
Scope ambiguities, monads and strengths

Justyna Grudzińska1 and Marek Zawadowski2
1 Institute of Philosophy, University of Warsaw, Warsaw, Poland
2 Institute of Mathematics, University of Warsaw, Warsaw, Poland

abstract
Keywords: scope
ambiguity,
continuation
monad, strength

In this paper, we will discuss three semantically distinct scope assign-
ment strategies: traditional movement strategy, polyadic approach,
and continuation-based approach. Since generalized quantifiers on a
set X are elements of C (X), which is the value of the continuation
monad C on X , quantifier phrases are interpreted as C -computations,
in all three approaches. The main goal of this paper is to relate the
three strategies to the computational machinery connected to the
monad C (strength and derived operations). As will be shown, both
the polyadic approach and the continuation-based approach make
heavy use of monad constructs. In the traditional movement strategy,
monad constructs are not used but we still need them to explain how
the three strategies are related and what can be expected of them with
regard to handling scopal ambiguities in simple sentences.

1 multi quantifier sentences and three
scope assignment strategies

Multi-quantifier sentences can be ambiguous, with different readings
corresponding to how various quantifier phrases (QPs) are semanti-
cally related in the sentence. For example,
(1) Every girl likes a boy
admits of the subject wide-scope reading (S > O) where each girl likes
a potentially different boy, and the object wide-scope reading (O > S)
where there is one boy whom all the girls like. As the number of QPs in
a sentence increases, the number of distinct readings also increases.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 179–227

Justyna Grudzińska, Marek Zawadowski

Thus a simple sentence with three QPs admits of six possible read-
ings, and in general a simple sentence with n QPs will be (at least) n!
ways ambiguous (we only consider readings where QPs are linearly
ordered – what we will call asymmetric readings). In this paper, we
will discuss three semantically distinct scope-assignment strategies:
Strategy A: Traditional movement strategy (Cooper 1983; May 1978;
Montague 1973).

Strategy B: Polyadic approach (Keenan 1992, 1987; May 1985;
Van Benthem 1989; Zawadowski 1989).

Strategy C: Continuation-based approach (Barker 2002; Barker and
Shan 2014; Bekki and Asai 2009; De Groote 2001; Kiselyov and
Shan 2014).

In all three strategies, QPs are interpreted as generalized quantifiers.
A generalized quantifier on a set X is of type C (X) = (X → t)→ t (with
t = {true, false}). The main difference between the three approaches
lies in the semantic operations used to compute the truth-value of the
relevant multi-quantifier sentences.

1.1 Strategy A
Strategy A has been implemented in various ways, using May’s QR
(1978), Montague’s Quantifying In Rule (1973), or Cooper Storage
(1983). In this strategy, the scope relations for multi-quantifier sen-
tences like (1) are derived by applying quantifiers to the predicate (of
type P (X × Y) = (X × Y)→ t) one by one – the later the quantifier is
introduced, the wider its scope. In the terminology to be adopted in
this paper, strategy A makes use of what we will call, after Mostowski,
partial mos-operations:

mosY :C (Y)×P (X × Y) −→P (X)
defined by a lambda term as:

mosY = λQ:C (Y).λc:P (X×Y).λx:X .Q(λy:Y .c(x , y));

and total mos-operations:

mosX :C (X)×P (X) −→ t

[180]

Scope ambiguities, monads and strengths

defined by a lambda term as:

mosX = λQ:C (X).λc:P (X).Q(c).

Strategy A can be straightforwardly extended to account for sentences
involving three or more QPs (by allowing permutations of QPs).
1.2 Strategy B
Strategy B involving polyadic quantification was introduced and de-
veloped in the works of May (1985), Keenan (1987, 1992), Zawad-
owski (1989) and Van Benthem (1989). In this strategy, the scope re-
lations for multi-quantifier sentences like (1) can be derived by turning
a sequence of quantifiers into a polyadic quantifier, using what we will
call left and right pile′up-operations (also known as iterations):

pile′upl ,pile′upr :C (X)×C (Y) −→C (X × Y)

defined, for M ∈ C (X) and N ∈ C (Y), by lambda terms as:
pile′upl(M , N) = λc:P (X×Y).M(λx:X .N(λy:Y c(x , y))

and
pile′upr(M , N) = λc:P (X×Y).N(λy:Y .M(λx:X c(x , y)).

The polyadic quantifier thus formed is only then applied to the pred-
icate. Again, strategy B can be straightforwardly extended to account
for sentences involving three or more QPs (by allowing permutations
of QPs).
1.3 Strategy C
Strategy C, the most recent, involves continuations and was first pro-
posed in the works of Barker (2002) and De Groote (2001), and
then further developed and modified in the works of Barker and
Shan (2014), Kiselyov and Shan (2014) and Bekki and Asai (2009).
Continuation-based strategies can be divided into two groups: those
that locate the source of scope-ambiguity in the rules of semantic com-
position, and those that attribute it to the lexical entries for the quan-
tifier words. In this paper, we consider only the first group: operation-
based approaches (as in Barker 2002). In this strategy, a predicate
gets lifted (‘continuized’), i.e. a predicate of type X → t will be lifted

[181]

Justyna Grudzińska, Marek Zawadowski

to an expression of type C (X → t) = ((X → t) → t) → t; etc. Scope
relations for multi-quantifier sentences like (1) are derived by first
combining the lifted predicate with the object QP, and then merging
the result thus obtained with the subject QP, using the so-called CPS
transforms:1

CPSl(ev),CPSr(ev) :C (X)×C (X → Y) −→C (Y)
given, for M ∈ C (X) and N ∈ C (X → Y), by

CPSl(ev)(M , N) = λc:P (Y).M(λx:X .N(λg:X→Y .c(g x)))

and
CPSr(ev)(M , N) = λc:P (Y).N(λg:X→Y .M(λx:X .c(g x))).

Strategy C can be seen as a compelling alternative to the traditional
movement strategy (Strategy A), and the polyadic approach (Strategy
B), for a uniform non-movement (in situ) analysis of quantifiers. How-
ever, it cannot be straightforwardly extended to account for sentences
involving three QPs.

As will be explained below, a generalized quantifier on a set X is
an element of C (X), the value of the continuation monad C on X . In
this paper, we will show that the continuation monad can be taken as a
common basis for the three scope-assignment strategies just described.
This will allow us to present these strategies against a uniform back-
ground and explicitly spell out the semantic operations used in each
strategy. Two of the three strategies, B and C, use strength: the ad-
ditional structure that exists on the continuation monad. This shows
that the pile′up operations employed in the now widely accepted and
well-understood strategy B, and the CPS operations employed in the
less popular strategy C, considered more difficult, are in fact very
close in spirit. We thus hope that our results will help to make the
continuation-based strategy more popular.

The remaining part of this paper is organized as follows. We first
introduce the notion of monad, starting with some informal remarks,

1 In standard categorial grammar approaches, the scope relations for multi-
quantifier sentences like (1) can be obtained via higher-order verb types
(Hendriks 1993). For a comparison of standard type-shifting approaches and
continuation-based strategies, see e.g. Barker and Shan (2014).

[182]

Scope ambiguities, monads and strengths

followed by a definition, and examples relevant to linguistics. We then
introduce the continuation monad itself. Next, we define the notion of
bi-strong monads, and show how the relevant algebraic operations
(pile′ups, T -transforms and, in particular, CPS-transforms) are to be
derived from strengths. Then we precisely state three specific imple-
mentations of the scope-assignment strategies: the traditional move-
ment strategy (as implemented in May 1978), the polyadic approach
(as in May 1985), and the continuation-based approach (as proposed
in Barker 2002). With this background, we can explain how the three
strategies are related, and what can be expected of them with regard
to handling scopal ambiguities in simple sentences. An appendix con-
tains the relevant proofs.

2 monads and strengths
It is widely accepted that the notion of monad (also called ‘triple’) was
first introduced in 1958 by Godement under the name of ‘standard
construction’ (Godement 1958). It was soon realized that any pair of
adjoint functors gives rise to amonad. Later, in 1965, it was discovered
independently by Kleisli (1965) and by Eilenberg et al. (1965) that any
monad is induced by an adjunction. For many years, the Eilenberg-
Moore algebras were the most popular with mathematicians. It was
Moggi who in 1989 used monads to build semantics for programming
languages (Moggi 1991). Soon afterwards, Wadler employed monads
to model side-effects in functional programming (Wadler 1990). In
these new applications, the Kleisli algebras gained more importance.
In both cases, monads are used to extend the notion of a function. After
such a prelude, it did not take long for these ideas to be adopted in
linguistics. The Kleisli construction can be thought of as an extension
of a function/transformation f :

f : X −→ Y

between two sets, X and Y , which somehow reflects the fact that such
a transformation is not considered as a mere mapping of arguments
to values, but that there is also a particular computational process
related to this association. This process, when applied to an element
x of the domain set X , can indeed result in returning a value f (x) of
the codomain set Y . But it can also provide a more involved result

[183]

Justyna Grudzińska, Marek Zawadowski

belonging to a set T (Y), related in some way, but possibly bigger (or
even much bigger) than Y itself. Thus we can think about such an
extended2 transformation between X and Y as a mere function:

f : X −→ T (Y)

from the set X to the extension T (Y) of the set Y . This seems to be
an intuitively clear and simple idea, but then we need to see whether
we can still work with such ‘extended functions’ as we can with or-
dinary functions. The answer varies depending on how demanding
we are. The minimum (which should be adequate for most purposes)
that we should expect from these ‘extended functions’ is that they
compose, that this composition should be associative, and that there
should be ‘extended functions’ that act as if they were ‘doing noth-
ing’ (i.e. like identities). Once we agree that these expectations are
natural, we can try to specify the reasonable condition to guarantee
this for construction T , i.e. that T should be a monad. Then the unit
(return) ηX : X → T (X) acts as an identity on X , and the multiplica-
tion µZ : T 2(Z) → T (Z), together with the fact that T is a functor,
can be used to define the composition of the two ‘extended functions’,
f : X −→ T (Y) and g : Y → T (Z), as follows:

