
A syntax-semantics interface for
Tree-Adjoining Grammars through
Abstract Categorial Grammars

Sylvain Pogodalla
INRIA, Villers-lès-Nancy, France

Université de Lorraine, LORIA, Vandœuvre-lès-Nancy, France
CNRS, LORIA, Vandœuvre-lès-Nancy, France

abstract
Keywords:
Tree-Adjoining
Grammars,
syntax-semantics
interface, Abstract
Categorial
Grammars

We present a model of the syntax-semantics interface for Tree-
Adjoining Grammars (TAGs). It is based on the encoding of TAGs
within the framework of Abstract Categorial Grammars (ACGs). This
encoding relies on a functional interpretation of the substitution and
adjunction operations of TAGs. In ACGs, the abstract terms represent-
ing derivation trees are full-fledged objects of the grammar. These
terms are mapped onto logical formulas representing the semantic
interpretation of natural language expressions that TAGs can analyze.
Because of the reversibility properties of ACGs, this provides a way to
parse and generate with the same TAG-encoded grammar. We propose
several analyses, including for long-distance dependencies, quantifi-
cation, control and raising verbs, and subordinate clauses. We also
show how this encoding easily extends to other phenomena such as
idioms or scope ambiguities. All the lexical data for theses modellings
are provided and can be run with the ACG toolkit, a software package
dedicated to the development of ACGs that can use these grammars
both for parsing and generation.

1 motivations
1.1 Tree-Adjoining Grammar and semantic representation
The Tree-Adjoining Grammar (TAG) formalism (Joshi et al. 1975;
Joshi and Schabes 1997) is a formalism dedicated to the modelling of

Journal of Language Modelling Vol 5, No 3 (2017), pp. 527–605

Sylvain Pogodalla

natural languages. As the name indicates, the primary objects it con-
siders are trees rather than strings, contrary to, for instance, context-
free grammars. As such, the object language a TAG generates is a tree
language, the language of the derived trees. These trees result from the
application of two operations, substitution and adjunction, to a set of
generators: the elementary trees. The substitution operation consists
in replacing one leaf of a tree by another tree, while the adjunction
operation consists in inserting a tree into another one by replacing an
internal node with a whole tree. A sequence of such operations and
the elementary trees they operate on can be recorded as a derivation
tree. Reading the leaves of the derived tree, or computing the yield,
produces the associated generated string language.

The class of the generated string languages strictly includes the
one generated by context-free grammars. This property, together with
other ones such as the crucial polynomial parsing property, plays an
important role in the characterization of the expressive power that
natural language modelling requires. Joshi (1985) proposed to call
the class of languages (resp. grammars) necessary for describing nat-
ural languages the class of mildly context-sensitive languages or mCSL
(resp. mildly context-sensitive grammars or mCSG). These formal and
computational properties have been extensively studied1 and provide
TAG with appealing features for natural language processing. In ad-
dition to its formal properties, TAG has also been studied both from
the perspective of fine-grained modellings of a wide range of linguistic
phenomena, and from the perspective of large coverage. Large scale
grammars have been developed for several languages, including En-
glish (XTAG Research Group 2001) and French (Abeillé 2002; Crabbé
2005; de La Clergerie 2005). In addition to these hand-crafted gram-
mars, automatic extraction of TAGs has also been proposed (Xia et al.
2000; Xia 2001; Chen et al. 2006).

Another key feature that makes TAG relevant to natural language
modelling lies in the capability of its elementary trees to locally spec-
ify (syntactic and semantic) dependencies between parts that can oc-
cur arbitrarily far from each other at the surface level at the end of a

1See for instance Vijay-Shanker and Joshi (1985), Vijay-Shanker (1987),
Weir (1988), Kuhlmann and Möhl (2007), Kanazawa (2008b), Kanazawa
(2008a), and Kallmeyer (2010).

[528]

A syntax-semantics interface for TAG through ACG

derivation. This property to locally state, within the elementary trees,
dependency constraints is also known as the extended domain of local-
ity (Joshi 1994). Thanks to the adjunction operation, a dependency
described locally in an elementary tree can end as a long-distance de-
pendency in the resulting derived tree. The relevant structure to store
the relations between the elementary trees that are used in a deriva-
tion is then the derivation tree. This makes the latter structure appro-
priate to derive semantic representations for TAGs.

It was however noticed that derivation trees do not directly ex-
press the semantic dependencies, and that they seem to lack some
structural information (Vijay-Shanker 1992; Candito and Kahane
1998). To overcome this problem, several approaches have been pro-
posed. Some rely on extensions of the TAG formalism (Rambow et al.
1995, 2001); some others revisit the derivation tree definition in or-
der to allow for recovering all the semantic dependency relations
(Schabes and Shieber 1994; Shieber 1994; Kallmeyer 2002; Joshi
et al. 2003; Kallmeyer and Joshi 2003). However, solutions to the
problem strictly relying on derivation trees have also been proposed.
They make use of unification (Kallmeyer and Romero 2004, 2008),
functional tree interpretation (Pogodalla 2004a, 2009), synchronous
grammars (Nesson and Shieber 2006; Nesson 2009), or tree transduc-
tion (Shieber 2006; Kallmeyer and Kuhlmann 2012; Shieber 2014).

1.2 TAG and Abstract Categorial Grammars: our approach
In this article, we elaborate on Pogodalla (2004a, 2009) in order to
propose a syntax-semantics interface and a semantic construction pro-
cess for TAGs. We base our analysis on the framework of Abstract Cat-
egorial Grammars (ACGs: de Groote 2001). ACGs derive from type-
theoretic grammars in the tradition of Lambek (1958), Curry (1961),
and Montague (1973). They can be considered as a framework in
which several grammatical formalisms may be encoded (de Groote
and Pogodalla 2004), in particular TAGs (de Groote 2002). The def-
inition of an ACG is based on a small set of mathematical primitives
from type-theory, λ-calculus, and linear logic. These primitives com-
bine via simple composition rules, offering ACGs a good flexibility. In
particular, ACGs generate languages of linear λ-terms, which general-
ize both string and tree languages.

[529]

Sylvain Pogodalla

But ACGs are not restricted to languages of λ-terms encoding
strings or trees. They can express logic-based semantic representation
languages. And moving from one kind to another kind of language
is realized by composing ACGs. We take advantage of the different
composition modes to control the admissible derivation structures on
the one hand, and to model the syntax-semantics interface on the
other hand.

The core contribution of this article is to show that ACGs offer a
suitable model of the syntax-semantics interface for TAG. By construc-
tion, this model is fully compositional and satisfies the homomorphic
requirement between parse structures (terms representing derivation
trees) and semantic terms. It relies on an encoding of TAGs into ACGs.
For a given TAG G, with this encoding, we can construct and relate
several ACGs that generate the same string language, derived tree lan-
guage, and derivation tree language as G. By ACG composition, this
encoding is the same as the one proposed by de Groote (2002) (that
only addresses the syntactic encoding of TAG into ACG, not the syntax-
semantics interface), which ensures the correctness of the (syntactic)
encoding. This encoding corresponds to the path with solid lines from
TAG derivation trees to Strings in Figure 1. But we introduce an in-
termediate level, of generalized derivations, on which we base our
syntax-semantics interface (the dashed lines in Figure 1). Doing so,
we separate the level required for transferring the syntactic structures
into semantics, and vice-versa, from the level that controls those struc-
tures so that only the ones that TAG considers to be admissible (i.e.,
TAG derivations) are kept. We show that this level allows us to ac-
count for the semantics of long-distance dependencies, quantification,
separate modification without multiple adjunction, control verbs, rais-
ing verbs, etc. Moreover, this is done in a principled way, following
the standard homomorphism between the syntactic and semantic cat-
egories of Montague (1973).

Contrary to Pogodalla (2004a) and Kallmeyer and Romero (2004,
2008), and similarly to synchronous TAG analyses (Nesson and
Shieber 2006; Nesson 2009), the semantic modelling we propose
does not rely on an intermediate underspecification language. We
show instead that this is not required in order to model long-distance
dependencies, raising verbs, or quantification. We also introduce and
precisely describe the syntax-semantics modelling for adjectives (with-

[530]

A syntax-semantics interface for TAG through ACG

Generalized derivations

TAG derivation trees

Derived trees

Strings Logical formulas

Figure 1:
Overall
architecture
for the
syntax-semantics
interface

out multiple adjunctions), control verbs, and subordinate clauses. We
also discuss the encoding of features. While these modellings can es-
sentially be rephrased in synchronous TAG (and vice-versa:2 the solid
lines of Figure 1 also correspond to the synchronous TAG architec-
ture for the syntax-semantics interface), it is not the case for some
other ones, and we show how the approach easily extends, without
requiring the design of new parsing algorithms, to other phenomena
such as idioms3 or subordinate clauses, for which we propose a novel
modelling. Other TAG extensions such as the cosubstitution operation
proposed by Barker (2010) to model scope ambiguities also easily
fall within the scope of our approach and can be given a type-raising
account. In particular, this account exemplifies how to model the
non-functional nature of the form-meaning relation.

Finally, except for the type-raising account of quantification, the
ACG model for the syntax-semantics interface of TAG that we propose
belongs to the class of second-order ACGs. This class has the property
that whatever the language we parse (strings, trees, or any kind of
terms, such as first-order or higher-order logical formulas), parsing is
polynomial. This parsing is implemented in the ACG toolkit.4 Conse-
quently, there is a parser that can actually recover the TAG derivation
structure (if any) of some string, or of some derived tree, and interpret
it as a logical formula, or that can actually recover the TAG derivation
structure (if any) of some logical formula and interpret it as a derived

2Synchronous TAG analyses often hinge on Multi-Component TAG (MCTAG:
Weir 1988), which is beyond the scope of this article. But we do not consider this
to be an essential difference, since this can be integrated into the ACG approach
as well (Pogodalla 2009). We discuss the differences between the approaches in
Section 9.

3This encoding is due to Kobele (2012).
4The toolkit is available at http://acg.loria.fr.

[531]

http://acg.loria.fr

Sylvain Pogodalla

tree or a string. The ACG framework is inherently reversible (Dymet-
man 1994), and parsing and generation of second-order ACGs are
performed in polynomial time, including for the modellings that go
beyond TAG (except the type-raising account of quantification), with-
out having to design new parsers. Note, however, that we do not yet
address the problem of logical-form equivalence (Shieber 1993) which
states that, even if two formulas are logically equivalent, it might be
possible to recover a derivation structure for one but not for the other.

We also validated the modellings and the lexicons we provide in
this article, both for parsing and generation, by implementing in the
ACG toolkit all the examples of this article. This results in a toy gram-
mar (corresponding to about forty elementary trees) exemplifying the
analyses of various linguistic phenomena presented in the article.5 An
extension to a real-size TAG grammar for French is ongoing.

1.3 Organisation of the article
In Section 2, we show a functional interpretation of the substitution
and adjunction operations. We review the definitions that are neces-
sary to model strings and trees as λ-terms (Section 2.2) and we use
them to model the elementary trees of TAG. Section 3 reviews the
definitions that are specific to ACGs. We show their main composition
models and present their formal properties.

In Section 4, we introduce the ACGs that are necessary for the
encoding of the syntax-semantics interface: the ACG relating strings
and derived trees in Section 4.1; the ACG relating derived trees and
generalized derivation trees in Section 4.2 and Section 4.3. We show
that these generalized derivations over-generate with respect to TAG
derivation trees: the full TAG encoding is not yet completed, but we
already have all the necessary parts to implement the syntax-semantics
interface.

Section 5 is devoted to the model of the syntax-semantics inter-
face we propose. We first define the semantic representation language
in Section 5.1. Then, in Section 5.2, we show how to interpret the

5The example files are available at https://hal.inria.fr/
hal-01242154/file/acg-examples.zip. The script file illustrates the
terms we use in this article and refers in comments to the relevant sections,
equations, and term names.

[532]

https://hal.inria.fr/hal-01242154/file/acg-examples.zip
https://hal.inria.fr/hal-01242154/file/acg-examples.zip

A syntax-semantics interface for TAG through ACG

generalized derivations as semantic terms and we provide several clas-
sical examples.

In Section 6 we complete the faithful TAG encoding by controlling
the generalized derivations so that only TAG derivations are accepted.
The correctness of the encoding is ensured by recovering, by ACG com-
position, de Groote’s (2002) encoding. Then, again by ACG composi-
tion, we directly obtain a syntax-semantics interface for TAG. Because
ACGs do not make use of features, we explain how we model the ad-
junction constraints induced by feature structures in TAG (Section 7).

In Section 8, we take advantage of the architecture we propose
and give examples of modellings that this framework offers and that
are beyond TAG. We finally discuss the relation of our approach to the
syntax-semantics interface for TAG with other ones, in particular the
ones using synchronous grammars or feature unification (Section 9).

2 background

2.1 Adjunction and substitution
A TAG consists of a finite set of elementary trees whose nodes are
labelled by terminal and non-terminal symbols. Nodes labelled with
terminals can only be leaves. Elementary trees are divided into initial
and auxiliary trees. Figure 2 exemplifies such trees. Substituting αJohn
in αsleeps consists in replacing a leaf of αsleeps labelled with a non-
terminal symbol NP with the tree αJohn whose root node is labelled
by NP as well.6 Figure 3(a) shows an example of such a substitution
(at Gorn address 1) and of its result. The corresponding derivation
tree recording the substitution is represented in Figure 3(b), where

S

NP VP

V

sleeps

αsleeps =

(a) Initial tree with
one substitution node

NP

John
αJohn =

(b) Initial tree with
no substitution node

VP

Adv

seemingly
VP∗βseemingly =

(c) Auxiliary tree

Figure 2:
TAG elementary
trees

6Substitution sites are often marked by decorating the label with a ↓ symbol.

[533]

Sylvain Pogodalla
Figure 3:

Substitution
operation

S

NP VP

V

sleeps
NP

John

−→

S

NP

John
VP

V

sleeps
(a) Substitution

αsleeps

αJohn

1

(b) Derivation tree

Figure 4:
Adjunction
operation

S

NP VP

V

sleeps
VP

Adv

seemingly
VP∗

−→

S

NP VP

Adv

seemingly
VP

V

sleeps
(a) Adjunction

αsleeps

βseemingly

2

(b) Derivation tree

the Gorn address labels the edge between the two nodes, each of them
being labelled by the name of the trees. Only initial trees, that possibly
underwent some substitution or adjunction operations, can substitute
into a leaf.

The adjunction of βseemingly into αsleeps consists in inserting the
tree βseemingly at the VP node of αsleeps: the subtree of αsleeps rooted
at its VP node is first removed then substituted to the VP foot node of
βseemingly (the leaf with the same label as the root and marked with ∗).
The whole resulting tree is then plugged again at the VP node of αsleeps,
as Figure 4(a) shows. The associated derivation tree of Figure 4(b)
records the adjunction with a dotted edge. Only auxiliary trees, that
possibly underwent some substitution or adjunction operations, can
adjoin into another tree.

Figure 5 shows a TAG analysis of John seemingly sleeps, which
involves both operations, and the associated derivation tree.

2.2 TAG elementary trees as functions
We now present the two operations of adjunction and substitution
using a functional interpretation of the elementary trees. We use the

[534]

A syntax-semantics interface for TAG through ACG

S

NP VP

V

sleeps
NP

John
VP

Adv

seemingly
VP∗

−→

S

NP

John
VP

Adv

seemingly
VP

V

sleeps
(a) Adjunction and substitution

αsleeps

αJohn

1

βseemingly

2

(b) Derivation tree

Figure 5:
TAG analysis of
John seemingly
sleeps

standard notations of the typed λ-calculus and we formally present
the syntax of λ-terms and their types.
Definition 1 (Types). Let A be a set of atomic types. The set T (A) of
implicative types built upon A is defined with the following grammar:

T (A) ::= A |T (A)⊸ T (A) |T (A)→T (A)
The set of linear implicative types built upon A is defined with the fol-
lowing grammar:

T o(A) ::= A |T o(A)⊸ T o(A)

Definition 2 (Higher-order signatures). A higher-order signature Σ is a
triple Σ = 〈A, C ,τ〉 where:

• A is a finite set of atomic types;
• C is a finite set of constants;
• τ : C →T (A) is a function assigning types to constants.

A higher-order signature Σ = 〈A, C ,τ〉 is linear if the codomain of τ is
T o(A).
Definition 3 (λ-Terms). Let X be a countably infinite set of λ-
variables. The set Λ(Σ) of λ-terms built upon a higher-order signature
Σ = 〈A, C ,τ〉 is inductively defined as follows:

• if c ∈ C then c ∈ Λ(Σ);
• if x ∈ X then x ∈ Λ(Σ);
• if x ∈ X and t ∈ Λ(Σ) and x occurs free in t exactly once, then
λox .t ∈ Λ(Σ);

[535]

Sylvain Pogodalla

• if x ∈ X and t ∈ Λ(Σ), then λx .t ∈ Λ(Σ);
• if t, u ∈ Λ(Σ) then (t u) ∈ Λ(Σ).
Note there is a linear λ-abstraction (denoted by λo) and a (usual)

intuitionistic λ-abstraction (denoted by λ). A variable that is bound
by λo occurs exactly once in the body of the abstraction, whereas it
can occur zero, one, or any number of times when it is bound by λ.
This distinction is important when discussing the complexity of pars-
ing with ACGs.

We also use the usual notions of α, β , and η conversions (Baren-
dregt 1984), as well as the left associativity of (linear and non-linear)
application (so (t u) v is written t u v), the right associativity of (linear
and non-linear) abstraction over several variables (so λx .(λy.(λz.t)) =
λx y z.t = λx y.λz.t, etc.; the same for λo), and the right associativity
of implication (so α→ (β → γ) = α→ β → γ; the same for ⊸).
Definition 4 (Typing judgment). Given a higher-order signature Σ,
the typing rules are given with an inference system whose judgments
are of the form: Γ;∆ ⊢Σ t : α where:

• Γ is a finite set of non-linear variable typing declarations of the
form x : β where x is a variable and β is a type;

• ∆ is a finite multi-set of linear variable typing declarations of the
form x : β where x is a variable and β is a type. In order to
distinguish the elements of the typing declaration, we always use
variables with different names.

Both Γ and ∆ may be empty. If both of them are empty, we usually
write t : α (t is of type α) instead of ⊢Σ t : α. Moreover, we drop the
Σ subscript when the context permits. Table 1 gives the typing rules:
constant introduction, variable introduction (linear and non-linear),

Table 1:
Typing rules for
deriving typing

judgments

(const.)
Γ;⊢Σ c : τ(c)

(lin. var.)
Γ; x : α ⊢Σ x : α

(var.)
Γ, x : α;⊢Σ x : α

Γ;∆, x : α ⊢Σ t : β (lin. abs.)
Γ;∆ ⊢Σ λox .t : α⊸ β

Γ;∆1 ⊢Σ t : α⊸ β Γ;∆2 ⊢Σ u : α (lin. app.)
Γ;∆1,∆2 ⊢Σ (t u) : β

Γ, x : α;∆ ⊢Σ t : β (abs.)
Γ;∆ ⊢Σ λx .t : α→ β

Γ;∆ ⊢Σ t : α→ β Γ;⊢Σ u : α (app.)
Γ;∆ ⊢Σ (t u) : β

[536]

A syntax-semantics interface for TAG through ACG

linear abstraction and linear application, (non-linear) abstraction and
(non-linear) application, in this order.

The fact that Γ is a set and ∆ is a multi-set corresponds to implic-
itly allowing for the structural rules of contraction and weakening for
the non-linear context, and disallowing them on the linear context.7
Remark 1. From a logical point of view, the theorems that can be
proved using only the non-linear or the linar context are different. For
instance, if c : α → α → β and d : α ⊸ α ⊸ β are constants of Σ,
x : α;⊢ c x x : β is derivable as the following derivation shows:

(const.)
x : α;⊢Σ c : α→ α→ β (var.)

x : α;⊢Σ x : α (app.)
x : α;⊢Σ (c x) : α→ β (var.)

x : α;⊢Σ x : α (app.)
x : α;⊢Σ ((c x) x) : β

whereas ; x : α ⊢ d x x : β is not (and ; x : α, y : α ⊢ d x y : β is).
Remark 2. The linear context of the second premise in the non-linear
application rule (Γ;⊢Σ u : α) is empty. This is required in order to
avoid duplicating or erasing linear variables by non-linear application
to a linear variable. Otherwise we could have derivations such as:

...
;⊢Σ λx .c x x : α→ β ; y : α ⊢Σ y : α (app.)

; y : α ⊢Σ (λx .c x x) y : β

Then we have that y : α belongs to the linear context, but (λx .c x x) y
reduces to c y y where y is duplicated.
Definition 5 (Linear and almost linear λ-terms). A term without any
λs, where each λo binds exactly one variable, and where no subterm
contains more than one free occurrence of the same variable is a linear
λ-term, otherwise it is non-linear.

A term where each λo binds exactly one variable, where each λ
binds at least one variable, and no subterm contains more than one
free occurrence of the same variable, except if the variable has an
atomic type, is an almost linear λ-term.

The notion of linearity and almost linearity are important with
respect to the tractability and the computational complexity of the

7Contraction corresponds to allowing the duplication of hypotheses, and
weakening corresponds to allowing the deletion of useless hypothesis.

