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This work concerns the evolving pattern of the lexical richness of the
corpus text of China Government Work Report measured by entropy,
based on a fundamental assumption that these texts are linguistically
homogeneous. The corpus is interpreted and studied as a dynamic sys-
tem, the components of which maintain spontaneous variations, ad-
justment, self-organizations, and adaptations to fit into the semantic,
discourse, and sociolinguistic functions that the text is set to perform.
Both the macroscopic structural trend and the microscopic fluctua-
tions of the time series of the interested entropic process are meticu-
lously investigated from the dynamic complexity theoretical perspec-
tive. Rigorous nonlinear regression analysis is provided throughout
the study for empirical justifications to the theoretical postulations.
An overall concave model with modulated fluctuations incorporated
is proposed and statistically tested to represent the key quantitative
findings. Possible extensions of the current study are discussed.

1 introduction
Corpus linguists and experts in related fields have shown increas-
ing interest in homogeneous texts, largely because homogenization
is often an effective and statistically trustful way to filter out the
unnecessary or, even worse, the distorted information from the raw
meta-corpus data, thus helping to uncover the principal linguistic
variables as well as the governing laws that a researcher is keen to
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find. Study surrounding homogeneous texts can be undertaken from
many perspectives, including homogeneity measurement, corpus se-
lection, and applications in language acquisition and sociolinguistic
analysis. For instance, the cross-corpora studies of Kilgarriff (2001),
Kilgarriff and Grefenstette (2003), and Denoual (2005) relied heav-
ily upon the notion of homogeneity. Kornai et al. (2006) focused on
texts’ homogeneity characterized by their stylistic features, particu-
larly those discernable through author tags. Crossley and McNamara
(2011) used word-based indices such as hypernymy and stem overlap
to test the intergroup homogeneities among L2 English learners and
cross-group heterogeneities between L2 and L1 writers so as to facil-
itate the understanding of the development of L2 writing. Sahlgren
and Karlgren (2005) confined homogeneity to the extent of topical
dispersion with empirical applications. The primary interest of the
current study is to understand how the complexity of a given set of
homogeneous texts progresses over time. For this purpose, the corpus
is treated as an interacting, adaptive, and constantly evolving system,
the evolution of which is regulated by the internal linguistic laws as
well as external sociocultural conditions at large.

Lexical richness, a primary indicator of verbal variation and so-
phistication and hence the degree of complexity profiled by an inter-
ested text, is a particularly useful tool for quantitative and compu-
tational linguistics, the application of which can be found in Smith
and Kelly (2002) for author attribution and in Johansson (2008) for
language proficiency assessment. Existing literature on lexical rich-
ness is mostly concerned with the impact of spatial factors, such as
how lexical richness is influenced by different writing styles or how
lexical richness will vary as text length increases. This includes the
above-mentioned references in this paragraph and the classic work of
Shannon (1951), where maximum entropy of English was analyzed
from an information science perspective, as well as the more recent
works of Brown et al. (1992) and Genzel and Charniak (2002) with a
similar focus. For all such examples, the data used and the core ques-
tions under investigation are cross-sectional, i.e., they are concerned
with linguistic features at a fixed time, even though the dimension
and contributing factors can be complicated.

The current study is fundamentally different in that it focuses
on the evolving structure of the lexical richness over a large span of
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time. In other words, it is dealing with large-scale longitude data in-
stead of static data at a fixed time. The study investigates the lexical
richness properties of a sequence of homogeneous texts, namely, the
texts of China Government Work Report (CGWR) spanning from 1954
to 2011. The entropies of these texts are calculated and treated as a
time series data. Under the framework of the dynamical complexity
theory, the study analyzes and accurately depicts how the entropy
of the CGWR texts progresses in a time span of over fifty years. Ad-
equate probes into the data and the regression results allow us to
trust on a concave and upper bounded exponential model to describe
the observed entropy evolving process. Further diagnostication of the
model approbates the differentiation of the whole process into two
phases, namely, an initial phase where the entropy grows sharply
with vehement fluctuations and a maturing phase where the process
approaches a stationary baseline with small, minuscule fluctuations,
where the fluctuations can be modeled by wavelet trigonometric func-
tions. Interpolation of the initial concave exponential growth and the
modulated fluctuations at the maturing phase yields a unified model
that captures both the long-term trend and the local variations.
The rest of the paper unfolds as follows. Section 2 explains the

CGWR corpus used for the study, followed by a preliminary analysis of
the raw entropy data of the corpus. Section 3 briefly describes the dy-
namic complexity theory and its applications in related areas, on the
basis of which postulations are drawn regarding the evolving pattern
of the entropic process under review. Section 4 presents a mathemat-
ical model for capturing the global structure of the time series of the
entropy data, followed by a rigorous assessment of the validity of
the model. Section 5 is set out to improve the model’s accuracy and
predictive power by incorporating the local microscopic fluctuations
of the process. Concluding remarks and possible future directions are
discussed in Section 6.

2 corpus, measurement,
and descriptive statistics

2.1 Corpus of CGWR
The corpus used for the study consists of the CGWR written texts
archived from 1954, when the first CGWR was published, to 2011,
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excluding the years that the CGWR was not issued: 1961–1963, 1965–
1974, and 1976–1977. Each text contains on average 22,373 Chinese
characters with a standard deviation of 8256.5, making the size of
the corpus approximately 962,000 characters in total. The archives of
the CGWR corpus are publicly accessible at the webpage of the cen-
tral government of China www.gov.cn. The CGWR, as one of the most
important public documents in China, is drafted in accordance to a
stable and formatted style, covering various major aspects of the so-
ciocultural, political, and economic life at national level, as well as
the events and projects of significance of the corresponding year.

