
Extracting Subregular constraints
from Regular stringsets

James Rogers and Dakotah Lambert
Dept. of Computer Science, Earlham College, Richmond, IN, USA

abstract
Keywords: regular
languages,
finite-state
automata,
local languages,
piecewise
languages

We introduce algorithms that, given a finite-state automaton (FSA),
compute a minimal set of forbidden local factors that define a Strictly
Local (SL) tight approximation of the stringset recognised by the FSA
and the set of forbidden piecewise factors that define a Strictly Piece-
wise (SP) tight approximation of that stringset, as well as a set of
co-SL factors that, together with the SL and SP factors, provide a set
of purely conjunctive literal constraints defining a minimal superset
of the stringset recognised by the automaton.

Using these, we have built computational tools that have allowed
us to reproduce, by nearly purely computational means, the work of
Rogers and his co-workers (Rogers et al. 2012) in which, using a mix
of computational and analytical techniques, they completely charac-
terised, with respect to the Local and Piecewise Subregular hierar-
chies, the constraints on the distribution of stress in human languages
that are documented in the StressTyp2 database.

Our focus, in this paper, is on the algorithms and the method
of their application. The phonology of stress patterns is a particularly
good domain of application since, as we show here, they generally fall
at the very lowest levels of complexity. We discuss these phonological
results here, but do not consider their consequences in depth.

1 introduction

That phonology is finite-state – characterised by patterns and func-
tions that can be recognised by finite-state automata of varying types –

Journal of Language Modelling Vol 7, No 2 (2019), pp. 143–176

James Rogers, Dakotah Lambert

is uncontroversial. Over the last several years, a growing body of work
has emerged characterising the complexity of phonological phenom-
ena within a more finely resolved hierarchy of Subregular stringsets1
and functions, focusing, in particular, on the lowest levels of the hier-
archy. (For a comprehensive survey, see Heinz 2018.)

In this paper we present two main results. One is a set of algo-
rithms that are capable of automatically analysing finite-state accep-
tors in terms of these classes. We have incorporated these into a com-
putational workbench for exploring systems of Subregular constraints
both automatically and interactively.

Using that, we have completed a longterm program of character-
ising the complexity of suprasegmental stress patterns in human lan-
guages. This yields our second result, which strengthens previous char-
acterisations and places these patterns almost exclusively at the very
bottom levels of the hierarchy: the Strictly Local, Locally Testable,
Strictly Piecewise and Piecewise Testable stringsets. These classes are
significant cognitively because they depend only on information that
is explicit in the string itself without requiring inference of additional
structure.2

A stringset L is Strictly k-Local (SLk) if and only if (iff) it is strictly
determined by its local k-factors: the substrings of length at most k that

1Following Sampson (1975), we distinguish between stringsets and lan-
guages when our topic extends to both formal and natural languages. In these
situations, the formal languages serve as models for aspects of natural languages.
To fail to distinguish the stringsets (or others sets of structures) that are the mod-
els from the phenomena they are modelling is falling into one of the most basic
fallacies of mathematical modelling. Conclusions that are valid in the realm of
the models are only valid in the realm of the phenomena to the extent that the
models are faithful. That their faithfulness is limited is the very essence of the
modelling process.

This is not just a pedantic issue: the history of formal linguistics is peppered
with examples in which the failure to distinguish the two has led to erroneous
conclusions. For discussion of specific examples see, inter alia, Pullum and Scholz
(2001) or Rogers (1996). As the scope of this journal is, specifically, language
modelling, it seems appropriate to us to be careful in maintaining the distinction.

2Regular stringsets, for example, from a purely declarative perspective, re-
quire a mechanism to infer a sequence of states (abstract categories) in parallel
with a string, corresponding to a run of an automaton, and then classify the string
based on that run.

