
Factivity and presupposition
in Dependent Type Semantics

Ribeka Tanaka1, Koji Mineshima1,2, and Daisuke Bekki1,2
1 Ochanomizu University

2 CREST, Japan Science and Technology Agency

abstract
Keywords:
dependent type,
anaphora,
presupposition,
proof object,
factive verb

Dependent type theory has been applied to natural language semantics
to provide a formally precise and computationally adequate account
of dynamic aspects of meaning. One of the frameworks of natural lan-
guage semantics based on dependent type theory is Dependent Type
Semantics (DTS), which focuses on the compositional interpretations
of anaphoric expressions. In this paper, we extend the framework of
DTS with a mechanism to handle logical entailment and presuppo-
sition associated with factive verbs such as know. Using the notion
of proof objects as first-class objects, we provide a compositional ac-
count of presuppositional inferences triggered by factive verbs. The
proposal also gives a formal reconstruction of the type-distinction
between propositions and facts, and thereby accounts for the lexical
semantic differences between factive and non-factive verbs in a type-
theoretical setting.

1 introduction
Dependent Type Semantics (DTS, Bekki 2014) is a framework of nat-
ural language semantics based on dependent type theory (Martin-
Löf 1984; Nordström et al. 1990). In contrast to traditional model-
theoretic semantics, DTS is a proof-theoretic semantics, where in-
ference relations between sentences are characterized as provability
relations between semantic representations. One of the distinctive
features of DTS, as compared to other type-theoretical frameworks,
is that it is augmented with underspecified terms, so as to provide

Journal of Language Modelling Vol 5, No 2 (2017), pp. 385–420

Ribeka Tanaka et al.

a unified analysis of inference, anaphora and presupposition from a
logical/computational perspective. In contrast to previous work on
anaphora in dependent type theory (cf. Ranta 1994), DTS gives a fully
compositional account of inferences involving anaphora. It is also ex-
tended to the analysis of modal subordination (Tanaka et al. 2015).

In this paper, we provide the framework of DTS with a mechanism
to handle logical entailment and presupposition associated with fac-
tive verbs. We will mostly focus on the epistemic verb know. Although
there are numerous studies on factive verbs in natural language se-
mantics, they are usually based on model-theoretic approaches; it
seems fair to say that there has been little attempt to formalize in-
ferences with factivity from a proof-theoretical perspective. On the
other hand, various proof systems for knowledge and belief have been
studied in the context of epistemic logic (cf. Meyer and van der Hoek
2004). However, such systems are mainly concerned with knowledge
and belief themselves, not with how they are expressed in natural lan-
guages, nor with linguistic phenomena such as factivity presupposi-
tions. Our study aims to fill this gap by providing a framework that
explains logical entailment and presuppositions with factive verbs in
dependent type theory.

2 dependent type semantics

This section introduces the framework of DTS and explains how pre-
suppositions are handled in this framework. In Section 2.1, we provide
some necessary background on DTS, including the basics of dependent
type theory and the analysis of anaphora within this approach. One
of the important problems in the application of dependent type the-
ory to natural language semantics is how to represent common nouns
using the machinery of dependent types. Section 2.2 is devoted to dis-
cussing this problem. We give several reasons for preferring the view
that common nouns are represented as predicates rather than as types.
Given this background, Section 2.3 provides a compositional analysis
of presupposition in DTS.
2.1 Dependent type theory
In dependent type theory, there are two type constructors, Σ and Π,
which play a crucial role in forming the semantic representations for

[386]

Factivity and presupposition in Dependent Type Semantics

natural language sentences. The type constructor Σ is a generalized
form of the product type and behaves as an existential quantifier. An
object of type (Σx : A)B(x) is a pair (m, n) such that m is of type A and
n is of type B(m). Conjunction A∧B is a degenerate form of (Σx : A)B if
x does not occur free in B. The Σ-types are associated with projection
functions π1 and π2 that are computed with the rules π1(m, n) = m
and π2(m, n) = n, respectively. The type constructor Π is a generalized
form of the functional type and behaves as a universal quantifier. An
object of type (Πx : A)B(x) is a function f such that for any object a of
type A, f a is an object of type B(a). Implication A→ B is a degenerate
form of (Πx : A)B if x does not occur free in B. The inference rules
for Π-types and Σ-types are shown in the Appendix.1 Throughout the
paper, we will make use of the DTS-notation for Π-types and Σ-types
as shown in Figure 1.

Π-types Σ-types
Standard notation (Πx : A)B(x) (Σx : A)B(x)

Notation in DTS (x: A)→ B(x)

�
x : A
B(x)

�
When x /∈ f v(B) A→ B

�
A
B

�

Figure 1:
Notation for Π-types and
Σ-types in DTS (f v(B)
means the set
of free variables in B)

Based on the Curry-Howard correspondence (Howard 1980), a
type can be regarded as a proposition and a term can be regarded
as a proof. Thus the judgement a : A can be read as “a is a proof of
proposition A”, as well as “a is a term of type A”. In this setting, the
truth of a proposition A is defined as the existence of a term of type A.
The term that serves as a proof of a proposition is called a proof term
and plays an important role in representing natural language sentences
in dependent type theory.

Since the work of Sundholm (1986) and Ranta (1994), depen-
dent type theory has been applied to the analysis of various dy-
namic discourse phenomena, providing a type-theoretic alternative to
model-theoretic frameworks such as Discourse Representation The-
ory (van der Sandt 1992; Kamp et al. 2011), Dynamic Predicate
Logic (Groenendijk and Stokhof 1991), and Dynamic Semantics (Heim

1For more details, readers can refer to Martin-Löf (1984) and Ranta (1994).

[387]

Ribeka Tanaka et al.

1983). For instance, according to the analysis presented in Sundholm
(1986) and Ranta (1994), a semantic representation for the donkey
sentence in (1) can be given as (2) in terms of dependent types.
(1) Every farmer who owns a donkey beats it.

(2)
u:

 x : farmer�
y : donkey
own(x , y)

� → beat(π1u,π1π2u)

The sentence (1) as a whole is a universal sentence, which is repre-
sented as aΠ-type. The restrictor farmer who owns a donkey is analyzed
as a Σ-type. A term u having this Σ-type would be a tuple (f , (d, o)),
where f is a term of type farmer, d is a term of type donkey, and
o is a proof-term of the proposition own(f , d). Recall that π1 and π2

are projection functions that take a pair and return the first and the
second element, respectively. Thus the terms π1u and π1π2u appear-
ing in the consequent of (2) pick up from u the term f of type farmer
and the term d of type donkey, respectively. In this way, via the proof
term u associated with the Σ-type, the discourse referents introduced
in the antecedent in (2) can be successfully passed to the subsequent
discourse. An advantage of dependent type theory over previous dy-
namic theories is that such an externally dynamic character of quan-
tification can be captured without any further stipulation; Σ-types and
Π-types, which are natural generalizations of existential and univer-
sal quantifiers in predicate logic, are equipped with the mechanism to
handle dynamic aspects of discourse interpretations.

The work by Sundholm and Ranta2 provides a foundation for ap-
plying the expressiveness of dependent types to problems in natural
language discourse interpretation such as donkey anaphora. However,
a problem remains: how can the semantic representation in (2) be sys-
tematically obtained from the sentence in (1)? From the viewpoint of
standard compositional semantics, the problem can be divided into
two tasks. The first is to deterministically map the sentence (1) into an

2Sundholm (1986) and Ranta (1994) only consider the so-called strong read-
ing of donkey sentences. There are some later works using dependent types that
treat other phenomena discussed in the dynamic semantics literature, in partic-
ular, Sundholm (1989) for the proportion problem. See also Tanaka et al. (2014)
and Tanaka (2014) for discussion of Sundholm’s analysis of donkey anaphora
and treatment of weak and strong readings within the framework of DTS.