While the sociopolitical importance of the CGWR texts is self-
evident, it is their linguistically homogeneity feature that most con-
cerns the current study. Although there exist studies such as Gries
(2006) suggesting using complex techniques to quantify homogene-
ity, the notion of homogeneity in corpus linguistics appears rather
wide and informal, as felt by Kilgarriff (2001), for instance. As to the
CGWR texts in the current study, they are topically homogeneous from
year to year although the emphasis may vary. They are drafted by the
same institutional author whose writing style seems to be even more
consistent than texts by individual authors. Moreover, the production
of CGWR is periodic and subject to a strict scrutiny and modification
process set by both linguistic norms and political operations.
2.2 Entropy measure for lexical richness
Lexical richness refers to the size of the vocabulary that is employed
in language generation and how diversely the words are used. Intu-
itively, it reflects the degree of variations and sophistications of a spo-
ken or written text, the production of which must of course adhere to
the constraints and rules imposed by the language being used. While
lexical richness is something that can be either clearly or vaguely per-
ceived in daily conversations, assigning a numeric value to it becomes
indispensable when scientific research of corpus linguistics is being
conducted on a massive scale. The numeric measure adopted in the
current study to quantify the lexical richness of the CGWR texts is
entropy, the concept of which originates from physical sciences, par-
ticularly thermodynamics.
Consider a Chinese corpus text, denoted as T , which has n dif-

ferent characters indexed with 1, 2, ..., n. Assume that the relative
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frequencies of each of the n characters appearing in the corpus are p1,
p2, ..., pn, then the entropy of the Chinese text is defined as

Entropy(T ) = −
n∑

i=1

pi ln(pi).

Originally introduced in thermodynamics for quantifying the unpre-
dictability of the microscopic state of a physical system at any given
time, entropy has now become a widely accepted concept and a tested
measure of uncertainty and/or complexity in many disciplines and in-
terdisciplinary fields such as communication science, ecology, biology,
and cosmology, to name a few. As useful as it is, what entropy really
measures can be dependent on the context of use and field knowl-
edge of specific disciplines. In particular, it could be naïve to treat
the entropy in classical thermodynamics as equivalent to the Shan-
non entropy, despite that they take the same form in calculation. An
insightful ontological discussion on entropy can be found in Wicken
(1987), for instance. On the other hand, when used for quantifying
lexical richness as in the current study, entropy should be best un-
derstood as a measure of the degree of complexity that the original
system, usually composed of finite components and limited number
of laws governing the interactions between the components, has de-
veloped as of today. For a fixed time horizon, what is emphasized
here is the compositional complexity of the linguistic construct of a
text (Jarvis 2013).
It is a simple calculation, using the above formula, to show that

the maximum possible value of entropy for T is achieved when all
the characters in it are different from one another, in which case
Entropy(T ) = ln(n), where n is both the total number of charac-
ters (tokens) and the number of unique characters (types) appear-
ing in the text. Nevertheless, the entropy of any meaningful text
is in reality far below this number because, first, the total number
of unique Chinese characters (or the total number of types of any
language in general) is capped; and second, the distribution of all
the unique characters (or the types of any language) is far from,
not even close to, uniform distribution. As a matter of fact, the sec-
ond rationale of the above partly echoes the well-known Zipf’s law.
Take the CGWR of 1954 as example, Table 1 provides a summary
of key statistics relevant to the current study. And Figure 1 pro-
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Figure 1: Frequency distribution plots of CGWR 1954 text

vides the corresponding frequency plots, where the left plot is in the
original scale, and the right plot is scaled by the natural logarithm.

Table 1:
Descriptive

statistics of the
CGWR 1954 text

Year Total
unique
characters

Total
characters

TTR Entropy Maximum
entropy

1954 1205 23168 0.052 5.8601 10.0505

3 theoretical framework
and related research

3.1 Overview of dynamic complexity theory
The core theoretical foundation that forms the basis for the assump-
tions of the current paper, and according to which the statistical mod-
els are constructed, is the theory of the dynamic complexity system.
The theory, despite its diverse origins and applied fields, is formulated
and commonly accepted nowadays insofar as it corrects the tendency
in classical approaches in physical sciences to explain both natural
and human phenomena with over-simplified assumptions and static
mechanisms. Given its multidisciplinary and interdisciplinary nature,
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it is not easy to portray a full genealogy of dynamic complexity (some
antecedents of complexity theories from linguists’ perspective can be
found in Larsen-Freeman and Cameron 2008, pp. 2–4). Early mathe-
matical usage of complexity using the concept of entropy is usually
traced back to classic thermodynamics (Bailyn 1994), the focus con-
cern of which is how heat is transferred in a physical system and how
the system evolves in the irreversible time direction. Dynamic com-
plexity is, in a sense, a general postulate of the second law of thermo-
dynamics in broader disciplines beyond physics and chemistry.