X T (Y)
f

T 2(Z)
T (g)

T (Z)
µZ

The conditions imposed on T ensure that ηX is in fact the identity on
X and that the composition thus defined is associative.
It is fair to say that the above is a short mathematician’s intro-

duction to monads, as used by computer scientists. In fact, the very
notion of monad is usually formulated differently by computer sci-
entists. This is, we think, due to the fact that the actual computa-
tion of the set T (Y) even for the finite set Y can easily be infinite.
This can be taken as a form of potential infinity. But then the sec-
ond iteration T (T (Y)) = T 2(Y), needed to express the multiplication
µ, is even more challenging (since it requires applying the functor T
to an already potentially complicated set T (Y)). The computer scien-
tists’ solution to this problem is to consider the combined operation
bind : T (X) → (X → T (Y)) → T (Y) (instead of the multiplication µ),

2 In some degenerate cases, the set T (Y) might even be smaller than Y .

[184]

Scope ambiguities, monads and strengths

which never uses the second iteration of T . No matter how we de-
fine the monad T , the Kleisli category is the same. The potential gain
from this extension for linguistics is that some processes which could
not be described as compositional processes, applying (ordinary) func-
tions to arguments, can become compositional after all, if we relax our
notion of function to the ‘extended function’ we described above. The
so-called continuation semantics for natural language, or ‘strategy C’
in this paper, is an illustration of such a phenomenon.
2.1 Monads – definition and examples
For unexplained notions related to category theory, we refer the reader
to standard textbooks on the subject. We shall be exclusively working
in the Cartesian closed category of sets Set. The category Set of sets
has sets as objects. A morphism in Set from an object (set) X to an
object (set) Y is a function3 f : X −→ Y from X to Y . A monad on
Set is a triple (T,η,µ) where T : Set −→ Set is an endofunctor (the
underlying functor of the monad), η : 1Set −→ T and µ : T 2 −→ T are
natural transformations (the first from the identity functor on Set to
T , the second from the composition of T with itself to T) making the
following diagrams commute:

T

1T

T T 2
ηT

µ 1T

T
T (η)

T 2 Tµ

T 3 T 2
µT

T (µ) µ

These diagrams express the essence of the algebraic calculations. We
shall explain their meaning while describing the list monad below. The
symbols η and µ are often referred to as the unit and multiplication of
the monad, respectively, while T is its functor part. When η and µ are
clear from the context, it is customary to refer to the whole monad
(T,η,µ) as T .
Before we focus on the continuation monad, the main notion of

computation considered in this paper, we shall illustrate the concept
3We always consider functions with specified domains and codomains. For a

pedantic reader, a function can be thought of as a triple 〈X , Y, f 〉, such that X and
Y are sets and f is a subset of the product X × Y , which is total and univalued.

[185]

Justyna Grudzińska, Marek Zawadowski

with some examples also relevant to linguistics (see e.g. Charlow 2014,
and Shan 2002).

Examples of monads
1. The Identity monad is the simplest possible monad, but it is not
very interesting. In this case, the functor T and the natural trans-
formations η and µ are identities. For this monad, the notion of
a T -computation in X is just an element of X , as the function
f : X −→ T (Y) is just f : X −→ Y .

2. The Maybe monad is the simplest non-trivial monad. The functor
T sends every set X to the set T (X) = X + {⊥} (the disjoint sum of
X and singleton {⊥}), and every function f : X −→ Y to a function
T (f) : T (X) −→ T (Y), such that, for x ∈ T (X):

T (f)(x) =

�
x if x ∈ X
⊥ if x =⊥

So T adds to X an additional element ⊥, called bottom or nothing.
The component at X of the natural transformation η is a function
ηX : X −→ X + {⊥}, such that ηX (x) = x , i.e. it sends x to the
same x but in the set X + {⊥}. The component at X of the natural
transformation µ is a function µX : X + {⊥,⊥′} −→ X + {⊥}, such
that, for x ∈ X + {⊥,⊥′}:

µX (x) =

�
x if x ∈ X
⊥ if x =⊥ or x =⊥′

i.e. it sends x in X to the same x , and two bottoms ⊥ and ⊥′ in
T 2(X) to the only bottom ⊥ in T (X).
For this monad, the notion of a T -computation in X consists of
elements of X , and an additional computation ⊥, which says that
we do not get a value in X . The function X −→ T (Y) carries the
same information as a partial function X ,→Y . So this monad al-
lows partial computations to be treated as total computations.

3. The Exception monad is less trivial than the maybe monad. We
are given a fixed set of exceptions E and, for a set X , the monad
functor is T (X) = X + E, i.e. the disjoint union of X and E. If E
is empty, it is the identity monad; if E is a singleton, then it is
a maybe monad; otherwise is it like the maybe monad but with
many options for nothingness.

[186]

Scope ambiguities, monads and strengths

4. The List monad or monoid monad is even more interesting than
the previous monad, and we shall work it out in detail. It is not
needed for the applications in the paper but it provides some in-
sights before we move on to the continuation monad. To any set
X , the list monad functor associates the set T (X) of (finite) words
over X (treated as an alphabet). This includes the empty word ϵ.
To a function f : X −→ Y , the functor T associates the func-
tion T (f) : T (X) −→ T (Y), sending the word x1 x2 . . . xn over X
to the word f (x1) f (x2) . . . f (xn) over Y . The component at X of
the natural transformation η is a function ηX : X −→ T (X), such
that ηX (x) = x , i.e. it sends the letter x to the one-letter word x
in T (X). The component at X of the natural transformation µ is
a function µX : T 2(X) −→ T (X). Note that T 2(X) = T (T (X)) is
the set of words whose letters are words over the alphabet X .
Thus it can be thought of as a list of lists. Applying µX to such
a list of lists flattens it to a single list. A three-letter word t =
(x1 x2)(x3 x4 x5)ϵ is a typical element of T 2(X). The result of flat-
tening T is the list µX (T) = x1 x2 x3 x4 x5 in T (X). We can think
of a word w as a term/word/computation u = y1 y2 y3, in which
we intend to substitute the term v1 = x1 x2 for variable y1, the
term v2 = x3 x4 x5 for variable y2, and the term v3 = ϵ for vari-
able y3, i.e. u[y1\v1, y2\v2, y3\v3]. Now the multiplication µ can
be thought of as an actual substitution. With this interpretation,
one can understand the intuitions behind the monad diagrams.
In the left triangle, an element of T (X), say x1 x2 x3, is mapped
through ηT (X) to a single-letter word (x1 x2 x3) and µX flattens it
back to x1 x2 x3, as required for the triangle to commute. In other
words, the substitution y[y\v] results in v. In the right triangle,
the map T (ηx) sends, say x1 x2 x3, to the letter word (x1)(x2)(x2),
with each letter being a single-letter word. Thus, again, flattening
such a list gives x1 x2 x3 back, as required. In other words, the sub-
stitution y1 y2 y3[y1\x1, y2\x2, y3\x3] results in x1 x2 x3. The com-
mutation of the square diagram, in this case, expresses the fact
that, if we have a list of lists of lists and we flatten it in two differ-
ent ways, starting either with the upper two levels of lists, or with
the lower two levels, and then we flatten the results again to get
the ordinary lists over X in T (X), these lists coincide. On a more
conceptual level, this square expresses the fact that evaluation

[187]

Justyna Grudzińska, Marek Zawadowski

commutes with substitution. In this sense, these diagrams capture
the essence of all algebraic calculations.
For this monad, the notion of a T -computation in X consists
of words over X to be evaluated/multiplied in a monoid when
elements of X will be (interpreted) in a monoid. The function
f : X −→ T (Y) is just a function f : X −→ T (Y) sending elements
of X to words over Y . So this monad allows a list of values for a
given input.

2.2 Notation
Before we explain the notion of computation that accompanies the
continuation monad, we restate the monad in a more functional way.
To do this, we need to introduce some form of notation. As Set is a
Cartesian closed category, it is customary to denote functions between
sets using λ notation. One can think of it as if we were to work in the
internal language of Set, i.e. λ theory, where all functions have their
names represented. For sets X and Y , we shall use X ×Y to denote the
binary product of X and Y , and X → Y to denote the set of functions
from X to Y . As is customary, we associate → to the right, i.e. X →
Y → Z means X → (Y → Z), and this set is naturally bijective with
(X × Y)→ Z . If we have a function:

f : X × Y −→ Z ,

then by:
λy:Y . f : X −→ Y → Z

we denote its exponential adjunction, i.e. the function from X to the set
of functions Y → Z , such that, for an element x ∈ X , λy:Y . f (x) is a func-
tion from Y to Z such that, for an element y ∈ Y , (λy:Y . f)(x)(y) is by
definition equal to f (x , y). Note that, in the expression (λy:Y . f)(x)(y),
the first occurrence of y is an occurrence of a variable (as it is part of
the name of a function), whereas the second occurrence of y in this
expression denotes an element of the set Y .

Then πi will denote the projection on i-component from the prod-
uct. Any function σ : {1, . . . m} −→ {1, . . . , n} induces a generalized
projection denoted:

πσ = 〈πσ(1), . . . ,πσ(m)〉 : X1 × . . .× Xn −→ Xσ(1) × . . .× Xσ(m).

[188]

Scope ambiguities, monads and strengths

We will use this notation mainly when σ is bijective, i.e. when πσ is
just a permutation of the component for the product.