[537]

Sylvain Pogodalla

parsing algorithms, because they allow for characterising the set of al-
most linear λ-terms that are β-equivalent to some given almost linear
term (Kanazawa 2017, p. 1120).
Definition 6 (Order). The order ord(τ) of a type τ ∈ T (A) is induc-
tively defined as:

• ord(a) = 1 if a ∈ A

• ord(α⊸ β) = ord(α→ β) =max(1+ ord(α),ord(β)) otherwise
By extension, the order of a term is the order of its type.
Remark 3. Second-order terms (i.e., terms whose order is 2) play
an important role in our TAG encoding, and more generally for the
expressive power of ACGs. A second-order term has type a1 ⊸ a2 . . .⊸
an ⊸ a where a, a1, . . . , an are atomic types. If a signature Σ contains
only first-order and second-order constants, an easy induction shows
that ground terms (i.e., terms with no free variable) of atomic types in
Λ(Σ) do not contain any variable (bound or free) at all. In particular,
they cannot have terms of the form λox .u or λx .u as sub-terms.

We now assume the single atomic type T of trees and constants
of this type (in Section 2.3 we make explicit how to systematically
encode trees into λ-terms).

2.2.1 Substitution as function application
The ability for the tree of Figure 6(a) to accept a substitution at its
NP node allows it to be considered as a function that takes a tree as
argument and replaces the NP node by this argument. Hence we can
represent it as the function γ′sleeps shown in Figure 6(b) with γ′sleeps :

T ⊸ T . A tree where no substitution can occur can be represented as
γJohn : T (see Figure 6(c)).

Figure 6:
Functional

interpretation of
the substitution

operation

S

NP VP

V

sleeps
(a) TAG initial tree

S

s VP

V

sleeps

γ′sleeps = λ
os.

(b) Function from trees to trees

NP

John
γJohn =

(c) Term of type T

[538]

A syntax-semantics interface for TAG through ACG

Applying the function γ′sleeps to the simple tree γJohn of Figure 6(c)
and performing β-reduction gives the expected result as (1) shows.

(1) γ′sleeps γJohn =

λ
os.

S

s VP

V

sleeps


NP

John
→β

S

NP

John
VP

V

sleeps

Note that despite the derived tree for John sleeps having a root
labelled by S and the elementary tree for John having a root labelled
by NP, they are represented by the terms γ′sleeps γJohn and γJohn which
both have type T . The issue of recording the distinction is addressed
in Section 4.3.
2.2.2 Adjunction as function application
In order to deal with the adjunction operation, we first observe what
happens to the auxiliary tree βseemingly in Figure 4 (p. 534): a subtree of
the tree it is adjoined to (the VP rooted subtree of αsleeps) is substituted
at the VP∗ foot node of βseemingly. This means that the auxiliary tree also
behaves as a function from trees to trees and can be represented as in
Figure 7(a) with γ′seemingly : T ⊸ T . Then, a tree with an adjunction
site can be represented by a term such as γ′′sleeps : (T ⊸ T) ⊸ T in
Figure 7(b). Note the higher-order type of γ′′sleeps.

In order to model the adjunction, we then apply γ′′sleeps to
γ′seemingly and perform β-reductions as (2) shows.


VP

Adv

seemingly
v

γ′seemingly = λ
ov.

(a) Function from trees to trees



S

NP

a


VP

V

sleeps




γ′′sleeps = λ

oa.

(b) Elementary tree ready
to accept an adjunction

Figure 7:
Functional
interpretation of
the adjunction
operation

[539]

Sylvain Pogodalla

γ′′sleeps γ
′
seemingly =


λoa.

S

NP

a


VP

V

sleeps





λov.

VP

Adv

seemingly
v



→β

S

NP λov.

VP

Adv

seemingly
v




VP

V

sleeps



→β

S

NP VP

Adv

seemingly
VP

V

sleeps

(2)

We are now (almost) in a position to define the function standing
for the elementary tree representing the intransitive verb sleeps in its
canonical form as in Figure 8 with γ′′′sleeps : (T ⊸ T) ⊸ T ⊸ T . Such
a term can be used to represent the TAG analysis of John seemingly
sleeps shown in Figure 5 with the β-reduction of γ′′′sleeps γ′seemingly γJohn
shown in (3).

(3) γ′′′sleeps γ
′
seemingly γJohn→β

S

NP

John
VP

Adv

seemingly
VP

V

sleeps

Remark 4 (No adjunction). Typing γ′′′sleeps with (T ⊸ T) ⊸ T ⊸ T

makes it require an adjunction (the first (T ⊸ T) argument) to return a

[540]

A syntax-semantics interface for TAG through ACG

γ′′′sleeps = λ
oa s.



S

s

a


VP

V

sleeps





Figure 8:
Elementary tree representation available to
substitution and adjunction operations

plain tree term of type T . But of course, we also want to use this term in
case no adjunction in a TAG analysis would occur, as in John sleeps. We
make use of a fake adjunction, applying γ′′′sleeps to the identity function
I = λox .x : T ⊸ T .8 Then (4) holds.

(4) γ′′′sleeps I γJohn→β

S

NP

John
VP

V

sleeps

Finally, we also have to model the possible adjunction on the S

node of αsleeps. So the corresponding term γsleeps has type (T ⊸ T)⊸
(T ⊸ T) ⊸ T ⊸ T where the first argument stands for the auxiliary
tree to be adjoined at the S node, the second argument stands for the
auxiliary tree to be adjoined at the VP node, and the third argument
stands for the tree to be substituted at the NP node as Figure 9 shows.9

Remark 5 (Multiple adjunction). Following Vijay-Shanker (1987),
the typing we provide prevents two adjunctions from occurring at the
same node in the same elementary tree. We discuss this difference
with the multiple-adjunction approach of Schabes and Shieber (1994)
in Section 5. Accordingly, an auxiliary tree should typically also al-
low for adjunction at its root. So instead of using γ′seemingly : T ⊸ T ,
we use the terms defined in Figure 10 in order to analyze sentences

8This idea is present in the seminal work using ACGs (de Groote 2002; Pogo-
dalla 2004a), but also in the synchronous approach (Shieber 2004, 2006) and
in Shieber (2014), in the notion of vestigial auxiliary tree.

9We could also allow adjunctions to the V node in a similar way. But we do
not use examples of such adjunctions, and, for the sake of conciseness, we keep
the type as small as required by the examples.

[541]

Sylvain Pogodalla
Figure 9:

Encoding of
αsleeps available
to substitution

and adjunctions
both at the VP

and at the S

nodes

γsleeps = λ
oS a s.S



S

s

a


VP

V

sleeps




Figure 10:

Auxiliary tree
representation

available to
adjunction
operations

γseemingly = λoa v.a


VP

Adv

seemingly
v

 : (T ⊸ T)⊸ T ⊸ T

γusually = λoa v.a


VP

Adv

usually
v

 : (T ⊸ T)⊸ T ⊸ T

Figure 11:
A TAG analysis
of John usually
seemingly sleeps

S

NP

John
VP

Adv

usually
VP

Adv

seemingly
VP

V

sleeps
such as John usually seemingly sleeps as in Figure 11 with the term
γsleeps I (γseemingly (γusually I)) γJohn.10

2.3 Trees and strings as λ-terms
So far, we did not make explicit how to represent strings and trees
as λ-terms. In particular, we did not explain how strings can combine
and how the parent-child relation can be represented. While this is

10Although λov.γ′usually (γ
′
seemingly v) = γseemingly (γusually I), introducing

γseemingly and γusually with this more complex types is important because, as we
will see in Section 6, at the most abstract level, we want terms without any free
or bound variable to represent derivations (see Remark 3).

[542]

A syntax-semantics interface for TAG through ACG

quite standard, and because we use this encoding to implement the
example grammars using the ACG toolkit, this section describes how
it can be done.
2.3.1 Encoding strings
We encode strings over an alphabet C using the following higher-order
signature ΣC

strings = 〈Aσ, C ,τσ〉 where:
• Aσ = {o} contains a unique atomic type o;
• τσ is the constant function that maps any constant to the type σ,
the string type, defined as (o⊸ o). Note it is not an atomic type.

We use the notation ∆
= to introduce terms or types that are defined

using the atomic types and the constants of a signature, but are not
atomic types nor constants of this signature. So σ ∆

= (o ⊸ o). We also
define two other terms:

• + ∆
= λo f g.λoz. f (g z) (function composition, used with an infix

notation) to represent concatenation;
• ε ∆= λox .x (the identity function) to represent the empty string.

It is easy to check that + is associative and that ε is a neutral element
for +.
Remark 6. If a and b are two strings, a+b = λoz.a (b z). In this article,
we usually do not unfold the definition of + and we use the notation
x1 + . . .+ xn to represent the string λoz.x1 (. . . (xn z) . . .).
2.3.2 Encoding trees
Trees were originally defined in TAG using a mapping from positions
(or Gorn addresses) to labels, elements of a vocabulary (Joshi et al.
1975). Hence, the same node label could be used to represent nodes
of different arity. For instance, in Figure 2(a) (p. 533), the VP node has
arity 1 whereas the VP node of Figure 2(c) has arity 2.

We prefer to represent trees as terms over a ranked alphabet as
in Shieber (2004) and Comon et al. (2007) in order to make the en-
coding of trees as λ-terms easier. So we use the notation Xn with n
the arity of the symbol Xn. It allows us to distinguish two nodes with
n and m (n ̸= m) children that would be mapped to the same label
X by using the different symbols Xn and Xm. As terminal symbols can

[543]

Sylvain Pogodalla

only occur as leaves, they always have arity 0, so we do not use any
subscript for them.

In order to encode the trees defined over a ranked alphabet Fa =
(F , arity), where arity is a mapping from F toN, we use the following
higher-order signature ΣFatrees = 〈AT ,F ,τFa

T 〉 where:
• AT = {T} contains a unique atomic type T , the type of trees;
• τFa

T is a function that maps any constant X such that arity(X) = n
to the type T ⊸ · · ·⊸ T︸ ︷︷ ︸

n times

⊸ T . If arity(X) = 0, then τFa
T (X) = T .

For instance, the TAG elementary trees δanchor 11 of our run-
ning examples can be modelled as the functions (or terms) γanchor
built on the signature Σtrees as Table 2 shows.12 Then (5) shows that

Table 2:
Encoding of the
TAG elementary
trees with Σtrees

Terms of Λ(Σtrees) Corresponding TAG tree
γJohn = NP1 John NP

John: T

γsleeps = λoS a s.S (S2 s (a (VP1 (V1 sleeps)))) S

NP VP

V

sleeps

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T

γseemingly = λoa v.a (VP2 (Adv1 seemingly) v) VP

Adv

seemingly
VP∗: (T ⊸ T)⊸ T ⊸ T

γusually = λoa v.a (VP2 (Adv1 usually) v) VP

Adv

usually
VP∗: (T ⊸ T)⊸ T ⊸ T

γhence = λoa s.a (S2 (Adv1 hence) s) S

Adv

hence
S∗: (T ⊸ T)⊸ T ⊸ T

I = λox .x : T ⊸ T

11We use the notation δanchor to refer either to the initial tree αanchor or to the
auxiliary tree βanchor.

12Note that sleeps and seemingly are used as constants of arity 0 and have type
T . We also introduce an auxiliary tree that can adjoin to the S node.

[544]

A syntax-semantics interface for TAG through ACG

γ5 = γsleeps I (γseemingly I) γJohn corresponds (modulo β) to the tree of
Figure 5 (p. 535).

(5) γ5 = γsleeps I (γseemingly I) γJohn
→β S2 (NP1 John) (VP2 (Adv1 seemingly) (VP1 (V1 sleeps)))

We now want to relate the tree that is represented by the term
γsleeps I (γseemingly I) γJohn : T to the string John seemingly sleeps that
is represented by the term John+ seemingly+ sleeps : σ. We do this in
Section 4, using an interpretation of the former as defined by an ACG.

3 abstract categorial grammars

Grammars can be considered as a device to relate concrete objects to
hidden underlying structures. For instance, context-free grammars re-
late strings to syntactic trees, and TAGs relate derived trees to deriva-
tion trees. However, in both cases, the underlying structure is not a
first-class citizen of the formalism.

ACGs take another perspective and provide the user a direct way
to define the parse structures of the grammar, the abstract language.
Such structures are later on interpreted by a morphism, the lexicon, to
get the concrete object language. The process of recovering an abstract
structure from an object term is called ACG parsing and consists in
inverting the lexicon. In this perspective, derivation trees of TAGs are
represented as terms of an abstract language, while derived trees and
yields are represented by terms of some other object languages: an
object language of trees in the first case and an object language of
strings in the second. We also use a logical language as the object
language to express the semantic representations.

For the sake of self-containedness, we first review the definitions
of de Groote (2001).
Definition 7 (Lexicon). Let Σ1 = 〈A1, C1,τ1〉 and Σ2 = 〈A2, C2,τ2〉 be
two higher-order signatures, Σ1 being linear. A lexiconL = 〈F, G〉 from
Σ1 to Σ2 is such that:

• F : A1→T (A2). We also note F : T (A1)→T (A2), its homomorphic
extension; that is, the function F̂ that extends F such that F̂(α⊸
β) = F̂(α)⊸ F̂(β) and F̂(α→ β) = F̂(α)→ F̂(β);

[545]

Sylvain Pogodalla

• G : C1→ Λ(Σ2). We also note G : Λ(Σ1)→ Λ(Σ2), its homomorphic
extension; that is, the function Ĝ that extends G such that Ĝ(t u) =
Ĝ(t) Ĝ(u), Ĝ(x) = x , Ĝ(λx .t) = λx .Ĝ(t), and Ĝ(λox .t) = λox .Ĝ(t);

• F and G are such that for all c ∈ C1, ⊢Σ2
G(c) : F(τ1(c)) is prov-

able.
We also use L instead of F or G.

The lexicon is the interpreting device of ACGs.
Definition 8 (Abstract Categorial Grammar and vocabulary). An ab-
stract categorial grammar is a quadruple G = 〈Σ1,Σ2,L, S〉 where:

• Σ1 = 〈A1, C1,τ1〉 and Σ2 = 〈A2, C2,τ2〉 are two higher-order sig-
natures. Σ1 (resp. Σ2) is called the abstract vocabulary (resp. the
object vocabulary) and Λ(Σ1) (resp. Λ(Σ2)) is the set of abstract
terms (resp. the set of object terms).

• L : Σ1→ Σ2 is a lexicon and Σ1 is a linear signature.
• S ∈ T (A1) is the distinguished type of the grammar.

Given an ACG Gname = 〈Σ1,Σ2,Lname, S〉, instead of using Lname(α) =
β (resp. Lname(t) = u) in order to express that the interpretation of
the type α is the type β (resp. the interpretation of the term t is the
term u), we use the following notational variants: Gname(α) = β and
αBname β (resp. Gname(t) = u and t Bname u). The subscript may be
omitted if clear from the context.
Definition 9 (Abstract and object languages). Given an ACG G , the
abstract language is defined by

A (G) = {t ∈ Λ(Σ1) | ⊢Σ1
t : S is derivable}

The object language is defined by
O (G) = {u ∈ Λ(Σ2) | ∃t ∈A (G) such that u=L(t)}

In this article, we consider object languages such as strings or
logical formulas, and abstract languages such as derivation trees. Some
languages, such as the language of derived trees, will be considered
sometimes as object languages, sometimes as abstract languages.

Parsing with an ACG G any term u that is built over the object
vocabulary of G amounts to finding the abstract terms t ∈A (G) such
that u= G (t). In other words, ACG parsing is morphism inversion.

[546]

A syntax-semantics interface for TAG through ACG

3.1 ACG composition
The lexicon defines the way structures are interpreted. It plays a cru-
cial role in our proposal in two different ways. First, two interpreta-
tions may share the same abstract vocabulary, hence mapping a single
structure into two different ones. For instance, the structure repre-
senting the derivations may be mapped both into a surface form and
a semantic form. This composition is illustrated by Gderived trees andGsem. sharing the Σderivations vocabulary in Figure 12. It corresponds
to the core model of the syntax-semantics interface as proposed in
ACGs (de Groote 2001, Section 2.3), but also to the one proposed
in synchronous TAG. It allows us to relate the derived trees and the
semantic expressions that have the same derivation structures. We
use this in Section 5 as our model of the syntax-semantics interface
for TAG.

Λ(Σderivations)

Λ(Σtrees)

Gderived trees

Λ(Σstrings) Gyield Λ(Σlogic)

Gsem.

Figure 12:
ACG composition
modes

Second, the result of a first interpretation can itself be in-
terpreted by a second lexicon when the object vocabulary of the
first interpretation is the abstract vocabulary of the second one.
This composition, illustrated by the Gyield ◦ Gderived trees composi-
tion in Figure 12, provides modularity. It also allows one to con-
trol admissible intermediate structures. For instance, the abstract
language of Gyield may contain too many structures. If the object
language of Gderived trees is a strict subset of this abstract language,
then the object language of Gyield ◦ Gderived trees is a subset of the
object language of Gyield. We take advantage of this property in
Section 4.3 to enforce the matching between node labels in substi-
tution and adjunction operations, and to further restrict the set of
derivations to only TAG derivations in Section 6. This ACG composi-
tion corresponds to the typical ACG way to control admissible parse
structures.

[547]

Sylvain Pogodalla

3.2 Formal properties of ACGs
In this section, we review themain properties of ACGs andmention the
relevant references. Two parameters are useful to define a hierarchy
of ACGs: the order and the complexity of an ACG.
Definition 10 (Order and complexity of an ACG; ACG hierarchy). The
order of an ACG is the maximum of the orders of its abstract constants.
The complexity of an ACG is the maximum of the orders of the realiza-
tions of its atomic types.

We call second-order ACGs the set of ACGs whose order is at
most 2.

ACG(n,m) denotes the set of ACGs whose order is at most n and
whose complexity is at most m.

For instance, in Figure 12, Gyield is a second-order ACG (because
all the constants of Σtrees are of type T ⊸ · · ·⊸ T with T atomic, hence
are at most second-order). On the other hand,Σderivations is third-order
(it contains terms such as cseemingly : (VP⊸ VP)⊸ VP⊸ VP, where NP and
VP are atomic, that are third-order; see Section 4). Hence Gderived trees
is third-order as well.

The class of second-order ACGs is of particular interest because
of its polynomial parsing property (Salvati 2005). When consider-
ing strings as the object language, the generated languages coincide
with multiple context-free languages (Salvati 2006). When consider-
ing trees, the generated languages coincide with the tree languages
generated by hyperedge replacement grammars (Kanazawa 2009).
A further refinement on the ACG hierarchy provides a fine-grained
correspondence with regular (string or tree) languages, context-free
string and linear context-free tree languages, or well-nested multiple
context-free languages (string), in particular tree-adjoining languages.
Table 3 (p. 549) sums up some of the formal properties of second-
order ACGs (de Groote and Pogodalla 2004; Salvati 2006; Kanazawa
and Salvati 2007; Kanazawa 2009).

For second-order ACGs, parsing algorithms and optimization
techniques are grounded on well established fields such as type-theory
and Datalog. Kanazawa (2007) showed how parsing of second-order
ACGs reduces to Datalog querying, offering a general method for
getting efficient tabular parsing algorithms (Kanazawa 2017). This
parsing method applies whatever the object language: representing

[548]

A syntax-semantics interface for TAG through ACG

String language Tree language
ACG(1,n) finite finite
ACG(2,1) regular regular
ACG(2,2) context-free linear context-free
ACG(2,3) non-duplicating macro ⊂ 1-visit attribute grammar

well-nested multiple context-free
ACG(2,4) mildly context-sensitive tree-generating

(multiple context-free) hyperedge replacement gram.
ACG(2,4+n) ACG(2,4) ACG(2,4)

Table 3:
The hierarchy
of second-order
ACGs

strings, trees, and also any kind of (almost linear) λ-terms. When the
object language consists of logical formulas, the latter can then be
parsed as well, and the resulting parse structures can further be inter-
preted (e.g., as strings) to implement surface realization (Kanazawa
2007). This also allows for deriving algorithms with specific properties
such as prefix-correctness in a general way.13

The computational properties of lexicon inversion for ACGs have
been studied for different classes of λ-terms.14 It is worth noting that,
as far as second-order ACGs are concerned, whatever the form of the
semantic λ-term, lexicon inversion is decidable (Salvati 2010), even
with replication and vacuous abstraction of variables, though with
a high computational complexity. From a theoretical point of view,
this corresponds to removing any kind of semantic monotonicity re-
quirement for generation (Shieber 1988; Shieber et al. 1989) in a very
general setting.15

The examples we present in this article use only almost linear se-
mantic terms. This allows us to run them in the ACG toolkit. The latter
implements the method of parsing by reduction to Datalog, and allows

13For a n6 prefix-correct Earley recognizer for TAGs, see Kanazawa (2008b).
14See for instance Kanazawa (2017), Bourreau and Salvati (2011), and Bour-

reau (2012) for the linear, almost linear, and almost affine cases.
15 In its strongest form, this requirement corresponds to having lexicalized

semantic recipes (i.e., where at least one constant appears and no deletion is
allowed). Linear and almost linear pure terms (i.e., where no constant occurs)
are already dealt with in the Datalog reduction. Allowing deletion leads to more
challenging issues. It is used, for instance, for the modelling of ellipsis (Kobele
2007; Bourreau 2012, 2013) or for providing intensional semantics to intension-
insensitive words (de Groote and Kanazawa 2013).