[388]

Factivity and presupposition in Dependent Type Semantics

underspecified representation, a semantic representation that contains
an underspecified element corresponding to the pronoun in question.
The second task is to resolve anaphora. In our example, the underspec-
ified element needs to be resolved to π1π2u. The semantics satisfying
the requirement of compositionality must provide an explicit proce-
dure for these two tasks.

Dependent Type Semantics (Bekki 2014) provides such a proce-
dure. To give an explicit compositional mapping from sentences to
semantic representations, we adopt Combinatory Categorial Gram-
mar (CCG, Steedman 2000) as a syntactic framework. Note that, as
emphasized in Bekki (2014), DTS can be combined with other cate-
gorial grammars; see Kubota and Levine (2017) for a concrete pro-
posal that combines DTS with a type-logical grammar. In composi-
tional mapping, an anaphoric expression is mapped on to an under-
specified element. The process of resolving underspecification is for-
mulated as the process of type checking. Using the machinery of under-
specified semantics in DTS, we will give an analysis of presuppositions
in Section 2.3.
2.2 Common nouns: types or predicates?
There are two possible approaches to representing basic sentences like
A man entered in dependent type theory. One is the approach pro-
posed in Ranta (1994) and Luo (2012a,b), according to which com-
mon nouns like man are interpreted as types so that the sentence is
represented as (3) in our notation.
(3)
�

x : man
enter(x)
�

One problem with this approach is that it is not straightforward to an-
alyze predicational sentences, i.e., sentences containing predicate nom-
inals, such as (4a, b).3

(4) a. John is a man.
b. Bob considers Mary a genius.

One might analyze (4a) as a judgement john : man. However, a
judgement itself can neither be negated nor embedded under a log-

3See Mikkelsen (2011) for a useful overview of the syntax and semantics of
predicational sentences.

[389]

Ribeka Tanaka et al.

ical operator. Accordingly, it is not clear how to account for the fact
that a predicational sentence can be negated, as in (5a), or appear in
the antecedent of a conditional, as in (5b).
(5) a. John is not a man.

b. If John is a man, ….
Nor is it clear how to analyze a construction embedding a predica-
tional sentence as in (4b).

One might try to analyze be-verbs as the so-called “is-of identity”
along Russell-Montague lines (Russell 1919; Montague 1973). This en-
ables us to represent (4a) as a proposition, as in (6), rather than as a
judgement.

(6)
�

x : man
john=man x

�
Then, (5a) and (5b) can be represented as follows:

(7) a. ¬
�

x : man
john=man x

�
b.
�

x : man
john=man x

�
→ ·· ·

There are two problems with this approach, however. First, this
analysis predicts that the predicate nominal a man introduces a dis-
course referent in terms of Σ-types. Contrary to this prediction, a pred-
icate nominal cannot serve as an antecedent of an anaphoric pronoun
such as he or she (Kuno 1970; Mikkelsen 2005); hence it does not in-
troduce an individual discourse referent.4

The second problem is the interpretation of equality. In dependent
type theory, equality is relativised to some type A and the formation
rule requires the arguments of equality symbols to have type A:

4The form of the pronoun anaphoric on a predicate nominal in (i) must be it,
rather than him; the relative pronoun in (ii) must be which, not who (Kuno 1970;
Mikkelsen 2005).
(i) He is a fool, although he doesn’t look { it /*him }.
(ii) He is a gentleman, {which / *who} his brother is not.
See Fara (2001) for more discussion of the problems of the Russell-Montague
analysis of predicate nominals.

[390]

Factivity and presupposition in Dependent Type Semantics

(8)
A : type t : A u : A

t =A u : type =F

Accordingly, the proposition john =man x is well-formed only if
john : man is provable. This is also the case if the proposition is em-
bedded under a logical operator. It thus follows that under the Russell-
Montague analysis combined with the equality rule (8), not only the
positive sentence (6), but also the negation (7a) and the conditional
(7b) presuppose that John is a man. To rescue the common-nouns-
as-types view from this problem, one has to provide a more complex
analysis of logical operators such as negation and implication.5 How-
ever, the resulting theory would then become more complicated.

As an alternative approach, we interpret a common noun as a
predicate. Common nouns in argument position and in predicate po-
sition are both analyzed as predicates of type entity→ type.

(9) A man walks.
 u :

�
x : entity
man (x)
�

walk (π1u)

(10) John is a man. man(john)

This approach is in line with the traditional analysis of common nouns,
so we can integrate standard assumptions in formal semantics into
our framework. Moreover, since predicates do not introduce discourse
referents, we can explain the impossibility of referential anaphora to
predicate nominals.

Retoré (2014) suggests that common nouns can be interpreted
both as types and as predicates; for instance, using type entity, the
common noun animal interpreted as a type animal could be related
to a predicate animal∗ of type entity → type, via some suitably de-
fined mapping (·)∗ from one to another. The question of whether a
type system for natural language semantics needs to be enriched with
the structures of common nouns would ultimately depend on the treat-
ment of the lexical semantic phenomena it attempts to capture, such
as coercion and selectional restriction – phenomena that have been
widely discussed in the recent literature on type-theoretical seman-
tics (Asher 2011; Asher and Luo 2012; Bekki and Asher 2013; Retoré

5Some discussion of the treatment of negation in the context of dependent
type theory can be found in Chatzikyriakidis and Luo (2014).

[391]

Ribeka Tanaka et al.

2014; Kinoshita et al. 2016). But investigating this matter further is
beyond the scope of the present paper and we leave it to a future
study.

2.3 Analysis of presupposition in DTS
To handle anaphora and presupposition in a compositional setting,
DTS extends dependent type theory with a mechanism of context pass-
ing and underspecified terms.

Dependent Type Semantics distinguishes two kinds of proposi-
tions: static and dynamic propositions. Following the Curry-Howard
correspondence, we call an object of type type (i.e., the type of types)
a static proposition. A dynamic proposition is a function which maps
a proof term of the static proposition representing the preceding dis-
course to a static proposition. The basic idea is that for each (static)
proposition P, the information obtained up to that point is passed to
P as a proof term. Such a proof term is called a local context.

Dependent Type Semantics extends the syntax of dependent type
theory with an underspecified term @i, which is used to represent
anaphora and presupposition triggers.6 We show how it can provide
a compositional account of anaphora and presupposition. We take the
existence presupposition triggered by a definite description as a rep-
resentative example. Consider the following example.

(11) The book arrived.

The definite description the book here triggers the presupposition that
there is a book.7 We analyze the determiner the appearing in the sub-
ject position as having the CCG category (S/(S\N P))/N , and give a
semantic representation by using an underspecified term. The lexical

6Bekki (2014) provides an overview and comparison of previous ap-
proaches to representing underspecification in the context of dependent type
theory (Dávila-Pérez 1995; Krahmer and Piwek 1999; Piwek and Krahmer 2000).

7Here we take it that the uniqueness presupposition is not part of the con-
ventional meaning of a definite description but can be derived on pragmatic
considerations along the lines of Heim (1982). Although it is technically possible
to take the uniqueness implication as part of presupposition, the proof-search
procedure to find the antecedent of an underspecified term would then become
much more complicated.

[392]

Factivity and presupposition in Dependent Type Semantics

N • = entity→ δ→ type N •+c = type→ δ→ type
N P• = entity N P•+c = δ→ type
S• = δ→ type S

•
= δ→ type

(C1/C2)• = (C1\C2)• = C•2 → C•1

Figure 2:
Mapping
syntactic
categories to
semantic types9

entry for the can be specified as follows (a mapping (·)• from syntactic
categories to semantic types can be defined as in Figure 2).8

(12) the; (S/(S\N P))/N ; λn.λv.λc. v

�
π1

�
@i c ::

�
x : entity
nxc

���
c

Determiner the denotes a function that takes a predicate n denoted
by a restrictor and a predicate v denoted by a verb and returns a dy-
namic proposition, which is in turn a function from a local context c to
a (static) proposition. The local context c is passed to the underspec-
ified term @i as an argument. It is also sent to the predicates n and
v as an extra argument, because n and v may contain underspecified
terms.

