguities.
Second, ambiguity typically increases the range of possible in-

terpretations of natural language, and a parser has to find a way to
1Wolof is a member of the Senegambian branch of the Niger-Congo language

family mainly spoken in Senegal, Gambia and Mauritania. Some Wolof speakers
can also be found in Guinea, Guinea-Bissau, Mali and France (see http://www.
ethnologue.com/language/WOL).

2See Section 4 for a brief description of the implementation of the Wolof LFG
grammar.

[106]

LFG parse disambiguation for Wolof

deal with this. It also increases the search space, therefore leading to
a combinatorial explosion, which results from multiplying up each in-
dividual ambiguity. For instance, for a ten word sentence in which
each word could have three interpretations, there are 59,049 possible
interpretations for the whole sentence. The situation is exacerbated by
the interaction of independent ambiguities. Due to syntactic, semantic
and pragmatic ambiguities, the actual number of possible interpreta-
tions will be huge.3 To attempt to resolve all these interpretations
becomes hardly possible in a reasonable time.
In this work, the concern for ambiguity management stems both

from theoretical and practical requirements and goals. From a theo-
retical point of view, an important purpose of this work is to develop a
parsing system for Wolof which is able to disambiguate (when neces-
sary) the input text in order to ensure correct analysis of the language.
In other words, given a string and a context, the aim is to have a system
that is able to distinguish the intended reading from the implausible
one, but also to preserve linguistically appropriate ambiguities. For an
NLP system, this kind of disambiguation decision is particularly rele-
vant, as has been emphasised by Manning and Schütze (1999, pp. 17-
18):
An NLP system needs to determine something of the structure
of text – normally at least enough that it can answer “Who
did what to whom?” Conventional parsing systems try to an-
swer this question only in terms of possible structures that
could be deemed grammatical for some choice of words of a
certain category. [...] Therefore, a practical NLP system must
be good at making disambiguation decisions of word sense,
word category, syntactic structure, and semantic scope.
A secondary, but no less important objective is to apply meth-

ods for ambiguity management with the aim to gain efficiency, while
maintaining parsing accuracy. Thus, following previous work done in
creating language resources and tools forWolof (Dione 2012b, 2013a),
the present research discusses the avenues explored to improve the ef-
ficiency and performance of the parser (i.e., to speed up the grammar

3For instance, according to Manning and Schütze (1999), Martin et al. (1987)
report their system giving 455 parses for the sentence List the sales of the products
produced in 1973 with the products produced in 1972.

[107]

Cheikh M. Bamba Dione

development activity and to increase parsing robustness and cover-
age) by managing ambiguity. The applied methods aim to avoid or
minimise the combinatorial explosion that results from ambiguity, as
well as to facilitate maintainability of a large code base.
This work addresses several research questions with respect to

dealing with ambiguity in linguistically motivated grammar devel-
opment projects. The first question is how to choose an approach to
ambiguity. Managing ambiguity often takes the form of a binary de-
cision: either eliminate or preserve the ambiguity. While the former
is the most obvious approach, it is not always feasible or desirable.
For instance, handling ambiguity caused by prepositional phrase (PP)
attachment may require context and linguistic intuition. For exam-
ple, in the sentence she opens the door with the key, the key is more
likely perceived as an instrument used to open the door, rather than
it being a feature of the door. Nevertheless, as Chantree (2004, pp. 2)
pointed out, “the decision of whether to disambiguate this sentence
or not might depend upon the users’ proficiency with English and the
context provided by the surrounding text.”
Conversely, an obvious approach to ambiguity-preserving pars-

ing is to provide the grammatical descriptions or constraints to gen-
erate all possible readings. This approach may be problematic in that
the number of potential readings might grow exponentially with the
length of the sentence. Thus, even though it is clear that “some am-
biguities can safely be left in the text”, the question still remains
over “which ones can be left and which ones must be removed”
(Chantree 2004, pp. 1). In linguistically motivated grammar develop-
ment projects, there is this split between providing the grammatical
descriptions to generate all possible readings on the one hand, and the
selection of the appropriate one in a given context on the other hand.
This paper is adding the latter view to the Wolof project, building on
prior work from the LFG framework and other approaches.
A second important question is when and how to attack ambigu-

ity. Ambiguity management can occur before, during or after parsing.
If an ambiguity is dealt with early, there is the possibility of losing
the right analysis. If it is dealt with late, there is the computational
cost of processing many analyses. As Copperman and Segond (1996,
pp. 8) pointed out, “the proper balance point in this tradeoff varies
for different types of ambiguities, and there is no universal metric”.

[108]

LFG parse disambiguation for Wolof

Concerning the methodology, there exist in the literature a wide range
of advanced techniques that can be applied to tackle ambiguity issues,
including statistical and non-statistical ones. However, when dealing
with ambiguity in languages like Wolof, there is a restriction on the
use of certain disambiguation methods. Due to the lack of resources,
there is a very limited possibility to apply statistical approaches that
often require a large data set to ensure reliable results.
To address these different research questions and to decide among

the alternative ways of managing ambiguity, this work is based on
three main premises. First, ambiguities are divided into different cat-
egories. This is essential to better distinguish ambiguities that are so
liable to misinterpretation or to computational complexity that they
should be removed from those which can be allowed to remain. A
second important point is to manage ambiguity at various levels of
description. As Attia (2008, pp. 4) pointed out, it seems to be a good
idea “to deal with ambiguity not as one big problem, but rather as
a number of divisible problems spreading over different levels of the
sentence analysis: pre-parsing, parsing and post-parsing stages.” Fi-
nally, the third consideration is to manage ambiguity in a systematic
way using approaches that can be applied to languages having a lack-
of-data problem.
In this work, disambiguation is divided into three stages: pre-

parsing, parsing and post-parsing. Disambiguation at the pre-parsing
stage focuses on discarding some morphological analyses that are im-
plausible with respect to a given context. The parsing phase covers the
topics of the formal encoding of noun class indeterminacy via under-
specification, the application of syntactic constraints, lexical specifi-
cations and the use of a probabilistic context-free grammar. The post-
parsing stage includes the application of preference marks for ranking
analyses, and the use of grammar engineering tools for packing ambi-
guities. In addition, the post-parsing stage involves manually selecting
parse solutions using discriminants (Rosén et al. 2007). Discriminant-
based disambiguation is employed as a timesaving method for con-
structing a treebank for the language by automatically parsing a cor-
pus with the Wolof LFG grammar. One of the motivations for build-
ing the treebank is to create a gold standard test set for Wolof that
can be used to evaluate the parser as well as the effect of the other
disambiguation methods, e.g., the use of optimality marks for prefer-

[109]

Cheikh M. Bamba Dione

ences (Frank et al. 1998, 2001) and statistical disambiguation. Because
quality controlled treebanks that can serve as gold standards cannot
be constructed without considerable manual effort towards ambiguity
resolution (Rosén et al. 2007), discriminant-based disambiguation is
used as an intelligent way of minimizing these efforts. The aim is to
optimize the efficiency of manual disambiguation, as inspecting full
analyses proved to be a tedious and time-consuming task.
I will attempt to show how the application of the different dis-

ambiguation techniques discussed in this paper helps to manage am-
biguity and to reduce parse time in the process of analyzing texts in
Wolof. However, note that the various disambiguation methods are
applied on different parsing levels and parser versions, and thus have
interactions that are very difficult to control systematically. Also, note
that the purpose is not to give an exhaustive account of all the disam-
biguation methods used within this research work or to provide an
exhaustive overview of their systematic interaction but to illustrate
ambiguity management in LFG parsing of Wolof focusing on some ex-
ample constructions which present particular challenges for grammar
development and treebanking work for the language.
This paper is structured as follows. Section 2 provides a general

description of ambiguity in natural languages and a common cate-
gorization of the different ambiguity types. Section 3 presents evi-
dence that Wolof is massively ambiguous, particularly with respect
to morphological, lexical and syntactic ambiguities. Section 4 briefly
presents background information on the Wolof grammar relevant for
the discussion of ambiguity management in subsequent sections. Sec-
tion 5 discusses techniques for handling morpho-lexical and syntac-
tic ambiguities, including the formal encoding of noun class indeter-
minacy, lexical specifications, morphological and lexical disambigua-
tion based on Constraint Grammar (CG) (Karlsson 1990). Section 6
presents some approaches to syntactic ambiguity used for Wolof, in-
cluding c-structure pruning (Cahill et al. 2007, 2008; Crouch et al.
2013) and optimality marks (Frank et al. 2001). Section 7 presents
grammar engineering tools for packing ambiguity in XLE and discusses
disambiguation strategies used to increase parsing efficiency by re-
moving spurious ambiguities. Section 8 describes discriminant-based
disambiguation techniques to LFG grammars (Rosén et al. 2007). A
conclusion is given in Section 9.

[110]

LFG parse disambiguation for Wolof

2 ambiguity categorization

Research on ambiguity typically distinguishes between the scope
(global vs. local) (Gazdar and Mellish 1989) and types of ambigu-
ity (Gómez 1996).
2.1 Scope: global vs. local
Global ambiguity means that an entire word string has more than one
structure associated with it, as in (1).
(1) Flying planes made her duck. (Gómez 1996, pp. 16)
The sentence in (1) has various readings, including the two fol-

lowing ones: (i) the airplanes made her change her position; (ii) the act
of piloting made her change her position. In terms of LFG/XLE, global
ambiguities give rise to different whole-sentence f-structures. In gen-
eral, global ambiguities are linguistically appropriate, and therefore
may need to be preserved: Their resolution typically requires seman-
tic and/or pragmatic knowledge.
In contrast, the sentence in (2) from Gómez (1996, pp. 16) in-

volves a local ambiguity, because some subparts of the whole string
have different readings. Readers who process this sentence and focus
on the last three words, might settle on the existence of a sentential
subconstituent made up of SGEL sold Xerox.
(2) The company that bought SGEL sold Xerox.
In contrast to global ambiguity resolution, local ambiguity can

sometimes be resolved by syntactic analysis. From that perspective,
local ambiguity includes the following ambiguities discussed in Sec-
tion (2.2): lexical, morphological, and syntactic ambiguities that are
resolved when a larger sentential context is taken into account.
2.2 Types of ambiguity
The causes for obtaining different analyses for an input string (a word
or a sentence) might be diverse, including lexical, morphological, syn-
tactic and referential, and the interaction of all these levels. This work
will concentrate on these aforementioned ambiguity types.
In lexical ambiguity, a given word may be assigned to more than

one grammatical category or part of speech (POS) according to the
context. For instance, the English word bank could be a noun or

[111]

Cheikh M. Bamba Dione

verb. Morphological ambiguity typically refers to ambiguity within
the same syntactic category, that is, ambiguity of different forms of
one lexeme within the same POS. For instance, in the sentence I saw
her run to the bank, the word bank is unambiguously a noun, how-
ever, it is still unclear whether it refers to a financial institution or
to a river side. This phenomenon is also known as word sense ambi-
guity. Morpholexical ambiguity is not a uniform phenomenon, but a
phenomenon that distinguishes between homonymy and polysemy
(Klepousniotou 2002). In theoretical linguistics, the etymological
derivation of words and the ‘relatedness/unrelatedness’ of meaning –
a matter of degree that relies on native speaker’s feeling – have been
proposed for the distinction between homonymy and polysemy. In
homonymy, a lexical item accidentally carries two (or more) distinct
and unrelated meanings, while in polysemy, a single lexical item has
several different but related senses.
Syntactic ambiguity can be divided into structural and functional

ambiguity. A sentence is viewed as structurally ambiguous if it can
be interpreted or represented by more than one syntactic structure.
Attachment of adjuncts (e.g., PP attachment and adjective attachment)
represents a canonical case of structural ambiguity. An instance of PP
attachment in Wolof is given in (3).4
(3) Góor

man
g-i
cl-DFP

séen
see

xale
child

b-i
cl-DFP

ci
in
saxaar
train

g-i.
cl-DFP

“The man saw the child in the train.”

The ambiguity here arises from the fact that the grammar provides
several sources for the PP. The attachment of the PP in the train is syn-
tactically permissible both to the noun phrase (NP) the child and the
verb saw. In general, attachment of adjuncts results semantically in
scope ambiguity. The outcome of the attachment depends mainly on
two factors: (i) which subcategorization frame the verb prefers and (ii)
which attachment is semantically more plausible. In LFG, this ambi-

4Abbreviations in the glosses: ADV: adverb; cl: noun class marker; COMP:
complementizer; CONJ: conjunction; COP: copula; DET: determiner; DFP: def-
inite proximal; DFD: definite distal; +F: finite; GEN: genitive; INF: infinitive;
NDF: indefinite article; NEG: negation; NSFOC: non-subject focus; PREP: prepo-
sition; PST: past tense; pl: plural; Rel: relative; S: subject; SFOC: subject focus;
sg: singular; VFOC: verb focus; 1, 2, 3: first, second, third person.

[112]

LFG parse disambiguation for Wolof

guity is reflected both in the c-structure and in the f-structure (adjunct
attachment). Adjunct attachment is notoriously difficult: The syntax
has no way to determine the attachment, even if humans can.
In contrast, functional ambiguity is semantic without necessarily

involving phrase structure distinctions. In LFG, this refers to ambiguity
within the f-structure. A typical example is when a constituent can
bear both an oblique argument and an adjunct function within the
functional structure (see Section 3.1.4).
Referential ambiguity arises, when more than one object is being

referred to by a noun phrase or a deictic expression. This is typically
the case when readers or listeners are unable to select a unique referent
for a linguistic expression out of multiple candidates. For instance,
in the sentence After they finished the exam, the students and lecturers
left., the pronoun they is ambiguous: It can refer to students only, to
lecturers only, or to both. One aspect I will point out in the discussion
of referential ambiguity is unclear reference of pronominal subjects in
some constructions in Wolof (see Section 3.3).
Syntactically legitimate ambiguities contrast with so called spuri-

ous ambiguities, which constitute a purely engineering problem.
Spurious ambiguities can refer to duplicated solutions – the same
full-sentence f-structure associated with different c-structures or pro-
cessing sequences – or incorrect f-structures, that is, a reading of the
sentence that a native speaker would not attest to. This work will fo-
cus on the former definition. Spurious ambiguities mainly refer here
to multiple parse solutions that are completely identical (Komagata
2004), for example, when many different derivations or trees generate
the same structure. As such, this ambiguity type poses serious gram-
mar engineering issues in terms of efficiency, and therefore needs to
be removed.
Having discussed the main ambiguity types the present work will

deal with, I will now turn to some ambiguity issues in Wolof that
present a particular challenge in the context of grammar implementa-
tion.

[113]

Cheikh M. Bamba Dione

3 ambiguity is pervasive
in wolof

3.1 Morphological and lexical ambiguity
As noted above, ambiguities can arise from linguistically justified
lexical and morphological ambiguities. Morpholexical ambiguity in
the Wolof grammar arises mainly from polysemy and homonymy
caused by Wolof noun classes (NC). Conversely, lexical ambiguity
stems from different sources, including ideophones acting as verb
collocations, words with several parts of speech and verbs with var-
ious subcategorization frames. These issues are discussed in the next
sections.
3.1.1 Ambiguity due to Wolof noun classes
As is typical for Atlantic languages (Sapir 1971), Wolof is a noun
class language with noun class agreement (McLaughlin 2010; Tor-
rence 2005). The language has 13 noun classes identified by their
index:5 8 singular (b, g, j, k, l, m, s, w), 2 plural (y, ñ), 2 locative
(f, c), and 1 manner (n). Of the singular noun classes, the s class also
functions as a diminutive class. As for plural noun classes, y is the
class of most nouns, while ñ is the class of a restricted small set of
human nouns. Accordingly, a noun may belong to as many as three
classes (McLaughlin 2010): a singular, a plural and a diminutive sin-
gular class.
Unlike the noun class system found in Bantu languages, nouns in

Wolof lack a class marker on the noun itself. Instead, class member-
ship is marked on noun specifiers such as determiners (definite and in-
definite articles, demonstratives) or quantifiers, on relative pronouns,
etc. For instance, Wolof possesses two definite and two indefinite arti-
cles, all agreeing in class with the noun. Indefinite and definite deter-
miner phrases (DPs) have a different word order, as shown in (4-6).
While the definite article obligatorily follows the NP, the indefinite
article obligatorily precedes the NP. The vowel suffixes i and a on the
definite articles respectively encode proximity and distance in space,
time, or conversation. In contrast, the vowel prefix amarks indefinite-
ness.

5The noun class index functions as a stem to which a determiner/pro-
noun/etc. affix is added. In this paper, the stem is glossed cl.

[114]

LFG parse disambiguation for Wolof

(4) a-b
NDF-cl

xale
child

“A child”

(5) xale
child

b-i
cl-DFP

“The child (here)”

(6) xale
child

b-a
cl-DFD

“The child (there)”
Although eight singular classes and two plural classes can clearly

be distinguished, the morphological paradigms of the noun class sys-
tem are characterised by noun class syncretism, that is, a single mor-
phological form corresponds to two or more morphosyntactic descrip-
tions (Baerman et al. 2005). For example, due to homonymy/poly-
semy, the word form ndaw in (7) corresponds to different noun classes,
as marked on the definite articles. The noun surfaces in the same form
both in the singular and plural noun class.

(7)

Number Noun Class Example

Singular
g class ndaw g-i
s class ndaw s-i
l class ndaw l-i

Plural ñ class ndaw ñ-i
y class ndaw y-i

The paradigm in (7) shows that some Wolof nouns like ndaw have
many readings at the word level, thereby increasing ambiguity in the
grammar. The examples in (8) illustrate sentences in which the same
form ndaw occurs with the noun class g in (8a), s in (8b), l in (8c), ñ
in (8d) and y in (8e).
(8) a. A-g

NDF-cl
ndaw
youth

gàddaay
leave

na
+F.3sg

sama
POSS1SG

jëmm
face

j-ii.
cl-DEM

“I do not look young anymore.”
b. Ta
CONJ

amaana
perhaps

kon,
then,

di-na
IPF-+F.3sg

jël
take

ndaw
woman

s-i.
cl-DFP

“And he would then possibly marry the woman.”
c. Ndaw
messenger

l-i
cl-DFP

ñëw
arrive

na.
+F.3sg

“The messenger has arrived.”
d. Ma
1sg
xool
look.at

ndaw
young

ñ-i.
cl-DFP

“So, I look at the young people.”
e. Nu
1pl
doon
COP.PST

ndaw
young

y-u
cl-Rel

gëm
believe

l-a
cl-Rel

nu-y
1pl-IPF

wut.
look.for

“We were young people who believed in what we were doing.”

[115]

Cheikh M. Bamba Dione

Likewise, the word form mag can occur with at least four noun
classes (j, m, ñ, and y): for example, mag j-i ‘the brother’, mag m-i
‘the old man’ mag ñ-i ‘the old people’, and a-y mag ‘some old people’.
Accordingly, in the Wolof grammar, the nominal coordination in (9)
has at least 20 readings that result from the ambiguous forms of the
two conjuncts.
(9) Mag

old
ak
CONJ

ndaw
young

“Old and young people”

3.1.2 Co-verbs using ne/ni
In the Wolof grammar, lexical ambiguity arises from ideophonic ex-
pressions. Ideophone is a common term for expressive vocabulary
found in languages in Africa, Eurasia, and Australia. Doke (1935,
pp. 118) defines an ideophone as “a vivid representation of an idea in
sound” or “a word, often onomatopoeic, which describes a predicate,
qualificative or adverb in respect to manner, colour, sound, smell,
action, state or intensity”.
In morphophonological and syntactic terms, ideophones repre-

sent onomatopoeic or synesthetic expressions which tend to have an
emotive function and exhibit specific syntactic, morphological, and/or
phonological properties that make them a distinct group (Voeltz and
Kilian-Hatz 2001). In addition, ideophones are associated with spo-
ken and dramatic registers of speech. Accordingly, a common distribu-
tional feature of ideophones is that they tend to occur in collocations
with a restricted set of generic verbs such as ‘do’, ‘say’, or ‘go’ (Creis-
sels 2001). Ideophones seem to be well documented, but little work
has been done on their implementation in computational grammars.
In Wolof, ideophones “can either accompany a verb as an inten-

sifier and are thus known as coverbal ideophones, or they can be used
in quotative constructions with the verb ne ‘say’” (McLaughlin 2004,
pp. 256), as in the examples in (10) and (11).
(10) Sa

2sg:POSS
mbubb
gown

dafa
3sg:VFOC

set
ADJ:clean

wecc.
IDEO

“Your gown is perfectly clean.” (McLaughlin 2004, pp. 256)
(11) Mu

3sg
ne
say
tekk.
IDEO:of saying

“S/He was quiet.”

[116]

LFG parse disambiguation for Wolof

The use of coverbal ideophones increases the ambiguity of col-
locational verbs like ne, which belongs to the items with the most
notorious hotspots of ambiguity. It can additionally be a comparative
preposition (12), a complementizer (13), a regular verb without cover-
bal ideophones (14) and a copular verb (15). Accordingly, a special
treatment of ideophones was necessary to limit this ambiguity.

(12) Mu
3sg
mel
look

ne
like
xale.
child

“S/He looks like a child.”

(13) Mu
3sg
xam
know

ne
COMP

dem
go

na.
+F.3sg

“S/He knows that s/he has left.”

(14) Mu
3sg
ne
tell
leen
3sg/O

ñu
3pl
dem.
go

“S/He told them to go.”

(15) Mu
3sg
ne
COP

ci
prep

kër
house

gi.
cl.DFP

“S/He was in the house.”

3.1.3 Lexical ambiguity: POS
As the collocational verb ne discussed in the previous section illus-
trates, in Wolof (like in many languages), most words can have sev-
eral parts of speech. This includes lexical items that can belong to
different word classes such as determiners, bound and free relative
pronouns, complementizers, etc. In particular, short tokens like la are
multiply ambiguous, making it evident that lexical ambiguity is ex-
tremely widespread in Wolof. This item can have both a verbal and a
non-verbal reading, as shown in (16) from Dione (2014). In this exam-
ple, la can be a non-subject focus morpheme (INFL) (16a), a copular
verb (16b), a clitic object (16c), a determiner or a bound pronoun
(16d), a free relative pronoun (16e) or a complementizer (16f).
(16) a. Fas

horse.w-cl
la
3sg.FOC

gis.
see

INFL

‘It is the horse that he saw.’
b. Fas
horse.w-cl

la.
COP.3sg

Non-subject copula

‘It is a horse.’
c. Gis-u-ma
see-NEG-1sg

la.
2sgO

Clitic object

‘I haven’t seen you.’

[117]

Cheikh M. Bamba Dione

d. Ngelaw
wind.l-cl

la
l-cl.det/REL

agsi
arrive

Determiner/Rel. Pron.

‘The wind came around / which came around.’
e. la
free.REL

mu
he
gis-oon
see-PST

... Free relative

‘What he saw ...’
f. la
COMP

mu
3sg
doon
ipf.PST

ngelaw
be.windy

lépp
quant

... Complementizer

‘Despite the fact that it was windy ...’