[144]

Extracting Subregular constraints

occur in strings ⋊ ·w ·⋉ for w ∈ L. (The ‘⋊’ and ‘⋉’ are endmarkers.) By
“strictly determined” we mean that L contains all and only the strings
that are generated by the (inverse) substring relation from that set of
k-factors.3 A string is in the set as long as its k-factors are a subset of
the generating set. The class of stringsets that are Strictly k-local for
some k is known as SL.

A stringset is k-Locally Testable (LTk) iff it is a Boolean combina-
tion of SLk stringsets. While they are also determined by the set of
local k-factors that occur in the strings in the set, the stringset is not
generated by the substring relation from a single set of factors. Rather,
there are multiple SLk stringsets that interact in complex ways. Never-
theless, constraints of this form depend only on the information that is
explicit in the string, in this case the particular subset of k-factors that
occurs; various combinations of factors can be forbidden, permitted
or required.

A stringset L is Strictly k-Piecewise (SPk) iff it is strictly deter-
mined by its k-pieces: the subsequences of length at most k that occur
in strings w for w ∈ L, where v is a subsequence of w iff the symbols
in v occur in w in order, but not necessarily adjacently. That is to say,
L contains all and only the strings that are generated by the (inverse)
subsequence relation from that set of k-pieces. The class of stringsets
that are Strictly k-Piecewise for some k is known as SP.

The class of k-Piecewise Testable (PTk) stringsets is analogous to
the class of LTk stringsets, but based on subsequences rather than sub-
strings.

These classes are at the bottom of the local and piecewise sides
of a collection of classes of stringsets, all strict subclasses of the class
of Regular stringsets, which are hierarchically related and are char-
acterised by finite sets of either substrings (the Local Hierarchy) or
subsequences (the Piecewise Hierarchy) or by combinations of the
two. The Local hierarchy was established primarily by the work
of McNaughton and Papert (1971) and Thomas (1982) (with many
others); the Piecewise Hierarchy was established primarily by the
work of Simon (1975), Lothaire (1983), Rogers et al. (2010) and Fu
et al. (2011) (and many others). Rogers et al. (2012) argue that these

3Specifically, all and only those strings that include no substrings other than
those in the given set.

[145]

James Rogers, Dakotah Lambert

hierarchies provide a robust notion of cognitive complexity for con-
straints on strings.

Our work here was inspired by the work carried out by the The-
ory Group at Earlham College in which they characterised all of the
stress patterns collected in Goedemans et al. (2015) – a wide-coverage
database of stress patterns occurring in human languages – with re-
spect to this hierarchy. In Edlefsen et al. (2008), they established that
roughly 75% of these patterns are SLk for k ≤ 6 and that half are
SLk for k ≤ 3. Subsequently, they derived a set of “primitive” con-
straints sufficient to define all of the non-SL patterns by co-occurrence
and classified them into abstract categories (Fero et al. 2014). Most of
these constraints were, in fact, SL, and their main result was that all
of the patterns could be defined by co-occurrence of constraints at the
bottom two levels of the hierarchies – the Strict and Testable levels de-
scribed above. Recent work by Heinz and his co-workers (Heinz 2018,
2010; Chandlee 2014; Jardine 2016) suggests that much of phonology
may be characterisable by correspondingly simple sets of structures or
functions.

The work on primitive constraints, however, did not provide the
factors of the SL stringsets because the algorithm for determining if
a given finite-state automaton recognises an SL stringset, and deter-
mining k if it does, does not yield the set of k-factors that define the
stringset. We resolve that problem in this work. Moreover, the work
on non-SL constraints was largely based on the English glosses of the
constraints included in the database and were tailored specifically to
capturing those specific non-SL lects. This potentially misses SP con-
straints that may not be explicit in these glosses.

