
Second order inference
in natural language semantics

Stephen Pulman
Department of Computer Science, Oxford University

abstract

Keywords:
first order,
second order,
inference,
adjectives,
possessives

In this paper I look at a number of apparently trivial valid inferences
(as well as some invalid and missing inferences) associated with the
possessive construction and with different types of adjectival modi-
fication of nouns. In the case of possessives, all analyses I know of,
whether implemented or not, systematically sanction invalid infer-
ences. In the case of adjectives, there are some model-theoretic lin-
guistic analyses that are adequate at a theoretical level, but no satis-
factory practical computational implementations that I am aware of
which capture the correct inference patterns.

A common thread between the possessive and the adjectival con-
structions is that to derive the correct inferences we need second
order quantification. This is an uncontroversial move within model-
theoretic formal semantics but a problem for computational semantics,
since we have no fully automated theorem provers for anything other
than first order logic (and only for subsets of first order logic do we
have provers that are both fully decidable and efficient). I explore
what is needed to provide a proof-theoretic account of the relevant
inference patterns, and suggest some analyses requiring second order
axioms. In order to make this a practical computational possibility I
go on to propose two techniques for approximating such inferences
in a first order setting. The suggested analyses have been fully imple-
mented, and in an appendix I provide a small FraCaS-like corpus of
relevant examples, all of which are handled correctly by the imple-
mentation.

Journal of Language Modelling Vol 6, No 1 (2018), pp. 1–40

Stephen Pulman

1 introduction

The aim of this paper is to be able to capture some apparently trivial
natural language inferences (and lack of inferences) involving adjec-
tive modification and possessive determiners, which like many other
constructions turn out to have the property that second order quantifi-
cation is required to capture these inferences. I will assume a simple
and standard setting in which to address this problem, assuming that
we have a syntax-driven compositional semantics producing logical
forms for a (disambiguated) parsed sentence in a familiar way. These
logical forms will ideally be sent to an automated theorem prover
of some type (resolution, tableau...) which can mechanically check
the validity of the inferences. A common version of this setting is to
have the translations of declarative sentences or statements added
as ‘axioms’ or ‘premises’, and then to have questions correspond-
ing to the inferences we are interested in treated as ‘theorems’ to
be proved, as for example in versions of the FraCaS inference suite
(Cooper et al. (1996), MacCartney and Manning (2008)). The ques-
tions can be yes/no type questions where we will expect the answer
‘yes’ if there is a proof and either ‘no’ or ‘don’t know’ otherwise (there’s
more to be said here: failure to find a proof does not always mean a
negative answer), or Wh-questions where if there is a proof we will
ideally return unifying substitutions corresponding to the values of
the ‘wh’ constituent in the question.

Here is a very simple example:
All bankers are rich. axiom: ∀x.banker(x)→ rich(x)
Jones is a banker. axiom: banker(jones)
Is Jones rich? prove: rich(jones)
Who is rich? prove: ∃x.rich(x)

The first order logical (FOL) forms in the right hand column can be
submitted to a first order theorem prover such as Prover9 (McCune
(2005–2010)) and the answers retrieved (after some housekeeping)
should be ‘Yes’ and ‘Jones’ respectively.
My modest aim in this paper is to be able to do something similar

with inferences such as those described in the following sections, in-
volving different types of adjectives, possessive determiners, and their
combinations.

[2]

Second order inference in natural language semantics

2 adjectives
For completeness, we will go through the standard examples of the
inferential phenomena we are interested in even though, at least for
adjectives, they are comparatively well-known.We begin with the sim-
plest class of adjectives, usually called ‘intersective’, which sanction
inferences like these:
(1) a. Jones is a red-haired farmer.

b. |= Jones is red-haired.
c. |= Jones is a farmer.

If we now add some extra information about farmers we get the fol-
lowing inference pattern:
(2) a. All farmers are gamblers.

b. |= Jones is a red-haired gambler.
With what are commonly called ‘gradable’ or ‘subsective’ adjectives,
we get a different pattern of inferences:
(3) a. Minnie is a large mouse.

b. |= Minnie is a mouse.
c. ̸|= Minnie is large. (can be valid with some contextual as-

sumptions)
(4) a. All mice are animals.

b. |= Minnie is an animal.
c. ̸|= Minnie is a large animal.

(5) a. All mice are small animals.
b. |= Minnie is a small animal.

Gradable adjectives have some implicit scale of comparison asso-
ciated with them, and thus something can have contradictory proper-
ties if these are associated with different comparison scales. You can
be a tall person but a short basketball player, for example. For many
such adjectives it sounds odd to have the property ascribed unless the
comparison scale is obvious from the context. In a few cases there
can be a default comparison class, e.g. ‘Mary is good’ can be mean-
ingful without a specific hidden parameter since for most people a

[3]

Stephen Pulman

default parameter for ‘good’ will be ‘behaviour’ or ‘character’. Some
gradable adjectives like ‘clever’ or ‘generous’ have a further dimen-
sion, in that someone might be generous not only by comparison with
other members of a class, but generous with respect to some proper-
ties (e.g. money) and not others (e.g. time). Recovering these relevant
contextual parameters is a long way beyond the state of the art com-
putationally, and so here we only use examples where the parameter
is supplied linguistically, for example ‘John is a tall man’, and ‘This
is a red apple’, rather than ‘John is tall’ or ‘This apple is red’. Clearly
what is tall for a man is not what is tall for a tree, and red for an apple
is very different from what is red for a face, and until we know what
this parameter is, few inferences are sanctioned.

A third class of adjectives are sometimes called ‘privative’, and
whereas the first two classes have the property that from ‘X is Adj
Noun’ we can always infer ‘X is Noun’, privatives do not behave in
this way:
(6) a. Tony Blair is the former Prime Minister.

b. ̸|= Tony Blair is the Prime Minister.
(7) a. Smith showed an apparent proof of the theorem.

b. ̸|= Smith showed a proof of the theorem.
(8) a. He owns a fake diamond.

b. ̸|= He owns a diamond.
All of these adjectives have the property that from ‘X is Adj Noun’ the
inference ‘X is Noun’ does not hold, and some have argued that for
some cases, like ‘fake’, the inference to ‘not-Noun’ holds:
(9) a. This is a fake diamond.

b. |= This is not a diamond.
Intuitions vary about this: Partee (2007) thinks that ‘former P’ entails
‘not P now’, whereas for me a sentence like ‘In 2014, Obama was both
the former and the current US President’ is not contradictory.

Inferences from the complement of a privative adjective seem
quite varied: ‘This is a fake Picasso painting’ does not entail ‘This is
a fake painting’, whereas ‘Bush is a former US president’ does entail
‘Bush is a former president’. However, ‘Jane is a former fussy eater’,

[4]

Second order inference in natural language semantics

does not entail ‘Jane is a former eater’.1 Clearly there is more to be
learned about such examples: for an interesting extended discussion
and analysis of different types of privative adjectives, see Del Pinal
(2015).
For some adjectives of this type, there are also some further inter-

esting properties when combined with possessive determiners, such as
the ambiguity of ‘Mary’s former mansion’, which can be interpreted as
referring either to the mansion that Mary used to own, or the building
that Mary still owns which used to be a mansion. See Partee (2007)
for discussion.

It is reasonably easy to specify truth conditions for intersective
adjectives as follows, where D(x) = ‘denotation of x’:

‘Jones is a red-haired farmer’ is true iff
D(jones) ∈ D(red-haired) ∩ D(farmer).
However, extending this definition to the other two classes re-

quires appeal to notions which are not all intuitively clear and not
very easy to pin down with mathematical precision. For subsective
adjectives, perhaps:

‘Minnie is a large mouse’ is true iff D(minnie) ∈ {X | X a
mouse larger than the relevant standard for mice}

Making the notion of “relevant standard” precise might involve
assuming an ordering over mice by size (presumably adjusting for age)
and fixing an interval representing the expected norm. As many people
have commented (e.g. Kamp (1975)), this seems a little odd, in that
it implicitly uses the comparative form of the adjective to define the
semantics of the non-comparative form, whereas pre-theoretically one
might have expected things to be the other way round.

In the case of privative adjectives, truth conditions seem to vary
according to the specific adjective. For example, ‘X is a former Y’ is
true iff D(X) ∈ D(Y at earlier time), and ‘X is an alleged Y’ is true
(according to Morzycki (2014)) iff X is a Y in every possible world
compatible with the allegation (although wouldn’t ‘X is an alleged Y
iff someone has alleged that X is a Y’ be simpler?).

1Thanks to a referee for this example.