The form M :: A is called type annotation and specifies that the
term M has type A. When an underspecified term @i is annotated with
a type A, that is, when we have @i :: A, the annotated type A represents
the presupposition triggered by this underspecified term. In (12), the
underspecified term with a local context, @ic, is annotated with a Σ-
type. This means that the underspecified term @i is a function that
takes a local context c as an argument and returns a term having the
annotated Σ-type. Given this type annotation, we see that @ic is a
pair of an entity x and a proof term for the proposition that x satisfies

8For the purpose of concreteness, we use a type-raised form of semantic rep-
resentations for determiners. The entry for the determiner the in the object posi-
tion can be given as follows:

the; ((S\N P)\((S\N P)/N P))/N ; λn.λv.λx .λc. v

�
π1

�
@i c ::

�
y : entity
nyc

���
xc

Although there are other possible syntactic analyses of determiners in object po-
sition (cf. Bekki 2014), this entry would ensure a concise derivation tree for
semantic composition.

9Subscripted +c is a syntactic feature for content noun. We represent N−c

and N P−c simply as N and N P, respectively. We also abbreviate other syntactic
features, which are not relevant to the discussion in this paper.

[393]

Ribeka Tanaka et al.

the predicate n given a local context c. In other words, the annotated
type represents the existence presupposition triggered by the definite
article. What is applied to the main predicate appearing in v is the first
projection of the obtained pair, i.e., a term of type entity.

The semantic representation for (11) is derived as follows.10

(13)
The

(S/(S\N P))/N

λn.λv.λc. v

�
π1

�
@1c ::

�
x : entity
nxc

���
c

book
N

λx .λc.book(x)

S/(S\N P)

λv.λc. v

�
π1

�
@1c ::

�
x : entity
book(x)
���

c

> arrived
S\N P

λx .λc.arrive(x)

S

λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
��� >

The underspecified term is indexed by a natural number i and each
number assigned to an underspecified term is mutually distinct. In the
above derivation, an underspecified term introduced by the has index
1. Here we assume that the predicate book is not context-sensitive
so that vacuous abstraction is involved as in λxλc.book(x); in such
a case, the input local context c is simply discarded in the body of
the semantic representation. As shown here, the term @1c in the fi-
nal representation is annotated with a Σ-type corresponding to the
proposition that there is a book. In this way, the annotated type repre-
sents the existence presupposition triggered by the definite description
the book.

10 In CCG derivation trees, we use two standard combinatory rules: forward
(>) and backward (<) function application rules.

X/Y : m Y : n
X : mn

>
Y : n X\Y : m

X : mn
<

For instance, the combinatory rule (>) means that an expression having a syn-
tactic category X/Y and a meaning m, combined with an expression having a
syntactic category Y and a meaning n, yields an expression having a category X
and a meaning mn. Each meaning is represented as a lambda term. See Steedman
(2000) for more details.

[394]

Factivity and presupposition in Dependent Type Semantics

The resolution of an underspecified term in a semantic represen-
tation A amounts to checking that A is well-typed in a given context.
More specifically, it is triggered by the following:
(14) Γ , δ : type ⊢ A : δ→ type

Here, Γ is a set of assumptions, called a global context, which repre-
sents the background knowledge; δ is the type of a local context (rep-
resenting the previous discourse); A : δ → type in the consequence
shows that A is a dynamic proposition in DTS, that is, a function map-
ping a given local context of type δ to a static proposition; (14) reflects
the requirement that the semantic representation of a (declarative)
sentence, i.e., a static proposition, must be of type type. This require-
ment is called the felicity condition of a sentence in DTS.

In the case of (11), the resolution process is launched by the fol-
lowing judgement:
(15) Γ , δ : type ⊢ λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

: δ→ type.

Assuming that arrive : entity → type is in the global context Γ , the
type of @1 is determined by the following derivation.11

(16)

arrive : entity→ type (CON)

@1 : δ→
�

x : entity
book(x)
�

c : δ
1

@1c :

�
x : entity
book(x)
� (ΠE)

�
@1c ::

�
x : entity
book(x)
��

:

�
x : entity
book(x)
� (ann)

π1

�
@1c ::

�
x : entity
book(x)
��

: entity
(ΣE)

arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

: type
(ΠE)

λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

: δ→ type
(ΠI),1

11Here we make use of the following rule, which ensures that one can obtain
the annotated term t :: A of type A from any term t : A.

t : A
(t :: A) : A

(ann)

See also the Appendix for other derivation rules.

[395]

Ribeka Tanaka et al.

The open branch of the derivation, repeated in (17), requires that in
order for the semantic representation in question to be well-typed,
one has to construct a proof term for the proposition that there is a
book. (This is due to the @-formation rule. See Definition 12 in the
Appendix.)

(17) @1 : δ→
�

x : entity
book(x)
�

In other words, if one assumes that (11) is a felicitous utterance, the
proposition that there is a book must be true. This requirement corre-
sponds to the existence presupposition of (11).

At the final stage of presupposition resolution, a proof search
is carried out to prove (17) and the underspecified term @1 is re-
placed by the constructed term. More specifically, the process of
anaphora/presupposition resolution is defined as follows (Bekki 2014).
(18) Suppose that Γ ⊢@i : A and Γ ⊢ M : A, where Γ is a global context

and A is a type. Then a resolution of @i by M under the context
Γ is an equation @i =A M .

In the example considered here, if a proof term for the presupposition
that there is a book is constructed, it can replace the underspecified
term @1. Such a proof construction is possible when, for instance, the
book appears in contexts as shown in (19a, b).
(19) a. If John ordered a book last week, the book will arrive today.

b. John ordered a book last week and the book arrived today.
In general, if S′ entails the presuppositions of S, constructions such as
S′ and S and If S′ then S do not inherit the presuppositions of S. In
such a case, it is said that the presupposition is filtered.

In DTS, examples such as (19a, b) can be handled in the follow-
ing way. First, the (somewhat simplified) semantic representation for
(19a) is derived as shown in (20). The type checking derivation for the
final representation of (20) is shown in (21). This derivation specifies
the type of @1. We can see that what is required for the representation
to be well-typed is to find a term substituted for @1 in (22).

[396]

Factivity and presupposition in Dependent Type Semantics

(2
0)

If
S/

S/
S

λ
p.
λ

q.
λ

c.
(v

:p
c)
→

q(
c,

v)

Jo
hn

N
P

joh
n

or
de
red

(S
\N

P
)/

N
P

λ
y.
λ

x.
λ

c.
or
de

r(x
,y
)

a
(S
\N

P
)\(
(S
\N

P
)/

N
P
)/

N

λ
n.
λ

v.
λ

x.
λ

c.

 u
:� y

:e
nt
ity

n
yc

�
v(
π

1
u)

x(
c,

u)

bo
ok N

λ
x.
λ

c.
bo

ok
(x
)

(S
\N

P
)\(
(S
\N

P
)/

N
P
)

λ
v.
λ

x.
λ

c.

 u
:� y

:e
nt
ity

bo
ok
(y
)

�
v(
π

1
u)

x(
c,

u)

>

S\
N

P

λ
x.
λ

c.

 u
:� y

:e
nt
ity

bo
ok
(y
)

�
or
de

r(x
,π

1
u)

<

S

λ
c.

 u
:� y

:e
nt
ity

bo
ok
(y
)

�
or
de

r(j
oh

n,
π

1
u)

<

S/
S

λ
q.
λ

c.

 v:
u

:� y
:e
nt
ity

bo
ok
(y
)

�
or
de

r(j
oh

n,
π

1
u)

 →
q(

c,
v)

>
the

bo
ok

wi
lla

rri
ve

S

ar
ri

ve

� π 1�
@

1
c

::

� x:
en

tit
y

bo
ok
(x
)

���

λ
c.

 v:
u

:

� x
:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

 →
ar

ri
ve

� π 1�
@

1
(c

,v
):

� x
:
en

tit
y

bo
ok
(x
)

���
>

[397]

Ribeka Tanaka et al.