[549]

Sylvain Pogodalla

us to parse strings, trees, and logical formulas using the grammars we
propose. Large scale tests of the software are however ongoing work,
and a quantitative evaluation is beyond the scope of this article.

Parsing with ACGs whose order is strictly greater than 2 is equiv-
alent (Salvati 2005) to the decidability of the Multiplicative Expo-
nential fragment of Linear Logic (MELL: Girard 1987).16 De Groote
(2015) shows a reduction of ACG parsing of higher-order ACGs to lin-
ear logic programming. It is of course trivially (by linearity) decidable
for ACGs where the interpretation of abstract constants always intro-
duces a constant of the object language. But even in this case, third-
order ACGs can generate languages that are NP-complete (Yoshinaka
and Kanazawa 2005; Salvati 2006). For higher-order ACGs, the ACG
toolkit implements abstract term interpretation, but no parsing.

4 relating generalized derivations,
tag derived trees, and strings with

abstract categorial grammars
From now on, we assume a TAG G= (I,A) where I is the set of initial
trees and A the set of auxiliary trees. The labels of the trees in I ∪A
range over the alphabet V 0, and C ⊂ V 0 is the terminal alphabet. V is
the set of symbols of V 0 disambiguated by subscripting themwith their
arity (except for terminal symbols of arity 0), and V is the associated
ranked alphabet.
4.1 Derived trees and strings
In the constructions of Section 2.3, we introduced two higher-order
signatures: Σstrings = ΣC

strings and Σtrees = ΣVtrees. We can now relate
terms built on them using an ACG Gyield = 〈Σtrees,Σstrings,Lyield, T 〉
by specifying Lyield as follows:

• Lyield(T) = σ (a tree is interpreted as a string);
• for Xn ∈ V \ C , Lyield(Xn) = λox1 . . . xn.x1 + · · · + xn (a tree la-
belled by a non-terminal symbol is interpreted by the function
that concatenates the interpretation of its children);

• for a ∈ C , Lyield(a) = a (a terminal symbol is interpreted by the
same symbol as a string).

16 It has recently been proved to be decidable (Bimbó 2015).

[550]

A syntax-semantics interface for TAG through ACG

For instance, (8) (p. 552) shows that the yield of the tree repre-
sented by γ5 = γsleeps I (γseemingly I) γJohn (p. 545) actually is John+
seemingly+sleeps (which can be rephrased as γsleeps I (γseemingly I) γJohn
Byield John+ seemingly+ sleeps). Indeed, we have (6).

Gyield(γJohn) = Gyield(NP1 John)
= Gyield(NP1) Gyield(John)

because Gyield is a morphism
= (λox .x) John

by definition of Gyield on constants
→β John

(6)

And with γ7 = VP2 (Adv1 seemingly) (VP1 (V1 sleeps)), we have (7),

Gyield(γ7) = Gyield(VP2 (Adv1 seemingly) (VP1 (V1 sleeps)))
= Gyield(VP2) (Gyield(Adv1 seemingly)) (Gyield(VP1 (V1 sleeps)))

because Gyield is a morphism
= (λox1 x2.x1 + x2)

(Gyield(Adv1 seemingly)) (Gyield(VP1 (V1 sleeps)))
by definition of Gyield on VP2

→β Gyield(Adv1 seemingly) +Gyield(VP1 (V1 sleeps))
= (Gyield(Adv1) Gyield(seemingly))

+ (Gyield(VP1) (Gyield(V1 sleeps)))
because Gyield is a morphism

= ((λox .x) Gyield(seemingly)) + ((λox .x) (Gyield(V1 sleeps)))
by definition of Gyield on Adv1 and VP1

= Gyield(seemingly) +Gyield(V1 sleeps)
= seemingly+ (Gyield(V1) (Gyield(sleeps)))
= seemingly+ ((λox .x) sleeps)
= seemingly+ sleeps

(7)

hence (8):

[551]

Sylvain Pogodalla

Gyield(γ5) = Gyield(S2 (NP1 John) (VP2 (Adv1 seemingly) (VP1 (V1 sleeps))))
by (5), p. 545

= Gyield(S2) (Gyield(NP1 John)) (Gyield(γ7))

= (λox1 x2.x1 + x2) John (seemingly+ sleeps)
by (6) and (7)

→β John+ seemingly+ sleeps

(8)

4.2 Derivation trees and derived trees
In this section, we illustrate how to introduce more control on the
accepted structures. Note indeed that according to the definition of
Gyield, whatever is a closed term of type T belongs to its abstract lan-
guage. For instance, γ13 = γseemingly I γJohn is a well-typed term of type
T corresponding to the tree of Figure 13 as (9) shows. Consequently,
its interpretation seemingly+ John belongs to the object language.

γ13 = γseemingly I γJohn

→β VP2 (Adv1 seemingly) (NP1 John)
Byield seemingly+ John

(9)

Figure 13:
Tree in the abstract language of Gyield

VP

Adv

seemingly
NP

John

In order to avoid such terms belonging to the language we are
interested in, we provide another ACG, Gderived trees, such that its ob-
ject language is a strict subset of A (Gyield) (see Figure 12 p. 547).
Consequently, the object language of Gyield ◦ Gderived trees is a subset
(strict in this case, as expected) of O (Gyield). Gderived trees is defined as
Gderived trees = 〈Σderivations,Σtrees,Lderived trees, S〉.

4.3 Generalized derivation trees
4.3.1 A vocabulary for derivations: the Σderivations signature
Adjoining γseemingly on γJohn is possible in Λ(Σtrees) because the type
T does not take the node labels into account. Hence, there is, for in-

[552]

A syntax-semantics interface for TAG through ACG

stance, no distinction between trees rooted by VP and trees rooted
by NP. We introduce this distinction in a new signature Σderivations =〈Aderivations, Cderivations,τderivations〉. Aderivations = V 0 is the set of non-
terminal symbols of the TAG grammar G. Then, for any δanchor ∈ I∪A
an elementary tree of G, we define canchor a constant of type (X 1 ⊸
X 1)⊸ · · ·⊸ (X n ⊸ X n)⊸ Y 1 ⊸ · · ·⊸ Y m ⊸ α where:

• the X i are the labels of the n internal nodes of δanchor labelled with
a non-terminal where an adjunction is possible (by convention we
use the breadth-first traversal); 17

• the Y i are the labels of the m leaves labelled with non-terminals,
not counting the foot node if δanchor is an auxiliary tree, of δanchor
(by convention, we use the left-right order);

• let Z be the label of the root node of δanchor. α = Z if δanchor ∈ I
is an initial tree, and α = Z ′′ ⊸ Z ′ with Z ′′ corresponding to the
label of the foot node and Z ′ corresponding to the label of the
root node if δanchor ∈ A is an auxiliary tree.18 In the latter case,
we call Z ′′ ⊸ Z ′ the modifier type of the constant modelling the
auxiliary tree.

We get for instance the constants typed as in (10)19 from the elemen-
tary trees of Figure 2 (p. 533).

csleeps : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ S

cJohn : NP

cseemingly : (VP⊸ VP)⊸ VP⊸ VP

(10)

For each non-terminal X of the TAG grammar where an adjunc-
tion can occur, we also define IX : X ⊸ X as in (11). These constants
play a similar role as I at the Σtrees level: they are used when a TAG
derivation does not involve any adjunction on sites where it would be
possible to have some.

17 Instead of the types (X i ⊸ X i), we may have types X i
i1
⊸ X i

i2
to denote a

difference between the top and the bottom feature of the node of label X i . This is
in particular used to account for selecting adjoining constraints as described in
Feature-based TAG (FTAG: Vijay-Shanker and Joshi 1988, 1991). See note 18.

18 In standard TAG, we typically have Z = Z ′ = Z ′′. However, we shall see
examples in Sections 5.3.2 and 7 where the distinction between Z , Z ′, and Z ′′ is
relevant.

19We assume that no adjunction is allowed on the V node nor on the Adv node.

[553]

Sylvain Pogodalla
IS : S⊸ S

IVP : VP⊸ VP
(11)

Then the set of typed constants of Σderivations is Cderivations ={canchor| δanchor ∈ I∪A}∪{IX | X ∈ V 0} and τderivations is the associated
typing function defined as above. The typing provided by Σderivations
now disallows the application of cseemingly IVP : VP⊸ VP to cJohn : NP.

We now need to relate the terms of Λ(Σderivations) to the terms of
Λ(Σtrees) by a suitable interpretation.

4.3.2 Interpretation of derivations as derived trees: the Gderived trees ACG
In order to define Gderived trees = 〈Σderivations,Σtrees,Lderived trees, S〉we
are left with definingLderived trees. All the atomic types (S, VP, etc.) are
interpreted as trees (i.e., with the T type). And for a TAG elementary
tree δanchor, the constant canchor is interpreted by γanchor (defined in
Section 2.3.2). This leads us to the interpretations of Table 4.

Table 4:
Interpretation
of Σderivations

constants
by Gderived trees

cJohn : NP
Bderived trees γJohn = NP1 John : T

csleeps : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ S

Bderived trees γsleeps = λoS a s.S (S2 s (a (VP1 (V1 sleeps))))
: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T

cseemingly : (VP⊸ VP)⊸ VP⊸ VP

Bderived trees γseemingly = λoa v.a (VP2 (Adv1 seemingly) v)
: (T ⊸ T)⊸ T ⊸ T

cusually : (VP⊸ VP)⊸ VP⊸ VP

Bderived trees γusually = λoa v.a (VP2 (Adv1 usually) v)
: (T ⊸ T)⊸ T ⊸ T

chence : (S⊸ S)⊸ S⊸ S

Bderived trees γhence = λoa s.a (S2 (Adv1 hence) s)
: (T ⊸ T)⊸ T ⊸ T

IS : S⊸ S

Bderived trees I = λox .x : T ⊸ T
IVP : VP⊸ VP

Bderived trees I = λox .x : T ⊸ T

In Section 4.2, we noticed that γ13 = γseemingly I γJohn : T ∈
A (Gyield) (see Equation (9) on page 552). By definition of the object
language of an ACG, its interpretation Gyield(γ13) = seemingly+John is
such that Gyield(γ13) ∈ O (Gyield).

[554]

A syntax-semantics interface for TAG through ACG

However, γ13 ̸∈ O (Gderived trees). Indeed, there is no c13 such that
Gderived trees(c13) = γ13. A simple argument using the linearity of the
interpretation shows that only cseemingly (once and only once), cJohn
(once and only once), and IX can be used. But cJohn can not combine
with any of the other terms (none of them use the type NP). Conse-
quently, seemingly+John ̸∈ O (Gyield◦Gderived trees), as is expected from
the TAG grammar.

4.3.3 Gderived trees abstract terms and generalized derivation trees
It is interesting to note that abstract terms of Gderived trees describe the
way the encoding of trees in Σtrees can combine. We can see this com-
bination in terms such as γ5 = γsleeps I (γseemingly I) γJohn, but it is
in some sense an artifact of the definition we gave: γ5 β-reduces to
a tree that does not show this structure anymore. However, a term
such as c5 = csleeps IS (cseemingly IVP) cJohn does not further β-reduce.
Because we considered substitution as function application on argu-
ments of atomic types and adjunction as function application on ar-
guments of second-order types, c5 keeps track of the adjunction of IS
on csleeps, of the adjunction of IVP on cseemingly, of the adjunction of
the latter result on csleeps, and of the substitution of cJohn. And the re-
lation Gderived trees(c5) = γ5 expresses the relation between the record
of these operations and the resulting derived tree.

We can represent c5 as a tree (see Figure 14(a)): each node corre-
sponds to a constant, applied to the terms represented by the children
of the node. It makes explicit how similar to TAG derivation trees they
are (Figure 14(b)). There is a one to one correspondence despite the
following superficial differences:

• in the abstract term representation, the fake adjunctions (of IX)
are represented;

csleeps

IS cseemingly

IVP

cJohn

(a) Abstract term of Gderived trees

αsleeps

αJohn βseemingly

1 2

(b) TAG derivation tree

Figure 14:
Derivation
representations

[555]

Sylvain Pogodalla

• instead of specifying the role of the arguments with the Gorn ad-
dress, we set a specific order for the arguments.
All the objects of a TAG grammar now have an ACG counterpart:

• terms of the abstract language of Gderived trees correspond to the
TAG derivation trees;20

• terms of Λ(Σtrees) that are in the object language of Gderived trees
correspond to the TAG derived trees;

• terms of Λ(Σstrings) that are in the object language of Gyield ◦Gderived trees correspond to the TAG generated language.
(12) and (13) illustrate these correspondences for the abstract term
c5 = csleeps IS (cseemingly IVP) cJohn representing the derivation for the
analysis of John seemingly sleeps.

(12)
Gderived trees(csleeps IS (cseemingly IVP) cJohn)
= γsleeps I (γseemingly I) γJohn
= S2 (NP1 John) (VP2 (Adv1 seemingly) (VP1 (V1 sleeps)))
by (5), p. 545

(13) Gyield ◦ Gderived trees(csleeps IS (cseemingly IVP) cJohn)
= John+ (seemingly+ sleeps) by (12) and (8) (p. 552)

Remark 7 (Gderived trees terms and description of trees). Let us have
a look at the (X ⊸ X) type of the argument of an abstract con-
stant of Gderived trees and at its interpretation. In csleeps for instance,
the argument with type (VP ⊸ VP) is interpreted by the a variable
of γsleeps (see Table 4 on page 554). The position of a in the term
S (S2 s (a (VP1 (V1 sleeps)))) makes it explicit that the result of a ap-
plied to (VP1 (V1 sleeps)), hence the latter term itself, is dominated by
the second child of S2 (the variable s being the first one). So, in some
sense, the type (VP⊸ VP) of a corresponds to the dominance constraint
between the node where a occurs (here the second child of S2) and the
root node of its argument (here VP1 (V1 sleeps)), as in the tree descrip-
tions of Vijay-Shanker (1992): the root node of the argument of a is
always dominated by the node where a occurs. In particular, replacing
a by λox .x corresponds to having these two nodes identified.

20There remain some reservations that Section 6 clears up, though. See
Remark 8.

[556]

A syntax-semantics interface for TAG through ACG

Remark 8 (Generalized derivations and TAG derivation trees). It
should be noted that Gderived trees and Gyield ◦ Gderived trees are not
second-order ACGs. It means that the polynomial parsing results do
not directly apply. But we know that TAG parsing is polynomial. So
what is happening here?

The answer is that while Gderived trees constrains the string lan-
guage more than Gyield does, it does not constrain it enough to gener-
ate only the corresponding TAG language. There is indeed no differ-
ence between the type of the encoding of an elementary tree of root S
with a substitution node S and the encoding of an auxiliary tree with
root and foot nodes labelled by S: it is S⊸ S in both cases.

The solution, that we develop in Section 6, is to further con-
trol A (Gderived trees) with another ACG GTAG such that O (GTAG) ⊂
A (Gderived trees) just as Gderived trees allows us to control A (Gyield).
The general architecture is then the one that Figure 15 describes.

But while this additional control is necessary to have a faithful
encoding of TAG, it is not necessary to provide the semantic interpre-
tation of the derivation trees (and may somewhat obfuscate it). That
is why we first present the syntax-semantic interface we propose and
delay the final encoding of TAG (that corresponds to the one of de
Groote 2002) to Section 6.

Λ(Σderivations)

Λ(ΣTAG)

GTAG

Λ(Σtrees)

Gderived trees

Λ(Σstrings) Gyield Λ(Σlogic)

Gsem.

Figure 15:
ACG composition
for control and
syntax-semantics
interface

5 semantic construction
In the previous section, we defined a signature Σderivations to repre-
sent derivation structures as terms of Λ(Σderivations). We now use this
signature as a pivot to transfer these structures into semantic represen-
tations. From a practical point of view, as mentioned in Section 3.1, it

[557]

Sylvain Pogodalla

amounts to defining an ACG Gsem. = 〈Σderivations,Σlogic,Lsem., S〉 and
composing it with Gderived trees thanks to the shared abstract vocab-
ulary Σderivations. The object vocabulary Σlogic of this ACG is the vo-
cabulary for defining the semantic representations. In this article, we
use higher-order logic (and, more often than not, simply first-order
logic). Other languages, such as description languages to express un-
derspeficied representations (Bos 1995; Egg et al. 2001), modal logic
languages, etc. are possible as well. But we want to focus on how to
build semantic representations rather than on the semantic modelling
of some linguistic phenomenon itself.

5.1 A vocabulary for semantic representations: Σlogic
We first define the object vocabulary Σlogic = 〈Alogic, Clogic,τlogic〉 as
in Table 5 with Alogic = {e, t} the atomic types for entities and truth
values respectively. As usual, we write the λ-term ∃ (λx .P) as ∃x .P.
The same, mutatis mutandis, holds for ∀. Note that, in this signature,
we also use the non-linear implication, as a lot of semantic formulas
(e.g., adjectives and quantifiers) use non linearity of entities. But we
stay within the fragment of almost linear terms as only terms of atomic
type are duplicated (see Definition 5 on page 537).21

Table 5:
The vocabulary Σlogic

Logical constants
∧ : t ⊸ t ⊸ t ∨ : t ⊸ t ⊸ t

⇒ : t ⊸ t ⊸ t ¬ : t ⊸ t

∃ : (e→ t)⊸ t ∀ : (e→ t)⊸ t

Non-logical constants
john : e love, chase : e⊸ e⊸ t

sleep : e⊸ t seemingly,usually,hence : t ⊸ t

seem : e⊸ (e⊸ t)⊸ t claim, think : e⊸ t ⊸ t

WHO : (e⊸ t)⊸ t big,black,dog, cat : e⊸ t

5.2 Generalized derivation-based interpretation
The first step in defining Gsem., to interpret the abstract vocabulary
Σderivations into types and terms built on the object vocabulary Σlogic,

21For the sake of simplicity, we use simplified extensional types e and t. A
more accurate semantic would require, for instance, intensional types.

[558]

A syntax-semantics interface for TAG through ACG

S Bsem. t NPBsem.(e→ t)⊸ t NBsem.e→ t

VPBsem.e→ t WHBsem.(e⊸ t)⊸ t

(a) Interpretation of the atomic types

cJohn Bsem.λoP.P john
csleeps Bsem.λoadvS advVP subj.advS (subj (advVP (λx .sleep x)))

cseeminglyBsem.λoadvmod pred.advmod (λx .seemingly (pred x))

cusually Bsem.λoadvmod pred.advmod (λx .usually (pred x))

chence Bsem.λoadvmod pred.advmod (hence pred)
IS Bsem.λox .x

IVP Bsem.λox .x

(b) Interpretation of the constants

Table 6:
Interpretation by Gsem. of the
Σderivations vocabulary

is to define the interpretation of the atomic types (S, VP…). We sim-
ply follow the standard interpretation of these syntactic types into the
semantic types as proposed by Montague (1973). This results in the
interpretation described in Table 6(a). The interpretation of the con-
stants follows, as in Table 6(b).22 We do not repeat here the type of
the constants canchor of Σderivations, nor the constraint that the image
of this type has to be the type of Gsem.(canchor) (e.g., the type of cJohn
is NP, hence Gsem.(cJohn) : Gsem.(NP) = (e→ t)⊸ t). But the reader can
check that this proviso holds.

We let the reader check that for our favourite example, c5 Bsem.
seemingly (sleep john) as (14) shows.

c5 = csleeps IS (cseemingly IVP) cJohn

Bsem. seemingly (sleep john)
(14)

5.3 From derivation dependencies to semantic dependencies
We now turn to accounting for the mismatch between the dependen-
cies as expressed in the derivation trees and in the logical semantic
representations.

22The types now also use the intuitionistic implication →. This is required
when variables that are abstracted over appear more than once in the semantic
recipes. This is in particular the case for entities in quantified formulas, or in the
semantics of intersective adjectives (see next section).

[559]

Sylvain Pogodalla

5.3.1 Long-distance dependencies
The first mismatch we consider, in order to make explicit what exactly
this mismatch refers to, relates to the classical examples (15–17).

(15) Paul claims John loves Mary.
(16) Mary, Paul claims John seems to love.
(17) Who does Peter think Paul claims John seems to love?

The TAG analysis relies on the elementary trees of Figure 16 and
results in the derived tree and derivation tree of Figure 17 (p. 561)
for (15). The mismatch appears in the contrast between the derivation
tree where αloves scopes over βclaims whereas the opposite scoping is
to be expected from a semantic point of view. A similar effect occurs
with (16) as the derivation tree, shown in Figure 18(b) (p. 561), makes
αto love scope over both βclaims and βseems, while semantically both

Figure 16:
TAG elementary

trees for long
distance

dependencies

αloves = S

NP VP

V

loves
NP

αto love = S

NP S

NP VP

V

to
VP

V

love

αwho = WH

who

αto love? = S

WH S

NP VP

V

to
VP

V

love

βclaims = S

NP VP

V

claims
S∗

βseems = VP

V

seems
VP∗

βdoes think = S

V

does
S

NP VP

V

think
S∗

[560]

A syntax-semantics interface for TAG through ACG

S

NP

Paul
VP

V

claims
S

NP

John
VP

V

loves
NP

Mary
(a) Derived tree

αloves

αJohn αMary βclaims

αPaul

1
22

ε

1

(b) Derivation tree

Figure 17:
TAG analysis of
Paul claims John
loves Mary

S

NP

Mary
S

NP

Paul
VP

V

claims
S

NP

John
VP

V

seems
VP

V

to
VP

V

love
(a) Derived tree

αto love

αJohn αMary βclaims

αPaul

βseems

21
1 2

1

22

(b) Derivation tree

Figure 18:
TAG analysis of
Mary, Paul claims
John seems to love

should scope over the love predicate. Moreover, the derivation tree
does not specify any scoping relation between the two auxiliary trees,
whereas we expect claim to semantically scope over seem.