[5]

Stephen Pulman

It is clear that there is a large contextual component in the in-
terpretation of all of these adjectives, and it is perfectly reasonable to
pursue a style of analysis in which the logical form associated with
them is rather minimal, most of the hard work being done by set-
ting of various contextual parameters, with the analysis perhaps also
involving probabilities or utilities (Rett (2014); Lassiter and Good-
man (2017)). But whatever the undoubted merits of these approaches
to defining interpretation conditions for adjectives or other context
dependent constructs, the exercise is not very practically relevant
for computational purposes, for which we need an explicit logical
form that will support the relevant inferences proof theoretically, or
which will lend itself to computationally tractable model building
and checking techniques. In this respect, computational semantics for
natural language is a rather different pursuit than purely linguistic
semantics.
When constructing logical forms, if we are to be as compositional

as possible, then any differences in the logical form of these three types
of adjective under discussion must come either from some syntactic
differences between the sentences in which they occur, or from their
lexical properties. Since there seems to be no compelling evidence
of a syntactic difference between these types of adjective (there are
distributional differences to do with attributive and predicative uses
of adjectives but this seems to cross-cut the present set of distinctions)
I propose to build semantic differences into their lexical logical forms
directly.
I will illustrate this with a small but precise fragment: a context-

free grammar with associated semantic rules which build the meaning
of a mother constituent by combining the meanings of daughter con-
stituents. The meanings are expressed in a simply typed higher order
logic of a familiar kind. For example, the first rule says that a Sen-
tence (S) consists of a Noun Phrase (NP) followed by a Verb Phrase
(VP) and that the meaning of the sentence is obtained by substitut-
ing the meanings of the NP and VP in the typed2 higher order logic
schema following the rule, which applies the NP meaning to the VP
meaning.

2A type like (et)t is equivalent to (e→ t)→ t or <<e,t>,t> in other nota-
tions.

[6]

Second order inference in natural language semantics

S → NP VP : NP(et)t(VPet)
NP → Det N’ : Det(et)(et)t(N’et)
NP → Name : λPet.P(Namee)
N’ → N : Net

N’ → Adj N’ : Adj(et)(et)(N’et)
Adj → wooden, etc. : λPetxe.woodenet(x) ∧ P(x)
Adj → small, etc. : λPetxe.smalle(et)t(x,P)
Adj → apparent, etc. : λPetxe.apparente(et)t(x,P)
Det → some, etc. : λPetQet.∃xe.P(x) ∧ Q(x) etc.
VP → Vi : Viet
VP → Vt NP : Vt((et)t)et(NP(et)t)
Vi → snores, won, etc. : snoreet

Vt → hits, is, likes, etc. : λO(et)txe.O(λy.hiteet(x,y))
This grammar will deliver logical forms for our representative cases
as follows, with some simplifications concerning the copula:3

Jones is a red-haired rugby player.
red-haired(jones) ∧ rugby-player(jones)

Minnie is a large mouse.
large(minnie, mouse)

Tony Blair is a former Prime Minister.
former(tonyblair,prime-minister)

For the intersective cases, we get the inferences we want imme-
diately, since we have built conjunction into the lexical entry. For the
subsective cases, we supply the non-logical constant encoding the ad-
jective with an extra second order argument, which picks up the deno-
tation of the noun as supplying the relevant comparison class. We can
read small(x,P) as ‘small by the standards relevant for P’. Of course,
there is one crucial inference not proof-theoretically sanctioned by
this logical form: to get the inference from adj(x,P) that P(x) we add
(in an implementation, via an axiom schema) an axiom for each such
adjective:
(10) ∀xP.adj(x,P)→ P(x)

3Following Montague, ‘be’ is translated as a transitive verb meaning ‘=’, and
the resulting logical forms can be simplified using the equivalence: ∃x.P(x) ∧ x=a
≡ P(a). We notate this below as ‘⇒=’.

[7]

Stephen Pulman

We could instead have had a lexical entry for these adjectives that
builds the inference in directly:
(11) λPx.smalle(et)t(x,P) ∧ P(x)
but this is not in my view particularly compositional.4 While compo-
sitionality is difficult to define (see the survey and discussion in Szabó
(2017)) and may be no more than a methodological rule of hygiene,
some simple principles would surely include a requirement that a sin-
gle content word in a sentence should correspond to no more than one
component of a logical form (whereas function words in most frame-
works have to be allowed to introduce an amount of logical ‘glue’).
In order to cope with the privative cases we simply refrain from

generating these axioms and so we (correctly) cannot infer from ap-
parent(x,P) that P(x). For those privative adjectives, if there are any,
that sanction the negation of the property we can add an axiom:
(12) ∀xP.adj(x,P)→¬P(x)

This is all very tidy and makes it easy to define truth conditions
for these logical forms with rather less contextual clutter than would
be needed for simpler forms that did not include these parameters. But
these logical forms do not solve our computational inferential problem
because they involve second order arguments to predicates. The state
of the art in automated inference is that we have reasonably efficient
general purpose theorem provers for first order logic (with equality)
except that they are bounded by the inescapable semi-decidability of
FOL, and the unpredictable computational complexity of general in-
ferences. By restricting the expressivity of FOL to tractable subsets
(Baader et al. (2003)) we can guarantee good performance, but only
for a small number of the cases we would like to handle.
Regrettably, it is both in theory and in practice impossible to

reason directly, as we would like to do, with higher order logics:
even the notion of higher order unification needed as a compo-
nent is undecidable (Huet (1975)). There do exist some higher order
logic proof assistants like HOL (https://hol-theorem-prover.org/), Is-
abelle (https://www.cl.cam.ac.uk/research/hvg/Isabelle/), and Coq

4The same objection, and a version of the same solution, are relevant to the
treatment of intersective adjectives just given.

[8]

https://hol-theorem-prover.org/
https://www.cl.cam.ac.uk/research/hvg/Isabelle/

Second order inference in natural language semantics

(https://coq.inria.fr/). However, these are not fully automatic the-
orem provers, but interactive systems requiring human guidance and
input at every step, and are usually used for checking already gen-
erated proofs. It is, however, possible to write special purpose proof
‘tactics’ to guide a proof assistant like Coq to carry out some specific
higher order logic inferences derived from natural language expres-
sions semi-automatically, and in a series of papers from Chatzikyri-
akidis and Luo (2014) onwards, Chatzikyriakidis and Luo have carried
out such experiments on a variety of constructions. Similar efforts are
described in Mineshima et al. (2015) and related papers. However,
while this is an interesting experiment from the point of view of vali-
dating particular higher order analyses of linguistic phenomena, it is
important to recognise that it is a very different exercise from our cur-
rent aims: the approach is not a general purpose technique of the type
we would like, but something which will only work on prespecified
patterns and derivations. The results could not, for example, form a
component of an automatic natural language processing system per-
forming these inferences as part of an application task like question
answering or task-oriented dialogue.

The limitations of automated higher order logic inference con-
stitute a real barrier to computational semantics of natural language,
because like the analysis here, many natural language constructs are
intrinsically higher order. Some obvious ones are generalised quanti-
fiers and intensifying modifiers, where outline logical forms are shown
below. ‘Most’ will be a function from a noun meaning to a function
from verb meanings to truth values. ‘Very’ will be a function from
adjective meanings to adjective meanings.

(13) a. Most dogs bark. = (most dog) bark

b. John is very tall. = (very (tall)) john

One approach to this problem, since the specialised HOL or Coq
proof tactics just mentioned are not a general solution, is to try to
translate or compile the higher order forms to something that a FOL
prover can deal with. There are a number of strategies that have been
tried: reification or ‘ontological promiscuity’ attempts to ‘compile out’
the higher order aspects by adding different types of abstract individ-
uals to first order models. Some common examples of this strategy in-

[9]

https://coq.inria.fr/

Stephen Pulman

clude event analyses of verb modification (Davidson (1967)), although
in this case, arguably, there is also some linguistic motivation:
(14) a. John ran in the park. = (in the park)(run)(john)

b. ⇒ ∃e.run(e,john) ∧ in(e,the park)
or the so-called ‘standard translation’ of modal logic:
(15) □p ⇒ ∀w.R(thisWorld,w)→ p(w)

which translates ‘necessarily p’ into ‘in all worlds w in the appropriate
relation R to this world, p is true in w’.
Hobbs (1985) has been a notable advocate of this approach, and

it has been applied to the semantics of adjectives in Amoia and Gar-
dent (2007). But it’s not obvious how such a strategy could help us
here, in the general case at least, although it has been used success-
fully in specific limited domains where we can precompute values for
the various adjective parameters. Let’s assume we try to eliminate the
second order arguments in our subsective Adj meanings by adding en-
tities representing standards of Adj-ness for those adjectives. We will
then translate ‘John is a tall man’ as something like:
(16) ∃s.tall(john,s) ∧man(john) ∧ tallness-for-men(s)

‘John is tall to s, where s is that degree of tallness for men which qual-
ifies as being tall’. (Note that in forms like ‘John is tall’ we will have
to fill in the relevant noun parameter from context or non-linguistic
knowledge, but this is the case for all approaches). So far, so good: it
is easy to see how to make implementational sense out of this, given a
sufficiently well structured domain. However, when we look at what
else we need to do to make this analysis work things get more com-
plicated: for example, we need to ensure that an adjective interacts
properly with related (usually antonymous) adjectives:
(17) John is a tall man. |= John is not a short man.
∀xyz.tall(x,y) ∧ tallness-for-men(y)→
¬(short(x,z) ∧ shortness-for-men(z))

This is doable, if a little clumsy, and as we extend similar ax-
ioms we need to be careful to ensure that ‘John is not short’ does not
wrongly entail ‘John is tall’. A more serious problem is that there are

[10]