It is important to keep in mind that the complexity system contex-
tualized in contemporary scholarly research is far more “complicated”
and multifaceted than its counterpart in thermodynamics. Among oth-
ers, one notable difference is that traditional thermodynamics only
deals with an isolated physical system, allowing no matter or energy
exchange across the boundaries. Hence, the law governing the entropy
process therein, as complex as it can be, is deterministic. Fundamen-
tally different from classic sciences, the dynamic complexity theory
used in this study views any examined entity as a complex and con-
stantly evolving system, the members or components of which are in-
teracting with each other, each evolving as a sub-system under the
constraints imposed by the system as a whole. Exchange of matter,
energy, and information is allowed not only among the interacting
make-ups, but also between the system and the external environment
in which the system is sustained. Almost as a consequence, it allows for
self-organization, chaos behavior, nonlinear progression, and phase
changes (Larsen-Freeman and Cameron 2008).
3.2 Application in related research
Nowadays, dynamic complexity theory has proven a useful framework
for many applied fields in physical and social sciences. Direct or indi-
rect introduction of dynamic complexity into studies of linguistic phe-
nomena has led to fruitful results on a number of frontiers, particularly
in the past two decades. For example, a dynamic language develop-
ment approach was taken by Verspoor and Behrens (2011) to explain
the role of frequency in L1 learning and the role of L1 in L2 learn-
ing. Spivey (2007) asserted the continuity of mind, emphasizing the
dynamic and complex characteristic of human’s cognitive, hence lin-
guistic function. Meara (2006) adopted a similar approach for model-
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ing vocabulary learning. A thorough treatment of linguistic complexity
theory is presented in Larsen-Freeman and Cameron (2008), where the
core rationales and properties defining “complexity systems” in lan-
guage study are meticulously laid out. Many studies, such as Blevins
(2004), Croft (2008), and Lee and Schumann (2003), fall within the
framework of evolutionary linguistics, which partly overlaps the idea
of dynamic complexity theory, particularly when the self-adaptive na-
ture of languages is underscored. A similar approach was taken by
Wang (1979) in accommodating the diffusions and randomness ob-
served in language changes. Dynamic complexity is also presented in
the competition model developed by MacWhinney (2007) in account-
ing for the spectrum of interrelated phenomena arising from FLA and
SLAs. Useful as they are, the applications of the dynamic complexity
theory in most of the existing studies are lacking a unified measure,
and the analysis to date has been mostly qualitative in nature. Our
statistical modeling, in part, exemplifies an attempt to bridge this gap
in the focused area of corpus linguistics.
3.3 Pertinence to CGWR
According to Larsen-Freeman and Cameron (2008), a complex sys-
tem is “a system with different types of elements, usually in large
numbers, which connect and interact in different and changing ways”
(p. 26). While others such as Verspoor et al. (2011) have summa-
rized in different ways, virtually all the theorists agree that dy-
namicity and spontaneous changes between both interconnected el-
ements as well as the system as a whole are the central property
for a system to be complex. For the CGWR to be characterized
as such, the constituent agents, from a complex system perspec-
tive, are the Chinese characters, words, phrases, idioms, and proper
nouns commonly related to the sociocultural, political, and eco-
nomic life of contemporary China. Not only are these components
completely interconnected and interacting with each other sponta-
neously, but the discourse structure and rhetoric strategies pertain-
ing to them are also constantly changing to fit the linguistic func-
tions that the CGWR text is supposed to perform. When an en-
tropic metric is imposed macroscopically, the system is unsurpris-
ingly manifested as a self-adaptive process, evolving from simple
primitive forms to more complicated ones under regulations of both
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Figure 2:
Most frequent
content-words in
the CGWR texts
of 2009–11

formal linguistic rules and peripheral sociolinguistic norms of the
society.
Figure 2 provides a diagram of the changes in the content-words

appearing most frequently in the CGWR texts from the years 2009,
2010, and 2011, which aptly reveals the dynamic quality of the CGWR.
At least three major factors contributing to the relative changes in
the ranking and frequency of these content-words can be identified
as follows. First is the topic continuation of CGWR over time, repre-
sented by the thick solid arrows (in green) in the diagram. For ex-
ample, “to develop” or “development” played a central topical role
in the CGWR in the three years under analysis; it was consistently
the most frequently occurring content word across the CGWR texts
during all three years (117 for 2009; 123 for 2010; 139 for 2011).
Other notable topical words include “economy”, “to build”, and “to
strengthen”, the relative usage of which saw more fluctuations. Sec-
ond is the dynamics of lexical networks over time, denoted by the thin
curve segments (in light steel blue) in the diagram, where an edge in
the network can be defined by synonyms such as tui1jin4 (to boost)
and fa1zhan3 (to develop), for instance; or a syntactic dependency as
in the concurrence of fa1zhan3 (to develop) and jing1ji4 (economy),
for instance. The third factor figuring in the dynamic quality of the
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CGWR consists of the complexity explicated by the social, cultural,
political, and economic contexts in which the CGWRs were drafted.
This type of complexity, conceptualized by the ellipses as well as the
thick dashed arrows (in dark steel blue) between such ellipses in the
diagram, reflects the co-adaptive nature of the CGWR, where it al-
lows for the exchange of energy and matter across the boundaries
and draws on resources and influences from the external sociocul-
tural environment in general. As such, a full understanding of the
linguistic dynamism of the CGWR texts is not probable without ref-
erence to the parallel social, cultural, political, and economic realities
of the society.
Of course Figure 2 is far from complete in depicting the infinite

microscopic complexities belonging to the system under study. It only
provides a glimpse, from a rather limited angle, of the vast lexical
dynamics present in the CGWR texts from year to year. Many sub-
tle changes caused by lexical inertia or a variety of cohesions are
not easy to describe accurately, neither can the emergence of new
words driven by technology advancement or socioeconomic shifts, for
instance, be fully accounted for. Nevertheless, despite the lack of a
complete microscopic description, the dynamic nature of the CGWR
texts is sufficiently evident from this illustrative diagram. After all,
the macro evolving pattern instead of the micro and local cause is
the focus concern of the current investigation. Moreover, the goal of
a dynamic approach, according to Verspoor et al. (2011), “is not to
list possible causes for change and development but to describe the
process of change and development itself by means of tracing the it-
erative change over time”. Table 2 identifies the key properties of the
CGWR serving to define its dynamic complexity nature. The items in
the Field column of the table were pointed out by Larsen-Freeman and
Cameron (2008) as the defining features of a system being complex.
The second and third columns of the table are adapted from the same
reference (p. 37).