In the grammar, assigning so many parts of speech to the same
word form (e.g., to the lexical entry la) poses both ambiguity and ef-
ficiency problems.
3.1.4 Lexical ambiguity: subcategorization frames
As with grammatical categories, words have often more than one sub-
categorization frame. In English, the verb break may have a transitive
and an intransitive reading (e.g., I broke it vs. It broke). Likewise, the
verb want may have bare transitive reading (I want something) or a
transitive with infinitive reading (I want it to leave). Similarly, the
Wolof verbs can have several subcategorization frames; for example,
the verb dugg ‘enter’ in (17) has at least two subcategorization frames:
It may have a bare intransitive and an oblique reading.
(17) Mu

3sg
dugg
enter

ci
in
kër
house

gi.
cl.DFP

“S/He entered the house.”
In (17), a lexical and functional ambiguity problem arises caused

by the semantics associated with the PP ci kër gi “in the house”.
This ambiguity does not involve structural distinctions, since the con-
stituent is clearly a PP that attaches to the verb dugg. The question
is: Which grammatical function does this PP bear within the verbal
phrase (VP)? Is it an argument or an adjunct of the verb?
On the one hand, one might assume that the PP is subcategorized

for by the verb. In particular, that amounts to considering the PP as an
instance of oblique arguments, that is, “nonsubject arguments which
are not of the appropriate morphosyntactic form to be objects and
which do not undergo syntactic processes which affect objects” (Butt
et al. 1999, pp. 50). On the other hand, the PP may be analyzed as an

[118]

LFG parse disambiguation for Wolof

adjunct, that is, as an optional constituent of the verb that, when re-
moved, will not affect the remainder of the sentence except to discard
from it some auxiliary information. As such, the PP is seen as a mod-
ifying phrase that depends on the VP, bearing an adverbial function
within the latter phrase.6

3.2 Syntactic ambiguity
In Wolof, ambiguous lexical forms are also a source of syntactic am-
biguity; but, even without lexical ambiguity, there are legitimate syn-
tactic ambiguities such as PP attachment and coordination ambigu-
ity. One might want to constrain these to legitimate cases and make
sure they are processed efficiently. Some syntactic ambiguity issues in
Wolof are discussed in the next sections.
3.2.1 Structural ambiguity
Structural ambiguity occurs when the arrangement of words in a gram-
matical structure permits two or more meanings to emerge, as is the
case with PP attachment discussed above. Structural ambiguity can
also be caused by an interaction of lexically ambiguous forms and
syntactic ambiguity, as illustrated in (18). For example, bi can be a
determiner, a bound or a free relative pronoun or a complementizer;
moom can either be a verb, a strong pronoun or a topic adverb; doon
can be a copula or a past progressive auxiliary, etc. Three possible
interpretations of this sentence are shown in the translations in (18).
(18) Xale

child
b-i
cl-DFP

moom
adv.TOP

doon
IPF.PST

ree.
laugh

child cl-Rel own COP laugh
child cl-DFP own IPF.PST laugh
“As for the child, (s)he was laughing.”
“The child who owns (something) becomes a laugh.”
“The child owns (something) and was laughing.”

Before disambiguation, the sentence in (18) has more than 100
c-structure trees that are valid with respect to the grammar. The c-
structures for the two first interpretations given in (18) are represented
in Figure 1.

6For the distinction between arguments and modifiers (in particular between
oblique and adjunct functions) and the several tests conducted to illuminate this

[119]

Cheikh M. Bamba Dione
Figure 1:

Two possible
c-structures for

Xale bi moom doon ree

The third reading arises from coordination without an explicit
conjunction. Conjuncts in a coordinate structure can be joined by an
overt conjunction (syndetic coordination) or not (asyndetic coordina-
tion) (McShane 2005). Likemany languages, Wolof permits coordinate
structure without an overt conjunction (see Section 6.4).
3.3 Referential ambiguity: pro-drop and impersonal passive
In Wolof, an example of referential ambiguity with a global scope
arises from pro-drop (Chomsky 1981; Baptista 1995)and Wolof im-
personal passive constructions (19).
(19) a. Góor

man
ñ-i
cl-DFP

gor
cut.down

na-ñu
+F-3pl

garab
tree

g-i.
cl-DFP

“The men cut down the tree.”
b. Gor
cut.down

na-ñu
+F-3pl

garab
tree

g-i.
cl-DFP

“They cut down the tree.”
“The tree was cut down.”

distinction, see for example, (Dalrymple 2001).

[120]

LFG parse disambiguation for Wolof

Example (19) illustrates the pro-drop nature of the language. The
sentence in (19a) is similar to the one in (19b), except that in the latter
example the overt subject is missing; nevertheless both sentences are
grammatical. In (19b), there is no overt subject, because Wolof freely
allows the omission of such an argument.
Sentences with a third plural subject like (19b) are ambiguous be-

cause they can express both a pro-drop or an impersonal passive read-
ing. Because Wolof lacks a true passive derivation (Voisin-Nouguier
2002), it often uses an active sentence with an impersonal third plu-
ral subject to express the passive idea (Torrence 2005). The two dif-
ferent readings of this sentence are reflected in the translations. The
ambiguity here is due to the interpretations of the third plural ele-
ment (also called subject marker) nañu. On the one hand, this ele-
ment can be a referential subject, in which case it is understood to
refer to a specific group of individuals who cut down the tree.7 On
the other hand, it can be a third person plural denoting a generalized
human subject frequently cited as a source of passives (Givón 1979),
meaning that there was cutting down of the tree and that this action
has no determinate subject. Impersonal here means simply that the
third plural element is not understood to refer to any specific group
of individuals.
In short, the prevalence of independent morphological, lexical,

syntactic, and referential ambiguities can lead to a combinatorial ex-
plosion, making many Wolof sentences massively ambiguous.

4 implementation of the wolof grammar

In the previous section, we have briefly looked at different ambiguity
issues in Wolof, paying attention to those relevant to the discussion of
developing a grammar for the language. In what follows, I will suggest
and discuss some methods for handling these issues, keeping in mind
that the application of some of these techniques always has the poten-
tial to eliminate a valid analysis. Before suggesting these techniques,
I would like to briefly describe the Wolof grammar and the data used
for grammar development and evaluation.

7Note that the English pronoun they in the translation of Example (19b) is to
be considered here as a referential and non-arbitrary pronoun.

[121]

Cheikh M. Bamba Dione

Developed as part of the Parallel Grammar (ParGram) project
(Butt et al. 2002), the Wolof grammar provides a formal description
of the syntactic analysis of core constructions of the language within
LFG, as well as linguistically well motivated analyses of challenging
constructions in Wolof, including clitics (Dione 2013a), clefts (Dione
2012a), valency change and complex predicates (Dione 2013b). The
grammar parses sentences on the basis of XLE rules and templates,
two lexicons, and a cascade of finite-state transducers (FST) (Kaplan
et al. 2004). In its current state, the grammar has 250 rules (with
right-hand sides based on regular expression). The lexicons contain ca.
2000 verb stems and 2836 subcategorization frame–verb stem entries.
The preprocessing components of the grammar include a Wolof finite-
state morphological analyzer (WoMA) (Dione 2012b), as well as other
finite-state modules for tokenization and normalization. The grammar
is not part of an application-oriented set-up, meaning that it is not em-
bedded in a larger application pipeline. Consequently, some sources of
information that could be applied to eliminate inappropriate readings
that may come out of the parser/grammar, such as domain restrictions
and selectional restrictions, are mostly not available.
The development of the grammar is based on a corpus of natural

Wolof texts. The basic development and test (i.e., unseen) data consist
of two disjoint sets of randomly selected sentences from short sto-
ries (Cissé 1994; Garros 1997) and a semi-autobiographical novel (Ba
2007). The development and test sets consist respectively of a total of
626 and 2364 sentences used to evaluate the grammar in terms of ac-
curacy and efficiency, but also to assess the effects of design decisions
in the grammar and the impact of the disambiguation methods dis-
cussed within this work. As the grammar constitutes a starting point
for the construction of further NLP resources for Wolof, the test set
was run through it to establish a treebank for the language.

5 morphological and lexical
disambiguation

This section presents systematic approaches used to manage the mor-
phological and lexical ambiguities discussed in Sections 3.1.1-3.1.3. It
focuses on the formal encoding of noun class indeterminacy, lexical
specifications and CG-based disambiguation.

[122]

LFG parse disambiguation for Wolof

5.1 Ambiguity resolution for Wolof noun classes
In the initial LFG approach to Wolof noun classes, nominal class at-
tributes were represented as atomic feature values. So, the noun and
its specifier were elements of the f-structure and had to agree either in
the singular (e.g., NOUN-CLASS-SG) or plural (e.g., NOUN-CLASS-PL)
noun classifier. Accordingly, the f-structure for the nominal phrase in
(20) was represented as shown in (21). This f-structure representation
says that the noun xale specifies b and y as its respective singular and
plural noun class, while the specifier bi belongs to the b class.

(20) Xale
child

b-i
cl-DFP

“The child”

(21)

PRED ‘xale’
NOUN-CLASS-SG b
NOUN-CLASS-PL y
NUM sg
PERS 3

SPEC

DET

PRED ‘bi’
NOUN-CLASS-SG b
DEIXIS proximal
DET-TYPE def

One potential problem with this analysis is that Wolof noun
classes typically have forms that can be attributed ‘indeterminately’
to different values. As Dalrymple et al. (2009, pp. 31) noted, “forms
that are indeterminately specified for the value of a feature can simul-
taneously satisfy conflicting requirements on that feature and thus
are a challenge to constraint-based formalisms which model the com-
patibility of information carried by linguistic items by combining or
integrating that information.”
Similarly, Wolof nouns typically show no noun class distinction.

As Example (22) illustrates, a noun like ndaw in (8) can satisfy dif-
ferent class requirements. A similar case has been observed for the
German noun Papageien ‘parrots’ in (23), which shows no case dis-
tinction and can satisfy different CASE requirements (Dalrymple et al.
2009).

(22) Ndaw
young
G/L/S/Ñ/Y
‘young/youth/messenger
(g, l, s, ñ or y noun class)’

(23) Papageien
parrots
NOM/ACC/DAT/GEN
‘parrots’ (nominative, accusative,
dative or genitive)

[123]

Cheikh M. Bamba Dione

Because the approach given in (21) relied on specification of sim-
ple atomic values for indeterminate features, the integration (typically
by unification) of information from head and dependent was problem-
atic. Assuming that a noun likemag ‘old person’ (see Section 3.1.1), for
instance, specifies ñ for its specifier’s nominal class value, and that the
determiner a-y ‘some’ and the relative pronoun ñ-u ‘who/which’ spec-
ify ñ, we obtain a clash of nominal classifiers (e.g., [NOUN-CLASS-PL
= y] and [NOUN-CLASS-PL = ñ]) in sentences like (24), leading to
the incorrect prediction that the example is unacceptable.
(24) Ma

1sg
gis
see
a-y
NDEF-cl

ndaw
young.people

ñ-u
cl-Rel

am
have

xam-xam.
knowledge

“I saw some wise young people.”
This problem implies shifting away from the initial approach de-

scribed in (21). This shift in approach has two different, but interre-
lated, objectives: to avoid coverage problems for cases like (24), which
show that indeterminate forms can stand in for two values simultane-
ously (like syncretic forms in many languages); and to reduce the num-
ber of readings for normal cases by assuming a suitable underspecified
representation rather than a disjunctive listing of all options.
Accordingly, the analysis in (21) above is replaced by an approach

similar to the representation of CASE proposed in Dalrymple et al.
(2009).8 Following this representation, nouns such as ndaw and mag
in (9) will have the feature structure for the noun class attribute, as
respectively shown in (25) and (26).
(25) Noun class feature for ndawNOUN-CLASS

G +
L +
S +
Ñ +
Y +

(26) Noun class feature for magNOUN-CLASS

J +
M +
Ñ +
Y +

The value of this attribute allows specification of each noun class by
means of a separate Boolean-valued attribute: G, L, S, Ñ, Y, etc. A

8Alternatively, the set-based approach to feature resolution (Dalrymple and
Kaplan 1997) could be used to handle feature indeterminacy. It allows for an
account of complex agreement phenomena like those found in German free rel-
atives, case in Polish coordination and noun class in Xhosa coordination.

[124]

LFG parse disambiguation for Wolof

negative value indicates the inability of a form to satisfy the corre-
sponding noun class requirement. Nouns and their modifiers specify
negative values or do not specify any value for the noun classes they
do not express, and specify or are compatible with positive values for
the classes they do express.
The noun class specification for the form ndaw, which is class-

indeterminate, is given in (27); this can be read as requiring that,
within the NOUN-CLASS structure, the value for G, L, S, Ñ or Y must
be +. Thus, ndaw must express some noun class or other, but there
are no restrictions on which noun class it expresses. This permits the
form to occur in contexts compatible with a positive specification of
one or more of the noun classes, and does not impose any negative
class specification that would rule out class possibilities for the form.
(27) Ndaw; NOUN-CLASS{G|L|S|Ñ|Y}=+

The output for the word form ndaw produced by the Wolof mor-
phological analyzer (Dione 2012b) is shown in (28). The FST trans-
lates the form into a string that represents its morphological makeup:
a noun that agrees with its modifier in the classes g, l, s, ñ or y. All class
indexes compatible with this form should be contained in the output.

(28) ndaw+Noun+Common+g+l+s+ñ+y

We may note in passing that, in the Wolof lexicon, polysemous
and homonymous nouns are treated in a similar way. This means that
words like ndaw that have different related and unrelated meanings
are associated with only one lexical entry. This follows the goal to
reduce ambiguity for lexical items that have many readings which,
however, do not affect the syntax. A similar approach has been taken
by the ParGram LFG English grammar (Riezler et al. 2002). The differ-
ent readings of a polysemous item like bank (“river bank” or “financial
bank”) are not distinguished in the grammar, but rather in a semantic
post-processor, that is, the English transfer rules.
In the Wolof grammar, this underspecification approach led to

substantial reductions in morpholexical ambiguity and parse time. To
assess the impact of underspecification, the ambiguity rate and the
time the grammar needs to parse the test data have been measured
before and after the application of this approach. The results show

[125]

Cheikh M. Bamba Dione

that the ambiguity rate decreased by approximately 8%, leading to a
reduction of parse time by 4%. In the grammar, this change affected
ca. 10 rules, 20 morphological tags, and 39 templates, which are called
at many places in the different rules and lexical entries.
In the context of grammar implementation, the advantage of un-

derspecification over the disjunctive approach in terms of processing
efficiency has also been attested in previous work (Flickinger 2000;
Crysmann 2005). According to Flickinger (2000), the compactness of
linguistic description achieved by the elimination of disjunctive fea-
tures provides a great benefit in terms of processing efficiency. The
performance comparison of the disjunctive and the underspecification
approach shows that the latter outperforms the former by a factor of
3–4, with an otherwise unchanged grammar9 running on the same
processing platform (PAGE, Uszkoreit et al., 1994).
5.2 Disambiguating co-verbs using ne/ni
Like Wolof noun class ambiguity, ambiguity caused by ideophones are
dealt with using a systematic approach. Wolof ideophones behave like
particles that are selected by the verb. In this respect, they show some
similarity to Norwegian particles like ut in the sentence in (29).
(29) Han

3sg
vil
will
slippe
release

ut
out
hund-en.
dog-DEF

“He will let the dog out.”

Given this similarity, the coverbal ideophones are treated as par-
ticles. As in the Norwegian grammar (Dyvik 2000), these particles
are introduced by a special c-structure category PART of adverbial
type (i.e., PART[adv]). The verbs like newhich subcategorize for ideo-
phones are constrained to specify the lexical form (30) of the particle.
(30) V-SUBJ-PRT (P PART) = @(CONCAT P ‘* PART %FN)

@(VOICE (↑ PRED)=‘%FN<(↑ SUBJ)>’)
(↑ PRT-FORM)=c PART.

The rule in (30) makes use of the XLE built-in template CONCAT
(Crouch et al. 2013) to concatenate all arguments except the last argu-
ment and to produce the final argument. If applied to the structure ne

9The LinGO English Resource Grammar (Copestake and Flickinger 2000).

[126]

LFG parse disambiguation for Wolof

tekk in (11), %FN will be set to ne*tekk once the tekk particle is found
and (↑ PART) is set to tekk. The rule shows a subcategorization frame
for an intransitive verb like ne functioning as the verb in the structure.
The frame uses a constraining equation (↑ PRT-FORM)=c PART to re-
quire a special particle selected by the verb, constraining the value
of the ‘PRT-FORM’, introduced by PART. This rule also specifies that
such a structure – the verb and co-verbs taken together – requires a
special treatment. The CONCAT device allows for concatenation of
two independent lexical entries that coreference each other in the lex-
icon. The lexical entries of base verbs introduce the semantic form of
the particle verb with its argument structure. The lemma of the base
verb and the form of the particle are concatenated via the device so
that the combination of the two, rather than just the lemma of the
base verb, is the PRED of the f-structure.
One of the reasons for treating the verb and the particle in this

way is that syntactic constituents can intervene between the verb and
the particle, as illustrated in (31). Another reason is that, for instance,
the verb ne can appear with an OBJ, but not if there is a PRT-FORM
tekk, which is provided by the particle. In such a case, this verb can
only be intransitive.
(31) Mu

3sg
ne
say
ma
1sg
jàkk.
IDEO:of staring at someone

“S/He was staring at me.”

Figure 2 shows an example analysis of Wolof coverbal ideo-
phones.

Figure 2:
Analysis of
Sentence (11) as
an illustration of
the treatment
of coverbal
ideophones
in Wolof

In addition, some further steps were required. First, the ideo-
phonic particle forms had to be explicitly listed in the lexical entry of
the collocational verb. Second, several subcategorization frames were

[127]

Cheikh M. Bamba Dione

defined to allow for the different verb argument structures. For a verb
like ne, the frames given in Table 1 were defined.10 Finally, optimality
marking (see Section 6.2) was used to state a preference reading for
ideophones as such, when they occur with a collocational verb. For in-
stance, some rare ideophones like tekk in (11) may belong to another
grammatical category. In fact, tekk can also be a noun. However, in
this configuration, the noun reading is very unlikely, not to say im-
possible. Hence, for such rare cases, the use of the preference mark
for the ideophone reading helps to discard the implausible readings
arising from nouns from the output.11

Table 1:
Subcategorization
frames for ne as
a collocational

verb

Subcategorization frame Examples
V-SUBJ-PRT ne cell ‘to be silent’
V-SUBJ-OBJ-PRT ne jàkk ‘to stare at someone / something’
V-SUBJ-OBL-TH-PRT ne mërr ak ‘to disappear with’
V-SUBJ-OBJ-OBJ-TH-PRT ne keww kenn dara

‘to stare at somebody with something’
V-SUBJ-XCOMP-PRT ne mes ànd ak njaxlaf

‘to disappear quickly and in a dynamic way’
V-SUBJ-OBL-COMPAR-PRT ne ràyy ni melax ‘to flash like a lightning’

Applied on the test set, this approach substantially reduces the
ambiguity rate related to the coverbal ideophones by ca. 4%. Also, the
parse time for coverbal ideophones could be reduced by 16%, while
maintaining the parsing accuracy. This change affected 7 templates
and ca. 139 verb subcategorization frames.
5.3 Coping with POS ambiguity
One of the major causes of non-determinism in a computational gram-
mar is POS ambiguity. When a word can belong to two different gram-
matical categories, a non-deterministic parser may have to explore
both possibilities.
As noted in Section 3.1.3, la in Wolof is very ambiguous between

different grammatical categories, and because of this, the sentence in
(16a), repeated in (32), has ca. 42 readings. The multi-tagged text of
this sentence before disambiguation is displayed in (33). The analysis

10PRT is the abbreviation for particles.
11See Section 6.2 for a more detailed discussion of using optimality marks in

the Wolof grammar.

[128]

LFG parse disambiguation for Wolof

line <“la”> has received seven different readings in the morphology
analysis.
(32) Fas

horse.w-cl
la
3sg.FOC

gis.
see

‘It is the horse that he saw.’

(33) <“fas”> fas+V+Base+Main+Active
fas+N+Common+w+y+Count
fas+N+Common+g+y+Count

<“la”> la+Comp+Free
la+Det+Def+l+Sg+Dist
la+Pron+Rel+l+Sg+Dist
la+Pron+Free+l+Sg+Dist
la+INFL+NonSubjCopula+3SgSubj
la+INFL+CompFoc+3SgSubj+Indic
la+Clt+Obj+Pers+2+Sg+Weak+Acc

<“gis”>
gis+V+Base+Main+Active
gis+N+Common+b+y+Count

<“.”>
.+PERIOD

A possible method to tackle the non-trivial issue of POS ambiguity
is to use a methodological paradigm that is based on local morpholog-
ical disambiguation performed by context-sensitive disambiguation
constraints. Local disambiguation refers to “constraints or strategies
that make it possible to discard some readings just by local inspec-
tion of the current cohort” (i.e., the set of readings from a word form)
“without invoking any contextual information” (Karlsson 1990, pp. 2).
Constraint Grammar (CG) (Karlsson 1990) is an example of such

a mechanism that allows this kind of local disambiguation. CG is a
language-independent formalism for surface-oriented, morphology-
based parsing of running text (Karlsson 1990). In this formalism,
context dependent rules are compiled into a grammar that assigns
readings to words or other tokens in a given text. Tags can be of dif-
ferent types, including lexeme, base form, syntactic or semantic tags,
valency, etc. Constraints are used to discard as many alternatives as
possible. Constraint rules typically consist of two parts: (i) an opera-
tion on a pattern and (ii) a context. Each rule either adds, removes,

[129]

Cheikh M. Bamba Dione

selects or replaces a tag or a set of grammatical tags in a given sentence
context. A context can be defined as any combination of words or tags
in a given sentence. Context conditions can be linked to any tag or
tag set of any word anywhere in the sentence, either locally (defined
distances) or globally (undefined distances). Context conditions in the
same rule may be linked (i.e., conditioned upon each other) negated,
or blocked by interfering words or tags.
The idea that lexical ambiguity can be reduced for a given sen-

tence by using the CG model is particularly attractive for at least two
reasons. First, the CG-based model does not require a large data set for
training. Second, the model allows a grammar writer to select mean-
ings or remove them from words or other tokens, depending on local
information. The context sensitive constraints of this model provide a
disambiguation possibility that is generally unavailable in context-free
grammar approaches. This constitutes one of the main motivations of
using CG in this work.
Note that the development of the Wolof grammar follows in many

respects Maxwell and Kaplan’s (1993) model, according to which pars-
ing time can be speeded up if conditions on certain finite-valued syn-
tactic features are translated from f-structure constraints to variant c-
structure categories. This means that the constraints can be enforced
by the polynomial context-free c-structure system and not by the pos-
sibly exponential f-structure satisfiability algorithm. This works par-
ticularly well for features that can be evaluated fairly locally in the
tree. For instance, the Wolof grammar uses parameterized c-structure
categories (also known as complex categories) (Crouch et al. 2013;
Butt et al. 1999) provided by XLE as a way of systematically propa-
gating and enforcing features that provide subclasses of context-free
categories. However, while this approach is beneficial as it provides
the means to prune inconsistent analyses early (i.e., in the chart build-
ing phase instead of the unification phase), it does not provide the
same gain in efficiency as the separate CG component does. One of
the reasons is that the use of parameterised c-structure categories
also increases the number of categories which are built in the XLE
chart. A further, and perhaps more important, reason is that, with
the CG-based approach, XLE will not even try to build c-structure
for the undesired analyses, as these readings are removed at earlier
stages.