We have a fixed set of truth values t = {true, false}. We shall use
the usual (possibly infinitary) operations on this set. For a set X , we
write P (X) = X → t, i.e. the (functional) powerset of X .

2.3 Continuation monad
The Continuation monad, the most important for us, is denoted C .
Its functor part (also denoted C), at the level of objects, is just a
twice-iterated power-set construction, i.e. for set X , C (X) = P 2(X).
At the level of morphisms, it is an inverse image of an inverse image,
i.e., function f : X −→ Y induces an inverse image function between
powersets:

P (f) = f −1 :P (Y) −→P (X)
h 7→ h ◦ f ,

in λ-notation,
P (f) = λh:P (Y).λx:X .h(f x).

Taking again an inverse image function, we have

C (f) =P (f −1) :C (X) −→C (Y)
Q 7→Q ◦ f −1,

in λ-notation:
C (f)(Q) = λh:P (Y).Q(λx:X .h(f x)),

for Q ∈ C (X).
The unit ηX : X −→C (X) is given by:

ηX (x) = λh:P (X).h(x), for x ∈ X .

The multiplication µX : C 2(X) −→ C (X) can be explained in terms
of η:

µX =P (ηP (X)) :P 4(X) −→P 2(X).

In other words, µX (F) :P (X) −→ t is a function such that:

µX (F)(h) =F (ηP (X)(h))

[189]

Justyna Grudzińska, Marek Zawadowski

for
F :P 3(X) −→ t and h : X −→ t.

In λ-notation, we write:
µX (F)(h) =F (λD:C (X).D(h)).

Now we can look at the notion of computation related the con-
tinuation monad. Consider the function:

f : X −→C (Y).
By exponential adjunction (uncurrying), it corresponds to a function:

f ′ :P (Y)× X −→ t

and again, by exponential adjunction (currying), it corresponds to a
function:

f ′′ :P (Y) −→P (X).
Thus a C -computation from X to Y is a function that sends functions
from P (Y) = Y → t to functions in P (X). So instead of having for
a given element x ∈ X a direct answer to the question what is the
value of f at x , i.e. the element f (x) in Y , we are given for every
continuation function c : Y −→ t a value in the answer type t that
could be thought of as c(f (x)) (if there were an element in Y that
could be reasonably called f (x)). We can draw a picture illustrating
the situation:

X Yf ?
tc

f (c)

Instead of ‘procedure’ f ? computing y ’s from x ’s (that we do not have),
we provide a continuation f (c) for any continuation (of the computa-
tion) c. If f ? were indeed a genuine function f ? : X −→ Y , then f (c)
would be the composition c ◦ f ?.
2.4 Bi-strong monads
As noted in Moggi (1991), a monad has to be strong, in order to have
a well-behaved notion of computation.4 Fortunately, all monads on

4As the notion of strength is new in this context, we shall briefly recall its
history. There are three manifestations of strength on a functor. Historically, the

[190]

Scope ambiguities, monads and strengths

Set are strong. More precisely, all monads on Set can be canonically
equipped with two strengths, left and right, and these strengths are
compatible in a precise technical sense. This additional structure on
the continuation monad will be essential when we analyze the mean-
ing of multi-quantifier sentences.

Let (T,η,µ) be a monad on Set. The left strength is a natural trans-
formation with components:

stl
X ,Y : T (X)× Y −→ T (X × Y)

for sets X and Y , making the following two diagrams commute:

T (X)× Y × Z T (X × Y × Z)
stl

X ,Y×Z

T (X × Y)× Z

stl
X ,Y × 1 stl

X×Y,Z

and
X × Y

ηX × 1 ηX×Y

T 2(X)× Y T (T (X)× Y)
stl

T (X),Y

T (X)× Y T (X × Y)
stl

X ,Y

µX × 1 µX×Y

T 2(X × Y)
T (stl

X×Y)

The right strength is a natural transformation with components:
str

X ,Y : X × T (Y) −→ T (X × Y)

for sets X and Y , making the following two diagrams commute:
first one was the notion of enrichment of a functor (c.f. Eilenberg and Kelly 1966).
Tensorial strength (i.e., natural transformation of type X⊗T (Y) −→ T (X⊗Y) used
in this paper) was introduced in Kock (1970) and further developed in Kock
(1972). Cotensorial strength (i.e., natural transformation of type T (X → Y) −→
X → T (Y)) introduced in Kock (1971) has also proved useful in some contexts. In
symmetric monoidal closed categories, these concepts are equivalent (c.f. Kock
(1971)).

[191]

Justyna Grudzińska, Marek Zawadowski

X × Y × T (Z) T (X × Y × Z)
str

X×Y,Z

X × T (Y × Z)

1× str
Y,Z str

X ,Y×Z

and
X × Y

1×ηY ηX×Y

X × T 2(Y)) T (X × T (Y))str
X ,T (Y)

X × T (Y) T (X × Y)
str

X ,Y

1×µY µX×Y

T 2(X × Y)
T (str

X×Y)

The monad (T,η,µ) on Set together with two natural transforma-
tions stl and str of right and left strength is a bi-strong monad if, for
any sets X , Y , Z , the following square commutes:

T (X × Y)× Z T (X × Y × Z)
stl

X×Y,Z

X × T (Y)× Z X × T ((Y × Z)
1X × stl

Y,Z

str
X ,Y × 1Z str

X ,Y×Z

As we already mentioned, each monad (T,η,µ) on Set is bi-strong.
We shall define the right and left strength. Fix sets X and Y . For x ∈ X
and y ∈ Y , we have functions:

l y : X −→ X × Y, and rx : Y −→ X × Y,

such that:
l y(x) = 〈x , y〉, and rx(y) = 〈x , y〉.

The left and right strength:

stl
X ,Y : T (X)× Y −→ T (X × Y) and str

X ,Y : X × T (Y) −→ T (X × Y)

[192]

Scope ambiguities, monads and strengths

are given respectively for x ∈ X , s ∈ T (X), y ∈ Y and t ∈ T (Y) by:
stl

X ,Y (s, y) = T (l y)(s) and str
X ,Y (x , t) = T (rx)(t).

When it does not lead to confusion, we drop the indices X ,Y .
It is not difficult to verify that the above defines left (stl) and

right (str) strength on the monad T . Since for any x ∈ X and z ∈ Z , the
following square commutes:

Y × Z X × Y × Zrx

Y X × Y
rx

lz lz

they are compatible and make the monad T bi-strong. Note that these
strengths are related by the following diagram:

Y × T (X) T (Y × X)
str

Y,X

T (X)× Y T (X × Y)
stl

X ,Y

T (〈π2,π1〉) 〈π2,π1〉

Examples of strength on monads in Set
1. Maybe monad. The left strength stl

X ,Y : (X +{⊥})×Y −→ (X ×Y)+
{⊥} is given by:

stl(x , y) =

� ⊥ if x =⊥
〈x , y〉 otherwise.

Right strength is similar.
2. List monad. The left strength stl : T (X)× Y −→ T (X × Y) is given
by:

stl(x⃗ , y) =

�
ϵ if x⃗ = ϵ
〈x1, y〉, . . . , 〈xn, y〉 if x⃗ = x1, . . . , xn.

Right strength is similar.

[193]

Justyna Grudzińska, Marek Zawadowski

3. Continuation monad. We shall describe the strength morphisms
by lambda terms. The left strength is:

stl = λN:C (X).λy:Y .λc:P (X×Y).

N(λx:X .c(x , y)) :C (X)× Y −→C (X × Y)

and the right strength is:

str = λx:X .λM:C (Y).λc:P (X×Y).

M(λy:Y .c(x , y)) : X ×C (Y) −→C (X × Y).

2.5 Combining computations in arbitrary monad T on Set
Using both strengths, we can define two pile′up natural transforma-
tions, left and right. For any sets X and Y , the left pile up pile′upl

X ,Y is
defined from the diagram:

T (X × T (Y)) T 2(X × Y)
T (str

X ,Y)

T (X)× T (Y) T (X × Y)
pile′upl

X ,Y

stl
X ,T (Y) µX×Y

In the above diagram, the function pile′upl
X ,Y is defined as a com-

position of three operations: the first takes the T -computation on X
‘outside’ to be a computation on X × T (Y), the second takes the T -
computation on Y ‘outside’ to be a T -computation on X×Y . In this way,
we have T -computations coming from X on T -computations coming
from Y on X×Y . Now the last morphism µX×Y flattens these two levels
to one, i.e. the T -computation on T -computations to T -computations.
The right pile up pile′upr

X ,Y is defined from the diagram:

T (T (X)× Y) T 2(X × Y)
T (stl

X ,Y)

T (X)× T (Y) T (X × Y)
pile′upr

X ,Y

str
T (X),Y µX×Y

This operation takes the T -computations in reverse order and so they
pile up in the opposite way.

[194]

Scope ambiguities, monads and strengths

If these pile′up operations agree for all sets X and Y , the monad is
called commutative. In our list of monads, both the identity and maybe
monads are commutative. The exception, list and continuation mon-
ads are not commutative. Most monads, including the continuation
monad C , are not commutative. It should be noted that even if the
monad T is not commutative, both lift morphisms agree for pairs in
which at least one component comes from the actual value (not an
arbitrary T -computation). In other words, the functions:

pile′upl
X1,X2

T (X1)× T (X2) T (X1 × X2)
pile′upr

X1,X2

are equalized by both the following morphisms:
X1 × T (X2) T (X1)× T (X2)

ηX1
× 1

and
T (X1)× X2 T (X1)× T (X2)

1×ηX2

Both pile′upl and pile′upr are associative. All this is shown in the
Appendix.