Finally, (17) and the derivation tree of Figure 19(b) (p. 562) il-
lustrate how an element such as a wh-word can scope over a whole
sentence and all its predicates while providing a semantic argument
to the semantically “lowest” predicate (love).

To semantically account for these phenomena, we first extend
Σderivations and Gderived trees to represent the trees of Figure 16. Table 7
(p. 563) shows the new constants and their interpretations.23 The
terms c17, c18, and c19 in (18) represent the derivation trees of

23Despite αto love having two S nodes, its typing and its interpretation show
that S adjunction is only allowed at the root node.

[561]

Sylvain Pogodalla

S

WH

Who
S

V

does
S

NP

Peter
VP

V

think
S

NP

Paul
VP

V

claims
S

NP

John
VP

V

seems
VP

V

to
VP

V

love
(a) Derived tree

αto love?

αJohn αWho βclaims

αPaul βdoes think

αPeter

βseems

21
1 2

1 ε

21

22

(b) Derivation tree
Figure 19: TAG analysis of Who does Peter think Paul claims John seems to love

Figure 17(b), 18(b), and 19(b) respectively. We leave it to the reader
to check that the Gderived trees interpretations of theses terms are the
derived trees of the corresponding figures 17(a), 18(a), and 19(a)
respectively.
(18) c17 = cloves (cclaims IS IVP cPaul) IVP cJohn cMary

c18 = cto love (cclaims IS IVP cPaul) (cseems IVP) cMary cJohn

c19 = cto love? (cclaims (cdoes think IS IVP cPeter) IVP cPaul)

(cseems IVP) cwho cJohn

We now need to define the Gsem. interpretation that provides the
expected semantic dependencies. Table 8 (p. 563) shows the lexical
semantics fulfilling the requirements. The constant cloves scopes over
cclaims in the term c17 = cloves (cclaims IS IVP cPaul) IVP cJohn cMary,
as does αloves over αclaims in the derivation tree of Figure 17(b).
However, looking at Gsem.(cloves) in Table 8, we observe that its
first argument advS scopes over the love predicate. This argument
actually corresponds to the meaning of the auxiliary tree adjoined
at the S node of αloves. When it is replaced by some actual value,

[562]

A syntax-semantics interface for TAG through ACG

cwho : NP

Bderived trees γwho
γwho

∆
= NP1 who : T

cloves : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Bderived trees γloves
γloves

∆
= λoS a s o.S (S2 s (a (VP2 (V1 loves) o)))

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T ⊸ T

cto love : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Bderived trees γto love

γto love
∆
= λoS a o s.S2 o S ((S2 s (a (VP2 (V1 to) (VP1 (V1 love))))))

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T ⊸ T

cto love? : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Bderived trees γto love?

γto love?
∆
= λoS a w s.S (S2 w (S2 s (a (VP2 (V1 to) (VP1 (V1 love))))))

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T ⊸ T

cclaims : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ (S⊸ S)
Bderived trees γclaims

γclaims
∆
= λoS a s.λoc.S (S2 s (a (VP2 (V1 claims) c)))

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ (T ⊸ T)
cseems : (VP⊸ VP)⊸ (VP⊸ VP)

Bderived trees γseems

γseems
∆
= λoa v.a (VP2 (V1 seems) v)

: (T ⊸ T)⊸ (T ⊸ T)
cdoes think : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ (S⊸ S)

Bderived trees γdoes think
γdoes think

∆
= λoS a s.λoc.S2 (V1 does) (S (S2 s (a (VP2 (V1 think) c))))

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ (T ⊸ T)

Table 7:
Interpretation
by Gderived trees

cwho Bsem.λoP.WHO P

cloves Bsem.λoadvS advVP subj obj.advS (subj (advVP (λx .obj (λy.love x y))))

cto love Bsem.λoadvS advVP obj subj.advS (subj (advVP (λx .obj (λy.love x y))))

cto love? Bsem.λoadvS advVP wh subj.wh (λo y.advS (subj (advVP (λx .love x y))))

cclaims Bsem.λoadvS advVP subj comp.advS (subj (advVP (λx .claim x comp)))
cseems Bsem.λomod pred.mod (λx .seem x pred)
cdoes thinkBsem.λoadvS advVP subj comp.advS (subj (advVP (λx .think x comp)))

Table 8:
Interpretation
by Gsem. of the
Σderivations
vocabulary –
long distance
dependencies

[563]

Sylvain Pogodalla

for instance by the interpretation of (cclaims IS IVP cPaul), the pred-
icate in this actual value (here claim) then takes scope over love,
achieving the desired effect. The same holds for the advVP argu-
ment.

However, in Gsem.(cto love?), the wh argument takes scope over the
whole interpretation. This argument corresponds to themeaning of the
constituent to be substituted at the WH node of αto love? (see Figure 16),
typically λoP.WHO P : (e⊸ t)⊸ t, making WHO eventually take scope
over all the other predicates.

Equation (19) shows that the Gsem. interpretation builds the ex-
pected semantics with the required scope inversions. In terms of lexi-
cal semantics, the analysis and the account we propose are very close
to the one proposed in synchronous TAG (Nesson 2009, p. 142).

c17 = cloves (cclaims IS IVP cPaul) IVP cJohn cMary

Bsem. claim paul (love john mary)
c18 = cto love (cclaims IS IVP cPaul) (cseems IVP) cMary cJohn

Bsem. claim paul (seem john (λx .love x mary))
c19 = cto love? (cclaims (cdoes think IS IVP cPeter) IVP cPaul)

(cseems IVP) cwho cJohn

Bsem. WHO (λy.think peter (claim paul (seem john (λx .love x y))))

(19)

Remark 9. The interpretation of cloves, cto love, and cto love? are very
close to each other. Building large scale grammars would require some
factoring as can be done by lexical rules or meta-grammars (Candito
1996, 1999; Xia 2001; Xia et al. 2005; Crabbé et al. 2013). But in this
article, we give the terms corresponding to the actual elementary trees
that would be generated.
5.3.2 Quantification
We address in a similar way the mismatch between the scoping re-
lation of verbal predicates over quantifiers in derivation trees and
of quantifiers over verbal predicates in the logical semantic formu-
las. The trees of Figure 20 provide the TAG elementary trees for the
TAG analysis for (20) (resp. for (21)) shown in Figure 21 (resp. in
Figure 22).

[564]

A syntax-semantics interface for TAG through ACG

(20) Everyone loves someone.
(21) Every man loves some woman.

αsomeone = NP

someone
αeveryone = NP

everyone
αman = N

man
βsome = NP

Det

some
N∗

βevery = NP

Det

every
N∗

Figure 20:
Determiners and
quantifiers

S

NP

everyone
VP

V

loves
NP

someone
(a) Derived tree

αloves

αeveryone αsomeone

1 22

(b) Derivation tree

Figure 21:
TAG analysis of
everyone loves
someone

S

NP

Det

every
N

man

VP

V

loves
NP

Det

some
N

woman
(a) Derived tree

αloves

αman

βevery

αwoman

βsome

1

ε

22

ε

(b) Derivation tree

Figure 22:
TAG analysis of
every man loves
some woman

Remark 10. We follow the standard TAG analyses for determin-
ers (Abeillé 1990, 1993; XTAG Research Group 2001) where the latter
adjoin on initial trees anchored by nouns, in order, in particular, to
account for sequences of determiners (e.g., all these ideas) and mass
nouns. While the auxiliary trees βsome and βevery of Figure 20 look un-
usual because the root node and the foot node do not have the same
label, we can consider the label NP as a shorthand for the NP TAG
category together with a positive (NP[+]) determiner feature. On the

[565]

Sylvain Pogodalla

other hand, the N label is a shorthand for the NP TAG category together
with a negative (NP[−]) determiner feature. Kasper et al. (1995) and
others (Rogers 1999; Kahane et al. 2000) already noted that the dif-
ferences between the features on the root node and on the foot node
could be reflected in allowing auxiliary trees to have different labels
as root and foot nodes. While we discuss the modelling of features
in TAG more generally in Section 7, the NP and N notations allow
us to model the auxiliary trees of determiners with constants of the
usual N⊸ NP type (to be compared with a NP[−]⊸ NP[+] type). While
we could avoid introducing this distinction on the syntactic part of
the TAG modelling, and have every node labelled with N, this dis-
tinction is semantically meaningful and records the different interpre-
tation of N (as e → t) and NP (as (e → t) ⊸ t) (see Table 6(a) on
page 559).

The type of the constants modelling initial trees anchored by
nouns has to be modified accordingly: it specifies that it requires an
adjunction (an argument of type (N ⊸ NP)) before turning the noun
into a noun phrase NP. So the type of constants (e.g., cman) modelling
initial trees anchored by nouns (e.g., αman) is: (N⊸ NP)⊸ NP. It corre-
sponds to only keeping the constants that can indeed be used in actual
derivations. For each noun, we could instead introduce two constants
with the following types: (NP[−] ⊸ NP[−]) ⊸ NP[−] = (N ⊸ N) ⊸ N

and (NP[−] ⊸ NP[+]) ⊸ NP[+] = (N ⊸ NP) ⊸ NP, but since there is
no other constant that uses NP[−] = N as a type for its arguments
(i.e., substitution nodes),24 we only keep the constant with the last
type.

The derivation trees of Figure 21 and 22 are again such that the
elementary tree of the verb predicate dominates the other elementary
trees, while the respective scopes of their semantic contributions are in
the reverse order. To show how this apparent mismatch can be dealt
with, we extend Σderivations with the constants of Table 9. This ta-
ble also provides the interpretation of these constants by Gderived trees,
modelling the elementary trees of Figure 20. The terms of (22) be-
long toA (Gderived trees) and represent the derivation trees of Figure 21

24This of course depends on the grammar. In any case, if there were such a
constant, it would not allow for performing first the adjunction of a determiner
on the noun.

[566]

A syntax-semantics interface for TAG through ACG

Constants of Σderivations Interpretation by Gderived trees
cman : (N⊸ NP)⊸ NP λod.d (N1man)
csomeone : NP NP1 someone
ceveryone : NP NP1 everyone
csome : N⊸ NP λon.NP2 (Det1 some) n
cevery : N⊸ NP λon.NP2 (Det1 every) n

Table 9:
Interpretation of Σderivations constants
by Gderived trees

and 22. Equation (23) shows they are interpreted as the derived trees
of the same figures.

c21 = cloves IS IVP ceveryone csomeone

c22 = cloves IS IVP (cman cevery) (cwoman csome)
(22)

(23) c21 Bderived trees S2 (NP1 everyone) (VP2 (V1 loves) (NP1 someone))
c22 Bderived trees S2 (NP2 (Det1 every) (N1 man))

(VP2 (V1 loves) (NP2 (Det1 some) (N1 woman)))

Then we extend Gsem. with the interpretations of these new con-
stants of Σderivations as terms of Λ(Σlogic) (Table 10). The semantic
interpretations of the terms c21 and c22 are then as expected, as (24)
shows.

c21 Bsem. ∀x .(human x)⇒ (∃y.(human y)∧ (love x y))

c22 Bsem. ∀x .(man x)⇒ (∃y.(woman y)∧ (love x y))
(24)

cman Bsem.λoQ.λoq.Q man q

csomeoneBsem.λoQ.∃x .(human x)∧ (Q x)

ceveryoneBsem.λoQ.∀x .(human x)⇒ (Q x)

csome Bsem.λoP Q.∃x .(P x)∧ (Q x)

cevery Bsem.λoP Q.∀x .(P x)⇒ (Q x)

Table 10:
Interpretation by Gsem. of the
Σderivations vocabulary – quantification

This shows how to use the derivation tree as a pivot towards
the semantic representation of an expression. The (lexical) seman-
tic interpretation of the terms labelling the nodes of the derivation
tree encodes, when necessary, the inversion of the scope of the ele-
ments. This is reminiscent of the transformation of derivation trees

[567]

Sylvain Pogodalla

into semantic dependency graphs of Candito and Kahane (1998)
or Kallmeyer and Kuhlmann (2012). To this end, the latter imple-
ments a tree transduction-based approach (macro-tree transduction).
Maskharashvili and Pogodalla (2013) discuss the relation with the
present approach, relying on the encoding of macro-tree transduction
within second-order ACGs (Yoshinaka 2006).
Remark 11. There are several ways to get the object scope reading. So
far, the relative scopes of the subject and the object are bound to the
semantic interpretation of the verb (see the semantic interpretation of
cloves in Table 8 on page 563). So a possibility consists in introducing a
new constant cows

loves whose semantic interpretation reverses the scope,
as Equation (25) shows.
(25) cows

loves Bsem.
λoadvS advVP subj obj.advS (obj (λy.subj (advVP (λx .love x y))))

Another possibility, that would go beyond what is introduced in this
article, would be to use Multi-Component TAG (MCTAG: Weir 1988)
as Williford (1993) proposes. In both cases, some care should be taken
in order not to introduce spurious ambiguities. In Section 8.3, we pro-
vide another modelling that allows us to get this reading, and we relate
it to other approaches.
5.3.3 Multiple adjunctions
The representation of TAG derivation trees as abstract terms of an ACG
corresponds to the standard notion of derivation trees (Vijay-Shanker
1987). Schabes and Shieber (1994) call it dependent and advocate for
an alternative independent notion. With dependent derivations, and in
our approach, multiple adjunction on the same node is forbidden. So
the analysis of (26), using the trees of Figure 23, requires first the ad-
junction of βbig into βblack, and the adjunction of the result into αdog.
Figure 25(a) shows the resulting derivation tree. On the other hand,
the independent adjunction shown in Figure 25(b) only specifies that
both adjectives adjoin at the N node of the initial tree, correspond-
ing to both the derived tree of Figure 24(a) and the derived tree of
Figure 24(b).
(26) big black dog
(27) black big dog

[568]

A syntax-semantics interface for TAG through ACG

βbig = N

Adj

big
N∗

βblack = N

Adj

black
N∗

αdog = N

dog
Figure 23:
TAG elementary
trees for
adjectives

N

Adj

big
N

Adj

black
N

dog
(a) Derived tree for (26)

N

Adj

black
N

Adj

big
N

dog
(b) Derived tree for (27)

Figure 24:
Alternative
notions of
derived trees

αdog

βblack

βbig

ε

ε

(a) Dependent derivation tree

αdog

βblack βbig

ε ε

(b) Independent derivation tree

Figure 25:
Alternative
notions of
derivation trees

Schabes and Shieber (1994) present several arguments in favour
of multiple adjunction for auxiliary trees encoding modification (as
opposed to auxiliary trees encoding predication) and independent
derivations. We only discuss here the semantic argument they pro-
vide.25 The main concern again has to do with the relation between
derivation trees and semantic dependencies. The dependent derivation
of Figure 25(a) reflects “cascaded modifications” of the head, rather

25The two other main arguments relate to the addition of adjoining constraints
and to the addition of statistical parameters. Adding the latter to ACGs as a gen-
eral framework is ongoing work, and the effects on the particular case of the
TAG into ACG encoding will be considered from this perspective (Huot 2017).
The argument about adjoining constraints that fail to escape intervening adjunc-
tions is not related to the syntax-semantics interface and deserves a discussion
that is beyond the scope of this article. For instance, the example of the [+]
determiner feature (Section 5.3.2) that can percolate from the determiner (out-
most adjunction) to the noun, despite the intervening adjunctions of the adjec-
tives, shows that selectional restrictions can be implemented with long-distance
effects.

[569]

Sylvain Pogodalla

than more expected “separate modifications”, the latter being only
available through multiple adjunction. We show that we can actually
achieve this effect in our framework, without multiple adjunction, by
specifying a semantic interpretation for adjectives that encodes such
a behavior.

We consider the extension of Σderivations with the constants
of Table 11 and their interpretations by Gderived trees and Gsem. of
Table 12. The types of the the constants modelling adjectives fol-
low the types proposed for constants modelling nouns. The mod-
ification they introduce builds a NP from a N, and can itself take
a (N ⊸ NP) modification (adjunction) into account. Consequently,
they are of type (N ⊸ NP) ⊸ N ⊸ NP. As we did for the types of
the constants modelling nouns, we could enumerate the possible
types taking the determiner feature into account. Because the ad-
junction of an adjective does not change the determiner feature, its
value at the root node of the auxiliary tree only depends on what is
possibly adjoined to it. So we could have four constants with the
following types: (NP[−] ⊸ NP[−]) ⊸ (NP[−] ⊸ NP[−]), (NP[−] ⊸
NP[+]) ⊸ (NP[−] ⊸ NP[+]), (NP[+] ⊸ NP[−]) ⊸ (NP[+] ⊸ NP[−]),
and (NP[+] ⊸ NP[+]) ⊸ (NP[+] ⊸ NP[+]). But if we do not provide
a term for a fake adjunction (NP[−] ⊸ NP[−]), (NP[+] ⊸ NP[+]), or
(NP[+] ⊸ NP[−]) (as in the example grammar we have), such terms
can never be used in a S derivation. So we only keep the constants that
have type (NP[−]⊸ NP[+])⊸ (NP[−]⊸ NP[+]) = (N⊸ NP)⊸ N⊸ NP.

Equation (28) shows the interpretations of the term c25 : (N ⊸
NP) ⊸ NP (an expression missing a determiner of type (N ⊸ NP) to
provide a NP) that encodes the derivation tree of Figure 25(a) (p. 569).

Table 11:
Σderivations additional constants

cbig : (N⊸ NP)⊸ N⊸ NP

cblack : (N⊸ NP)⊸ N⊸ NP

cdog : (N⊸ NP)⊸ NP

Table 12:
Interpretation by Gsem. and
Gderived trees of the Σderivations

vocabulary – multiple adjunction

cbig Bderived trees λoa n.a (N2 (Adj1 big) n)

cblack Bderived trees λoa n.a (N2 (Adj1 black) n)

cdog Bderived trees λod.d (N1 dog)
cbig Bsem. λoQ n.λoq.Q (λx .(n x)∧ (big x)) q

cblack Bsem. λoQ n.λoq.Q (λx .(n x)∧ (black x)) q

cdog Bsem. λoQ.λoq.Q dog q

[570]

A syntax-semantics interface for TAG through ACG

The interpretation by Gsem. indeed provides a separate modification
of the same variable x as argument both of big and black (a similar
account would also be available in synchronous TAG).

c25 = λ
oD.cdog (cblack (cbig D))

Bderived trees λoD.D (N2 (Adj1 big) (N2 (Adj1 black) (N1 dog)))
Bsem. λoD.λoq.D (λx .((big x)∧ (black x))∧ (dog x)) q

(28)

Remark 12. By not introducing a constant IN : N⊸ NP in Σderivations,
we require actual adjunctions of determiners (of type (N ⊸ NP), e.g.,
csome) on nouns or on nouns modified by adjectives.

6 completing the tag into acg encoding
So far, the abstract signatures we used, in particular Σderivations, in-
troduce constants that are of order strictly greater than 2. This comes
in particular from the modelling of auxiliary trees as functions (typ-
ically of type X ⊸ X), hence from having constants of higher-order
type modelling the ability of a tree to take an auxiliary tree as an ar-
gument. From a theoretical point of view, we know this encoding can-
not faithfully model TAG: TAG languages are polynomially parsable,
and 3rd-order ACGs can generate languages in NP. Remark 8 (p. 557)
gives an example of an unexpected result of this encoding: there is no
way to distinguish the S⊸ S type of an abstract constant modelling an
auxiliary tree of foot node S from an abstract constant modelling an
elementary tree of root S with a substitution node S.
6.1 A vocabulary for TAG derivations: the ΣTAG signature
In order to allow for the distinction between these types, we intro-
duce atomic types (e.g., SA) that will be interpreted as the modifier
types of the constants modelling auxiliary trees. So in addition to
the ACG Gderived trees = 〈Σderivations,Σtrees,Lderived trees, S〉, we also de-
fine a higher-order signature ΣTAG = 〈ATAG, CTAG,τTAG〉 such that
ATAG = Aderivations ∪

∪
X∈Aderivations XA.

For any δanchor ∈ I∪A an elementary tree of G, Canchor is a con-
stant in CTAG with type X 1

A ⊸ · · ·⊸ X n
A ⊸ Y 1 ⊸ · · ·⊸ Y m ⊸ α where:

• the X i are the labels of the n internal nodes of δanchor labelled with
a non-terminal where an adjunction is possible (by convention we
use the breadth-first traversal);

[571]

Sylvain Pogodalla

• the Y i are the labels of the m leaves of δanchor labelled with non-
terminals, not counting the foot node if δanchor is an auxiliary tree,
of δanchor (by convention, we use the left-right order traversal);

• let Z be the label of the root node of δanchor. α = Z if δanchor ∈ I
is an initial tree, and α = ZA with Z the label of the root node if
δanchor ∈A is an auxiliary tree.