4 global entropic model for cgwr texts

To properly envision a mathematical model that appeals to the dy-
namic nature of CGWR explained in the previous section and simul-
taneously captures its general entropic evolution pattern, it is reason-
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Field Ecology Classroom
language learning CGWR

Agent individual
animals

students, teachers,
languages

characters, words,
proper nouns

Heterogeneity eating,
nesting,
breeding,
habits

abilities,
personalities,
learning demands

meaning, lexical
relationships

Organization schools,
herds, food
chains

class, groups,
curricula,
grammars

content vs.
function,
part of speech,
thematic group

Adaption hunting,
mating,
security

imitation,
memorizing,
classroom
behaviors

derivation,
metaphor,
situational context

Dynamics predator-prey
interactions,
competition

classroom
discourse, tasks,
participation
patterns

rhetorical force,
styles,
sociocultural
influence

Emergent
behavior

extinction,
niches

language learning,
class/group
behavior, linguae
francae

internet language,
word fashion,
popularity

Table 2:
Defining features
of CGWR and
other complex
systems

able to start with a qualitative exploration of the empirically observed
data. Figure 3 presents the scatterplots of the calculated entropies per-
taining to the CGWR texts, where time denotes the number of years
since 1953, skipping those years in which the CGWRwas not issued, as
pointed out in section two (the same definition applies to all the subse-
quent models and plots). The upper plot in Figure 3 corresponds to the
data set with all punctuation deleted, and the lower plot to the data
set with all punctuation included. These two series show very similar
tendencies, but the entropy values for the data containing all punctua-
tion are systematically lower than those with all punctuation deleted.
The reason for such a difference is that punctuation constitutes ex-
tra linguistic constraints imposed on the text; and according to the
dynamic complexity theory, the more imposed constraints, the lower
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Figure 3:

Scatterplot of the
entropic processes
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diversity of a system, with other conditions fixed. Whether punctua-
tion should be included or not depends on the purpose of study. There
exist examples where punctuation spaces are ignored (Shannon 1951,
for instance) and also examples where they are included (Brown et al.
1992). For the subsequent analysis, all models are constructed with
punctuation included, but they are equally valid for the scenario with
punctuation deleted.

4.1 Some observations
It is a palpable observation that CGWR, as a dynamic complex system,
is generally increasing in entropy. The ascending trend of the entropic
process is first a manifestation of the increasing complexity of CGWR
in terms of lexical choice, syntactic structuring, and discourse plan-
ning. It reflects the many and changing ways that all such constituents
can interact, mutate, and concatenate with each other. To be able to
appreciate this overall pattern, it helps to realize that a third-party
reader will more likely to encounter new words, advanced semantic
constructs, sophisticated cohesions, unprepared concepts, etc. when
reading the CGWR texts in chronological order. On the other hand,
CGWR is inseparably connected into the social and societal dynam-
ics it purports to describe. This sociocultural-ecological perspective
of languages (see Steffensen and Fill 2014; also Larsen-Freeman and
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Cameron 2008) allows us to view the CGWR as a linguistic vessel of
the society’s events and histories. Ideally, the entropic process of the
CGWR text shall behave in the same way as the entropic process of
the societal focus it depicts, although it is quite unlikely, in reality, for
such dual processes to be exactly parallel to each other. Consequently,
as the complexity of human society increases (technologically, cultur-
ally, and economically), so does that of the associated linguistic agents
such as the CGWR under study.
On the other hand, because the interacting linguistic components

such as characters or punctuation must maintain certain lexemic, et-
ymological and grammatical structures so as to sustain the linguistic
functions of the system, the rate of increase of entropy of a homoge-
neous text with a roughly constant size will eventually decline, con-
strained by the linguistic and sociocultural conditions. Analogous ar-
guments apply to the dual process of human society. Although inter-
actions between parts, self-organization, randomness, nonlinear be-
haviors, even chaos and bifurcations are allowed in human organi-
zation, the level of possible complexities must be capped due to the
constraints of, for instance, laws, cultural norms, limited capacity of
production, and ethnic bonds. These conditions and constraints are
necessary to conserve the defining properties of the system and pre-
vent it from malfunctioning.
Lastly, one should expect fluctuations in the entropic process of

the CGWR texts. This is different from the classic statement of the sec-
ond law of thermodynamics, in which the entropy is asserted to be
monotonically increasing. The difference is that a government publi-
cation is not an isolated system. Instead, it needs to accommodate the
addition or deletion of lexicons, and must also allow for an inflow of
foreign discourse styles, among other elements. Furthermore, such a
text is subject to artificial modifications in terms of topic, theme, or
size of text, in reaction to the changes in the human society system
it endeavors to depict. Additionally, the fluctuations of the entropy
process of a homogeneous text should be vehement in the initial stage
and moderate in the maturing stage. The rationale for this, from a self-
organization perspective, is that the initial stage of a system retains
much less structural inertia than the maturing stage. Thus, random
and nonlinear mechanics can cause dramatic changes to an emerging
system with much less cost.
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To summarize, the overall trend of the entropic process of the ho-
mogeneous CGWR texts is an upper bounded increasing function in
time, where the trend undergoes a fast increasing initial phase before
flattens to a saturated phase in the long term. In addition, fluctuations
are accompanied throughout the whole process, where the magnitude
of the fluctuation is large for the initial phase and small for the satu-
rated phase.

4.2 A basic model for the principal trend
For quantitative modeling purpose, the study embraces a mathe-
matical function having the following characteristics: 1) it increases
rapidly in the beginning, plateauing as time goes on; 2) it is up-
per bounded and eventually flattens to a horizontal line, which is
the upper limit of the expected entropy for the given length of the
text. This leads to the following choice of equation (1), a gener-
alized exponential type function with such postulated growth pat-
terns:

E = b1 − b2e−b3 t , (1)
where t denotes time (measured in years) since the beginning of the
practice of CGWR, and e is the exponential function. The same no-
tation and definition apply to following equations and discussions.
The choice of model (1) is not for the convenience of data anal-
ysis, although the exponential function, the second term of (1), is
indeed a built-in class in many statistical packages, such as SPSS.
It is selected because many natural phenomena, including those in
linguistic processes, have been shown to develop in that way. For
instance, Szmrecsanyi (2005) showed how the percentage of per-
sistent pairs in a text, as a function of the textual distance of the
pair, is decreasing exponentially. Learning effectiveness of repeti-
tion priming was reported to decay exponentially as a function of
the length of the lag time (McKone 1995). Beeferman et al. (1997)
provided an empirical study on why a model of exponential type
can be used to describe the attractive and repulsive distances be-
tween word pairs with high mutual information. Despite these al-
most ubiquitous exponential phenomena being observed, a poten-
tial criticism might still be raised that all such examples are mod-
eling a decaying process rather than an increasing one. But one
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should note that the usual decay model taking, for example, the
form y = ae−bt , is actually a special case of (1) when the signs
of the parameters are not restricted. There is a bound parameter
for the usual decay model also, in the sense that zero is its lower
bound.