Examples of pile′up-operations
1. Maybe monad. The left and right pile′ups coincide in this case, as
in any commutative monad. We have
pile′upl

X ,Y = pile′upr
X ,Y : (X + {⊥})× (Y + {⊥′}) −→ (X × Y) + {⊥}

given by:

pile′upl(x , y) = pile′upr(x , y) =

� ⊥ if {x , y} ∩ {⊥,⊥′} ̸= ;
〈x , y〉 otherwise.

2. List monad. The left pile’up pile′upl : T (X)× T (Y) −→ T (X × Y) is
given by:

pile′upl(〈x1 . . . xn〉, 〈y1 . . . ym〉) =
= 〈x1, y1〉〈x1, y2〉 . . . 〈x1, ym〉〈x2, y1〉 . . . 〈xn, ym−1〉〈xn, ym〉

and the right pile’up pile′upr : T (X) × T (Y) −→ T (X × Y) is
given by:

pile′upr(〈x1 . . . xn〉, 〈y1 . . . ym〉) =
= 〈x1, y1〉〈x2, y1〉 . . . 〈xn, y1〉〈x1, y2〉 . . . 〈xn−1, ym〉〈xn, ym〉.

[195]

Justyna Grudzińska, Marek Zawadowski

3. Continuation monad. Both pile′up operations:
pile′upl ,pile′upr :C (X)×C (Y) −→C (X × Y)

can be defined, for M ∈ C (X) and N ∈ C (Y), by lambda terms,
such as:

pile′upl(M , N) = λc:P (X×Y).M(λx:X .N(λy:Y c(x , y))

and
pile′upr(M , N) = λc:P (X×Y).N(λy:Y .M(λx:X c(x , y)).

The calculations for these operations are in the Appendix.
Thus in the case of the continuation monad, ‘piling up’ computa-
tions one on top of the other is nothing but putting (interpreta-
tions of) quantifiers (= computations in the continuation monad)
in order, either the first before the second or the second before
the first.

2.6 T -transforms on arbitrary monad T on Set
There are two (binary) T -transformations, right and left. For a function
f : X × Y −→ T (Z), the left T -transform is defined as the composition:

T (X × Y) T 2(Z)
T (f)

T (X)× T (Y) T (Z)
TRl ,T

X ,Y (f)

pile′upl µZ

and the right T -transform is defined as the composition:

T (X × Y) T 2(Z)
T (f)

T (X)× T (Y) T (Z)
TRr ,T

X ,Y (f)

pile′upr µZ

The most popular T -transforms are for the evaluation morphism:
ev : X × (X → Y) −→ Y

but there are also other morphisms with useful transforms.

[196]

Scope ambiguities, monads and strengths

Examples of T -transforms and in particular CPS-transforms
1. The evaluation map ev : X × (X → Y) −→ Y gives rise to applica-
tion transforms:

TRl ,T
(ev),TRr ,T (ev) : T (X)× T (X → Y) −→ T (Y).

When T is the continuation monad C , they are the usual CPS-
transforms CPSl(ev),CPSr(ev) : C (X) × C (X → Y) −→ C (Y)
given by:

CPSl(ev)(M , N) = λh:P (Y).M(λx:X .N(λg:X→Y .h(g x)))

for M ∈ C (X) and N ∈ C (X → Y).The right transform is similar.
2. Various evaluation maps are typically defined as maps from a
product. Thus they give rise to various T -transforms. We list some
of them below, mainly to introduce notation that will be used
later. The definitions are given by lambda terms.
(a) Left evaluation:

epsl
X = λh:P (X).λx:X .h(x) :P (X)× X −→ t;

(b) Right evaluation:
epsr

X = λx:X .λh:P (X).h(x) : X ×P (X) −→ t;

(c) Left partial evaluation:

epsl ,X
Y (epsl

Y) = λc:P (X×Y).λy:Y .λx:X .c(x , y) :

P (X × Y)× Y −→P (X);
(d) Right partial evaluation:

epsr ,X
Y (epsr

Y) = λy:Y .λc:P (X×Y).λx:X .c(x , y) :

Y ×P (X × Y) −→P (X).
3. What we call Mostowski maps are maps similar to epses that
are the algebraic counterpart of the interpretation of generalized
quantifiers by Mostowski. Again, we give a definition for total and
partial case.
(a) Left Mostowski:

mosl
X = λQ:C (X).λc:P (X).Q(c) :C (X)×P (X) −→ t;

[197]

Justyna Grudzińska, Marek Zawadowski

(b) Right Mostowski:
mosr

X = λc:P (X).λQ:C (X).Q(c) :P (X)×C (X) −→ t;

(c) Left partial Mostowski:
mosl

Y = λQ:C (Y).λc:P (X×Y).λx:X .Q(λy:Y .c(x , y)) :

C (Y)×P (X × Y) −→P (X);
(d) Right partial Mostowski:
mosr

Y = λc:P (X×Y).λQ:C (Y).λx:X .Q(λy:Y .c(x , y)) :

P (X × Y)×C (Y) −→P (X).

3 scope assignment strategies
Using the notions connected to the continuation monad introduced
above, we shall now precisely state and compare three strategies (A,
B, and C) for determining the meaning of multi-quantifier sentences.
3.1 General remarks
In each strategy, the starting point is the surface structure tree of a
sentence. This tree is rewritten so as to obtain formal structure trees
that correspond to all the available meanings of the sentence. Finally,
we relabel those trees to obtain computation trees5 that provide the
semantics for the sentence in each of its readings.

5We think of computation trees by analogy with mathematical expressions,
e.g.

((2− 7)− 8) + ((12+ 5) : 7)

that can be represented as:
+

-
-

2 7
8

:
+

12 5
7

i.e. a labeled binary tree where the leaves are labeled with values and the internal
nodes are labeled with operations that will be applied in the computation to the
values obtained from the computations of the left and right subtrees.

[198]

Scope ambiguities, monads and strengths

Surface
Structure
Tree

rewriting
(disambiguation) Formal

Structure
Tree

relabelling
(interpretation) Computation

(Semantic)
Tree

Rewriting. Scope-assignment strategies can be divided into two fami-
lies: movement analyses (rewriting rules include QR, Predicate Col-
lapsing, and possibly Rotation) and in situ analyses (no rewriting
rules). Below we define three rewrite rules on trees: QR Rule, Predi-
cate Collapsing, and Rotation.
• QR (Quantifier Raising) Rule

– applies when we have a chosen QP in a leaf of a tree;
– adjoins QP to S;
– indexes S with the variable bound by the raised QP.

L

α β

QP

7→ Sx

QP L

α β

x
(L-label, α-subtree, β-subtree.)

• Predicate Collapsing
– applies when all the leaves under the node labeled S are la-
beled with variables (not QPs);

– collapses the whole subtree with the root S to a single leaf
labeled with the variables x1, x2, x3 from the leaves under
the S-node.

S
x1 β

x2 x3

7→
S

-x1-x2-x3-

• Rotation
– applies to a tree with two nodes labeled with S’es super-
scripted with some variables: the mother labeled S x⃗ and its
right daughter labeled S y⃗ ;

[199]

Justyna Grudzińska, Marek Zawadowski

– it rotates left the subtree with the root labeled S x⃗ ;
– the root of this subtree is labeled S x⃗ y⃗ and the (new) left
daughter is labeled Polyadic.

S x⃗

α S y⃗

β γ

7→ S x⃗ y⃗

Polyadic
α β

γ

(α-subtree, β-subtree, γ-subtree.)
Relabelling. In each scope-assignment strategy, the leaves in the
computation tree have the same labels: QPs are interpreted as
C -computations, and predicates are interpreted as usual or lifted. The
main difference between the three approaches consists in the shape of
the formal structure trees and the operations (epses, moses, pile′ups,
CPSes) used as labels for the inner nodes of the computation trees.

3.2 Strategy A
In the traditional movement strategy (as implemented in May 1978)
• Surface structure trees are rewritten (disambiguated) as formal
structure trees (Logical Forms) via:
– QR Rule;
– Predicate Collapsing.

• Formal structure trees (LFs) are relabelled as computation trees
as follows:
– Sx (root of a subtree representing a formula) is interpreted as
a suitably typedmos-operation (the only operation allowed);

– S (leaf of a tree) is interpreted as a predicate;
– QP (leaf of a tree) is interpreted as a generalized quantifier
∥Q∥ quantifying over a set X (i.e. as a C -computation on X).

We will illustrate each strategy with examples involving one, two and
three QPs.
Sentence with one QP, e.g. Every kid (most kids) entered.
(A1) Surface structure tree:

[200]

Scope ambiguities, monads and strengths

S
QP VP

V
(A1) Formal structure tree (LF) and the corresponding computation
tree:

Sx

QP S

– x –

mosl
X

∥Q∥(X) ∥P∥

The computation tree in (A1) gives rise to the following general map:

strat1
A :

C (X)×P (X)

t

mosl
X

In this case, there is one such map, so strategy A yields one reading
for a sentence with one QP.
Sentence with two QPs, e.g. Every girl likes a boy.
(A2) Surface structure tree:

S

QP1 VP
Vt QP2

(A2) Formal structure tree (LF) and the corresponding computation
tree:

Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) S

-x1-x2-

mosl
Xσ(1)

∥Qσ(1)∥(Xσ(1)) mosl
Xσ(2)

∥Qσ(2)∥(Xσ(2)) ∥P∥

[201]

Justyna Grudzińska, Marek Zawadowski

The computation tree in (A2) gives rise to the following general map,
with σ ∈ S2 (where S2 is the set of permutations of the set {1,2}):

strat2,σ
A :

C (X1)×P (X1 × X2)×C (X2)

〈π̄σ(1), π̄σ(2),π2〉

C (Xσ(i))π̄σ(i)

C (Xσ(1))×C (Xσ(2))×P (X1 × X2)

1×mosl
Xσ(2)