In this paper we specifically address the piecewise classes as well
as the class of co-SL constraints, complements of SL constraints. Com-
binations of SL and co-SL constraints define stringsets in terms of
both forbidden and required local factors, but remain a weak frag-
ment of LT. Working with this range of constraints we can sharpen
the earlier result, which established LT+SP as an upper-bound for all
but two lects in the database: 98 of the 106 lects are SL+co-SL+SP, an-
other six require combinations of three properly LT constraints (rather
than the nine identified in the earlier work) and the two properly Reg-
ular lects share a single Regular constraint, which entails counting
modulo two.

[146]

Extracting Subregular constraints

While our working domain in developing these algorithms has
been phonotactics, and stress patterns in particular, the algorithms are
applicable to any Regular stringset. On the other hand, the algorithms
are of relatively high complexity, exponential in the size of the au-
tomaton if it recognises a Strictly Local stringset and doubly exponen-
tial for the SL approximations of non-strict stringsets; the Piecewise
algorithms are singly exponential in either case. But these are optimal
for algorithms that return the set of forbidden factors of the stringset.
In our corpus all of the automata are of moderate size – the largest
has 33 states – and they are quite feasible; running on hardware that
is unremarkable for modern desktop computers, without aggressive
optimisation, it takes less than one minute to process all of the 106
lects of the StressTyp2 corpus of automata.

2 overview of this paper

In the next section we introduce our notation and basic formal defini-
tions. In Section 3.1 we introduce the notion of local and piecewise fac-
tors and in Section 3.2 we consider stringsets from a model-theoretic
perspective, which exposes the underlying relationship between these.
From that perspective both the substring and the subsequence rela-
tions are just restricted variants of a more general is-a-factor-of re-
lation. Henceforth, we will refer to substrings and subsequences as
factors of either the local or piecewise type, except when the type is
clear from the context. (In Sections 4 and 5, if the type is not specified,
“factor” refers to local factors; in Sections 6 and 7 it refers to piecewise
factors.)

In Section 4 we formally define Strictly Local stringsets and dis-
cuss their formal properties. In Sections 4.1–4.3 we distinguish five
types of forbidden local factors – factors in the complement of the set
of factors that generate the stringset – and develop the foundations
of our algorithms for extracting those local factors given a finite-state
automaton. We give details of these algorithms in the remainder of
Section 4.

We adapt these algorithms to work on non-SL stringsets in Sec-
tion 5. While the sets of factors we extract are, of course, insufficient
to generate the stringset, they do generate an SL approximation of the
stringset. We then introduce the notion of a residue set, the difference

[147]

James Rogers, Dakotah Lambert

between the original stringset and our approximation. This becomes
the basis of our further computational analysis.

In Section 6 we formally define Strictly Piecewise stringsets, dis-
cuss their formal properties and develop our algorithms for extracting
forbidden piecewise factors given a finite-state automaton that recog-
nises an SP stringset. In Section 7 we adapt these to obtain optimal SP
approximations of non-SP Regular sets.

In Section 8 we combine these algorithms in a way that allows
us to extract co-SL constraints, which enables us to fully characterise
92% of the lects in StressTyp2 purely computationally.

We close by summarising our results, discussing complexity issues
and sketching plans for recoding the factors we collect in a way that
is more useful than their current form, a flat enumeration.

3 formal preliminaries
Let Σ be an alphabet. For strings v, w ∈ Σ∗ we say v is a substring of
w (v ≼ w) iff w = u1vu2 for u1, u2 ∈ Σ∗. We say v is a subsequence of w
(v ⊑ w) iff the symbols of v occur in w in order, but not necessarily
adjacently:

if v = σ1σ2 . . .σn then v ⊑ w
def⇐⇒ w= u0σ1u1σ2u2 . . .σnun | ui ∈ Σ∗.

We denote the reversal of w by wR. We use this same notation for the
reversal of a stringset.

