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We compare three different approaches to parsing into syntactic, bi-
lexical dependencies for English: a ‘direct’ data-driven dependency
parser, a statistical phrase structure parser, and a hybrid, ‘deep’
grammar-driven parser. The analyses from the latter two are post-
converted to bi-lexical dependencies. Through this ‘reduction’ of all
three approaches to syntactic dependency parsers, we determine em-
pirically what performance can be obtained for a common set of de-
pendency types for English; in- and out-of-domain experimentation
ranges over diverse text types. In doing so, we observe what trade-offs
apply along three dimensions: accuracy, efficiency, and resilience to
domain variation. Our results suggest that the hand-built grammar in
one of our parsers helps in both accuracy and cross-domain parsing
performance. When evaluated extrinsically in two downstream tasks
– negation resolution and semantic dependency parsing – these ac-
curacy gains do sometimes but not always translate into improved
end-to-end performance.

Journal of Language Modelling Vol 4, No 1 (2016), pp. 113–144



Angelina Ivanova et al.

1 motivation
Bi-lexical dependencies, i.e. binary head–argument relations holding
exclusively between lexical units, are widely considered an attractive
target representation for syntactic analysis. At the same time, Cer et al.
(2010) and Foster et al. (2011), inter alios, have demonstrated that
higher dependency accuracies can sometimes be obtained by parsing
into a phrase structure representation first, and then reducing parse
trees into bi-lexical dependencies.1 Thus, if one is willing to accept
pure syntactic dependencies as a viable interface (and evaluation) rep-
resentation, an experimental setup like the one of Cer et al. (2010)
allows the exact experimental comparison of quite different parsing
approaches.2 Existing such studies to date have predominantly fo-
cused on purely data-driven (or statistical) parsers, i.e. systems where
linguistic knowledge is exclusively acquired through supervised ma-
chine learning from annotated training data. For English, the vener-
able Wall Street Journal (WSJ) portion of the Penn Treebank (PTB;
Marcus et al. 1993) has been the most common source of training data
for phrase structure and dependency parsers.

Two recent developments make it possible to broaden the range of
parsing approaches that can be assessed empirically on the task of de-
riving bi-lexical syntactic dependencies. Flickinger et al. (2012) make
available another annotation layer over the same WSJ text, ‘deep’
syntacto-semantic analyses in the linguistic framework of Head-Driven
Phrase Structure Grammar (HPSG; Pollard and Sag 1994; Flickinger
2000). This resource, dubbed DeepBank, is available since late 2012.
For the type of HPSG analyses recorded in DeepBank, Zhang andWang
(2009) and Ivanova et al. (2012) define a reduction into bi-lexical syn-
tactic dependencies, which they call Derivation Tree-Derived Depen-
dencies (DT). Through application of the converter of Ivanova et al.
(2012) to DeepBank, we can thus obtain a DT-annotated version of
the standard WSJ text, to train and test a data-driven dependency and

1This conversion from one representation of syntax to another is lossy, in the
sense of discarding constituency information, hence we consider it a reduction
in linguistic detail.

2 In contrast, much earlier work on cross-framework comparison involved
post-processing parser outputs in form and content, into a target representation
for which gold-standard annotations were available. In Section 2 below, we argue
that such conversion inevitably introduces blur into the comparison.
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phrase structure parser, respectively, and to compare parsing results
to a hybrid, grammar-driven HPSG parser. Furthermore, we can draw
on a set of additional corpora annotated in the same HPSG format
(and thus amenable to conversion for both phrase structure and de-
pendency parsing), instantiating a comparatively diverse range of do-
mains and genres (Oepen et al. 2004). Adding this data to our setup for
additional cross-domain testing, we seek to document not only what
trade-offs apply in terms of dependency accuracy vs. parser efficiency,
but also how these trade-offs are affected by domain and genre varia-
tion, and more generally how resilient the different approaches are to
variation in parser inputs.

2 related work

Comparing between parsers from different frameworks has long been
an area of active interest, ranging from the original parseval design
(Black et al. 1991), to evaluation against ‘formalism-independent’
dependency banks (King et al. 2003; Briscoe and Carroll 2006), to
dedicated workshops (Bos et al. 2008). Grammatical Relations (GRs;
Briscoe and Carroll 2006) have been the target of a number of bench-
marks, but they require a heuristic mapping from ‘native’ parser out-
puts to the target representations for evaluation, which makes re-
sults hard to interpret. Clark and Curran (2007) established an upper
bound by running the mapping process on gold-standard data, to put
into perspective the mapped results from their CCG parser proper.
When Miyao et al. (2007) carried out the same experiment for a num-
ber of different parsers, they showed that the loss of accuracy due
to the mapping process can swamp any actual parser differences.
As long as heuristic conversion is required before evaluation, cross-
framework comparison inevitably includes a level of fuzziness. An
alternative approach is possible when there is enough data available
in a particular representation to train a statistical parser, and any ne-
cessary conversion between representations is deterministic and hence
doesn’t introduce the same fuzziness. One example of this approach is
demonstrated by Cer et al. (2010), who used Stanford Dependencies
(de Marneffe and Manning 2008) to evaluate a range of statistical
parsers. Since there is a deterministic process for converting between
PTB phrase structure trees and Stanford Dependencies, they were able
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to evaluate a large number of different parsers which can be trained
on one or the other of these representations, using the standard PTB
training and test data, without resorting to fuzzy mapping processes.

Fowler and Penn (2010) formally proved that a range of Com-
binatory Categorial Grammars (CCGs) are context-free. They trained
the PCFG Berkeley parser on CCGBank, the CCG annotation of the
PTB WSJ text (Hockenmaier and Steedman 2007), advancing the state
of the art in terms of supertagging accuracy, parseval measures,
and CCG dependency accuracy. They concluded that a specialized
CCG parser is not necessarily more accurate than the general-purpose
Berkeley parser; this study, however, fails to also take parser efficiency
into account.

In related work for Dutch, Plank and van Noord (2010) suggest
that, intuitively, one should expect that a grammar-driven system can
be more resilient to domain shifts than a purely data-driven parser.
In a contrastive study on parsing into Dutch syntactic dependencies,
they substantiated this expectation by showing that their HPSG-based
Alpino system performed better and was more resilient to domain vari-
ation than data-driven direct dependency parsers.