[130]

LFG parse disambiguation for Wolof

Accordingly, morphological disambiguation based on CG has
been incorporated into the Wolof grammar. The implementation of
the CG model used for Wolof is developed by Didriksen (2003) within
the VISL NLP framework,12 and is based on the third-generation com-
piler vislcg3 (Bick 2000). As the Wolof CG disambiguator is discussed
in details in Dione (2014), I will here only briefly outline the use of
the CG model to handle lexical ambiguity.
To illustrate how CG-based disambiguation works forWolof, let us

consider Example (33). In order to remove undesired readings for this
input sentence, a number of detailed constraints have been developed.
Some of these are exemplified in the rules in (34)–(36), which are
written in accordance with the CG-3 compiler documentation.13
In (33), a large number of ambiguities can be resolved by look-

ing at the Wolof noun class agreement. For instance, specifiers such
as determiners or demonstratives and modifiers such as relative pro-
nouns agree with the head noun. Accordingly, those analysis lines in
(33) which contain a noun class tag that does not occur in the analysis
line of the adjacent noun can be removed. This means, for example,
that the determiner reading of la can be safely removed: It refers to
the l class which differs from the possible classes for the noun fas,
which can take either the g or the w index. This is accomplished by
the constraint rule in (34).

(34) REMOVE (Det Def) + $$NC
IF (NEGATE -1 NOM + $$NC)

(NEGATE *-1 Pron + $$NC BARRIER CLB);

• REMOVE (Det Def) + $$NC: remove a definite determiner with
a noun class index, IF

– (NEGATE -1 NOM + $$NC): there is no nominal (NOM), with
the same class, occurring immediately to the left (-1).

– (NEGATE *-1 Pron + $$NC BARRIER CLB): there is no
pronoun with the same noun class anywhere (*) to the left of
the first neighboring position, and there is no clause bound-
ary (CLB) in between (BARRIER).

12See http://beta.visl.sdu.dk.
13See Bick (2009) and http://beta.visl.sdu.dk/cg3.html.

[131]

Cheikh M. Bamba Dione

Likewise, the relative pronoun reading can be removed using a
rule similar to (34). In addition, relative pronouns can be directly re-
moved in a more general context, for example, if the right adjacent
constituent is a prepositional phrase, a conjunction or a punctuation
symbol (’.’, parenthesis, etc.).
The rule in (35) removes the non-subject copular reading, depend-

ing on the part of speech of the left adjacent and right adjacent word.
(35) REMOVE (Icop) IF (-1 Verb LINK 2 Verb);

• REMOVE (Icop): remove a copular reading, IF
– (-1 Verb LINK 2 Verb): left adjacent and right adjacent
words are verbs.

The rule in (36) removes la as a complementizer if an unambigu-
ous (C) transitive verb occurs anywhere to the right from the first
neighbouring position, and if there is no clause boundary in between.
(36) REMOVE (”la” Comp)

IF (*1C (Verb Trans) BARRIER CLB);

Having applied the rules in (34-36), only three analysis lines of la
in (33) will be retained. While many local ambiguities can be resolved
using the given rules, in some cases it is difficult to fully disambiguate.
For example, the disambiguation of free relative pronouns and object
clitics requires a careful rule design. With respect to the example dis-
cussed so far, in the current Wolof CG disambiguator, the surviving
analysis lines may remain undisambiguated.
The Wolof CG disambiguator consists of a modest size of rules (ca.

250 rules), but is relatively effective. Applied on the Wolof test data
(Cissé 1994; Garros 1997; Ba 2007), it helped to reduce the average
numbers of readings per token from 2.69 to 1.55. TheWolof CG disam-
biguator is evaluated along with the c-structure pruning mechanism
which has been used to tackle some issues of syntactic ambiguity, as
discussed in Section 6.1.

6 syntactic disambiguation

The simplest method of reducing syntactic ambiguity would be to
write more restrictive rules. In some cases, it could be possible to find
a restriction that rules out exactly the undesired analyses, for example,

[132]

LFG parse disambiguation for Wolof

by disallowing attachment of some PPs to the sentence level in ambi-
guity involving PP attachment. This strategy is obviously not always
possible, as it may lead to incorrect analyses (e.g., of some PPs) or
eliminate analyses containing particular ambiguities (e.g., global am-
biguities) that need to be preserved. Accordingly, structural or scoping
ambiguities have often been dealt with by ranking the different anal-
yses, using either statistical models or linguistic intuition.
To deal with syntactic ambiguity in Wolof, I have explored var-

ious disambiguation models, including probabilistic as well as non-
statistical ones. The former build upon the c-structure pruning mech-
anism of XLE (Cahill et al. 2007, 2008; Crouch et al. 2013), while the
latter are based on optimality marks (Frank et al. 2001). In addition,
I adopt ambiguity preserving approaches for constructions involving
global ambiguity. These different approaches are discussed in the fol-
lowing sections.
6.1 Coping with structural ambiguity by using c-structure pruning
In Section 3.2.1, structural ambiguities in Wolof have been discussed.
In Example (18), the word form bi can have different grammatical
categories. For instance, it can be a determiner or a relative pronoun,
leading to different c-structures, for example, for the constituent xale
bi moom, which can be analyzed as a DP or as an NP with an embed-
ded relative clause. The probability that this constituent occurs as a
relative NP in some given texts is lower than the probability that the
same constituent occurs as a DP. Similar facts can be noted about the
constituent doon ree, which, in principle, is much more likely to be an
auxiliary VP (VPaux) than a copular VP (VPcopmain). A probabilistic
grammar takes these probabilities into account in a way that a non-
probabilistic grammar does not. Accordingly, it is possible to assign
a probability to a sentence, and base a given analysis of the sentence
(from the set of possible analyses) on the probability associated with it.
Thus, to deal with structural ambiguities such as those discussed

in Section 3.2.1, I have conducted various experiments based on the c-
structure pruning mechanism of XLE (Cahill et al. 2007, 2008; Crouch
et al. 2013), in combination with CG during the development of the
Wolof grammar. The experiments are extensively discussed in Dione
(2014). In the following, I will outline the main aspects and results
achieved by using this approach.

[133]

Cheikh M. Bamba Dione

The c-structure pruning mechanism of XLE provides a possible
method to control structural ambiguities and to make parsing faster
by discarding low-probability c-structures before functional annota-
tions (f-annotations)14 are solved. Typically, XLE parses a sentence
in a series of passes (Crouch et al. 2013). First, the morphology an-
alyzes the sentence, looks up each morpheme in the lexicon and ini-
tializes a chart with the morphemes and their constraints. Then, the
chart builds all possible constituents out of the morphemes using
the c-structure rules given in the grammar. Constraints are processed
after all of the constituents have been built. Next, the unifier pro-
cesses the constraints bottom up, only visits those constituents that
are part of a tree with the correct root category that covers the sen-
tence, and builds a constraint graph for each subtree. Subsequent
passes are concerned with finding locally incomplete analyses and
solving the Boolean satisfaction problem for edges. One main reason
for using c-structure pruning is that unification is typically the most
computation-intensive part of LFG parsing. This is particularly true
for Wolof. The typical proportions of overall runtime of some XLE
components with the Wolof grammar are: Morphology (0.1%), Chart
(3.1%) and Unifier (85.5%).
The basic procedure of testing the c-structure pruning mechanism

consists in training a probabilistic context-free grammar (PCFG) on a
corpus annotated with syntactic bracketing, and, subsequently, dis-
carding all c-structures that are n times less probable than the most
probable c-structure. Context-free rewrite rules typically consist of one
non-terminal symbol on the left-hand side and a combination of termi-
nal and/or non-terminal symbols on the right-hand side. XLE grammar
rules are context-free rules augmented with f-annotations. Examples
of PCFGs are given in Figures 3–4, which represent two different anal-
yses of the sentence “Fruit flies like bananas”.
As can be seen in the Figures 3–4, each c-structure has hypo-

thetical probabilities attached to it: 8.4375E-14 and 4.21875E-12 for
Analysis 1 and Analysis 2, respectively. Accordingly, Analysis 1 is 50
times less probable than Analysis 2. Thus, depending on how the c-

14Functional annotations refer to the set of f-structure constraints associated
with the analysis of a sentence. For example, the constraint (f TENSE) = PAST
specifies that the feature TENSE in the f-structure f has the value PAST.

[134]

LFG parse disambiguation for Wolof
S

NP

N

Fruit

N

flies

VP

V

like

NP

N

bananas
S → NP VP 0.5000
NP → N N 0.1500
N → Fruit 0.0010
N → flies 0.0015
VP → V NP 0.2000
V → like 0.0050
NP → N 0.5000
N → bananas 0.0015

8.4375E-14

Figure 3:
Analysis (1) for the string Fruit flies like bananas
with hypothetical probabilities

S

NP

N

Fruit

VP

V

flies

PP

P

like

NP

N

bananas
S → NP VP 0.5000
NP → N 0.5000
N → Fruit 0.0010
VP → V PP 0.1000
V → flies 0.0025
P → like 0.0500
PP → P NP 0.9000
NP → bananas 0.0015

4.21875E-12

Figure 4:
Analysis (2) for the string Fruit flies like bananas
with hypothetical probabilities

structure pruning mechanism is set, Analysis 1 may be discarded even
before corresponding f-annotations are solved.
The probabilities for the rule can be estimated as relative fre-

quencies found in a parsed (and disambiguated) corpus.15 With these
estimations, XLE makes use of a chart-based mechanism to prune sub-
trees at the level of individual constituents in the chart. A subtree is

15See Crouch et al. (2013) on how XLE computes the rule probabilities.

[135]

Cheikh M. Bamba Dione

pruned if its probability is lower than the best probability by a given
factor. For that purpose, the grammar writer can specify a so-called
cutoff value (typically between 4 and 10), which corresponds to the
natural logarithm of that factor. For instance, a value of 5 means that
a subtree will be pruned if its probability is about a factor of 150 less
than the best probability.
To test the c-structure pruning mechanism for Wolof,16 a PCFG

was built, trained and tested in two different ways: (i) only using the
regular Wolof grammar without CG-based disambiguation, and (ii) us-
ing the CG parser (see Section 3.1.3) for morphological disambigua-
tion. This had the purpose of evaluating the parsing system in terms of
parsing time, accuracy and ambiguity reduction. The LFG metric used
to measure the parsing quality is based on the comparison of full f-
structures, represented as relation(predicate,argument) triples. Accord-
ingly, the triples of the system are compared to a triple-based gold
standard manually built for this purpose. For each comparison, the
best match, that is, the reading that comes closest to the intended
analysis (out of all source analyses) is chosen. The metric, referred to
as the oracle f-score is defined as the geometrical mean of precision
and recall (i.e., F = (2 * P * R)/(P + R)) which is calculated from the
set of the triples in best match solution.
The results of applying the c-structure pruning mechanism on the

development set, as reported by Dione (2014), show that a cutoff of
10 seems to provide the best trade-off between time and accuracy, if
the LFG parsing is not combined with CG.17 Otherwise, if CG-based
disambiguation is used in addition to c-structure pruning, a cutoff of
9 seems to perform best on the development data. Having established
the best cutoff values for the two training forms, the c-structure prun-
ing mechanism is applied to the Wolof test set.
The results on the test set are given in Table 2. These show that c-

structure pruning and CG-based disambiguation, independently, yield
a great reduction in parsing time. Using only the c-structure pruning
(with a cutoff of 10) leads to a speed-up over 36%. If the test set is
disambiguated using CG, a cutoff value of 9 allows for a speed-up of

16See Dione (2014) for details about the experiments, the training data, and
on how the gold standard data have been built.

17For a discussion of how the pruning algorithm is trained on the Wolof data
and the process used to establish the best cutoff values, see Dione (2014).

[136]

LFG parse disambiguation for Wolof

30%. Using only CG-based disambiguation, parsing efficiency can be
improved by ca. 40%. In total, combining c-structure pruning with
CG-based disambiguation leads to a speed-up of 58%.

Without CG With CG
Pruning Level None 10 None 9
Total CPU Time (sec) 7374 4779 4473 3164
Oracle f-score 93.02 92.05 90.52 89.40
Full Parses 1712 1613 1551 1434
Fragment Parses 627 737 775 917
Time Outs 10 5 8 6
Skimmed Sentences 348 240 191 125

Table 2:
Results of the c-structure
pruning experiments on
Wolof test data

However, as can be seen in Table 2, this increase in speed leads to
a relatively significant drop in f-score. The c-structure pruning and CG-
based disambiguation, independently, have a negative impact on the
quality of the f-structure: The number of fragment parses increases.18
Without CG-based disambiguation, a cutoff of 10 leads to a drop in
f-score of 0.97 points. CG pre-filtering without c-structure pruning
causes a drop in f-score of 2.5 points. Using CG-based disambigua-
tion and a cutoff of 9, the f-score decreases by 1.12 points. In total,
combining c-structure pruning (with a threshold of 9) with CG-based
disambiguation results in a drop in f-score of 3.62 points.

Pruning Ambiguity Ambiguity
Cutoff Rate Reduction

1 w/o CG None 209.77 72.92%10 56.81
2 w/o CG None 174.38 77.64%with CG None 56.45
3 w/o CG None 154.66 80.66%with CG 9 29.92

Table 3:
Ambiguity reduction when
using c-structure pruning
and CG-based
disambiguation

Table 3 shows the ambiguity reduction achieved by using the c-
structure pruning algorithm and CG. Because the ambiguity rate was

18Fragments are produced when the grammar is unable to provide a full parse
for the input sentence. This partial parsing technique allows the sentence to be an-
alyzed as a sequence of well-formed chunks with both c-structure and f-structure
associated with them. Similarly, skimmed parses are produced, when the amount
of time or memory spent on a sentence exceeds a threshold. This technique is used
to avoid time-out and memory problems.

[137]

Cheikh M. Bamba Dione

measured relative to the common full parse solutions produced by
the specific test run, the values for ambiguity rate are not absolute,
but rather relative values. Combining c-structure pruning with CG-
based disambiguation (Row 3) provides the best results with over 80%
ambiguity reduction.
While statistical disambiguation is convenient if a corpus anno-

tated with syntactic bracketing exists, it is also a source of errors,
which are often caused by a lack of data. Also, the application of this
disambiguation technique may be inappropriate in some cases. On the
one hand, c-structure pruning will not often be able to disambiguate
between two constructions if they are both very frequent in the corpus
data. For example, in Wolof, constructions involving asyndetic coor-
dination might be undesired in many cases. They do, however, have a
relatively high frequency in the data, so that a statistical disambigua-
tor will not readily prune them, and even if it did, this would often
result in incorrect analyses. On the other hand, the c-structure pruning
mechanism cannot be used to manage some syntactic ambiguities like
those discussed in Section 3.1.4, which involve the f-structure rather
than the c-structure. Thus, managing such ambiguity might require the
use of non-statistical mechanisms such as optimality marking (Frank
et al. 1998, 2001).
6.2 Using optimality marks
When dealing with syntactic ambiguities, humans can make use of
extra-linguistic knowledge and context. Parsers, however, have only
the grammar as a knowledge base and they deliver all possible so-
lutions, including potentially many implausible ones. This might ad-
versely affect parsing efficiency, often making a manual correction of
the output necessary. In this respect, a possible method to constrain
these ambiguities to legitimate cases and to indicate a preference for
one syntactic analysis over another is the use of the formal mechanism
based on optimality marks (Frank et al. 1998, 2001).
Optimality Theory (OT) was first developed by Prince and Smolen-

sky (1993) for phonology, and later extended to other areas such as
syntax and semantics. Theoretical OT models grammars as systems
that provide mappings from inputs to outputs; the inputs are viewed
as underlying representations and the competing output candidates
(or analyses) as their surface realizations. Accordingly, grammars are

[138]

LFG parse disambiguation for Wolof

seen as having a set of violable constraints. The constraints are uni-
versal and ranked by each language, giving rise to cross-linguistic
variation. Constraint ranking determines the winning candidate, that
is, the candidate that incurs fewer violations than all other candidates.
For example, given constraints C1, C2, and C3, where C1 domi-

nates C2, which dominates C3, A is optimal if it outperforms B on the
highest ranking constraint which assigns them a different number of
violations. If A and B tie on C1, but A does better than B on C2, A is
optimal, even if A has 100 more violations of C3 than B. Table 4 shows
an example of the standard table notation for OT analyses.

/Input/ CONSTRAINT 1 CONSTRAINT 2 CONSTRAINT 3
+ Candidate A * * ***

Candidate B * **!

Table 4:
Example of the
standard table
notation in OT

The optimal candidate is highlighted with a pointing finger in the
tableau, and each cell displays an asterisk for each violation for a given
candidate and constraint. Once a candidate does worse than another
candidate on the highest ranking constraint distinguishing them, it
incurs a fatal violation, resulting in the elimination of the candidate
(marked in the tableau by an exclamation mark ‘!’). Once a candidate
incurs a crucial violation, there is no way for it to be optimal, even if
it outperforms the other candidates on the rest of the universal con-
straint set.
The OT model has been adopted and extended within the LFG

framework for ranking preferences and constraints. Two fundamental
aspects in the extension of the OT model in LFG can be described as
follows:
• The model used in LFG is a violable constraint system used as
a preference filter on analyses. The possible analyses are ranked
using this preference filter, which does not necessarily rule out
sub-optimal structures entirely;
• The violation of a constraint is not always negative. There are
positive constraints, whose fulfillment is desired in some context.
In LFG, OT is an additional projection (o-projection or o-structure)

formally defined as a multiset of constants (constraints or ‘optimal-

[139]

Cheikh M. Bamba Dione

ity marks’). The constraints are projected from c-structure (Frank
et al. 1998) and are introduced by o-descriptions within the gram-
mar. The o-structure serves as a record of constraints used for each
candidate analysis.19 The XLE grammar development environment
provides an implementation of OT in LFG, incorporating the idea of
ranking and (dis)preference. This utility allows for filtering syntactic
and lexical ambiguities in a way that aims to reconcile robustness and
accuracy.
Unlike theoretical OT which only includes dispreference marks,

XLE OT defines both preference and dispreference marks. Preference
marks come to use when one specific reading out of a set of anal-
yses is preferred. In general, they allow one to mark more frequent
structures, which are preferred to the less frequent ones. Example (37)
(from Frank et al. 1998, pp. 5) illustrates the use of such marks to state
a preference for multiword terms in technical documentation.
(37) a. I want [print quality] images.

b. *I want [print] [quality] images.
With a respective preference mark, the analysis with the multi-

word expression (37a) will be preferred over all other readings. How-
ever, if there is no valid analysis for the multiword expression (as in
37b), an analysis using the individual lexicon entries is still possible.
Dispreference marks are used for rare grammatical constructions

which need to be covered, but interact in unexpected ways with fre-
quent constructions, making them ‘dispreferred’. For example, these
marks may be used to exclude NPs being headed by adjectives from
the candidate set. Dispreferred constructions are selected only when
no other, more plausible, analysis is possible. Yet, it can be difficult, in
general, to decide whether to use a preference or dispreference mark.
The difficulty stems mainly from two main issues: (i) whether there is
any interaction between the marks, and (ii) which analysis is easier to
mark. For instance, it is easier to mark a multiword expression with a
preference than to mark all of its components with a dispreference.
In addition, XLE provides other special marks such as STOP-

POINTs. STOPPOINT marks slowly increase the search space of the
19Note that the o-structure is just a set of marks, not of f-structure features.

The f-structure of the grammar remains unaltered. Optimality marks are in their
own projection, the extra representation level referred to as the o-structure.

[140]

LFG parse disambiguation for Wolof

grammar if no good solution can be found. They constitute a way of
increasing the robustness of the grammar without sacrificing perfor-
mance. For instance, in the OT field of the configuration, STOPPOINT
marks can be inserted into the hierarchy of preference and disprefer-
ence marks (e.g., to the right or left of STOPPOINT in optimality or-
der). As such, dispreferred constructions like rare or computationally
expensive constructions will only be considered if the core grammar
fails to find a valid analysis for frequent ones.
In the context of Wolof, I have conducted experiments with the

OT mechanism following two main objectives: (i) to select preferred
analyses for ideophones (see Section 5.2) and ambiguous verb subcat-
egorization frames (see Section 6.3), and (ii) to increase robustness
by managing ambiguity caused by computationally expensive con-
structions like coordination without an overt conjunction (see Sec-
tion 6.4).
6.3 Managing ambiguity caused by subcategorization frames
Section 3.1.4 discussed verbs in Wolof like dugg “enter” in (17), re-
peated in (38), which have several subcategorization frames. These
include a bare intransitive and an oblique reading, as illustrated by
Figures 5 and 6, respectively.
(38) Mu

3sg
dugg
enter

ci
in
kër
house

gi.
cl.DFP

“S/He entered the house.”

For Wolof, I have attempted to suppress ambiguity caused by sub-
categorization frames through the use of optimality marks. Accord-
ingly, I have introduced preference marks in the grammar to help in-
dicate the preferred reading in (38), for example, to select the oblique
reading over the adjunct one. As Example (39) shows, the OT con-
straints are used within a disjunction at the level of functional anno-
tation. This example specifies that a Wolof verbal phrase (VP) may
expand into a verb V followed by an optional determiner phrase (DP)
and several prepositional phrases (PP*). A PP may be realized either
as an oblique argument or an adjunct, and each choice is marked
with an o-projection mark for preference ranking. The disjunction un-
der PP in rule (39) is a typical source of optimality marks for sen-
tence (38).

[141]

Cheikh M. Bamba Dione
Figure 5:

Analysis of dugg as an
intransitive verb

(39) VP → V
� DP
(↑ OBJ)=↓
�

PP*
(↑ OBL-TH) = ↓
MARK1 ∈ o*
↓ ∈ (↑ ADJUNCT)
MARK2 ∈ o*

However, in the context of Wolof, the use of the OT mechanism

encounters some essential problems. For instance, the use of prefer-
ence constraints was frequently faced with exceptions and counterex-
amples. There are still cases where OT chooses the wrong structure.
By way of example, let us consider the sentences in (40).
(40) a. Mu

3sg
tontu
reply

ca
PREP

laaj
question

ba.
cl.DIST

“So, (s)he replies to the question.”
b. Mu
3sg
tontu
reply

ca
PREP

saa
instant

sa.
cl.DIST

“So, (s)he replies immediately.”