C (Xσ(1))×P (Xσ(1))

t

mosl
Xσ(1)

where π̄σ(i) is the projection on the 1st factor if σ(i) = 1, and on the
3rd factor if σ(i) = 2, i.e. as it should be. This convention will be used
in all similar diagrams without any further explanations.
There are two such maps corresponding to the two permuta-

tions σ of {1,2}. These maps are different in general. Thus strategy A
yields two (both) asymmetric readings for a sentence with two QPs.
Sentence with three QPs, e.g. Some teacher gave every student most
books.
(A3) Surface structure tree:6

S

QP1 VP

V’
Vdt QP2

QP3

6 In this paper, we adopt the structure postulated by Chomsky (1993).

[202]

Scope ambiguities, monads and strengths

(A3) Formal structure tree (LF) and the corresponding computation
tree:

Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) Sxσ(3)

QPσ(3) S

-x1-x2-x3-

mosl
Xσ(1)

∥Qσ(1)∥(Xσ(1)) mosl
Xσ(2)

∥Qσ(2)∥(Xσ(2)) mosl
Xσ(3)

∥Qσ(3)∥(Xσ(3)) ∥P∥

The computation tree in (A3) gives rise to the following general map,
with σ ∈ S3 (where S3 is the set of permutations of the set {1,2, 3}):

strat3,σ
A :

C (X1)×P (X1 × X2 × X3)×C (X2)×C (X3)

〈π̄σ(1), π̄σ(2), π̄σ(3),π2〉

C (Xσ(1))×C (Xσ(2))×C (Xσ(3))×P (X1 × X2 × X3)

1× 1×mosl
Xσ(3)

C (Xσ(1))×C (Xσ(2))×P (. . .×ÖXσ(3) × . . .)

1×mosl
Xσ(2)

C (Xσ(1))×P (Xσ(1))

t

mosl
Xσ(1)

[203]

Justyna Grudzińska, Marek Zawadowski

There are six such maps corresponding to the six permutations σ of
{1,2,3}. These maps are different in general. Thus strategy A yields
6 asymmetric readings for a sentence with three QPs.

3.3 Strategy B
In the polyadic approach (as implemented in May 1985):
• Surface structure trees are rewritten (disambiguated) as formal
structure trees (Polyadic Logical Forms) via:
– QR Rule;
– Predicate Collapsing;
– Rotation.

• Formal structure trees (PLFs) are relabelled as computation trees
as follows:
– Polyadic (root of a subtree representing a polyadic quantifier)
is interpreted as a suitably typed pile′up-operation (we can
choose whether to use only pile′upl or pile′upr and then stick
to that decision).

– Sx , S, QP are interpreted as above.

Sentence with one QP, e.g. Every kid (most kids) entered.
(B1) Surface structure tree:

S
QP VP

V
(B1) Formal structure tree (PLF) and the corresponding computation
tree:

Sx

QP S

– x –

mosl
X

∥Q∥(X) ∥P∥

The computation tree in (B1) gives rise to the following general map:

[204]

Scope ambiguities, monads and strengths

strat1
B :

C (X)×P (X)

t

mosl
X

In this case, there is one such map, so strategy B yields one reading
for a sentence with one QP.
Sentence with two QPs, e.g. Every girl likes a boy.

(B2) Surface structure tree:
S

QP1 VP
Vt QP2

(B2) Formal structure tree (PLF) obtained from LF in (A2) via rotation:
Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) S

-x1-x2-

7→ Sxσ(1) xσ(2)

Polyadic

QPσ(1) QPσ(2)

S

-x1-x2-

and the corresponding computation tree:
mosl

X1×X2

pile′upl

∥Qσ(1)∥(Xσ(1)) ∥Qσ(2)∥(Xσ(2))

∥P∥

The computation tree in (B2) gives rise to the following general
map, with σ ∈ S2:

[205]

Justyna Grudzińska, Marek Zawadowski

strat2,σ
B :

C (X1)×P (X1 × X2)×C (X2)

〈π̄σ(1), π̄σ(2),π2〉

C (Xσ(1))×C (Xσ(2))×P (X1 × X2)

pile′upl × 1

C (Xσ(1) × Xσ(2))×P (X1 × X2)

C (πσ−1)× 1

C (X1 × X2)×P (X1 × X2)

t

mosl
X1×X2

There are two such maps, corresponding to the two permutations σ
of {1,2} combined with a pile′upl -operation (here, we can also choose
to use both pile′ups instead and no permutations at all). These maps
are different in general. Thus strategy B yields two (both) asymmetric
readings for a sentence with two QPs.

Sentence with three QPs, e.g. Some teacher gave every student most
books.

(B3) Surface structure tree:
S

QP1 VP

V’
Vdt QP2

QP3

[206]

Scope ambiguities, monads and strengths

(B3) Formal structure tree (PLF) obtained from LF in (A3) via rotation:

Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) Sxσ(3)

QPσ(3) S

-x1-x2-x3-

7→ Sxσ(1)

QPσ(1) Sxσ(2) xσ(3)

Polyadic

QPσ(2) QPσ(3)

S

-x1-x2-x3-

7→ Sxσ(1) xσ(2) xσ(3)

Polyadic

QPσ(1) Polyadic′

QPσ(2) QPσ(3)

S

-x1-x2-x3-

and the corresponding computation tree:

[207]

Justyna Grudzińska, Marek Zawadowski

mosl
X1×X2×X3

pile′upl

∥Qσ(1)∥(Xσ(1)) pile′upl

∥Qσ(2)∥(Xσ(2)) ∥Qσ(3)∥(Xσ(3))

∥P∥

The computation tree in (B3) gives rise to the following general map,
with σ ∈ S3:

strat3,σ
B :

C (X1)×P (X1 × X2 × X3)×C (X2)×C (X3)

〈π̄σ(1), π̄σ(2), π̄σ(3),π2〉

C (Xσ(1))×C (Xσ(2))×C (Xσ(3))×P (X1 × X2 × X3)

1× pile′upl × 1

C (Xσ(1))×C (Xσ(2) × Xσ(3))×P (X1 × X2 × X3)

pile′upl × 1

C (Xσ(1) × Xσ(2) × Xσ(3))×P (X1 × X2 × X3)

C (πσ−1)× 1

C (X1 × X2 × X3)×P (X1 × X2 × X3)

t

mosl
X1×X2×X3

[208]

Scope ambiguities, monads and strengths

There are six such maps, corresponding to the six permutations σ of
{1,2, 3} combined with a pile′upl -operation (here, we can also choose
to use pile′upr instead). These maps are different in general. Thus
strategy B yields 6 asymmetric readings for a sentence with three QPs.
3.4 Strategy C
In the continuation-based strategy approach (as proposed in Barker
2002):
• A surface structure tree is rewritten as a formal structure tree via:

– no rewriting rules (formal structure trees are just surface
structure trees – this is what is understood by in situ).

• Relabelling formal structure trees (= surface structure trees) as
computation trees follows this procedure:
– S, VP, V’ (roots of a (sub)tree with some (possibly all) ar-
guments provided) are interpreted as suitably typed CPS-
operations (left and right);

– V, Vt, Vdt (leaves of a tree) are interpreted as ‘continuized’
predicates (1-, 2-, 3-ar y, respectively).

Sentence with one QP, e.g. Every kid (most kids) entered.
(C1) Surface structure tree and the corresponding computation tree:

S
QP VP

V

CPS?(epsr
X)

∥Q∥(X) Lift

∥P∥
The computation tree in (C1) gives rise to the following general map:

strat1
c :

C (X)×P (X)
1×ηP (X)

C (X)×CP (X)

C (t)
CPS?(epsr

X)

tevidt

[209]

Justyna Grudzińska, Marek Zawadowski

We use CPS? when it does not matter whether we apply CPSl or CPSr .
This is the case when one of the arguments is a lifted element (like
interpretations of predicates in this strategy). Strategy C yields one
reading for a sentence with one QP.
Sentence with two QPs, e.g. Every girl likes a boy.

(C2) Surface structure tree and the corresponding computation tree:
S

QP1 VP
Vt QP2

CPSϵ(epsr
X1
)

∥Q∥(X1) CPS?(epsl
X2
)

Lift

∥P∥
∥Q∥(X2)

The computation tree in (C2) gives rise to the following general map:

strat2,ϵ
C :

C (X1)×P (X1 × X2)×C (X2)

1×ηP (X1×X2) × 1

C (X1)×CP (X1 × X2)×C (X2)

1×CPS?(epsl
X2
)

C (X1)×CP (X1)

C (t)

CPSϵ(epsr
X1
)

tevidt

with ϵ ∈ {l, r}. Depending on whether we use CPSl or CPSr , we get
the relevant one of the two asymmetric readings for a sentence with
two QPs. Strategy C yields two readings for a sentence with two QPs,
corresponding to the two forms of CPS.

[210]

Scope ambiguities, monads and strengths

Sentence with three QPs, e.g. Some teacher gave every student most
books.
(C3) Surface structure tree and the corresponding computation tree:

S

QP1 VP

V’
Vdt QP2

QP3

CPSϵ(epsr
X1
)

∥Q∥(X1) CPSϵ
′
(epsl

X3
)

CPS?(epsl
X2
)

Lift

∥P∥
∥Q∥(X2)

∥Q∥(X3)

The computation tree in (C3) gives rise to the following general map:

strat3,ϵ′,ϵ
C :

C (X1)×P (X1 × X2 × X3)×C (X2)×C (X3)

1×ηP (X1×X2×X3) × 1× 1

C (X1)×CP (X1 × X2 × X3)×C (X2)×C (X3)

1×CPS?(epsl
X2
)× 1

C (X1)×CP (X1 × X3)×C (X3)

1×CPSϵ
′
(epsl

X3
)

C (X1)×CP (X1)

C (t)

CPSϵ(epsr
X1
)

tevidt

Strategy C provides four asymmetric readings for the sentence, such
that QP in subject position can be placed either first or last only

[211]

Justyna Grudzińska, Marek Zawadowski

(corresponding to the four possible combinations of the two forms
of CPS). Thus it yields four out of the six readings accounted for by
strategies A and B. Of course, it is a matter of empirical discovery
which readings are available for such sentences, and the status of the
two missing ‘interleaved’ interpretations (every > some > most and
most> some> every) is still under discussion.