3 background: hpsg syntactic dependencies

The dependency format we use is a deterministic conversion of HPSG
derivation trees licensed by the English Resource Grammar (ERG;
Flickinger 2000). Figure 1 of an ERG derivation tree, where labels
of internal nodes name HPSG constructions (e.g. subject–head or
head–complement: sb-hd_mc_c and hd-cmp_u_c, respectively; see Sec-
tion 5.3.1 for more details on unary rules). Preterminals are labeled
with fine-grained lexical categories – called ERG lexical types – that
augment common parts of speech with additional information, for ex-
ample argument structure or the distinction between count, mass, and
proper nouns. In total, the ERG distinguishes about 250 construction
types and 1000 lexical types.

ERG derivations are grounded in a formal theory of grammar that
explicitly marks heads. For this reason mapping these trees onto pro-
jective bi-lexical dependencies is straightforward (Zhang and Wang
2009). Ivanova et al. (2012) coin the term DT for ERG Derivation Tree-
Derived Dependencies, where they reduce the inventory of some 250
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sb-hd_mc_c

hdn_bnp-pn_c

aj-hdn_norm_c

n-nh_v-cpd_c

w_hyphen_plr

n_-_mc_le

Sun-

v_pas_odlr

v_np_noger_le

filled

n_sg_ilr

n_-_pn_le

Mountain View

hd-cmp_u_c

v_vp_did-n_le

didn’t

hd-cmp_u_c

v_n3s-bse_ilr

v_np*_le

impress

hdn_bnp-qnt_c

w_period_plr

n_-_pr-me_le

me.

Figure 1: Sample HPSG derivation: construction identifiers label internal nodes,
and lexical types the preterminals

Sun- filled Mountain View didn’t impress me.
n_-_mc_le v_np_noger_le n_-_pn_le v_vp_did-n_le v_np*_le n_-_pr-me_le

root

sb-hdaj-hdnn-nh hd-cmp hd-cmp

Figure 2: Sample DT bi-lexical dependencies: construction identifiers are gener-
alized to major types (cutting at the first underscore)

ERG syntactic rules to 48 broad HPSG constructions.3 The DT syntac-
tic dependency tree for our running example is shown in Figure 2.

To better understand the nature of the DT scheme, Ivanova et al.
(2012) offer a quantitative, structural comparison against two pre-
existing dependency standards for English, viz. those from the CoNLL
dependency parsing competitions (Nivre et al. 2007) and the ‘basic’
variant of Stanford Dependencies. They observe that the three depen-
dency representations are broadly comparable in granularity and that
there are substantial structural correspondences between the schemes.

3The ERG distinguishes main clause vs. subordinate subjects, for example, as
seen in Figure 1. Ivanova et al. (2012) discard this and other grammar-internal
contrasts by ‘cutting’ construction labels at the first underscore.
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Measured as average Jaccard similarity over unlabeled dependencies,
they observe the strongest correspondence between DT and CoNLL (at
a Jaccard index of 0.49, compared to 0.32 for DT and Stanford, and
0.43 between CoNLL and Stanford).

Ivanova et al. (2013) complement the above discussed compari-
son of dependency schemes through an empirical assessment in terms
of ‘parsability’, i.e. accuracy levels available for the different tar-
get representations when training and testing a range of state-of-the-
art parsers on the same data sets. In their study, the dependency
parser of Bohnet and Nivre (2012), henceforth B&N, consistently per-
forms best for all schemes and output configurations. Furthermore,
parsability differences between the representations are generally very
small.

For a more exact comparison, we replicate their study and eval-
uate B&N for all three schemes when trained and tested on the same
subset of PTB WSJ sentences that are available in DeepBank.4 The
results in Table 1 show that there are no interesting differences in
performance of the Bohnet and Nivre (2012) parser across the DT,
CoNLL, and Stanford Basic dependency schemes.

Table 1:
Parsability of three dependency schemes,

measured as labeled attachment score (LAS)
and unlabeled attachment score (UAS)

LAS UAS
CoNLL 90.53 93.56
Stanford 90.43 92.87
DT 90.48 92.77

Based on the observations from the above comparisons, we con-
jecture that DT is as suitable a target representation for parser com-
parison as any of the others. Furthermore, two linguistic factors add to
the attractiveness of DT for our study: it is defined in terms of a formal
(and implemented) theory of grammar; and it makes available more
fine-grained lexical categories, ERG lexical types, than is common in
PTB-derived dependency banks.

4For compatibility with much previous work, and to level the playing field
for all three schemes, we opt for a slightly different setup for this comparison
than in (most) subsequent experiments: here, we apply PTB-style tokenization,
coarse-grained PTB parts of speech, and exclude punctuation from scoring.
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4 data
Below we describe the construction and characteristics of the data sets
we use in our parsing experiments, highlighting some of the relevant
differences to the more widely-known Penn Treebank format.
4.1 DeepBank
DeepBank annotations were created by combining the native ERG
parser PET (Callmeier 2002), with a discriminant-based tree selection
tool (Carter 1997; Oepen et al. 2004), thus making it possible for an-
notators to navigate the large space of possible analyses efficiently,
identify and validate the intended reading, and record its full HPSG
analysis in the treebank. Owing to this setup, DeepBank version 1.0,
as used presently, lacks analyses for some 15 percent of the WSJ sen-
tences, for which either the ERG parser failed to suggest a set of can-
didates (within certain bounds on time and memory usage), or the an-
notators found none of the available parses acceptable.5 Furthermore,
DeepBank annotations to date only comprise the first 21 sections of
the PTB WSJ corpus. Following the splits suggested by the DeepBank
developers, we train on Sections 0–19, use Section 20 for tuning, and
test against Section 21 (abbreviated as WSJ below).6

4.2 Cross-domain test data
Another benefit of the DT target representation is the availability of
comparatively large and diverse samples of additional test data. The
ERG Redwoods Treebank (Oepen et al. 2004) is similar in genealogy
and format to DeepBank, comprising corpora from various domains
and genres. Although Redwoods counts a total of some 400,000 anno-
tated tokens, we only draw on it for additional testing data. In other
words, we do not attempt parser re-training or adaptation against this
additional data, but rather test our WSJ-trained parsers on out-of-
domain samples from Redwoods. We report on four such test corpora,

5Thus, limitations in the ERG and PET effectively lead to the exclusion of
a non-trivial percentage of sentences from our training and testing corpora. We
discuss methodological ramifications of this setup to our study in Section 13
below.