[142]

LFG parse disambiguation for Wolof
Figure 6:
Analysis of dugg as a verb
with an oblique argument

These sentences contain the verb tontu, which typically selects for
the prepositions ci and ca, meaning, inter alia, ‘on’, ‘to’, and ‘about’
according to the context. Accordingly, the PP ca laaj ba in (40a) can be
assumed to be subcategorized for by the verb, and therefore bears an
argument function (specifically an oblique function) within the clause.
As this kind of construction is quite common for this verb, a prefer-
ence mark for PP obliques was introduced in the Wolof grammar in
the early stage of grammar development. This aimed to automatically
suppress certain ambiguities due to the adjunct reading. However, as
exemplified by (40b), this approach is not successful in all contexts. In
(40b), the prepositional phrase ca saa sa appears as a modifier rather
than an argument of the verb. It modifies the verb tontu, but it is not
governed by this predicate. Hence, a preference mark for oblique PPs
over adjuncts will falsely choose the oblique reading for the PP ca saa
sa in the sentence (40b).
A similar situation can be observed in English: The preference

of oblique PPs over adjuncts may lead to an incorrect analysis of the
constituent for two hours in the sentence John waited for two hours.
As Copperman and Segond (1996, pp. 6) pointed out, it is difficult

[143]

Cheikh M. Bamba Dione

to find in the literature “a discussion of preferring arguments to ad-
juncts (via subcategorization frames), which strikes us a valid general
preference. Of course, in many cases the question of whether to con-
sider something an argument or an adjunct is no more solved than PP
attachment, so this will actually help only in clear cases.”
Another disadvantage of this mechanism is that the use of opti-

mality marks requires careful adjusting and experimenting to get cer-
tain effects, both in terms of preferences and performance. This re-
flects the fact that the OT specifications have global interactions and
are thus difficult to describe. For instance, for a grammar writer, it
may be very difficult to introduce new marks or reorder old ones to
get the relatively straightforward outcomes that (s)he is looking for.
The indirect consequences of minor adjustments can be hard to under-
stand and predict. Thus, with regard to the Wolof grammar, the idea
of using preference marks for PP obliques was abandoned due to the
large number of counterexamples.
6.4 Handling coordination ambiguity
As discussed in Section 3.2.1, Example (18), repeated in (41),20 also
illustrates asyndetic coordination (i.e., coordinated structures without
an explicit conjunction). Such structures are frequently encountered
in the Wolof data. A typical syntactic feature of these coordinate struc-
tures is that they may exhibit forward conjunction reduction (Kempen
1991) involving a subject gap: The subject of the left conjunct is omit-
ted from the second clause and understood to be identical to the first
clause’s subject. In LFG terms, the fact that the second conjunct seems
to be missing a subject raises a particular issue with regard to Com-
pleteness (Kaplan and Bresnan 1982): All the governable grammatical
functions required by the PRED of the f-structure should have a value
in the f-structure.
(41) Xale

child
b-i
cl-DFP

moom
own

doon
IPF.PST

ree.
laugh

“The child owns (something) and was laughing.”
To handle this kind of coordination in Wolof, rules like (42) are

used. These allow phrases of same constituents to be coordinated. In
20The gloss and translation only retain the reading as asyndetic coordination,

which is the relevant one for the discussion.

[144]

LFG parse disambiguation for Wolof

the associated f-structure, the coordinate phrase is represented as a set-
valued f-structure. Each of the conjuncts is represented as an element
within the set by the functional annotations ↓ ∈ ↑. To solve the Com-
pleteness problem, the symmetric analysis with asymmetric grammati-
calised discourse function (GDF) projection proposed in Frank (2002) for
German subject-gap constructions is adopted for Wolof. For example,
(42) defines symmetric S coordination in c-structure, with symmet-
ric projection of the conjunct’s f-structures in terms of the classical ↓
∈ ↑ annotations. The annotation (↑ SUBJ)=(↓ SUBJ) defines the first
conjunction’s subject as the subject of the coordination as a whole.21
The predicate e matches against the empty coordinating conjunction
string.22 The feature (↑ COORD-FORM) specifies the form of the con-
junction (e.g., and or or). In this rule, the form is assumed to be null,
since the conjunction is not overtly realized. The annotation (↑ CO-
ORD)=+ indicates that the whole structure is a coordinate phrase.
(42) SCoord → { S: ↓ ∈ ↑ (↑ SUBJ) = (↓ SUBJ);

e: (↑ COORD-FORM)=null (↑ COORD)=+
CWCONJ ∈ o*;
S: ↓ ∈ ↑

}.

Figure 7 shows the c-structure related to the reading of the sen-
tence (41) as an instance coordination without an explicit conjunction.

In the rule in (42), the annotation CWCONJ ∈ o* (in XLE nota-
tion: “CWCONJ $ o::*”) says that (i) CWCONJ is a member of the
OT projection; (ii) such a structure is coordinated without an explicit
conjunct; and (iii) it should be dispreferred. Allowing any S, IP or NP
constituent to be coordinated with another constituent of the same cat-
egory without an explicit conjunction poses notorious ambiguity and
performance problems: It generates a great number of parse possibil-
ities, and sometimes leads to memory, time-out and coverage prob-
lems. Thus, the ambiguity caused by this kind of construction had to
be addressed during grammar development.

21The (↑ SUBJ)=(↓ SUBJ) equation is only needed for asymmetric case where
there is no analysis in which the subject can be construed to be outside of the
two conjuncts, in which case normal distribution over sets will take care of this.

22The symbol e is the “epsilon” symbol for an LFG grammar.

[145]

Cheikh M. Bamba Dione
Figure 7:

C-structure analysis of coordinated sentences
without an explicit conjunction

Currently, the Wolof grammar handles ambiguity caused by co-
ordination without an explicit conjunction by using the STOPPPOINT
mark. For performance reasons, all rules dealing with coordination
like (42) (ca. 10 rules) are annotated with the OT dispreference mark
CWCONJ. In the OT configuration of the grammar, CWCONJ is in-
serted to the left of the STOPPOINT mark to consider this expensive
construction only when no other analysis is available.
To measure the impact of using this approach, the grammar was

run on the test set with and without the application of STOPPOINT.
The test runs reveal that the use of the STOPPOINT mark increases
the parsing time by 6%. In fact, the approach does not lead to effect-
ive advantages in terms of efficiency because XLE has to parse each
sentence in several passes. This explains the slight increase in parsing
time. However, this approach pays off very well in terms of ambigu-
ity reduction: The comparison of the number of solutions produced
by each run reveals that it reduces the ambiguity rate by a factor of
5–6. However, with this approach, there is also a decrease in the pars-

[146]

LFG parse disambiguation for Wolof

ing quality: In the test set, about 25% of the desired interpretations
(relative to coordination without an explicit conjunction) were also
eliminated, causing a drop in f-score of ca. 0.94 points.
6.5 Preserving ambiguity due to pro-drop and impersonal passive
Unlike constructions discussed in the previous sections, where the
main goal was to remove some readings, many syntactically ambigu-
ous utterances can be parsed and assigned ambiguous structures. Sec-
tion 3.3 discussed constructions that exhibit global ambiguity due to
pro-drop and impersonal passive, as illustrated in (19b), repeated in
(43).
(43) Gor

cut.down
na-ñu
+F-3pl

garab
tree

g-i.
cl-DFP

“They cut down the tree.”
“The tree was cut down.”

As other types of ambiguity, referential and lexical ambiguity can
interact, resulting in global ambiguity. The referential ambiguity is
raised by the subject marker nañu, which implies that the subject is
a non-arbitrary referential subject or an arbitrary subject used as a
third person plural person in impersonal passive constructions. As with
ambiguity due to subcategorization frames, the phrase structure in
(43) is the same in each case, but the difference lies in the form of the
semantic predicates. Thus, while the sentence has a single c-structure,
its semantic structure is ambiguous.
The f-structure analysis for the first reading is shown in Figure 8.

This analysis follows the standard LFG treatment of pro-drop, in which
the verb specifies that its subject has the PRED value ‘pro’. In the im-
personal construction, however, the subject PRED and PRON-TYPE are
assumed to be null in order to reanalyze the null-subject construction
as an arbitrary reading. The analysis for the second reading is given
in Figure 9.
As an instance of global ambiguity, the sentence in (43) is not dis-

ambiguated at the parsing level. The solution considered is to leave
the decision to users, which are accustomed to resolving many types of
ambiguity in texts subconsciously and efficiently using common-sense
knowledge. Without the common-sense knowledge that is necessary
to resolve this kind of ambiguity, the parser is not expected to know

[147]

Cheikh M. Bamba Dione
Figure 8:

F-structure analysis of sentence (19b)
as an instance of pro-drop

constructions

Figure 9:
F-structure of sentence (19b)

analyzed as a passivized sentence
with a null subject

which of the solutions that it generates can be left ambiguous because
they will be disambiguated correctly by the user or because the conse-
quences of misinterpretation are trivial, and which will be genuinely
problematic (Chantree 2004). Consequently, automatic resolution of
global ambiguity is mostly not desired. It can be very beneficial to al-
low this kind of ambiguities to remain in the text and to be resolved by
users at a later stage (i.e., in post-parsing). For such a task, there are
grammar engineering tools available which provide a representation
of a set of ambiguous f-structures in a single, packed structure, allow-

[148]

LFG parse disambiguation for Wolof

ing (non-expert) users to locate specific solutions among the output
set straightforwardly and efficiently (e.g., using discriminants).

7 grammar engineering and ambiguity

7.1 Ambiguity packing in XLE
To facilitate ambiguity management, XLE provides a built-in utility
for grouping and displaying packed representations of the alternative
solutions (King et al. 2004). The utility is based on an efficient algo-
rithm for contexted constraint satisfaction that processes ambiguities
in a chart-like packed representation (Maxwell III and Kaplan 1996).
Consider Example (43) discussed in Section 6.5. As this ambiguity

is global and linguistically appropriate, it will normally be computed
and preserved. Accordingly, in the lexicon, the entry for the form nañu
is provided with two semantic PREDs encoded as disjunctive state-
ments to allow for the two readings of this word. These alternative
solutions logically lead to at least two different f-structures. However,
with the XLE built-in algorithm for contexted constraint satisfaction,
such disjunctive facts are not compiled out and duplicated. The algo-
rithm rather produces a representation as a set of the ambiguous f-
structures in a single, packed f-structure, also called f-structure chart,
as Figure 10 illustrates.

Figure 10:
F-structure chart
for packed
ambiguities
in XLE

The f-structure chart window provides a list of choices that are
caused by alternative solutions. Hence, this sentence has two analyses,

[149]

Cheikh M. Bamba Dione

identical except for the values of the PRED (which may be ‘pro’ or
’null_pro’), pronoun and noun type features. In the packed f-structure
chart, attribute-values are indexed with their corresponding context
variables, meaning that the two values are displayed as alternatives,
labeled with indices a:1 and a:2.
This XLE tool for ambiguity management helps grammar devel-

opers to determine the source of the multiple solutions produced by
the parser. As Attia (2008, pp. 221) pointed out, “grouping the solu-
tions in packed representations can effectively speed up the process
of detection and revision”. For instance, given that the choices in the
window in Figure 10 are active, the user can click on a choice and
have a solution corresponding to it displayed in the c-structure and
f-structure windows. Thus, the use of this facility can avoid the need
for the grammar developers to search through the parse forest by ex-
amining one solution after the other.
Equally important, the tool provides grammar writers with infor-

mation on the existence of spurious ambiguities. For instance, vacuous
ambiguity of two f-structures, for example, resulting from duplicate
lexicon entries for the same word, appears in a specific form (namely,
as blank choices) indicating that there is a spurious ambiguity in the
grammar with respect to the given sentence. One of the best ways to
avoid such vacuous ambiguities is to check the grammar carefully and
to make disjunctions exclusive. The elimination of spurious ambigu-
ities proves to be a very effective mechanism for increasing parsing
efficiency.
7.2 Removing spurious ambiguities
Spurious ambiguities as duplicated solutions may arise from different
sources, including the morphology, the lexicon, the c-structure and
the f-structure. For instance, c-structures may be duplicated if there
are two entries under a word for the same category. This particular
problem may also arise when there is no obvious disjunction (Crouch
et al. 2013).
Disjunctions are the alternative paths that a rule can take. “While

disjunctive statements of linguistic constraints allow for a transparent
and modular specification of linguistic generalizations, the resolution
of disjunctive feature constraint systems is expensive, in the worst case
exponential” (King et al. 2000, pp. 7). If disjunctions are not clearly

[150]

LFG parse disambiguation for Wolof

defined in order to be mutually exclusive, they can lead to overgener-
ation. As the sentence length grows, spurious ambiguity can cause an
exponential growth in the number of generated solutions.
Thus, grammar writers need to investigate methods of eliminating

spurious ambiguities, for example, by verifying that disjunctions in the
grammar are mutually exclusive. For example, if an NP’s f-description
contains the disjuncts in (44), then this NP is required to receive a
nominative case value or a third person value. However, the disjunc-
tion in (44) is not mutually exclusive, since both can be satisfied at
the same time. A good way to avoid spurious ambiguity in this case
is to make the disjunction explicit and mutually exclusive, as shown
in (45). While in the first disjunct in (45) the attribute person must
have a value other than 3, hence the annotation (↑ PERS) ~=3, in the
second disjunct in this example a third person value is required; thus
the two disjuncts cannot be satisfied at the same time.
(44) {(↑ CASE)=c nom | (↑ PERS)=c 3 }
(45) {(↑ CASE)=c nom (↑ PERS) ~=3 | (↑ PERS)=c 3 }

Accordingly, I have thoroughly checked the rules, templates (in-
cluding verb subcategorization frames) and lexical entries in theWolof
grammar, in order to avoid as many duplicate solutions as possible.
This careful review and redesign of the grammar has led to a consid-
erable reduction of spurious ambiguities. Though it might seem like
a small detail, removing spurious ambiguities can lead to a great im-
provement in parsing efficiency: The decrease in parse time observed
after taking this measure was more than 50%. Attia (2008, pp. 219)
has made a similar observation with respect to the Arabic Grammar,
stating that “changing the way a rule was written to avoid a non-
exclusive disjunction led to a huge reduction in parse time by 68%.
The number of subtrees was reduced then by approximately 10%.”
These common observations clearly show the effectiveness of spuri-
ous ambiguity elimination by making disjunctions mutually exclusive.
However, the sources of such ambiguities (e.g., the fact that disjunc-
tions such as the one in Example (44) are not mutually exclusive) are
not really obvious for grammar developers and deserve consideration
in grammar writing.

[151]

Cheikh M. Bamba Dione

8 disambiguation
with discriminants

The facility for packing ambiguity provided by XLE is easy to use for
disambiguation when there are only a few choices. However, in some
contexts, there are many choices. For some other inputs, more than
hundreds of analyses are produced. Such a context is illustrated by
Example (46) and its related f-structure in Figure 11.
(46) Xale

child
bi
the
moom
TOP.ADV

nelaw.
sleep

“The child, for his part, sleeps.”

Figure 11:
Partial

f-structure chart
for sentence (46)

[152]

LFG parse disambiguation for Wolof

When dealing with sentences with many choices such as (46), us-
ing this facility requires expert competence in using XLE and detailed
knowledge of the grammar (Rosén et al. 2005). Consequently, in ad-
dition to packing ambiguities, Rosén et al. (2005) have implemented
discriminants for LFG to facilitate the disambiguation task.
Discriminants are defined as small independent choices which in-

teract to create dozens of analyses (Carter 1997). The idea is based
on Carter’s (1997) argument “that disambiguation may be achieved
quickly and without expert competence if it is based on elementary
linguistic properties which the disambiguator may accept or reject
independently of other properties” (Rosén et al. 2005, pp. 378). On
this basis, Rosén et al. (2005) implement discriminants for LFG-based
parsers, defining a discriminant in LFG terms as “any local property
of a c-structure or f-structure that not all analyses share.”
There are four major types of discriminants for LFG grammars

(Rosén et al. 2007): lexical, morphological, c-structure and f-structure
discriminants. Any given discriminant can induce a binary partition on
the choice space. The selection of a discriminant (or its complement)
amounts to the selection of one of the two partition elements, reducing
the choice space accordingly.
The discriminant-based approach provides efficient and elegant

support for LFG parse disambiguation. For instance, the Wolof tree-
bank has been established by running test suites through the gram-
mar. To disambiguate the outputs of the parser and to measure the
parsing quality, the set of solutions returned by the parser must
be manually reviewed, as no gold standard data are available for
the language. However, the Wolof parser, like most parsing sys-
tems, produced a great number of solutions (tens or hundreds, some-
times even thousands of solutions). In such cases, reviewing the out-
put by hand to see if the intended reading is in the set of the pro-
duced parses becomes a time-consuming, tedious and impractical
task.
Therefore, I used a semi-automatic, incremental parsebanking ap-

proach based on lexical, morphological, c-structure and f-structure
discriminants, in order to disambiguate the Wolof data in an effi-
cient and elegant way. By way of illustration, let us consider Example
(47). This sentence is associated with two c-structures displayed in
Figure 12.

[153]

Cheikh M. Bamba Dione

(47) Malaw
Malaw

fas
horse/amulet/to.tie

la.
COP.3SG/2SG.OBJ

“Malaw is a horse/an amulet.” / “Malaw tied you.”

Figure 12:
Two possible
c-structures for
the sentence

in (47)

In this sentence, the word form fas may be either a verb (V) or a
noun (N). Likewise, lamay be a copular verb (I) or an object clitic (Cl).
Because of this, there are two quite different c-structures, as shown in
Figure 12. However, choosing the lexical category of either of these
words is sufficient to determine which c-structure is the intended one;
thus examining these c-structures is no longer necessary. Figure 13
illustrates lexical discriminants for the ambiguous words in (47). The
traditional part of speech (e.g., N, V, I, Cl) is the lexical category speci-
fied in the discriminant. The relevant subtrees containing preterminal
and terminal nodes for Example (47) are shown in Figure 14.

Figure 13:
Representation of lexical discriminants for fas and la ‘fas’: V

‘fas’: N
‘la’: I
‘la’: Cl

Figure 14:
Subtrees defining lexical discriminants for Example (47) N

fas

V

fas

I

la

Cl

la

In (47), the word fas is ambiguous between different forms within
the same POS (N). It can either mean ‘horse’ and therefore fits to

[154]

LFG parse disambiguation for Wolof

the noun class w or ‘amulet’ which belongs to the g class. This mor-
phological ambiguity evidences the fact that, in some cases, lexical
discriminants are not sufficient for disambiguation. For this reason,
Rosén et al. (2007) decided to further define a morphological discrim-
inant as “a word with the tags it receives from morphological pre-
processing.” A morphological discriminant for fas is illustrated in Fig-
ure 15.23

fas+Noun+Common+g+Inanim
fas+Noun+Common+w+Anim

Figure 15:
Morphological discriminants for fas

Discriminants can be displayed along c- and f-structures using the
XLE Web Interface (XLE-Web),24 as shown in Figure 16.
Originally developed in the TREPIL project (Rosén et al. 2009)

and now in use for many of the ParGram grammars, the interface is
a web-based tool for interactive sentence analysis with XLE. It allows
to visualize the mapping from c- to f-structure, and to compactly dis-
play packed representations that combine the c- and f-structures of all
analyses of a given parse into one c- and one f-structure graph.
Discriminants are presented in a user-friendly form with a sen-

tence and all the parses identified by the parser. In Figure 16, the
XLE-Web interface shows possible c- and f-structures for the sentence
in (47) as well as lexical, morphological, and syntactic features, al-
lowing binary choices for efficiently selecting the intended discrimi-
nant. This example has morphological and lexical discriminants that
are reflected in the f-structure. The discriminants are the different
values of the NOUN-CLASS, ANIM and GLOSS features. When a dis-
criminant is selected, parses not consistent with that selection are
removed from the choice space (and suppressed in the display). Dis-
criminants are not completely independent. Some discriminants are
redundant and others eliminate dependent discriminants when se-
lected. Table 5 displays LFG discriminant statistics for the Wolof tree-
bank.

23Note that this example refers to the initial analysis of Wolof noun classes
prior to the underspecification approach discussed in Section 5.1.

24See http://iness.uib.no/iness/.

[155]

Cheikh M. Bamba Dione

Fig
ur
e1
6:
XL
E-W
eb
int
erf
ac
es
ho
wi
ng
dis
cri
mi
na
nts

[156]

LFG parse disambiguation for Wolof

Discriminant Type Frequency
M: Morphological discriminant 522
L: Lexical discriminant 1432
C(R): C-structure rule discriminant 131
C(C): C-structure constituent discriminant 568
F: F-structure discriminant 606

total 3259

Table 5:
LFG discriminants statistics

9 conclusion

This work shows that natural languages, with a particular focus on
Wolof, are rich in ambiguities of many kinds. It also shows that the
wide range of possible interpretations of natural languages and the in-
teraction between the different ambiguity types pose a particular chal-
lenge for large-scale, linguistically motivated grammars. In the context
of Wolof, the most productive sources of ambiguity in the grammar in-
clude noun class syncretism, the use of coverbal ideophones, lexically
ambiguous words, lexical ambiguity due to subcategorization frames,
structural ambiguity, coordination ambiguity, and ambiguity between
pro-drop and impersonal passive constructions. Accordingly, I ex-
plored several ambiguity management approaches at various parsing
levels. This includes systematic ways of dealing with ambiguity, CG-
based disambiguation, c-structure pruning, the application of OT con-
straints, packing ambiguities and discriminant-based disambiguation.
Systematic disambiguation approaches involve classical ways of

underspecification. With the assumption that Wolof nouns typically
show no class distinction and often have forms that can be attributed
‘indeterminately’ to different noun classes, I applied an underspecifica-
tion approach based on feature indeterminacy to the Wolof noun class
system. Following this analysis, Wolof nouns were assigned a feature
structure containing a noun class attribute whose value allows specifi-
cation by means of a separate Boolean-valued attribute. The proposed
approach correctly identifies the linguistic aspects triggered by the
noun class attribute, allowing to substantially reduce both ambiguity
and parse time.
Likewise, ambiguity caused by Wolof ideophones were dealt with

in a systematic way. For this word class, I introduced a special c-

[157]

Cheikh M. Bamba Dione

structure category based on the main assumption that ideophones be-
have like verb particles. Using lexical specification, collocational verbs
that subcategorize for ideophones were then constrained to specify
the lexical form of the particles they select for. Following on from
this, a functional template was used to concatenate the arguments
represented by the collocational verb and the ideophonic particle.
In addition, optimality marks were used to state a preference for the
ideophonic reading, when ideophones co-occur with the collocational
verb. This helped to control ambiguity caused by the collocational
verb and ideophones, resulting in a substantial improvement in parse
efficiency.
Disambiguation at the pre-parsing stage includes handling mor-

phological and lexical ambiguities using CG-based approaches. The
application of these approaches showed that, with a modest number of
CG rules, the average number of readings per token and therefore the
large number of lexical and morphological ambiguities can be reduced
significantly. Also, the CG-based model proved to be very useful when
dealing with less-resourced languages, as it avoids the requirement for
a large training corpus. Equally interesting, the CG-based techniques
were combined with the c-structure pruning mechanism to tackle am-
biguities that arise both at the pre-parsing and at the parsing stages.
The application of the c-structure pruning mechanism led to a consid-
erable reduction of structural ambiguity in the grammar. It caused a
great decrease of the number of the c-structures built in the XLE chart
parser, allowing for a significant improvement in parsing efficiency.
In terms of ambiguity reduction and efficiency, techniques based on
CG and c-structure pruning proved to be the most effective ones. The
experiment results show that the combination of c-structure pruning
with CG-based disambiguation can greatly reduce the ambiguity rate
by ca. 80% and increase parsing efficiency by 58%, however at the
expense of the accuracy of the overall system. The parsing quality de-
creased by about 3.62 points in f-score. With more training data for
c-structure pruning, better results could be expected.
To provide a high-level comparison of disambiguation options,

this work has also experimented with optimality marking. The mech-
anism is used to manage ambiguity caused by ideophonic expressions,
asyndetic coordination and verb subcategorization frames. Although
OT filtering was originally intended to be effective in filtering syn-

[158]

LFG parse disambiguation for Wolof

tactic ambiguity, the current findings suggest that the preference con-
straints are frequently faced with exceptions and counterexamples.
Optimality marking seems to have only occasional effects, for instance
when disambiguating clear cases like ideophonic expressions or when
taking advantage of STOPPOINT effects in certain cases. The results
show that, with constructions like asyndetic coordination, using the
STOPPOINT mark can prove very beneficial in terms of ambiguity re-
duction, but also eliminates a substantial number of desired interpre-
tations and decreases parsing efficiency. In the Wolof grammar, the
latter approach is currently used as a default option, selected from the
explored possible approaches failing an optimal solution.
In addition, this work has discussed grammar engineering utilities

that facilitate ambiguity management at the parsing and post-parsing
levels. It has shown that XLE provides useful built-in tools that allow
for automatic packing of representations of the alternative parse solu-
tions. Such tools are valuable in dealing with global ambiguities where
appropriate readings of a construction need to be preserved. For large-
scale grammars, one particularly interesting feature of these tools is
that they provide grammar writers with very useful information on
spurious ambiguities. As the Wolof case has shown, it is crucially im-
portant to develop strategies for avoiding vacuous ambiguities, includ-
ing ways of mending non-exclusive disjunctions originating from du-
plicate solutions. With a relatively simple disambiguation technique
consisting in preventing spurious explorations of the grammar, the
performance of the parser could significantly be improved.
More interestingly, the paper shows how efficient and elegant LFG

parse disambiguation can be achieved using discriminants. Presented
in a user-friendly way, discriminants are easy for humans to judge
and are prominent in the XLE-web interface display. The user can dis-
ambiguate the sentence by selecting or rejecting discriminants and
thereby retaining or rejecting sets of corresponding analyses. The effi-
ciency of this method, as compared to presenting all the full analyses
to the user, can be appreciated from the fact that a combination of a
small number of local ambiguities can result in a large number of anal-
yses. Applied on the Wolof LFG treebank, this method allowed to effi-
ciently deal with ambiguity using lexical, morphological, c-structure
and f-structure discriminants. As with CG, this disambiguation method
is particularly attractive, as it does not require much training data.