Second order inference in natural language semantics

a potentially infinite number of such ‘adjness-for-X’ entities and their
predicates, and therefore a potentially infinite number of such related-
ness axioms. This happens because it is possible to combine adjective
modification in principle to an arbitrary depth, essentially creating
‘standards of comparison’ on the fly:
(18) a. This is an old American building.

b. This is an older mid-period Anglo-Saxon religious site.
The interpretation we are interested in here is that on which each

adjective modifies everything that follows it, rather than the usually
possible ‘conjunctive’ reading on which each adjective just modifies
the head noun. So we need a standard of comparison for age relevant
for ‘American building’, which will be different from that for ‘English
building’, as well as a standard for mid-period Anglo-Saxon religious
sites. ‘Mid-period’ is itself subsective, the standard for that type of
Anglo-Saxon religious sites will be different from that for Anglo-Saxon
religious sites of all periods, and so on. The recursive nature of ad-
jectival modification means that there is no limit in principle to the
number of such standards and so we cannot just define them all in ad-
vance, nor can we list in advance all the required axioms connecting
antonyms.
However, our second order analysis of these adjectives generalises

quite cleanly to this case, without requiring separate axioms for each
further combination:
(19) a. This is an old American building. =

b. old(this,λx.American(x) ∧ building(x))
(20) a. This is an old mid-period Anglo-Saxon religious site. =

b. old(this,λx.mid-period(x, λy.Anglo-Saxon(y) ∧ religious(y) ∧
site(y)))

and the interaction with related predicates only needs one (second or-
der) axiom (again generated from a schema, we assume), which quan-
tifies over every possible standard of comparison:
(21) ∀xP. old(x,P)→¬(young(x,P))
(22) ∀xP. tall(x,P)→¬(short(x,P))

[11]

Stephen Pulman

While this is satisfactory from the point of view of linguistic analysis,
we are unfortunately still no nearer to a solution to the problem of
how to automate inferences involving these logical forms: they are
still second order.

3 possessives
We turn now to possessive determiners, an apparently simple con-
struction, but one which on closer inspection has several interesting
properties. There are a number of relevant well-known properties of
possessives for us to bear in mind when trying to uncover their infer-
ential properties, as well as some less well-known properties. It is a
striking fact, discussed further below, that that all of the well-known
analyses of possessives sanction invalid inferences involving them.
Firstly, an obvious point to make is that the relation between pos-

sessor and possessed can vary and is not just restricted to a small set
of semantic notions like ‘ownership’, ‘part of’, and the like; rather, it
can depend on almost any feature of the linguistic or non-linguistic
context:

The table’s leg... Monday’s lecture...
America’s invasion of Iraq... John’s measles...
John’s dog... John’s brother...
John’s portrait... etc.

For example, ‘John’s dog’ can mean the dog that John owns, the dog
that John has just sold, the dog that John has just bet on to win in a
race, etc. This wide contextual dependence, as with adjectives, makes
it perfectly reasonable to adopt an analysis on which logical forms are
relatively simple, and all the heavy lifting is done by setting of various
contextual parameters. But as we argued when discussing adjectives,
this is not a stance that is open to anyone wanting an implementable
account of the inferences associated with such constructions.

Secondly, what we are calling the possessive comes in various
syntactic forms:
(23) a. John’s picture/team/sister

b. a picture/team/sister of John’s
c. a picture/*team/sister of John
d. That picture/team/sister is John’s

[12]

Second order inference in natural language semantics

As the ‘team’ examples show, there are some acceptability variations
associated with the difference between what are often called ‘rela-
tional’ and ‘sortal’ nouns. Relational nouns implicitly correspond to
two-argument predicates whereas sortal nouns are more naturally
modelled as one-argument predicates. As we will see later, this does
not necessarily correspond to a syntactic distinction.

Third, relational and sortal nouns also seem to sanction inference
patterns of differing acceptability (de Bruin and Scha (1988)), where
we interpret ‘has’ in the following as denoting the same relation as the
possessive:
(24) a. John’s cars are wrecks. |=

b. Some wrecks of John’s are cars; Some wrecks/cars are
John’s.

c. John has some wrecks; John has some cars.
(25) a. John’s brothers are musicians. |=

b. ?Some musicians of John’s are brothers.
c. ?Some musicians/brothers are John’s.
d. ?John has some musicians; John has some brothers.

Despite these differences in acceptability, I would prefer not to
distinguish relational vs. sortal nouns syntactically. This is because of
the fourth observation: that all relational nouns can be interpreted as
sortal in the right context, as many people have pointed out:
(26) The headmaster has difficulty dealing with his parents.
(Parents’ evening context: headmaster is talking to parents of the chil-
dren in his school.)
(27) John’s famous wife is Victoria Beckham.
(John is one of several journalists tasked with writing a piece about
famous men with equally famous wives.)
In the following, we will not attempt to capture all of the inter-

esting properties of possessives in our analysis. Instead, we will con-
centrate on a quite modest ambition: we would like an implemented
analysis of the possessive which allows us to avoid the invalid infer-
ences of existing analyses, to be described later, and to capture valid
inferences like the following:

[13]

Stephen Pulman

(28) Smith is Jones’s plumber. |= Smith is a plumber.
(29) a. John’s old wooden toy broke. |=

b. John’s wooden toy broke.
c. A wooden toy broke.
d. A toy broke.

(30) a. The student’s essay’s title intrigued Jones. |=
b. An essay’s title intrigued Jones.
c. A title intrigued Jones.

(31) a. All John’s brothers are rich.
b. Bill is John’s brother.
c. |= Bill is rich.

3.1 An initial simple analysis
A simple analysis (variants of which can be found in many places, for
example Bos et al. (2004), or more recently, Steedman (2012)) takes
the possessive morpheme ’s (or just ’ for plurals) to be a function from
NP meanings to Det meanings introducing an abstract two-place ‘of’
or ‘poss’ relation, usually assumed to be subject to further contextual
resolution. In the illustrative framework we are using this would be
implemented as follows:

S
����

HHHH

NP
��� HHH

Det
�� HH
NP

John

Poss

’s

N’

N

friend

VP
��HH
V

is

NP

Bill

(32) John’s friend is Bill. = ∃x.friend(x) ∧ of(x, John) ∧ x=Bill
We need to add some rules to our earlier fragment to produce such an
analysis:

[14]

Second order inference in natural language semantics

Det → NP poss : poss((et)t)(et)(et)t(NP(et)t)
poss → ’ or ’s : λO(et)tPetQet.O(λy.∃x.P(x) ∧ ofeet(x,y))∧ Q(y)

In principle, we ought to be able to leave the ‘of’ predicate unresolved
– not the least because this kind of contextually sensitive resolution
is a completely unsolved computational inference problem – and still
get most of the inferences we would like to get. But it turns out that
this will lead us astray. If we leave ‘of’ unresolved, we will sanction
some incorrect inferences:

A: John’s brother is Bill. = ∃x.brother(x) ∧ of(x, John) ∧ x=Bill
⇒= brother(Bill) ∧ of(Bill,John)

B: Bill is a doctor. = ∃x.doctor(x) ∧ x=Bill
⇒= doctor(Bill)

C: Bill is John’s doctor. = ∃x.doctor(x) ∧ of(x, John) ∧ x=Bill
⇒= doctor(Bill) ∧ of(Bill,John)

Now C is provable from the conjunction of A and B, incorrectly;
whereas C is not a valid inference from A and B.

Perhaps it was a mistake to leave ‘of’ unresolved? ‘Of’ can be
contextually interpreted as ‘has’, ‘owns’, or as an arbitrarily complex
context-dependent relation like ‘bet-on-by’, or as the relation associ-
ated with a relational noun, if present:
(33) a. John’s dog won. =

b. ∃x.dog(x) ∧ owned-by(x, John) ∧ won(x)
c. ∃x.dog(x) ∧ bet-on-by(x, John) ∧ won(x)
d. etc.

(34) a. John’s brother arrived. =
b. ∃x.brother(x) ∧ brother-of(x,John) ∧ arrived(x)

If we now interpret ‘of’ in A above as the two-place relation
‘brother(Bill,John)’, and as something else in C (for example, ‘treated-
by’), then the incorrect inference will not be made.