The procedure to find the best estimates of the parameters appear-
ing in model (1) as well as a procedure for model evaluation, under
the normality assumption of errors, can be facilitated by statistical
packages such as Matlab or SPSS. Precautions still need to be taken,
though, in terms of choosing reasonable initial guesses of the target
parameters and avoiding common pitfalls associated with nonlinear
regression, e.g., over-fitting. The least square optimization procedure
yields the following estimates for the model defined by equation (1):

b1 = 6.0222

b2 = 0.3089

b3 = 0.0580

The corresponding standard errors for the parameter estimates are
0.0558, 0.0483, and 0.0301. The R-squared and adjusted R-squared
statistics for the model are 0.5406 and 0.5177, respectively. Although
the R-squared value does not seem impressively high, one should keep
in mind that the validity of a nonlinear model is not solely, and not
even largely, determined by the magnitude of the R-squared value
when the general trend of a process is the main concern of a study. For
a more rigorous explanation of why the R-squared value should not
be a main concern in trend analysis, one can refer to Wittink (1988).
On the other hand, the R-squared value of the basic model (1) can
indeed be improved, as discussed in the next section. The t-statistics
for parameters are 107.8670, 6.3982, and 1.9262, with correspond-
ing p-values of 0.0000, 0.0000, and 0.0305 (accurate to four decimal
places), respectively. Clearly each t-statistic is large enough and each
p-value is small enough, which strongly justifies the statistical sig-
nificance of each individual parameter in model (1). The calculated
F-statistics for the model is 24.1258, with the corresponding p-value
of 1.1870×10−7. The overall explaining power of the model is strong.
Figure 4 plots the fitted curve of the global model, together with a
95% confidence band of the regression.
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Figure 4: Plot of the original data (the circular points), basic global model (the
connected curve), and 95% confidence band of the regression (the region be-
tween the dashed curves)

4.3 Model the local fluctuations
The backbone structure of the dynamic evolution of the entropy pro-
cess is implied by the concave exponential model defined by equa-
tion (1), yielding not only a quick growth feature in the beginning of
the process, but also a quick plateau effect when time is large. This
said, the model does not capture the microscopic structure of the pro-
cess, which exhibits large or small fluctuations at all times. There are
standard statistical methods that might help to improve the model ac-
curacy, such as smoothing and autoregression. But a relatively simple
and more direct approach is to introduce the wavelike functions to the
model, namely, trigonometric sine or cosine functions.

Notice the fluctuation of entropies is initially more vehement and
becomes moderate later on as the process approaches steady state. It is
therefore plausible to separately analyze the process in two stages: an
initial quick growth stage where the process is more volatile, and the
steady stage where the growth momentum is mild and the fluctuation
is moderate. A clue to this can be obtained by an expository check of
the scatterplot of the entropy, where the 12th data point appears to be
the borderline after which the series becomes relatively stationary. To
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validate statistically, one can appeal to the unit root test, a standard
procedure in time series analysis for testing whether a given series is
stationary or not at a prescribed level of confidence. The procedure
applied to the 31 observations, i.e., the suggested steady stage of the
original entropic time series, rejects the null hypothesis that the series
under testing has a unit root, or equivalently affirms the hypothesized
stationary nature of it, and does so at a 90% confidence level. To be
specific, the augmented Dickey-Fuller statistic is −2.7603. The critical
values of the test are −2.6210, −2.9640, and −3.6702 at, respectively,
the 90%,95%, and 99% confidence levels.

Now we turn to the modeling of the steady state with a cutting off
point set at the 12th point. To model this truncated series of data with
the fluctuation characteristics being the core concern, the following
trigonometric functions are chosen:

E = k0 +
K∑

j=1

k1( j) sin (k2( j)t + k3( j)). (2)

When K is specified, the parameters can be determined using the
same regressing procedure carried out for the model defined by equa-
tion (1), and the regression evaluation can be performed accordingly.
The only new issue that may complicate the procedure is the choice
of K, which defines how many trigonometric functions are to be used
in the model. With homogeneity of the data and validity of the model
(2) in mind, one can apply an iterative scheme to find such an optimal
K numerically. For the current analysis, the following rules of thumb
were followed in selecting the optimal K, namely, i) the increase in
adjusted R-squared divided by the increase in R-squared value is ap-
proaching maximum; ii) the majority, if not all, estimates are signif-
icant enough, judging by the corresponding t-statistics or p-values;
iii) the overall F-statistics for the model is significant enough. By these
rules of thumb, K=4 is found to be optimal for the model under re-
view. Figure 5 presents the comparison plots for cases K=2, 3, 4, 5.
Table 3 summarizes the key regression statistics, where K=4 is ob-
served as the choice of how many sine functions to include for best
fitting the data.
One comment to add is that there appears to be a relatively large

gap between the R-squared value and the adjusted R-squared value.
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Figure 5:

Plot of the steady state
series and the fitted curves

using trigonometric
functions with K=2, 3, 4, 5
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K=2 K=3 K=4 K=5
R-squared 0.1801 0.4197 0.6761 0.7131
Adjusted R-squared 0.0248 0.1710 0.4602 0.4262
F-statistics 0.9155 1.7682 3.3054 2.6515
p-value for F-test 0.5002 0.1325 0.0099 0.0309

Table 3:
Regression statistics for
the steady state series
with different K

This is mainly a consequence of the small size of the data set. When the
sample size is large enough compared to the number of independent
variables, the adjusted R-squared value should be virtually the same as
the R-squared value itself. This also implies that the model will work
better as the CGWR corpus increases in size.

