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ABSTRACT

Minimalist grammars have been used recently in a series of papers to
explain well-known contrasts in human sentence processing in terms
of subtle structural differences. These proposals combine a top-down
parser with complexity metrics that relate parsing difficulty to mem-
ory usage. So far, though, there has been no large-scale exploration
of the space of viable metrics. Building on this earlier work, we com-
pare the ability of 1,600 metrics to derive several processing effects
observed with relative clauses, many of which have been proven dif-
ficult to unify. We show that among those 1,600 candidates, a few
metrics (and only a few) can provide a unified account of all these
contrasts. This is a welcome result for two reasons: First, it provides a
novel account of extensively studied psycholinguistic data. Second, it
significantly limits the number of viable metrics that may be applied
to other phenomena, thus reducing theoretical indeterminacy.

1 INTRODUCTION

It is beyond doubt that the structural properties of a sentence influ-
ence how easily said sentence is processed by humans. For example,
a sentence with multiple levels of center embedding is harder to parse
than its counterpart with right embedding, and English subject rela-
tive clauses are processed more quickly than object relative clauses.
There is large disagreement, however, on what the relevant structural
properties are. This paper continues a recent series of investigations
(Kobele et al. 2013; Graf and Marcinek 2014; Graf et al. 2015; Gerth
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2015) that approach this question by combining Stabler’s (2013) top-
down parser for Minimalist grammars (MGs) with structurally rich
analyses from Minimalist syntax, the most recent version of Chom-
sky’s transformational grammar framework.

The works above are part of longer tradition applying computa-
tional formalisms to human sentence processing (Joshi 1990; Rambow
and Joshi 1995; Steedman 2001; Hale 2011; Yun et al. 2014, among
others). Common to all of them is a tripartite structure consisting of 1)
an articulated theory of syntax that has sufficient empirical coverage
to be applicable to a wide range of constructions, 11) a sound and com-
plete parser for the syntactic formalism, and 1II) a complexity metric
that acts as linking theory to derive psycholinguistic predictions from
the previous two components. The allure of this approach is that all
components are rigorously specified and mathematically worked out
to a degree that allows for very fine-grained and detailed processing
predictions. Not only does this provide insightful explanation of cer-
tain processing phenomena, it also makes it possible to distinguish be-
tween competing syntactic proposals based on their psycholinguistic
predictions.

The decomposition into three distinct modules is intuitive and el-
egant, but it also highlights a worrying underspecification issue. With
three components that by necessity have to make very detailed as-
sumptions, it is to be expected that a large number of different com-
binations all replicate the same behavioral data. For instance, a syn-
tactician whose analysis makes the wrong processing predictions may
insist that the problem is not with the analysis but with the parser
or the complexity metric. For the previous MG modeling work, the
issue has already arisen with respect to the choice of complexity met-
rics, with Graf and Marcinek (2014) and Graf et al. (2015) arguing for
slightly different metrics than Kobele et al. (2013) and Gerth (2015).
The specificity of computational models — one of their biggest virtues
— thus runs the risk of combinatorial explosion and empirical indeter-
minacy, which would severely weaken their appeal.

In order to address this issue, we define a total of 1,600 complex-
ity metrics and evaluate whether they can account for the processing
contrasts with relative clauses that were originally discussed in Ko-
bele et al. (2013), Graf and Marcinek (2014), and Graf et al. (2016).
We also use two different analyses of relative clauses from Minimal-
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ist syntax (promotion and wh) to determine whether the set of em-
pirically viable metrics is still sufficiently structure-sensitive to dis-
tinguish between the accounts. Our findings show that the issues of
indeterminacy and combinatorial explosion are much less severe in
practice than one might expect — a handful of data points is sufficient
to significantly reduce the space of empirically viable parsing models.
Furthermore, this reduced set contains some very simple metrics that
are capable of explaining a wide range of processing contrasts in an
intuitively pleasing fashion. At the same time, the set of viable metrics
varies with the posited analysis in an interesting way, which suggests
that more data points will eventually allow us to rule out specific syn-
tactic proposals.

The paper proceeds as follows. The next section introduces MGs
(2.1) and explains how the behavior of Stabler’s (2013) top-down
parser for MGs can be represented at an abstract level with index/
outdex annotated derivation trees. Section 3 then defines 1,600 com-
plexity metrics that operate over these annotated derivation trees. This
large number is obtained from just three basic metrics that are subse-
quently parameterized along various axes. In Section 4, we establish
the empirical viability of only a few of these 1,600 metrics for the pro-
cessing of relative clauses in English, Chinese, Korean, and Japanese.
The paper concludes with a discussion of conceptual and methodolog-
ical aspects of our finding.

2 MINIMALIST GRAMMARS FOR PROCESSING

The mathematical backbone of this paper is provided by MGs (Stabler
1997, 2011) and the top-down MG parser proposed by Stabler (2013).
MGs were chosen because they present a rare combination of traits.
On the one hand they incorporate ideas from Chomskyan syntax that
have found wide adoption in syntactic processing. MGs are also flexi-
ble enough to implement even unusual proposals such as Late Merge
(Lebeaux 1988; Takahashi and Hulsey 2009) and test their predic-
tions. On the other hand they can be regarded as a simple variant of
context-free grammars, which have been studied extensively in the
computational parsing literature (Shieber et al. 1995; Sikkel 1997).
MGs thus act as mathematical glue between formal parsing theory,
psycholinguistics, and large areas of contemporary syntax.
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After a brief introduction to MGs in Section 2.1, we discuss the
central role of derivation trees (2.2) and how Kobele et al.’s (2013)
system of annotating derivation trees acts as a high-level abstraction
of Stabler’s top-down parser (2.3). This provides us with a unified rep-
resentational format that simultaneously describes the structure of a
sentence and relevant parts of its parse history. When combined with
the complexity metrics in Section 3, this simple system is sufficient to
obtain concrete processing predictions.

2.1 Non-technical introduction to Minimalist grammars

MGs take inspiration from the most recent iteration of transforma-
tional grammar, known as Minimalism or Minimalist syntax (Chom-
sky 1995b, 2001). Like all iterations of transformational grammar,
MGs furnish a mechanism for encoding basic head-argument relations
which are then manipulated by a movement operation to produce the
actual syntactic structure. In the case of MGs, these two modes of struc-
ture building are called Merge and Move, respectively. What differen-
tiates MGs from standard Minimalism is their fully explicit feature
calculus, which regulates when each operation has to be applied. This
makes MGs a lexicalized formalism similar to CCG, LFG or HPSG in the
sense that each grammar G is just a finite list of feature-annotated lex-
ical items (LIs) — a structure is generated by G iff it can be assembled
from LIs of G according to their feature specifications.

For the purposes of this paper, an intuitive understanding of MGs
is sufficient, so we do not give a complete, rigorous definition here.
The interested reader is referred to Stabler (2011), Graf (2013, Chap-
ters 1 & 2), and Gerth (2015, Section 4.1) for detailed yet accessible
introductions. Suppose that we want to generate the sentence John,
the girl likes. While there are in principle infinitely many distinct ways
to do so with MGs, only a few, marginally different ones are also en-
tertained in Minimalist syntax. The most common analysis posits the
syntactic structure shown in Figure 1, where dashed lines have been
added to indicate which positions certain phrases were moved from.
The basic idea is that the sentence starts out as the girl likes John and is
subsequently transformed into John, the girl likes via Move. There are,
however, several independently motivated factors that complicate this
simple picture.
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Instead of the usual X’-structure, a more succinct Bare Phrase
Structure tree (Chomsky 1995a) is assumed. The two are almost
identical except that Bare Phrase Structure trees omit all unary
branches (wherefore they are strictly binary branching). So an
X’-structure like [pp [ [p John ]11] reduces to simply John.

A phrase can have multiple specifiers but only one complement.
Heads are always linearized to the left of their complement and
to the right of their specifiers (Kayne 1994).

Sentences are allowed to contain unpronounced LIs, which are
denoted .

VPs are split into VP and vP (read “little VP”) following ideas first
formulated in Larson (1988). The vP phrase serves many purposes
in the literature, but its relevance for this paper is limited to its
role as the base position for subjects.