6To ‘protect’ Section 21 as unseen test data, also for the ERG parser, this final
section in Version 1.0 of DeepBank was not exposed to its developers until the
grammar and disambiguation model were finalized and frozen for this release.
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Table 2:

Sentence, token, and type counts
for data sets

Sentences Tokens Types

De
ep
Ba
nk Train 33,783 661,451 56,582

Tune 1,721 34,063 8,964
WSJ 1,414 27, 515 7,668

Re
dw

oo
ds CB 608 11,653 3,588

SC 864 13,696 4,925
VM 993 7,281 1,007
WS 520 8,701 2,974

viz. (a) a software advocacy essay, The Cathedral and the Bazaar (CB);
(b) a subset of the SemCor portion of the Brown Corpus (SC; Francis
and Kučera 1982); (c) a collection of transcribed, task-oriented spoken
dialogues (VM; Wahlster 2000); and (d) part of the Wikipedia-derived
WeScience Corpus (WS; Ytrestøl et al. 2009). Table 2 provides exact
sentence, token, and type counts for these data sets.

4.3 Tokenization conventions
A relevant peculiarity of the DeepBank and Redwoods annotations in
this context is the ERG approach to tokenization. Three aspects in Fig-
ure 1 deviate from the widely used PTB conventions: (a) hyphens
(and slashes) introduce token boundaries; (b) whitespace in multi-
word lexical units (like ad hoc, of course, or Mountain View) does not
force token boundaries; and (c) punctuation marks are attached as
‘pseudo-affixes’ to adjacent words, reflecting the rules of standard or-
thography. Adolphs et al. (2008) offer some linguistic arguments for
this approach to tokenization, but for our purposes it suffices to note
that these differences to PTB tokenization may in part counter-balance
each other in terms of overall parsing difficulty, but they do increase
the types-per-tokens ratio somewhat. This property of the DeepBank
annotations, arguably, makes English look somewhat similar to lan-
guages with moderate inflectional morphology. To take advantage of
the fine-grained ERG lexical categories, most of our experiments as-
sume ERG tokenization. In two calibration experiments, however, we
also investigate the effects of tokenization differences on our parser
comparison.
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5 parsers

This section describes our three parsers, including the alternate con-
figurations we use, and details of how they are trained and run.

5.1 PET: native HPSG parsing
The parser most commonly used with the ERG is called PET (Callmeier
2002), a highly engineered chart parser for unification grammars. PET
constructs a complete parse forest, using subsumption-based ambigu-
ity factoring (Oepen and Carroll 2000), and then extracts from the
forest n-best lists of complete analyses according to a discriminative
parse ranking model (Zhang et al. 2007). For our experiments, we em-
ploy ERG version 1212, train the parse ranker on Sections 00–19 of
DeepBank, and otherwise use the default configuration (which cor-
responds to the environment used by the DeepBank and Redwoods
developers), which is optimized for accuracy. This parser, performing
exact inference, we will call ERGa.

In recent work, Dridan (2013) has augmented ERG parsing with
lattice-based sequence labeling over lexical types and lexical rules.
Pruning the parse chart prior to forest construction yields greatly im-
proved efficiency at a moderate accuracy loss. We include the best-
performing configuration of Dridan (2013) in our experiments, a vari-
ant henceforth referred to as ERGe.

Unlike the other parsers in our study, PET internally operates over
an ambiguous token lattice, and there is no easy interface to feed
the parser pre-tokenized inputs. We approximate the effects of gold-
standard tokenization by requesting from the parser a 2000-best list,
which we filter for the top-ranked analysis whose leaves match the
treebank tokenization. This approach is imperfect, as in some cases
no token-compatible analysis may be on the n-best list, especially so
in the ERGe setup (where lexical items may have been pruned by the
sequence labeling model). When this happens, we fall back to the top-
ranked analysis and adjust our evaluationmetrics to robustly deal with
tokenization mismatches (see Section 6).

5.2 B&N: direct dependency parsing
The parser of Bohnet and Nivre (2012), henceforth B&N, is a transition-
based dependency parser with joint tagger that implements global
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learning and a beam search for non-projective labeled dependency
parsing. This parser consistently outperforms pipeline systems (such
as the Malt and MST parsers) both in terms of tagging and parsing
accuracy for typologically diverse languages such as Chinese, English,
and German. We apply B&N mostly ‘out-of-the-box’, training on the
DT conversion of DeepBank Sections 00–19, and running the parser
with an increased beam size of 80.
5.3 Berkeley: PCFG parsing
The Berkeley parser (Petrov et al. 2006), henceforth just Berkeley, is
a generative, unlexicalized phrase structure parser that automatically
derives a smoothed latent-variable PCFG from the treebank and refines
the grammar by a split–merge procedure. The parser achieves state-
of-the-art performance on various standard benchmarks.

Formally, the HPSG analyses in the DeepBank and Redwoods tree-
banks transcend the class of context-free grammars. Nevertheless, one
can pragmatically look at an ERG derivation as if it were a context-
free phrase structure tree. On this view, standard, off-the-shelf PCFG
parsing techniques are applicable to the ERG treebanks. Zhang and
Krieger (2011) explore this space experimentally, combining the ERG,
Redwoods (but not DeepBank), and massive collections of automati-
cally parsed text. Their study, however, does not consider parser effi-
ciency.7 In contrast, our goal is to reflect on practical trade-offs along
multiple dimensions. We therefore focus on Berkeley, as one of the
currently best-performing (and relatively efficient) PCFG engines. We
train the parser on the derivation trees and then, for comparison to
the other parsers in terms of DT dependency accuracy, we apply the
converter of Ivanova et al. (2012) to Berkeley outputs. For technical
reasons, however, the optional mapping from ERG to PTB tokenization
is not applicable in this setup, and hence our experiments involving
Berkeley are limited to ERG tokens and fine-grained lexical categories.
5.3.1 Tuning
Table 3 summarizes a series of experiments, seeking to tune the Berke-
ley parser for maximum accuracy on our development set, DeepBank