A finite-state automaton (FSA) is an edge-labelled directed graph
with distinguished vertices, that we will represent by a five-tuple
〈Σ,Q,δ, I , F〉 where Σ is the alphabet of the language of the automa-
ton, Q is the set of states, δ ⊆ (Σ×Q×Q) is a transition relation where
〈σ, q1, q2〉 ∈ δ iff there is an edge labelled σ from q1 to q2, I is the set of
initial states, and F is the set of accepting states. LetA = 〈Σ,Q,δ, I , F〉.

Let w = σ1σ2 . . .σn ∈ Σ∗ be a string and let q1, qn+1 ∈ Q. Then
there is a path q1

w⇝ qn+1 iff there exists some sequence of edges:
〈〈σi , qi , qi+1〉 ∈ δ | 0< i ≤ n,

w= σ1σ2 . . .σn〉 .
This is an accepting path on w if q1 is in I and qn+1 is in F , else it is a
non-accepting path.

[148]

Extracting Subregular constraints

The automatonA is total iff for every symbol σ ∈ Σ and for every
state q ∈ Q, there exists some q′ such that 〈σ, q, q′〉 ∈ δ. It is (partial)
functional iff δ is functional in its first two places. That is, given a
state q ∈ Q and a symbol σ ∈ Σ, there is at most one q′ ∈ Q such that
〈σ, q, q′〉 ∈ δ. An FSA is (fully) deterministic (a proper DFA) iff it has
exactly one initial state and it is both total and functional.

An automaton is trim iff for all states q ∈Q there is some accepting
path from q. Though trim automata may not be total, we still consider
them to be deterministic if they have a single start state and are partial
functional.

An automaton is minimal iff it is deterministic and no two states
are Nerode-equivalent.4 Further, it is normalised iff it is both minimal
and trim.

The reversal of A , that is, an automaton that accepts a string iff
the reversal of that string is accepted by A , is denoted A R.

The powerset graph of the automaton A , PSG(A) = 〈V, E〉, is
another edge-labelled directed graph where:

V = P (Q) and
E = {〈σ, S1, S2〉 | σ ∈ Σ,

S2 = {q′ ∈Q | (∃q ∈ S1)[〈σ, q, q′〉 ∈ δ]}} .
Often we are interested only in the subgraph of this generated from a
given set of initial subsets.
Lemma 1. If A is deterministic, then the sizes of the sets along any path
in PSG(A) are monotonically non-increasing.

This is because ifA is deterministic δ maps each state in S1 to at
most one state in S2.
Corollary 1. All sets in any cycle are equal in size.
Corollary 2. All in-edges to Q and all out-edges from ; are self-edges.
3.1 Local and piecewise factors
Let Σ be the alphabet of L and let Σk = {v ∈ Σ∗ | |v|= k} and Σ≤k =∪

1≤i≤k[Σ
k].

4States q1 and q2 are Nerode-equivalent iff for all strings w, there is an ac-
cepting path on w from q2 iff there is an accepting path on w from q1 (Hopcroft
and Ullman 1979).

[149]

James Rogers, Dakotah Lambert

Definition 1 (Local k-factors). For any string w ∈ Σ∗, the local k-
factors of w are:

FÃk (w) =
� {w} if |w| ≤ k,�

v ∈ Σk | v ≼ w
	 otherwise.

Similarly for FÃ≤k(w). This lifts to sets of strings in the obvious way.
Definition 2 (Shuffle ideal). Let v = σ1σ2 . . .σn ∈ Σ∗. The shuffle ideal
of v is defined as the set SI(v) = {w ∈ Σ∗ | v ⊑ w}.5
Definition 3 (Piecewise k-factors). For any string w ∈ Σ∗, the piece-
wise k-factors of w are:

F<k (w) = {v ∈ Σ∗ | v ⊑ w∧ |v|= k} .
Similarly for F<≤k(w). Again, this lifts to sets of strings in the obvious
way.