Subjects in English (and all other languages discussed in this pa-
per) move from the lowest specifier of vP to the canonical subject
position, i.e. the lowest specifier of TP.

For the sake of exposition, Figure 1 also incorporates the assump-
tion that a phrase moving out of vP must intermittently land in a
specifier of vP (Chomsky 2001). We omit this in the remainder of
the paper as it has no effect on our results and thus would only
add irrelevant complexity.
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While many of these assumptions are not widely shared outside of
Minimalist syntax and add a certain degree of verbosity, they rest on
decades of syntactic research. Since a major goal of the MG parsing
project is to determine to what extent different syntactic assumptions
can affect processing predictions, we adapt these Minimalist analyses
as faithfully as possible to MGs.

Let us then look more closely at how the phrase structure tree in
Figure 1 is assembled by an MG. MGs combine LIs into trees via the
structure-building operations Merge and Move based on the features
carried by those LIs. We start out by applying Merge to likes and John,
which marks John as an argument of likes. In order for this Merge step
to be licensed, likes must have a feature that indicates that the verb
takes a DP as its complement, whereas John must have the matching
category feature D. The verb is then selected by the unpronounced
head of vP, which also requires a DP as its specifier. In this particular
case, the DP is obtained by merging the with girl. As before, all these
instances of Merge must be licensed by suitable feature specifications
on the LIs. We do not write out these features here as they will play
no role in this paper beyond the fact that an MG parser needs to keep
track of all features.

At this point we have assembled the tree depicted in Figure 2. This
figure also shows the corresponding derivation tree, which records the
structure-building steps taken to build the phrase structure tree. In a
derivation tree, all leaves are lexical items, and all interior nodes are
labeled by Merge and Move depending on which operation takes place
at that point. The two trees in Figure 2 differ only in their interior node
labels, but they will diverge more significantly once Move enters the
picture.

So far each step has added new material to the tree via Merge.
But now something different happens: the object DP John is displaced
to a specifier of vP via Move. When exactly Move may take place and

Figure 2: Merge
An intermediate state of /VP\ o
the assembly of John, the DP v Merge Merge
girl likes; all feature P PN P PN
specifications are omitted the girl & VP the girl & Merge
/\
likes John likes John
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which phrase it may displace is once again controlled by the feature
calculus. In the case at hand, the vP-head must have a feature f that
requires some phrase to move into a vP specifier. Similarly, John must
have a feature that requires it to undergo f-movement. The result of
Move is shown in Figure 3. Note that the phrase structure tree and
the derivation tree now have different geometries, with John in a vP
specifier in the former but still in its base position in the latter. Con-
sequently, reading the leaves in a derivation tree from left to right
thus may not produce the actual word order of the sentence, which
will play an important role during the discussion of MG parsing in the
next two sections.

Figure 3:
vP > M(ive Phrase structure tree and
= _l\/ferg_e‘ NN derivation tree after the
JOhn/s/v\P~ =~ T N first movement step;
DP T v/ \‘\ Merge Merge dashed arrows are not part
PN N e P of the trees
the girl & VP . the girl e Merge :
/\1’ /\/
likes ¢ likes John

The reader may also wonder why Move is represented as a unary
branching node even though the operation seems to involve two ar-
guments, a target position and the subtree that is to be displaced. The
answer is that Move is a deterministic operation in MGs. The target
position is always added at the root of the current tree, and from the
feature specifications of LIs one can always infer which particular sub-
tree is to be displaced. There simply is no need to explicitly specify the
arguments of Move. However, in the derivation trees in this paper we
omit the feature specifications for the sake of brevity and instead use
dashed arrows to indicate what moves where.

Strictly speaking we could stop here as the current phrase struc-
ture tree already has John, the girl likes as its string yield. However,
the tree is still incomplete according to Minimalist syntax and thus the
derivation continues. After merging the tree with an unpronounced T-
head, the subject the girl moves from its base position inside vP to the
canonical subject position in the specifier of TP. Then the TP is merged
with an unpronounced C-head, and John is topicalized by moving it
to a CP specifier. By assumption, a tree is well-formed iff its root is
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labeled CP and all feature requirements have been satisfied. Since this
is the case for this tree, the derivation can stop here. The full deriva-
tion is given in Figure 4 — to give the reader an idea of what the MG
feature calculus looks like, we also list the feature specifications in this
example.

2.2 The central role of derivation trees

Since derivation trees provide a record of how a given phrase struc-
ture tree is to be assembled, they implicitly contain all the information
encoded in the latter. In itself this is a rather unremarkable fact, but in
the MG community a trend has developed in the last 10 years to treat
derivation trees as the primary data structure of MGs (Kobele et al
2007; Kobele 2011, 2015; Graf 2011, 2012a,b, 2013; Hunter 2011).
That is to say, MGs are no longer viewed as generators of phrase struc-
ture trees or strings but rather as a generator of derivation trees. A suit-
able graph transduction then transforms the derivation trees into the
desired output structure - strings, phrase structure trees, logical forms,
dependency graphs, and so on. Similar ideas have been explored in a
more general setting under the label of two-step approaches (Moraw-
ietz 2003; Monnich 2006), interpreted regular tree grammars (Koller
and Kuhlmann 2011), and Abstract Categorial Grammar (de Groote
2001). This view of MGs has many technical advantages, but it also
provides a unique perspective on parsing: if one assumes that the struc-
tures to be produced by an MG parser are derivation trees rather than
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phrase structure trees, MG parsing turns out to be closely related to
parsing of context-free grammars (CFGs).

It has been known for a while now that an MG’s set of well-formed
derivation trees forms a regular tree language (Michaelis 2001; Ko-
bele et al. 2007; Salvati 2011; Graf 2012a).! Regular tree languages,
in turn, can be directly linked to CFGs. For any CFG G, let D(G) be the
set of its derivation trees. Furthermore, a projection 7 : 3 — Q is a total
function from alphabet ¥ to alphabet €. Projections can be extended
to trees in a point-wise fashion such that the image of tree t under = is
the result of replacing each label in t by its image under 7. A famous
theorem by Thatcher (1967) states that a tree language L is regular
iff there is a CFG G and projection 7 such that L = n(D(G)). In other
words, every regular tree language can be generated by a CFG if one
is willing to refine the node labels. For MGs, the refinement involves
replacing all instances of Merge and Move with tuples of feature spec-
ifications. The details are of no particular interest here (see Michaelis
2001, Kobele et al. 2007 and section 2.1.1 of Graf 2013). The crucial
point is that MGs have a close link to CFGs via their derivation trees,
and this link can be exploited in parsing.

An MG parser can co-opt CFG parsing techniques as long as it has
mechanisms to deal with the properties that separate MGs from CFGs.
The use of Merge and Move as interior node labels instead of more
fine-grained labels is rather trivial in this respect. The true challenge
lies in the fact that the left-to-right order of leaves in the MG derivation
tree does not correspond to the linear order in the string. The latter can
be deduced from the former only if one keeps track of the structural
alterations brought about by Move, which requires some ingenuity. At
any rate, MGs can be regarded as CFGs with a more complex mapping

L This fact is not restricted to standard MGs as presented in the previous sec-
tion. MGs have been extended and modified with numerous devices from the
syntacticians’ toolbox. Even the most truncated list includes adjunction (Frey
and Gértner 2002; Fowlie 2013; Hunter 2015a), new movement types (Kobele
2006; Stabler 2006; Gartner and Michaelis 2010; Graf 2012b), and a variety of
constraints (Gartner and Michaelis 2007; Graf 2013). But these revised versions
still preserve the regularity of the derivation tree language. The complexity of
the string yield mapping is affected by new movement types, but stays within
the restricted class of transductions that are definable in first-order logic with
equality and proper dominance (Graf 2012b).
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from trees to strings, and MG parsers are CFG parsers that have been
augmented with a mechanism to handle this increased complexity. 2

2.3 Encoding parses with tree annotations

Consider a standard recursive descent parser for CFGs, i.e. a parser
that operates top-down, depth-first, and left-to-right. Following Ko-
bele et al. (2013), the order in which a parser builds a given tree t for
input string i can be represented by a specific annotation of the nodes
of t as in Figure 5.