7Their best PCFG results are only a few points F1 below the full HPSG parser,
using very large PCFGs and exact inference; in this set-up, parsing times in fact
exceed those of the native HPSG parser.
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Table 3: Tagging accuracy, parseval F1, and dependency accuracy for Berkeley
on WSJ development data

Unary Rules Removed
Labels Long Short
Cycles 5 6 5 6
Gaps 3 3 0 0
TA 88.46 87.65 89.16 88.46
F1 74.53 73.72 75.15 73.56
LAS 83.96 83.20 80.49 79.56
UAS 87.12 86.54 87.95 87.15

Unary Rules Preserved
Labels Long Short Mixed
Cycles 5 6 5 6 5 6
Gaps 2 5 0 0 11 19
TA 90.96 90.62 91.11 91.62 90.93 90.94
F1 76.39 75.66 79.81 80.33 76.70 76.74
LAS 86.26 85.90 82.50 83.15 86.72 86.16
UAS 89.34 88.92 89.80 90.34 89.42 88.84

Section 20. Due to its ability to internally rewrite node labels, this
parser should be expected to adapt well also to ERG derivations.
Compared to the phrase structure annotations in the PTB, there are
two structural differences evident in Figure 1. First, the inventories
of phrasal and lexical labels are larger, at around 250 and 1000, re-
spectively, compared to only about two dozen phrasal categories and
45 parts of speech in the PTB. Second, ERG derivations contain more
unary (non-branching) rules, recording for example morphological
variation or syntacto-semantic category changes.8

We experiment with preserving unary rules in ERG derivations or
removing them (as they make no difference to the final DT analysis);
we further run experiments using the native (‘long’) ERG construc-

8Examples of morphological rules in Figure 1 include v_pas_odlr and v_n3s-
bse_ilr, for passive-participle and non-third person singular or base inflection, re-
spectively. Also, there are two instances of bare noun phrase formation: hdn_bnp-
pn_c and hdn_bnp-qnt_c.
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tion identifiers, their generalizations to ‘short’ labels as used in DT,
and a variant with long labels for unary and short ones for branching
rules (‘mixed’). We report results for training with five or six split–
merge cycles, where fewer iterations generally show inferior accu-
racy, and larger values lead to more parse failures (‘gaps’ in Table 3).
There are some noticeable trade-offs across tagging accuracy, depen-
dency accuracy, and coverage, without a single best performer along
all three dimensions. As our primary interest across parsers is depen-
dency accuracy, we select the configuration with unary rules and long
labels, trained with five split–merge cycles, which seems to afford
near-premium LAS at near-perfect coverage.9

6 evaluation
Standard evaluation metrics in dependency parsing are labeled and
unlabeled attachment scores (LAS, UAS; implemented by the CoNLL
eval.pl scorer). These measure the percentage of tokens which are cor-
rectly attached to their head token and, for LAS, have the right de-
pendency label. As assignment of lexical categories is a core part of
syntactic analysis, we complement LAS and UAS with tagging accu-
racy scores (TA), where appropriate. However, in our work there are
two complications to consider when using eval.pl. First, some of our
parsers occasionally fail to return any analysis, notably Berkeley and
ERGe. For these inputs, our evaluation re-inserts the missing tokens
in the parser output, padding with dummy ‘placeholder’ heads and
dependency labels.

Second, a more difficult issue is caused by occasional tokenization
mismatches in ERG parses, as discussed above. Since eval.pl identifies
tokens by their position in the sentence, any difference of tokenization
will lead to invalid results. One option would be to treat all system out-
puts with token mismatches as parse failures, but this over-penalizes,
as potentially correct dependencies among corresponding tokens are
also removed from the parser output. For this reason, we modify the
evaluation of dependency accuracy to use character offsets, instead of
consecutive identifiers, to encode token identities. This way, tokeniza-
tion mismatches local to some sub-segment of the input will not ‘throw

9A welcome side-effect of this choice is that we end up using native ERG
derivations without modifications.

[ 124 ]



On syntactic analysis into bi-lexical dependencies

off’ token correspondences in other parts of the string.10 We will refer
to this character-based variant of the standard CoNLL metrics as LASc

and UASc.

7 in-domain parsing results

Our first cross-paradigm comparison of the three parsers is against the
WSJ in-domain test data, as summarized in Table 4. There are substan-
tive differences between parsers both in terms of coverage, speed, and
accuracy. Berkeley fails to return an analysis for one input, whereas
ERGe cannot parse 13 sentences (close to one percent of the test set);
just as the 44 inputs where parser output deviates in tokenization from
the treebank, this is likely an effect of the lexical pruning applied in
this setup. At an average of one second per input, Berkeley is the fastest
of our parsers; ERGa is exactly one order of magnitude slower. How-
ever, the lexical pruning of Dridan (2013) in ERGe leads to a speed-up
of almost a factor of six, making this variant of PET perform com-
parable to B&N. The strongest differences, however, we observe in
tagging and dependency accuracies. The two data-driven parsers per-
form very similarly (at close to 93% TA and around 86.7% LAS); the
two ERG parsers are comparable too, but at accuracy levels that are
four to six points higher in both TA and LAS. Compared to ERGa, the
faster ERGe variant performs very slightly worse – which likely re-
flects penalization for missing coverage and token mismatches – but
it nevertheless delivers much higher accuracy than the data-driven
parsers.

Gaps Time TAc LASc UASc

Berkeley 1+0 1.0 92.9 86.65 89.86
B&N 0+0 1.7 92.9 86.76 89.65
ERGa 0+0 10 97.8 92.87 93.95
ERGe 13+44 1.8 96.4 91.60 92.72

Table 4:
Parse failures and token
mismatches (‘gaps’),
efficiency, and tagging and
dependency accuracy
on WSJ

10Where tokenization is identical for the gold and system outputs, the score
given by this generalized metric is exactly the same as that of eval.pl. Unless
indicated otherwise, punctuation marks are included in scoring.
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8 cross-domain parsing results

To gauge the resilience of the different systems to domain and genre
variation, we apply the same set of parsers – without re-training or
other adaptation – to the additional Redwoods test data. Table 5 sum-
marizes coverage and accuracy results across the four diverse samples.
Again, Berkeley and B&N pattern alike, with Berkeley slightly ahead in
terms of dependency accuracy, but penalized on two of the test sets
for parse failures. LAS for the two data-driven parsers ranges between
74% and 81%, up to 12 points below their WSJ performance. Though
large, accuracy drops on a similar scale have been observed repeat-
edly for purely statistical systems when moving out of the WSJ do-
main without adaptation (Gildea 2001; Nivre et al. 2007). In contrast,
ERGe performance is more similar toWSJ results, with a maximum LAS
drop of less than two points.11 For Wikipedia text (WS; previously un-
seendata for the ERG, just as for the other two), for example, both
tagging and dependency accuracies are around ten points higher, an
error reduction of more than 50%. From these results, it is evident
that the general linguistic knowledge available in ERG parsing makes
it far more resilient to variation in domain and text type.