The tables below summarize the main features of the three ap-
proaches.

Passing from Surface Structure Trees to Formal Structure Trees
Strategy A B C

Rewrite QR, QR, No rewrite rules
rules Predicate Predicate (in situ)

Collapsing Collapsing,
Rotation

Passing from Formal Structure Trees to Computation Trees
Strategy A B C

Relabelling S x 7→mos S x⃗ 7→mos
inner nodes

Polyadic 7→ S, VP, V ′ 7→
pile′up CPS

Relabelling S 7→ relation S 7→ relation V, V t, Vdt 7→
leaves continuized

relation

QP 7→ C -comp. QP 7→ C -comp. QP 7→ C -comp.

The semantics for sentences with intransitive or transitive verbs,
as defined by strategies A, B, and C, will be equivalent. The seman-
tics for sentences with ditransitive verbs, as defined by strategies A,
and B, will be equivalent, providing six asymmetric readings for the
sentence. The semantics for sentences with ditransitive verbs, as de-
fined by strategy C, will provide four asymmetric readings for the sen-
tence, such that QP in subject position can be placed either first or last
only, corresponding to four out of the six readings accounted for by
strategies A and B. The proofs are given in the Appendix.

[212]

Scope ambiguities, monads and strengths

4 conclusions and future work

We compared three scope-assignment strategies for simple multi-
quantifier sentences: the traditional movement strategy, the polyadic
approach, and the continuation-based approach. These strategies can
be viewed as instances of the same general pattern: first transform
the SS-tree of a sentence so as to obtain the shape of the computa-
tion tree, then relabel the leaves of that tree, with the interpretation
of lexical items (predicate and QPs), and the inner nodes, using al-
gebraic operations, and finally evaluate this computation in order to
get the truth value of the whole sentence. We have shown that while
the traditional movement strategy is very close to the original seman-
tics for the logic with generalized quantifiers due to Mostowski, the
polyadic approach and the continuation-based strategy are in fact cog-
nate in spirit, as they can both be defined using operations derived
from the strength of the continuation monad. As the polyadic strategy
is well-understood among linguists, we hope that our results will help
to make the continuation-based strategy more popular. With the con-
tinuation monad as a common basis for the three scope-assignment
strategies discussed, it is also easy to identify their relative merits
and weaknesses. Traditional and polyadic approaches cannot provide
a non-movement (in situ) analysis of quantifiers. The continuation-
based strategy is in situ but does not account for all the asymmetric
readings possible for sentences involving three QPs. As discussed in
Bekki and Asai (2009) and proved in this paper, it only provides four
out of the six readings possible for such sentences. In the sequel to this
paper, we show how to overcome this problem, keeping the resulting
strategy in situ (Grudzinska and Zawadowski 2016). We take the re-
sults of this work to be the first step towards an in situ semantics that
will be sufficient to account for the whole range of possible readings
for multi-quantifier sentences.

5 appendix

5.1 The continuation monad
In this subsection, we gather all the basic facts (sometimes repeated
from the text) of the continuation monad C on Set. We have an adjunc-
tion:

[213]

Justyna Grudzińska, Marek Zawadowski

Set Setop
P
P op

where both P and P op are the contravariant powerset functors7 with
the domains and codomains as displayed. In particular, for f : X −→ Y ,
the function P (f) = f −1 :P (Y) −→P (X) is given by:

f −1(h) = h ◦ f

for h : Y −→ t. Function ηX : X −→ C (X), the component at set X of
the unit of this adjunction η : 1Set −→PP op =C , is given by:

ηX (x) = λh:P (X).h(x).

Function ϵX : X −→ C (X), the component at set X of the co-unit of
this adjunction ϵ : 1Set −→ P opP , is given by (essentially the same
formula):

ϵX (x) = λh:P op(X).h(x)

for x ∈ X . The function C (f) : C (X) −→ C (Y), for Q : P (X) −→ t ∈
C (X), is a function C (f)(Q) :P (Y) −→ t given by:

C (f)(Q)(h) =Q(h ◦ f)

for h : Y −→ t.
The monad induced by this adjunction is the continuation monad.

Its multiplication is given by the co-unit of the above adjunction trans-
ported back to Set, i.e. µ=P op(ϵP). For X in Set, the function

µX :C 2(X) −→C (X)
is given by:

µX (R) =R ◦ηP (X) for R ∈C 2(X).

In λ-notation we write:

µX (F)(h) =F (λD:C (X).D(h)).
7Note that this is in contrast with the functor P , where P is the covariant

power-set functor.

[214]

Scope ambiguities, monads and strengths

The left strength for the monad C is:
stl :C (X)× Y −→C (X × Y)

for M ∈ C (X) and y ∈ Y , given by:
stl(M , y) = λc:P (X×Y).M(λx:X .c(x , y)) :P (X × Y) −→ t

and the right strength, for x ∈ X and N ∈ C (Y), is given by:
str(x , N) = λc:P (X×Y).N(λy:Y .c(x , y)) :P (X × Y) −→ t.

The left pile’up operation:
pile′upl :C (X)×C (Y) −→C (X × Y)

is the following composition:

C (X)×C (Y) C (X ×C (Y))stl C 2(X × Y)
C (str) C (X × Y)

µX×Y

where, for Q ∈ C (X), Q′ ∈ C (Y), c ∈ P (X ×C (Y)), we have:
stl(Q,Q′)(c) =Q(λx:X c(x ,Q))

and, for d ∈ C (X ×C (Y)), U ∈P C (X × Y), we have:
C (str)(d)(U) = d(U ◦ str).

Now, using the above formulas, we can calculate pile′upl as the
composition on Q ∈ C (X), Q′ ∈ C (Y), and c ∈ P (X × Y) as follows:

pile′upl(Q,Q′)(c) = µX×Y (C (str)(stl(Q,Q′)))(c)

=C (str)(stl(Q,Q′))(λD:C (X×Y)D(c))

= stl(Q,Q′)((λD:C (X×Y)D(c)) ◦ str)

=Q(λx:X ((λD:C (X×Y)D(c)) ◦ str)(x ,Q′))

=Q(λx:X ((λD:C (X×Y)D(c))(str(x ,Q′))

=Q(λx:X str(x ,Q′)(c))

=Q(λx:X Q′(λy:Y c(x , y)))

[215]

Justyna Grudzińska, Marek Zawadowski

Similarly, we can show that:
pile′upr(Q,Q′)(c) =Q′(λy:Y Q(λx:X c(x , y))).

One can easily verify that pile′up’s are related by:
pile′upr

X ,Y =C (π(2,1)) ◦ pile′upl
Y,X ◦π(2,1).

5.2 Some properties of pile′up operations
Lemma 5.1 (pile′up lemma) pile′ups on pairs where one element is
continuized agree and are equal to the corresponding strength.
Proof. We have to show that the functions:

pile′upl
X1,X2

T (X1)× T (X2) T (X1 × X2)
pile′upr

X1,X2

are equalized by both:
X1 × T (X2) T (X1)× T (X2)

ηX1
× T (1X2

)

and
T (X1)× X2 T (X1)× T (X2)

T (1X1
)×ηX2

and their composition with these functions is equal to strength mor-
phisms. Using the diagram:

T (X1 × X2) T (X1 × T (X2))T (1X1
×ηX2

)

T (X1)× X2 T (X1)× T (X2)
T (1X1

)×ηX2

stl
X1,X2

stl
T (X1),X2

T 2(X1 × X2)T (str
X1,X2
)

T (T (X1)× X2)
str

T (X1),X2

T (stl
X1,X2
)

T (X1 × X2)

µX1×X2

1T (X1×X2)

T (ηX1×X2
)

ηT (X1×X2)

ηT (X1)×X2

[216]

Scope ambiguities, monads and strengths

we shall show that:
pile′upr

X1,X2
◦ (T (1X1

)×ηX2
) = stl

X1,X2
= pile′upl

X1,X2
◦ (T (1X1

)×ηX2
).