Figure 5: 1g
. o . 2
The annotations of the tree indicate in what o
order it is built by a recursive descent parser 2NP, 2 AuxP,
/\ /\
Sthe, 3girly ®may, ©VPg

/\
8like  8Johny,

Intuitively, the annotation indicates for each node in the tree
when it is first conjectured by the parser and at what point it is con-
sidered completed and flushed from memory. So at the very first step,
the parser conjectures S, which is expanded in step 2 to NP and AuxP.
Assuming that NP and AuxP will eventually yield the desired string,
S can be marked as done and removed from memory at step 2. After
that the parser works on NP (because it operates left-to-right), adding
the and girl. So those two are first conjectured at step 3 while NP is
removed from memory at the same time. As the parser is depth-first,
it now proceeds to work on the and girl rather than AuxP. First the is
scanned at step 4. This means that the parser reads in the first word of

2The connection between MGs and CFGs does not emerge with phrase struc-
ture trees. MGs are known to be weakly equivalent to MCFGs (Harkema 2001;
Michaelis 2001), from which it follows immediately that there are MGs whose
set of well-formed phrase structure trees is supra-regular. But supra-regular tree
languages cannot be made context-free via a simple relabeling as is the case for
regular tree languages, wherefore CFG parsing techniques are not easily extended
to Minimalist phrase structure trees. The technical gulf between phrase structure
trees on the one hand and derivation trees on the other is significant, and it holds
only because derivation trees need not directly encode the linear order of leaves
in the string.
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the input and verifies that it is indeed the. If so, the parser then scans
girl at step 5, checking it against the second word in the string. Assum-
ing that scanning succeeded, the parser then returns to AuxP, which it
has held in memory since step 2. Now at step 6 it finally gets to flush
AuxP from memory and replace it by may and VP. The remainder of
the parse is straight-forward.

This is of course a highly abstracted view of the actual work done
by a parser. For one thing, a parser operates with parse items rather
than trees or tree nodes, and how such parse items are organized in
memory depends on a lot on the specifics of the algorithm (for exam-
ple, a chart-based parser would never remove an already constructed
parse item from memory). More importantly, the problem of which
rewrite rules must be chosen to derive the correct string is completely
ignored. So this way of annotating trees is no substitute for a proper,
rigorously defined parser. Crucially, though, these abstractions are im-
material for this paper’s approach to modeling human sentence pro-
cessing — the tree annotation is a sufficiently close representation of a
parser’s behavior to enable the kind of processing predictions we are
interested in.

Now consider how a standard recursive descent parser would op-
erate over an MG derivation tree. Consider first the derivation tree for
the girl likes John, depicted in Figure 6. For the sake of clarity, we indi-
cate unpronounced LIs by their category (C, T, v). As can be gleaned
from the figure, the parser scans the leaf nodes in this derivation in
the following order: C T the girl v likes John. But the actual order in the
input string is C the girl T v likes John, with the girl preceding T rather
than following it. In this particular case the slight difference does not
matter because T is the empty string, so “T the girl” and “the girl T” are
exactly the same string. However, this example already shows that a
standard recursive descent parser is not guaranteed to scan the leaf
nodes of an MG derivation in the order in which they appear in the
input string. Problems arise whenever Move actually alters the prece-
dence relations between leaf nodes, as is the case with John, the girl
likes (also shown in Figure 6). The recursive descent parser will reach
the and try to scan it. It subsequently aborts the parse because the
scanned leaf node does not match the first word in the input, John.
We see, then, that a CFG recursive descent parser does not operate
correctly over MG derivation trees despite them being context-free.
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The problem with the CFG recursive descent parser is its assumption
that the left-to-right order in trees reflects the left-to-right order in the
derived string. The core insight of Stabler (2013) (building on Main-
guy 2010) is that the left-to-right order can instead be inferred from
the MG feature calculus. At the level of abstraction used in this paper,
the answer is even simpler. Given two sibling nodes m and n in an
MG derivation, m is left of n iff m reflexively dominates a leaf node [
such that every leaf node reflexively dominated by n is somewhere to
the right of [ in the derived string (where reflexive dominance is the
reflexive, transitive closure of the mother-of relation). According to
this definition, the recursive descent parser will choose a right branch
instead of a left one whenever the right branch contains a mover and
this mover appears to the left of all the material in the left branch.
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Figure 7 shows that this modified kind of recursive descent scans the
leaf nodes in the correct order: John C the girl T v likes. To further
increase the readability of derivation trees, this and all later figures
replace the labels Merge and Move by the corresponding X’-labels in
the phrase structure tree.

The annotations for MG derivation trees can be computed in a
purely tree-geometric fashion (Graf et al. 2015). From here on out, we
will refer to a node’s superscript as its index and its subscript as its
outdex. The terminology is intended to highlight that the index repre-
sents the step at which the parser first conjectures a node whereas the
outdex records the point at which it has finished working on the node.
Index and outdex thus provide information about the parser’s memory
usage. The greater the difference between the two, the longer an item
has to be stored in memory. Since memory usage plays a central role
in deriving processing predictions from these annotations, any outdex
that is larger than the corresponding index by a non-trivial amount
will be henceforth highlighted by a box (more on this in Section 3.2).

Definition 1 Let s[urface]-precedence be the relation that holds between
nodes my and ng in a derivation tree iff their counterparts m, and n, in
the corresponding phrase structure tree stand in the precedence relation. If
my undergoes movement during the derivation, its counterpart m, is the
final landing site rather than its base position.

p
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Given a well-formed Minimalist derivation tree t, its index/outdex
annotation is computed as follows:

1. Every node of t has exactly one index and exactly one outdex.

2. The index of the root is 1. For every other node, its index is identical
to the outdex of its mother.

3. If nodes n and n’ are distinct nodes with index i, and n reflexively
dominates a node that is not s-preceded by any node reflexively dom-
inated by n’, then n has outdex i + 1.

4. Otherwise, the outdex of node n with index i is max(i+1, j+1), where
j = 0 is greatest among the outdices of all nodes that s-precede n but
are not reflexively dominated by n.

Throughout the rest of the paper we use these annotated deriva-
tion trees as abstract representations of the behavior of Stabler’s
(2013) recursive descent parser for MGs. This greatly simplifies the
discussion by substituting easily interpreted derivation trees with in-
dices and outdices for the complex mechanics of the parser. But it
means that the difficulty of finding this derivation tree in the first
place is completely ignored. The most demanding task of parsing —
searching through a large space of structures in the search for the cor-
rect one — is taken out of the equation. This simplification is shared
among all recent work that use Stabler’s MG parser to model human
processing (Kobele et al. 2013; Graf and Marcinek 2014; Graf et al.
2015; Gerth 2015). In the words of Graf et al. (2015, p.3):

While psychologically implausible, this idealization is meant
to stake out a specific research goal: processing effects must
be explained purely in terms of the syntactic complexity of
the involved structures, rather than the difficulty of find-
ing these structures in a large space of alternatives. More
pointedly, we assume that parsing difficulty modulo non-
determinism is sufficient to account for the processing phe-
nomena under discussion.

The aim of these MG processing models, then, is to see how much
of human sentence processing can be explained by considering only
the order of how the parts of the correct derivation are built. This does
not deny that ambiguity has a large role to play, e.g. in garden path
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sentences, but it is taken out of the equation in order to determine
the relevance of isolated structural factors. A simpler model has the
advantage of being easier to reason about, and the focus on structure
allows us to compare specific syntactic proposals according to their
processing predictions.

3 COMPLEXITY METRICS FOR PROCESSING

The previous section recast Stabler’s top-down parsing algorithm for
MGs as a particular kind of tree annotation, but this raises the question
how a simple annotation of derivation trees can be linked to psycholin-
guistic processing effects. This is accomplished via a linking theory,
which takes the form of complexity metrics.® The next section discusses
what we mean by complexity metrics and how all our metrics are
rooted in notions of memory usage. Sections 3.2 and 3.3 then provide
formal definitions of all the relevant metrics. The full set comprises
1,600 metrics, of which only a handful will prove able to account for
all the data in Section 4.