3.2 A unifying perspective
There is a fundamental regularity between the Local and Piecewise
hierarchies that becomes apparent if one looks at strings as ordinary
first-order structures. From this perspective, a string is just a labelled
finite discrete linear order:

W = 〈D,Ã,<, Pσ〉σ∈Σ.

Where D is a finite domain, Ã is the successor relation (as well as the
relation symbol denoting it), < is the less-than relation (and symbol)
and the Pσ are unary relations picking out the subset of the positions
in the domain at which the symbol σ appears.

From this perspective a local factor is just a structure generated by
a subset of the domain that is connected, in the graph-theoretic sense,
by the Ã relation and a piecewise factor is just a similar structure
connected by the < relation. The size of the factor is just the size of
the subset.

The testable classes of local and piecewise stringsets turn out
to be the class of all and only those stringsets that are definable

5The term “shuffle ideal” appears to have been coined by J. Sakarovitch and
I. Simon in Lothaire (1983).

[150]

Extracting Subregular constraints

in a propositional logic in which the atomic propositions are fac-
tors (Rogers et al. 2012). The strict classes are the class of stringsets
definable by conjunctions of negative literals in this same logic.

This model-theoretic machinery extends to factors that incorpo-
rate both successor and less-than as well as to any class of relational
structures, although here we will consider only local and piecewise
formulae along with conjunctions of the two. It is this model-theoretic
perspective that leads us to refer to both substrings and subsequences
as factors, local factors and piecewise factors, respectively.

4 strictly local stringsets
An anchored string is one that has been augmented with one or both
of the endmarkers ‘⋊’ (left end) and ‘⋉’ (right end).

A stringset L is Strictly k-Local (L ∈ SLk) iff it is strictly determined
by the local k-factors of its fully anchored strings.

Let Σ∗⋊⋉ = {⋊} ·Σ∗ · {⋉}.
Let GÃL,k ⊆ FÃ≤k(Σ

∗
⋊⋉) be the set of local factors that occur in fully

anchored strings in L. Then the stringset generated by GÃL,k is:
L(GÃL,k) =
�

w ∈ Σ∗ | FÃ≤k(⋊ ·w ·⋉) ⊆ GL,k

	
.

L(GÃL,k) is, by definition, SLk. If L is also SLk then L(GÃL,k) = L.
Since Σ is assumed to be finite, FÃ≤k(Σ

∗) is also finite, and an SLk

language can equivalently be defined in terms of its forbidden factors:
GÃL,k = FÃ≤k(Σ

∗
⋊⋉) − GÃL,k. This is more natural in many applications,

including many linguistic ones (as in “no pair of unstressed syllables
occur adjacently”).

A stringset is said to be SL if it is SLk for any finite k.
The following proposition characterises SLk.

Proposition 1 (Suffix Substitution Closure). (SSC)
L ∈ SLk iff
(∀x ∈ FÃk−1(Σ

∗
⋊⋉))[if w1 = u1 · x · v1 ∈ {⋊} · L · {⋉}

and w2 = u2 · x · v2 ∈ {⋊} · L · {⋉}
then u1 · x · v2 ∈ {⋊} · L · {⋉}].

This is because if a symbol σ can follow x in some string of L(A)
then x ·σ is a permitted local factor and σ can follow x in any string
of L.

[151]

James Rogers, Dakotah Lambert

One consequence of this is that if L(A) ∈ SLk andA is determin-
istic, then for each length k− 1 string x , all states in the set¦

q′ ∈Q | (∃q ∈Q)[q
x⇝ q′]
©

are Nerode-equivalent. IfA is minimal as well, then all paths that end
with the same (k− 1)-factor lead to the same state. The computations
of the automaton synchronise after at most k− 1 steps.