(2
1)

. . . .
 u

:

� x
:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

 :ty
pe

ar
riv

e
:e
nt
ity
→

ty
pe

@
1

: δ u
:� x

:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

→
� x:

en
tit
y

bo
ok
(x
)

�c
:δ

2
t

: u
:� x

:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

 1

(c
,t
):

 δ u
:� x

:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

(Σ

I)

@
1
(c

,t
):

� x:
en

tit
y

bo
ok
(x
)

�
(Π

E)

� @
1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

�� :� x
:
en

tit
y

bo
ok
(x
)

�(an
n)

π
1

� @
1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

�� :e
nt
ity

(Σ
E)

ar
ri

ve

� π 1�
@

1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

��� :ty
pe

(Π
E)

 t:
u

:

� x:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

 →
ar

ri
ve

� π 1�
@

1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

��� :ty
pe

(Π
F
),

1

λ
c.

 t:
u

:

� x:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

 →
ar

ri
ve

� π 1�
@

1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

��� :δ
→

ty
pe

(Π
I)

,2

[398]

Factivity and presupposition in Dependent Type Semantics

(22) @1 :

δ u :

�
x : entity
book(x)
�

order(john,π1u)

→ � x : entity

book(x)
�

In this case, without using the information provided in the previous
discourse in δ, a proof of the proposition that there is a book can
be obtained from the antecedent of the conditional; one can find a
term that can replace @1, namely, λc.π1π2c.12 By replacing @1 with
the constructed term λc.π1π2c in the representation given in (20), we
can eventually obtain the following semantic representation for (19a),
which captures the intended reading.

(23)
t:
 u :

�
x : entity
book(x)
�

order(john,π1u)

→ arrive (π1π1 t)

Another well-known characteristic property of a presupposition is
that it projects out of embedded contexts such as negation and the an-
tecedent of a conditional. Thus, not only the positive sentence (11) but
also the negated sentence (24a) and the antecedent of a conditional
(24b) imply that there is a book.
(24) a. The book didn’t arrive. negation

b. If the book arrives, Susan will be happy. conditional
In DTS, (24a, b) can be given the following semantic representations.

(25) a. λc.¬arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

b. λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���
→ happy (susan)

It can be shown that for the semantic representations (25a) and (25b)
to be well-typed, it is required to find a proof term for the proposi-
tion that there is a book. Thus, in order to prove that (25b) has type
δ→ type, one has to prove that the antecedent is of type type under
the given local context c. Since the antecedent in (25b) corresponds to
the proposition that the book arrived, this yields the derivation that

12When such a filtration does not occur, the entire sentence can have a presup-
position that is resolved by the information in δ (i.e., the information in the pre-
vious discourse) or by the information in the global context (background knowl-
edge).

[399]

Ribeka Tanaka et al.

contains the type checking process in (16) as a sub-derivation. Ac-
cordingly, it is correctly predicted that (24b) has the same existence
presupposition as the simple sentence in (11). Note that, in dependent
type theory, the negation ¬A is defined using the implication A→ ⊥,
which in turn is a degenerate form of a Π-type. Thus, the same expla-
nation applies to the case of negation in (24a) as well. In this way,
we can explain basic projection patterns of presuppositions within the
framework of DTS.13

Before moving on to the case of factive presuppositions, let us
mention one feature of underspecified terms in DTS; that is, an under-
specified term can occur inside a type annotation of another under-
specified term. This feature enables us to handle nested presupposi-
tions. As a typical example, consider a definite noun phrase such as the
book that he wrote. Omitting the details of compositional derivation, we
can assign the following semantic representation to this complex NP.

(26) λv.λc. v

π1

@1c ::

 x : entity� book(x)
write(@2c :: entity, x)

� c
Here, the underspecified term @2, introduced by the pronoun he, oc-
curs inside the type annotation of the underspecified term @1 intro-
duced by the.14 In this case, one can resolve the most embedded under-
specified term @2 first and then resolve the outer underspecified term
@2 subsequently. A more detailed discussion of nested presupposition
is given in Bekki and Mineshima (2017).

3 analyzing factivity in dts

In this section, we provide an analysis of factive predicates in DTS.
We take the verb know as a representative of a factive predicate and
provide its semantic representation. We start by summarizing some
semantic properties of know, in comparison with the non-factive verb
believe.

13Bekki and Satoh (2015) provide a definition for decidable fragment of de-
pendent type theory with an underspecified term and formulate its type-checking
algorithm. They also provide an implementation of the algorithm.

14 It is also possible to add gender information associated with personal pro-
nouns as a presupposition. See Bekki and Mineshima (2017).

[400]

Factivity and presupposition in Dependent Type Semantics

3.1 Inferences with factive and non-factive verbs
The factive verb know and the non-factive verb believe show different
inference patterns with respect to the form of complements they take.
In what follows, we will focus on two types of complements, declara-
tive complements and NP-complements.

Consider the examples in (27), where the verbs know and believe
take a declarative complement.
(27) a. John knows that Mary is successful.

b. John believes that Mary is successful.
(28) Mary is successful.
(27a) implies (28), while (27b) does not. In the context of epistemic
logic (Hintikka 1962; Meyer and van der Hoek 2004), the inference
from (27a) to (28) has usually been treated as an instance of entail-
ment (hereafter, we use the notion “entailment” in the sense of logical
entailment). In the linguistics literature, by contrast, it has been widely
agreed that the inference from (27a) to (28) is not an entailment but a
presupposition (Kiparsky and Kiparsky 1970; Beaver 2001), as witness
examples in (29) and (30).
(29) a. John does not know that Mary is successful. negation

b. If John knows that Mary is successful, ... conditional
(30) a. If Mary is successful, John knows that she is.

b. Mary is successful, and John knows that she is.
The examples in (29a, b) show that the proposition in (28) projects out
of the embedded contexts; the examples in (30a, b) shows the filtering
of presupposition. Because the antecedent of (30a) or the first conjunct
of (30b) entails (28), the sentences do not inherit the presupposition
of know, in a similar way to (19a, b).

Another interesting difference between know and believe is shown
in (31), where they take an NP-complement of the form the N that P.
(31) a. John believes the rumor that Mary came.

⇒ John believes that Mary came.
b. John knows the rumor that Mary came.
̸⇒ John knows that Mary came.

[401]

Ribeka Tanaka et al.
Figure 3:

Entailments (⇒) and
presuppositions (Â)

associated with factive and
non-factive verbs (N refers
to a non-veridical content

noun)

K1 x knows that P Â P

K2 x knows the N that P ̸⇒ x knows that P

K3 x knows the N that P Â There is a N that P

B1 x believes that P ̸⇒ P

B2 x believes the N that P ⇒ x believes that P

B3 x believes the N that P Â There is a N that P

The non-factive verb believe licenses the inference from x Vs the N that
P to x Vs that P, where N is a (non-veridical) content noun, such as
rumor, story, and hypothesis, that takes a propositional complement; by
contrast, the factive verb know does not license this pattern of infer-
ence (Vendler 1972; Ginzburg 1995a,b; Uegaki 2016).

Figure 3 shows a summary of the inference patterns for know and
believe that we are concerned with in this paper. A remark is in order
regarding the non-entailment in K2. There is a class of content nouns
that does not follow the pattern in K2. A typical example is the con-
tent noun fact; “x knows the fact that P” entails “x knows that P”,
and vice versa. We call this class of nouns veridical content nouns and
distinguish them from non-veridical content nouns such as rumor and
story. The inference pattern in K2 only applies to non-veridical con-
tent nouns. We discuss the case of veridical content nouns at the end
of Section 3.3.

To predict these inference patterns in a compositional setting, one
needs to provide an adequate account of the lexical semantic differ-
ence between factive and non-factive verbs. One possible approach is
to consider the two types of verbs select for different semantic objects.
More specifically, it has been proposed by a number of authors that
the non-factive verb believe selects for a proposition, whereas the fac-
tive verb know selects for a fact (Vendler 1972; Parsons 1993; Ginzburg
1995a,b; King 2002). In the next section, we will explore such a se-
mantic analysis of factive and non-factive verbs within the framework
of DTS.