3.1 Complexity metrics and three notions of memory usage

A complexity metric is any procedure that ranks strings according to
processing difficulty. For instance, Kimball’s (1973) principle that the
human parser cannot work on more than two CPs at the same time
provides a simple complexity metric that is computed over phrase
structure trees. O’Grady (2011) suggests that the length of movement
dependencies affects processing difficulty. The Derivational Theory of
Complexity (Miller and Chomsky 1963; Miller and McKean 1964; see
also Phillips 1996, Chapter 5) equates complexity with the number
of syntactic operations that are required to build said sentence. Syn-
tactic Prediction Locality Theory (Gibson 1998) and Dependency Lo-
cality Theory (Gibson 2000) instead operate directly over the string
and measure the length and interaction of certain dependencies. There
are also metrics that consider more than one isolated structure: sur-
prisal and entropy reduction (Hale 2001, 2003, 2011; Levy 2013), for

3 Following the advice of two reviewers, we refrain from using Graf et al.’s
(2015) term parsing metric, which already has an established but distinct meaning
in the formal parsing community.
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instance, measure how the search space shrinks and grows during in-
cremental processing.

The open-endedness of complexity metrics reflects the fact that
the number of conceivable linking theories between the parser and
the observed processing phenomena is dauntingly large. In the face
of such an overabundance of choices, the methodologically soundest
position is to explore simple metrics before moving on to more compli-
cated ones. This is the stance we adopt throughout this paper. The MG
parser has already been simplified to a degree where all ambiguity is
abstracted away and parsing is reduced to index/outdex annotations
of derivation trees. Sticking with our focus on derivation trees and
maximal simplicity, we only consider complexity metrics that predict
processing difficulty based on how the geometry of derivation trees
affects memory usage.

That processing difficulty correlates with memory usage is a very
common hypothesis in the psycholinguistic literature. The idea can be
traced back to Kaplan (1974) and Wanner and Maratsos (1978),* with
Joshi (1990), Gibson (1998, 2000) and many other as more recent
examples (see Gerth (2015, Section 2.3.1) for a detailed discussion).
Memory usage may be measured in many different ways, though, and
as a result there is a myriad conceivable complexity metrics that differ
only in minor details. This paper compares over a thousand memory-
based complexity metrics, but fortunately they can be reduced to three
basic concepts, which will be gradually refined and modified as we
go along.

As we briefly remarked in Section 2.3, the MG parser does not
actually hold nodes of the derivation tree in memory but rather parse
items that encode various pieces of information about each node, in
particular whether the node is the root of a subtree containing movers.
For a parser that has to hold such parse items in memory, one can
distinguish at least three kinds of memory usage:

Tenure How long is the item kept in memory?
Payload How many items are held in memory?

Size How many bits does the item consume in memory?

4We thank an anonymous reviewer for bringing these early works to our
attention.
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Each category is part of some complexity metric that has been invoked
in previous work on MG parsing (Kobele et al. 2013; Graf and Marcinek
2014, Graf et al. 2015; Gerth 2015). In terms of annotated derivation
trees, the three notions can be formalized as follows:

Definition 2 Let t be some Minimalist derivation tree annotated with in-
dices and outdices.

« For every node n with index i and outdex o (i < o), its tenure ten(n)
is 0 —i. A node’s tenure is trivial iff ten(n) < 2.

* The payload of t is equal to the number of nodes in t with non-trivial
tenure: | {n | ten(n) > 2}|.

« For every node n its size is identical to the number of phrases that are
reflexively dominated by n, distinct from n, and are associated to a
Move node that reflexively dominates n.

For a concrete example, consider again the derivation tree in Fig-
ure 7. The tenure of the empty C-head is 11—3 = 8, whereas the tenure
of TP is just 4—3 = 1. The derivation tree’s payload is 5 as there are
five nodes with non-trivial tenure (indicated by boxed outdices): the
empty C-, T-, and v-heads, as well as DP and likes. The size of a parse
item corresponding to node n is the same as the number of nodes be-
low n that have a movement arrow pointing to somewhere above n.
So the size of CP and v’ is 1 and the size of T’ is 2, whereas the size of
DP and v is 0.

The definition of size may strike the reader as very stipulative.
It derives from how information about movers is stored by Stabler’s
(2013) top-down parser. For a detailed discussion, the reader is re-
ferred to Graf et al. (2015). Similarly, readers may wonder why the
threshold for payload is set to 2 rather than 1. Once again this is done
for technical reasons, discussed in Graf and Marcinek (2014).

3.2 From memory usage to complexity metrics

Note that tenure, size and payload are not exactly on equal footing.
While payload is a property of derivation trees, tenure and size are
properties of individual nodes/parse items. Consequently, payload can
already be used as a complexity metric for our simple purposes: given
two derivation trees, the one with lower payload is predicted to be
easier to process. Graf and Marcinek (2014) use the name Box to dis-
tinguish payload as a complexity metric over derivation trees from

[ 73 1]



Thomas Graf et al.

payload as general concept of memory usage. The name is motivated
by the notational convention to draw a box around the outdices of
nodes with non-trivial tenure, which we also adhere to in this paper.
In contrast to payload, tenure and size can be applied to derivation
trees in multiple ways.

Tenure was incorporated into three distinct complexity metrics
by Kobele et al. (2013). Let T be the set of nodes of derivation tree t.
Then

MaxT max({ten(n)|ne€T})

SumT ZneT,ten(n)>2 ten(n)
SumT(t)
AVgT llalg:((t)t

So MaxT reports the maximum memory usage used by any single one
node, SumT the total (non-trivial) tenure of the entire derivation tree,
and AvgT the average memory usage of a node with non-trivial tenure.
Recall that the derivation in Figure 1 has a payload of 5, which is also
its Box value. Moreover we have MaxT = 10 (due to T), SumT =
8+ 10+ 5 + 8 + 8 = 39 (summing the tenure of all boxed nodes), and
AvgT =% =78.

Graf et al. (2015) furthermore generalize size to the complexity
metric Gap in a fashion that mirrors SumT for tenure. To highlight
this similarity, we call this metric SumS instead of Gap (the original
name is motivated by the parallels to measuring the length of filler-
gap dependencies). Let M be the set of all nodes of derivation tree t
that are the root of a subtree undergoing movement. Also, for each
m € M, i(m) is the index of m and f(m) is the index of the highest
Move node that m’s subtree is moved to. With the visual aids in our
derivation trees, M can be taken to consist of exactly those nodes that
are the starting point of an arrow, while f (m) is the target node of the
highest arrow that starts in m. SumS sums the differences between
these indices.

SumS » _, i(m)—f(m)

Considering once more the derivation tree in Figure 1, we see that
M = {DP,John}, i(DP) — f(DP) = 7—3 = 4, and i(John) — f (John) =
9 —1 = 8. So the whole derivation tree has a SumS value of 12. The
motivation behind SumsS is again hard to convey without drilling deep
into the bowels of the MG top-down parser. Intuitively, though, SumS
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expresses the idea (independently argued for in O’Grady 2011) that
moving a subtree is computationally expensive — the longer it takes
to actually get to the subtree that needs to be moved, the higher the
resource cost.

Even though SumS is transparently a size-based analog of SumT,
no complexity metrics have been previously proposed for size that
operate similar to Box, MaxT or AvgT. We introduce these metrics
here for the sake of completeness, even though they will eventually
turn out to be inadequate for sentence processing.

Movers |M|, where M is the set of all nodes that are the root of a
subtree undergoing movement

MaxS max({i(n)— f(n) | n € T}), where T is the set of all nodes of the
derivation tree

Av gS SumS(t)

Movers(t)

For the example in Figure 7, we have Movers = 2 (only subject

and object move), MaxS = 8 (topicalization of John), and AvgS =
(O-D+H7=3) _ ¢
—a—=6.

3.3 Further refinements

3.3.1 Recursive application

Another metric briefly mentioned in Graf and Marcinek (2014) is
MaxTR, which applies MaxT recursively. With MaxT, two derivation
trees may receive exactly the same score and would thus be predicted
to be equally difficult. MaxTR instead assigns each derivation tree a
weight that enumerates in decreasing order the tenure of all nodes
in the payload. Then derivation u is easier than derivation v iff their
weights are identical up to position i, at which point u’s weight con-
tains a smaller number than v’s weight. A similar strategy can also be
used for size, yielding the complexity metric MaxSR.