The other cases are symmetric. We have:
pile′upr

X1,X2
◦(T (1X1

)×ηX2
) = (def of pile′upr)

= µX1×X2
◦T (stl

X1,X2
)◦str

T (X1),X2
◦(T (1X1

)×ηX2
) (η strong w.r.t. str)

= µX1×X2
◦T (stl

X1,X2
)◦ηT (X1)×X2

(η nat transf)

= µX1×X2
◦ηT (X1×X2)◦stl

X1,X2
(T monad)

= stl
X1,X2

To show the remaining equation, we can continue the penultimate
formula above as follows:
pile′upr

X1,X2
◦(T (1X1

)×ηX2
) = . . .= µX1×X2

◦ηT (X1×X2))◦stl
X1,X2

= (T monad)

= µX1×X2
◦T (ηX1×X2

)◦stl
X1,X2

(η strong w.r.t. str)

= µX1×X2
◦T (str

X1,X2
)◦T (1X1

×ηX2
)◦stl

X1,X2
(stl nat transf)

= µX1×X2
◦T (str

X1,X2
)◦stl

X1,X2
◦T (1X1

×ηX2
) (def of pile′upl)

= pile′upl
X1,X2
◦(T (1X1

)×ηX2
) ♢

Corollary 5.2 The left and right CPS-operation on pairs where one ele-
ment is continuized agree.
Proof. The corollary states that, for any sets X , Y , Z and a function
f : X × Y −→ Z , both morphisms:

X × T (Y) T (X)× T (Y)
ηX × 1

and
T (X)× Y T (X)× T (Y)

1×ηY

equalize the pair of morphisms:

CPSl(f)
T (X)× T (Y) Z

CPSr(f)

[217]

Justyna Grudzińska, Marek Zawadowski

This immediately follows from the above lemma and the definition of
CPSes. ♢

Using binary pile′up operations, we can define eight ternary
pile′up operations:

T (X1)× T (X2)× T (X3) −→ T (X1 × X2 × X3)

out of the following diagram:

T (X1)× T (X2)× T (X3)

T 2(X1 × X2)× T (X3) T (X1)× T 2(X2 × X3)

T 3(X1 × X2 × X3)

pile′upl pile′upr pile′upl pile′upr

pile′upl×1 pile′upr×1 1×pile′upl 1×pile′upr

However, both pile′upl and pile′upr operations are associative (Propo-
sition 5.3 below) and hence only six of them are different, in general.
Proposition 5.3 Both pile′upl and pile′upr operations are associative
on any monad on Set.
Proof. In fact, pile′upl and pile′upr are associative on any bi-strong
monad in the monoidal category. We shall show this fact for a monad
T on Set with canonical strength.
We need to show that:

pile′upr ◦ (pile′upr × 1) = pile′upr ◦ (1× pile′upr)

and
pile′upl ◦ (pile′upl × 1) = pile′upl ◦ (1× pile′upl)

But as pile′ups are mutually definable, either of these equalities readily
implies the other. We shall show the second equality. For sets X1, X2,
X3, using all the assumptions, we have:
pile′upl

X1×X2,X3
◦(pile′upl

X1,X2
×1T (X3)) =

[218]

Scope ambiguities, monads and strengths

= µX1×X2×X3
◦T (str

X1×X2,X3
)◦stl

X1×X2,T (X3)◦ (µX1×X2
× T (1X3

))

◦(T (str
X1,X2
)× 1T (X3)) ◦ (stl

X1,T (X2) × 1T (X3))

= µX1×X2×X3
◦T (str

X1×X2,X3
) ◦µX1×X2×T (X3)◦T (stl

X1×X2,T (X3))

◦ stl
T (X1×X2),T (X3) ◦ (T (str

X1,X2
)× T (1X3

)) ◦ (stl
X1,T (X2) × 1T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (stl
X1×X2,T (X3))

◦ (T (str
X1,X2
× 1X3

)) ◦ stl
T (X1×X2),T (X3) ◦ (stl

X1,T (X2) × 1T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (stl
X1×X2,T (X3))

◦ (T (str
X1,X2
× 1T (X3))) ◦ stl

X1,T (X2)×T (X3)

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (str
X1,X2×T (X3))

◦ T (1X1
× stl

X2,T (X3)) ◦ stl
X1,T (X2)×T (X3)

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (str
X1,X2×T (X3))

◦ stl
X1,T (X2×T (X3)) ◦ (T (1X1

)× stl
X2,T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1,T (X2×X3))◦T 2(1X1
× str

X2,X3
)

◦ T (str
X1,X2×T (X3)) ◦ stl

X1,T (X2×T (X3)) ◦ (T (1X1
)× stl

X2,T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1,T (X2×X3))◦T (str
X1,T (X2×X3))

◦ T (1X1
× T (str

X2,X3
)) ◦ stl

X1,T (X2×T (X3)) ◦ (T (1X1
)× stl

X2,T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3) ◦ T 2(str

X1,T (X2×X3)) ◦ T (str
X1,T (X2×X3))

◦ stl
X1,T 2(X2×X3) ◦ (T (1X1

)× T (str
X2,X3
)) ◦ (T (1X1

)× stl
X2,T (X3))

= µX1×X2×X3
◦ T (str

X1,X2×X3
)◦ T (1X1

×µX2×X3
) ◦ stl

X1,T 2(X2×X3)

◦ (T (1X1
)× T (str

X2,X3
)) ◦ (T (1X1

)× stl
X2,T (X3))

= µX1×X2×X3
◦ T (str

X1,X2×X3
)◦ stl

X1,T (X2×X3) ◦ (T (1X1
)×µX2×X3

)

◦ (T (1X1
)× T (str

X2,X3
)) ◦ (T (1X1

)× stl
X2,T (X3))

= pile′upl
X1,X2×X3

◦(1T (X3)×pile′upl
X2,X3
) ♢

[219]

Justyna Grudzińska, Marek Zawadowski

5.3 Arity one: intransitive verbs
Proposition 5.4 The semantics for sentences with intransitive verbs, as
defined by strategies A, B, and C, will be equivalent.
Proof. In case of a sentence with an intransitive verb, the semantics
will be defined by the morphisms strat1

A, strat1
B, and strat1

C . We need
to show that they are equal. We have:

strat1
A =mosl

X = strat1
B.

strat1
C is the composition of the following morphisms:

C (X)×P (X) C (X)×CP (X)1×ηP (X) C (t)CPSl(epsr
X) t

evidt

Thus we need to show that this composition is equal to mosl
X . Con-

sider the following diagram:

C (X)×CP (X) C (t)

C (X)×P (X) t
mosl

X

1×ηP (X) evidt

C (X ×P (X))
pile′upl

X
C (epsr

X)

stl evepsr
X

The left triangle commutes, as a consequence of Lemma 5.1. To
see that the central triangle commutes, we take M ∈ C (X) and h ∈
P (X), and calculate:

evepsr
X
◦ str(Q, h) = evepsr

X
(λD:P (X×P (X))M(λx:X D(x , h)))

= M(λx:X epsr
X (x , h))

= M(λx:X h(x))

= N(h)

=mosl(N , h).

Finally, to see that the right triangle commutes, we take N ∈
C (X ×P (X)) and calculate:

evidt
◦C (epsr

X)(N) = evidt
(λc:P (t)N(c ◦ epsr

X))

= N(epsr
X)

= evepsr
X
(N).

[220]

Scope ambiguities, monads and strengths

Thus the whole diagram commutes, and hence strat1
C =mosl

X , as
required. ♢

The above proof also shows the following technical lemma.
Lemma 5.5 For any set X , the following diagram commutes:

C (X ×P (X)) C (t)C (epsr
X)

C (X)×P (X) t
mosl

X

stl evidt

5.4 Arity two: transitive verbs
Proposition 5.6 The semantics for sentences with transitive verbs, as de-
fined by strategies A, B, and C, will be equivalent, providing two asymmetric
readings for the sentence.
Proof. In the case of sentences with transitive verbs, the semantics will
be defined by morphisms strat2,σ

A , strat2,σ
B , and strat2,ϵ

C , with σ ∈ S2 =
{id2,τ} and ϵ ∈ {l, r}. We need to show the equalities:

strat2,σ
A = strat2,σ

B ,
for σ ∈ S2, and

strat2,id2
B = strat2,l

C , strat2,τ
B = strat2,r

C .

To show the first equality, with Q1 ∈ C (X1), Q2 ∈ C (X2), and
P ∈ P (X1 × X2), we have:
strat2,σ

A (Q1,Q2, P) =

=mosl
Xσ(1)(Qσ(1),mosl

Xσ(2)(Qσ(2), P))

=mosl
Xσ(1)(Qσ(1),λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .P(x1, x2)))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .P(x1, x2)))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .P(πσ−1(xσ(1), xσ(2)))))

= pile′upl(Qσ(1),Qσ(2))(P◦π−1)

=C (πσ−1)(pile′upl(Qσ(1),Qσ(2)))(P)

= strat2,σ
B (Q1,Q2, P)

[221]

Justyna Grudzińska, Marek Zawadowski

To show the remaining two equalities, let us first note that if either
σ = id2 and ϵ = l or σ = τ and ϵ = r, we have:

pile′upϵ =C (πσ−1) ◦ pile′upl ◦πσ.

Thus we shall assume the above equation relating σ with ϵ, and, with
Q1 ∈ C (X1), Q2 ∈ C (X2), and P ∈ P (X1 × X2), we obtain:8

strat2,ϵ
C =

= evidt
◦CPSϵ(epsr

X1
)◦(1×CPS?(epsr

X2
))◦(1×1×ηP (X1×X2))

= evidt
◦C (epsr

X1
)◦pile′upϵ◦(C (1)×C (epsr

X2
))◦(1×pile′up?)◦(1×1×η)

= evidt
◦C (epsr

X1
)◦C (1×epsr

X2
)◦pile′upϵ◦(1×pile′up?)◦(1×1×η)

= evidt
◦C (epsr

X1×X2
)◦pile′upϵ◦(1×pile′up?)◦(1×1×η)

= evidt
◦C (epsr

X1×X2
)◦pile′up?◦(pile′upϵ×1)◦(1×1×η)

= evidt
◦C (epsr

X1×X2
)◦pile′up?◦(1×η)◦(1×pile′upϵ)

= evidt
◦C (epsr

X1×X2
)◦stl◦(1×pile′upϵ)

= evidt
◦C (epsr

X1×X2
)◦stl◦(C (πσ−1)×1)◦(pile′upl×1)◦(πσ×1)

=mosl
X1×X2
◦(C (πσ−1)×1)◦(pile′upl×1)◦(πσ×1)

= strat2,σ
B

In the above calculations, we used the definition of CPSes, the
naturality of pile′upϵ, the relations between eps morphisms, the asso-
ciativity of pile′upϵ (Proposition 5.3), the properties of product mor-
phisms, the pile′up lemma, and finally, Lemma 5.5.