From the elementary trees of Figure 2 (p. 533), for instance, we get
the constants typed as (29) shows.

Csleeps : SA⊸ VPA⊸ NP⊸ S

CJohn : NP

Cseemingly : VPA⊸ VPA

(29)

Moreover, for each non-terminal X of the TAG grammar where
an adjunction can occur, we also define IX : XA. These constants play
a similar role as the IX constants in Σderivations: they are used when a
TAG derivation does not involve adjunctions on sites where it would
be possible to have them.

Then the set of typed constants ofΣTAG is CTAG = {Canchor| δanchor
∈ I∪A} ∪ {IX | X ∈ V 0} and τTAG is the associated typing function de-
fined as above. The typing provided by ΣTAG now distinguishes the
type of the encoding of an elementary tree of root Swith a substitution
node S (type S ⊸ S) and the encoding of an auxiliary tree with root
and foot nodes labelled by S (type SA, see Remark 8, p. 557).

We now need to relate the terms of Λ(ΣTAG) to the terms of
Λ(Σderivations) by a suitable interpretation.

6.2 Interpreting ΣTAG into Λ(Σderivations): the GTAG ACG
We now can relate ΣTAG and Λ(Σderivations) through a new ACG
GTAG = 〈ΣTAG,Σderivations,LTAG, S〉 where LTAG is such that:

• for all α ∈ ATAG, if α = XA then LTAG(α) = LTAG(XA) = X ′′ ⊸ X ′
with, most of the time, X = X ′ = X ′′ (see footnote 18 (p. 553)
and Remark 13, next page), otherwise α = X ∈ Aderivations andLTAG(α) =LTAG(X) = X ;

• for all Canchor ∈ CTAG, LTAG(Canchor) = canchor.

[572]

A syntax-semantics interface for TAG through ACG

By construction of the constants canchor ∈ Cderivations (Section. 4.3),
and by construction of the constants Canchor ∈ CTAG, LTAG is well
defined.

Table 13 sums up the constants corresponding to the elemen-
tary trees introduced so far as well as their interpretations. Be-
cause constants are interpreted as constants, the terms of Λ(ΣTAG)
and their interpretations are isomorphic. However, some terms of
Λ(Σderivations) have no antecedent in LTAG. For instance, the term

Types and constants of ΣTAG Their interpretations in Λ(Σderivations)
NP NP

S S

VP VP

N N

WH WH

VPA VP⊸ VP

SA S⊸ S

NA N⊸ NP

CJohn : NP cJohn : NP
Csleeps : SA⊸ VPA⊸ NP⊸ S csleeps : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ S

Cseemingly : VPA⊸ VPA cseemingly : (VP⊸ VP)⊸ VP⊸ VP

Cusually : VPA⊸ VPA cusually : (VP⊸ VP)⊸ VP⊸ VP

Chence : SA⊸ SA chence : (S⊸ S)⊸ S⊸ S

IS : SA IS : S⊸ S

IVP : VPA IVP : VP⊸ VP

Cmatters : VPA⊸ S⊸ S cmatters : (VP⊸ VP)⊸ S⊸ S

Cwho : NP cwho : NP
Cloves : SA⊸ VPA⊸ NP⊸ NP cloves : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Cto love : SA⊸ VPA⊸ NP⊸ NP cto love : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Cto love? : SA⊸ VPA⊸ NP⊸ NP cto love? : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Cclaims : SA⊸ VPA⊸ NP⊸ SA cclaims : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ (S⊸ S)
Cseems : VPA⊸ VPA cseems : (VP⊸ VP)⊸ (VP⊸ VP)
Cdoes think : SA⊸ VPA⊸ NP⊸ SA cdoes think : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ (S⊸ S)
Cman : NA⊸ NP cman : (N⊸ NP)⊸ NP

Csomeone : NP csomeone : NP
Ceveryone : NP ceveryone : NP
Csome : NA csome : N⊸ NP

Cevery : NA cevery : N⊸ NP

Cbig : NA⊸ NA cbig : (N⊸ NP)⊸ N⊸ NP

Cblack : NA⊸ NA cblack : (N⊸ NP)⊸ N⊸ NP

Cdog : NA⊸ NP cdog : (N⊸ NP)⊸ NP

Table 13:
ΣTAG constants
and their
interpretation
by LTAG

[573]

Sylvain Pogodalla

csleeps (cmatters IVP) IVP cJohn : S ∈ A (Gderived trees), where cmatters :
(VP⊸ VP)⊸ S⊸ S corresponds to the initial tree αmatters of Figure 26,
as in To arrive on time matters considerably (see XTAG Research Group
2001, Section 6.31), has no antecedent. This is because the type of
cmatters IVP : S ⊸ S in Gderived trees, while it encodes an initial tree, is
the same as the type of a term encoding an adjunction on a S node
(see Remark 8 p. 557). But this is not true anymore at the level of
GTAG where Cmatters IVP : S ⊸ S but the type of a term encoding an
adjunction on a S node is now SA.

Figure 26:
Initial tree for matters

(the S leaf is a substitution node)

S

S VP

V

matters

So ΣTAG allows us to add control on the admissible derivation
structures thatΣderivations can provide. The general architecture is now
the one of Figure 15 (p. 557). Moreover, this architecture allows us
to provide, by function composition, a semantic interpretation to the
constants of ΣTAG. Interestingly, this semantic interpretation derives
from the more general constructions that Σderivations enables.

ΣTAG strictly follows the abstract signature definition proposed
by de Groote (2002) to encode the syntactic part of TAGs. The correct-
ness of our encoding follows from the fact that the ACG Gderived trees ◦GTAG we get by function composition is the ACG defined by de Groote
(2002).
Remark 13. Because the modelling of adjunction is now controlled by
the interpretation of the types XA from ΣTAG, we see that we can have
more freedom in the type that is given in Σderivations. For instance, we
can set NA BTAG N ⊸ NP. We can use even more complex interpreta-
tions if it helps explaining the semantic interpretation. For instance,
in Section 7.2 we introduce a type S′A BTAG (NP ⊸ S) ⊸ S to model
control verbs.

We can now consider the ACG Gyield ◦ Gderived trees ◦ GTAG, that
interprets terms of Λ(ΣTAG) into strings, and the ACG Gsem. ◦ GTAG,
that interprets terms of Λ(ΣTAG) into logical formulas (see Figure 15,

[574]

http://www.cis.upenn.edu/~xtag/tech-report/node62.html

A syntax-semantics interface for TAG through ACG

p. 557). Because ΣTAG is second-order, these two ACGs are second-
order (while Gyield ◦Gderived trees and Gsem. are not, since Σderivations is
not second-order). Hence the parsing result applies and we may parse
terms with ACGs that have ΣTAG as abstract vocabulary, in particular
with the ACG toolkit. The ACG example files we provide can, for in-
stance, parse the string every+big+black+dog+usually+barks. It can
also parse the logical formula ∀x .(((dog x) ∧ (black x)) ∧ (big x)) ⇒
(usually (bark x)). Note that, as a λ-term, a logical formula can gen-
erally not be replaced by a logically equivalent formula. This is an
instance of the problem of logical-form equivalence (Shieber 1993)
that will need to be addressed, for instance using sets of λ-terms as
input (Kanazawa 2017, Section 4.2). More examples are available in
the example files.

7 adjoining constraints and features

It is part of the TAG formalism to specify if an internal node may, may
not, or must receive any adjunction. The latter case is called an obliga-
tory adjoining (OA) constraint. In case an internal node can be subject
to an adjunction operation, it is also possible to specify a restricted
set of auxiliary trees, with relevant root and foot nodes, that can ad-
join. This constraint is called a selective adjoining (SA) constraint. There
are different ways to specify such constraints in TAG. One is to add
features to the formalism. ACGs do not provide a concise way to ex-
press the abstract representation of type constraints that features of-
fer. There have been some proposals with dependent types (de Groote
and Maarek 2007; de Groote et al. 2007; Pompigne 2013), but the
underlying calculus does not have the expected good properties. So
selection restriction has to be expressed by introducing as many types
as necessary (see Section 5.3.2 for determiners and Section 5.3.3 for
adjectives). To avoid the drawback of a growing size of the grammar,
the addition of features, in particular morpho-syntactic ones, to ACGs
remains desirable.

Note, however, that we do not want to consider features that are
used to model the syntax-semantics interface (Kallmeyer and Romero
2004, 2008), since we use the interpretation of derivation trees in-
stead. We discuss the relation between the two approaches in Sec-
tion 7.3.

[575]

Sylvain Pogodalla

7.1 Obligatory adjoining constraints
Section 5.3.3 presents an instance of an adjoining constraint, namely
an obligatory adjoining constraint. In order to form a NP, a determiner
of type (N ⊸ NP) needs to be adjoined (directly or through adjectival
modifications) into a noun. The obligatory nature of the adjunction is
reflected by the fact that the abstract vocabulary does not provide any
constant IN : N⊸ NP simulating a fake adjunction.

7.2 Selective adjoining constraints
In Section 5.3.2, we saw an instance of using features in a TAG analy-
sis: noun phrases can receive a determiner feature [+] or [−] indicating
whether they are determined. The ACG way to account for this dis-
tinction instead consists in introducing different (atomic) types. This
corresponds to specifying local adjunction constraints by enumeration
as in TAG and contrary to Feature-based TAG (FTAG: Vijay-Shanker
and Joshi 1988, 1991).

As noticed in Remark 13 (p. 574), the key here is to model aux-
iliary trees using an atomic type XA, so that the ACG is second-order,
and to interpret this type as a functional type X ′′ ⊸ X ′ of Σderivations,
without the actual requirement that X ′′ and X ′ are atomic or that
X ′′ = X ′ = X . We illustrate such an encoding with the TAG analysis
of control verbs.

TAG analyzes a sentence such as (30) with an adjunction of the
subject control verb wants on the reduced clause to sleep as Figure 28
shows. Figure 27 presents the elementary trees of the control verb and
of the infinitive clause. This is similar to representing infinitive clauses
as clauses without subjects (Abeillé 2002). For the sake of simplicity,
we directly represent such a clause as an elementary tree with a PRO

node.
Control and adjunction are enforced using a control feature on

the S root node of the complement tree (control in XTAG (XTAG
Research Group 2001, p. 98), or some semantic index idx (Gardent
and Parmentier 2005; Gardent 2008)) that is to be provided by the
foot node of the auxiliary tree (the control verb) which is adjoined.
Moreover, in the auxiliary tree, the control feature on the foot node is
co-indexed with a control feature on the subject NP (for subject control,
as in (30)) or on the object NP (for object control). Figure 28 shows

[576]

A syntax-semantics interface for TAG through ACG

βJohn = NP

John
[idx= j]

βwants = S

NP VP

V

wants
S∗

[idx= x]

[idx= x]

αto sleep = S

NP

PRO

ε

VP

to sleep

[idx= y]

Figure 27:
Elementary trees
for control verbs

S

NP

John
VP

V

wants
S

NP

PRO

ε

VP

to sleep

[idx= j]
[idx= x]

[idx= x]∧ [idx= y]

(a) Derived tree

αto sleep

βwants

αJohn

ε

(b) Derivation tree

Figure 28:
TAG analysis of
control

the derived tree, where, by unification of the top and bottom features,
we eventually get x = y = j, and the derivation tree for (30).
(30) John wants to sleep

In our ACG encoding, we model S nodes with a control feature
with the functional type NP⊸ S, expressing that such a clause is miss-
ing its subject. Consequently, the type of the constant cwants that mod-
els the auxiliary tree βwants is (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ (NP⊸ S)⊸ S.
The end part (NP⊸ S)⊸ S of this type corresponds to the functional in-
terpretation of the adjunction of control verbs, modelled at the ΣTAG
level with the atomic type S′A. The difference between the type (NP⊸ S)
of the argument and the type S of the result corresponds to the differ-
ent feature set attached to the root node and to the foot node of the
auxiliary tree.

Then we model the feature sharing between the subject NP and
the S foot node of the control verb in the semantic interpretation of
the latter, as the second line of Table 16 shows: the first argument x
of want x (pred (λoP.P x)) also appears (type raised as (λoP.P x)) as

[577]

Sylvain Pogodalla
Table 14:

GTAG extension –
control verbs

Types and constants of ΣTAG Their interpretations in Λ(Σderivations)
S′A (NP⊸ S)⊸ S

Cwants : SA⊸ VPA⊸ NP⊸ S′A cwants : (S⊸ S)⊸ (VP⊸ VP)
⊸ NP⊸ (NP⊸ S)⊸ S

Cto sleep : S′A⊸ S cto sleep : ((NP⊸ S)⊸ S)⊸ S

Table 15:
Gderived trees
extension –

control verbs

cwants Bderived trees λoadvS advVP subj pred.
advS (S2 subj (advVP (VP2 (V1 wants) (pred (PRO1 ε)))))

cto sleep Bderived trees λocont.cont(λosubj.S2 (NP1 subj) (VP2 (V1 to) (VP1 sleep)))

Table 16:
Σlogic and Gsem.

extension –
control verbs

want : e⊸ t ⊸ t
cwants Bsem. λoadvS advVP subj pred.advS (subj (advVP

(λx .want x (pred (λoP.P x)))))
cto sleep Bsem. λocont.cont(λosubj.subj (λx .sleep x))

the argument of pred, the latter corresponding to the semantics of the
infinitive clause without subject.

Let C28 of Λ(ΣTAG) in (31) represent the derivation tree of
Figure 28, and let c28 be its interpretation in Λ(Σderivations). We can
further interpret c28 in Λ(Σtrees) (resp. in Λ(Σlogic)) in order to have a
term representing the associated derived tree (resp. semantics).

C28 = Cto sleep (Cwants IS IVP CJohn)

Bderivations c28

c28 = cto sleep (cwants IS IVP cJohn)

Bderived trees S2 (NP1 John) (VP2 (V1 wants)
(S2 (NP1 (PRO1 ε)) (VP2 (V1 to) (VP1 sleep))))

Bsem. want john (sleep john)

(31)

7.3 Feature sharing and semantic computation
As the previous section shows, features in TAG are taken into account
in the ACG encoding using the typing discipline on the one hand, and
using the (semantic) interpretation on the other hand, in particular
when some value has to be shared in order to express the modifications
performed by adjunction operations.

Unification based approaches to semantic construction in TAG
typically rely on feature sharing (Gardent and Kallmeyer 2003; Gar-
dent and Parmentier 2005; Kallmeyer and Romero 2008) in order to

[578]

A syntax-semantics interface for TAG through ACG

compositionally build the semantic representation of a sentence. In
our approach, the semantic representation results from the interpre-
tation of the derivation tree.

However, Vijay-Shanker and Joshi (1988, p. 718) already noticed
that “[t]his treatment [of variable instantiation on adjunction] can be
obtained if we think of the auxiliary tree as corresponding to functions
over feature structures (by λ-abstracting the variable corresponding to
the feature structure for the tree that will appear below the foot node).
Adjunction corresponds to applying this function to the feature struc-
ture corresponding to the subtree below the node where [it] takes
place”. This is precisely the view we adopt here. While the typing ex-
erts control over the admissible derivation structures, the associated
computations are managed using interpretations, to compute the de-
rived trees as well as the logical formulas.
8 derivation trees

and semantic interpretations
Looking at Figure 15 (p. 557), we can consider each of the sets of λ-
terms as independent combinatorial systems of the grammar architec-
ture that Jackendoff (2002) describes: “Language comprises a number
of independent combinatorial systems which are aligned with each
other by means of a collection of interface systems. Syntax is among
the combinatorial systems, but far from the only one”.

Among those systems, Λ(Σderivations) and Λ(ΣTAG) play a central
role as their structures are the ones that are interpreted as derived trees
(and as strings, by functional composition) and as logical formulas.
This is not the role of the syntactic trees of Λ(Σtrees). This emphasises
that the relevant syntactic algebra to provide compositional analyses
for TAG, as was noticed very early, is not the one of derived trees, but
the one of derivation trees. This section further explores the modelling
power it provides.

In particular, the composition of the inverse of a function and a
function defines the relation (the “interface”) between Λ(Σtrees) and
Λ(Σlogic) as Gsem. ◦G−1

derived trees. In general, such a composition is not a
function, allowing for relating a derived tree (even more a string) with
several logical formulas, and vice versa. This follows the observation
of Culicover and Jackendoff (2005) that “[t]he combinatorial princi-
ples of syntax and semantics are independent; there is no ‘rule-to-rule’

[579]

Sylvain Pogodalla

homomorphism. (…) [T]he mapping between syntactic and seman-
tic combinatoriality is many-to-many”. However, we implement the
many-to-many relation with homomorphisms and inverses of homo-
morphisms.

In this section, we illustrate the power of this architecture that
makes derivation structures a full grammatical object with three phe-
nomena: idioms, subordinating conjunctions with reduced clauses,
and scope ambiguity. For idioms, we use the fact that derivation struc-
tures are first-class citizens of the formalism. While this could also be
expressed in TAG (for instance following the interpretation of deriva-
tion trees provided by Shieber 1994), this naturally fits our architec-
ture. For subordinating conjunctions, we rely on the fact that the typ-
ing of abstract terms does not need to stick to the tree structure, and
in particular to the Gorn addresses, unlike derivation trees in TAG,
extending the modelling capabilities. Finally, for scope ambiguity, we
show how our approach can take into account analyses from other
formalisms, such as categorial and type-logical grammars. We do this
remaining in the ACG model, contrary to the TAG extension (TAG
with cosubstitution, Barker 2010) to which it corresponds. Other ex-
amples that go beyond TAG capabilities are discussed in Section 9, in
particular for discourse parsing.
8.1 Idioms
Because TAGs provide whole fragments of phrase structures, they can
encode the rigid parts of idioms as well as the ones that are subject
to possible modifications. Moreover, the role of the derivation struc-
ture as a bridge to semantic interpretation nicely captures the rela-
tion between a composed syntax and an atomic meaning. With the
ACG encoding of TAG, Kobele (2012) shows that we can introduce
a constant term that is interpreted as the combination (by adjunc-
tion or substitution) of several elementary trees. It goes beyond the
previous approaches (Abeillé and Schabes 1989; Shieber and Schabes
1990; Abeillé 1995) in that the derived tree does not need to be an
elementary tree of the grammar, but is instead the result of a partial
derivation.

We illustrate this with (32):

(32) John kicked the bucket.

[580]

A syntax-semantics interface for TAG through ACG

Figure 29 presents the initial trees that allow us to analyze (32) as
the literal expression, with a compositional meaning built out of the
composition of the initial trees αJohn, αkicked, βthe, and αbucket. We ac-
tually syntactically analyze the idiomatic expression the same way,
except that the combination of αkicked, βthe, and αbucket is also con-
sidered as the interpretation of the constant ckicked the bucket. We use
ckicked the bucket in the idiomatic derivation in Figure 30(c) to stress
that there is no corresponding elementary tree. The ACG abstract
term we get really corresponds to this derivation, as the term C30(c)

of Equation (33) shows. In both cases, the derived tree is the same
(Figure 30(a)). However, the derivation trees differ, as Figure 30(b)
and Figure 30(c) show.
αkicked = S

NP VP

V

kicked
NP

αbucket = N

bucket
βthe = NP

Det

the
N∗

Figure 29:
Elementary trees
to analyze
kick the bucket

S

NP

John
VP

V

kicked
NP

Det

the
N

bucket
(a) Derived tree

αkicked

αJohn αbucket

βthe

1 22

ε

(b) Literal derivation

ckicked the bucket

αJohn

1

(c) Idiomatic derivation

Figure 30:
Derived tree and
derivation trees
for John kicked
the bucket

Table 18 (p. 582) shows how the interpretation of the constant ab-
stract term for the idiom is interpreted, syntactically (by Gderived trees)
but not semantically (by Gsem.), as the interpretation of the partial
derivation λos a subj.ckicked s a subj (cbucket cthe). Then, according to
the lexicons of Tables 17, 18, and 19, (33), (34), (35), and (36) hold.
They show that the two terms C30(b) and C30(c) have the same inter-
pretations as derived tree by Gderived trees. But they have two different
interpretations as logical formulas by the ACG Gsem..