5 improved global model
The improvement of the global model can be achieved by a consolida-
tion of the overall concave exponential structure and the trigonomet-
ric microscopic structure of fluctuations. In other words, the exponen-
tial component and the trigonometric component jointly depict the
evolution of entropy with high resolution at local and global levels.
Specifically, the following model is proposed for this purpose:

E = b1 − b2e−b3 t + b4 sin (b5 t + b6)e
−b7 t . (3)

The product term of the exponential factor and the trigonometric fac-
tor corresponds to the interactions between the general trend and lo-
cal fluctuations. The magnitude of the wavelets yielded by the product
term is high when t is small, and low when t is large, making the term
a suitable choice to describe the fluctuations observed in the CGWR
process. The parameter estimation procedure is same as that applied to
model (1). Actually the values of the estimated parameters for model
(1) can be used as part of the initial guesses for the parameter vector
for model (3). Going through the nonlinear regression procedure leads
to the following parameter estimations:

b1 = 6.0169 b2 = 0.3105

b3 = 0.0620 b4 = 0.1721

b5 = 1.2703 b6 = 0.9612

b7 = 0.0740
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The model is statistically significant, with a sound explaining
power, as shown in all critical aspects of observed statistics under
scrutiny via various standard tests. The t-statistics for all the parame-
ters b1−b7 are sufficiently large and the p-values for all the parameters
b1− b7 are sufficiently small, where the observed smallest t-statistic is
2.4950 (for the parameter b3), corresponding to a p-value of 0.0086.
The significance of each parameter can also be assessed by how far
away the confidence interval of the estimate is from zero, at the pre-
scribed confidence level. Computation shows that the 90% confidence
intervals for all the parameter estimates are far enough from zero.
For instance, the ratio between the estimate of b3 and the correspond-
ing half confidence interval is about 1.4797; and it is the lowest one
among the seven such ratios. The R-squared and adjusted R-squared
values are 0.7432 and 0.7004 respectively, both at acceptable lev-
els for such a highly nonlinear model with frequent fluctuations. The
overall validity of the model is particularly shown in the significance
of the F-statistics, which is 17.8450, and the corresponding p-value,
which is 1.3692 × 10−9. In addition to the significance of each indi-
vidual parameter b1− b7, none of the paired correlations between the
estimated parameters is higher than 0.8 in absolute value except for
parameters b3 and b1, the correlation between which is about −0.93,
implying that the model basically does not have the problem of pa-
rameter redundancy and over-fitting. The full correlation matrix of
the estimated parameters for model (3) is provided in Table 4.

Table 4:
The correlation
matrix of the
estimated

parameters in
the global
model (3)

b1 b2 b3 b4 b5 b6 b7

b1 1
b2 0.4527 1
b3 −0.9285 −0.1677 1
b4 −0.0462 −0.0229 0.0443 1
b5 −0.1310 0.1510 0.1864 −0.1057 1
b6 0.1885 −0.1980 −0.2620 0.1398 −0.7675 1
b7 −0.0576 −0.0212 0.0551 0.7454 −0.0727 0.0945 1

It can be verified, however, that one or more of the above conclu-
sions will be violated or weakened when one or more trigonometric
terms are added, which shows that the model in the current formula-
tion is optimal in terms of how many corrective terms need to be in-
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Figure 6: Plot of the original data (the circular points), improved model (the con-
nected curve), and 95% confidence band of the regression (the region between
the dashed curves)

corporated, given the current component functions and format of the
model. For example, adding another trigonometric term can slightly
increase the R-squared value to 0.7484, but the adjusted R-squared
value will drop to 0.6214. Figure 6 plots the fitted curve and the cor-
responding 95% confidence band of the regression.

Although the above internal regression procedure appears to fa-
vor model (3), it is a reasonable concern that it does not overfit the
data, especially because the available CGWR texts are relatively scant.
The key issue here is whether adding more parameters into model (1)
is a worthy effort when extrapolative prediction is also taken into con-
sideration. Since we are mainly concerned with the evolution pattern
of the CGWR text in the irreversible time direction, the appropriate nu-
meric overfitting test to apply will be the out-of-sample prediction test,
i.e., assessing which model can better forecast the future movement
of the entropic process of the CGWR based on the past information.
Many overfitting statistics have been developed and used for time se-
ries model selection. Here, I choose the three most widely used statis-
tics, namely, mean squared error of out-of-sample prediction (MSE),
mean absolute error of prediction (MAE), and mean absolute percent-
age error of prediction (MAPE) to compare the model (1) and (3). In
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addition, I present two more statistics for comparison: one is predic-
tion error variance (PEV), measuring how consistent the errors are;
and the other is the Theil statistic (Theil) measuring how relatively
effective the model is compared to a naïve model, where the future
value is simply predicted as the current value. For detailed discussion
of these statistics as well as their relevance in assessing the overfitting
of time series modeling, one can, for instance, refer to Bisgaard and
Kulahci (2004) and Fildes (1992).

To carry out the out-of-sample cross validation, one needs to de-
cide on a cutting point on the time direction. Thereafter the sequential
data are used as the pseudo future cases against which the predicted
values are compared. While the choice of the size of this test set is not
completely rigid, this study follows the fourth quarter holdout rule,
i.e., the rounding point of the 25% of the time series from the end
as the starting point of the out-of-sample prediction test, which has
been agreed upon by most of the theorists and practices for time se-
ries modeling (Hastie et al. 2009). Table 5 provides the 1-step-ahead
and 3-step-ahead forecast statistics of the model (1) and model (3),
where it is evident that the one-year forward movement of the en-
tropic process is consistently more predictable with model (3) than
with model (1) under all the chosen testing criteria.