9 error analysis

The ERG parsers outperform the two data-driven parsers on the WSJ
and cross-domain data. Through in-depth error analysis, we seek to
identify parser-specific properties that can explain the observed dif-
ferences. In the following, we look at (a) the accuracy of individual
dependency types, (b) dependency accuracy relative to (predicted and
gold) dependency length, and (c) the distribution of LAS over different
lexical categories.

Among the different dependency types, we observe that the no-
tion of an adjunct is difficult for all three parsers. One of the hardest

11 It must be noted that, unlike the WSJ test data, some of these cross-domain
data sets have been used in ERG development throughout the years, notably VM
and CB, and thus the grammar is likely to have particularly good linguistic cover-
age of this data. Conversely, SC has hardly had a role in grammar engineering so
far, and WS is genuinely unseen (for the ERG and Redwoods release used here),
i.e. treebankers were first exposed to it once the grammar and parser were frozen.
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Gaps TAc LASc UASc
CB

Berkeley 1+0 87.1 78.13 83.14
B&N 0+0 87.06 77.70 82.96
ERGa 0+4 96.3 90.77 92.47
ERGe 8+8 95.3 90.02 91.58

SC

Berkeley 1+0 87.2 79.81 85.10
B&N 0+0 85.9 78.08 83.21
ERGa 0+0 96.1 90.84 92.65
ERGe 11+7 94.9 89.49 91.26

VM

Berkeley 7+0 84.0 74.40 83.38
B&N 0+0 83.1 75.28 82.86
ERGa 0+40 94.3 90.44 92.27
ERGe 11+42 94.4 90.18 91.75

W
S

Berkeley 7+0 87.7 80.31 85.11
B&N 0+0 88.4 80.63 85.24
ERGa 0+0 97.5 91.33 92.48
ERGe 4+12 96.9 90.64 91.76

Table 5:
Cross-domain coverage
gaps (parse failures and
token mismatches) and
tagging and dependency
accuracies

dependency labels across domains is hdn-aj (post-adjunction to a nom-
inal head), the relation employed for relative clauses and prepositional
phrases attaching to a nominal head. The most common error for this
relation is verbal attachment.

It has been noted that dependency parsers may exhibit system-
atic performance differences with respect to dependency length (i.e.
the distance between a head and its argument; McDonald and Nivre
2007). In our experiments, we find that the parsers perform compara-
bly on longer dependency arcs (upwards of fifteen words), with ERGa

constantly showing the highest accuracy, and Berkeley holding a slight
edge over B&N as dependency length increases.

In Figure 3, one can eyeball frequency and accuracy levels per
lexical category on WSJ. The cross-domain picture is similar to the in-
domain one, but the difference between accuracy for PET and the data-
driven parsers on adjectives (aj), adverbs (av), and conjunctions (c)
is more pronounced on the out-of-domain data. Determiners (d) and
complimentizers (cm) are similar, while conjunctions (c) and various
types of prepositions (p and pp) are the most difficult for all three
parsers.
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Figure 3: WSJ per-category frequency (left) and dependency accuracies (right) on
coarse lexical head categories: adjective, adverb, conjunction, complementizer,
determiner, noun, preposition, lexical prepositional phrase, punctuation, verb,
and others

It is unsurprising that the DT analysis of coordination is challeng-
ing. Schwartz et al. (2012) show that choosing conjunctions as heads in
coordinate structures is harder to parse for direct dependency parsers
(while this analysis also is linguistically more expressive). Our results
confirm this effect also for the PCFG parser and (though to a lesser de-
gree) for ERGa. At the same time, conjunctions are among the lexical
categories for which ERGa most clearly outperforms the other parsers.
Berkeley and B&N exhibit LAS error rates of around 35–41% for con-
junctions, whereas the ERGa error rate is below 20%. For many of the
coordinate structures parsed correctly by ERGa but not the other two,
we find that attachment to root constitutes the most frequent error
type – indicating that clausal coordination is particularly difficult for
the data-driven parsers.

The attachment of prepositions constitutes a notorious difficulty
in syntactic analysis. Unlike ‘standard’ PoS tag sets, ERG lexical types
provide a more fine-grained analysis of prepositions, for example rec-
ognizing a lexicalized PP like in full, or making explicit the distinction
between semantically contentful vs. vacuous prepositions. In our er-
ror analysis, we find that parser performance varies a lot across the
various prepositional sub-types. For some prepositions, all parsers per-
form comparatively well; e.g. p_np_ptcl-of_le, for semantically vacuous
of, ranks among the twenty most accurate lexical categories across the
board. Other types of prepositions are among the categories exhibiting
the highest error rates, e.g. p_np_i_le for ‘common’ prepositions, taking
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an NP argument and projecting intersective modifier semantics. Even
so, Figure 3 shows that the attachment of prepositions (p and pp) is an
area where ERGa excels most markedly. Three frequent prepositional
lexical types that show the largest ERGa advantages are p_np_ptcl-of_le
(history of Linux), p_np_ptcl_le (look for peace), and p_np_i_le (talk about
friends).

Looking more closely at inputs where the parsers disagree, they
largely involve (usages of) prepositions which are lexically selected
for by their head. ERG lexical rules, which function as lexical types in
DT, encode valency information in the form of an ordered sequence of
complements for the given type. For example, v_np-pp_prop_le is a verb
that requires two complements: a noun phrase and a prepositional
phrase (see example (1)).