Unfortunately, contextual interpretation doesn’t always solve this
problem. Although our invalid inference will not go through when
relational nouns are involved (at least if we use them as the source
for the contextually dependent resolution option) we cannot always

[15]

Stephen Pulman

guarantee validity for examples involving sortal nouns. Consider the
following example:

A: Smith is Bill’s plumber. = (interpret ‘of’ as ‘works-for’)
⇒= plumber(Smith) ∧ works-for(Smith,Bill)

B: Smith is also a decorator.
⇒= decorator(Smith)

C: Smith is Bill’s decorator.
⇒= decorator(Smith) ∧ works-for(Smith, Bill)

It’s surely impossible to argue that ‘of’, interpreted as a contextually
dependent ‘works-for’, or ‘employed-by’ relation, should be instanti-
ated differently in A and C, and under these interpretations the un-
wanted inference will still go through. The analogous bad inference
will also go through even where we do have a relational noun but
where it is interpreted sortally. If we interpret the possessive as some-
thing like ‘taught by’ in:

A: The noisy class were Mr Smith’s children.
B: The noisy class are also the Latin class.
C: The noisy class are Mr Smith’s Latin class.

then C should not follow from A and B, but it will do so given the
logical forms assigned by this analysis, even after resolution.
3.2 Two further, more sophisticated, analyses
In Partee and Borschev’s analysis (Partee and Borschev (2003)), the
possessive morpheme introduces a lot more structure:
(35) John’s = λN.λP. ∃x.[Sort(N)](x) ∧ Rgen(x,John) ∧ P(x)
In their analysis, relational and sortal nouns are assigned to different
types: for example, brothereet and teamet. In order to keep the types
straight in composition they define a ‘typeshifting’ operator, ‘Sort’,
defined thus:
(36) a. A: Sort(Neet) = λx.∃y.N(x,y)

b. B: Sort(Net) = N

Applying clause A of the definition to a relational noun like brothereet
= λx.λy.brother2(x,y) produces a one-argument version with the same
type as the corresponding sortal noun: brother1 = λx.∃y.brother2(x,y).

[16]

Second order inference in natural language semantics

The relation “Rgen” is their version of our ‘of’ relation, to be con-
textually interpreted, but with a default preference for the relational
version of a noun N2 if N1 is present. This approach gives analyses like
the following:
(37) a. John’s team won. =

b. [[λN.λP.∃x.(Sort(N))(x) ∧ Rgen(x,John) ∧ P(x)](λy.team(y))](won)

c. ⇒β ∃x.team(x) ∧ Rgen(x,John) ∧ won(x)
The relation ‘Rgen’ can then be contextually interpreted as something
like ‘played-in-by’ or ‘supported-by’, as appropriate. For the relational
case:
(38) a. John’s brother arrived. =

b. [[λN.λP.∃x.(Sort(N))(x)∧Rgen(x,John)∧P(x)](λy.λz.brother2(y,z))](arrived)

c. ⇒β ∃x.brother1(x) ∧ Rgen(x,John) ∧ arrived(x)
then Rgen can be instantiated to the original relational version of
‘brother’:
(39) ∃x.brother1(x) ∧ brother2(x,John) ∧ arrived(x)
I do not find this a particularly satisfying or elegant analysis. Note

that for sortal nouns, this is just a variant of our first simple anal-
ysis, and so it will also sanction the same set of invalid inferences.
In the case of relational nouns, the treatment is surely very clumsy.
Initially, the contextually appropriate two-place relation is accounted
for in the analysis, but transformed to a 1-place relation to keep the
types straight. Then the original two-place relation has to be recov-
ered again by inference. Furthermore, the strategy of giving relational
nouns a different type from sortal nouns means that everything that
can combine with N (Det, Adj, etc.) will now have to be polymorphic,
i.e. set up to expect two different types: eet and et, or alternatively
have the ‘Sort’ operator wrapped around it to coerce two-argument
predicates to one-argument predicates. This seems a high price to pay,
both linguistically and computationally.

An influential alternative analysis by Peters and Westerståhl
(2006) (see also Peters and Westerståhl (2013)) makes several per-
ceptive contributions to our understanding of possessives. In their

[17]

Stephen Pulman

analysis, possessives involve two quantifiers, one associated with the
NP in the possessive Det phrase, and the other either explicit, as in:
(40) Several of each farmer’s sheep are infected.
or contextually inferred:
(41) a. John’s fingers are clean. (all of them)

b. John’s fingers are dirty. (just some)
A second concern in their analysis is to capture the phenomenon of
‘narrowing’, as in:
(42) a. Most people’s grandchildren like them.

b. Many planets’ moons are visible.
In these examples, ‘most/many’ are quantifying over ‘people with
grandchildren’ or ‘planets with moons’ rather than just ‘people’ or
‘moons’. A related phenomenon is discussed by Bos (2009) noting
that possessives involving superlatives:
(43) a. London’s most expensive restaurant...

b. Milan’s best player...
require a comparison set that involves the possessor as well as the
possessed.
Peters and Westerståhl give truth conditions for two variants of

the possessive construction (their account is couched in model theo-
retic terms), with or without an explicit quantifier (Q2) in a predeter-
miner position:
(44) a. Q1 C’s As are B

b. Q2 of Q1 C’s As are B
Peters and Westerståhl define a ‘Poss’ higher order operator (dis-
tinct from the “poss” morpheme) which has four arguments: (i) an
explicit (sometimes implicit) quantifier in the possessive determiner
phrase, (ii) the explicit or contextually inferred predeterminer quanti-
fier, (iii) the possessed nominal relation, and (iv) a two-place relation
‘R’ corresponding to our ‘of’ and also a placeholder for a contextually
inferred relation. They further define, for a two-place relation R and
a set A:

[18]

Second order inference in natural language semantics

(45) a. Ra = {b : R(a,b)} or in our logical form notation λb.R(a,b)
b. domA(R) = {a: A ∩ Ra ̸= ;} or λa.∃b.A(b) ∧ R(a,b)

The expression in (a) denotes the set of things possessed by a and
in (b) the set of objects that possess something in A. Now the truth
conditions for an expression involving ‘Poss’ are defined as:
(46) Poss(Q1,C,Q2,R)(A,B) = Q1(C ∩ domA(R), {a: Q2(A ∩ Ra, B)})

Q2, as above, is the inferred or predeterminer quantifier. Read this
expression as:
(47) Q1 C x that ‘possess’ an A are such that Q2 A that x ‘possesses’

are B
It is assumed that even where Q1 is not explicit, as in ‘John’s...’ there is
an implicit non-vacuous universal quantifier involved. The syntactic
structure assumed for the case where there is an explicit predeterminer
quantifier is illustrated in Figure 1. The case where the second quan-
tifier is implicit is illustrated in Figure 2, and a concrete example of
this phenomenon is offered in Figure 3.

In Figure 3, interpreting ‘R’ as ‘own’, we arrive at the interpreta-
tion:
(48) a. Poss(most,students,every,own)(cars,rusty)

b. =most(students∩domcar (own), {a: every(car∩owna, rusty)})

Translated to our logical form notation:
(49) most(λx.student(x) ∧ ∃b.car(b) ∧ own(x b),

λa.every(λy.car(y) ∧ own(a,y),rusty))
NP

����
HHHH

Det

����
HHHH

Det

Q2

of Det
��HH
NP

Q1

’s

N’

Figure 1:
Case with explicit predeterminer quantifier

[19]

Stephen Pulman
Figure 2:

Case with implicit predeterminer quantifier
S

��� HHH
NP

��� HHH
Det

�� HH
NP

��HH
Det

Q1

N

C

Poss

’s

N

A

VP

B

Figure 3:
An example of the phenomenon in Figure 2,

where ‘R’ is interpreted as ‘own’

S

����
HHHH

NP
���

HHH

Det
���

HHH

NP
�� HH
Det

most

N

students

Poss

’

N

cars

VP

are rusty

While this is one of the most sophisticated analyses of the pos-
sessive in the literature, there are still a number of problems with it.
For example, it is not clear that the ‘implicit predeterminer quantifier’
is specific to possessives or is an instance of the implicit quantifica-
tion that is needed anyway for bare plural nouns (Lauri Carlson, p.c.).
Furthermore, as the authors point out, this account is not fully com-
positional, since ‘Poss’ needs access to the components of its sister
NP separately in order to build ‘narrowing’ into the truth conditions.
In Peters and Westerståhl (2013) this is described as “second level”
compositionality, accessing immediate constituents of immediate con-
stituents, as opposed to “first level” compositionality. (We will ignore
narrowing in what follows, for simplicity.)

For our purposes the most salient shortcoming of this analysis is
that, however R is contextually interpreted, provided it is interpreted
consistently, the unwanted inference in our ‘plumber’ and ‘decorator’
case will still go through on Peters and Westerståhl’s analysis. This

[20]

Second order inference in natural language semantics

is, as we shall see shortly, because any binary relation R is incapable
of capturing the dependencies involved in blocking the invalid infer-
ences.

Johan Bos (Bos (2009)) is aware of the problem we have sig-
nalled and suggests an analysis (that he attributes to Yuliya Lierler
and Vladimir Lifschitz) in which we translate sentences like ‘Vincent
is Mia’s husband’ as:
(50) person(Vincent) ∧ ∃y.role(Vincent,y) ∧ husband(y) ∧ of(y,Mia)

paraphrased as ‘Vincent is a person who is playing the role of Mia’s
husband’.

His suggestion is not sketched in full detail, and it may be possible
to extend it to overcome these objections, but as it stands this analysis
leaves much to be desired, in my view. To begin with, it is highly non-
compositional: there are no words in the sentence corresponding to
the logical form predicates ‘role’ and ‘person’. Secondly, although the
analysis certainly blocks our unwanted invalid inference, it also fails to
sanction a basic and valid inference that we want to capture: If Vincent
is Mia’s husband, then Vincent is a husband: husband(Vincent). Thirdly,
it is not clear how to extend the analysis to complex nominals: Bos’s
discussion suggests that we would get something like the following
analysis:
(51) a. John’s wooden toy disappeared. =

b. ∃x.thing(x) ∧ ∃y.role(x,y) ∧ wooden(x) ∧ toy(y) ∧ disappear(x)
We can successfully infer that ‘Something wooden disappeared’, but
not that ‘A toy disappeared’, only that ‘Something with the role of a
toy disappeared’.