[159]

Cheikh M. Bamba Dione
Table 6:

Comparison of
the impact of
five different

disambiguation
methods on the
Wolof test data

Disambiguation Ambiguity Parse Drop in
method reduction time parsing accuracy
Underspecification ≈ 8% reduced by 4% None
Lexical specification ≈ 4% reduced by 16% None
CG pre-filtering ≈ 77% reduced by 30% 2.5
C-structure pruning ≈ 72% reduced by 36% 0.97
Optimality marking ≈ 80% increased by 6% 0.94

As noted earlier, the various disambiguation methods were ap-
plied on different parsing levels and parser versions. Themethods have
interactions which are very difficult to control systematically. In the
same way, it is very tedious to measure all combinations of all tech-
niques. Table 6 gives estimates of the gain or drop that would result
from adding some of the techniques.
The table shows the impact of using underspecification, lexical

specification for coverbal ideophones, CG-based disambiguation, c-
structure pruning and optimality marking. Disambiguation techniques
based on the formal encoding of noun class indeterminacy via un-
derspecification and lexical specification apply alternative descriptive
devices that reduced both ambiguity and parse time, but otherwise
leave the space of analyses unchanged (i.e., they did not lead to a drop
in parsing accuracy). CG pre-filtering greatly reduced both ambiguity
and parse time, but caused a drop of 2.5 points in f-score. Likewise,
with c-structure pruning, the ambiguity rate as well as the parse time
were reduced significantly, but the accuracy also decreased by about
0.97 points. Finally, with optimality marking, ambiguity dropped sig-
nificantly, but there was a slight increase in parse time and a substan-
tial drop in parsing accuracy.

10 acknowledgements

This research has received support from the EC under FP7, Marie Curie
Actions SP3-People-ITN 238405 (CLARA).

[160]

LFG parse disambiguation for Wolof

references
Mohammed Attia (2008), Handling Arabic morphological and syntactic ambiguity
within the LFG framework with a view to machine translation, Ph.D. thesis,
University of Manchester.
Mariyaama Ba (2007), Bataaxal bu gudde nii (So long a letter), Nouvelles
Editions Africaines du Sénégal (NEAS), Dakar, Sénégal.
Matthew Baerman, Dunstan Brown, and Greville G. Corbett (2005), The
syntax-morphology interface: A study of syncretism, Cambridge University Press.
Marlyse Baptista (1995), On the nature of pro-drop in Capeverdean Creole,
Technical report, Harvard Working Papers in Linguistics.
Eckhard Bick (2000), The parsing system “Palavras”: Automatic grammatical
analysis of Portuguese in a Constraint Grammar framework, Aarhus University
Press, Denmark.
Eckhard Bick (2009), Basic Constraint Grammar tutorial for CG-3 (Vislcg3),
Southern Denmark University, Copenhagen, Denmark,
http://beta.visl.sdu.dk/cg3_howto.pdf.
Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and
Christian Rohrer (2002), The parallel grammar project, in Proceedings of the
COLING 2002 Workshop on Grammar Engineering and Evaluation, pp. 1–7, Taipei,
Taiwan.
Miriam Butt, Tracy Holloway King, María-Eugenia Niño, and Frédérique
Segond (1999), A grammar writer’s cookbook, CSLI Publications, Stanford, CA,
USA.
Aoife Cahill, Tracy Holloway King, and John T. Maxwell III (2007),
Pruning the search space of a hand-crafted parsing system with a probabilistic
parser, in Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing,
pp. 65–72, Prague, Czech Republic.
Aoife Cahill, John T. Maxwell III, Paul Meurer, Christian Rohrer, and
Victoria Rosén (2008), Speeding up LFG parsing using c-structure pruning, in
Proceedings of the Workshop on Grammar Engineering Across Frameworks,
pp. 33–40, Manchester, UK.
David Carter (1997), The TreeBanker. A tool for supervised training of parsed
corpora, in Proceedings of the Workshop on Computational Environments for
Grammar Development and Linguistic Engineering, pp. 9–15, Madrid, Spain.
Francis Chantree (2004), Ambiguity management in Natural Language
Generation, in Proceedings of the Seventh Annual CLUK Research Colloquium,
pp. 23–28, Birmingham, UK.
Noam Chomsky (1981), Lectures on Government and Binding, Foris, Dordrecht,
The Netherlands.

[161]

Cheikh M. Bamba Dione

Mamadou Cissé (1994), Contes Wolof modernes (Modern Wolof tales),
L’harmattan, Paris, France.
Ann Copestake and Dan Flickinger (2000), An open source grammar
development environment and broad-coverage English grammar using HPSG, in
Proceedings of the Second International Conference on Language Resources and
Evaluation, Athens, Greece.
Max Copperman and Frédérique Segond (1996), Computational grammars
and ambiguity: the bare bones of the situation, in Proceedings of the LFG ’96
Conference, Grenoble, France.
Denis Creissels (2001), Setswana ideophones as uninflected predicative
lexemes, Typological Studies in Language, 44:75–86.
Dick Crouch, Mary Dalrymple, Ron Kaplan, Tracy Holloway King, John
T. Maxwell III, and Paula Newman (2013), XLE documentation, On-line, Palo
Alto Research Center (PARC),
http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html.
Berthold Crysmann (2005), Syncretism in German: a unified approach to
underspecification, indeterminacy, and likeness of case, in Proceedings of the
12th International Conference on Head-Driven Phrase Structure Grammar,
pp. 91–107, Lisbon, Portugal.
Mary Dalrymple (2001), Lexical-Functional Grammar, volume 34 of Syntax
and Semantics, Emerald Group Publishing Limited, Bingley, West Yorkshire, UK.
Mary Dalrymple and Ronald M. Kaplan (1997), A set-based approach to
feature resolution, in Proceedings of the LFG ’97 Conference, San Diego, CA, USA.
Mary Dalrymple, Tracy Holloway King, and Louisa Sadler (2009),
Indeterminacy by underspecification, Journal of Linguistics, 45(01):31–68.
Tino Didriksen (2003), Constraint Grammar manual,
http://beta.visl.sdu.dk/cg3/vislcg3.pdf, apS, GrammarSoft.
Cheikh M. Bamba Dione (2012a), An LFG approach to Wolof cleft
constructions, in Proceedings of the LFG ’12 Conference, pp. 157–176, Stanford,
CA, USA.
Cheikh M. Bamba Dione (2012b), A morphological analyzer for Wolof using
finite-state techniques, in Proceedings of the Eigth International Conference on
Language Resources and Evaluation, Istanbul, Turkey.
Cheikh M. Bamba Dione (2013a), Handling Wolof clitics in LFG, in
Christine Meklenborg Salvesen and Hans P. Helland, editors, Challenging
Clitics, pp. 87–118, John Benjamins, Amsterdam, The Netherlands.
Cheikh M. Bamba Dione (2013b), Valency change and complex predicates in
Wolof: an LFG account, in Proceedings of the LFG ’13 Conference, pp. 232–252,
Stanford, CA, USA.

[162]

LFG parse disambiguation for Wolof

Cheikh M. Bamba Dione (2014), Pruning the search space of the Wolof LFG
grammar using a probabilistic and a constraint grammar parser, in Proceedings
of the Ninth International Conference on Language Resources and Evaluation,
Reykjavik, Iceland, ISBN 978-2-9517408-8-4.
Clement M. Doke (1935), Bantu Linguistic Terminology, Longmans, Green and
Company, London, England.
Helge Dyvik (2000), Nødvendige noder i norsk. Grunntrekk i en
leksikalsk-funksjonell beskrivelse av norsk syntaks. [Necessary nodes in
Norwegian. Basic properties of a lexical-functional description of Norwegian
syntax.], in Øivin Andersen, Kjersti Fløttum, and Torodd Kinn, editors,
Menneske, språk og felleskap, Novus forlag, Oslo, Norway.
Dan Flickinger (2000), On building a more efficient grammar by exploiting
types, Natural Language Engineering, 6(1):15–28.
Anette Frank (2002), A (discourse) functional analysis of asymmetric
coordination, in Proceedings of the LFG ’02 Conference, pp. 174–196, Athens,
Greece.
Anette Frank, Tracy Holloway King, Jonas Kuhn, and John T. Maxwell III
(1998), Optimality Theory style constraint ranking in large-scale LFG
grammars, in Proceedings of the LFG ’98 Conference, Stanford, CA, USA.
Anette Frank, Tracy Holloway King, Jonas Kuhn, and John T. Maxwell III
(2001), Optimality Theory style constraint ranking in large-scale LFG
grammars, in Peter Sells, editor, Formal and Empirical Issues in Optimality
Theoretic Syntax, pp. 367–398, CSLI Publications, Stanford, CA, USA.
Nataali Dominik Garros, editor (1997), Bukkeek ”perigam” bu xonq: teeñ yi
(Hyena and its red wig: the lice), Dakar, Senegal: SIL; Paris, France: EDICEF, dr.
Moren ak mbootayu “xale dimbale xale”. trad. du français en wolof par Momar
Touré.
Gerald Gazdar and Chris Mellish (1989), Natural Language Processing in
{LISP}, Addison-Wesley, Boston, MA, USA.
Talmy Givón (1979), On understanding grammar, Academic Press, New York,
NY, USA.
Pascual Cantos Gómez (1996), Lexical ambiguity, dictionaries and corpora,
Services de Publicaciones, Universidad de Murcia, Spain.
Ron Kaplan and Joan Bresnan (1982), Lexical-Functional Grammar: a
formal system for grammatical representation, in Joan Bresnan, editor, The
Mental Representation of Grammatical Relations, pp. 173–281, MIT Press,
Cambridge, MA, USA.
Ronald M. Kaplan, John T. Maxwell III, Tracy Holloway King, and Richard
Crouch (2004), Integrating finite-state technology with deep LFG grammars,
in Proceedings of the ESSLLI 2004 Workshop on Combining Shallow and Deep
Processing for NLP, Nancy, France.

[163]

Cheikh M. Bamba Dione

Fred Karlsson (1990), Constraint Grammar as a framework for parsing
running text, in Proceedings of the 13th Conference on Computational Linguistics,
pp. 168–173, Helsinki, Finland.
Gerard Kempen (1991), Conjunction reduction and gapping in clause-level
coordination: an inheritance-based approach, Computational Intelligence,
7(4):357–360.
Tracy Holloway King, Stefanie Dipper, Anette Frank, Jonas Kuhn, and John
Maxwell (2000), Ambiguity management in grammar writing, in Proceedings
of the ESSLLI 2000 Workshop on Linguistic Theory and Grammar Implementation,
pp. 5–19, Birmingham, UK.
Tracy Holloway King, Stefanie Dipper, Anette Frank, Jonas Kuhn, and
John T. Maxwell III (2004), Ambiguity management in grammar writing,
Research on Language and Computation, 2(2):259–280.
Ekaterini Klepousniotou (2002), The processing of lexical ambiguity:
homonymy and polysemy in the mental lexicon, Brain and Language,
81(1):205–223.
Nobo Komagata (2004), A solution to the spurious ambiguity problem for
practical Combinatory Categorial Grammar parsers, Computer Speech &
Language, 18(1):91–103.
Maryellen C. MacDonald, Neal J. Pearlmutter, and Mark S. Seidenberg
(1994), Lexical nature of syntactic ambiguity resolution, Psychological Review,
101(4):676–703.
Christopher D. Manning and Hinrich Schütze (1999), Foundations of
Statistical Natural Language Processing, MIT Press, Cambridge, MA, USA.
William Martin, Kenneth Church, and Ramesh Patil (1987), Preliminary
analysis of a breadth-first parsing algorithm: theoretical and experimental results,
Springer, Berlin/Heidelberg, Germany.
John T. Maxwell and Ronald M. Kaplan (1993), The interface between
phrasal and functional constraints, Computational Linguistics, 19(4):571–590.
John T. Maxwell III and Ronald M. Kaplan (1996), Unification-based
parsers that automatically take advantage of context-freeness, in Proceedings of
the LFG ’96 Conference, Grenoble, France.
Fiona McLaughlin (2004), Is there an adjective class in Wolof?, in Robert
M. W. Dixon and Alexandra Y. Aikhenvald, editors, Adjective Classes: A
Cross-Linguistic Typology, pp. 242–262, Oxford University Press, Oxford, UK.
Fiona McLaughlin (2010), Noun classification in Wolof: When affixes are not
renewed, Studies in African Linguistics, 26(1):1–28.
Marjorie J. McShane (2005), A theory of ellipsis, Oxford University Press,
Oxford, UK.

[164]

LFG parse disambiguation for Wolof

Alan Prince and Paul Smolensky (1993), Optimality Theory: constraint
interaction in Generative Grammar, Technical report, Rutgers University Center
for Cognitive Science, Cambridge, MA, USA.
Stefan Riezler, Tracy Holloway King, Ronald M. Kaplan, Richard Crouch,
John T. Maxwell III, and Mark Johnson (2002), Parsing the Wall Street
Journal using a Lexical-Functional Grammar and discriminative estimation
techniques, in Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pp. 271–278, Philadephia, PA, USA.
Victoria Rosén, Paul Meurer, and Koenraad De Smedt (2005), Constructing
a parsed corpus with a large LFG grammar, in Proceedings of the LFG ’05
Conference, pp. 371–387, Stanford, CA, USA.
Victoria Rosén, Paul Meurer, and Koenraad De Smedt (2007), Designing
and implementing discriminants for LFG grammars, in Proceedings of the LFG
’07 Conference, pp. 397–417, Stanford, CA, USA.
Victoria Rosén, Paul Meurer, and Koenraad de Smedt (2009), LFG
Parsebanker: a toolkit for building and searching a treebank as a parsed corpus,
in Proceedings of the 7th International Workshop on Treebanks and Linguistic
Theories, pp. 127–133, Utrecht, The Netherlands.
David J. Sapir (1971), West Atlantic: an inventory of the languages, their noun
class systems and consonant alternation, Current Trends in Linguistics,
7(1):43–112.
William H. Torrence (2005), On the distribution of complementizers in Wolof,
Ph.D. thesis, University of California, Los Angeles, CA, USA.
Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Abdel K. Diagne,
Elizabeth A. Hinkleman, Walter Kasper, Bernd Kiefer, Hans-Ulrich
Krieger, Klaus Netter, Günter Neumann, et al. (1994), DISCO: an
HPSG-based NLP system and its application for appointment scheduling, in
Proceedings of the 15th Conference on Computational Linguistics, pp. 436–440,
Kyoto, Japan.
Erhard F. K. Voeltz and Christa Kilian-Hatz, editors (2001), Ideophones,
Typological Studies in Language, John Benjamins, Amsterdam, The
Netherlands.
Sylvie Voisin-Nouguier (2002), Relations entre fonctions syntaxiques et
fonctions sémantiques en Wolof (Relations between syntactic functions and semantic
functions in Wolof), Ph.D. thesis, Université Lumière (Lyon 2), Lyon, France.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[165]

Computational modelling
of Yorùbá numerals

in a number-to-text conversion system

Olúgbénga O. Akinadé and Ọdẹt́únjí A. Ọdẹj́ọbí
Computing and Intelligent Systems Research Group
Department of Computer Science and Engineering

Ọbáfẹḿi Awólọ́wọ̀ University
Ilé-Ifẹ,̀ Nigeria

abstract
Keywords:
Analysis of
numerals,
Yorùbá numerals,
numbers to text,
text normalisation

In this paper, we examine the processes underlying the Yorùbá nu-
meral system and describe a computational system that is capable
of converting cardinal numbers to their equivalent Standard Yorùbá
number names. First, we studied the mathematical and linguistic basis
of the Yorùbá numeral system so as to formalise its arithmetic and syn-
tactic procedures. Next, the process involved in formulating a Context-
Free Grammar (CFG) to capture the structure of the Yorùbá numeral
system was highlighted. Thereafter, the model was reduced into a set
of computer programs to implement the numerical to lexical conver-
sion process. System evaluation was done by ranking the output from
the software and comparing the output with the representations given
by a group of Yorùbá native speakers. The result showed that the sys-
tem gave correct representation for numbers and produced a recall of
100% with respect to the collected corpus. Our future study is focused
on developing a text normalisation system that will produce number
names for other numerical expressions such as ordinal numbers, date,
time, money, ratio, etc. in Yorùbá text.

Journal of Language Modelling Vol 2, No 1 (2014), pp. 167–211

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

1 introduction

The use of numbers and their power in capturing concepts makes them
indispensable in effective communication (Goyvaerts 1980). In any so-
ciety, the use of numbers is firmly anchored to numerous beliefs and
perceived usefulness of the significant philosophy underlying numeri-
cal messages (Abímbọ́lá 1977). In fact, key advancement in civilisation
can be traced to the conception, invention, representation, and manip-
ulation of numbers to facilitate accurate rendering of measurable ob-
jects. This has made the use of numbers an important tool within the
society, where it is used in trade, cosmology, mathematics, divination,
music, medicine, etc. Early cultures devised various means of number
representation, which include body/finger counting (Zaslavsky 1973;
Saxe 1981), object counting, Egyptian numerals, Babylonian numer-
als, Greek numerals, Chinese numerals, Roman numerals, Mayan nu-
merals, Hindu-Arabic numerals, etc. The Hindu-Arabic numeral sys-
tem, which is considered to be the greatest mathematical discovery
(Bailey and Borwein 2011), is still the most commonly used symbolic
representation of numbers due to its simplicity and the fact that it
requires little memorisation to represent practically any number.
Naming numbers in human languages requires various mathemat-

ical and linguistic processes. For example, the number 74 is repre-
sented as 70 (7 × 10) increased by 4 in English, whereas it is repre-
sented as 60 (6× 10) increased by 14 (4+ 10) in French. In Logo, the
number 74 is represented as 10 added to 60 (20× 3) increased by 4.
In Yorùbá, in turn, the same number is derived in a more complex
way by adding 4 to 80 (20 × 4) reduced by 10. Table 1 shows the
representation of the number 74 in the four languages.
The analysis of number names is important but understudied in

human language processing. While it may seem trivial to compute
number names in languages like English, it may be difficult to get it

Table 1:
Derivation of
the number 74

in four languages

Language Name Derivation
English seventy four (7× 10) + 4

French soixante-quatorze 60+ 14

Logo nyabâ na drya mudri drya su (20× 3) + 10+ 4

Yorùbá ẹr̀ìnléláàdọ́rin 4+ (−10+ (20× 4))

[168]

Numbers to Yorùbá Text

right in many other languages, particularly in the Yorùbá language. In
this paper, we present a formal description of the Yorùbá numeral sys-
tem; specifically, the problem of Yorùbá number name transcription
is addressed from an engineering perspective, by applying standard
theories and techniques to an understudied language. This is part of a
wider interest in the development of Text-To-Speech (TTS) synthesis
and Machine Translation (MT) systems for the Yorùbá language. In
TTS and related applications, text normalisation is often the first task,
in which Non-Standard Words (NSW) such as numbers, abbreviations,
acronyms, time, date, etc. are correctly identified and expanded into
their textual forms (Sproat 1996). The expansion of numerical expres-
sions in text is thus a key task in such applications because numbers
occur more frequently in varying forms within a block of text. These
forms include cardinal numbers, ordinal numbers, telephone numbers,
date, time, percentages, monetary value, address, etc.
The rest of this paper is structured as follows: Section 2 gives

an analysis of the Yorùbá numeral system and its associated number
naming rules. Section 3 discusses the system design and implemen-
tation, while Section 4 discusses the results. Section 5 presents the
system evaluation and Section 6 concludes the paper with areas of
further study.