3.2 Declarative complements
We treat factive and non-factive verbs as predicates having different
semantic types. We analyze the non-factive verb believe as taking two

[402]

Factivity and presupposition in Dependent Type Semantics

arguments, a term of type entity and a proposition. In our notation,
the predicate believe has the following type:15

(32) believe : entity→ type→ type

By contrast, we analyze the factive verb know as taking three argu-
ments: (i) an entity representing the agent, (ii) a proposition that
serves as the content of knowledge, and (iii) a proof term of that propo-
sition. The predicate know has the following semantic type:
(33) know : entity→ (P: type)→ P→ type.

As mentioned in Section 2.1, the existence of a proof term a of
type P corresponds to the truth of proposition P. One may read
know(x)(P)(a) as the agent x obtains evidence a of the proposition P.

The standard analysis of know in formal semantics follows Hin-
tikka’s (1969) possible world semantics, which fails to capture the
notion of evidence or justification that has been traditionally asso-
ciated with the concept of knowledge. An advantage of dependent
type theory is that it is equipped with proofs as first-class objects and
thus enables us to analyze the factive verb know as a predicate over
a proof (evidence) of a proposition. Our analysis is also compatible
with Vendler’s view that know and believe select for different semantic
objects. Note that, in our approach, the notion of facts is not taken as
primitive but analyzed in terms of the notion of evidence of a propo-
sition.

The idea that a proof term of a proposition serves as an antecedent
of anaphor can be traced back to Ranta (1994), where under the as-
sumption that proofs are identified with events it is claimed that aspec-
tual verbs like stop presuppose the existence of a proof. Also, Krahmer
and Piwek (1999) brieflymentioned that the presuppositions triggered
by noun phrases like the fact that P can be treated in a similar way (see
also Section 3.3 for some discussion). Our claim is that the idea that
proof terms act as antecedents of anaphora can be applied to the pre-
suppositions of factive verbs in general.

15We leave open the possibility of decomposing the semantic representation
of belief sentences in terms of possible worlds. See Tanaka et al. (2015) for discus-
sion in the context of DTS. The problem of opacity and hyperintensionality (Fox
and Lappin 2005) is beyond the scope of the present paper.

[403]

Ribeka Tanaka et al.

To account for the presuppositional inferences summarized in
Section 3.1, we use the following lexical entry for know.16
(34) know; (S\N P)/S; λp.λx .λc.know(x)(pc)(@i c)

Here the argument p is a dynamic proposition expressed by the declar-
ative complement of know. The underspecified term @i takes a local
context c as an argument and requires one to construct a proof term of
type pc, i.e., to find evidence of the (static) proposition pc being true.
If such a proof term is constructed, it fills the third argument position
of the predicate know. In sum, the sentence x knows that P presup-
poses that there is a proof (evidence) of P and asserts that the agent x
obtains it, i.e., x has a proof (evidence) of the proposition P.

Let us illustrate with (27a) how to give a compositional analysis
of a construction containing know. The semantic representation for
(27a) is given by the following CCG derivation tree.
(35)

John
N P
john

knows
(S\N P)/S

λp.λx .λc.know(x)(pc)(@1c)

that
S/S
λP.P

Mary is successful
S

λc.successful(mary)
S

λc.successful(mary)
>

S\N P
λx .λc.know(x)(successful(mary))(@1c)

>

S
λc.know(john)(successful(mary))(@1c)

<

Then, the derivation (36) checks whether the semantic representation
is well-typed.The open branch ending up with δ→ successful(mary)
shows the presupposition of this representation, which is the factive
presupposition of (27a). In this way, we can correctly predict that
the presuppositional inference from (27a) to (28) holds. The inference
mechanism we described in Section 2.3 for the existence presupposi-
tion of definite descriptions can be extended for the case of know. In
particular, it is easy to see that the projection inference in (29) and
the filtering inference in (30) can be accounted for in the same way
as those in (24) and (19), respectively.

16 In (34), the underspecified term @i c is not annotated with its type pc, since
it is inferable from the type of the predicate know.

[404]

Factivity and presupposition in Dependent Type Semantics

(3
6)

kn
ow

:e
nt
ity
→
(P

:ty
pe
)

→
P
→

ty
pe

(C
O

N
)

joh
n:

en
tit
y
(C

O
N
)

kn
ow
(jo

hn
)

:(
P

:ty
pe
)→

P
→

ty
pe

(Π
E)

su
cc
es
sfu

l
:e
nt
ity
→

ty
pe

(C
O

N
)

ma
ry

:e
nt
ity

(C
O

N
)

su
cc
es
sfu

l(m
ar
y)

:ty
pe

(Π
E)

kn
ow
(jo

hn
)(
su
cc
es
sfu

l(m
ar
y)
)

:s
uc

ce
ssf

ul
(m

ar
y)
→

ty
pe

(Π
E)

@
1

:δ
→

su
cc
es
sfu

l(m
ar
y)

c
:δ

1

@
1
c

:s
uc

ce
ssf

ul
(m

ar
y)

(Π
E)

kn
ow
(jo

hn
)(
su
cc
es
sfu

l(m
ar
y)
)(

@
1
c)

:ty
pe

(Π
E)

λ
c.
kn

ow
(jo

hn
)(
su
cc
es
sfu

l(m
ar
y)
)(

@
1
c)

:δ
→

ty
pe

(Π
I)

,1

[405]

Ribeka Tanaka et al.

It is known that a sentence such as (37) poses the so-called binding
problem (Karttunen 1971; Karttunen and Peters 1979; Cooper 1983).
(37) A student regrets that she talked.
Here, the existential quantification introduced by a student binds the
pronoun she that appears in the presupposed content. This is an in-
stance of the nested presuppositions that we mentioned in Section 2.3.
In DTS, (37) can be given the semantic representation as shown in (38)
(where the semantic representation of regrets is analogous to that of
knows above). In this resulting representation, the Σ-type correspond-
ing to the subject a student binds the variable u in the second argument
of regret, which correponds to the type of @2(c, u) introduced by the
factive presupposition of regret. With the help of the type checking pro-
cedure, this enables us to capture the dependency between assertion
and presupposition.17

3.3 NP-complements
The analysis presented so far can be extended to the analysis of NP-
complements. Let us first take the case of believe. Consider the ex-
ample in (31a). The semantic representation of the definite NP the
rumor that Mary came appearing in the object position can be de-
rived as in (39). Since rumor is a content noun, we treat it as hav-
ing the syntactic category N+c with the syntactic feature +c. Cor-
respondingly, the predicate rumor is analyzed as a predicate over
propositions; its type is type → type. The semantic representation
of definite article the is given in the same way as the one in Sec-
tion 2.3 except that it combines with a predicate over propositions
(i.e., objects of type type), rather than with a predicate over enti-
ties.18

The semantic representation for the premise sentence in (31a) can
be derived as shown in (40). The resulting representation presupposes
that there is a rumor whose content is identified with come(mary).
This is the existence presupposition triggered by the NP-complement

17See Bekki and Mineshima (2017) for more details.
18Strictly speaking, to combine Σ-types with predicates over propositions re-

quires the notion of type hierarchy (Martin-Löf 1984). For ease of exposition, we
refer to the base type (type0) simply as type.