Our example derivation tree has the values MaxTR® = [10,8,8,8,5]
and MaxS®? = [8,4]. Therefore it would be harder than a compet-
ing derivation with MaxT® = [10,8,8,5], but easier than one with
MaxSR = [8, 3].
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3.3.2 Restriction by node type

Graf and Marcinek (2014) refine the set of metrics even more by rel-
ativizing them to specific types of nodes. For each metric M, an addi-
tional four variants M;, M;, Mp, and My, are defined.

M; restriction of metric M to interior nodes
M; restriction of metric M to leaf nodes
M, restriction of metric M to pronounced leaf nodes

My restriction of metric M to unpronounced leaf nodes

For instance, the unrestricted MaxT value of our derivation was 10,
but the refined values are MaxT; = 5 (on DP), MaxT; = 10 (on T),
MaxTp = 8 (on likes), and MaxTy = 10 (on T).

Note that these restrictions make little sense for size-based metrics
since moving subtrees usually contain pronounced material and the
corresponding Move node is necessarily an interior node. Therefore we
do not consider type-based restrictions of size metrics. At this point,
then, the set of defined metrics includes Box, MaxT, SumT, AvgT,
MaxTR, four restricted subtypes for each one of them, as well as the
size-based metrics Movers, MaxS, SumS, AvgS, and MaxS® (for a total
of 30 metrics).

3.3.3 Time course of memory usage

The final metric to be considered refines payload so that it reflects
maximum memory usage more faithfully. As we saw earlier, Box sim-
ply reports how many parse items had to be held in memory. However,
a high Box value need not imply a heavy memory burden as long as
one item is removed from memory before the next one is inserted.
That is to say, if nodes u and v contribute to the payload of derivation
t but the outdex of u is less than the index of v, then the two never
reside in memory at the same time. In order to home in on this aspect,
we define two metrics convergence Con and divergence Div that keep
track of how many distinct nodes do or do not reside in memory at
the same time.

Con |{{u,v)|ten(u) = 2,ten(v) > 2,index(u) < index(v) < outdex(u)} |

Div | {{u,v) | ten(u) = 2,ten(v) > 2, outdex(u) < index(v)} |
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As before these metrics can be relativized to the four subtypes I, L, P,
and U. Returning one final time to the derivation in Figure 7, we see
that Cony = | {(C, T), (C,v),(T,v)}| =3 and Div = |@| = 0.

3.3.4 Ranked complexity metrics

With just a handful of psycholinguistically plausible factors such as
maximum and average memory usage and restrictions to specific types
of nodes the number of metrics has quickly risen to a bewildering de-
gree. But things do not stop here. Graf et al. (2015) argue in favor of a
combined metric MaxT + SumS which uses MaxT to predict process-
ing difficulty but relies on SumS whenever MaxT results in a tie. So
given two derivation trees t; and t,, t; is predicted to be easier than ¢,
if either t; has a lower MaxT or t; and t, have the same MaxT value
but t; has a lower SumS value. This is similar to constraint ranking
in OT (Prince and Smolensky 2004), where a lower ranked constraint
matters only if all higher ranked constraints have failed to pick out
a unique winner. If complexity metrics are allowed to be ranked in
such a way, their number quickly reaches an astronomical size. We
have introduced 40 metrics, wherefore a ranked complexity metric
can consist of up to 40 metrics. It follows that there are over 40 facto-
rial (40!) distinct metrics that are ranked combinations of our 40 basic
metrics — a truly astounding number. Even if one only allows pairs of
our 40 complexity metrics, there are 1,600 distinct metrics (pairs of
the form (m, m) are equivalent to just the metric m).

Ranked Metric Given a set C of complexity metrics, a ranked metric
is an n-tuple {c;,...,c,) such that for 1 <i,j < nitholds thatc, € C
and that i # j implies ¢; # ;. Given a ranked metric (cy,...,c,) and
two derivation trees t; and t,, t; is predicted to be easier than t,
iff there is some j < n such that ¢;(t;) = ¢;(t,) for all i < j and ;
predicts t; to be easier than t,.

3.4 Discussion

The large number of metrics poses a significant problem. Remember
the promise of the MG parser and the psycholinguistic modeling work
that builds on it: processing phenomena are explained in terms of the
syntactic structures they involve, and in the other direction, syntac-
tic analyses can be evaluated based on their processing predictions.
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But the processing claims of these models arise from the interaction
of three factors, which are the parser (represented via index/outdex
annotation), the syntactic analysis (in the form of derivation trees),
and the complexity metric.

There are few alternatives to the current top-down parser. Despite
some suggestive evidence such as merely local syntactic coherence ef-
fects (Tabor et al. 2004; Konieczny 2005; Konieczny et al. 2009; Bick-
nell et al. 2009), there is still a large consensus among psycholinguists
that if the human parser builds any kind of tree structures, it does
not do so in a pure bottom-up fashion. The other prominent option is
left-corner parsing. Unfortunately, no left-corner parser exists for MGs
at this time because the notion left corner does not carry over neatly
from CFGs (but see Hunter 2015b). Without a readily available alter-
native to top-down parsing, the two major parameters in the model
are the choice of metric and the choice of syntactic analyses. But the
larger the set of metrics, the higher the risk that just about any syn-
tactic analysis will make the right predictions with some metric. This
would significantly weaken the link between syntactic structure and
processing effects, which is the very heart of the work carried out by
Kobele et al. (2013), Graf and Marcinek (2014), Graf et al. (2015), and
Gerth (2015).

Fortunately, this worst-case scenario does not seem to arise. It
turns out that a few constructions involving relative clauses are suffi-
cient to rule out the vast majority of these metrics. We have no prin-
cipled explanation as to why this is the case — it is far from a logical
necessity. But this result, established in the next section, strengthens
the viability of the enterprise started by Kobele et al. (2013) to model
processing phenomena with MGs and use these findings to distinguish
competing Minimalist analyses. It demonstrates that 1) a very simpli-
fied processing model can still account for a noteworthy range of chal-
lenging processing phenomena, and 11) the set of workable complexity
metrics is small enough to give the model discriminative power with
respect to syntactic analyses.

4  TESTING METRICS WITH RELATIVE CLAUSES

Now that we have a precisely defined parsing model (abstractly repre-
sented in terms of annotated derivation trees) as well as a collection of
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complexity metrics that link the parser’s behavior to processing pre-
dictions, we are finally in a position to investigate how well these
tools model a collection of phenomena from human sentence process-
ing. All these phenomena, which will be presented in detail in Sec-
tion 4.1, involve relative clauses (RCs) to some extent and have been
studied separately in Kobele et al. (2013), Graf and Marcinek (2014),
and Graf et al. (2015).° In contrast, we consider the full data set and
test our much bigger collection of metrics against each one of them.
We furthermore compare two competing analyses of RCs (4.2) using
a fairly simple methodology of automated comparisons (4.3). We con-
clude that this small set of data points is highly discriminative in that
it rules out a large number of metrics for each analysis (4.4) while
still allowing for linguistically natural explanations of the observed
patterns (4.5).

4.1 Overview of relative clause constructions

Our testing data for the comparison of metrics and syntactic proposals
relies on several well-known processing contrasts involving RCs. RCs
are a promising test case because they are complex enough to allow
for syntactically interesting structures while factoring out aspects that
aren’t purely structural in nature such as co-reference resolution. The
general idea is to take a pair of constructions A and B such that A is
easier to process than B. This result then has to be replicated by the
complexity metrics given a specific analysis of RCs.

The specific behavioral contrasts to be accounted for were cho-
sen according to several criteria. First, the processing effects must be
well-documented in the psycholinguistic research. Second, the phe-
nomenon should involve a clear structural contrast, rather than just a
meaning contrast (e.g. pronoun resolution). Third, ambiguity should
not be a major factor, which rules out garden path effects.

1. SC/RC < RC/SC
A sentence with a relative clause embedded inside a sentential
complement (SC/RC) is easier to parse than a sentence with a

5Gerth (2015) investigates some additional phenomena which were not in-
cluded in our data sample as we were not aware of her findings until recently,
unfortunately.
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sentential complement embedded inside a relative clause (RC/
SC; Gibson 1998, 2000).
2. SRC < ORC
+ Subject relative clauses (SRCs) are easier to parse than ob-
ject relative clauses (ORCs) in languages like English, where
relative clauses are post-nominal and therefore follow their
head noun (Mecklinger et al. 1995; Gibson 1998, 2000; Mak
et al. 2002, 2006; Gordon et al. 2006).