2 the yorùbá numerals

The Yorùbá language (ISO 639.3 yor), which belongs to the West
Benue-Congo branch of the Niger-Congo African languages family, is
spoken by about 19,000,000 speakers in the South-Western Nigeria
(Owólabí 2006). The language is also spoken in other West African
countries such as Central Togo, the East-Central part of the Repub-
lic of Benin, and Creole population of Sierra Leone. Outside Africa,
Yorùbá (called Nagô, Aku, or Lukumi; Lovejoy and Trotman 2003) is
spoken in Brazil, Cuba, and Trinidad and Tobago.
Without a formal method of documenting literature, the Yorùbá

community developed a complex numeral system that extensively uses
subtraction throughout its system (Verran 2001). This has attracted
many linguistic scholars to investigate the reasons why this commu-
nity has developed an intricate numeral system. Certainly, knowledge
of the Yorùbá numeral system has been passed from generation to

[169]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

generation by means of oral literature. Young language learners, in
particular, are made to undergo drills of reciting rhymes with num-
bers ranging from 1 to 10.
In an early study of the Yorùbá numeral system, Mann (1887)

shows how large numbers could be represented as an arithmetic com-
bination of the basic number units and reveals that the subtraction
operation plays an important role in number naming. The peculiarity
in the Yorùbá numerals was highlighted as follows:
“Very different is the framework of the Yorùbá, it can boast of
a greater number of radical names of numerals, and to a large
extent makes use of subtraction...” (Mann 1887, p. 60)
A fact worth noting is that some systems illustrate a pervasive use

of the subtractive techniques. Examples of such systems are the clock
system and the Roman numeral system. In the conventional clock sys-
tem, when the minute part of time is greater than 30 minutes, the
spoken representation can be derived by employing the subtractive
technique. For instance, four canonical representations of 2:30 PM
are:

(i) Half two (half hour past two)
(ii) Two thirty (2 o’clock + 30 min)
(iii) Thirty minutes after two (2 o’clock + 30 min)
(iv) Thirty minutes to three (3 o’clock − 30 min)

All four representations in (i) to (iv) are acceptable and none has
precedence over the other. The form in (iv) is used to a large extent in
our daily lives without any difficulty. Similarly, halb zwei in German
means ‘half of the second hour’, which is ‘half one’. So, the Yorùbá’s
use of subtraction is not completely exceptional, but its extensive us-
age may seem unusual, especially when it is preferred over the simpler
addition operation.
Another observable feature of the Yorùbá numeral system is the

use of base 20 (vigesimal), which likely stems from the counting of
cowry shells as described by Mann:
“Here we may explain the origin of this somewhat cumbersome
system; it springs from the way in which the large sum of money
(cowries) are counted. When a bagful is cast on the floor, the

[170]

Numbers to Yorùbá Text

counting person sits or kneels down beside it, takes 5 and 5
cowries and counts silently, 1, 2, up to 20, thus 100 are counted
off, this is repeated to get a second 100, these little heaps each of
100 cowries are united, and a next 200 is, when counted, swept
together with the first” (Mann 1887, p. 63)
However, there are vigesimal systems that do not have any re-

lation to cowry shells. A more obvious reason for vigesimal systems
could be that humans have 10 fingers and 10 toes. The use of 20 as a
base may seem cumbersome, however, it is not entirely exceptional. In
many languages, especially in Europe and Africa, 20 is a base with re-
spect to the linguistic structure of the names of certain numbers. Even
so, a consistent vigesimal system based on the powers of 20, i.e.: 20,
400, 8000, etc. is not generally used. Examples of a strict vigesimal nu-
meral system are those of Maya and Dzongkha (the national language
of Bhutan). The numeral systems of the Ainu language of Japan and
Kaire language of Sudan also rely, to an extent, on base 20 for the rep-
resentation of numbers. Apart from Yorùbá, other African languages
with vigesimal numeral system are: Madingo, Mundo, Logone, Nupe,
Mende, Bongo, Efik, Vei, Igbo, and Affadeh (Conant 1896). The study
by Conant (1896) highlighted the extent of the mental computation
required in the expression and conception of the Yorùbá numerals,
and concluded that the Yorùbá numeral system is the most peculiar
numeral system in existence. One might then begin to wonder why
the Yorùbá language, with a simple syllabic structure, will use such a
complex numeral system. The reason for this may not be too clear.
Johnson (1921) conducted an analysis of the Yorùbá numerals

by focusing on the derivation processes and the morphophonological
rules required, and showed how large numbers are calculated in mul-
tiples of 20,000. The study by Abraham (1958) examined the arith-
metic skills employed in different Yorùbá numeral groups, and pro-
vided a guide into their syntactic representation. A profound study on
Yorùbá numerals was done by Ẹkúndayọ̀ (1977), where the deriva-
tional breakdown of the Yorùbá numerals was discussed and the struc-
tural representation of Yorùbá numerals was illustrated. In the study,
16 basic number lexemes which serve as the basic building blocks of
the Yorùbá numeral systemwere identified as presented in Section 2.1.

[171]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

2.1 Basic numbers in Yorùbá
The Yorùbá counting system has lexemes for basic numbers from 1 to
10 and six higher numerals (i.e.: 20, 30, 200, 300, 400, and 20,000).
These 16 basic number lexemes are:
ọ̀kan (1), èjì (2), ẹt̀a (3), ẹr̀in (4), àrún-ún (5), ẹf̀à (6), èje
(7), ẹj̀ọ (8), ẹs̀án-án (9), ẹẁá (10), ogún (20), ọgbọ̀n (30), igba
(200), ọ̀dúnrún (300), irínwó (400), ọ̀kẹ́ (20,000) (Ẹkúndayọ̀
1977)

Abraham (1958) and Ẹkúndayọ̀ (1977) also highlighted another set of
basic numerals which are multiples of 20 from 20 to 80. These include:
okòó (20), òjì (40), ọ̀tà (60), and ọ̀rìn (80).
These forms of lexemes are used with multiples of 100 between

200 and 20,000. The lexical representation of 20 has two values, i.e.,
ogún or okòó, which are used in different contexts. Okòó is the only
form used in initial word positions when it is added to (ó lé) or sub-
tracted from (ó dín) a vigesimal, while ogún is used with the multi-
plication formatives in numerical derivation. To illustrate this, 220
may either be expressed as igba ó lé ogún (200 increased by 20) or
okòólérúgba (20 added to 200) but not as igba ó lé okòó or ogúnlérúgba
although they would represent the same quantity.
Numbers are generated using syntactic combination of these lex-

emes, and only three of the basic mathematical operators are required
to represent an infinite set of numbers within the Yorùbá language.
These operators are represented by special position words like lé for
addition, dín for subtraction, and ọ̀nà for multiplication. However, it
should be pointed out that subtraction has an unusually higher func-
tional load than addition. An exponential represented as ìlọpo may be
required to express very large numerals as powers of 20,000 (Ọdẹj́ọbí
2003) but this is not generally used in the Yorùbá numeral system.
2.2 Overcounting in Yorùbá numerals
We have mentioned the use of three of the standard arithmetic oper-
ations (i.e., multiplication, subtraction, and addition) in the Yorùbá
numeral system. However, it is important to discuss a special mode
of subtraction depicted by ẹẹdín and its variant, aadín. The ẹẹdín phe-
nomenon was well articulated in Ẹkúndayọ̀ (1977), where a detailed

[172]

Numbers to Yorùbá Text

explanation of this concept was given. Overcounting (Menninger
1969) occurs when a numeral is expressed in relation to a higher
numeral. Overcounting, thus, becomes inevitable within any numeral
system employing subtraction operation in number representation.
In the Yorùbá numerals system, when ẹẹdín is used with a number,

it implies that the number must be reduced by a certain value. The
use of ẹẹdín or aadín is context-dependent; hence, the value deducted
varies depending on the numeral to which it is attached. This is shown
in Table 2. When ẹẹdín’ is used with numbers 20 and 30, 5 is deducted
from them to produce 15 (ẹẹdín ogún = ẹẹ̀d̀ógún) and 25 (ẹẹdín ọgbọ̀n
= ẹẹ̀d̀ọ́gbọ̀n) respectively. But if ẹẹdín is used with 600, 100 is deducted
to produce 500 (ẹẹdín ẹgbẹt̀a = ẹẹ̀d̀ẹǵbẹt̀a).

Variant Number Reduction
ẹẹdín 20 and 30 5 (half of 10)
aadín 60, 80, ..., 200 10 (half of 20)
ẹẹdín 600, 800, ..., 2000 100 (half of 200)
ẹẹdín 4000, 6000, ..., 20000 1000 (half of 2000)

Table 2:
‘ẹẹdin’ mode
of subtraction

The concept of overcounting is also noticeable in the numeral
systems of Ainu and Maya. Danish, an essentially Germanic language,
also exhibits a related subtractive phenomenon (Conant 1896) as il-
lustrated below:
a) 50 = halvtredsindstyve= half (of 20) from 3 × 20
b) 70 = halvfierdsindstyve= half (of 20) from 4 × 20
c) 90 = halvfemsindstyve= half (of 20) from 5 × 20
Notably, the process of naming numbers in Danish is similar to

Yorùbá. Now, we present the rules used in naming numbers in Yorùbá.
2.3 Yorùbá number naming rules
There are basic rules that hold in the generation of an infinite set
of number names in the Yorùbá language as captured in Figure 1.
As observed by Hurford (2001), numeral sequences in human lan-
guages show several discontinuities in their patterns of representation.
Therefore, it is important to identify numeral groups that exhibit sim-
ilar derivative process within the Yorùbá numeral system. This is to

[173]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Figure 1:

Knowledge for
Yorùbá numerals

generation

achieve the design of an effective computational model to handle the
mathematical and syntactic structure of each group. The groups are:
a) Basic numbers: The canonical lexemes in the Yorùbá language
have been discussed in Subsection 2.1. This set of lexemes cannot
be broken down to simpler forms, and other number names are
generated using arithmetic combinations of these lexemes.

b) Numbers from 11 to 200: The addition operation is used for
deriving numbers from one to four above multiples of 10, while
numbers from five to one below such points are obtained through
subtraction as illustrated in Figure 2. The Yorùbá lexical repre-
sentation of number 11 is formed as an additive concatenation
of the terms for numbers 1 and 10. This also applies to numbers
12, 13, and 14 as :
i) 11 = (1+10) = ọ̀kan lé ẹẁá= ọ̀kànlá
ii) 12 = (2+10) = èjì lé ẹẁá= èjìlá
iii) 13 = (3+10) = ẹt̀a lé ẹẁá= ẹt̀àlá
iv) 14 = (4+10) = ẹr̀ìn lé ẹẁá= ẹr̀ìnlá
Note that the lexical representation of ‘+ 10’, i.e., lé ẹẁá is con-
tracted to lá. The Numbers from 15 to 19 are represented as 5 to
1 deducted from 20, respectively.
i) 15 = 5 from 20 = àrún-úndínlógún
ii) 16 = 4 from 20 = ẹr̀indínlógún
iii) 17 = 3 from 20 = ẹt̀adínlógún

[174]

Numbers to Yorùbá Text
Figure 2:
Yorùbá number
scale

iv) 18 = 2 from 20 = èjìdínlógún
v) 19 = 1 from 20 = ọ̀kàndínlógún
Multiples of 20 from 40 to 180 are expressed as such in succes-
sive elision and vowel harmony. Numerals 50, 70, 90, 110, 130,
150 and 170 are expressed as 10 deducted (aadín) from the next
multiple of 20. Again, this is illustrated below:
i) 40 = (20× 2)= ogún èjì = ogójì
ii) 50 = 10 less (20× 3)= aadín (ogún ẹt̀a)= ààdọ́ta
iii) 110 = 10 less (20× 6)= aadín (ogún ẹf̀à)= ààdọ́fà
iv) 180 = 20× 9= ogún ẹs̀àn-án= ọgọ́sàn-án
Notably, a possible representation of 30 is ààdóji, which means
10 deducted from 2 twenties ((20×2)−10), but 30 is referred to
as ọgbọ̀n, which is a generic term in the Yorùbá numeral system.

c) Numbers From 200 to 2000: Apart from 400, numbers which
are multiples of 200 are derived in multiples of igba and the num-
bers 500, 700, 900, 1100, 1300, 1500, 1700, and 1,900 are de-
rived by 100 deducted (ẹẹdín) from the next multiple of 200.
i) 600 = (200× 3)= igba ẹt̀a= ẹgbẹt̀a
ii) 1000 = (200× 5)= igba àrùn-ún= ẹgbẹr̀ún-ún

[175]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

iii) 1400 = (200× 7)= igba èje= egbèje
iv) 1500 = (1600− 100) = (200× 8)− 100 = ẹẹdín igba ẹj̀ọ =

ẹẹ̀d̀ẹǵbẹj̀ọ
v) 2000 = (200× 10)= igba ẹẁá= ẹgbẹẁá= ẹgbàá

d) Numbers Between 2,000 and 20,000: Numbers in this sub-
group are formed from 2,000 as the root word. The multiples
of 2,000 within this range are expressed as multiples of egbàá
and intermediate numbers are formed with the eedín that shows
a subtraction of 1,000.
i) 6,000 = (2,000× 3)= ẹgbàá ẹt̀a= ẹgbààta
ii) 10,000 = (2,000× 5)= ẹgbàá àrún-ún= ẹgbààrún-ún
iii) 15,000= (16,000−1000) = (2,000×8)−1000= eedín ẹgbàá

ẹj̀ọ= ẹẹdẹgbààjọ
iv) 20,000= (2,000×10) = ẹgbàá ẹẁá= ẹgbààwá. This number

is also expressed as ọ̀kẹ́ kan.
e) Numbers 20,000 and above: Numerals greater than 20,000 are
derived as a multiple of 20,000 (ọ̀kẹ́ kan = twenty thousand in
one place).
i) 40,000= (20,000× 2) = ọ̀kẹ́ méjì
ii) 1,000,000= (20,000× 50) = ààdọ́ta ọ̀kẹ́
iii) 800,000,000= (20,000× 20,000× 2) = ọ̀kẹ́ ona ọ̀kẹ́ méjì
iv) 8,000,000,000,000= 20,000×20,000×20,000= ọ̀kẹ́ ọ̀nà ọ̀kẹ́

ọ̀nà ọ̀kẹ́ kan

Once the number groups are identified, Yorùbá numerals can be
represented as a combination of members from each group using the
addition and subtraction operations. For example, the number 45,678
will be represented as:

45,678= 40,000+ 5,000+ 600+ 70+ 8 (1)
A close observation of these groups shows that certain numbers occur
as reference points in the Yorùbá numeral system as proposed by Poll-
mann and Jansen (1996). An observable trend is that the numbers 20
and 10 play important roles within the Yorùbá numeral system.

[176]

Numbers to Yorùbá Text

2.4 The linguistic structure of numerals
In this section, we review two important bibliographic references on
the syntactic structure of numerals. The first one is Hurford (1975),
which is an extensive study of various numeral systems. The other one
is the study conducted by Ẹkúndayọ̀ (1977), in which phrase structure
rules were proposed for the Yorùbá numeral system.
2.4.1 Hurford’s generative numeral grammar
A notable work on the application of generative grammar to numerals
is the work of Hurford (1975), where the universal phrase structure
rules for deriving numerals were presented. A modified version of the
phrase structure rules was presented in Hurford (2007), being a signif-
icant improvement with respect to well-formed numerals. In this ex-
tensive study of numerals, Hurford considered numerals as syntactic
structural constructs and proposed a universal constraint on numer-
als, which he called the packing strategy. The packing strategy helps
to make the right choice for a number name from different structural
constructs derived by the production rules presented in Definition 1.
The packing strategy guides the general constraints on the well-formed
nature of numerals and any structure containing an ill-formed struc-
ture is itself ill-formed.

Definition 1 (Hurford’s production rules for Yorùbá numerals)
Hurford’s production rules for the Yorùbá numeral system are as follows:

NUM →
�

DIGIT
NP

�
(NUM) (2)

NP → (M) NUM (3)
M → 10

��
2
M

��
(4)

Where DIGIT is a set of basic number lexemes, M is a set of multiplicative
base lexemes, NUM is a numeral and the start symbol, and NP is a Number
Phrase. Rule (2) is interpreted as addition/subtraction, and it can occur
in reverse order, i.e., NUM→ NUM NP. Rules (3) and (4) are interpreted
as multiplication when two constituents are chosen. The curly brace in the
production rules shows alternative productions, while parenthesis indicates

[177]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

an optional item. For example, an NP can be formed from a single NUM or
a multiplicative combination of M NUM.

Hurford’s generative framework provides an adequate account for
the numeral system of most languages including English. However, the
grammar proposed for the Yorùbá numeral system was structurally in-
adequate. It is worth noting that the grammar does not provide an ad-
equate mechanism to differentiate between the addition and subtrac-
tion operations in Rule (2). For example, Hurford (1975) presented
structures for 46 and 4,600, as shown in Figure 3. In the structure
in Figure 3(a), 46 (ẹr̀indínlààdọ́ta) was derived by deducting 4 (ẹr̀in)
from 50 (ààdọ́ta) and 50 was derived by deducting 10 from 60 (ọ̀gọ́ta).
In Figure 3(b) and (c), representing structures for 4,600, i.e., ẹgbẹ-̀
talélogún (200× 23) and ẹgbààjì ó lé ẹgbẹt̀a (4,000+ 600) respectively,
23 (ẹt̀alélogún) was derived by adding 3 (ẹt̀a) to 20 (ogún) and 4,600
was derived by 4,000 plus 600. Rule NUM → NUM NP is interpreted
as subtraction in Figure 3(a), whereas, it is interpreted as addition
in Figures 3(b) and (c). This means that the structure in Figure 3(a)
could be misinterpreted as 54, and structures in Figure 3(b) and (c) as
3,400. Therefore, this introduces ambiguity in interpretation. It is also
important to point out that Rule (4) results in an incorrect interpre-
tation of the structures of M . To illustrate this, the rule represents 20
(ogún) as a combination of 10 (ẹẁá) and 2 (èjì), which is structurally
incorrect. This is because ogún is not formed, by any means, from the
combination of ẹẁá and èjì.
The study also acknowledged that multiple structures may exist

for some numbers like 4,600, as shown in Figures 3(b) and 3(c), but
concluded that the structure in 3(c) was ill-formed, whereas it is a
valid structure in Yorùbá. This conclusion could result from a limited
expert knowledge in verifying the correctness of these structures, as
noted:

“Despite the difficulty in finding crucial information in the sources,
it is conceivable that some complete account of Yorùbá numerals
can be given that is soundly motivated. This language certainly
presents the weightiest challenge for a general theory of numerals
that we have encountered.” (Hurford 1975, p. 232)

[178]

Numbers to Yorùbá Text

(a) NUM
(46)

NUM

4

NP

NUM
(50)

NUM

10

NP
(60)

M

10 2

NUM

3

(b) NUM

NP
(4,600)

M

10
M

10 2

NUM
(23)

NUM

3

NP

20

(c) NUM

NP
(4,000)

M

2,000

NUM

2

NUM

NP
(600)

M

10
M

10 2

NUM

3

Figure 3:
Parse tree for
(a) 46 derived by
4 deducted from
(10 deducted
from (20× 3))
(b) 4,600 derived
by 200× (3+ 20)
(c) 4,600 derived
by (2,000× 2) +
(200× 3)

[179]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

2.4.2 Ẹkúndayọ’̀s phrase structure rules
The study conducted by Ẹkúndayọ̀ (1977) reveals that there exist sim-
ilarities between the mechanism used in the Yorùbá language for con-
structing an infinite number of sentences from a finite set of building
blocks and constructing an infinite set of numerals from a limited set of
basic numbers. This proposition was corroborated into 3 different con-
cepts as shown in Table 3. This shows that all Yorùbá numerals can be
sententially represented through the addition, subtraction, and mul-
tiplication operators. The study also shows that some numbers have
multiple representations in the Yorùbá language, but constraints of
correctness are imposed on these representations. These constraints
include linguistic and structural plausibilities.
Apart from the concept of infinity, creativity, and paraphrasable

representation of numerals, Ẹkúndayọ̀ (1977) demonstrated that a re-
cursive grammar is needed for numeral derivation and representation.
It was observed that the recursive rules are not easily established for
the Yorùbá numerals, however, a set of phrase structure (PS) rules for
the Yorùbá numeral system was given as shown in Definition 2.

Table 3:
Comparison
of sentence

construction and
number naming

in Yorùbá

No. Concept Language Yorùbá numerals
1 Infinity There is no longest sen-

tence. Any sentence,
however long, can be ex-
panded. So with the use
of recursive rules, an infi-
nite number of sentences
can be constructed.

Numerals are infinitely
enumerable. This means
that there is no longest
numeral. Any numeral,
however large can still be
increased. So, the concept
of recursive rules can be
adopted in numerals.

2 Creativity It is possible to construct
and perceive an entirely
new sentence that has
never been heard before.

Yorùbá numerals also re-
quire a high level of cre-
ativity as higher numer-
als must be recreated ev-
ery time they are used.

3 Paraphrase A single idea could be
represented in several
ways.

A single number may also
be represented in differ-
ent forms in Yorùbá nu-
merals.

[180]

Numbers to Yorùbá Text

Definition 2 (Ẹkúndayọ’̀s PS rules for Yorùbá numerals)
Ẹkúndayọ̀ phrase structure rules for the Yorùbá numeral system are as
follows:

NUM → NP (5)

NP →

NP S
N
PRON

 (6)

S → NP VP (7)
VP → V NP (8)

Where NUM is a numeral and the start symbol, NP is a noun phrase, VP
is a verb phrase, S is a sentence, N is the set of 16 basic number lexemes,
PRON is the formative ó (‘it’), and V is a verb represented as the operat-
ing formatives ọ̀nà (for multiplication), dín (for subtraction), and lé (for
addition). NOTE: Rule (8) was presented as V → V N P in the original
article but it was modified to make the grammar complete.
The point of interest here is that verbs are used in number naming,

and that numbers are sententially represented in their surface struc-
ture. This allows for a distinction between addition and subtraction
operations. This is illustrated by the structure of ẹr̀inléláàdọ́ta (54),
shown in Figure 4, where the operating formative (V) is explicitly
represented. Although these PS rules proved useful in the derivation
of Yorùbá numerals, they are mostly arithmetic rather than syntactic
rules as the positions of the basic lexical numerals and operatives do
not correspond to their positions in the surface structure. An exam-
ple would be the surface structure of ẹr̀inléláàdọ́ta (54) represented in
Figure 4 as ((ọ̀gún ọ̀nà mẹt́a) ó dín ẹẁá) ó lé ẹr̀in rather than ẹr̀in ó
lé (aadín (ọ̀gún ọ̀nà mẹt́a)), thereby leading to a misrepresentation of
numerals.
Another problem with Ẹkúndayọ’̀s PS rules is that multiplicative

bases (M) in Hurford’s grammar are not captured. The multiplicative
bases help to understand which numbers are important milestones in a
numeral system. Hence, in this paper, we used knowledge from these
two models to capture the essential components of the Yorùbá nu-
merals. The grammar developed captures the multiplicative bases and
treats Yorùbá numerals as both arithmetic and syntactic constructs.

[181]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

NUM

NP
ẹr̀inléláàdọ́ta (54)

NP
ààdọ́ta (50)

NP
ọ̀gọ́ta (60)

NP

N

ogún (20)

S

NP

PRON

ó (it)

VP

V

ọ̀nà (×)
NP

N

ẹt̀a (3)

S

NP

PRON

ó (it)

VP

V

dín (−)
NP

N

ẹẁá (10)

S

NP

PRON

ó (it)

VP

V

lé (+)

NP

N

ẹr̀in (4)

Figure 4: Parse tree for ẹr̀inléláàdọ́ta (54)

3 system design and implementation

It has been shown that the Yorùbá numeral system is very methodical,
thus, an efficient computational system is required to gain accuracy in
number representation. Figure 5 presents the block diagram of number
transcription in the Yorùbá language. There are four important pro-
cesses in this model. First, there is the number decomposition process,
where numbers are expressed as a sum of smaller numbers in harmony
with the sub-grouping discussed in Section 2.3. The output of this pro-
cess is the magnitude stack. Next, there is a process that generates
the possible forms of a single number. This is done by careful com-
binations of neighbouring elements of the magnitude stack and pars-
ing them with the designed numeral grammar. This is done by using

[182]

Numbers to Yorùbá Text

Figure 5: Number to Yorùbá text transcription system. The figure shows the pro-
cesses involved in converting a cardinal number to Yorùbá text.

the packing strategy to verify whether the structures are well-formed.
The third process is where tokens of the number forms are converted
to their equivalent lexical forms, and the final process is where the
morphophonological rules employed in Yorùbá naming numbers are
applied.
3.1 Number decomposition to vigesimal
Within the Yorùbá numeral system, every number can be represented
using a combination of five different smaller terms, each drawn from
the possible groups of the Yorùbá numeral system. So, the first pro-
cess is to generate the magnitude stack from the given number. This
generates five new numbers (d0, d1, d2, d3, d4) from the given number.
So that

number = d4 + d3 + d2 + d1 + d0 (9)
where
a) d0 is 0 or a member of subgroup (a), i.e.,

d0 takes values from 0 to 9, i.e., d0 ∈ DIGIT = {0,1,2, ..., 9}.
b) d1 is 0 or a member of subgroup (b), i.e.,

d1 is a multiple of 20 (d1 = 20× n | 0 ≤ n < 10) or 10 deducted
from a multiple of 20 (d1 = (20× n)− 10 | 2≤ n≤ 10).

c) d2 is 0 or a member of subgroup (c), i.e.,
d2 is a multiple of 200 (d2 = 200×n | 0≤ n< 10) or 100 deducted
from a multiple of 200 (d2 = (200× n)− 100 | 2≤ n≤ 10).

d) d3 is 0 or a member of subgroup (d), i.e.,
d3 is a multiple of 2,000 (d3 = 2,000× n | 0 ≤ n < 10), or 1,000
deducted from a multiple of 2,000 (d3 = (2,000×n)−1,000 | 2≤
n≤ 10).

e) d4 is 0 or a member of subgroup (e), i.e.,
d4 is a multiple of 20,000 (d4 = 20000× n | 0≤ n<∞).