[406]

Factivity and presupposition in Dependent Type Semantics

(3
8)

A
S/
(S
\N

P
)/

N
λ

n.
λ

v.
λ

c.
 u

:� x
:e
nt
ity

n
xc

�
v(
π

1
u)
(c

,u
)

stu

de
nt

N
λ

x.
λ

c.
stu

de
nt
(x
)

S/
(S
\N

P
)

λ
v.
λ

c.

 u
:� x

:e
nt
ity

stu
de

nt
(x
)

�
v(
π

1
u)
(c

,u
)

>

reg
ret

s
(S
\N

P
)/

S
λ

p.
λ

x.
λ

c.
re
gr
et(

x)
(p

c)
(@

2
c)

tha
t

S/
S

λ
p.

p

sh
et

alk
ed

S
λ

c.
ta
lk(

@
1
c

::
en

tit
y)

S
λ

c.
ta
lk(

@
1
c

::
en

tit
y)

>

S\
N

P
λ

x.
λ

c.
re
gr
et(

x)
(ta

lk(
@

1
c

::
en

tit
y)
)(

@
2
c)

>

S

λ
c.

 u
:� x

:
en

tit
y

stu
de

nt
(x
)

�
re
gr
et(
π

1
u)
(t

al
k
(@

1
(c

,u
):

:e
nt
ity
))
(@

2
(c

,u
))

>

[407]

Ribeka Tanaka et al.

(3
9)

the
((

S\
N

P
)\(
(S
\N

P
)/

N
P +

c)
)/

N
+

c

:λ
n.
λ

v.
λ

x.
λ

c.

v� λc
′ .π

1

� @
1
c

::

� P
:ty

pe
nP

c

��� xc

ru
mo

r
N
+

c

λ
P

.λ
c.
ru
mo

r(P
)

tha
t

(N
+

c\N
+

c)
/S

:λ
p.
λ

n.
λ
P

.λ
c.

� P=
ty
pe

pc
nP

c

�
Ma

ry
ca
me

S
λ

c.
co
me
(m

ar
y)

N
+

c\N
+

c

λ
n.
λ
P

.λ
c.

� P=
ty
pe
co
me
(m

ar
y)

nP
c

�
>

N
+

c

λ
P

.λ
c.

� P=
ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
<

(S
\N

P
)\(
(S
\N

P
)/

N
P +

c)

λ
v.
λ

x.
λ

c.
v λc

′ .π
1

 @ 1
c

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
 xc

>

[408]

Factivity and presupposition in Dependent Type Semantics

(4
0) Jo
hn

N
P

joh
n

be
lie
ve
s

(S
\N

P
)/

N
P +

c

λ
p.
λ

x.
λ

c.
be

lie
ve
(x
)(

pc
)

the
ru
mo

rt
ha
tM

ary
ca
me

(S
\N

P
)\(
(S
\N

P
)/

N
P +

c)

λ
v.
λ

x.
λ

c.
v λc

′ .π
1

 @ 1
c

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
 xc

S\
N

P

λ
x.
λ

c.
be

lie
ve
(x
) π 1
 @ ic

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�

<

S

λ
c.
be

lie
ve
(jo

hn
) π 1
 @ ic

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�

<

[409]

Ribeka Tanaka et al.

(cf. B3 in Figure 3). When this presupposition is satisfied, the resulting
semantic representation can be reduced to believe(john,P), where
we have P : type, P =type come(mary), and rumor(P). Thus, we can
derive the representation believe(john,come(mary)), which is the
representation for the conclusion in (31a). Hence, we can correctly
derive the entailment pattern B2 in Figure 3.

It should be noted that, in the case of (31a), the predicate
rumor does not contribute to the content of belief. By contrast,
(31b) shows that, in the case of the factive verb know taking an
NP-complement, the predicate rumor is part of the content of
knowledge ascribed to the agent. The premise sentence in (31b)
can be paraphrased as John knows that there is a rumor that Mary
came. To handle (31b), then, we use the following lexical en-
tries for the non-presuppositional use of the, which we refer to
by thepred .

(41) thepred (subject position);
(S/(S\N P+c))/N+c ; λn.λv.λc. v

�
λc′.
�

P : type
nPc

��
c

(42) thepred (object position);
((S\N P)\((S\N P)/N P+c))/N+c ; λn.λv.λx .λc. v

�
λc′.
�

P : type
nPc

��
xc

In contrast to the entry given in (12), thepred does not have existence
presupposition and passes the whole existential proposition (Σ-type)
to the main predicate.19

We take it that the existence presupposition associated with the
premise sentence in (31b) comes from the factive verb know. Using the
entry in (42), the semantic representation for the premise sentence in
(31b) can be derived as in (43). The semantic representation derived in
(43) presupposes that there is a rumor that Mary came and asserts that
John has evidence for it. This is clearly distinguished from the reading

19Such a non-presuppositional use of definite description is also needed to
handle examples such as The king of France does not exist, where the use of the
does not presuppose the existence of the king of France.

[410]

Factivity and presupposition in Dependent Type Semantics

(4
3) Jo
hn

N
P

joh
n

kn
ow

s
(S
\N

P
)/

N
P

λ
p.
λ

x.
λ

c.
kn

ow
(x
)(

pc
)(

@
1
c)

the
ru
mo

rt
ha
tM

ary
ca
me

(S
\N

P
)\(
(S
\N

P
)/

N
P
)

λ
v.
λ

x.
λ

c.
v λc

′ .
P

:ty
pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
xc

S\
N

P

λ
x.
λ

c.
kn

ow
(x
)

P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
(@

1
c)

<

S

λ
c.
kn

ow
(jo

hn
)

P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
(@

1
c)

<

[411]

Ribeka Tanaka et al.
Figure 4:

Inferences associated with
veridical content nouns

K4 x knows the fact that P ⇔ x knows that P

K5 x knows the fact that P Â There is a fact that P

K6 x knows the fact that P Â P

that John has evidence that Mary came, hence, we can account for the
non-entailment in (31b), schematically given as K2 in Figure 3.20

As noted in Section 3.1, veridical content nouns such as fact and
truth show a different entailment pattern from non-veridical content
nouns such as rumor and story. The relevant inference patterns are
summarized in Figure 4. The present analysis can naturally handle
these inference patterns as well. Consider (44):
(44) John knows the fact that Mary came.
In the same way as the derivation in (43), we can obtain the semantic
representation for (44):

(45) λc.know(john)
 P : type�

P=type come(mary)
fact(P)

� (@1c)

The underspecified term @1 in (45) triggers the presupposition that
there is the fact that Mary came, which accounts for K5 in Figure 4. To
account for the other inference patterns, wemay posit two axioms. The
first axiom is the one concerning the lexical meaning of the veridical
content noun fact:
(46) Axiom 1 : (P: type)→ (fact(P)↔ P)

Using this axiom, one can construct a proof term of come(mary) from
the presupposition in (45), hence K6 in Figure 4 follows.

The second axiom we need is about the closure property of know:
(47) Axiom 2 : (x:entity)→ (P: type)→ (Q: type)→ (a:P)→

know(x)(P)(a)→ (f :P→Q)→ know(x)(Q)(f a)

The sentence John knows that Mary came can be compositionally as-
signed the semantic representation in (48), in the same way as the
derivation shown in (35).
20As pointed out by an anonymous reviewer, the current analysis allows the

combination of the verb know and the presuppositional the. This yields an unin-
tended reading for (31b) where it is presupposed that Mary came. Though this
undesirable reading could be blocked by involving a complicated syntactic anal-
ysis, we consider details of such an analysis as beyond the scope of this paper.

[412]

Factivity and presupposition in Dependent Type Semantics

(48) λc.know(john)(come(mary))(@2c)

It is easy to derive (48) from (45) given an initial context c. First,
assume that the presupposition in (45) is satisfied, that is, there is a
proof term substituted for @1 in (45). Using Axiom 1, we can con-
struct a proof term substituted for @2 in (48), that is, a proof term of
come(mary), as well as a proof term for the proposition in (49).

(49)
 P : type�

P=type come(mary)
fact(P)

� → come(mary)

Hence, applying Axiom 2, we can obtain a proof term of (48). The
other direction, i.e., the inference from (48) to (45), is derived in the
same manner. Thus we can account for the pattern in K4.