We analyze parse errors on prepositional complements for heads
of various lexical types, including the most frequent verbs, nouns, and
adjectives, illustrated by (1), (2), and (3). Example (1) depicts the
analysis of the argument structure of such a verb (sneak) with a noun
phrase and a prepositional phrase. Both B&N and Berkeley incorrectly
define the head of the phrase into the office as the noun therapists, while
ERGa delivers the parse tree that corresponds to the gold standard. In
example (2) ERGa correctly identifies growth as the head of the prepo-
sitional phrase of recent years while B&N attaches of to the cardinal 4
and Berkeley to the conjunction but with erroneous dependency labels.
In example (3), ERGa correctly analyzes the prepositional complement,
and B&N and Berkeley predict the proper label, but wrongly assign at-
tachment to the noun work and verb sounds, respectively.

(1) … managers sneak massage therapists into the office …
v_np-pp_prop_le

HD-CMP

HD-CMP

(2) … below the 4 % to 5 % growth of recent years - but …
n_pp_mc-of_le

HD-CMP

(3) … sounds more like a shaggy poet describing his work than …
aj_pp_i-more_le

HD-CMP
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In most cases the lexical category of the head explicitly shows the
requirement of a prepositional complement; taking advantage of this
rule, ERGa consistently outperforms other parsers in- and cross-domain
as depicted in Table 6 which shows the number of total and correct
analyses of prepositional complement structures.

Table 6:
Number of total and correct analyses

of prepositional complement
structures

domain total ERGa Berkeley B&N

WSJ 940 905 778 799
CB 469 446 348 354
SC 602 553 471 454
VM 164 142 113 119
WS 372 361 293 289

Most prepositions in isolation are ambiguous lexical items. How-
ever, it appears that lexical information about the argument structure
of heads encoded in the grammar allows ERGa to analyze these prepo-
sitions (in context) much more accurately.

10 sanity: ptb tokenization and pos tags
Up to this point, we have applied the two data-driven parsers in a
setup that one might consider somewhat ‘off-road’; although our ex-
periments are on English, they involve unusual tokenization and lex-
ical categories. For example, the ERG treatment of punctuation as
‘pseudo-affixes’ increases vocabulary size, which PET may be better
equipped to handle due to its integrated treatment of morphological
variation. In these experiments, we seek to isolate the effects of tok-
enization conventions and granularity of lexical categories, taking ad-
vantage of optional output flexibility in the DT converter of Ivanova
et al. (2012).12 Table 7 confirms that tokenization does make a dif-
ference. In combination with fine-grained lexical categories still, B&N
obtains LAS gains of two to three points, compared to smaller gains
(around or below one point) for ERGe.13 However, in this setup our

12As mapping from ERG derivations into PTB-style tokens and PoS tags is
applied when converting to bi-lexical dependencies, we cannot easily include
Berkeley in these final experiments.

13When converting to PTB-style tokenization, punctuation marks are always
attached low in the DT scheme, to the immediately preceding or following to-
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two earlier observations still hold true: ERGe is substantially more ac-
curate within the WSJ domain and far more resilient to domain and
genre variation. When we simplify the syntactic analysis task and train
and test B&N on coarse-grained PTB PoS tags only, in-domain differ-
ences between the two parsers are further reduced (to 0.8 points), but
ERGe still delivers an error reduction of ten percent compared to B&N.
The picture in the cross-domain comparison is not qualitatively differ-
ent, also in this simpler parsing task, with ERGe maintaining accuracy
levels comparable to WSJ, while B&N accuracies degrade markedly.

Gaps Lexical Types PTB PoS Tags
LASc UASc LASc UASc

W
SJ B&N 0+0 88.78 91.52 91.56 93.63

ERGe 13+9 92.38 93.53 92.38 93.53

CB

B&N 0+0 81.56 86.18 84.54 88.53
ERGe 8+4 90.77 92.21 90.77 92.21

SC

B&N 0+0 81.69 86.11 85.17 88.85
ERGe 11+0 90.13 91.86 90.13 91.86

VM

B&N 0+0 77.00 83.73 82.76 88.11
ERGe 10+0 91.55 93.08 91.55 93.08

W
S B&N 0+0 82.09 86.17 84.59 88.41

ERGe 4+0 91.61 92.62 91.61 92.62

Table 7:
Coverage and dependency accuracies
with PTB tokenization and either
detailed or coarse lexical categories

11 first extrinsic evaluation:
negation scope resolution

One reason for using a representation format like DT is to make it
easy to use parsing results in a downstream application, since parsing
is rarely the final goal. In order to test the suitability of DT and also
explore the effects that improved parser accuracy may have in such a
downstream application, we embed our different parsing setups in an
extrinsic evaluation scenario.

Elming et al. (2013) try a number of different tasks to explore the
effects of different dependency representation formats. They find the
ken, effectively adding a large group of ‘easy’ dependencies. However, results of
evaluation excluding punctuation tokens are not qualitatively different.
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negation resolution task (Morante and Blanco 2012) to be the most
sensitive to changes in dependency format, and so we chose that as
our first external task.

11.1 Negation resolution task
Negation resolution (NR) is the task of determining negation cues, i.e.
morphemes, words or a combination of words that express negation
(for example, un-, no, by no means), scopes of negation, i.e. parts of
a sentence that are affected by a negation cue, and negated events,
i.e. semantically negated eventualities inside scopes in factual sen-
tences. We employ the NR system of Lapponi et al. (2012a), one of the
best performing systems of the 2012 Computational Semantics (*SEM)
Shared Task (Morante and Blanco 2012) which uses a CRF model for
scope resolution relying on dependency features. The dataset for the
2012 *SEM shared task comprises negation annotated stories of Co-
nan Doyle: a training set of 3644 sentences, a development set of 787
sentences, and a test set of 1089 sentences. One example from the
training set is presented in (4) below. The cue is typeset in small caps,
its scope italicized, and the negated event underlined.
(4) I therefore spent the day at my club and did not return to Baker Street

until evening.
Note that this negation scope is discontinuous, which shows that

proximity to a negation cue is not always a good strategy to assign
tokens to scopes; here the subject (I) at the beginning of the sentence
is a part of the clause negated by the cue in the coordinate sentence
and should be retrieved.