Table 5:
Out-of-sample
test statistics
for model (1)

and (3)

MSE MAE MAPE PEV (10−5) Theil
1-step-
ahead
forecast

model (1)
model (3)

0.0009
0.0007

0.0232
0.0222

0.0039
0.0037

0.9390
0.5535

0.5255
0.4169

3-step-
ahead
forecast

model (1)
model (3)

0.0004
0.0004

0.017
0.0182

0.0028
0.0030

0.4450
0.3086

0.7879
0.7778

It is worth noting that the Theil statistics for both models are at
an acceptable level, affirming the usefulness of both the models, re-
gardless of the difference in the out-of-sample prediction tests. On the
other hand, the improvement in prediction accuracy of the model (3)
does not seem to compensate for its increased complicatedness, when
judged by the multi-step-ahead forecast statistics. To interpret these
statistics, it is worthwhile to refresh the idea that “overfitting is not
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an absolute but involves a comparison” (Hawkins 2004). Similar pre-
cautions have been expressed by Bisgaard and Kulahci (2004) – that
numerical and statistical tests of overfitting should not be applied me-
chanically without reference to the research contexts and purposes.
Because the CGWR is viewed in the current study as a dynamic com-
plexity system which intrinsically allows for fluctuations, model (3)
appears a plausible choice when a near future prediction – such as
one year in advance – is the main concern. One should nevertheless
be aware that a more complete picture of the progressive pattern will
only be visible as more real data are accumulated over time.

Lastly, the above models (1) and (3) are based on the assumption
that the fitted residuals are normally distributed, which needs to be
justified. While an apparent violation of normality can often be de-
tected by simple graphical methods such as probability plot or QQ
plot, numerical tests are necessary for subtle cases. Here four widely
used procedures, namely, Kolmogorov-Smirnov (KS) test, Lilliefors
(Lillie) test, Shapiro-Wilk (SW) test, and Anderson-Darling (AD) test
were run and the corresponding results are presented in Table 6. For
relevance and comparative powers of these tests for normality test-
ing, one can refer to Razali and Wah (2011). For model (3), the null
hypothesis (H0) that the residuals are normally distributed is solidly
affirmed as it passed all normality tests with sufficiently high p-values.
On the other hand, the normality assumption is only marginally satis-
fied for model (1). When the significance level of the test, defined as
the probability of the Type I error, is set at 0.01, model (1) can pass
all the normality tests; but when the significance level is set at 0.05,
it only passes KS test and fails all the rest (see Table 6 for detailed
statistics).

This is to some extent understandable, as the CGWR process un-
dergoes large fluctuations in the initial stage. Model (1) was created to
capture only the main trend of the process in the first place, where the
local fluctuations were not accounted until the trigonometric terms
were introduced as in model (3). Because the variability of error
induced by model (1) systematically decreases from large to small,
the slight non-normality of it can be easily rectified. One convenient
method for this purpose is to appeal to what is called the linearization
transformation of random variables (Schabenberger and Pierce 2002;
Chatterjee and Hadi 2012). In our case, the desired transformation is
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Y = ln (b1 − E),

where E is entropy, the response variable of model (1), and b1 =
6.0222 is the parameter appearing in model (1) defining the asymp-
totic upper bound of the entropic process of CGRW. A simple algebraic
operation based on the above transformation yields a linear model of
the following form:

Y = c1 + c2 t. (4)
The rest of the original parameters of model (1) can be recovered from
the parameters of the linearized model by b2 = ec1 and b3 = c2. A Sim-
ple least square regression gives the best estimation of the transformed
parameters as c1 = −1.2620 and c2 = −0.0633. Indeed, the transformed
model defined by the above linear equation neatly satisfies the nor-
mality requirement, where the statistics of the corresponding normal-
ity tests are also tabulated in Table 6.

Table 6:
Statistical tests
for the normality
of the models

KS Lillie SW AD

Model (1)

H0 (0.01 signifi-
cance)

accepted accepted accepted accepted

H0 (0.05 signifi-
cance)

accepted rejected rejected rejected

p-value 0.3474 0.0363 0.0137 0.0313
Statistic 0.1387 0.1387 0.9321 0.8182

Model (1)
Log-Trans-
formed

H0 (0.01 signifi-
cance)

accepted accepted accepted accepted

H0 (0.05 signifi-
cance)

accepted accepted accepted accepted

p-value 0.9687 0.8230 0.3572 0.5978
Statistic 0.0717 0.0717 0.9716 0.2987

Model (3)

H0 (0.01 signifi-
cance)

accepted accepted accepted accepted

H0 (0.05 signifi-
cance)

accepted accepted accepted accepted

p-value 0.9175 0.6750 0.4016 0.4216
Statistic 0.0812 0.0812 0.9731 0.3672

One comment I would like to add is that the linearization pro-
cedure via logarithm transform only leads to the significance of nor-
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mality for the modeling; it does not improve the model accuracy. In
particular, model (1) is still relatively inferior compared to model (3),
judged by the out-of-sample predicting errors, regardless it is ex-
pressed in terms of the original upper-bounded exponential function
or the logarithm transformed linear function.