Note that the present analysis of the inference pattern in K6 is
different from what is suggested by Krahmer and Piwek (1999). These
authors briefly discuss the presupposition triggered by the factive con-
struction (be) annoyed by the fact that P. They treat this construction
as one complex predicate, assuming that its presupposition is P. In our
approach, know the fact that P is analyzed not as directly presupposing
that P, but as presupposing the existence of the fact whose content is
P. Under the present analysis, the inference in K6 is explained in terms
of the lexical knowledge concerning the content noun fact.

4 conclusion
This paper has attempted to provide an analysis of presuppositions
and factivity within the framework of DTS. Under our analysis, fac-
tive and non-factive verbs are assigned different semantic types: while
the non-factive predicate believe selects for a proposition as an object
argument, the factive predicate know takes a proof-object as an extra
argument. Using the machinery of underspecified semantics in DTS,
we have illustrated how to account for a variety of inferences concern-
ing factive and non-factive verbs.

Several open issues remain, most notably that of the interpreta-
tion of interrogative complements. It is acknowledged in the literature
that the factive verb know takes interrogative complements, whereas
the non-factive verb believe does not (Ginzburg 1995a,b; Egré 2008):
(50) a. John {knows, ∗believes} whether Ann or Bob came.

b. John {knows, ∗believes} who came.

[413]

Ribeka Tanaka et al.

Providing a detailed analysis of interrogative complements within our
proof-theoretic framework is left for another occasion.

acknowledgment
This paper is a revised and expanded version of a paper presented at
the TYpe Theory and LExical Semantics (TYTLES) workshop during
the 27th European Summer School in Logic, Language and Informa-
tion (ESSLLI 2015). We are grateful to Robin Cooper, Christian Re-
toré, and the audience of TYTLES workshop for helpful discussions.
We would also like to thank the three anonymous reviewers of this pa-
per for their valuable comments and suggestions. This work was sup-
ported by JST CREST Grant Number JPMJCR1301, Japan. The first
author acknowledges the financial support of the JSPS Grant-in-Aid
for JSPS Fellows Grant Number 15J11772.

appendix
Definition 1 (Alphabet for λΠΣ) An alphabet for λΠΣ is a 〈Var, Con〉,
where Var is a set of variables, and Con is a set of constants. Dependent
type semantics employs an alphabet as follows:

Var
de f≡ {x , y, z, u, v, ...}

Con
de f≡ {entity, book, arrive, ...}

Definition 2 (Preterms) The collection of preterms is recursively de-
fined as follows (where x ∈ Var and c ∈ Con, j = 1,2, i = 0,1, 2, ...).
Λ := x | c | @i | typei | Λ :: Λ | (x:Λ)→ Λ | λx .Λ | ΛΛ
|
�

x : Λ
Λ

�
| (Λ,Λ) | π j(Λ) | Λ=Λ Λ | reflΛ(Λ) | idpeel(Λ,Λ)

| ⊥ | ⊤ | caseΛ(Λ1, ...,Λn)

Definition 3 (Signature) A signatureσ is defined recursively as follows.
σ := () | σ, c : A

where () is an empty signature, c ∈ Con, A ∈ Λ s.t. ⊢σ A : typei for some
i ∈ N.

[414]

Factivity and presupposition in Dependent Type Semantics

Definition 4 (Context) A context is defined recursively as follows.

Γ := () | Γ , x : A

where () is an empty context, x ∈ Var, A ∈ Λ s.t. Γ ⊢σ A : typei for some
i ∈ N.
Definition 5 (Constant symbol rule) For any (c : A) ∈ σ,

c : A
(CON)

Definition 6 (Type rules) For any i ∈ N,
A : type i

A : type i+1
(typeI) type i : type i+1

(typeF)

Definition 7 (Π-type) For any i, j ∈ N,

A : type i

x : A
j

....
B : type i

(x: A)→ B : type i
(ΠF) , j

A : type i

x : A
j

....
M : B

λx .M : (x: A)→ B
(ΠI) , j

M : (x: A)→ B N : A
MN : B[M/x]

(ΠE)

Definition 8 (Σ-type) For any i, j ∈ N,

A : type i

x : A
j

....
B : type i�

x : A
B

�
: type i

(ΣF) , j M : A N : B[M/x]

(M , N) :

�
x : A
B

� (ΣI)

M :

�
x : A
B

�
π1(M) : A

(ΣE)

M :

�
x : A
B

�
π2(M) : B[π1(M)/x]

(ΣE)

Definition 9 (Bottom type) For any i ∈ N,

⊥ : type0
(⊥F)

M :⊥ C :⊥→ typei

caseM () : C(M)
(⊥E)

[415]

Ribeka Tanaka et al.

Definition 10 (Top type) For any i ∈ N,
⊤ : type0

(⊤F)
() :⊤ (⊤I)

M :⊤ C :⊤→ typei N : C()
caseM (N) : C(M)

(⊤E)

Definition 11 (Id-type) For any i ∈ N,
A : typei M : A N : A

M =A N : typei
(IdF)

A : type M : A
reflA(M) : M =A M

(IdI)

E : M1 =A M2 C : (x: A)→ (y: A)→ (x =A y → typei) N : (x: A)→ C x x(reflA(x))
idpeel(e, N) : C M1M2E

(IdE)

Definition 12 (@-formation rule) For any i, j ∈ N,
A : typei A true

@ j : A
(@F)

Definition 13 (Type annotation rule)
t : A

(t :: A) : A
(ann)

references
Nicholas Asher (2011), Lexical Meaning in Context: A Web of Words, Cambridge
University Press, Cambridge.
Nicholas Asher and Zhaohui Luo (2012), Formalisation of coercions in lexical
semantics, in E. Chemla, V. Homer, and G. Winterstein, editors,
Proceedings of Sinn und Bedeutung 17, pp. 63–80, Paris,
http://semanticsarchive.net/sub2012/.
David I. Beaver (2001), Presupposition and Assertion in Dynamic Semantics, CSLI
Publications, Stanford.
Daisuke Bekki (2014), Representing anaphora with dependent types, in
N. Asher and S. Soloviev, editors, Logical Aspects of Computational Linguistics:
8th International Conference, LACL 2014, Proceedings, volume 8535 of Lecture
Notes in Computer Science, pp. 14–29, Springer, Heidelberg.
Daisuke Bekki and Nicholas Asher (2013), Logical polysemy and subtyping,
in Y. Motomura, A. Butler, and D. Bekki, editors, New Frontiers in Artificial
Intelligence: JSAI-isAI 2012 Workshops, Revised Selected Papers, volume 7856 of
Lecture Notes in Computer Science, pp. 17–24, Springer, Heidelberg.

[416]

Factivity and presupposition in Dependent Type Semantics

Daisuke Bekki and Koji Mineshima (2017), Context-passing and
underspecification in Dependent Type Semantics, in S. Chatzikyriakidis and
Z. Luo, editors, Modern Perspectives in Type-Theoretical Semantics, volume 98 of
Studies in Linguistics and Philosophy, pp. 11–41, Springer, Heidelberg.
Daisuke Bekki and Miho Satoh (2015), Calculating projections via type
checking, in R. Cooper and C. Retoré, editors, ESSLLI proceedings of the
TYTLES workshop on Type Theory and Lexical Semantics ESSLLI2015, Barcelona.
Stergios Chatzikyriakidis and Zhaohui Luo (2014), Natural language
inference in Coq, Journal of Logic, Language and Information, 23(4):441–480.
Robin Cooper (1983), Quantification and Syntactic Theory, Reidel, Dordrecht.
Rogelio Dávila-Pérez (1995), Semantics and Parsing in Intuitionistic Categorial
Grammar, Ph.D. thesis, University of Essex.
Paul Egré (2008), Question-embedding and factivity, Grazer Philosophische
Studien, 77(1):85–125.
Delia Graff Fara (2001), Descriptions as predicates, Philosophical Studies,
102:1–42, originally published under the name “Delia Graff”.
Chris Fox and Shalom Lappin (2005), Foundations of Intensional Semantics,
Blackwell, Oxford.
Jonathan Ginzburg (1995a), Resolving questions, I, Linguistics and Philosophy,
18(5):459–527.
Jonathan Ginzburg (1995b), Resolving questions, II, Linguistics and Philosophy,
18(6):567–609.
Jeroen Groenendijk and Martin Stokhof (1991), Dynamic predicate logic,
Linguistics and Philosophy, 14(1):39–100.
Irene Heim (1982), The Semantics of Definite and Indefinite Noun Phrases, Ph.D.
thesis, University of Massachusetts, Amherst.
Irene Heim (1983), On the projection problem for presuppositions, in
M. Barlow, D. Flickinger, and M. Wescoat, editors, Proceedings of the
Second West Coast Conference on Formal Linguistics, pp. 114–125, Stanford
University Press, Stanford, CA.
Jaakko Hintikka (1962), Knowledge and Belief: An Introduction to the Logic of
the Two Notions, Cornell University Press, Ithaca, NY.
Jaakko Hintikka (1969), Semantics for propositional attitudes, in J. W.
Davis, D. J. Hockney, and W. K. Wilson, editors, Philosophical Logic,
volume 20 of Synthese Library, pp. 21–45, Reidel, Dordrecht.
William Alvin Howard (1980), The formulae-as-types notion of construction,
in J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pp. 480–490, Academic
Press, London.