For the evaluation we use software developed by the 2012 *SEM
Shared Task organizers which reports the following metrics (Morante
and Blanco 2012):
Cues Cue F1-measure.
Scopes Scope-level F1-measure.
Negated F1-measure over negated events, computed independently

from cues and from scopes
Global Global F1-measure of negation: the three elements of the nega-

tion – cue, scope, and negated event – all have to be correctly
identified (strict match)
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11.2 Format comparison
Table 8 presents evaluation of performance of the NR system relying
on dependency features from the analyses of the B&N parser with the
three dependency formats we tested in Section 3: CoNLL, Stanford Ba-
sic, and DT dependencies. As Elming et al. (2013) saw, we get quite a
range of performance across the three formats, particularly consider-
ing Table 1 showed that intrinsic parse accuracy is basically identical.

CoNLL Stanford DT
Scopes 79.57 81.69 80.43
Negated 75.96 71.15 73.33
Global 65.89 63.78 65.89

Table 8:
Performance of the NR system with
gold cues on the Conan Doyle
development set for three dependency
formats using the B&N parser

Table 9 reproduces the numbers Elming et al. (2013) reported,
using dependency formats that varied more than ours do. While these
numbers are not directly comparable to our work due to some differ-
ences in the data sets for training parsing models, DT is well within
their range of variation, and as such, seems a reasonable format for
the task.

Yamada CoNLL-07 EWT LTH
Scopes 81.27 80.43 78.70 79.57
Negated 76.19 72.90 73.15 76.24
Global 67.94 63.24 61.60 64.31

Table 9:
Performance of the NR system with
gold cues on the Conan Doyle
development set for different
dependency formats using the Mate
parser, reproduced from Elming et al.

11.3 Parser comparison
To see if the intrinsic parser accuracy differences we saw earlier trans-
late to better negation resolution, we use the PET and B&N parsers to
produce DT dependencies for our NR system.

Intrinsic parser evaluation on the 91 manually annotated sen-
tences taken from the story Wisteria Lodge, a subset of Conan Doyle
development data, is shown in Table 10. Since negation resolution
system uses PTB tokenization with PTB PoS tags, we again cannot
include Berkeley in this comparison. The Conan Doyle domain is gen-
uinely new for the ERG as it was not available before the release of
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Table 10:

Parse failures and token mismatches
(‘gaps’), and tagging and dependency
accuracy on the subset of the Conan

Doyle development data

Gaps TAc LASc UASc

B&N 0+0 92.24 83.92 87.92
ERGa 0+0 96.36 92.54 93.84
ERGe 0+3 94.21 89.22 90.57

version 1212, used in the present work. Consistent with our expecta-
tions, results are similar to the cross-domain evaluation in Table 7.

While B&N has complete coverage on the full Conan Doyle corpus,
Table 11 shows that both of our PET variants sometimes fail to produce
an analysis, especially the ERGe variant due to excessive pruning. In
addition, PET does not always land on the gold-standard tokenization
as the parsing process starts from the raw text. Due to this, we fall
back on the B&N parser for the sentences that lack syntactic analysis in
the negation resolution experiments with PET; e.g. for the experiments
with ERGa the training set consists of 89.24% PET analyses and 10.76%
analyses from B&N.

Table 11:
PET coverage on

Conan Doyle
and alignment

with ‘gold’
tokenization

ERGa ERGe

Train Dev Test Train Dev Test
% Coverage 89.96 91.11 87.42 81.64 83.99 79.98
% Alignment 89.24 91.11 86.23 80.98 83.86 78.88

Tables 12 and 13 show the results of the NR system on the devel-
opment and test sets, respectively. The results from the original system
using the Malt parser and Stanford Basic dependencies are shown for
comparison Lapponi et al. (2012b). Somewhat surprisingly, the rea-
sonably large differences in parser accuracy seen in Table 7 are not
reflected in the task performance. Statistical significance testing using
the paired, two-tailed formulation of the sign test shows that none of
the performance differences are actually significant.

Table 12:
Performance of the negation

resolution system on the development
set with gold cues

ERGa ERGe B&N Malt
Scopes 80.00 80.85 80.43 80.00
Negated 75.73 73.33 73.33 80.55
Global 64.31 63.24 65.89 66.41
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ERGa ERGe B&N Malt
Cues 91.31 91.31 91.31 91.31
Scopes 73.52 74.83 75.40 72.39
Negated 61.29 60.95 60.44 61.79
Global 53.73 55.53 55.17 54.82

Table 13:
Performance of the negation
resolution system on the
test set with predicted cues

It is possible that this negation resolution task is not sensitive
enough to parser performance to be a useful extrinsic parser evalua-
tion. There is a reasonable body of previous work (Mollá and Hutchin-
son 2003; Miyao et al. 2008; Miwa et al. 2010) that has shown that
many tasks such as answer extraction, protein-protein interaction
(PPI) extraction, and event extraction are relatively insensitive to
parser accuracy. It is possible that negation resolution, at least in this
particular setup, is another such task.

12 second extrinsic evaluation:
semantic dependency parsing

As another downstream application for extrinsic evaluation, we ex-
plore the task of Broad-Coverage Semantic Dependency Parsing (SDP;
Oepen et al. 2014, 2015), which was part of the 2014 and 2015 Se-
mantic Evaluation Exercises (SemEval). We re-train and evaluate the
best-performing system from the SDP 2014 open track, called Prib-
eram (Martins and Almeida 2014), which is based on a feature-rich
model that takes advantage of the information from the syntactic de-
pendency parser. For this second extrinsic evaluation, we test whether
syntactic dependency features provided by the grammar-based system
facilitate more accurate semantic parsing than features delivered by
the data-driven tools.

12.1 Broad-coverage semantic dependency parsing
Oepen et al. (2014) define semantic dependency parsing (SDP) as the
problem of recovering sentence-internal predicate-argument relation-
ships for all content words. Thus, target representations are semantic
in nature (rather than directly representing grammatical structure),
and in contrast to syntactic parsing the SDP semantic dependencies
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are general (directed and acyclic) graphs rather than trees, and need
not span input tokens that are analyzed as semantically vacuous.

The SDP 2014 data consists of Sections 0–21 of the WSJ Cor-
pus annotated with three target representations called DM, PAS, and
PCEDT (which are all aligned at the sentence and token levels). DM
is the result of a two-step reduction of the underspecified logical-form
meaning representations produced by the ERG to pure bi-lexical de-
pendencies (Oepen and Lønning 2006; Ivanova et al. 2012), as exem-
plified for our running example in Figure 4. PAS dependencies are
predicate–argument structures produced by the Enju system, a statis-
tical HPSG parser obtained by learning from a conversion of the (full)
PTB annotations (Miyao and Tsujii 2008). PCEDT dependencies, in
turn, are extracted from the tectogrammatical analysis layer of the
Prague Czech–English Dependency Treebank (Hajič et al. 2012).