C30(b) = Ckicked IS IVP CJohn (Cbucket Cthe)

C30(c) = Ckicked the bucket IS IVP CJohn
(33)

[581]

Sylvain Pogodalla

Table 17:
TAG elementary
tree encoding as
Λ(Σtrees) terms

Corresponding
Terms of Λ(Σtrees) TAG

elementary tree
γkicked

∆
= λoS a s o.S (S2 s (a (VP2 (V1 kicked) o))) αkicked
: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T ⊸ T

γbucket
∆
= λod.d (N1 bucket) αbucket
: (T ⊸ T)⊸ T

γthe
∆
= λon.NP2 (Det1 the) n βthe
: T ⊸ T

γkicked the bucket
∆
= λoS a s.S (S2 s (a (VP2 (V1 kicked) None: composed

(NP2 (Det1 the)(N1 bucket))))) from αkicked,βthe,
: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T and αbucket

Table 18:
Constants of
Σderivations and

their
interpretation by
Gderived trees and

Gsem.

ckicked : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ NP⊸ S

Bderived trees γkicked
Bsem. λos a subj obj.s (subj (a (λx .obj (λy.kick x y))))

cthe : N⊸ NP

Bderived trees γthe
Bsem. λoP Q.∃! x .(P x)∧ (Q x)

cbucket : (N⊸ NP)⊸ NP

Bderived trees γbucket
Bsem. λoQ.Q bucket

ckicked the bucket : (S⊸ S)⊸ (VP⊸ VP)⊸ NP⊸ S

Bderived trees λos a subj.(Gderived trees(ckicked)) s a subj
((Gderived trees(cbucket)) (Gderived trees(cthe)))

Bderived trees λos a subj.γkicked s a subj (γbucket γthe)
Bsem. λos a subj.s (subj (a (λx .die x)))

Table 19:
Constants of

ΣTAG and their
interpretation by

GTAG

Ckicked : SA⊸ VPA⊸ NP⊸ NP⊸ S

BTAG ckicked
Cthe : NA

BTAG cthe
Cbucket NA⊸ NP

BTAG cbucket
Ckicked the bucket SA⊸ VPA⊸ NP⊸ S

BTAG ckicked the bucket

[582]

A syntax-semantics interface for TAG through ACG

GTAG(C30(b)) = ckicked IS IVP cJohn (cbucket cthe)

GTAG(C30(c)) = ckicked the bucket IS IVP cJohn
(34)

Gderived trees ◦ GTAG(C30(b)) = S2 (NP1 John) (VP2 (V1 kicked)
(NP2 (Det1 the) (N1 bucket)))

= Gderived trees ◦ GTAG(C30(c))

(35)

Gsem. ◦ GTAG(C30(b)) = ∃! x .(bucket x)∧ (kick john x)

Gsem. ◦ GTAG(C30(c)) = die john(36)

8.2 Subordinating conjunctions
We saw in Section 7.2 that infinitive clauses behave like clauses miss-
ing a subject. In this case, the matrix clause (control verb) adjoins on
the infinitive clause. As the latter is an argument of the modifier, we
could use an extra S′A type that was interpreted as (NP ⊸ S) ⊸ S and
make the modifier fill the semantic subject with its own subject.

In the case of subordinating conjunctions, as in (37), it is the sub-
ordinate clause that adjoins on the matrix clause and uses it as ar-
gument, as Figure 31 shows: the substitution node S is meant for the
reduced infinitive clause, and the foot node for adjoining into the ma-
trix clause. But if the latter is interpreted as a full proposition, there is
no way to decompose it so that its subject also fills the semantic subject
position of the subordinate clause.

(37) In order to arrive on time, a man left early

αto arrive = S

NP VP

V

to
VP

arrive

βin order = S

S

Conj

in order
S

S∗
αleft = S

NP VP

V

left
βon time = VP

VP∗ Adv

on time

βearly = VP

VP∗ Adv

early

Figure 31:
Auxiliary trees
for subordinate
conjuncts

[583]

Sylvain Pogodalla

The solution we propose uses the flexible link between the deriva-
tion and the derived trees. The constraints ACGs set on this link have to
do with the type, not with the term (provided the typing is preserved).
In particular:

• there is no need for an adjunction on a Sn node of a term in
Λ(Σtrees) to be the image of a term (in Λ(Σderivations)) of type S.
We already used this feature;

• there is no need for an actual node in the derived tree to allow for
an adjunction.
In order to implement the solution, terms for verbs such as cleft in

Table 20 have an additional argument of type ((NP ⊸ S) ⊸ (NP ⊸ S))
corresponding to the type of the auxiliary trees of subordinate clauses.
The latter results for instance from the substitution of an infinitive
clause of type (NP⊸ S) into the term standing for the initial tree of a
subordinating conjunction such as cin order. We can consider this ad-
ditional argument as an additional possibility to get an adjunction on
the S root node (the same node where a S⊸ S adjunction is possible).
As usual, in case no actual adjunction of a subordinate clause occurs,
we use the INP⊸S constant which is interpreted (syntactically and se-
mantically) as the identity function.

Table 20:
Constants of
Σderivations and

their
interpretation
by Gderived trees

and Gsem.

cleft : (S⊸ S)⊸ ((NP⊸ S)⊸ (NP⊸ S))⊸ (VP⊸ VP)⊸ NP⊸ S

Bderived trees γleft
Bsem. λos sub a subj.sub (λosubj′.s (subj′ (a (λx .leave x)))) subj

cto arrive : (VP⊸ VP)⊸ NP⊸ S

Bderived trees γto arrive
Bsem. λoadvVP subj.subj (advVP (λx .arrive x))

cin order : (NP⊸ S)⊸ ((NP⊸ S)⊸ (NP⊸ S))
Bderived trees γin order
Bsem. λoP Q subj.subj(λx .goal (P (λop.p x)) (Q (λop.p x)))

INP⊸S : (NP⊸ S)⊸ (NP⊸ S)
Bderived trees λox .x
Bsem. λox .x

cearly : VP⊸ VP

Bderived trees λox .VP2 x (Adv1 early)
Bsem. λop.λx .early(p x)

con time : VP⊸ VP

Bderived trees λox .VP2 x (Adv1 on time)
Bsem. λop.λx .on_time(p x)

[584]

A syntax-semantics interface for TAG through ACG

We can observe in Gderived trees(cleft) = γleft how the subordinate
clause is inserted. The latter corresponds to the sub argument in γleft
in Table 22 (p. 586). It takes as an argument the whole S rooted sub-
tree over which the NP subject is abstracted (with λos′) and the actual
subject subj of the matrix clause. So it is the subordinate clause that
is responsible for first applying the matrix clause to its subject before
plugging in the resulting tree at the foot node. We can observe this
behavior in γin order: the sub argument corresponds to the infinitive
subordinate clause to be substituted in βin order, while the matrix ar-
gument corresponds to the matrix clause into which it adjoins and to
which the subj argument is given, as the subterm (matrix subj) shows.

As before, the higher-order types at the level of Σderivations are
interpretations of atomic types of ΣTAG. In particular, we introduce
the atomic type S′′A BTAG (NP⊸ S)⊸ (NP⊸ S) (resp. Sws BTAG NP⊸ S)
for the reduced subordinate clauses (resp. for the infinitive clause that
occurs in subordinate clauses) as Table 21 shows.

S′′A BTAG (NP⊸ S)⊸ (NP⊸ S)
Sws BTAG NP⊸ S

Cleft : SA⊸ S′′A ⊸ VPA⊸ NP⊸ S

BTAG cleft
Cto arrive : VPA⊸ Sws

BTAG cto arrive
Cin order : Sws ⊸ S′′A

BTAG cin order
IS′′ : S′′A

BTAG INP⊸S
Cearly : VPA

BTAG cearly
Con time : VPA

BTAG con time

Table 21:
Constants of ΣTAG
and their interpretation by GTAG

With the lexicon of Tables 20, 21, and 22, we can build terms that
correspond to the derivation and derived trees of Figure 32 as (38),
(39), and (40) show.26 We compute the semantic interpretation as
in (41).

26Note that all terms corresponding to initial trees where the adjunction of
a subordinate clause can occur should have the extra argument added. For the
sake of simplicity, only Cleft and cleft are modified here.

[585]

Sylvain Pogodalla
Table 22: TAG elementary tree encoding as Λ(Σtrees) terms

Corresponding
Terms of Λ(Σtrees) TAG

elementary tree
γleft = λoS sub a subj obj. αleft

S (sub (λos′.S2 s′ (a (VP1 (V1 left)))) subj)
: (T ⊸ T)⊸ ((T ⊸ T)⊸ (T ⊸ T))⊸ (T ⊸ T)⊸ T ⊸ T ⊸ T

γto arrive = λoa s.S2 (NP1 s) (a (VP2 (V1 to) (VP1 arrive))) αto arrive
: (T ⊸ T)⊸ T ⊸ T

γin order = λosub matrix subj. βin order
S2 (S2 (Conj1 in order) (sub (PRO1 ε))) (matrix subj)

: (T ⊸ T)⊸ (T ⊸ T)⊸ T ⊸ T

S

S

Conj

in order
S

NP

PRO

ε

VP

VP

V

to
VP

arrive

Adv

on time

S

NP

Det

a
N

man

VP

VP

V

left

Adv

early

(a) Derived tree

αleft

αman

βa

βin order

αto arrive

βon time

βearly

1

ε

ε

12

2

2

(b) Derivation tree
Figure 32: Derived tree and derivation tree for In order to arrive on time, a man
left early

(38) C32 = Cleft IS (Cin order (Cto arrive Con time)) Cearly (Cman Ca)

(39) GTAG(C32) = cleft IS (cin order (cto arrive con time)) cearly (cman ca)

(40) Gderived trees ◦ GTAG(C32) =

S2 (S2 (Conj1 in order) (S2 (NP1 (PRO1 ε))(VP2

(VP2 (V1to) (VP1 arrive))(Adv1 on time))))
(S2 (NP2 (Det1 a) (N1 man))

(VP2 (VP1 (V1 left)) (Adv1 early)))

[586]

A syntax-semantics interface for TAG through ACG

(41) Gsem. ◦ GTAG(C32) = ∃x .(man x)
∧ (goal(on_time(arrive x))(early(leave x)))

Because GTAG is still second-order, parsing is available. Parsing
the logical term t logic32 (see (42)) results in the term t32 : S ofA (Gsem. ◦
GTAG). This is the same term of A (Gyield ◦ Gderived trees ◦ GTAG) that
we get when parsing tstring32 .

t logic32 = ∃x .(man x)∧ (goal(on_time(arrive x))(early(leave x)))(42)

tstring32 = in+ order+ to+ arrive+ on+ time+ a+man+ left+ early
(43)

t32 = Cleft IS (Cin order (Cto arrive Con time)) Cearly (Cman Ca)(44)

8.3 Scope ambiguity and non-functional form-meaning relation
The phenomena we have modelled so far make use of derivation struc-
tures (either in Λ(Σderivations) or in Λ(ΣTAG)) that are very close (ho-
momorphic) to TAG derivation trees. As we can see in Figure 15
(p. 557), the relation between TAG derivations as terms of Λ(ΣTAG)
and terms of Λ(Σlogic) is functional (encoded by the composition
Gsem.◦GTAG). The non-functional relation is between terms ofΛ(Σtrees)
and terms of Λ(Σlogic) (encoded by the relation Gsem.◦G−1

derived trees). Sobecause there are two derivation trees for John kicked the bucket, there
are two possible semantic interpretations. But with only one deriva-
tion tree for every man loves some woman, there is only one possible se-
mantic interpretation. A possible solution to this problem is to use an
underspecified representation formalism instead of higher-order logic
to represent the semantics, as Pogodalla (2004a) proposes.

We present here another solution. It uses the power of higher-
order typing of the abstract terms in order to provide TAGs with a rela-
tion between TAG derivation trees and meanings that is not functional.
Nevertheless, our grammatical architecture only appeals to homomor-
phisms. We introduce an abstract vocabulary ΣCoTAG and two ACGs.
The first one, GCoTAG, maps terms of Λ(ΣCoTAG) to terms of Λ(ΣTAG),
i.e., TAG derivation trees. The second one, Gco-sem., maps terms of
Λ(ΣCoTAG) to terms of Λ(Σlogic). It then provides a relation between
Λ(ΣTAG) andΛ(Σlogic) asGco-sem.◦G−1

CoTAG as Figure 33 (p. 588) shows.
The derivation tree (in Λ(ΣTAG)) of every man loves some woman, for

[587]

Sylvain Pogodalla
Figure 33:

ACG composition
for TAG and

CoTAG

Λ(Σderivations)

Λ(ΣTAG)

GTAG

Λ(ΣCoTAG)GCoTAG

Λ(Σtrees)

Gderived trees

Λ(Σstrings)
Gyield

Λ(Σlogic)

Gsem.

Gco-sem.

Table 23:
Constants of

ΣCoTAG and their
interpretation by

GCoTAG

LJohn : NP BCoTAG CJohn

Lloves : SA⊸ VPA⊸ NP⊸ NPS BCoTAG Cloves

Leveryone : (NP⊸ S)⊸ S BCoTAG λoP.P Ceveryone

Lsomeone : (NP⊸ S)⊸ S BCoTAG λoP.P Csomeone

Levery : NA BCoTAG Cevery

Lsome : NA BCoTAG Csome

Lman : NA⊸ (NP⊸ S)⊸ S BCoTAG λodet P.P (Cman det)
Lwoman : NA⊸ (NP⊸ S)⊸ S BCoTAG λodet P.P (Cwoman det)

instance, will have two antecedents in Λ(ΣCoTAG), hence two semantic
interpretations.

The idea is to use the type-raising methods of categorial and
type-logical grammars. So, corresponding to a term Ceveryone : NP in
ΣTAG, we have a term Leveryone : (NP ⊸ S) ⊸ S in ΣCoTAG such that
GCoTAG(Leveryone) = λoP.P Ceveryone. More generally, whenever a term
of type A occurring within a constituent of type B can take scope over
this term, we associate to Cscoping : A1 ⊸ . . . ⊸ An ⊸ A in ΣTAG a
term Lscoping : A1 ⊸ . . . ⊸ An ⊸ (A ⊸ B) ⊸ B in ΣCoTAG such that
GCoTAG(Lscoping) = λox1 . . . xn.λoP.P (Cscoping x1 · · · xn). For other lexi-
cal items Clex. item : α, we have Llex.item : α such thatGCoTAG(Llex.item) =
Clex. item. And for any atomic type A, GCoTAG(A) = A. Table 23 ex-
emplifies the approach for quantified noun phrases (note that proper

[588]

A syntax-semantics interface for TAG through ACG

nouns, for instance, are not type-raised). Atomic types in ΣCoTAG are
the same as in ΣTAG. With Lsws

21 and Lows
21 as defined in (45) and (46)

respectively, we indeed have GCoTAG(Lsws
21) = GCoTAG(Lows

21), i.e., two
different abstract terms of Λ(ΣCoTAG) that are mapped to the same
term of Λ(ΣTAG) (TAG derivation tree).

Lsws
21 = (Lman Levery)

(λox .(Lwoman Lsome) (λ
o y.Lloves IS IVP x y))

GCoTAG(Lsws
21) = (λ

oP.P (Cman Cevery)) (λ
ox .(λoP.P (Cwoman Csome))

(λo y.Cloves IS IVP x y))

= Cloves IS IVP (Cman Cevery) (Cwoman Csome)

(45)

Lows
21 = (Lwoman Lsome)

(λo y.(Lman Levery) (λ
ox .Lloves IS IVP x y))

GCoTAG(Lows
21) = (λ

oP.P (Cwoman Csome)) (λ
o y.(λoP.P (Cman Cevery))

(λox .Cloves IS IVP x y))

= Cloves IS IVP (Cman Cevery) (Cwoman Csome)

(46)

In order to get two semantic interpretations from the two abstract
terms of Λ(ΣCoTAG), we need to directly provide them with a seman-
tic lexicon. For if we keep on interpreting them through ΣTAG and
Σderivations, because the two terms Lsws

21 and Lows
21 are interpreted as

a single term in Λ(ΣTAG), we would still get a single interpretation.
In other words, we do not want the diagram of Figure 33 to com-
mute.

Table 24 defines theGco-sem. interpretation into terms ofΛ(Σlogic).
Contrary to Gsem. where NPs are interpreted with the higher-order
type (e→ t)⊸ t, because quantified noun phrases are given the type
(NP⊸ S)⊸ S in ΣCoTAG, we now interpret NP as e. All the other inter-
pretations, in particular for verbs, are defined accordingly.27

We can now compute the semantic interpretation of Lsws
21 and Lows

21
by Gco-sem.. Equations (47) and (48) show that these two terms are

27Note, however, that, because at the abstract level we only have linear types,
in order to allow for non linearity at the object level, we have to uniformly inter-
pret ⊸ as →, so that the image of (NP⊸ S)⊸ S is (e→ t)⊸ t. Another possibility
would be to use the exponential connectives of linear logic.

[589]

Sylvain Pogodalla
Table 24:

Constants of
ΣCoTAG and their
interpretation by

Gco-sem.

NP Bco-sem.e
VP Bco-sem.e→ t

LJohn Bco-sem.john
Lloves Bco-sem.λadvSadvVPsubjobj.advS (advVP (λx .love x obj) subj)
LeveryoneBco-sem.λQ.∀x .(human x)⇒ (Q x)

LsomeoneBco-sem.λQ.∃x .(human x)∧ (Q x)

Levery Bco-sem.λP Q.∀x .(P x)⇒ (Q x)

Lsome Bco-sem.λP Q.∃x .(P x)∧ (Q x)

Lman Bco-sem.λdet.det man
Lwoman Bco-sem.λdet.det woman

mapped onto two logical formulas corresponding to the subject wide
scope reading on the one hand, and to the object wide scope reading
on the other hand.

Gco-sem.(Lsws
21) = ∀x .(man x)⇒ (∃x ′.(woman x ′)∧ (love x x ′))(47)

Gco-sem.(Lows
21) = ∃x .(woman x)∧ (∀x ′.(man x ′)⇒ (love x ′ x))(48)

This approach to scope ambiguity, first proposed by Pogodalla
(2007b,a), is used by Kobele and Michaelis (2012) to provide an ACG
formalization of the cosubstitution operation for TAG (Barker 2010).
This also makes explicit Barker’s (2010) claim that “cosubstitution is
a version of the continuation-based approaches to scope-taking […]”.
And, indeed, the type (NP⊸ S)⊸ S corresponds to making the contin-
uation of a noun phrase (i.e., its scope) part of its interpretation.
GCoTAG is not a second-order ACG. In this particular case, be-

cause of lexicalization, we know that parsing is decidable, but it can be
complex. Salvati (2007) presents a lexicalized third-order ACG whose
membership problem reduces to an NP-complete problem. There is
currently no implementation of parsing for such grammars in the ACG
toolkit. The identification of fragments that are both linguistically rel-
evant and computationally tractable is ongoing work.

This extension with more abstract levels can also be used to model
(non-local) MCTAG. And one level more can control MCTAG (simi-
lar to the control that GTAG adds on A (Gderived trees)) so that it stays
within the polynomially parsable languages of set-local MCTAG (Pogo-
dalla 2009).

[590]

A syntax-semantics interface for TAG through ACG

9 related approaches

Moving to ACGs to encode TAGs and to build TAG semantic rep-
resentations offers several advantages. First, we saw in Section 3.2
that we can benefit from parsing algorithms and optimization tech-
niques grounded in well-established fields such as type theory and
Datalog.

A second advantage, also concerning the parsing algorithms, is to
offer an inherently reversible framework (Dymetman 1994). Kanazawa’s
Datalog reduction (2007; 2017) indeed makes no hypothesis on the
object language: it can be a language of strings, of trees, or of any
kind of (almost linear) λ-terms. In the latter case, it can represent the
usual logical semantic formulas. While in NLP parsing usually refers
to building a parse structure (or a semantic term) from a string rep-
resentation and generation (or surface realization) refers to building a
string from a semantic representation, they both rely on ACG parsing
(i.e., recovering the abstract structure from an object term), and the
algorithms are the same.

This constitutes an important difference between the ACG ap-
proach and the synchronous approaches to semantic construction. If
both are based on (or can be reformulated using) a tree transduction,
the latter does not offer a built-in transformation to β-reduced terms
(which may definitely not be trees but rather graphs) at the seman-
tic level. When parsing strings, synchronous grammars (Nesson and
Shieber 2006; Nesson 2009) build semantic trees that correspond to
λ-terms before the β-reduction. Processing such trees to produce the
β-reduced form is straightforward. However the inverse process, the
one that is of interest for generation, is not. It actually corresponds to
the morphism inversion found in ACG parsing. The ACG framework
tells us that this inversion is possible, and, for the second-order case,
it has actually been implemented.

Koller and Kuhlmann (2011, 2012) also propose parsing by mor-
phism inversion using interpreted regular tree grammars, and their
approach completely fits the synchronous approach. But, as for syn-
chronous TAG, this formalism is not well-suited to dealing with se-
mantics represented with logical formulas. To parse a term t requires
that the set of trees that are interpreted as t is regular. For instance, if
the string algebra comes with the 2-ary concatenation operation, this

[591]

Sylvain Pogodalla

set is the set of all the bracketings of the string to parse (Koller and
Kuhlmann 2011) (the string algebra Koller and Kuhlmann 2012 pro-
pose for the TAG encoding is different, in order to keep the complexity
bound for parsing low). Applying the same approach to logical repre-
sentations based on λ-calculus would mean representing all terms that
are β-equivalent to the term we want to parse by a regular tree gram-
mar. It is not clear how this can be done.

Semantic representation with λ-terms, and the ACG type-
theoretic settings more generally,28 also provides tight links with
formal logical semantics. The various grammatical formalisms ACGs
can encode may be linked to various semantic theories. This concerns
both semantic theories, such as event semantics (Davidson 2001) (for
a type-theoretic account, see Blom et al. 2012) or dynamic seman-
tics (Kamp and Reyle 1993; Groenendijk and Stokhof 1991) (for a
type-theoretic semantics account, see de Groote 2006; Martin and
Pollard 2014),29 and phenomena at the syntax-semantics interface
where approaches based on underspecification (Pogodalla 2004a,b)
or based on type theory and higher-order logic (Pogodalla 2007b,a;
Kobele and Michaelis 2012) can be expressed.