4 a higher order ofee(et)t relation

There is a relatively simple solution, linguistically at least, to this prob-
lem. Intuitively it is clear that what allows the invalid inferences to go
through is that any binary possessive relation simply relates posses-
sor and possessed, but does not capture in what respect the possessive
relation holds. This respect is the property denoted by the N’ con-
stituent following the possessive ‘NP’s’ determiner (which may have

[21]

Stephen Pulman

to be recovered by ellipsis in some cases). If we make our possessive
morpheme in our grammar fragment slightly more complex by giving
it a semantics as follows:

(52) poss = λO(et)tPetQet.O(λy.∃x.P(x) ∧ ofee(et)t(x,y,P)) ∧ Q(x)
then we now make the respect in which the possessive relation holds
an explicit argument of the ‘of’ placeholder relation. The “of” predicate
is now of type ee(et)t: a function from individuals to individuals to
properties to truth values. This is sufficient to block our unwanted
inference:

(53) a. A: Smith is Bill’s plumber.
b. ⇒= plumber(Smith) ∧ of(Smith,Bill,plumber)

(54) a. B: Smith is also a decorator.
b. ⇒= decorator(Smith)

(55) a. C: Smith is Bill’s decorator?
b. ⇒= decorator(Smith) ∧ of(Smith, Bill,decorator)

Now the unwanted inference does not go through. Note that this anal-
ysis is rather uncompositional, by the criteria we outlined earlier, in
that one word corresponds to two identical non-logical constants in
the logical form. We can make the analysis simpler and more compo-
sitional by dropping the repetition at the cost of two additional second
order axioms:

(56) poss = λOPQ.∃x.O(λy.of(x,y,P)) ∧ Q(x)
(57) Smith is Bill’s plumber/brother. ⇒=

of(Smith,Bill,plumber/brother)

In order to recover the inference that Smith is a plumber, or where
the noun is relational and interpreted relationally, as in ‘a brother of
Bill’ we need these axiom schemata:

(58) a. A: ∀xyP.of(x,y,P)→ P(x) (sortal N)
b. B: ∀xyP.of(x,y,P)→ P-of(x,y) (relational N)

[22]

Second order inference in natural language semantics

Note that we do not have to resolve ‘of’ to avoid bad inferences, and
we do not need to distinguish sortal and relational N syntactically:
these axioms capture their semantic differences.

Note also that unlike Bos’s suggested analysis, ours generalises
smoothly to complex nominal cases:
(59) a. John’s wooden toy disappeared.

b. ∃x.of(x,John,λy.wooden(y) ∧ toy(y)) ∧ disappeared(x)
Via axiom A we can deduce:
(60) ∃x.[λy.wooden(y) ∧ toy(y)](x) ∧ disappeared(x)
and then by β-reduction and conjunction both that:
(61) a. A toy disappeared.

b. ∃x.toy(x) ∧ disappeared(x)
and that:
(62) a. Something wooden disappeared.

b. ∃x.wooden(x) ∧ disappeared(x)
Semantically it also follows from this last sentence that:

(63) John’s toy disappeared: ∃x.of(x,John,toy) ∧ disappeared(x)
However, in order for us to be able to show this proof-theoretically we
need something more elaborate. Intuitively, we want to be able to say
that if of(x,y,P) and P implies Q, then also of(x,y,Q). If Fido is John’s cat,
and all cats are animals, then Fido is John’s animal. Something like the
following would suffice for this particular case, where the entailment
involves conjunction, but later we will need something more general:
(64) ∀xyPQ. of(x,y,λz.P(x) ∧ Q(z))→ of(x,y,P) ∧ of(x,y,Q)
We will return to such cases below.

5 computational implications
Our second-order analysis may be linguistically fine, but computation-
ally it does not yet solve our problems. As already remarked, we can-
not do second (or higher) order logic theorem proving automatically

[23]

Stephen Pulman

except for some very special restricted cases, beyond which our analy-
sis lies. So although we cannot hope for a fully general solution to the
problem of automated inference for analyses like the ones developed
so far using second order logical forms, in this section we will explore
some heuristic techniques which may enable us to implement a special
purpose first order solution, still bearing in mind that we only have
computationally efficient reasoning for fragments of first order logic.

In this section we explore two alternatives, both of which try to
make our second order reasoning look like first order proofs.

5.1 Encoding via combinators
As illustrative examples let us focus on some simple possessive infer-
ences we want to capture:
(65) Bill is John’s dentist |= Bill is a dentist
Our earlier analysis, after equality simplications, will give these sen-
tences the following logical forms:
(66) of(Bill,John,dentist) |= dentist(Bill)

A second slightly more complex example we would like to be able to
handle is:
(67) a. John’s wooden toy disappeared. |=

b. John’s toy disappeared.
c. A toy disappeared.

(68) a. ∃x.of(x,John,λy.(wooden(y) ∧ toy(y))) ∧ disappeared(x) |=
b. ∃x.toy(x) ∧ of(x,John,toy) ∧ disappeared(x)
c. ∃x.toy(x) ∧ disappeared(x)

We will assume the following axioms, introduced earlier:
Axiom A: ∀xyP.of(x,y,P)→ P(x)
Axiom B: ∀xyPQ.of(x,y,λz.P(z) ∧ Q(z))→ of(x,y,P) ∧ of(x,y,Q)

Notice that in the intended application of these axioms, applicability
would be determined by higher order matching (which is decidable:
Stirling (2010)) and thus would generalise to sequences of three or

[24]

Second order inference in natural language semantics

more conjuncts inside the lambda term. However, our approximation
will not behave in this way and so in reality we will need a version
for 2, 3, etc. conjuncts.

The basic idea is to encode higher order terms as first order ex-
pressions via combinators, following Hurd (2002) who used this tech-
nique to automate some of the components of a human-assisted higher
order proof. Our logical expressions are less general than those treated
by Hurd, since only second order arguments are involved, and they
are either single predicate constants, or lambda terms with complex
terms formed by connectives, but no quantifiers, in their body. We can
thus apply the usual first order normal form transformations needed
for a resolution or tableau theorem prover to our logical forms to ob-
tain clauses (disjunctions of literals), with the extra feature that any
second order arguments like those we are using are ‘frozen’: their out-
ermost lambda functor will be regarded as a function symbol and no
transformations will take place inside that lambda term.

We now transform each literal. The first step is to represent literals
in applicative form, using a two-argument functor ‘a’ meaning ‘apply’.
Since ‘a’ is a function symbol and not a predicate, to respect first order
syntax and semantics we have to wrap a dummy predicate ‘p’ around
the translation:
(69) a. sleep(john) = p(a(sleep,john))

b. like(john,jane) = p(a(a(like,john),jane))

Now we can represent predicate variables as ordinary first order vari-
ables, so that for example ∃P.P(j) = ∃P.p(a(P,j)), where the occurrences
of P on the right hand side are first order.

Our axiom A, in implicational rather than clausal form, now looks
like this:
(70) p(a(a(a(of,X),Y),Q))→ p(a(Q,X))

However, the more complex axiom B has the following form at this
stage, still containing a lambda expression:
(71) p(a(a(a(of,X),Y),λZ.a(a(and,a(P,Z)),a(Q,Z))))→

p(a(a(a(of,X),Y),Q)) ∧ p(a(a(a(of,X),Y),R))
We need to eliminate all lambda expressions, of course. It is well
known that we can completely eliminate variables from a lambda-

[25]

Stephen Pulman
Figure 4:

Translation
function T:
eliminating
variables

T[x] ⇒ x
T[(E1 E2)] ⇒ (T[E1] T[E2])
T[λx.E] ⇒ (K T[E]) (if x is not free in E)
T[λx.x] ⇒ I
T[λx.λy.E] ⇒ T[λx.T[λy.E]] (if x is free in E)
T[λx.(E1 E2)] ⇒ (S T[λx.E1] T[λx.E2]) (if x is free in both E1 & E2)
T[λx.(E1 E2)] ⇒ (C T[λx.E1] T[E2]) (if x is free in E1 but not E2)
T[λx.(E1 E2)] ⇒ (B T[E1] T[λx.E2]) (if x is free in E2 but not E1)
T[λx.(E x)] ⇒ T[E] (if x is not free in E:

this is eta reduction)

calculus based logic by using ‘combinators’. We can use this fact to
further try to squeeze our second order expression into something that
can be handled by a first order prover. There are many variant formu-
lations of variable-free combinator calculi, but we will use a familiar
one, also used by Hurd:

Ix = x (identity)
Kxy = x (make constant function)
Sxyz = xz(yz) (generalised application)
Cfxy = fyx (special case of S)
Bfgx = f(gx) (special case of S)
For completeness, we give the usual definition of a transla-

tion function T that will eliminate lambda terms and their variables
(Figure 4), where E1 and E2 are any well formed HOL expression.
Now our axiom B looks like this, in implicational form:

(72) p(a(a(a(of,X),Y),a(a(S,a(a(B,and),Q)),R)))→
p(a(a(a(of,X),Y),Q)) ∧ p(a(a(a(of,X),Y),R))

Given axiom B and the applicative logical form for ‘Bill is John’s den-
tist’:
(73) of(Bill,John,dentist) = p(a(a(a(of,Bill),John),dentist))

it is (relatively!) easy to see that the applicative version of this logical
form will (first order) unify with the antecedent of the implication in
the applicative form of axiom B, with bindings X=Bill, Y=John, Q=dentist
allowing us to deduce:
(74) p(a(dentist,Bill)) = dentist(Bill)

[26]

Second order inference in natural language semantics

Perhaps less easy to see, as the applicative forms become less hu-
man readable, is that we can also make some of the deductions we
wanted from:5

(75) a. John’s wooden toy disappeared.
b. ∃x.of(x,John,λy.(wooden(y) ∧ toy(y))) ∧ disappeared(x)

Using axiom B (in applicative form) we can deduce the equivalent of
...of(x,John,toy)... and from axiom A ...toy(x)... enabling us to prove the
queries:
(76) a. ∃x.toy(x) ∧ of(x,John,toy) ∧ disappeared(x)

b. ∃x.toy(x) ∧ disappeared(x)
5.2 Adjective inferences
We can encode our adjective inferences in the same way:
(77) a. ∀xP. small(x,P)→ P(x) ⇒

b. p(a(a(small,X),P))→ p(a(P,X))

(78) a. ∀xPQ. small(x,λy.P(y) ∧ Q(y))→ P(x) ∧ Q(x) ⇒
b. p(a(a(small,X),a(a(S,a(a(B,and),a(a(B,P),I))),a(a(B,Q),I))))
c. →a(P,X) ∧ a(Q,X)

These axioms and others will enable us to capture inferences like:
(79) a. Jones is a short red-haired farmer. |=

b. Jones is red-haired.
c. Jones is a farmer.
d. Jones is not a tall red-haired farmer.

Note that it does not on the intended readings of these sentences au-
tomatically follow that ‘Jones is not a tall farmer’.
5.3 An alternative approach
All these examples so far work, but I find in general that this method is
clumsy, for a number of reasons. Firstly, we have a rather cumbersome
sequence of translations to carry out: from logical form to clausal form,
then to applicative form and finally to combinator form. And in order

5Translations and proofs tested with Prover9.

[27]

Stephen Pulman

to interpret the answers we get from our first order prover we need
to reverse this process, particularly for cases where we are trying to
answer a wh-question. To do this adequately we need to keep track of
the unifying substitutions that allow the proof to go through.

Secondly, while this is an engineering rather than a theoretical
problem, it is likely that on a large scale this approach would be very
inefficient at the theorem proving stage: most (particularly Prolog-
inspired) theorem provers rely heavily on predicate indexing for ef-
ficient search among a large set of clauses, and all our literals have
the same dummy ‘p’ predicate. It is easy to think of other indexing
schemes that would help, but they are not necessarily straightforward
to add to existing systems.

Finally, notice that in the final form of the literals we may still
have logical connectives. In order to capture all the inferences associ-
ated with these (we encoded a few in a flat-footed and uneconomical
way a little earlier) we would have to efficiently axiomatise the infer-
ences associated with connectives inside lambda terms. This is a little
reminiscent of what would be needed to axiomatise various forms of
property theory (Chierchia et al. (1989); Turner (1992); Fox and Lap-
pin (2005)) and would lead to an explosion of low level axioms that
carry no weight theoretically but are disastrous computationally.

It may therefore be worth exploring an alternative approach,
which combines some of the features of the techniques already de-
scribed. Looking at the properties of the inference examples discussed
so far it seems we need to be able to do several things:
1. replace second order terms by some kind of first order constant
which retains a unique link to the second order term that it re-
places,

2. be able to reason using the internal structure of the second order
term where it is more complex than a predicate constant,

3. ensure that this reasoning does not go beyond FOL.
One way of achieving this is to regard our second order axioms

as rewriting or translation schemata which are applied to the compo-
sitionally derived logical form in order to produce one or more “com-
piled” first order equivalents. This has some features of a kind of on-
the-fly reification of the type discussed earlier but one which does not
require pre-computation.

[28]

Second order inference in natural language semantics

This leads operationally to a picture like the following:
Partly second order logical form ⇒

Second order rewriting schemata ⇒
Expanded set of first order LFs ⇒
FOL Theorem prover

We reinterpret our existing axioms as rewriting schemata: we match
them to an input logical form using higher order matching (which as
already remarked, is decidable), and then if necessary beta-reduce the
results. We also need a “reification” function: a kind of hash function
guaranteed to give a unique first order constant for each different sec-
ond order argument we give it. To illustrate, we take one of our earlier
axioms (there will be one for each relevant adjective of this semantic
type), which says that if you are old for a P, then you are a P:
(80) ∀xP. old(x,P)→ P(x)

We reconstrue this as a rewriting rule:
(81) Adj(old): old(x,P) ⇒ old(x,hash(P)) ∧ P(x)
In order for this to give us the results we want, we have to define
‘hash’ as a function which produces a unique symbol of type e for its
argument (i.e. the same argument gives the same symbol guaranteed
to be unique to that argument). More on this in a moment, but first,
to illustrate:
(82) Harvard is an old American university:

old(harvard, λy. american(y) ∧ university(y)) ⇒ (via A)
old(harvard,*AU*)∧[λy. american(y)∧university(y)](harvard)⇒beta
old(harvard,*AU*) ∧ american(harvard) ∧ university(harvard)

‘*AU*’ is of course the constant produced by ‘hash(λy. american(y) ∧
university(y))’. We can think of such constants as denoting a first-order
proxy for the property described by the second order argument to
‘hash’, reminiscent of the output of nominalisation operators in prop-
erty theory.

We cannot give a sound and complete definition for a function
such as ‘hash’ exactly, because ideally we want it to give the same
result for logically equivalent lambda-terms, and of course we can-
not fully compute this logical equivalence. But we can approximate

[29]

Stephen Pulman

by doing various preprocessing operations: (i) inside lambda terms,
reducing expressions involving connectives to some kind of normal
form, and (ii) imposing a lexicographic ordering on predicates inside
disjunctions and conjunctions, so that, for example λx.P(x) ∧ Q(x) and
λx.Q(x)∧ P(x)will count as the same. There may be other useful heuris-
tics, too: this is essentially the ‘equivalence of logical form problem’
often discussed in the sentence generation literature (Shieber (1993)).

We can now reinterpret our earlier axioms capturing the relation
between, say, antonymous adjectives by treating all the variables in
them as first order:
(83) old(harvard,*AU*) ∧ ∀xy.old(x,y)→¬young(x,y) |=

¬young(harvard,*AU*)
These can stay as axioms, added as background knowledge: they

are not needed in the rewriting process.
We can deal with combinations of possessive and adjective infer-

ences in the same way. Our main rewriting schema for possessives is
now:
(84) Possessive: of(x,y,P) ⇒ of(x,y,hash(P)) ∧ P(x)
This interacts with Adj(old), an output of the rewriting schemata for
adjectives, and so we have to recursively apply these rewritings:
(85) John’s old wooden toy broke. =

∃x.of(x,john, λy.old(y, λz.wooden(z) ∧ toy(z))) ∧ broke(x)
via Possessive:
(86) ∃x.of(x,john,*OWT*)∧[λy.old(x,λz.wooden(z)∧toy(z))](x)∧broke(x)

⇒β
∃x.of(x,john,*OWT*) ∧ old(x,λz.wooden(z) ∧ toy(z)) ∧ broke(x)

via A:
(87) ∃x.of(x,john,*OWT*) ∧ old(x,*WT*) ∧ [λz.wooden(z) ∧ toy(z)](x) ∧

broke(x)

which beta-reduces to:
(88) ∃x.of(x,john,*OWT*)∧ old(x,*WT*)∧wooden(x)∧ toy(x)∧ broke(x)

[30]

Second order inference in natural language semantics

With this machinery we can capture the following inferences:
(89) Harvard is an old American university. |=

Harvard is a university.
Harvard is American.
Harvard is an American university.

but, correctly, it does not follow that:
(90) Harvard is an old university.
Similarly, we can capture:
(91) John’s old wooden toy broke. |=

A toy broke.
A wooden toy broke.

However, we cannot yet capture inferences to:
(92) a. John’s toy broke.

b. John’s wooden toy broke.
or inferences such as:
(93) Bush is a former US President. |=

Bush is a former President.
Earlier, we had an axiom which in effect distributed over con-

junctions: ∀xyPQ.of(x,y,λz.P(z) ∧ Q(z)) → of(x,y,P) ∧ of(x,y,Q) We could
introduce an analogous axiom for privative adjectives like “former”,
at least for those for which inferences within their complement are
transparent.6 If we assume that “US president” is to be analysed as
involving an implicit possessive, then our example will be analysed as
follows:
(94) a. Bush is a former US president.

b. former(Bush,λx.of(x,US,president))
In order to capture the inference we will need an axiom like:
(95) ∀xyP.p-adjective(x,λy.of(x,y,P))→ p-adjective(x,P)

6 I am at a loss to provide a characterisation of the property that will distin-
guish apparently valid privative inferences – like the Bush one – from the invalid
“former fussy eater” to “former eater” example discussed earlier.