« SRCs are also easier to parse than ORCs in Chinese, Korean,
and Japanese, where relative clauses are pre-nominal, that is
to say, they precede their head noun (Miyamoto and Naka-
mura 2003, 2013; Lin and Bever 2006; Ueno and Garnsey
2008; Kwon et al. 2010; Gibson and Wu 2013).

3. Right < Center
Right embedding is easier than center embedding.

These generalizations have been carefully established in the literature
via self-paced reading experiments and ERP studies with minimal pairs
such as the ones listed in (1)-(6).

(1) SC/RC < RC/SC

a. The fact [¢¢ that the employee; [gc who the manager hired
t;] stole office supplies] worried the executive.

b. The executive; [grc who the fact [¢ that the employee stole
offices supplies] worried t;] hired the manager.

(2) SRC < ORC in English

a. The reporter; [gc who t; attacked the senator] admitted the
error.

b. The reporter; [gc who the senator attacked ¢;] admitted the
error.

(3) SRC < ORC in Chinese

a. [gc t; gongji yiyuan] de jizhe  chengren-le cuowu
attack senator REL reporter admit-PRF error

b. [gc yiyuan gongji t;] de jizhe  chengren-le cuowu
senator attack  REL reporter admit-PRF error

(4) SRC < ORC in Korean
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a. [gc t; uywon-ul  kongkyekha-n] kica;-ka
senator-ACC attacked-REL reporter-NOM
silswu-lul siinhayssta
error-ACC admitted
b. [gc uywon-i t; kongkyekha-n] kica;-ka
senator-NOM  attacked-REL reporter-NOM
silswu-lul siinhayssta
error-ACC admitted

(5) SRC < ORC in Japanese

a. [gc t; giin-ga hinanshita] kisha;-ga ayamari-o

senator-ACC attacked  reporter-NOM error-ACC
mitometa
admitted

b. [gc giin-ga t; hinanshita] kisha;-ga ayamari-o

senator-NOM attacked reporter-NOM error-ACC
mitometa
admitted

(6) Right < Center

a. The boy disappeared [gc who the man saw [gc who the
woman praised]].

b. The boy [zc who the man [ who the woman praised] saw]
disappeared.

It should be pointed out that the SRC preference is less robust in
Chinese than Korean or Japanese. This has been attributed to struc-
tural ambiguities (Gibson and Wu 2013), which is corroborated by
Yun et al. (2014) and their ambiguity-based account rooted in entropy
reduction. Recall from Section 2.3, though, that we deliberately ig-
nore ambiguity in this paper so that only tree-geometric aspects of the
derivation can derive processing effects. For this reason, we assume
that Chinese would also exhibit a uniform preference for SRCs over
ORGC:s if it were not for the confound of structural ambiguity.

Some of the contrasts above have previously proven difficult to
account for. While the preference for SC/RC and SRC in English can
be explained by string-based models such as the Dependency Local-
ity Theory (Gibson 1998) or the Active-Filler strategy (Frazier 1987),
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these models erroneously derive an ORC preference for East Asian lan-
guages with their pre-nominal RCs. This is because the head noun is
closer to the object than the subject position of the RC in this case. A
functional account like Keenan and Comrie’s (1977) accessibility hier-
archy, on the other hand, derives the SRC preference across languages
but has little to say about the ease of SC/RC in comparison to RC/SC.
That right embeddings are much easier than center embeddings has
an elegant explanation in terms of left-corner parsing (Resnik 1992),
but this account in turn does not generalize to the other configura-
tions. Overall, then, the data points above have been accounted for
individually, but their unification is challenging.

4.2 Promotion and wh-analysis of relative clauses

As one of the promises of the MG processing model is the ability to
distinguish syntactic analyses based on their processing predictions,
our evaluation uses two popular proposals for the structure of RCs: the
wh-movement analysis (Chomsky 1965, 1977; Montague 1970; Heim
and Kratzer 1998), and the promotion analysis (Vergnaud 1974; Kayne
1994). Graf et al. (2015) did the same in their investigation of the SRC
preference in East Asian, whereas Kobele et al. (2013) and Graf and
Marcinek (2014) only used a promotion analysis.

Both the promotion analysis and the wh-analysis posit that the
gap inside the RC is initially filled by some element, but disagree
on what this element is and where it moves. In the promotion anal-
ysis, it is the head noun itself that starts from the gap position. The
wh-analysis has two variants. Either the relative pronoun® moves from
the gap position, or it acts as the C-head of the RC while a silent op-
erator undergoes movement from the base position. For the purposes
of this paper the two variants of the wh-movement analysis are fully
equivalent.

6 The use of “relative pronoun” is slightly misleading here in that the relative
clause markers in Chinese and Korean are not pronouns (as is rightfully noted by
an anonymous reviewer). But since the syntactic category of LIs is ignored by all
complexity metrics, we freely change between the terms relative pronoun and
RC marker in the discussion. We also represent the East Asian RC markers with
who in the derivation trees in an attempt to ease the comparison to the English
derivation trees.
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Notably absent are proposals that do not involve any movement at
all. This is because in the absence of movement, the MG parser behaves
exactly like a recursive descent parser for CFGs and thus would have
little new to offer. In addition, the comparison and detailed analysis of
the complexity metrics already involves a multitude of factors, so that
increasing the number of analyses would run the risk of rendering the
discussion (even more) impenetrable.

With both the promotion analysis and the wh-analysis, the tar-
get of movement depends on whether RCs are post-nominal or pre-
nominal in the language under investigation. Let us consider lan-
guages with post-nominal RCs like English, French, and German. All
these languages also have overt complementizers, although they may
optionally remain unpronounced, as is the case in English. The gen-
eral template is [pp Det head-noun [ complementizer subject verb
object]], with either the subject or the object unrealized. The posi-
tion of the verb depends on language-specific word order constraints,
but we can safely ignore this aspect because English is the only lan-
guage with post-nominal RCs in our data set. Figures 8 and 9 show
the promotion analysis and the wh-analysis, respectively, for the SRC
The reporter who attacked the senator admitted the error. In both deriva-
tion trees the element that fills the gap in the SRC moves to the CP
specifier (Spec,CP), i.e. the left edge of the relative clause. But note
that the head noun is outside the RC in the wh-movement analysis,
whereas it is in Spec,CP (and thus inside the RC) in the promotion
analysis.

The only difference between SRC and ORC under these analyses
is the position that the mover occupies initially. In the SRC, the mover
fills the base position of subjects (equated with Spec,vP here), whereas
the ORC requires the mover to start out in object position (i.e. as the
VP complement). This is illustrated in Figure 10, which depicts an
ORC with an embedded sentential complement.

Languages with pre-nominal RCs, such as Chinese, Japanese, and
Korean, can also be accommodated, but the word order differences
render both analyses more complex. Below is an example of pseudo-
English SRCs and ORCs with Chinese word order.

()

[pp [rc _ invited the tycoon who] the mayor] likes wine.

a.
b. [pp [rc the tycoon invited _ who] the mayor] likes wine.
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Figure 8: English SRC, promotion analysis

Since standard MGs do not provide a headedness parameter to deter-
mine the linearization of arguments (following the received view in
Minimalist syntax), the pre-nominal word order must be derived from
the post-nominal one via movement. This causes the wh-movement
analysis and the promotion analysis to diverge more noticeably.