Because they only use unification, the unification-based ap-
proaches to TAG semantics (Gardent and Kallmeyer 2003; Kallmeyer
and Romero 2004, 2008) do not easily extend to higher-order seman-
tics: only conjunctions of propositions are allowed, and no application.
A first consequence is that the actual representation language needs to
be embedded into a reified logical language (typically a labelled un-
derspecified representation language). For instance, the semantics of
an adverb adjoining to a VP node cannot be represented as a function
from (e → t) to (e → t). It is represented as a proposition expressing
that some property holds of a label which gets its value by unification
with the label corresponding to the semantics of the VP in the verb
initial tree. When dealing with higher-order representations, as for
dynamic semantics of discourse (de Groote 2006; Martin and Pollard

28This includes other categorial grammars (van Benthem 1986; Carpenter
1997; Steedman 2001; Steedman and Baldridge 2011).

29Note however that the semantic calculi are somewhat extended with addi-
tional operators and then do not fulfill the requirements allowing for reversibility.
This is a research program on its own.

[592]

A syntax-semantics interface for TAG through ACG

2014), it becomes awkward to assign values of arguments with unifi-
cation and to compute the semantic representation by β-reduction.

Moreover, ACGs uniformly deal with the interpretation of deriva-
tion trees, either as strings, derived trees, or semantic representations.
Consequently, the same parsing algorithms apply. This is not the case
for the unification-based approaches, and the reversibility of the gram-
mars is not ensured.

Another benefit of the ACG approach to the syntax-semantics in-
terface over the synchronous TAG or over the unification-based ap-
proach is that, by construction, it is compositional, and the homomor-
phism requirement between the syntactic and the semantic categories
holds. For instance, in synchronous TAG, in a pair of syntactic and se-
mantic trees, it is possible to link a node X (in the syntactic tree) with
a node of type α (in the semantic tree), while having a pair of auxil-
iary trees whose syntactic tree has a foot and a root node labelled by
X , but the nodes in the semantic trees are labelled by β ̸= α, yielding
semantic trees that are not well-typed. A similar thing can happen in
unification-based approaches if the semantic features to be unified are
not the same. This is not possible in ACG and the ACG toolkit would
raise a typing error, in the same way that statically typed program-
ming languages ensure type-safeness.

Finally, the modularity of the ACG framework allows us to look
at TAG and TAG variants as fragments of a larger class of grammars.
For instance, Multi-Component TAG (MCTAG: Weir 1988) can also
be described using a similar architecture (Pogodalla 2009). It is also
possible to add operations in addition to substitution and adjunction
that would otherwise be difficult, if not impossible, to express as TAG
(or MCTAG) operations. Such operations can be used in order to link
a TAG phrase grammar with a TAG discourse grammar without re-
quiring an intermediate processing step (Danlos et al. 2015, 2016),
contrary to D-LTAG (Webber and Joshi 1998; Forbes et al. 2003; Web-
ber 2004; Forbes-Riley et al. 2006) or D-STAG (Danlos 2009, 2011).
But, provided the encoding remains in the second-order ACG class,
these grammars remain reversible and there is no need to design new
parsing algorithms.

[593]

Sylvain Pogodalla

10 conclusion

We have presented a model of the syntax-semantics interface for TAGs
hinging on the ACG framework. We demonstrated, with the help of
classical TAG syntax-semantics examples and new modellings, that
this framework offers a lot of flexibility and expressiveness. In particu-
lar, we built on the modular properties of ACG that result from the two
notions of composition between grammars it provides. These compo-
sition modes have been used for the syntax-semantics interface on the
one hand, and for restricting the derivations to actual TAG derivations
using a second-order ACG on the other hand. This allowed us to apply
the ACG parsing results and to make the grammar reversible so that
both parsing and syntactic realization are available.

Moreover, we showed that new modellings can be proposed that
extend the standard TAG analyses without the requirement of design-
ing new parsing algorithms. This was illustrated with phenomena such
as idioms and subordinating conjunctions. We also showed what we
can bring into TAG accounts from type-logical frameworks, such as
the modelling of scope ambiguities.

This shows how relevant ACGs are as models of the syntax-
semantics interface in general, and for TAG in particular. Relying on
the work we have presented here, we can consider modelling other
standard extensions of TAGs, such as MCTAG. We can also consider re-
lating TAG to other type-theoretic modellings of semantic phenomena,
e.g., discourse, knowledge and beliefs, time, etc. Finally, we believe
this can give a new perspective on ways to model phenomena which
are challenging to model otherwise in TAG, such as coordination.

references
Anne Abeillé (1990), French and English determiners: interaction of
morphology, syntax and semantics in Lexicalized Tree Adjoining Grammars, in
Karin Harbusch and Wolfgang Wahlster, editors, Proceedings of the 1st
International Workshop on Tree Adjoining Grammars: Formal Theory and
Applications, pp. 17–20, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloß Dagstuhl, Germany, ACL anthology: W90-0215.
Anne Abeillé (1993), Les nouvelles syntaxes, Armand Colin.
Anne Abeillé (1995), The flexibility of French idioms: a representation with
Lexicalised Tree Adjoining Grammar, in Martin Everaert, Erik-Jan van der

[594]

http://aclweb.org/anthology/W90-0215

A syntax-semantics interface for TAG through ACG

Linden, André Schenk, and Rob Schreuder, editors, Idioms: structural and
psychological perspectives, chapter 1, pp. 15–42, Psychology Press, Taylor &
Francis Group.
Anne Abeillé (2002), Une grammaire électronique du français, Sciences du
langage, CNRS Éditions.
Anne Abeillé and Yves Schabes (1989), Parsing idioms in Lexicalized TAGs,
in Proceedings of the Fourth Conference of the European Chapter of the Association
for Computational Linguistics (EACL 1989), pp. 1–9, Association for
Computational Linguistics, Manchester, England, ACL anthology: E89-1001.
Hendrik Pieter Barendregt (1984), The lambda calculus: its syntax and
semantics, volume 103 of Studies in logic and the foundations of mathematics,
North-Holland.
Chris Barker (2010), Cosubstitution, derivational locality, and quantifier
scope, in Srinivas Bangalore, Robert Frank, and Maribel Romero, editors,
Proceedings of the 10th International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+10), pp. 135–142, Linguistics Department, Yale
University, New Haven, CT, USA, ACL anthology: W10-4417.
Katalin Bimbó (2015), The decidability of the intensional fragment of classical
linear logic, Theoretical Computer Science, 597:1–17, 10.1016/j.tcs.2015.06.019.
Philippe Blache, Edward Stabler, Joan Busquets, and Richard Moot,
editors (2005), Proceedings of the 5th international conference on Logical Aspects of
Computational Linguistics (LACL 2005), volume 3492 of Lecture notes in computer
science/Lecture notes in artificial intelligence, Springer, 10.1007/b136076.
Chris Blom, Philippe de Groote, Yoad Winter, and Joost Zwarts (2012),
Implicit arguments: event modification or option type categories?, in Maria
Aloni, Vadim Kimmelman, Floris Roelofsen, Galit W. Sassoon, Katrin
Schulz, and Matthijs Westera, editors, Logic, language and meaning, volume
7218 of Lecture notes in computer science, pp. 240–250, Springer,
10.1007/978-3-642-31482-7_25.
Johan Bos (1995), Predicate logic unplugged, in Paul Dekker and Martin
Stokhof, editors, Proceedings of the Tenth Amsterdam Colloquium, ILLC,
University of Amsterdam,
http://www.let.rug.nl/bos/pubs/Bos1996AmCo.pdf.
Pierre Bourreau (2012), Jeux de typage et analyse de λ-grammaires
non-contextuelles, Ph.D. thesis, Université Bordeaux I, HAL open archive:
tel-00733964.
Pierre Bourreau (2013), Traitements d’ellipses: deux approches par les
grammaires catégorielles abstraites, in Actes de la 20e conférence sur le Traitement
Automatique des Langues Naturelles (TALN 2013), pp. 215–228, Association pour
le Traitement Automatique des Langues, Les Sables d’Olonne, France, http:
//talnarchives.atala.org/TALN/TALN-2013/taln-2013-long-016.pdf.

[595]

http://aclweb.org/anthology/E89-1001
http://aclweb.org/anthology/W10-4417
http://dx.doi.org//10.1016/j.tcs.2015.06.019
http://dx.doi.org//10.1007/b136076
http://dx.doi.org//10.1007/978-3-642-31482-7_25
http://www.let.rug.nl/bos/pubs/Bos1996AmCo.pdf
http://hal.inria.fr/tel-00733964
http://talnarchives.atala.org/TALN/TALN-2013/taln-2013-long-016.pdf
http://talnarchives.atala.org/TALN/TALN-2013/taln-2013-long-016.pdf

Sylvain Pogodalla

Pierre Bourreau and Sylvain Salvati (2011), A Datalog recognizer for
almost affine λ-CFGs, in Makoto Kanazawa, András Kornai, Marcus
Kracht, and Hiroyuki Seki, editors, The mathematics of language, volume 6878
of Lecture notes in computer science, pp. 21–38, Springer,
10.1007/978-3-642-23211-4_2.
Marie-Hélène Candito (1996), A principle-based hierarchical representation
of LTAGs, in Proceedings of the 16th International Conference on Computational
Linguistics (COLING 1996), pp. 194–199, ACL anthology: C96-1034.
Marie-Hélène Candito (1999), Représentation modulaire et paramétrable de
grammaires électroniques lexicalisées: application au français et à l’italien, Ph.D.
thesis, Université Paris 7, http://www.linguist.univ-paris-diderot.fr/
~mcandito/Publications/candito-these.pdf.
Marie-Hélène Candito and Sylvain Kahane (1998), Can the TAG derivation
tree represent a semantic graph? An answer in the light of Meaning-Text
Theory, in Anne Abeillé, Tilman Becker, Owen Rambow, Giorgio Satta,
and K. Vijay-Shanker, editors, Proceedings of the Fourth International Workshop
on Tree Adjoining Grammars and Related Frameworks (TAG+4), volume 98-12 of
IRCS Report, University of Pennsylvania, ACL anthology: W98-0106.
Bob Carpenter (1997), Type-logical semantics, The MIT Press.
John Chen, Srinivas Bangalore, and K. Vijay-Shanker (2006), Automated
extraction of Tree-Adjoining Grammars from treebanks, Natural Language
Engineering, 12(3):251–299, 10.1017/S1351324905003943.
Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent
Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi (2007), Tree
Automata techniques and applications,
http://www.grappa.univ-lille3.fr/tata, released October 12th, 2007.
Benoît Crabbé (2005), Grammatical development with Xmg, in Blache et al.
(2005), pp. 84–100, 10.1007/11422532_6.
Benoît Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):591–629, ACL anthology: J13-3005.
Peter W. Culicover and Ray Jackendoff (2005), Simpler syntax, Oxford
University Press.
Haskell Brooks Curry (1961), Some logical aspects of grammatical structure,
in Roman Jakobson, editor, Structure of language and its mathematical aspects:
proceedings of the twelfth symposium in applied mathematics, pp. 56–68, American
Mathematical Society.
Laurence Danlos (2009), D-STAG: un formalisme d’analyse automatique de
discours basé sur les TAG synchrones, Revue TAL, 50(1):111–143, HAL open
archive: inria-00524743.

[596]

http://dx.doi.org//10.1007/978-3-642-23211-4_2
http://aclweb.org/anthology/C96-1034
http://www.linguist.univ-paris-diderot.fr/~mcandito/Publications/candito-these.pdf
http://www.linguist.univ-paris-diderot.fr/~mcandito/Publications/candito-these.pdf
http://aclweb.org/anthology/W98-0106
http://dx.doi.org//10.1017/S1351324905003943
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org//10.1007/11422532_6
http://aclweb.org/anthology/J13-3005
http://hal.inria.fr/inria-00524743

A syntax-semantics interface for TAG through ACG

Laurence Danlos (2011), D-STAG: a formalism for discourse analysis based on
SDRT and using Synchronous TAG, in Philippe de Groote, Markus Egg, and
Laura Kallmeyer, editors, Proceedings of the 14th conference on Formal
Grammar (FG 2009), volume 5591 of Lecture notes in computer science/Lecture
notes in artificial intelligence, pp. 64–84, Springer,
10.1007/978-3-642-20169-1_5.
Laurence Danlos, Aleksandre Maskharashvili, and Sylvain Pogodalla
(2015), Grammaires phrastiques et discursives fondées sur les TAG: une
approche de D-STAG avec les ACG, in Actes de la 22e conférence sur le Traitement
Automatique des Langues Naturelles (TALN 2015), pp. 158–169, Association pour
le Traitement Automatique des Langues, Caen, France, HAL open archive:
hal-01145994.
Laurence Danlos, Aleksandre Maskharashvili, and Sylvain Pogodalla
(2016), Interfacing sentential and discourse TAG-based grammars, in
Proceedings of the 12th International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+12), Düsseldorf, Germany, HAL open archive:
hal-01328697. ACL anthology: W16-3303.
Donald Davidson (2001), Essays on actions and events, volume 1 of
Philosophical essays of Donald Davidson, Clarendon Press.
Philippe de Groote (2001), Towards Abstract Categorial Grammars, in
Proceedings of 39th Annual Meeting of the Association for Computational Linguistics
(ACL 2001), pp. 148–155, ACL anthology: P01-1033.
Philippe de Groote (2002), Tree-Adjoining Grammars as Abstract Categorial
Grammars, in Frank (2002), pp. 145–150, ACL anthology: W02-2220.
Philippe de Groote (2006), Towards a Montagovian account of dynamics, in
Masayuki Gibson and Jonathan Howell, editors, Proceedings of the 16th
Semantics and Linguistic Theory Conference (SALT 16), 10.3765/salt.v16i0.2952.
Philippe de Groote (2015), Abstract Categorial parsing as linear logic
programming, in Proceedings of the 14th Meeting on the Mathematics of Language
(MoL 2015), pp. 15–25, Association for Computational Linguistics, Chicago,
United States, HAL open archive: hal-01188632. ACL anthology: W15-2302.
Philippe de Groote and Makoto Kanazawa (2013), A note on
intensionalization, Journal of Logic, Language and Information, 22(2):173–194,
10.1007/s10849-013-9173-9, HAL open archive: hal-00909207.
Philippe de Groote and Sarah Maarek (2007), Type-theoretic extensions of
Abstract Categorial Grammars, in New directions in type-theoretic grammars:
proceedings of the workshop, pp. 18–30,
http://let.uvt.nl/general/people/rmuskens/ndttg/ndttg2007.pdf.
Philippe de Groote and Sylvain Pogodalla (2004), On the expressive
power of Abstract Categorial Grammars: representing context-free formalisms,

[597]

http://dx.doi.org//10.1007/978-3-642-20169-1_5
http://hal.inria.fr/hal-01145994
http://hal.inria.fr/hal-01328697
http://aclweb.org/anthology/W16-3303
http://aclweb.org/anthology/P01-1033
http://aclweb.org/anthology/W02-2220
http://dx.doi.org//10.3765/salt.v16i0.2952
http://hal.inria.fr/hal-01188632
http://aclweb.org/anthology/W15-2302
http://dx.doi.org//10.1007/s10849-013-9173-9
http://hal.inria.fr/hal-00909207
http://let.uvt.nl/general/people/rmuskens/ndttg/ndttg2007.pdf

Sylvain Pogodalla

Journal of Logic, Language and Information, 13(4):421–438,
10.1007/s10849-004-2114-x, HAL open archive: inria-00112956.
Philippe de Groote, Ryo Yoshinaka, and Sarah Maarek (2007), On two
extensions of Abstract Categorial Grammars, in Nachum Dershowitz and
Andrei Voronkov, editors, Proceedings of the 14th international conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2007), volume
4790 of Lecture notes in computer science, pp. 273–287, Springer,
10.1007/978-3-540-75560-9_21.
Éric Villemonte de La Clergerie (2005), From metagrammars to factorized
TAG/TIG parsers, in Proceedings of the Ninth International Workshop on Parsing
Technology, pp. 190–191, Association for Computational Linguistics, Vancouver,
BC, Canada, ACL anthology: W05-1522.
Marc Dymetman (1994), Inherently reversible grammars, in Tomek
Strzalkowski, editor, Reversible grammars in natural language processing,
chapter 2, pp. 33–57, Kluwer Academic Publishers.
Markus Egg, Alexander Koller, and Joachim Niehren (2001), The constraint
language for lambda structures, Journal of Logic, Language and Information,
10(4):457–485, 10.1023/A:1017964622902.
Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad, Anoop Sarkar,
Aravind K. Joshi, and Bonnie Lynn Webber (2003), D-LTAG system: discourse
parsing with a Lexicalized Tree-Adjoining Grammar, Journal of Logic, Language
and Information, 12(3):261–279, 10.1023/A:1024137719751.
Katherine Forbes-Riley, Bonnie Lynn Webber, and Aravind K. Joshi (2006),
Computing discourse semantics: the predicate-argument semantics of discourse
connectives in D-LTAG, Journal of Semantics, 23(1):55–106,
10.1093/jos/ffh032.
Robert Frank, editor (2002), Proceedings of the Sixth International Workshop on
Tree Adjoining Grammars and Related Frameworks (TAG+6), Università di
Venezia, ACL anthology: W02-22.
Claire Gardent (2008), Integrating a unification-based semantics in a large
scale Lexicalised Tree Adjoining Grammar for French, in Proceedings of the 22nd
International Conference on Computational Linguistics (COLING 2008),
pp. 249–256, ACL anthology: C08-1032.
Claire Gardent and Laura Kallmeyer (2003), Semantic construction in
Feature-Based TAG, in Proceedings of the 10th Conference of the European Chapter
of the Association for Computational Linguistics (EACL 2003), pp. 123–130, ACL
anthology: E03-1030.
Claire Gardent and Yannick Parmentier (2005), Large scale semantic
construction for Tree Adjoining Grammars, in Blache et al. (2005),
pp. 131–146, 10.1007/11422532_9.

[598]

http://dx.doi.org//10.1007/s10849-004-2114-x
http://hal.inria.fr/inria-00112956
http://dx.doi.org//10.1007/978-3-540-75560-9_21
http://aclweb.org/anthology/W05-1522
http://dx.doi.org//10.1023/A:1017964622902
http://dx.doi.org//10.1023/A:1024137719751
http://dx.doi.org//10.1093/jos/ffh032
http://aclweb.org/anthology/W02-22
http://aclweb.org/anthology/C08-1032
http://aclweb.org/anthology/E03-1030
http://dx.doi.org//10.1007/11422532_9

A syntax-semantics interface for TAG through ACG

Jean-Yves Girard (1987), Linear logic, Theoretical Computer Science,
50(1):1–102, 10.1016/0304-3975(87)90045-4.
Jeroen Groenendijk and Martin Stokhof (1991), Dynamic predicate logic,
Linguistics and Philosophy, 14(1):39–100, 10.1007/BF00628304.
Chung-hye Han and Giorgio Satta, editors (2012), Proceedings of the 11th
International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+11), INRIA Paris Rocquencourt & Université Paris Diderot, Paris,
France, ACL anthology: W12-4600.
Mathieu Huot (2017), Conservative extensions of Montague semantics, Master’s
thesis, ENS Cachan, Université Paris-Saclay.
Ray Jackendoff (2002), Foundations of language: brain, meaning, grammar,
evolution, Oxford University Press.
Aravind K. Joshi (1985), Tree-adjoining grammars: how much context
sensitivity is required to provide reasonable structural descriptions?, in
David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural
language parsing, pp. 206–250, Cambridge University Press.
Aravind K. Joshi (1994), Preface, Computational Intelligence, 10(4):VII–XV,
10.1111/j.1467-8640.1994.tb00002.x.
Aravind K. Joshi, Laura Kallmeyer, and Maribel Romero (2003), Flexible
composition in LTAG: quantifier scope and inverse linking, in Harry Bunt,
Ielka van der Sluis, and Roser Morante, editors, Proceedings of the Fifth
International Workshop on Computational Semantics (IWCS-5).
Aravind K. Joshi, Leon S. Levy, and Masako Takahashi (1975), Tree adjunct
grammars, Journal of Computer and System Sciences, 10(1):136–163,
10.1016/S0022-0000(75)80019-5.
Aravind K. Joshi and Yves Schabes (1997), Tree-adjoining grammars, in
Grzegorz Rozenberg and Arto K. Salomaa, editors, Handbook of formal
languages, volume 3, chapter 2, Springer.
Sylvain Kahane, Marie-Hélène Candito, and Yannick de Kercadio (2000),
An alternative description of extractions in TAG, in Proceedings of the 5th
International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+5), Université Paris 7, Jussieu, Paris, France, ACL anthology: W00-2016.
Laura Kallmeyer (2002), Using an enriched TAG derivation structure as basis
for semantics, in Frank (2002), pp. 127–136, ACL anthology: W02-2218.
Laura Kallmeyer (2010), Parsing beyond context-free grammars, Cognitive
Technologies, Springer, 10.1007/978-3-642-14846-0.
Laura Kallmeyer and Aravind K. Joshi (2003), Factoring predicate argument
and scope semantics: underspecified semantics with LTAG, Research on
Language and Computation, 1(1–2):3–58, 10.1023/A:1024564228892.