[183]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Table 4:

Magnitude stack of some numbers
Number Magnitude stack
23 [20, 3]
167 [160, 7]
3,459 [3,000, 400, 50, 9]
19,669 [19,000, 600, 60, 9]
412,987 [400,000, 12,000, 900, 80, 7]
1,876,234 [1,860,000, 16,000, 200, 30, 4]

These new numbers can be derived using Algorithm 1. Any of
d4, d3, d2, d1, d0 that is equal to zero is removed from the magnitude
stack. The magnitude stacks of some numbers are presented in Table 4.
For example, the magnitude stack generated for number 1,876,234
was:

[d4, d3, d2, d1, d0] = [1,860,000, 16,000, 200, 30, 4]

In the next section, we discuss how the representations of single
numbers are generated.

3.2 Generating forms of a number
Once the magnitude stack has been computed, the next task is to
generate the possible forms of the number in Yorùbá. All the possi-
ble Yorùbá forms of a number are derived by some combinations of
neighbouring elements of the magnitude stack. The possible forms for
a number with magnitude stack of [d4, d3, d2, d1, d0] are listed in Ta-
ble 5. For example, the magnitude stack for 19,669 is [d3, d2, d1, d0] =
[19,000, 600, 60, 9], and the possible forms are shown in Table 6. All
possible forms are then stored in the form stack. However, not all num-
bers exhibit all these forms. The number of forms largely depends on
the values of d4, d3, d2, d1, and d0.
Thereafter, the elements of the form stack are expanded to a form

containing only the symbols representing the basic lexical items. The
expanded form stack for number 19,669 is presented in Table 7. In
these forms, ‘×’ represents multiplication, ‘−’ and ‘+’ represent sub-
traction and addition within a number phrase respectively; ‘−−’ and
‘++’ represent subtraction and addition between number phrases re-
spectively, as discussed in Section 3.3 b(ii). It should be noted that

[184]

Numbers to Yorùbá Text

Algorithm 1: Magnitude generator algorithm
Data: number: Input number
Result: magnitudeStack: The magnitude stack

1 procedure GenerateMagnitude(number)
2 d0, d1, d2, d3, d4 = 0;
3 divisor= 10;
4 magnitudeStack= [];
5 while number ̸= 0 do
6 remainder= number % divisor;
7 if remainder ̸= 0 then
8 magnitudeStack.push(remainder);
9 end if
10 number= number− remainder;
11 divisor= divisor× 10;
12 end
13 for mag in magnitudeStack do
14 if mag< 10 then
15 d0 = d0 +mag;
16 else if mag< 200 then
17 d1 = d1 +mag;
18 else if mag< 2000 then
19 d2 = d2 +mag;
20 else if mag< 20000 then
21 d3 = d3 +mag;
22 else
23 d4 = d4 +mag− (mag % 20000);
24 d3 = d3 + (mag % 20000);
25 end if
26 end
27 magnitudeStack= [d0, d1, d2, d3, d4];
28 return magnitudeStack.reverse();
29 end procedure

arithmetic is mostly done from right to left in the Yorùbá numeral
system, i.e., 2−20 implies 2 removed from 20, which gives 18. In the
same way, (10−(20×4)) implies 10 deducted from (20×4) to give 70.

[185]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Table 5:
Forms of

Yorùbá number

Derivation
1 [d4,d3,d2 + d1,d0]
2 [d4,d3,d2 + d1 + 20,d0 − 20]
3 [d4,d3,d2 + d1 − 20,d0 + 20]
4 [d4,d3,d2,d1 + d0]
5 [d4,d3,d2 + 100,d1 + d0 − 100]
6 [d4,d3 + 1000,d2 − 1000,d1 + d0]
7 [d4,d3 + 1000,d2 − 1000+ 100,d1 + d0 − 100]
8 [d4,d3 + 1000,d2 + d1 − 1000,d0]
9 [d4,d3 + d2,d1 + d0]
10 [d4,d3 + d2 + 100,d1 + d0 − 100]

Table 6:
Generation
of the forms

of 19,669. Item
d4 is discarded
because d4 = 0

Derivation Form Stack
1 [d3, d2 + d1, d0] [19,000, 660, 9]
2 [d3, d2 + d1 + 20, d0 − 20] [19,000, 680, −11]
3 [d3, d2 + d1− 20, d0 + 20] [19,000, 640, 29]
4 [d3, d2, d1 + d0] [19,000, 600, 69]
5 [d3, d2 + 100, d1 + d0 − 100] [19,000, 700, −31]
6 [d3 + 1000, d2 − 1000, d1 + d0] [20,000, −400, 69]
7 [d3 + 1000, d2 − 1000+ 100, d1 + d0 − 100] [20,000, −300, −31]
8 [d3 + 1000, d2 + d1− 1000, d0] [20,000, −340, 9]
9 [d3 + d2, d1 + d0] [19,600, 69]
10 [d3 + d2 + 100, d1 + d0 − 100] [19,700, −31]

3.3 Context-free grammar for Yorùbá numerals
We studied the structures of the five numeral groups discussed in Sec-
tion 2.3, from which some patterns became apparent. We started the
design of the CFG by identifying the set of terminal symbols which
are:
a) The set of lexemes listed in Section 2.1.

i) DIGIT = {ọ̀kan (1), èjì (2), ẹt̀a (3), ẹr̀in (4), àrún-ún (5), ẹf̀à
(6), èje (7), ẹj̀ọ (8), ẹs̀án-án (9), ẹẁá (10), ọgbọ̀n (30), ọ̀dún-
rún (300), irínwó (400), okòó (D20), òjì (D40), ọ̀tà (D60), ọ̀rìn
(D80)}, and

ii) The set of multiplicative bases i.e., M = {ogún (20), igba
(200), ọ̀kẹ́ (20,000)}

b) The sets of lexical affixes depicting arithmetic operations in Yorùbá
numerals. These three sets of operators are:

[186]

Numbers to Yorùbá Text

No Form Stack
1 [(1,000− (2,000× 10)) ++(D60+ (200× 3)) ++9]
2 [(1,000− (2,000× 10)) ++(D80+ (200× 3))−−(1+ 10)]
3 [(1,000− (2,000× 10)) ++(D40+ (200× 3)) ++(1− 30)]
4 [(1,000− (2,000× 10)) ++(200× 3) ++(1− (10− (20× 4)))]
5 [(1,000− (2,000× 10)) ++(100− (200× 4))−−(1+ 30)]
6 [20,000−−400++(1− (10− (20× 4)))]
7 [20,000−−300−−(1+ 30)]
8 [20,000−−(D40+ 300) ++9]
9 [(200× (2− (20× 5))) ++(1− (10− (20× 4)))]
10 [(100− (200× (1− (20× 5))))−−(1+ 30)]

Table 7:
Expanded forms
of number 19,669.
‘++’ and ‘−−’ are operation
formatives found between
phrases, while D40, D60,
and D80 are multiples of 20
as mentioned in Section 2.1

i) A set of operators that occur within a phrase. This includes
lé ní (+) for addition and dín ní (−) for subtraction. Multi-
plication within a phrase is implied, which means it is not
explicitly represented. Hence, V = {lé ní, dín ní}.

ii) A set of operators that occur between phrases. This includes
ó lé (++) for addition, ó dín (−−) for subtraction and ọ̀nà (×)
for multiplication. So we say VV = {ó lé, ó dín, ọ̀nà}.

iii) A set of implied subtraction operators represented by the pre-
fixes aadín (reduction by 10) and ẹẹdín (reduction by 5, 100,
and 1,000), i.e., REDUCE= {aadín, ẹẹdín}.

Thus the set of terminal symbols, T , is made up of all elements
in: DIGIT, M , V , VV, and REDUCE.
The start symbol is a numeral which is denoted by NUM. Since

a CFG is the union of simpler grammars (Sipser 2007), we started
by constructing rules for structures of numerals that could occur as a
number phrase.
A phrase could be formed as a single DIGIT (Ẹkúndayọ̀ 1977) or

from the multiplication of M and DIGIT. A phrase formed by multipli-
cation is denoted by MP (Hurford 2007), i.e.,

NP → DIGIT | MP (10)
MP → M | MP NP (11)

MP is formed by a single multiplicative base M, or recursively
by multiplying MP by a number phrase NP, e.g. ọgọ́ta is formed by
multiplying an MP (20 – formed by MP→ M) and an NP (3 – formed

[187]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Figure 6:

Parse tree of
ẹgbààsàn-án (18,000)

NUM

NP

MP
ẹgbààsàn-án (18,000)

MP
ẹgbàá (2,000)

MP

M

igba (200)

NP

DIGIT

ẹẁá (10)

NP

DIGIT

ẹs̀àn-án (9)

by NP→ DIGIT). Also, Rule (11) is recursive to handle multiple levels
of multiplication. For example, 18,000 (ẹgbààsán) is represented as
2,000 multiplied by 9, and 2,000 is subsequently represented as 200
multiplied by 10, as shown in the parse tree in Figure 6.
We then added a rule to make allowance for the ẹẹdín/aadín type

of subtraction. The phrase ẹẹdín/aadín can only occur as a prefix to a
number derived from a multiplication operation. When this is done,
the value deducted depends on the number to which it is prefixed
(discussed in Subsection 2.2). A further example is 50 (ààdọ́ta), which
is derived by deducting 10 from 60 (ọgọ́ta). Rule (12) captures this as
shown in the structure in Figure 7.

NP → REDUCE MP (12)
With the inclusion of this rule, it should be pointed out that it has

some obvious consequences. The rule overgenerates, that is, it allows
the use of ẹẹdín or aadín without respecting Table 2. We shall devise
means of filtering out ill-formed structures using the packing strategy.
The next stage refers to how the operators V (Verbs) are repre-

sented within a phrase. Within a phrase, the Yorùbás start number
presentation with the smaller number (Addend/Subtrahend) rather
than the larger number (Augend/Minuend). For instance, number 21

[188]

Numbers to Yorùbá Text

NUM

NP
ààdọ́ta (50)

REDUCE

aadín (10−)
MP

ọgọ́ta (60)

MP

M

ogún (20)

NP

DIGIT

ẹẹ̀t̀a (3)

Figure 7:
Parse tree of ààdọ́ta (50)

(twenty one) is represented as ọ̀kànelélógún (1+20) in Yorùbá. We then
considered ‘1 +’ as a verb phrase (VP), which is made up of a DIGIT
and a V as presented in Rule (13):

VP → DIGIT V (13)
A VP can then be combined with an NP to make up an NP, i.e.:

NP → VP NP (14)
Also, the order in Rule (11) can be reversed to capture the struc-

ture of numbers like 600,000 (ọgbọ̀n ọ̀kẹ)́, which is represented as 30
times 20,000. The multiplicative base is now positioned at the end of
the rule, and can only take ọ̀kẹ́ (20,000) as a value. The outcome of
this new rule is a phrase (NP), since it cannot be used as a multipli-
cand (MP) to derive higher numerals. For example, 1,200,000 cannot
be represented as ọgbọ̀n ọ̀kẹ́ ọ̀nạ̀ mẹẃàá ((30 × 20,000) × 10), but as
ọ̀dúnrún ọ̀kẹ́ (300× 20,000). So we added Rule (15). The structure of
number 600,000 is shown in Figure 8.

NP → NP M (15)
Next, we created rules to connect these phrases together to form

a number. So, a number could be formed from a phrase, i.e.:

NUM → NP (16)

[189]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Figure 8:

Parse tree of
ọgbọ̀n ọ̀kẹ́ (600,000)

NUM

NP
ọgbọ̀n ọ̀kẹ́ (600,000)

NP

DIGIT

ọgbọ́n (30)

M

ọ̀kẹ́ (20,000)

Also, a number could be formed by combining an existing number
with a phrase using the lexical operatives in the set VV. We added two
rules to capture this as follows:

NUM → NUM S (17)
S → VV NP (18)

Althoughmultiplication plays an important role in Yorùbá numer-
als, its lexical representation, ọ̀nà does not occur in number names ex-
cept when more than one 20,000 (ọ̀kẹ)́ occur within a number phrase.
For example, 400,000,000 is represented as 20,000× 20,000, i.e., ọ̀kẹ́
ọ̀nà ọ̀kẹ́ kan, and the structure is also captured using Rule (18) as
shown in Figure 9.
Finally, all these rules were merged to make up the production

rules of the Yorùbá numeral grammar, as presented in Definition 3.
Definition 3 (Production rules of the Yorùbá numeral grammar)
The production rules for the Yorùbá numeral system are as follows:

NUM → NP | NUM S (19)
S → VV NP (20)

NP → DIGIT | MP | VP NP (21)
NP → REDUCE MP | NP M (22)
MP → M | MP NP (23)
VP → DIGIT V (24)

These phrase structure rules include the verbs which are operating for-
matives (V and VV) proposed by (Ẹkúndayọ̀ 1977). These rules pro-

[190]

Numbers to Yorùbá Text

NUM

NUM

NP

MP

M

ọ̀kẹ́ (20,000)

S

VV

ọ̀nà (×)
NP

MP
ọ̀kẹ́ kan (20,000)

MP

M

ọ̀kẹ́ (20,000)

NP

DIGIT

ọ̀kan (1)

Figure 9:
Parse tree of
ọ̀kẹ́ ọ̀nà ọ̀kẹ́ kan
(400,000,000)

duce a single and correct structure for most Yorùbá numerals, how-
ever, the rules overgenerate with some numerals. For example, the
number 1,000,000 produces 3 structures as presented in Figure 10,
but the valid structure is determined using a single packing strategy
defined in Definition 4.
Definition 4 (Packing strategy for the Yorùbá numeral system)
The following metarules govern well-formed Yorùbá numeral structures:
(i) Whenever a phrase MP is formed by a multiplicative combination
of two numerals, the multiplicand (MP) must be greater than the
multiplier (NP).

(ii) Whenever the rule NP → REDUCE MP is used, the lexical item
of REDUCE must correspond to the appropriate MP, as shown in
Table 2.

(iii) Whenever the rule S → VV NP is used and the VV has the value
of ọ̀nà, then NP can only take a value of ọ̀kẹ,́ and the resulting S
must be used with a multiple of ọ̀kẹ.́ (see Figure 9).

Using the packing strategy for Yorùbá numerals, the well-formed-
ness of the structures in Figure 10 was investigated and only the struc-
ture in (c) was well-formed. The analysis is as follows:

[191]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

(i) In the structure in Figure 10(b), the formation ofMP from ogún
(20) disagrees with metarule (i), thereby making the structure
in Figure 10(b) ill-formed.

(ii) The structure in Figure 10(a) is not well-formed as REDUCE
(aadín (10−)) is applied to a multiple of ọ̀kẹ́ (20,000), which

a) NUM

NP

REDUCE

aadín (10−)
MP

ọgọ́ta ọ̀kẹ́ (1,200,000)

MP
ọgọ́ta (60)

MP

M

ogún (20)

NP

DIGIT

ẹt̀a (3)

NP

MP

M

ọ̀kẹ́ (20,000)

b) NUM

NP

REDUCE

aadín (10−)
MP

MP

M

ogún (20)

NP

NP

DIGIT

ẹt̀a (3)

M

ọ̀kẹ́ (20,000)

c) NUM

NP
ààdọ́ta ọ̀kẹ́ (1,000,000)

NP
ààdọ́ta (50)

REDUCE

aadín (10−)
MP

ọgọ́ta (60)

MP

M

ogún (20)

NP

DIGIT

ẹt̀a (3)

M

ọ̀kẹ́ (20,000)

Figure 10: Parse trees of ààdọ́ta ọ̀kẹ́ (1,000,000)

[192]

Numbers to Yorùbá Text

disagrees with metarule (ii). Hence, only the structure in Fig-
ure 10(c) is well-formed.

Once a parse tree is generated, we then convert the tokens to their
lexical equivalences followed by the application of morphophonolog-
ical rules.

3.4 Morphophonological rules
in Yorùbá numeral system

The representation of numbers in Yorùbá is cumbersome due to the
fact that a high level of linguistic processing is involved. Therefore,
the speakers are required to have adequate knowledge of some mor-
phophonological rules in the Yorùbá language. These morphophono-
logical rules include deletion, vowel coalescence, vowel harmony, and
vowel assimilation. These rules will be discussed to show how they are
useful in number naming.
3.4.1 Deletion
Deletion is a process by which a phrase or word is shortened by com-
pletely deleting a segment. Both vowels and consonants can be deleted
in Yorùbá. The most commonly deleted consonants are w (when it is
part of the last syllable) and g. Deletion is notable in the contracted
form of phrases dín ní (less than) and lé ní (more than), where i is
completely deleted and n is converted to l. This conversion is possible
because n and l are allophones of the same phoneme. For example, the
expression for 28, which is derived as 2 from 30 (èjì dín ní ọgbọ̀n), is
èjìdínlọ́gbọ̀n.
A deletion also occurs in naming numbers between 11 and 14.

For example, ókànlá (11) is formed by adding 1 to 10, i.e., òkan lé
ẹẁá, which is contracted to form òkanlẹẃá by deleting the vowel é.
The consonant w and vowel ẹ are then deleted to form òkànlá. An-
other example is ẹẹ̀d̀ẹǵbẹt̀a, which is formed from ẹẹdín ẹgbẹt̀a. This is
achieved by completely deleting the vowel ín.
3.4.2 Vowel coalescence
Coalescence is a phonological process whereby two adjoining seg-
ments converge or fuse into one element such that the new segment is

[193]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

phonologically distinct from the input segments (Bámiṣilẹ̀ 1994). This
is illustrated by Equation 25, where V1 is the vowel that ends the first
morpheme, V2 is the vowel that begins the second morpheme, ‘+’ is
the morpheme boundary, and V3 is the resulting morpheme.

V1 + V2→ V3 (25)
In coalescence, the combining vowels may be phonologically distinct
from each other but the resulting vowel must be distinct from the
combining vowels, i.e., V1 ̸= V3 and V2 ̸= V3 (Awóbùlúyì 1987).
Vowel coalescence is most notable when two nouns are next to

each other. And since Yorùbá numerals are mostly treated as nomi-
nal entities, they also use vowel coalescence in naming numbers. For
example, vowel coalescence is used in the formation of ogójì (40) de-
rived from 20 multiplied by 2, i.e., ogún èjì. The vowels ún and e are
combined by coalescence to become o. Table 8 shows the possible oc-
currence of vowel coalescence in the Yorùbá numeral system.

Table 8:
Vowel coalescence in Yorùbá

numerals. V1 is the vowel that ends
the first morpheme, V2 is the vowel
that begins the second morpheme,
+ is the morpheme boundary, and

→ stands for ‘rewritten as’

V1 V2 V3 Example
ún à ọ́ ogún + àrùn-ún → ọgọ́rùn-ún
ún è ọ́ ogún + èjì → ọgọ́jì
ún ẹ̀ ọ ogún + ẹt̀a → ọgọ́ta
í i ú èjì dín ní + igba → èjìdínlúgba

3.4.3 Vowel harmony
Standard Yorùbá has 7 oral vowels, which are: a, e, ẹ, i, o, ọ, u. Vowel
harmony places a constraint on the occurrence of vowel sequence in
words. Archangeli and Pulleyblank (1989) discussed the two classes
of Standard Yorùbá oral vowels which are:
i) Advanced Tongue Root (ATR), which are vowels i, e, o, and u,
ii) Non-ATR, which are vowels a, ẹ, and ọ
ATR vowels involve drawing forward the root of the tongue so

that the pharynx is expanded. In simple Yorùbá words, the last vowel
in the word determines the other vowels in the word (Akinlabí 2004).
So, if the last vowel in a word is an ATR, the immediately preceding
vowel must be an ATR. The high vowels (i and u) do not participate

[194]

Numbers to Yorùbá Text

in the vowel harmony at all, and they can occur with any vowel. Only
the mid vowels (e, o, ẹ, and ọ) are fully involved in the vowel harmony
(Akinlabí 2004). The chart presented in Table 9 shows the permissible
and non-permissible sequences of vowels in the Yorùbá language.

V1

V2

i e ẹ a ọ o u
i + + + + + + +
e + + ; ; ; + +
ẹ + ; + + + ; +
a + + + + + + +
ọ + ; + + + ; +
o + + ; ; ; + +
u* + + + + + + +

(Adapted from Archangeli and Pulleyblank (1989))
∗The letter u cannot start a word in the Standard Yorùbá
language.

Table 9:
Sequence of vowels in Yorùbá
bisyllabic words. The symbols +
and ; indicate the permissible and
non-permissible vowel sequence,
respectively. V2 is the second oral
vowel in the word and V1 indicates
the vowel that may precede V2

These rules also apply to number naming in Yorùbá as illustrated
with the following example: The number ọgọ́ta (120) is derived as
20 (ogún) multiplied by 3 (ẹt̀a), i.e., ogún ẹt̀a. The vowels ún and ẹ̀ are
then changed to vowel ọ́ to form ogọ́ta by means of vowel coalescence.
Since the last vowel in the last two syllables is a, which is a non-ATR,
therefore, the immediately preceding vowels must be non-ATR. We
will then proceed to check for harmony between the first two sylla-
bles. The second vowel ọ́ is non-ATR, therefore, the first vowel o must
also be a non-ATR. This will transform o to ọ by means of the vowel
harmony.
3.4.4 Vowel assimilation
Vowel assimilation is a process whereby a vowel becomes completely
or partially like another vowel (Akinlabí 2004). Vowel assimilation
is most notable in Yorùbá numerals when a consonant separating 2
vowels is deleted. This can be illustrated by number 2,000 (ẹgbàá).
The number 2,000 is actually formed from 200 × 10, i.e., igba ẹẁá,
which will produce ẹgbẹẁá by vowel deletion. ẹgbàá is then formed by
deleting the consonant w and allowing the vowel ẹ to assimilate the
form of vowel a.

[195]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

Figure 11: UML class diagram

Vowel assimilation can also occur between vowels separated by
a consonant as in the expression for 800 (ẹgbẹr̀in). This expression is
derived as 200 (igba) multiplied by 4 (ẹr̀in), i.e., igba ẹr̀in. igbẹr̀in is then
formed by deleting a. The vowel i then assimilates ẹ to form ẹgbẹr̀in.
3.5 System and implementation
An object oriented programming (OOP) approach with 7 classes was
used during the system design. The UML class diagram and the se-
quence diagram for the software are as shown in Figure 11 and Fig-
ure 12 respectively.
The software implementation was done using Python and Java.