In the promotion analysis, the RC is no longer a CP, but rather
a RelP that contains a CP (see also Yun et al. 2014). The head noun
still moves from within the RC to Spec,CP, but this is followed by the
TP moving to Spec,RelP. This creates the desired word order with the
complementizer between the rest of the RC in Spec,RelP and the head
noun in Spec,CP. In the wh-movement analysis, on the other hand,
the head noun is once again outside the RC, which is just a CP instead
of a RelP. The complementizer starts out in subject or object position
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Figure 9: English SRC, wh-movement analysis

depending on the type of RC, and then moves into a right specifier
of the CP (rightward movement is not part of Stabler’s (2013) MG
parser, but we can easily add it without modifying the annotation rules
from Definition 1 as they are defined in terms of s-precedence). The
CP subsequently moves to the specifier of the DP of the head noun,
once again yielding the desired word order with the complementizer
between the RC and the head noun. In sum, the promotion analysis
needs to posit a new phrase RelP but all movement is leftward and
takes place within this phrase. This contrasts with the wh-movement
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Figure 10: ORC containing a sentential complement, promotion analysis
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analysis, which sticks with a single CP but invokes one instance of
rightward movement and moves the RC into Spec,DP, a higher posi-
tion than Spec,RelP. Examples of the two derivation trees for a Chinese
SRC are given in Figures 11 and 12, where dotted arrows are used in-
stead of dashed ones for rightward movement.

Among the three East Asian languages, Chinese still has the sim-
pler analysis thanks to its SVO word order, whereas Japanese and Ko-
rean are SOV languages. As was the case with the linear order of RCs
relative to their head noun, Minimalist syntax assumes that the SOV
word order is derived via Move rather than simply linearizing the com-
plement of the verb to its left. The standard assumption is that SOV
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Figure 11: SRC in Chinese, promotion analysis
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Figure 12: SRC in Chinese, wh-movement analysis

languages require the object to move from the VP-complement posi-
tion to a specifier of vP as exemplified in Figure 13. While this might
seem like a minor complication, we will see in the next section that
it actually causes many metrics to incorrectly prefer ORCs over SRCs.
Korean and Japanese thus show that the complexity metrics are indeed
exquisitely sensitive to minor structural alterations.

We also use rightward movement in right embedding construc-
tions (Figure 14), as embedding without additional movement yields
center embedding structures. Whether these instances of extraposi-
tion are best analyzed as rightward movement has been called into
question in recent research (Hunter and Frank 2014), but it is the best
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Figure 13: ORC in Korean, promotion analysis

choice here to maintain analytical consistency across the different con-

structions.
For a full listing of all the analyses with annotated derivation

trees, the reader is referred to the supplementary material for this arti-
cle. Derivation trees for Japanese are omitted since they are identical
to the Korean ones except that the RC complementizer remains unpro-

nounced.
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4.3 Methodological remarks

As 1,600 metrics cannot be accurately compared by hand, we rely on a
collection of Python scripts, available in the Github repository of the
Stony Brook Computational Linguistics lab: https://github.com/
CompLab-StonyBrook. For each basic metric, these scripts perform
pairwise comparisons of minimally different derivation trees, e.g. the
English SRC in Figure 8 and its ORC counterpart. Whichever one re-
ceives a better (= lower) score has a lower memory burden is thus
predicted to be easier to process. From the relative rankings that are
obtained this way one can then automatically compute all the metrics
— including combinations of multiple metrics — that correctly predict
all processing contrasts.

Note that the difficulty metric only has to account for overall sen-
tence difficulty. This is different from more ambitious approaches such
as Hale (2001) and Yun et al. (2014), which seek to predict online dif-
ficulty, i.e. how difficulty increases or decreases with each word in
the input. Modeling online processing is feasible with certain com-
plexity metrics like MaxT (see Kobele et al. 2013 and Gerth 2015),
but it is hard to automatically compare metrics at this level of granu-
larity. Finally, we reiterate that all ambiguity is factored out — we only
consider how the parser builds a specific derivation tree, rather than
how it finds this tree among many alternatives.

4.4 Quantitative evaluation of complexity metrics

The performance of the basic metrics with the respective syntactic
analyses is summarized in Tables 1 and 2. A checkmark (v") indicates
that the metric correctly predicts structure A to be easier than structure
B, a tie that they are expected to be equally difficult, and a cross (X)
that the complexity metric incorrectly reverses difficulty, making B
easier than A. Consequently, all basic metrics that contain a cross in
at least one column can be discarded. This leaves only one metric
for the promotion analysis — MaxTg — and one for the wh-movement
analysis — AvgTp.

Many inadequate basic metrics, though, may still occur as the sec-
ond component in a ranked metric. As the second component is only
invoked to handle ties for the first component, wrong predictions for
a given contrast have no effect unless the first component could not
conclusively resolve this contrast. When ranked metrics are also taken
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Table 1:
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Table 2:
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Table 3: ]
List of empirically viable Promotion Wh-Movement
complexity metrics Basic MaxT® AvgT,
Ranked (MaxT, SumTy) MaxTyp, AvgS)

(MaxT;,SumTy)
(MaxTy, SumTy)

into consideration, the number of metrics increases from 40 to 1,600.
The number of empirically adequate metrics, on the other hand, does
not increase by the same factor and grows from 1 to 4 (promotion)
and 8 (wh-movement), respectively. No metric is a viable candidate
for both analyses (see Table 3). Note that these numbers do not include
ranked metrics whose first component is an empirically adequate ba-
sic metric (MaxTy or AvgTp) because the second metric would never
be used in those cases. If those pair metrics are included, the respec-
tive numbers grow to 4+ 39 =43 and 8 + 39 = 47. Depending on how
one counts, then, between g5 = 0.2% and a5 = 2.9% of the full
space of complexity metrics can account for the five observed pro-
cessing contrasts with relative clauses. In addition, all the remaining
ranked metrics have some variant of MaxT as their first component.
This shows that the underspecification problem is not nearly as bad as
one might expect, with a few contrasts ruling out the great majority
of metrics.

In fact, the five constructions differ in their discriminatory power
in a manner that roughly reflects how difficult they are to account for.
For example, the preference for SRCs over ORCs in English requires
no structure at all and can be explained purely in terms of string dis-
tance (Gibson 1998, 2000), and no metric reverses difficulty for this
construction. Even the number of ties is comparatively low. The same
contrast is much harder to account for in East Asian languages with
their pre-nominal RCs. String-based explanations fail in this case, and
so do more than half of all the basic metrics. The processing differ-
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ence between right embedding and center embedding is interesting in
this case because there are a variety of explanations in the psycholin-
guistic literature, and except for the size- or diversion-based metrics,
all the core metrics have some variant that captures the contrast. The
failure of size-based metrics is not surprising in this case. Recall that
right embedded RCs induce additional syntactic complexity because
they start out as center embedded RCs that have to undergo rightward
movement. The additional movement steps inevitable cause size-based
metrics to make the wrong predictions. Crucially, though, not all met-
rics fall into this trap, which proves that well-chosen complexity met-
rics can factor out irrelevant aspects of structural complexity.

4.5 Qualitative evaluation of complexity metrics

Since the connection between complexity metrics and the structure of
derivation trees is very subtle and sensitive to even minor differences,
determining why a complexity metric fails to capture a specific con-
trast while succeeding at another can be difficult. An exhaustive dis-
cussion of all the patterns reported in Table 1-3 is not feasible within
the confines of a single paper. Instead, we present a few general ob-
servations on the role of MaxT, which has been a prominent metric
in all previous work on MG parsing and is a component of almost all
successful metrics.

Firstit is instructive, though, to consider why AvgT, works for the
wh-analysis but fails for the promotion analysis. The problematic con-
structions are the East-Asian RCs. Recall that in the promotion analy-
sis, it is the head noun that moves from the gap, whereas in the wh-
movement analysis it is the RC marker (simply transcribed as who in
our derivation trees). Since RCs in East-Asian languages are prenomi-
nal and have the RC marker at their very end, the wh-movement anal-
ysis has

1. high tenure on the head noun outside the RC (which is encoun-
tered before the RC but cannot be finished until the latter is com-
plete),

2. medium tenure on the RC marker in SRCs (as it occupies the struc-
turally prominent subject position, which means that it is hypoth-
esized early by the parser but must wait until the rest of the RC
is completed),
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3. low tenure on the verb in Korean and Japanese (which is intro-
duced at the same time as the object but only finished after it due
to object movement to the left).

In an ORC, the object moves to the right of the RC, so the low tenure
on the RC marker disappears, and since it is an ORC the verb does not
have any tenure either. But AvgT, divides the sum of tenure of pro-
nounced nodes by the number of pronounced nodes with non-trivial
tenure. Removing two entries with low tenure ends up increasing the
AvgT,, value for ORCs. The final numbers are 1%%*2 = 8.3 for SRCs in
contrast to % =16 for an ORC.