[599]

http://dx.doi.org//10.1016/0304-3975(87)90045-4
http://dx.doi.org//10.1007/BF00628304
http://aclweb.org/anthology/W12-4600
http://dx.doi.org//10.1111/j.1467-8640.1994.tb00002.x
http://dx.doi.org//10.1016/S0022-0000(75)80019-5
http://aclweb.org/anthology/W00-2016
http://aclweb.org/anthology/W02-2218
http://dx.doi.org//10.1007/978-3-642-14846-0
http://dx.doi.org//10.1023/A:1024564228892

Sylvain Pogodalla

Laura Kallmeyer and Marco Kuhlmann (2012), A formal model for
plausible dependencies in Lexicalized Tree Adjoining Grammar, in Han and
Satta (2012), pp. 108–116, ACL anthology: W12-4613.
Laura Kallmeyer and Maribel Romero (2004), LTAG semantics with
semantic unification, in Rambow and Stone (2004), pp. 155–162, ACL
anthology: W04-3321.
Laura Kallmeyer and Maribel Romero (2008), Scope and situation binding
for LTAG, Research on Language and Computation, 6(1):3–52,
10.1007/s11168-008-9046-6.
Hans Kamp and Uwe Reyle (1993), From discourse to logic, Kluwer Academic
Publishers.
Makoto Kanazawa (2007), Parsing and generation as Datalog queries, in
Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics (ACL 2007), pp. 176–183, Association for Computational Linguistics,
Prague, Czech Republic, ACL anthology: P07-1023.
Makoto Kanazawa (2008a), Prefix-correct Earley parsing of mildly
context-sensitive languages, invited talk at the 15th Workshop on Logic,
Language, Information and Computation (WoLLIC 2008), Edinburgh, Scotland.
Makoto Kanazawa (2008b), A prefix-correct Earley recognizer for multiple
context-free grammars, in Claire Gardent and Anoop Sarkar, editors,
Proceedings of the Ninth International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+9), pp. 49–56, University of Tübingen, Tübingen,
Germany, ACL anthology: W08-2307.
Makoto Kanazawa (2009), Second-order Abstract Categorial Grammars as
Hyperedge Replacement Grammars, Journal of Logic, Language and Information,
19(2):137–161, 10.1007/s10849-009-9109-6.
Makoto Kanazawa (2017), Parsing and generation as Datalog query
evaluation, IfCoLog Journal of Logics and their Applications, 4(4):1103–1211,
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf#
page=307.
Makoto Kanazawa and Sylvain Salvati (2007), Generating control languages
with Abstract Categorial Grammars, in Gerald Penn, editor, Proceedings of the
12th conference on Formal Grammar (FG 2007), CSLI Publications,
http://research.nii.ac.jp/~kanazawa/publications/control.pdf.
Robert Kasper, Bernd Kiefer, Klaus Netter, and K. Vijay-Shanker (1995),
Compilation of HPSG to TAG, in Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics (ACL 1995), pp. 92–99, Association for
Computational Linguistics, Cambridge, MA, USA, 10.3115/981658.981671,
ACL anthology: P95-1013.

[600]

http://aclweb.org/anthology/W12-4613
http://aclweb.org/anthology/W04-3321
http://dx.doi.org//10.1007/s11168-008-9046-6
http://aclweb.org/anthology/P07-1023
http://aclweb.org/anthology/W08-2307
http://dx.doi.org//10.1007/s10849-009-9109-6
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf#page=307
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf#page=307
http://research.nii.ac.jp/~kanazawa/publications/control.pdf
http://dx.doi.org//10.3115/981658.981671
http://aclweb.org/anthology/P95-1013

A syntax-semantics interface for TAG through ACG

Gregory M. Kobele (2007), Parsing elliptical structure, https://home.
uni-leipzig.de/gkobele/files/unpub/Kobele07ParsingEllipsis.pdf,
unpublished ms.
Gregory M. Kobele (2012), Idioms and extended transducers, in Han and Satta
(2012), pp. 153–161, ACL anthology: W12-4618.
Gregory M. Kobele and Jens Michaelis (2012), CoTAGs and ACGs, in Denis
Béchet and Alexander Dikovsky, editors, Proceedings of the 7th international
conference on Logical Aspects of Computational Linguistics (LACL 2012), volume
7351 of Lecture notes in computer science, pp. 119–134, Springer,
10.1007/978-3-642-31262-5_8.
Alexander Koller and Marco Kuhlmann (2011), A generalized view on
parsing and translation, in Proceedings of the 12th International Conference on
Parsing Technologies, pp. 2–13, Association for Computational Linguistics,
Dublin, Ireland, ACL anthology: W11-2902.
Alexander Koller and Marco Kuhlmann (2012), Decomposing TAG parsing
algorithms using simple algebraizations, in Han and Satta (2012), pp. 135–143,
ACL anthology: W12-4616.
Marco Kuhlmann and Mathias Möhl (2007), Mildly context-sensitive
dependency languages, in Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics (ACL 2007), pp. 160–167, Association for
Computational Linguistics, Prague, Czech Republic, ACL anthology: P07-1021.
Joachim Lambek (1958), The mathematics of sentence structure, American
Mathematical Monthly, 65(3):154–170, 10.2307/2310058.
Scott Martin and Carl Pollard (2014), A dynamic categorial grammar, in
Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Frank Richter,
editors, Proceedings of the 19th conference on Formal Grammar (FG 2014),
volume 8612 of Lecture notes in computer science, pp. 138–154, Springer,
10.1007/978-3-662-44121-3_9.
Aleksandre Maskharashvili and Sylvain Pogodalla (2013), Constituency
and dependency relationship from a Tree Adjoining Grammar and Abstract
Categorial Grammar perspective, in Proceedings of the 6th International Joint
Conference on Natural Language Processing (IJCNLP 2013), pp. 1257–1263, The
Asian Federation of Natural Language Processing, Nagoya, Japan, HAL open
archive: hal-00868363. ACL anthology: I13-1179.
Richard Montague (1973), The proper treatment of quantification in ordinary
English, in Jaakko Hintikka, Julius Moravcsik, and Patrick Suppes, editors,
Approaches to natural language: proceedings of the 1970 Stanford workshop on
grammar and semantics, pp. 221–242, D. Reidel Publishing Co.
Rebecca Nancy Nesson (2009), Synchronous and Multicomponent Tree-Adjoining
Grammars: complexity, algorithms, and applications, Ph.D. thesis, Harvard

[601]

https://home.uni-leipzig.de/gkobele/files/unpub/Kobele07ParsingEllipsis.pdf
https://home.uni-leipzig.de/gkobele/files/unpub/Kobele07ParsingEllipsis.pdf
http://aclweb.org/anthology/W12-4618
http://dx.doi.org//10.1007/978-3-642-31262-5_8
http://aclweb.org/anthology/W11-2902
http://aclweb.org/anthology/W12-4616
http://aclweb.org/anthology/P07-1021
http://dx.doi.org//10.2307/2310058
http://dx.doi.org//10.1007/978-3-662-44121-3_9
http://hal.inria.fr/hal-00868363
http://aclweb.org/anthology/I13-1179

Sylvain Pogodalla

University, https://pdfs.semanticscholar.org/754b/
6acaf2660748967d1937a25222538207aabc.pdf.
Rebecca Nancy Nesson and Stuart M. Shieber (2006), Simpler TAG semantics
through synchronization, in Proceedings of the 11th conference on Formal
Grammar (FG 2006), CSLI Publications,
http://cslipublications.stanford.edu/FG/2006/nesson.pdf.
Sylvain Pogodalla (2004a), Computing semantic representation: towards
ACG abstract terms as derivation trees, in Rambow and Stone (2004),
pp. 64–71, HAL open archive: inria-00107768. ACL anthology: W04-3309.
Sylvain Pogodalla (2004b), Using and extending the ACG technology:
endowing categorial grammars with an underspecified semantic representation,
in Proceedings of the Categorial Grammars conference, pp. 197–209, Montpellier,
France, HAL open archive: inria-00108117.
Sylvain Pogodalla (2007a), Ambiguïté de portée et approche fonctionnelle
des TAG, in Actes de la 14e conférence sur le Traitement Automatique des Langues
Naturelles (TALN 2007), pp. 325–334, Association pour le Traitement
Automatique des Langues, Toulouse, France, HAL open archive:
inria-00141913.
Sylvain Pogodalla (2007b), Generalizing a proof-theoretic account of scope
ambiguity, in 7th International Workshop on Computational Semantics (IWCS-7),
Tilburg, Netherlands, HAL open archive: inria-00112898.
Sylvain Pogodalla (2009), Advances in Abstract Categorial Grammars:
language theory and linguistic modeling. ESSLLI 2009 Lecture Notes, Part II,
HAL open archive: hal-00749297.
Florent Pompigne (2013), Modélisation logique de la langue et Grammaires
Catégorielles Abstraites, Ph.D. thesis, Université de Lorraine, HAL open archive:
tel-00921040.
Owen Rambow and Matthew Stone, editors (2004), Proceedings of the 7th
International Workshop on Tree Adjoining Grammar and Related Formalisms
(TAG+7), Simon Fraser University, Vancouver, BC, Canada, ACL anthology:
W04-3300.
Owen Rambow, K. Vijay-Shanker, and David Weir (1995), D-Tree
Grammars, in Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics (ACL 1995), pp. 151–158, Association for
Computational Linguistics, Cambridge, MA, USA, 10.3115/981658.981679,
ACL anthology: P95-1021.
Owen Rambow, K. Vijay-Shanker, and David Weir (2001), D-Tree
Substitution Grammars, Computational Linguistics, 27(1):87–121,
10.1162/089120101300346813, ACL anthology: J01-1004.

[602]

https://pdfs.semanticscholar.org/754b/6acaf2660748967d1937a25222538207aabc.pdf
https://pdfs.semanticscholar.org/754b/6acaf2660748967d1937a25222538207aabc.pdf
http://cslipublications.stanford.edu/FG/2006/nesson.pdf
http://hal.inria.fr/inria-00107768
http://aclweb.org/anthology/W04-3309
http://hal.inria.fr/inria-00108117
http://hal.inria.fr/inria-00141913
http://hal.inria.fr/inria-00112898
http://hal.inria.fr/hal-00749297
http://hal.inria.fr/tel-00921040
http://aclweb.org/anthology/W04-3300
http://dx.doi.org//10.3115/981658.981679
http://aclweb.org/anthology/P95-1021
http://dx.doi.org//10.1162/089120101300346813
http://aclweb.org/anthology/J01-1004

A syntax-semantics interface for TAG through ACG

Jim Rogers (1999), Generalized Tree-Adjoining Grammar, in Proceedings of the
Sixth Meeting on Mathematics of Language (MoL 6), Orlando, FL, USA,
http://www.cs.earlham.edu/~jrogers/mol6.pdf.
Sylvain Salvati (2005), Problèmes de filtrage et problèmes d’analyse pour les
grammaires catégorielles abstraites, Ph.D. thesis, Institut National Polytechnique
de Lorraine.
Sylvain Salvati (2006), Encoding second order string ACG with deterministic
tree walking transducers, in Shuly Wintner, editor, Proceedings of the 11th
conference on Formal Grammar (FG 2006), pp. 143–156, CSLI Publications,
http://cslipublications.stanford.edu/FG/2006/salvati.pdf.
Sylvain Salvati (2007), On the complexity of Abstract Categorial Grammars,
in Proceedings of the Tenth Meeting on Mathematics of Language (MoL 10),
http://wwwhomes.uni-bielefeld.de/mkracht/mol10/abstracts/acg_
complexity.pdf.
Sylvain Salvati (2010), On the membership problem for non-linear Abstract
Categorial Grammars, Journal of Logic, Language and Information,
19(2):163–183, 10.1007/s10849-009-9110-0.
Yves Schabes and Stuart M. Shieber (1994), An alternative conception of
tree-adjoining derivation, Computational Linguistics, 20(1):91–124, ACL
anthology: J94-1004.
Stuart M. Shieber (1988), A uniform architecture for parsing and generation,
in Dénes Vargha, editor, Proceedings of the 12th International Conference on
Computational Linguistics (COLING 1988), volume 2, pp. 614–619, Budapest,
Hungary, ACL anthology: C88-2128.
Stuart M. Shieber (1993), The problem of logical-form equivalence,
Computational Linguistics, 19(1):179–190, ACL anthology: J93-1008.
Stuart M. Shieber (1994), Restricting the weak-generative capacity of
Synchronous Tree-Adjoining Grammars, Computational Intelligence,
10(4):371–385, 10.1111/j.1467-8640.1994.tb00003.x.
Stuart M. Shieber (2004), Synchronous grammars as tree transducers, in
Rambow and Stone (2004), pp. 88–95, ACL anthology: W04-3312.
Stuart M. Shieber (2006), Unifying Synchronous Tree-Adjoining Grammars
and tree transducers via bimorphisms, in Proceedings of the 11th Conference of
the European Chapter of the Association for Computational Linguistics
(EACL 2006), pp. 377–384, Trento, Italy, ACL anthology: E06-1048.
Stuart M. Shieber (2014), Bimorphisms and synchronous grammars, Journal of
Language Modelling, 2(1):51–104, 10.15398/jlm.v2i1.84.
Stuart M. Shieber and Yves Schabes (1990), Synchronous Tree-Adjoining
Grammars, in Proceedings of the 13th International Conference on Computational
Linguistics (COLING 1990), volume 3, pp. 253–258, Helsinki, Finland,
10.3115/991146.991191.

[603]

http://www.cs.earlham.edu/~jrogers/mol6.pdf
http://cslipublications.stanford.edu/FG/2006/salvati.pdf
http://wwwhomes.uni-bielefeld.de/mkracht/mol10/abstracts/acg_complexity.pdf
http://wwwhomes.uni-bielefeld.de/mkracht/mol10/abstracts/acg_complexity.pdf
http://dx.doi.org//10.1007/s10849-009-9110-0
http://aclweb.org/anthology/J94-1004
http://aclweb.org/anthology/C88-2128
http://aclweb.org/anthology/J93-1008
http://dx.doi.org//10.1111/j.1467-8640.1994.tb00003.x
http://aclweb.org/anthology/W04-3312
http://aclweb.org/anthology/E06-1048
http://dx.doi.org//10.15398/jlm.v2i1.84
http://dx.doi.org//10.3115/991146.991191

Sylvain Pogodalla

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore, and Fernando
C. N. Pereira (1989), A semantic-head-driven generation algorithm for
unification-based formalisms, in Proceedings of the 27th Annual Meeting of the
Association for Computational Linguistics (ACL 1989), pp. 7–17, Association for
Computational Linguistics, Vancouver, BC, Canada, 10.3115/981623.981625,
ACL anthology: P89-1002.
Mark Steedman (2001), The syntactic process, The MIT Press.
Mark Steedman and Jason Baldridge (2011), Combinatory Categorial
Grammar, in Robert Borsley and Kersti Börjars, editors,
Non-transformational syntax: formal and explicit models of grammar, chapter 5,
Wiley-Blackwell.
Johan van Benthem (1986), Essays in logical semantics, volume 39 of Studies in
linguistics and philosophy, Springer, 10.1007/978-94-009-4540-1.
K. Vijay-Shanker (1987), A study of Tree Adjoining Grammars, Ph.D. thesis,
University of Pennsylvania.
K. Vijay-Shanker (1992), Using descriptions of trees in a Tree Adjoining
Grammar, Computational Linguistics, 18(4):481–518.
K. Vijay-Shanker and Aravind K. Joshi (1985), Some computational
properties of Tree Adjoining Grammars, in Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics (ACL 1985), pp. 82–93,
Association for Computational Linguistics, Chicago, IL, USA,
10.3115/981210.981221, ACL anthology: P85-1011.
K. Vijay-Shanker and Aravind K. Joshi (1988), Feature structures based
Tree Adjoining Grammars, in Dénes Vargha, editor, Proceedings of the 12th
International Conference on Computational Linguistics (COLING 1988), volume 2,
pp. 714–718, ACL anthology: C88-2147.
K. Vijay-Shanker and Aravind K. Joshi (1991), Unification-based Tree
Adjoining Grammars, Technical Report MS-CIS-91-25, University of
Pennsylvania Department of Computer and Information Science (CIS),
http://repository.upenn.edu/cis_reports/762, paper 762.
Bonnie Lynn Webber (2004), D-LTAG: extending lexicalized TAG to discourse,
Cognitive Science, 28(5):751–779, 10.1207/s15516709cog2805_6.
Bonnie Lynn Webber and Aravind K. Joshi (1998), Anchoring a Lexicalized
Tree-Adjoining Grammar for discourse, in Manfred Stede, Leo Wanner, and
Eduard Hovy, editors, Proceedings of the ACL/COLING workshop on discourse
relations and discourse markers, ACL anthology: W98-0315.
David J. Weir (1988), Characterizing mildly context-sensitive grammar
formalisms, Ph.D. thesis, University of Pennsylvania.
Sean Michael Williford (1993), Application of Synchronous Tree-Adjoining
Grammar to quantifier scoping in English, Bachelor’s thesis, Harvard College,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10951941.

[604]

http://dx.doi.org//10.3115/981623.981625
http://aclweb.org/anthology/P89-1002
http://dx.doi.org//10.1007/978-94-009-4540-1
http://dx.doi.org//10.3115/981210.981221
http://aclweb.org/anthology/P85-1011
http://aclweb.org/anthology/C88-2147
http://repository.upenn.edu/cis_reports/762
http://dx.doi.org//10.1207/s15516709cog2805_6
http://aclweb.org/anthology/W98-0315
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10951941

A syntax-semantics interface for TAG through ACG

Fei Xia (2001), Automatic grammar generation from two different perspectives,
Ph.D. thesis, University of Pennsylvania,
ftp://ftp.cis.upenn.edu/pub/fxia/thesis/thesis.pdf.
Fei Xia, Chung-hye Han, Martha Palmer, and Aravind K. Joshi (2000),
Comparing lexicalized treebank grammars extracted from Chinese, Korean, and
English corpora, in Second Chinese Language Processing Workshop, pp. 52–59,
Association for Computational Linguistics, Hong Kong, China,
10.3115/1117769.1117778, ACL anthology: W00-1208.
Fei Xia, Martha Palmer, and K. Vijay-Shanker (2005), Automatically
generating Tree Adjoining Grammars from abstract specifications,
Computational Intelligence, 21(3):246–285, 10.1111/j.1467-8640.2005.00273.x.
XTAG Research Group (2001), A Lexicalized Tree Adjoining Grammar for
English, Technical Report IRCS-01-03, IRCS, University of Pennsylvania, ftp:
//ftp.cis.upenn.edu/pub/xtag/release-2.24.2001/tech-report.pdf.
Ryo Yoshinaka (2006), Linearization of affine Abstract Categorial Grammars,
in Proceedings of the 11th conference on Formal Grammar (FG 2006),
https://web.stanford.edu/group/cslipublications/
cslipublications/FG/2006/yoshinaka.pdf.
Ryo Yoshinaka and Makoto Kanazawa (2005), The complexity and
generative capacity of lexicalized Abstract Categorial Grammars, in Blache et al.
(2005), pp. 330–348, 10.1007/11422532_22.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[605]

ftp://ftp.cis.upenn.edu/pub/fxia/thesis/thesis.pdf
http://dx.doi.org//10.3115/1117769.1117778
http://aclweb.org/anthology/W00-1208
http://dx.doi.org//10.1111/j.1467-8640.2005.00273.x
ftp://ftp.cis.upenn.edu/pub/xtag/release-2.24.2001/tech-report.pdf
ftp://ftp.cis.upenn.edu/pub/xtag/release-2.24.2001/tech-report.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2006/yoshinaka.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2006/yoshinaka.pdf
http://dx.doi.org//10.1007/11422532_22
http://creativecommons.org/licenses/by/3.0/

	Motivations
	Tree-Adjoining Grammar and semantic representation
	TAG and Abstract Categorial Grammars: our approach
	Organisation of the article

	Background
	Adjunction and substitution
	TAG elementary trees as functions
	Substitution as function application
	Adjunction as function application

	Trees and strings as -terms
	Encoding strings
	Encoding trees

	Abstract Categorial Grammars
	ACG composition
	Formal properties of ACGs

	Relating generalized derivations, TAG derived trees, and strings with Abstract Categorial Grammars
	Derived trees and strings
	Derivation trees and derived trees
	Generalized derivation trees
	A vocabulary for derivations: the [derivations] signature
	Interpretation of derivations as derived trees: the [derived trees] ACG
	[derived trees] abstract terms and generalized derivation trees

	Semantic construction
	A vocabulary for semantic representations: [logic]
	Generalized derivation-based interpretation
	From derivation dependencies to semantic dependencies
	Long-distance dependencies
	Quantification
	Multiple adjunctions

	Completing the TAG into ACG encoding
	A vocabulary for TAG derivations: the [TAG] signature
	Interpreting [TAG] into ([derivations]): the [TAG] ACG

	Adjoining constraints and features
	Obligatory adjoining constraints
	Selective adjoining constraints
	Feature sharing and semantic computation

	Derivation trees and semantic interpretations
	Idioms
	Subordinating conjunctions
	Scope ambiguity and non-functional form-meaning relation

	Related approaches
	Conclusion