[31]

Stephen Pulman

Noting that “US president” entails “president”, and that λz.P(z) ∧ Q(z)
entails both P and Q we might be tempted to propose more general
axioms like:
(96) a. ∀xypq. of(x,y,p) ∧ entails(p,q)→ of(x,y,q)

b. ∀xPQ. p-adjective(x,P) ∧ entails(P,Q)→ p-adjective(x,Q)

However, these axioms are much too general. Suppose it is true that
all footballers are also gamblers. Then “Smith is a former footballer”
would wrongly entail that “Smith is a former gambler”. Likewise,
suppose it is true that all members of parliament are lawyers. Then
“Smith is my member of parliament” would wrongly entail “Smith is
my lawyer”.7What we need to do is restrict the type of entailment con-
sidered to entailments valid simply on the basis of the logical forms
of the second order predicates we are dealing with. This will usually
involve reconstructing the inferences that are implicit in relations be-
tween our hash generated constants like *OWT*, *WT*, and so on.

Again we seem to run up against an irreducible case of inference
involving second order properties. But we can, in this type of case at
least, take advantage of the fact that the lambda terms involved are
only a few beta-reductions away from something that is first order.
If these terms are predicated of a first order entity then after beta-
reduction the resulting formulae will also be first order. This suggests
that we might be able to take these second order properties and use
them to construct something that we can evaluate with our theorem
prover.

We can write the axioms we need quite literally as:
(97) a. ∀xypq. of(x,y,p) ∧ hash-entails(p,q)→ of(x,y,q)

b. ∀xpq. p-adjective(x,p) ∧ hash-entails(p,q)→ p-adjective(x,q)

assuming that we are applying this to the output of our rewriting
schemata, so that “p” and “q” are first order variables that will range
over the constants generated by the “hash” function. We will treat the
predicate ‘hash-entails’ as interpreted partly by a ‘procedural attach-
ment’ (an old idea, but one recently used in natural language infer-
ence by Waldinger and Shrager (2008)) in our base theorem prover.
The procedurally attached predicate will be evaluated by calling a

7Thanks to a referee for suggesting such examples.

[32]

Second order inference in natural language semantics

separate instantiation of that theorem prover, in which any general
background knowledge axioms are available, but none of the linguis-
tically derived information related to the top level inference in which
we are currently engaged.

In order to operationalise the “hash-entails” predicate we also
need some housekeeping. We need the “hash” function to record the
connection between the second order term it takes as input and the
first order constant it gives as output. We will assume that this is
achieved via a predicate recording the inputs and outputs to the hash
function during the application of the various schemata described
above, e.g.
(98) hashOutput(*AU*, λx.American(x) ∧ university(x))
It is necessary to do this recursively to include any other hash-

generated constants, for example:
(99) a. hashOutput(*OWT*, λA.old(A,*WT*) ∧ wooden(A) ∧ toy(A))

b. hashOutput(*WT*, λA.wooden(A) ∧ toy(A))
We will also have need of a default case for those sentences in which
the second order argument of ‘of’ or adjectives is not itself complex,
as for example:
(100) hashOutput(toye, toyet)

We can now define the ‘hash-entails’ predicate as follows:
(101) ∀peqeRetSet. hash-entails(p,q) ⇐⇒

hashOutput(p,R) ∧ hashOutput(q,S) ∧ prove(¬(∃x.R(x) ∧ ¬(S(x))))
where ‘prove’ represents a call to a separate instance of our theorem
prover as described above. The assumption is that ‘R(x)’ and ‘S(x)’ etc.
represent a full beta reduction of ‘R’ and ‘S’ applied to ‘x’, so that the
formula to be proved ends up as strictly first order.

Now the inference we want will go through, with logical forms as
shown:
(102) a. John’s old wooden toy disappeared.

b. ∃x.of(x,john,*OWT*) ∧ old(x,*WT*) ∧ wooden(x) ∧ toy(x) ∧
disappear(x)

(103) a. Did John’s toy disappear?
b. ∃x.of(x,john,toy) ∧ toy(x) ∧ disappear(x)

[33]

Stephen Pulman

The relevant instantion of the axiom involving ‘hash-entails’ will be:
(104) of(x,John,*OWT*) ∧ hash-entails(*OWT*,toy)→ of(x,John,toy)

The definition of “hash-entails” will give us:
(105) hashOutput(*OWT*,λx.old(x,*WT*) ∧ wooden(x) ∧ toy(x)) ∧

hashOutput(toy,toy) ∧
prove(¬(∃y. (old(y, *WT*) ∧ wooden(y) ∧ toy(y)) ∧ (¬toy(y))))

and the inference that calling the procedural predicate ‘hash-entails’
checks via ‘prove’ will be:
(106) ¬(∃y.(old(y,*WT*) ∧ wooden(y) ∧ toy(y)) ∧ ¬(toy(y)))
which is clearly almost trivially valid.

There is a minor wrinkle in applying the axiom concerning priva-
tive adjectives. Recall that we accounted for the invalidity of the in-
ference from “Bush is a former US president” to “Bush is a president”
by not allowing the axiom ∀xP.adj(x,P)→ P(x) to apply to such adjec-
tives. In our rewriting framework this means that we do not rewrite
adj(x,P) as adj(x,hash(P)) ∧ P(x). Since “hash-entails” is a relation be-
tween first-order entities, there will be nothing for it to work with.
The solution is to add a rewrite specific to this class of adjectives to
yield former(Bush, *USP*). We will also need to arrange for “hashOut-
put” to recursively apply even where the usual rewriting has not taken
place, to give:
(107) a. hashOutput(*USP*,λx.of(x,US,presidentet))

b. hashOutput(presidente,presidentet)

This approach has been fully implemented using a unification
grammar to produce the logical forms, and a combination of two res-
olution theorem provers to carry out the inferences, with one being
called during the evaluation of the “entails” predicate. Appendix gives
a FraCaS style corpus of the natural language inferences described in
this paper, all of which are successfully handled by this system.

6 conclusions
There are some simple but quite central linguistic constructs that seem
to need second order inference. It may be possible to reduce the nec-

[34]

Second order inference in natural language semantics

essary inferences to those capturable in first order logic via some stan-
dard variant of reification, but the apparent requirement for a poten-
tially infinite number of types of new first order individuals caused by
recursive adjective modification seems a barrier to this. An alternative
approach using translation to FOL via combinators may work, but is
a little clumsy and may not generalise fully.

A better approach seems to be to pre-process the second order
logical forms using second (or perhaps higher) order matching, rewrit-
ing in a forward-chaining manner to produce first-order logical forms
in which second order arguments are represented by first order con-
stants: a different type of reification, in some sense. The inferential
content of these particular originally second order terms can be re-
captured via a subsidiary set of first order inferences using a procedu-
rally attached predicate which calls a separate instance of a theorem
prover, after suitable beta-reductions produce first order forms.

It is an interesting question as to what extent this strategy, or
variants of it, can be used to handle other types of second or per-
haps higher order inference. Extensions to cover various forms of the
comparative construction seem straightforward. It remains to be seen
whether other second order inference phenomena such as intensional
verbs may also yield to this approach.

7 acknowledgements

This paper has been a long time in gestation. Talks based on parts
of it have been given to meetings of the MOLTO project and to the
Controlled Natural Language conference in Zurich, 2012; to the Com-
putational Linguistics seminars at Kings College London and at Oxford
University, 2013; and to Nuance Research Labs in Sunnyvale, CA, in
2013. I am grateful for comments received on all these occasions (par-
ticularly from Emmon Bach in Oxford), for some suggestions from Ash
Asudeh, and also to Johan Bos for useful discussion of these and simi-
lar topics over many years. Four referees and two editors made many
helpful criticisms and suggestions for which I am also grateful.