The software was implemented following the specifications in the sys-
tem design. The following software pieces were developed to demon-
strate the conversion of numbers to Standard Yorùbá text:

[196]

Numbers to Yorùbá Text

Figure 12: UML sequence diagram

a) Desktop application: The desktop application was implemented
using PyQt in the Python programming language environment.
The combination of Python and Qt makes possible the devel-
opment of applications that are platform-independent (Summer-
field 2008). NLTK (Loper and Bird 2002) was used to implement
the grammar designed for the Yorùbá numeral system. It was
also used to generate the parse trees of the number forms. The
screenshot is as shown in Figure 13 and the software is available
for download at http://www.ifecisrg.org/yorubanumerals.

b) Web application: The web application was implemented using
the Google App Engine Python API. The screenshot is as shown in

[197]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

Figure 14. The application is available at http://www.num2yor.
appspot.com

c) Mobile application on Android OS: Themobile application was
ported to Android using Java and the Android Application Devel-
opment Toolkit (ADT). The screenshot is as shown in Figure 15.
The desktop application has a single document interface with

toolbars for all tasks on top, a menu bar duplicating toolbar tasks, and
a dockable history and analysis widgets. The analysis widget shows
the computational details of a numeral structure. The Onka software
has the following features:
a) The history can be saved for future usage.
b) Users can copy the output text to the computer’s clipboard and
paste it into an editing program or word processor.

c) The output of the software can be printed or saved in Unicode text
format.

d) LATEX users can copy or save the output in the LATEX format. Also,
the parse trees generated can be copied in the qtree (Siskind and
Dimitriadis 2008) bracketed syntax for inclusion in TEX documents.

4 discussion

The software produces the correct lexical transcription for numbers
in the Yorùbá language. In the following subsections, analysis will
be carried out on the structure, computation, and forms of certain
numbers. The numbers that will be considered are 240, 969, 19,669,
and 40,000,000.
4.1 The number 240
The software processing of 240 produced two different forms, which
are:
a. òjìlélígba: This number is computed by the addition of digit 40 to
200, i.e., [D40 + 200]. This representation uses only one addi-
tion operation. The parse tree of this representation is shown in
Figure 16. This representation contains three terminal symbols,
and the depth of the parse tree is 6.

[198]

Numbers to Yorùbá Text

Figure 13:
Screenshot of Òǹkà
desktop application

Figure 14:
Screenshot of Òǹkà web
application hosted on
Google App engine

Figure 15:
Screenshot of Òǹkà
Android application

[199]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Figure 16:

Parse tree of òjìlélígba
(240 = 40 added to 200)

– representation 1

NUM

NP
òjìlélígba(240)

VP
òjìléní (D40+)

DIGIT

òjì (D40)

V

lé ní (+)

NP

MP

M

igba (200)

Figure 17:
Parse tree of igba ó lé ogójì

(240 = 200 increased by 40)
– representation 2

NUM
igba ó lé ogójì (240)

NUM

NP

MP

M

igba (200)

S
ó lé ogójì (++40)

VV

ó lé (++)

NP

MP
ogójì (40)

MP

M

ogún (20)

NP

DIGIT

èjì (2)

b. igba ó lé ogójì: This representation is presented as a phrase con-
taining two number phrases. The parse tree of this representation
is shown in Figure 17. This representation contains four terminal
symbols, and the depth of the parse tree is 7.

[200]

Numbers to Yorùbá Text

NUM

NUM

NP
òjìdínlẹǵbẹr̀ún (960)

VP
òjìdínní (D40−)

DIGIT

òjì (D40)

V

dín ní (−)

NP

MP
ẹgbẹr̀ún (1,000)

MP

M

igba (200)

NP

DIGIT

àrùn-ún (5)

S
ó lé mẹśàn-án (++9)

VV

ó lé (++)

NP

DIGIT

ẹs̀àn-án (9)

Figure 18:
Parse tree for
òjìdínlẹgbẹr̀ún ó lé
mẹśán (969)

4.2 The number 969
The software gives 5 representations for number 969 as shown in Ta-
ble 10. All these representations are valid and none has preference
over others. The choice of a representation depends on the mental
dexterity of the speaker. The parse tree for the first representation is
shown in Figure 18.

Table 10: Representations of number 969

No Representation Derivation
1 òjìdínlẹǵbẹr̀ún ó lé mẹśàn-án ((200× 5)− 40) + 9
2 ọ̀tàdínlẹǵbẹr̀ún ó lé mókandínlọgbọ̀n ((200× 5)− 60) + (−1+ 30)
3 okòódínlẹgbẹr̀ún ó dín mókanlàá ((200× 5)− 20)− 11
4 ẹẹ̀d̀ẹǵbẹr̀ún ó lé mókandínlààdọ́rin ((200× 5)− 100) + (((20× 4)− 10)− 1)
5 ẹgbẹr̀ún ó dín mókanlélọgbọ̀n (200× 5)− (1+ 30)

[201]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí
Figure 19:

Parse tree of ẹgbàá ọ̀kẹ́ (40,000,000)
NUM

NP

MP
ẹgbàá ọ̀kẹ́ (40,000,000)

NP

MP
ẹgbàá (2,000)

MP

M

igba (200)

NP

DIGIT

ẹẁá (10)

M

ọ̀kẹ́ (20,000)

4.3 The number 19,669
The output of the software for number 19,669 is shown in Figure 14.
Representations 1 to 7 were presented by Ẹkúndayọ̀ (1977) and the
developed software produced three more representations (8–10) that
are structurally valid.
4.4 The number 40,000,000
The software gave one representation for 40,000,000 (ẹgbàá ọ̀kẹ)́,
which is derived as a multiple of 20,000 (i.e., 2,000× 20,000). Next,
2,000 was derived as 200 in 10 places, i.e., 200×10. The parse tree is
shown in Figure 19.

5 system evaluation

In order to determine the accuracy of the system, we analysed and
evaluated the output generated using the qualitative evaluation meth-
od. However, in these circumstances, it becomes expedient to rank the
output of the software when multiple representations are produced.
The aim is to order the representations according to the economy of
computation.

[202]

Numbers to Yorùbá Text

5.1 Number name ranking
Although all representations produced are valid, we proposed some
heuristic measures for ranking the representations when there aremul-
tiple correct expressions for a number. Once the parse tree had been
generated for each representation, we computed the values to deter-
mine the computational economy of the numeral structure in the fol-
lowing order:
i) The total number of terminal nodes (t): This represents the
number of basic lexical items that make up a Yorùbá numeral.
The fewer the number of terminal nodes, the more economical
the numeral structure is.

ii) The height of the parse tree (h): The height of the generated
parse tree was determined by using the height() function of the
package nltk.tree. The parse tree with the least height is thus
considered the most suitable representation for a number.

iii) The relative number of subtractions (r): The most natural
operations in most numeral systems are addition and multipli-
cation, yet, the Yorùbá numeral system places a higher func-
tional load on subtraction.
The value of r is calculated by dividing the number of subtrac-
tion operations by the total number of arithmetic operations
as shown in Equation 26. The two possible types of subtrac-
tion are the normal subtraction operation and the ẹẹdín type of
subtraction.

r =
Number of subtraction operations

Total number of arithmetic operations
(26)

This means that a lower r implies a higher economy.
Once the first measure has been calculated and some structures

have the same cost, the second measure, which checks the height of
the parse tree in each structure, is used. But, if there is still a tie in
values among any of the structures, the last measure (i.e., the relative
number of subtraction) is used to determine the most suitable rep-
resentation for a number. To illustrate this, we used these measures
to decide which of the two representations for the number 240 dis-
cussed in Section 4.1 is more computationally economical. We started

[203]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

by picking the representation with the minimum number of terminals.
The parse tree in Figure 16 has three terminal symbols compared to
four in Figure 17. Thus, the structure in Figure 16 is more computa-
tionally economical.
Also, the analysis of the ten representations for the number

19,669 is presented in Table 11. This shows the number of terminal
symbols, the depth of the parse tree, and the arithmetic complexity.
The computational cost was calculated based on these criteria, and
it was used to rank the representations. The representations with the
lowest number of terminal symbols and least height are represen-
tations 2 and 8 (with 8 terminal symbols and height of 8), however,
representation 2 has the lesser relative number of subtractions. Hence,
representation 2 (Figure 20) is the most computationally economical.
Table 12 presents the most economical representations of selected
numbers derived from the software.
Table 11: Representations for the number 19,669 and their ranks. t is the number
of terminal symbols, h is the height of the parse tree as generated by the software,
and r is the relative number of subtraction operations in the representation

No Rank Yorùbá Text t h r
2 1 ọkẹ ó dín ojìlélọdúnrún ó lé mẹsán-án 8 8 0.250
8 2 ọkẹ ó dín ọdúnrún ó dín mọkanlélọgbọn 8 8 0.500
7 3 ọkẹ ó dín irínwó ó lé mọkandínlaadọrin 10 8 0.500
10 4 ẹẹdẹǵbọkandínlọgọrún ó dín mọkanlélọgbọn 10 10 0.500
1 5 ẹẹdẹgbààwá ó lé ọtalélẹgbẹta ó lé mẹsán 11 9 0.143
9 6 ẹgbèjìdínlọgọrún ó lé mọkandínlaadọrin 11 10 0.429
6 7 ẹẹdẹgbààwá ó lé ẹẹdẹgbẹrin ó dín mọkanlélọgbọn 12 9 0.375
3 8 ẹẹdẹgbààwá ó lé ójìlélẹgbẹta ó lé mọkandínlọgbọn 13 9 0.250
4 9 ẹẹdẹgbààwá ó lé ọrinélẹgbẹta dín mọkanlàá 13 9 0.250
5 10 ẹẹdẹgbààwá ó lé ẹgbẹta ó lé mọkandínlaadọrin 13 9 0.333

5.2 Qualitative evaluation
The Mean Opinion Score (MOS) was used for the qualitative evalua-
tion of the system. Chosen members of the staff of Ọbáfẹḿi Awólọ́wọ̀
University, who are Yorùbá native speakers with adequate knowl-
edge of the Yorùbá language and its orthography, were asked to
provide the textual equivalences of some numbers in Yorùbá. After-
wards, their responses were compared to the output from the software.

[204]

Numbers to Yorùbá Text

NUM
ọ̀kẹ́ kan ó dín òjìlélọ̀dúnrún ó lé mẹśàn-án (19,669)

NUM
ọ̀kẹ́ kan ó dín òjìlélọ̀dúnrún (19,660)

NUM

NP

MP
ọ̀kẹ́ kan (20,000)

MP

M

ọ̀kẹ́ (20,000)

NP

DIGIT

ọ̀kan (1)

S
ó dín òjìlélọ̀dúnrún (−−340)

VV

ó dín (−−)
NP

òjìlélọ̀dúnrún (340)

VP
òjìléni (D40+)

DIGIT

òjì (D40)

V

léní (+)

NP

DIGIT

ọ̀dúnrún (300)

S
ó lé mẹśàn-án (++9)

VV

ó lé (++)

NP

DIGIT

ẹśàn-án (9)

Figure 20: Parse tree for ọ̀kẹ́ kan ó dín òjìlélọ̀dúnrún ó lé mẹśàn-án (19,669)

Table 12: Software output for some numbers

Number Yorùbá Text
182 ọgọ́sán ó lé méjì
187 ọgọ́sán ó lé méje
365 irinwó ó dín márùndínlógójí
595 ẹgbẹt̀a ó dín márùn-ún
666 ọ̀tàlélẹgbẹt̀a ó lé mẹfà
760 òjìdínlẹǵbẹr̀in
777 ẹẹ̀d̀ẹǵbẹr̀in ó lé mẹt́àdínlọ́gọ́rin
815 ẹgbẹr̀in ó lé márùndínlógún
840 òjìlélẹǵbẹr̀in
905 ẹẹ̀d̀ẹǵbẹr̀ún ó lé márùn-ún
1,247 òjìlélẹǵbẹf̀à ó lé méje
600,000 ọgbọ̀n ọ̀kẹ́

[205]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

A questionnaire was designed and administered to the selected group
of 32 respondents. The numbers in the questionnaire were 25, 67,
132, 750, 969, 2,400, 3,000, 19,669, 20,000, 30,000, 1,000,000, and
400,000,000. The MOS evaluation was carried out to capture two im-
portant aspects of the Yorùbá numeral system. The first one was the
ability of the respondents to give an accurate representation of the
numbers in terms of value and orthography, and the second one was
to obtain the most suitable representation for the numbers as provided
by the respondents.
The numbers used in the questionnaires were chosen based on the

following criteria:
i) Numbers 25, 67, and 132 were included to confirm that num-
bers between 1 and 200 have one standard lexical form.

ii) Numbers 750, 969, 2,400, and 19,669 were included to check
whether the respondents are aware that there are multiple rep-
resentations for these Yorùbá numerals.

iii) The number 20,000 was included to check whether the respon-
dents find 20,000 as a single lexical item or think it is derived
from the number 200.

iv) Numbers higher than 20,000 (30,000, 1,000,000, 400,000,000)
were included to see if the respondents represent these num-
bers as multiples of 20,000 or in some other way.

v) Some structurally complex numbers (969 and 19,669) were
added to see the most convenient combination of basic lexi-
cal numerals used by the respondents to derive these numbers.

The results of the analysis revealed that:
• For numbers 25, 67, and 132, all the respondents gave one cor-
rect representation, which matched up with the output from the
software. This shows that numbers below 200 have one standard
lexical form and that the skills needed to name these numbers are
well understood.
• Ten respondents gave a representation for 19,669 but only two
of them gave a correct number name (ẹẹdẹgbààwá ó lé ọtalélẹgbẹta
ó lé mẹsán and ẹẹdẹgbààwá ó lé ẹgbẹta ó lé mọkandínlaadọrin). The
other eight respondents provided number names that do not in
any way evaluate to the number 19,669. Twenty two (22) of the

[206]

Numbers to Yorùbá Text

respondents did not give any representation for number 19,669.
This shows that few respondents understand that 19,669 needs
to be reconstructed and only two respondents were able to carry
out the required computations. This result also shows that none
of the respondents realised that multiple representations exist for
the number 19,669.
• Seven of the respondents gave the correct number names for
20,000, with only two respondents using ọ̀kẹ,́ and the remaining
five using ẹgbààwá. This shows that few respondents were able to
represent 20,000 in Yorùbá.
• Only three respondents gave the correct names for 1,000,000
(ààdọ́ta ọ̀kẹ)́, and none of the respondents gave the correct repre-
sentation for 400,000,000 (ọ̀kẹ́ ọ̀nà ọ̀kẹ)́. This shows thatYorùbá
native speakers may find the computations underlying naming
large numbers cumbersome.

From these results, we conclude that the respondents were able to
produce correct representations for numbers that are frequently used
(number 1 to 200), although most of them were not able to produce
names for higher numbers. After comparing the responses of the hu-
man evaluators with the system output, we recognise that the software
out-performed the human evaluators. This affirms that most native-
speakers know the terminologies needed for large numbers but are
not familiar with the expression skills required for computing their
number names. Without a doubt, modern Yorùbá speakers are losing
the numeral generation skills embedded in their language. An obvious
reason for this is the overwhelming use of the English numerals within
the Yorùbá community.

6 conclusion

In this paper, we discussed extensively the computational analysis of
the Yorùbá numerals. We started by identifying the basic lexical nu-
merals and the numeral groups. Then, we designed a CFG that was
able to capture the structure of the Yorùbá numerals. Furthermore,
we implemented a software for converting numbers to their textual
equivalences in the Yorùbá language and generating their correspond-
ing parse trees.

[207]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

In this study, we are able to show that:
1. The Yorùbá number system has a systematic concept underlying it
and that this concept can be articulated using modern computing
tools and techniques.

2. The Yorùbá numeral system is not fully vigesimal. Elements of
decimal (base 10) and quinary (base 5) are used in numeral rep-
resentation.

3. The system’s recall is 100% with respect to the corpus used in this
study. This implies that, with carefully constructed computational
model, the generation of the Yorùbá numeral system can be fully
automated.

4. All the forms of number names produced were valid and the most
computationally suitable representation are those in which : (a)
the least number of terminal nodes is used, (b) the least height
of the parse tree is generated, and (c) the least relative number
of subtraction operations is involved. Though these measures are
computationally reasonable, an interesting study will be to ver-
ify why Yorùbá native speakers sometimes prefer to adopt more
complex methods, particularly when generating numerals greater
that 200.
The results of this study can be applied in Yorùbá TTS. In any

TTS system, numbers must be expanded into their textual forms be-
fore the actual speech synthesis is carried out. Thus, the system de-
veloped can serve as a sub-system of a Yorùbá TTS to handle the ex-
pansion of numbers to their textual equivalences. However, additional
heuristic strategies must be employed by the TTS listeners to under-
stand the number being spoken. Without a doubt, an increased usage
of the Yorùbá numerals in communication could reduce the mental
task needed for number conception.
The software developed in this study has a place in effective teach-

ing and learning of the Yorùbá language. The software can be used in
classes to teach the Yorùbá numeral system and its structure. This will
allow the students to see the various forms possible for a single num-
ber and to visualise the structure (parse tree) of the numerals.
There are certain areas related to this study which we cannot ex-

plore. By pointing out these areas, we hope to focus our future study on

[208]

Numbers to Yorùbá Text

them. There is a need to carry out the contextual analysis of the Yorùbá
numeral systems which will establish the relationships between nu-
merals and their surrounding words. This will ensure that the expan-
sion of numbers is carried out based on the context (cardinal, ordinal,
nominal, currency, percentage, ratio, date, time, etc.) they represent.
Also, there is a need to carry out a study on how the textual forms of
the Yorùbá numerals could be recognised and converted to numbers.
Definitely, the results of these studies could be applied in Yorùbá MT
and information retrieval.

acknowledgement

This work is supported by TETFUNDGrant TETF/DESS/NRF/OAU/STI
/VOL.1/B1.13.9. We would like to thank the editor and anonymous
reviewers for their useful comments and suggestions to enhance the
quality of the paper. We also acknowledge the support of the African
Languages Technology Initiative (Alt-i).

references
Wándé Abímbọ́lá (1977), Ifa Divinity Poetry, Traditional African Literature,
Nok Pub Intl, New York.
Roy Clive Abraham (1958), Dictionary of Modern Yorùbá, University of London
Press, London.
Akinbiyi Akinlabí (2004), Understanding Yorùbá Life and Culture, chapter The
Sound System of Yorùbá, pp. 453–468, Africa World Press, Trenton, NJ 08607.
Diana Archangeli and Douglas Pulleyblank (1989), Yorùbá Vowel
Harmony, Linguistic Inquiry, 20(2):173–218.
Ọládélé Awóbùlúyì (1987), Towards a Typology of Coalescence, Journal of
West African Languages, 17(2):5–22.
David Bailey and Jonathan Borwein (2011), The Greatest Mathematical
Discovery, manuscript: Available online:
http://escholarship.org/uc/item/0sp6t6h5.
Rẹm̀í Bámiṣilẹ̀ (1994), Justification for the Survival of Vowel Coalescence as a
Phonological Process in Yorùbá, African Languages and Cultures, 7(2):133–142.
Levi Leonard Conant (1896), The Number Concept: Its Origin and Development,
MacMillan, New York.

[209]

Olúgbénga O. Akinadé, Ọdẹt́únjí A. Ọdẹj́ọbí

Samuel Ẹkúndayọ̀ (1977), Vigesimal Numeral Derivational Morphology:
Yorùbá Grammatical Competence Epitomized, Anthropological Linguistics,
19(9):436–453, http://www.jstor.org/stable/30027551.
Didier Goyvaerts (1980), Counting in Logo, Anthropological Linguistics,
22(8):pp. 317–328, ISSN 00035483,
http://www.jstor.org/stable/30027492.
James Hurford (1975), The Linguistic Theory of Numerals, Cambridge
University Press, Cambridge, ISBN 9780521133685.
James Hurford (2001), Numeral Systems, in International Encyclopedia of the
Social & Behavioral Sciences, pp. 10756–10761, Elsevier Science Ltd.
James Hurford (2007), A Performed Practice Explains a Linguistic Universal:
Counting Gives the Packing Strategy, Lingua, 117(5):773–783,
doi:10.1016/j.lingua.2006.03.002, http://www.isrl.uiuc.edu/~amag/
langev/paper/hurford06packingStrategy.html.
Samuel Johnson (1921), The History of the Yorùbás: From the Earliest Times to
the Beginning of the British Protectorate, Routledge and Kegan Paul, London,
reprinted 1966.
Edward Loper and Steven Bird (2002), NLTK: The Natural Language Toolkit,
in Proceedings of the ACL02 Workshop on Effective tools and methodologies for
teaching natural language processing and computational linguistics, volume 1, p. 8,
http://arxiv.org/abs/cs/0205028.
Paul Lovejoy and David Trotman (2003), Trans-Atlantic Dimensions of
Ethnicity in the African Diaspora, Continuum: New York.
Adolphus Mann (1887), Notes on the Numeral System of the Yorùbá Nation,
The Journal of the Anthropological Institute of Great Britain and Ireland, 16:59–64,
available online: http://www.jstor.org/stable/2841738.
Karl Menninger (1969), Number Words and Number Symbols: A Cultural History
of Numbers, MIT Press, Cambridge, translated by Paul Broneer for the revised
German edition.
Ọdẹt́únjí Àjàdí Ọdẹ́jọbí (2003), Towards a Formal Specification of Some
Computational Concepts in Yorùbá Thoughts, ODU: Ifẹ̀ Journal of the Institute of
Cultural Studies, 8:87–110.
Kọ́lá Owólabí (2006), Yorùbá, Encyclopedia of Language & Linguistics (Second
Edition), pp. 735–738.
Thijs Pollmann and Carel Jansen (1996), The Language User as an
Arithmetician, Cognition, 59:219–237.
Geoffrey Saxe (1981), Body Parts as Numerals: A Developmental Analysis of
Numeration among the Oksapmin in Papua New Guinea, Child Development,
51(1):306–316, Blackwell Publishing on behalf of the Society for Research in
Child Development.

[210]

Numbers to Yorùbá Text

Michael Sipser (2007), Introduction to the Theory of Computation, Thomas
Course Technology, India, 2nd edition, ISBN 81-315-0162-0.
Jeffrey Mark Siskind and Alexis Dimitriadis (2008), Qtree, a LATEX
Tree-drawing Package, Available online:
http://www.ling.upenn.edu/advice/latex/qtree/ (Accessed 19
September 2011).
Richard Sproat (1996), Multilingual Text Analysis for Text-to-Speech
Synthesis, in W. Wahlster, editor, 12th European Conference on Artificial
Intelligence, pp. 75–80, John Wiley & Sons, Ltd.
Mark Summerfield (2008), Rapid GUI Programming with Python and Qt,
Prentice Hall, New Jersey, 1st edition.
Helen Verran (2001), Science and an African Logic, University of Chicago
Press, Chicago.
Claudia Zaslavsky (1973), Africa Counts: Number and Pattern in African
Cultures, Lawrence Hill Books, 3rd edition.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[211]