The structural differences in the promotion analysis, on the other
hand, mean that although the switch from SRC to ORC reduces the
tenure on the mover (the head noun, rather than the relative pronoun)
it does not completely eliminate it. Hence the mover still counts to-
wards the payload and thus greatly lowers the AvgT, value for ORCs:
4783 = 11.5 in contrast to 32 = 8. The success of AvgT, with the
wh-movement thus relies on completely eliminating non-trivial tenure
on some nodes in ORCs, rather than just reducing it. The counterin-
tuitive prediction of AvgT and its variants — if a derivation contains a
node with high tenure, it will become easier the more nodes have low
tenure instead of no tenure — accidentally makes the right prediction
for SRCs and ORCs.

Let us now turn to MaxT, which strikes us as a more insightful
and overall more robust choice of metric. The non-recursive variants
of MaxT are a good choice for ranked metrics because they rarely
make a completely wrong prediction but instead produce many ties.
This is the reason why all successful ranked metrics contain them as
their first component: a complexity metric with a cross in at least one
column cannot be the first component of a ranked metric, which rules
out all basic metrics except the “tie-heavy” MaxT variants (and the
basic metrics that capture all the data, for which we do not list any
ranked metrics).

The high frequency of ties with MaxT variants is a natural conse-
quence of our focus on embedding constructions. All embedding con-
structions follow a template where different subtrees are inserted into
a fixed main clause. For instance, the English SRC and ORC sentences
differ only in the shape of their RCs; the main clause always has the
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same structure. The overall number of steps it takes to parse an RC
is independent of whether it is an SRC or an ORC. But this, in turn,
implies that 1) the nodes in the main clause that are introduced before
the RC but cannot be worked on until the RC is finished (e.g. T and v’
in Figure 8) have very large tenures exceeding that of any node inside
the RC, and 11) the tenure of these nodes is independent of whether
the RC is an SRC or an ORC. As MaxT metrics only pay attention to
the largest tenure in a tree, the differences between SRCs and ORCs
get drowned out by the high tenure on nodes in the main clause.

This accidental flattening of contrasts does not occur in the case
of right and center embedded RCs because the movement of an RC in
right embedding directly interacts with the nodes in the clause con-
taining the RC. In particular, moving an RC to the right of an LI [
means that [ can be worked on before the RC is explored by the parser,
thus reducing its tenure. With center embedding, the parser would first
have to explore the full RC, so the sister node of the RC would wind up
with very high tenure. The overall generalization, then, is that MaxT
metrics flatten contrasts where the differences between constructions
are restricted to nodes within the embedded subtree.

MaxT, is an exception because its restriction to pronounced nodes
filters out the tenure of interior nodes like v’ and unpronounced lexi-
cal heads like T. This improves its performance for the SC/RC versus
RC/SC contrast as well as English SRC and ORC constructions. If our
analysis had treated T as a pronounced head (e.g. for do support, or as
the carrier of inflection that affix hops onto the verb), MaxTp would
also produce ties in these cases. But even in this case the behavior of
MaxT} could still be replicated by a metric that ignores interior nodes
and functional heads, irrespective of whether they are pronounced.

While MaxT, improves on other variants in some respects, it is
also the only non-recursive MaxT version to incorrectly derive an ORC
advantage in Japanese with the promotion analysis. This is due to
the RC marker being unpronounced in Japanese, so that the only pro-
nounced nodes with tenure are the head noun and the embedded verb.
The head noun has the same tenure for SRC and ORC, but the em-
bedded verb has non-trivial tenure in the SRC as it is introduced at
the same time as the object but must wait for it to move leftward to
Spec,vP. In the ORC, on the other hand, the object moves to a position
to the right of the embedded verb, so that the latter can be completed
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as soon as it is introduced. The ORC advantage thus is due to object
extraction negating the inherent disadvantage of object movement.

In sum, it seems that any variant of MaxT that does not restrict
itself to just pronounced nodes provides a solid baseline for a ranked
metric with a suitably chosen ancillary metric to resolve ties. MaxT
has previously been studied by Kobele et al. (2013), Graf and Marcinek
(2014) and Gerth (2015), and it can even be traced back to Kaplan
(1974) and Wanner and Maratsos (1978). It also plays a role in the
TAG processing models of Joshi (1990) — in fact, Joshi (1990) ignores
the memory usage of empty nodes and thus uses what amounts to
our MaxTp, which is part of the majority of viable metrics. That three
very different processing models home in on the same kind of memory
usage as a benchmark for processing difficulty is very suggestive.

From the perspective of Minimalist syntax, (MaxT,SumS) and
(MaxT, MaxSR> are arguably the most elegant metric as they, intu-
itively speaking, combine maximum memory load with the total re-
source demand of all movement dependencies. In the generative lit-
erature, O’Grady (2011) has independently argued for the impact of
movement dependencies on sentence processing, supporting a size-
based metric. Our study confirms that these conceptually pleasing met-
rics have a lot of explanatory power to offer, although there are still
some viable alternatives.

5 FURTHER OBSERVATIONS AND DISCUSSION

While the present study considers a much wider range of constructions
and metrics than previous work on MG processing, it is still more lim-
ited in its scope than is desirable. The set of syntactic analyses, process-
ing phenomena, and MG parsing algorithms all need to be extended
to get a fuller picture of the empirical feasibility of this approach.
Our syntactic analyses still fix a plethora of parameters that need
to be carefully modulated. For example, the low starting position of
subjects and the movement of objects to Spec,vP cause tenure on T
and v, respectively, which affects certain metrics. Replacing rightward
movement by sequences of leftward movement (also known as rem-
nant movement) will also be picked up on by some metrics, as would
the introduction of a general headedness parameter to do away with
certain movement steps. Since the derivation trees using these alter-
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native proposals need to be carefully constructed by hand, a piecewise
comparison that alters only one parameter at a time is a very laborious
process.

A reviewer raises similar concerns and asks how useful these re-
sults are considering that the structure of East Asian languages is not
nearly as well understood as that of English, wherefore their Minimal-
ist analyses are much more likely to be fatally flawed. We agree that
if push comes to shove, a metric’s failure to account for the East Asian
processing patterns has less weight than its performance on English
data. However, the English data that is available and easily tested in
this framework lacks some discriminatory power that the East Asian
RC data provides. In science, we have to work with the data that is
available, even if that data is sometimes sub-optimal.

But suppose that the structure of East Asian RCs does indeed need
to be reanalyzed. We do not believe that this would lead to completely
different metrics being chosen. We did some tests with an analysis of
Korean and Japanese that simply linearizes the object to the left of
the verb rather than moving it to Spec,vP. This made the processing
predictions for them more similar to Chinese, and as a result widened
the set of feasible metrics to also include ranked metrics whose first
component is SumT for the wh-movement analysis or a variant of
Box for the promotion analysis. Crucially, though, all the previously
successful metrics were still available.

In the other direction, we also experimented with adding the pref-
erence for crossing dependencies over nested dependencies (Bach et al.
1986) to our data set. This preference was already shown in Kobele
et al. (2013) to be predicted by MaxT. So it comes as little surprise
that this contrast has no discriminative power relative to our current
data set. All of our successful metrics correctly predict the contrast.
Preliminary work on attachment preferences for dative arguments in
Korean and quantifier scope preferences in English suggest that these,
too, can be accounted for with the metrics identified in this paper.
Overall, then, it seems that the class of complexity metrics carved out
in this paper is fairly robust and more than just an accident.
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CONCLUSION

We defined a large set of reasonably simple complexity metrics that
make predictions about processing behavior based on the shape of in-
dex/outdex annotated MG derivation trees that closely mimic well-
known analyses from Minimalist syntax. Only a few metrics could
cover the full range of relative clause constructions, suggesting that
the choice of metric is much more restricted than one might initially
expect, and that underspecification is not too much of an issue in prac-
tice. In addition, the fact that it was at all possible to give a unified
explanation of relative clause processing effects, which have proven
challenging to deal with in the psycholinguistic literature, is encour-
aging. The MG processing model we advocate deliberately abstracts
away from many aspects of sentence processing in order to clearly
bring out the role that might be played by syntactic factors. It seems
that at least in the case of relative clauses, structural considerations
go a long way.
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