Here and below, CPS?, pile′up? stands for either CPSl , pile′upl or
CPSr , pile′upr ,whichever is more convenient at the time, as it does not
influence the end result. ♢

8The diagram illustrating these calculations would be too big to fit on a page
but the reader is encouraged to draw one.

[222]

Scope ambiguities, monads and strengths

5.5 Arity three: ditransitive verbs
Proposition 5.7 The semantics for sentences with ditransitive verbs, as
defined by strategies A and B, will be equivalent, providing six asymmetric
readings of the sentence.
Proof. In the case of sentences with ditransitive verbs, the semantics
will be defined by the morphisms strat3,σ

A , strat3,σ
B , and strat2,ϵ

C , with
σ ∈ S3 and ϵ ∈ {l, r}. We need to show the equalities:

strat3,σ
A = strat3,σ

B ,

for σ ∈ S3.
The calculations are similar to those for transitive verbs. We

present them for completeness. With Q1 ∈ C (X1), Q2 ∈ C (X2), Q3 ∈
C (X3), and P ∈ P (X1 × X2 × X3), we have:

strat3,σ
A (Q1,Q2,Q3, P) =

=mosl
Xσ(1)(Qσ(1),mosl

Xσ(2)(Qσ(2),mosl
Xσ(3)(Qσ(3), P)))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .Qσ(3)(λxσ(3):Xσ(3) .P(x1, x2, x3))))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .Qσ(3)(

λxσ(3):Xσ(3) .P(πσ−1(xσ(1), xσ(2), xσ(3))))))

= pile′upl(Qσ(1),pile′upl(Qσ(2),Qσ(3)))(P◦πσ−1)

=C (πσ−1)(pile′upl(Qσ(1),pile′upl(Qσ(2),Qσ(3))))(P)

= strat2,σ
B (Q1,Q2,Q3, P)

as required. ♢
Proposition 5.8 The semantics for sentences with ditransitive verbs, as
defined by strategy C, provides four asymmetric readings of the sentence,
such that QP in subject position can be placed either first or last only. Thus
they correspond to four out of the six readings accounted for by strategies
A and B.
Proof. In the case of sentences with ditransitive verbs, the semantics,
according to strategies B and C, are defined by the morphisms strat3,σ

B ,

[223]

Justyna Grudzińska, Marek Zawadowski

strat3,ϵ,ϵ′
C , respectively. As we shall show, these morphisms are equal

whenever σ ∈ S3 is related to the pair 〈ϵ′,ϵ〉 ∈ {l, r}2 via the relation:
pile′upϵ

′ ◦ (1× pile′upϵ) =C (πσ−1) ◦ pile′upl ◦ (1× pile′upl) ◦πσ
As pile′upl leaves the order intact and pile′upr swaps the order,

we can see that we have the following correspondence:

σ 〈ϵ′,ϵ〉
(1,2,3) 〈l, l〉
(1,3,2) 〈l, r〉
(2,3,1) 〈r, l〉
(3,2,1) 〈r, r〉
(2,1,3) −
(3,1,2) −

Thus we shall assume that σ is related to the pair 〈ϵ,ϵ′〉, and, with
Q1 ∈ C (X1), Q2 ∈ C (X2), Q3 ∈ C (X3), and P ∈ P (X1 × X2 × X3), we
obtain:9

strat3,ϵ′,ϵ
C =

= evidt
◦CPSϵ

′
(epsr

X1
)◦(1×CPSϵ(epsr

X2
))◦(1×1×CPS?(epsr

X3
))

◦(1× 1× 1×η)
= evidt

◦C (epsr
X1
)◦pile′upϵ

′◦(C (1)×C (epsr
X2
))◦(1×pile′upϵ)

◦(C (1)×C (1)×C (epsr
X3
)) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)

= evidt
◦C (epsr

X1
)◦(C (1×epsr

X2
))◦pile′upϵ

′◦(C (1)×C (1×epsr
X3
))

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1
)◦(C (1×epsr

X2
))◦(C (1×1×epsr

X3
))◦pile′upϵ

′

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦pile′upϵ
′

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
9The diagram illustrating these calculations would again be too big to fit on

a page, but the reader is encouraged to draw one.

[224]

Scope ambiguities, monads and strengths

= evidt
◦C (epsr

X1×X2×X3
)◦pile′upϵ

′

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦pile′upϵ
′

◦(1× pile′up?) ◦ (1× pile′upϵ × 1) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦pile′up?

◦(pile′upϵ
′ × 1) ◦ (1× pile′upϵ × 1) ◦ (1× 1× 1×η)

∗
= evidt

◦C (epsr
X1×X2×X3

)◦pile′up?◦(C (πσ−1)×C (1))
◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (1× 1× 1×η) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1××η) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1× 1×η) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦pile′up?

◦ (1×η) ◦ (pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦stl l

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦stl l◦(C (πσ−1)×C (1))

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

=mosl
X1×X2×X3

◦(C (πσ−1)×C (1))
◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= strat3,σ
B

[225]

Justyna Grudzińska, Marek Zawadowski

In the above calculations, we used the definition of CPSes, the
naturality of pile′ups (four times in three non-consecutive steps!),
the relations between eps morphisms, the associativity of pile′ups
(Proposition 5.3), the relations between σ and 〈ϵ′,ϵ〉 in the equation
marked with ∗ ∗=, the properties of product morphisms (three consec-
utive steps), the pile′up lemma, the naturality of strength, and finally,
Lemma 5.5. ♢

6 acknowledgments
This article is funded by the National Science Center on the basis of de-
cision DEC-2016/23/B/HS1/00734. The authors would like to thank
the anonymous reviewers for valuable comments.

references
Chris Barker (2002), Continuations and the nature of quantification, Natural
language semantics, 10(3):211–242.
Chris Barker and Chung-chieh Shan (2014), Continuations and natural
language, volume 53, Oxford Studies in Theoretical Linguistics.
Daisuke Bekki and Kenichi Asai (2009), Representing covert movements by
delimited continuations, in JSAI International Symposium on Artificial Intelligence,
pp. 161–180, Springer.
Simon Charlow (2014), On the semantics of exceptional scope, Ph.D. thesis,
New York University.
Noam Chomsky (1993), Lectures on government and binding: The Pisa lectures, 9,
Walter de Gruyter.
Robin Cooper (1983), Quantification and semantic theory, Dordrecht: Reidel.
Philippe De Groote (2001), Type raising, continuations, and classical logic, in
Proceedings of the thirteenth Amsterdam Colloquium, pp. 97–101.
Samuel Eilenberg and G Max Kelly (1966), Closed categories, in Proceedings
of the Conference on Categorical Algebra, pp. 421–562, Springer.
Samuel Eilenberg, John C Moore, et al. (1965), Adjoint functors and triples,
Illinois Journal of Mathematics, 9(3):381–398.
Roger Godement (1958), Topologie algébrique et théorie des faisceaux,
volume 13, Hermann Paris.
Justyna Grudzinska and Marek Zawadowski (2016), Continuation
semantics for multi-quantifier sentences: operation-based approaches, arXiv
preprint arXiv:1608.00255.

[226]

Scope ambiguities, monads and strengths

Herman Hendriks (1993), Studied flexibility: Categories and types in syntax and
semantics, Institute for Logic, Language and Computation.
Edward L Keenan (1987), Unreducible n-ary quantifiers in natural language,
in Generalized quantifiers, pp. 109–150, Springer.
Edward L Keenan (1992), Beyond the Frege boundary, Linguistics and
Philosophy, 15(2):199–221.
Oleg Kiselyov and Chung-chieh Shan (2014), Continuation hierarchy and
quantifier scope, in Formal Approaches to Semantics and Pragmatics,
pp. 105–134, Springer.
Heinrich Kleisli (1965), Every standard construction is induced by a pair of
adjoint functors, Proceedings of the American Mathematical Society,
16(3):544–546.
Anders Kock (1970), Monads on symmetric monoidal closed categories, Archiv
der Mathematik, 21(1):1–10.
Anders Kock (1971), Closed categories generated by commutative monads,
Journal of the Australian Mathematical Society, 12(04):405–424.
Anders Kock (1972), Strong functors and monoidal monads, Archiv der
Mathematik, 23(1):113–120.
Robert May (1978), The grammar of quantification., Ph.D. thesis, Massachusetts
Institute of Technology.
Robert May (1985), Logical Form: Its structure and derivation, volume 12, MIT
press.
Eugenio Moggi (1991), Notions of computation and monads, Information and
computation, 93(1):55–92.
Richard Montague (1973), The proper treatment of quantification in ordinary
English, in Approaches to natural language, pp. 221–242, Springer.
Chung-chieh Shan (2002), Monads for natural language semantics, arXiv
preprint cs/0205026.
Johan Van Benthem (1989), Polyadic quantifiers, Linguistics and Philosophy,
12(4):437–464.
Philip Wadler (1990), Comprehending monads, in Proceedings of the 1990
ACM conference on LISP and functional programming, pp. 61–78, ACM.
Marek Zawadowski (1989), Formalization of the feature system in terms of
preorders, Feature System for Quantification Structures in Natural Language [3],
pp. 155–175.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[227]

http://creativecommons.org/licenses/by/3.0/

	Multi-quantifier sentences and three scope-assignment strategies
	Strategy A
	Strategy B
	Strategy C

	Monads and strengths
	Monads – definition and examples
	Notation
	Continuation monad
	Bi-strong monads
	Combining computations in arbitrary monad T on Set
	T-transforms on arbitrary monad T on Set

	Scope-assignment strategies
	General remarks
	Strategy A
	Strategy B
	Strategy C

	Conclusions and future work
	Appendix
	The continuation monad
	Some properties of pile'up operations
	Arity one: intransitive verbs
	Arity two: transitive verbs
	Arity three: ditransitive verbs

	Acknowledgments