6 concluding remarks

Taking the CGWR as the test corpus, the current work investigates
how lexical richness of a series of homogeneous texts evolves over a
large time horizon. The dynamic complexity theory is shown to be a
pertinent and valid foundation in the current study in the context of
the existence conditions of homogeneous texts. It provides a relevant
method for looking at the CGWR corpus as an open, dynamic, hetero-
geneous, and self-adaptive system. Additionally, the strong, distinc-
tive, and mathematically describable properties exhibited in the asso-
ciated time series of the entropic data are naturally hinted by the key
theoretical implications of a dynamic complexity system. Although
the base functions used in our modeling – a class of concave down
exponential functions and a class of periodic trigonometric functions
– seem rather simple, it takes a novel combination of them together
with their interactions to produce an effective quantitative model. The
models and results of the current work demonstrate that the dynamic
complexity approach is not only metaphorically plausible, but is also
conducive to rigorous quantitative conclusions.
A major limitation of the current study is the small size of the

available data, resulting from the relatively short history of the CGWR
practice. Given that the CGWR is an institutional writing process
which is subject to the influence of the sociocultural environment in
which it is embedded, it may be hasty to assume that the CGWR will
reach its peak of lexical richness within fifty years since its inception.
Because of this limitation, the models contained in the current study
could have only provided a partial picture of an even larger evolv-
ing pattern which may not stand out until sufficient time has passed.
For instance, it is possible that the periodicity of local fluctuations,
described by the parameter b5 in model (3), will not keep constant
for an arbitrarily long time. In addition, it could be the case that the
saturation state observed in the current paper is not the ultimate one
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when the future evolution of the CGWR process is taken into consider-
ation. Among other reasons, phase change is known to be a common
characteristic of linguistic dynamics (Larsen-Freeman and Cameron
2008), implying the probableness that the saturation currently ob-
served is only one of the multiple local saturations to come when the
data is large enough. Figure 7 presents a simulated illustrative exam-
ple where an entropic process undergoes three growth phases; each
can be roughly estimated by model (3). This is in spite of the observa-
tion that all such three phases are again subordinated to a large-scale
exponential decay model when interpolated together. More examples
of multi-phase linguistic dynamics can be found in Larsen-Freeman
and Cameron (2008), Verspoor et al. (2011), and Stachowski (2013),
for instance.

The models provided in the current paper, when extrapolated
backwards, can also provide useful hints to the pattern of language
changes in historical linguistic studies. In particular, model (3), where
it is appropriate to apply, tends to hint that language changed more
dramatically in the farther past than in more recent times. To cite
one example, the occurrence of paratactic constructions in written En-
glish such as left-dislocated NPs had undergone a roughly exponential
decay during the years 950–1910 from Old English to Early Modern
English and to Modern English, where the changes in the first 500
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years were more vehement before being stabilized since about 1450
(van Kemenade and Los 2014). As an example in Chinese, the rela-
tive frequency of ye3, a sentence-final interjective marker which is
often an emblematic of a Chinese text being classic, had seen gradual
decrease from pre-10th century to 20th century, where the changes
were more volatile and dramatic before 17th century (Shi 1989). This
said, much depends here on the overall trending of the underlying pro-
cess, there are cases where an exponential model is not suitable. The
occurrence of unique Turkic glosses in Polish texts from 1388 to 1791
reported by Stachowski (2013) and the increase of the use of the En-
glish auxiliary do as a negative declarative demonstrated by Ellegård
(1953) are such examples. Logistic functions, instead of exponential
functions, should be used to best describe the respective linguistic phe-
nomena, where a slow initial growth period is present before a more
dramatic growth period emerges. In addition to model selection, the
comparability and representativeness of the historical texts are also
critically important when backward extrapolation is applied to infer
language changes in the past. Caveats and pitfalls may arise because
language data, when drawn from different historical periods, can be
very inhomogeneous in dialect, genre, register, and sociolinguistic en-
vironment. For further technical precautions in using limited histor-
ical texts to extrapolate general pattern in the past one can refer to
van Kemenade and Los (2014).
For future work, it is important to enrich the current research

with similar empirical tests using other types of homogeneous texts
in Chinese, so as to generalize the conclusions made in this study.
Systematic differences in terms of the concavity of curve or parameter
values or sharpness of the initial increasing phase of the curvemight be
detected when homogeneity changes across different corpora. Admit-
tedly, however, the more challenging task will be how to account for
such cross-corpora differences from pertinent theories, some of which
can be more innately rooted in the mechanisms of language develop-
ment. Dynamic complexity theory, generally concerned with the struc-
tural distribution from macro and inferential perspective, does serve
as a substitute for causal effect analysis in specific linguistic fields.
In addition, testing of the models against homogeneous texts in

languages other than Chinese might generate insightful comparisons.
Given that Chinese and English are very different in many aspects,
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including orthographic form, syntactic rules, and semantic structure
(Ku and Anderson 2003; Perfetti and Tan 1998), whether or not the
lexical richness measures that were developed historically for alpha-
betical languages are readily applicable to Chinese as an orthographic
language is a reasonable concern. As shown by Figure 1 of the current
paper, the frequency distribution of the CGWR text (in log-log scale)
can be very different than one might expect for English. Specifically,
the frequency distribution of Chinese tends to exhibit a larger concav-
ity after a certain rank of unique characters (typically in thousands) is
reached, whereas that of English tends to progress with a more stable
slope. This rank-frequency distributional difference between the two
languages has been verified by recent empirical studies such as Chen
et al. (2012). How this difference will affect the entropic process of
English homogeneous texts and whether the pattern uncovered in the
current study will equally hold for the counterpart in English will be
a worthwhile future direction.

Another aspect desiring more fine-tuned investigation is the
mechanism leading to the periodic, although modulated, fluctuations
manifested in the entropic process of the CGWR texts. Possible ap-
proaches may include a careful examination of the recurrent soci-
olinguistic themes to which the CGWR sporadically refers. For exam-
ple, strategic planning is a central characteristic of China’s economy,
where a top-down Five-Year Plan is developed by the government
every five years to mobilize resources for identified priorities. It is
then a legitimate question to ask whether a sort of correlation exists
between such a recurring socioeconomic initiative and the observed
periodic pattern in the entropic process of the CGWR text.
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