[35]

Stephen Pulman

appendix

Phenomenon Expected answer
Intersective adj:
Jones is a Welsh musician.
Is Jones Welsh? Yes
Is Jones a musician? Yes
All musicians are teachers.
Is Jones a teacher? Yes
Is Jones a Welsh teacher? Yes
Gradable adj:
Mickey is a large mouse.
Is Mickey a mouse? Yes
Is Mickey large? No proof found
All mice are animals.
Is Mickey an animal? Yes
Is Mickey a large animal? No proof found
All mice are small animals.
Is Mickey a small animal? Yes
Mickey isn’t a large animal? Yes
Mickey isn’t a small mouse? No proof found
Privative type 1:
Jones is a former Welsh minister.
Is Jones a minister? No proof found
Is Jones a Welsh minister? No proof found
Is Jones a former minister? Yes
Jones isn’t a Welsh minister? No proof found
Privative type 2:
Jones owns a fake diamond.
Does Jones own a diamond? No proof found
Zirconia is a fake diamond.
Zirconia isn’t a diamond? Yes
Interaction with antonyms:
John is a tall man.
John isn’t a short man? Yes
Bill isn’t a short man.
Is Bill a tall man? No proof found

[36]

Second order inference in natural language semantics

Recursive adj modification:
Harvard is an old American university.
Harvard is a university? Yes
Harvard is an American university? Yes
Harvard is an old university? No proof found
Possessives:
John’s brother is Bill.
Bill is a doctor.
Is Bill John’s doctor? No proof found
Smith is Bill’s plumber.
Is Smith a plumber? Yes
Smith is a decorator.
Is Smith Bill’s decorator? No proof found
Smith’s essay’s title intrigued Jones.
An essay’s title intrigued Jones? Yes
A title intrigued Jones? Yes
An essay intrigued Jones? No proof found
Smith intrigued Jones? No proof found
Combination of adj and possessive:
John’s old wooden toy broke.
Did John’s toy break? Yes
Did John’s wooden toy break? Yes
Did John’s old toy break? No proof found
Did an old wooden toy break? Yes
Did an old toy break? No proof found
Did a wooden toy break? Yes
Did a toy break? Yes

[37]

Stephen Pulman

references
Marilisa Amoia and Claire Gardent (2007), A First Order Semantic Approach
to Adjectival Inference, in Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, pp. 185–192, Association for Computational
Linguistics, Prague, http://www.aclweb.org/anthology/W07-1430.
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors (2003), The Description Logic Handbook:
Theory, Implementation, and Applications, Cambridge University Press, New
York, NY, USA, ISBN 0-521-78176-0.
Johan Bos (2009), Computing Genitive Superlatives, in Proceedings of the Eighth
International Conference on Computational Semantics, IWCS-8 ’09, pp. 18–32,
Association for Computational Linguistics, Stroudsburg, PA, USA, ISBN
978-90-74029-34-6,
http://dl.acm.org/citation.cfm?id=1693756.1693763.
Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Julia
Hockenmaier (2004), Wide-Coverage Semantic Representations from a CCG
Parser, in Proceedings of the 20th International Conference on Computational
Linguistics (COLING ’04), pp. 1240–1246, Geneva, Switzerland.
Stergios Chatzikyriakidis and Zhaohui Luo (2014), Natural Language
Inference in Coq, Journal of Logic, Language and Information, 23(4):441–480,
ISSN 0925-8531, doi:10.1007/s10849-014-9208-x,
http://dx.doi.org/10.1007/s10849-014-9208-x.
Gennaro Chierchia, Barbara H. Partee, and Raymond Turner (1989),
Introduction, in Gennaro Chierchia, Barbara H. Partee, and Raymond
Turner, editors, Properties, Types and Meaning. Volume I: Foundational Issues,
pp. 1–16, Kluwer, Dordrecht.
Robin Cooper, Dick Crouch, Jan van Eijck, Chris Fox, Josef van
Genabith, Jan Jaspars, Hans Kamp, David Milward, Manfred Pinkal,
Massimo Poesio, and Steve Pulman (1996), Using the Framework, LRE 62-051,
The FraCaS Consortium,
ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/del16.ps.gz.
Donald Davidson (1967), The Logical form of Action Sentences, in Nicholas
Rescher, editor, The Logic of Decision and Action, pp. 81–95, University of
Pittburgh Press: Pittsburgh.
Jos de Bruin and Remko Scha (1988), The Interpretation of Relational
Nouns, in Proceedings of the 26th Annual Meeting of the Association for
Computational Linguistics, pp. 25–32, Association for Computational Linguistics,
Buffalo, New York, USA, doi:10.3115/982023.982027,
http://www.aclweb.org/anthology/P88-1004.
Guillermo Del Pinal (2015), Dual Content Semantics, Privative Adjectives,
and Dynamic Compositionality, Semantics and Pragmatics, 8(Article 7):1–53.

[38]

http://www.aclweb.org/anthology/W07-1430
http://dl.acm.org/citation.cfm?id=1693756.1693763
http://dx.doi.org/10.1007/s10849-014-9208-x
ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/del16.ps.gz
http://www.aclweb.org/anthology/P88-1004

Second order inference in natural language semantics

Chris Fox and Shalom Lappin (2005), Foundations of Intensional Semantics,
Blackwell.
Jerry R. Hobbs (1985), Ontological Promiscuity, in Proceedings of the 23rd
Annual Meeting of the Association for Computational Linguistics, pp. 60–69,
Association for Computational Linguistics, Chicago, Illinois, USA,
doi:10.3115/981210.981218,
http://www.aclweb.org/anthology/P85-1008.
Gerard Huet (1975), A Unification Algorithm for Typed λ-Calculus, Theoretical
Computer Science, 1:27–57.
Joe Hurd (2002), An LCF-Style Interface between HOL and First-Order Logic,
in Andrei Voronkov, editor, Automated Deduction - CADE-18, 18th
International Conference on Automated Deduction, Copenhagen, Denmark, July
27-30, 2002, Proceedings, volume 2392 of Lecture Notes in Computer Science,
pp. 134–138, Springer, ISBN 3-540-43931-5.
Johannes A. W. Kamp (1975), Two Theories about Adjectives, in Edward L.
Keenan, editor, Formal Semantics of Natural Language, pp. 123–155, Cambridge
University Press, Cambridge.
Daniel Lassiter and Noah D. Goodman (2017), Adjectival Vagueness in a
Bayesian Model of Interpretation, Synthese, 194(10):3801–3836,
doi:10.1007/s11229-015-0786-1,
https://doi.org/10.1007/s11229-015-0786-1.
Bill MacCartney and Christopher Manning (2008), Modeling Semantic
Containment and Exclusion in Natural Language Inference, in Proceedings of the
22nd International Conference on Computational Linguistics (Coling 2008),
pp. 521–528, Coling 2008 Organizing Committee,
http://aclweb.org/anthology/C08-1066.
William McCune (2005–2010), Prover9 and Mace4,
http://www.cs.unm.edu/~mccune/prover9/.
Koji Mineshima, Pascual Martínez-Gómez, Yusuke Miyao, and Daisuke
Bekki (2015), Higher-order Logical Inference with Compositional Semantics, in
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 2055–2061, Association for Computational Linguistics, Lisbon,
Portugal, https://aclweb.org/anthology/D15-1244.
Marcin Morzycki (2014), Modification,
https://www.msu.edu/~morzycki/work/papers/modification_book.pdf,
accessed Jan 3 2015.
Barbara H. Partee (2007), Compositionality and Coercion in Semantics: The
Dynamics of Adjective Meaning, in Gerlof Bouma, Irene Krämer, and Joost
Zwarts, editors, Cognitive foundations of interpretation, p. 145–161, University
of Chicago Press.

[39]

http://www.aclweb.org/anthology/P85-1008
https://doi.org/10.1007/s11229-015-0786-1
http://aclweb.org/anthology/C08-1066
http://www.cs.unm.edu/~mccune/prover9/
https://aclweb.org/anthology/D15-1244
https://www.msu.edu/~morzycki/work/papers/modification_book.pdf

Stephen Pulman

Barbara H. Partee and Vladimir Borschev (2003), Genitives, Relational
Nouns, and Argument-modifier Ambiguity, in Ewald Lang, Claudia
Maienborn, and Cathrine Fabricius-Hansen, editors, Modifying Adjuncts,
Interface Explorations, pp. 67–112, Mouton de Gruyter, Berlin.
Stanley Peters and Dag Westerståhl (2006), Quantifiers in Language and
Logic, Clarendon Press, Oxford.
Stanley Peters and Dag Westerståhl (2013), The Semantics of Possessives,
Language, 89(4):713–759.
Jessica Rett (2014), The Semantics of Evaluativity, Oxford Studies in Theoretical
Linguistics, Oxford University Press.
Stuart M. Shieber (1993), The Problem of Logical-form Equivalence,
Computational Linguistics, 19(1):179–190, ISSN 0891-2017,
http://dl.acm.org/citation.cfm?id=972450.972460.
Mark Steedman (2012), Taking Scope, MIT Press.
Colin Stirling (2010), Introduction to Decidability of Higher-Order Matching,
in Luke Ong, editor, Foundations of Software Science and Computational
Structures, volume 6014 of Lecture Notes in Computer Science, pp. 1–1, Springer
Berlin Heidelberg, ISBN 978-3-642-12031-2,
doi:10.1007/978-3-642-12032-9_1,
http://dx.doi.org/10.1007/978-3-642-12032-9_1.
Zoltán Gendler Szabó (2017), Compositionality, in Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford
University, summer 2017 edition.
Raymond Turner (1992), Properties, Propositions and Semantic Theory, in
Mike Rosner and Rod Johnson, editors, Computational Linguistics and Formal
Semantics, pp. 159–180, Cambridge University Press, Cambridge.
Richard Waldinger and Jeff Shrager (2008), Answering Science Questions:
Deduction with Answer Extraction and Procedural Attachment, AAAI Spring
Symposium: Semantic Scientific Knowledge Integration.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[40]

http://dl.acm.org/citation.cfm?id=972450.972460
http://dx.doi.org/10.1007/978-3-642-12032-9_1
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Adjectives
	Possessives
	An initial simple analysis
	Two further, more sophisticated, analyses

	A higher order ofee(et)t relation
	Computational implications
	Encoding via combinators
	Adjective inferences
	An alternative approach

	Conclusions
	Acknowledgements