Sun- filled Mountain View didn’t impress me.

top

ARG1

ARG2compound neg ARG2

Figure 4: DM bi-lexical semantic dependencies for our running example

The task is organized into two tracks: systems in the closed track
were trained only on the data distributed by the task organizers while
the systems in the open track could use additional resources. We are,
therefore, only interested in the latter track. In the open track of the
SDP 2014 task, participants had been offered syntactic ‘companion’
files with Stanford dependencies produced by the parser of Bohnet and
Nivre (2012). Evaluation measures are labeled precision (LP), labeled
recall (LR), labeled F1 (LF), and labeled exact match (LM) with respect
to predicted 〈predicate, role,argument〉 triples.

The Priberam system (Martins and Almeida 2014), which relies
on a model with second-order features and decoding with dual decom-
position, was ranked first in the SDP 2014 open track, and achieved the
second highest score in the closed track. By virtue of syntactic features
extracted from the output of a syntactic dependency parser, Priberam
attained an improvement of around 1% in LF for all three dependency
formats. We have chosen this system for extrinsic evaluation.
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12.2 Parser comparison
We compare the quality of syntactic features produced by ERGa, ERGe

and B&N for the semantic parsing with Priberam. Using these three
parsers we prepare alternate companion files containing DT bi-lexical
dependencies. Of the 1348 sentences in the SDP test set, ERGa and ERGe

fail to deliver analysis for 11 and 24 sentences, respectively; thus, we
‘borrow’ the missing analyses from B&N outputs, much like we did in
Section 11 above.

Tables 14, 15, and 16 present SDP results for DM, PAS, and
PCEDT, respectively. For comparison, we include results of Priberam
from the SDP 2014 task with the original companion file generated by
task organizers. Compared to the original SDP 2014 results, moving
from Stanford to DT dependencies (derived by B&N in both cases)
appears to only have a small effect on semantic dependency parsing.
Our re-trained version of Priberam with the DT syntactic compan-
ion performs marginally below the published SDP 2014 results for

ERGa ERGe B&N SDP 2014
LP 90.88 90.77 88.96 90.23
LR 89.86 89.67 88.10 88.11
LF 90.37 90.22 88.53 89.16
LM 32.42 32.64 29.75 26.85

Table 14:
SDP open track results on DM

ERGa ERGe B&N SDP 2014
LP 92.04 92.19 91.91 92.56
LR 89.67 89.89 89.63 90.97
LF 90.84 91.03 90.75 91.76
LM 31.38 30.93 32.86 37.83

Table 15:
SDP open track results on PAS

ERGa ERGe B&N SDP 2014
LP 79.62 79.94 79.42 80.14
LR 75.67 75.82 75.45 75.79
LF 77.59 77.82 77.38 77.90
LM 11.05 11.20 10.98 10.68

Table 16:
SDP open track results on PCEDT
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DM and PCEDT, whereas for PAS there is a more pronounced drop
in semantic dependency LF when replacing Stanford with DT depen-
dencies. Different syntactic accuracy levels of our three DT parsers,
on the other hand, actually do project into downstream differences
in semantic dependency quality: For all three target representations,
the ERG parsers yield higher semantic dependency LF than B&N. The
differences are comparatively small for the PAS and PCEDT targets,
but for DM there is a large benefit in deriving the (more accurate) DT
syntactic companion from ERGa rather than from B&N. Seeing as DM
and DT both originate from DeepBank, while PAS as well as Stanford
dependencies originate from the PTB, our results suggest that it is
beneficial for the semantic dependency parsing task to rely on ‘corre-
lated’ syntactic dependency features: The overall best-performing SDP
pipeline for the DM target representation uses DT dependencies (from
ERGa), but the best PAS results are obtained with Stanford syntactic
dependencies (from B&N).

In conclusion, the results of this second extrinsic evaluation sug-
gest that semantic dependency parsing is more sensitive to syntactic
parser performance than negation resolution, especially when taking
into account that the maximum in-domain difference between ERGe

and B&N observed in Table 7 is 0.82% in LASc when using PTB tok-
enization and PTB PoS tags (as is also the case in the SDP 2014 task).

13 discussion and conclusion

Our experiments have sought to contrast state-of-the-art representa-
tives from three parsing paradigms on the task of producing bi-lexical
syntactic dependencies for English. For the HPSG-derived DT scheme,
we find that hybrid, grammar-driven parsing yields superior accuracy,
both in- and in particular cross-domain, at processing times compara-
ble to the currently best direct dependency parser; the grammar-driven
parser in our experiments, however, fails to parse a small percentage of
inputs in naturally occurring text. These results corroborate the Dutch
findings of Plank and van Noord (2010) for English, where more train-
ing data is available, and in comparison to more advanced data-driven
parsers. Extrinsic evaluation on semantic dependency parsing corre-
lates with the results of the in-domain intrinsic evaluation. However,
we do not find that this superior accuracy is reflected in superior ac-
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curacy in the negation resolution task. In most of this work, we have
focussed exclusively on parser inputs represented in the DeepBank and
Redwoods treebanks, ignoring 15 percent of the original running text,
for which the ERG and PET do not make available a gold-standard anal-
ysis. While a parser with partial coverage can be useful in some con-
texts, obviously the data-driven parsers must be credited for providing
a syntactic analysis of (almost) all inputs. However, the ERG cover-
age gap can be straightforwardly addressed by falling back to another
parser when necessary, as we did in our extrinsic evaluations. Such a
system combination should yield better tagging and dependency ac-
curacies than the data-driven parsers by themselves, especially so in
an open-domain setup. A secondary finding from our experiments is
that PCFG parsing with Berkeley and conversion to DT dependencies
yields equivalent or mildly more accurate analyses, at much greater
efficiency. In future work, it would be interesting to include in this
comparison other PCFG parsers and linear-time, transition-based de-
pendency parsers, but a tentative generalization over our findings to
date is that linguistically richer representations enable more accurate
parsing. It would also be informative to try a wider variety of down-
stream tasks to see which are sensitive to parser accuracy, as opposed
to dependency representation.
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