[417]

Ribeka Tanaka et al.

Hans Kamp, Josef van Genabith, and Uwe Reyle (2011), Discourse
Representation Theory, in D. M. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 15, pp. 125–394, Springer, Heidelberg.
Lauri Karttunen (1971), Implicative verbs, Language, 47(2):340–358.
Lauri Karttunen and Stanley Peters (1979), Conventional implicatures, in
C. K. Oh and D. A. Dinneen, editors, Syntax and Semantics 11: Presupposition,
pp. 1–56, Academic Press, New York, NY.
Jeffrey C. King (2002), Designating propositions, The Philosophical Review,
111(3):341–371.
Eriko Kinoshita, Koji Mineshima, and Daisuke Bekki (2016), An analysis of
selectional restrictions with Dependent Type Semantics, in Proceedings of the
13th International Workshop on Logic and Engineering of Natural Language
Semantics (LENLS13), pp. 100–113, Kanagawa.
Paul Kiparsky and Carol Kiparsky (1970), Fact, in M. Bierwisch and K. E.
Heidolph, editors, Progress in Linguistics, pp. 143–173, de Gruyter Mouton,
Berlin.
Emiel Krahmer and Paul Piwek (1999), Presupposition projection as proof
construction, in H. Bunt and R. Muskens, editors, Computing Meaning: Volume
1, volume 73 of Studies in Linguistics and Philosophy, pp. 281–300, Kluwer
Academic Publishers, Dordrecht.
Yusuke Kubota and Robert Levine (2017), Scope parallelism in coordination
in Dependent Type Semantics, in M. Otake, S. Kurahashi, Y. Ota,
K. Satoh, and D. Bekki, editors, New Frontiers in Artificial Intelligence: JSAI-isAI
2015 Workshops, Revised Selected Papers, volume 10091 of Lecture Notes in
Artificial Intelligence, pp. 149–162, Springer, Heidelberg.
Susumu Kuno (1970), Some properties of non-referential noun phrases, in
R. Jakobson and S. Kawamoto, editors, Studies in General and Oriental
Linguistics. Presented to S. Hattori on Occasion of his Sixtieth Birthday,
pp. 348–373, TEC, Tokyo.
Zhaohui Luo (2012a), Common nouns as types, in D. Béchet and
A. Dikovsky, editors, Logical Aspects of Computational Linguistics: 7th
International Conference, LACL 2012, Proceedings, volume 7351 of Theoretical
Computer Science and General Issues, pp. 173–185, Springer, Heidelberg.
Zhaohui Luo (2012b), Formal semantics in modern type theories with coercive
subtyping, Linguistics and Philosophy, 35(6):491–513.
Per Martin-Löf (1984), Intuitionistic Type Theory. Notes by G. Sambin,
Bibliopolis, Naples.
John-Jules Ch Meyer and Wiebe van der Hoek (2004), Epistemic Logic for AI
and Computer Science, Cambridge University Press, Cambridge.

[418]

Factivity and presupposition in Dependent Type Semantics

Line Mikkelsen (2005), Copular Clauses: Specification, Predication and Equation,
John Benjamins, Amsterdam.
Line Mikkelsen (2011), Copular clauses, in C. Maienborn, K. von
Heusinger, and P. Portner, editors, Semantics: An International Handbook of
Natural Language Meaning, volume 2, pp. 1805–1829, de Gruyter Mouton,
Berlin.
Richard Montague (1973), The proper treatment of quantification in ordinary
English, in P. Suppes, J. Moravcsik, and J. Hintikka, editors, Approaches to
Natural Language, pp. 221–242, Kluwer Academic Publishers, Dordrecht.
Bengt Nordström, Kent Petersson, and Jan M. Smith (1990), Programming
in Martin-Löf’s Type Theory: An Introduction, Oxford University Press, Oxford.
Terence Parsons (1993), On denoting propositions and facts, Philosophical
Perspectives, 7:441–460.
Paul Piwek and Emiel Krahmer (2000), Presuppositions in context:
constructing bridges, in P. Bonzon, M. Cavalcanti, and R. Nossum, editors,
Formal Aspects of Context, volume 20 of Applied Logic Series, pp. 85–106, Kluwer
Academic Publishers, Dordrecht.
Aarne Ranta (1994), Type-Theoretical Grammar, Oxford University Press,
Oxford.
Christian Retoré (2014), The Montagovian generative lexicon ΛT yn: a type
theoretical framework for natural language semantics, in R. Matthes and
A. Schubert, editors, 19th International Conference on Types for Proofs and
Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in
Informatics, pp. 202–229, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, http://drops.dagstuhl.de/opus/volltexte/2014/4633/.
Bertrand Russell (1919), Introduction to Mathematical Philosophy, George Allen
& Unwin, London.
Mark Steedman (2000), The Syntactic Process, MIT Press, Cambridge, MA.
Göran Sundholm (1986), Proof Theory and Meaning, in D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume 3,
pp. 471–506, Reidel, Dordrecht.
Göran Sundholm (1989), Constructive generalized quantifiers, Synthese,
79(1):1–12.
Ribeka Tanaka (2014), A proof-theoretic approach to generalized quantifiers
in dependent type semantics, in R. de Haan, editor, Proceedings of the
ESSLLI2014 Student Session, pp. 140–151, Tübingen,
http://www.kr.tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf.
Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki (2015), Resolving
modal anaphora in Dependent Type Semantics, in T. Murata, K. Mineshima,

[419]

Ribeka Tanaka et al.

and D. Bekki, editors, New Frontiers in Artificial Intelligence: JSAI-isAI 2014
Workshops, Revised Selected Papers, pp. 83–98, Springer, Heidelberg.
Ribeka Tanaka, Yuki Nakano, and Daisuke Bekki (2014), Constructive
generalized quantifiers revisited, in Y. Nakano, K. Satoh, and D. Bekki,
editors, New Frontiers in Artificial Intelligence: JSAI-isAI 2013 Workshops, Revised
Selected Papers, volume 8417 of Lecture Notes in Computer Science, pp. 115–124,
Springer, Heidelberg.
Wataru Uegaki (2016), Content nouns and the semantics of
question-embedding, Journal of Semantics, 33(4):623–660.
Rob A. van der Sandt (1992), Presupposition projection as anaphora
resolution, Journal of Semantics, 9:333–377.
Zeno Vendler (1972), Res Cogitans: An Essay in Rational Psychology, Cornell
University Press, Ithaca, NY.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[420]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Dependent Type Semantics
	Dependent type theory
	Common nouns: types or predicates?
	Analysis of presupposition in DTS

	Analyzing factivity in DTS
	Inferences with factive and non-factive verbs
	Declarative complements
	NP-complements

	Conclusion