This is the basis of the algorithm used by Edlefsen et al. (2008)
to determine if a givenA recognises an SL stringset and, if it does, to
find the parameter k.
Proposition 2. Suppose A is a normalised DFA. Then L(A) ∈ SLk iff
every path from Q in PSG(A) that is of length k− 1 leads to a vertex that
is either a singleton subset of Q or empty. If that is the case, then k is one
plus the length of the longest path from Q to a singleton (that does not
include other singletons). If there is no such longest path (i.e., there is an
infinite path) then there is some cycle of non-singleton vertices, in which
case L(A) does not satisfy SSC for any k and it is not SL.

In practice, it is not necessary to build even just the subgraph
of PSG(A) generated by Q. All that one needs for a counter-example
to SSC is a single pair of strings in which SSC fails. So it suffices to
just explore the subgraph of PSG(A) that is generated by doubleton
subsets of Q. The size of this subgraph is only Θ(card(Q)2), in contrast
to the subgraph generated by Q, which is Θ(2card(Q)).6

The following is an immediate consequence of this proposition.
Corollary 3. If A is a normalised DFA and L(A) ∈ SLk then all cycles
in PSG(A) are cycles of singletons.
4.1 Classes of forbidden local factors
Local factors may or may not include a left-end marker at the begin-
ning or a right-end marker at the end or both. In the case that a factor
contains neither, it can occur anywhere in a string (including, possi-
bly, at the beginning or end) and we say that it is a free factor or, if
forbidden, free forbidden factor. If the length of a free forbidden factor

6The pair-graph algorithm appears to have been first published in Caron
(2000).

[152]

Extracting Subregular constraints

is one, then it has somewhat different status than free forbidden fac-
tors of greater length; it is, in essence, a restriction to the alphabet.
We will refer to these as forbidden units. If the first symbol of a for-
bidden factor is ‘⋊’, then it can only occur at the left end of the word;
this is an initial forbidden factor. If the last symbol is ‘⋉’, then it can
only occur at the right end of the word; it is a final forbidden factor.
Note that the length of the string that these anchored factors match is
k− 1. An SLk definition can restrict prefixes and suffixes of length up
to k − 1, but not, in general length k prefixes and suffixes.7 Finally,
if a factor contains both endmarkers it is a forbidden word, where the
(unanchored) word it forbids is actually of length k− 2.

4.2 Free forbidden factors
Suppose A is a DFA. A factor w is a free forbidden factor of L(A) iff
there is no path in the transition graph of A from q0 to an accepting
state that includes w as a substring. If A is normalised, this will be
the case iff there is no path at all that is labelled w from any state of
A , as all such paths would necessarily lead to the sink state which
has been trimmed. Thus, in PSG(A) the path from Q that is labelled w
leads to ;. Again, the converse holds.

So the members of the set of all labels of paths from Q to ; in
PSG(A) are free forbidden factors of L(A). Moreover, that set in-
cludes all free forbidden factors of L(A). Since in general PSG(A)
may include cycles and even in the case that L(A) is SL it may in-
clude cycles of singleton vertices, in general this set of paths will be
infinite. (In fact, since PSG(A) invariably includes a trivial cycle on ;
for each σ ∈ Σ, it will always be infinite.) The paths including trivial
cycles on ; are labelled with strings in w ·Σ∗, where w is a free forbid-
den factor. We are interested in the set of paths that are minimal in
the sense that the label of the path does not include the label of any
other such path as a substring.

Note that, by Corollary 2, any such path that includes an in-edge
to Q or an out-edge from ; includes another path from Q to ; that is

7 In the original definition of SLk (McNaughton and Papert 1971) prefix and
suffix factors and forbidden words could be of length k. But the definition we use
is equivalent in all significant aspects and accounts for the information contained
in an anchored factor; it has become the prevailing definition in most of the
literature.

[153]

James Rogers, Dakotah Lambert

strictly shorter. Thus none of those paths are minimal free forbidden
factors. Note, also, that if L(A) ∈ SL, then there are no cycles on Q,
although there will always be trivial cycles on ; for each σ ∈ Σ.

The next two lemmas establish that if L(A) is SL then there is
some bound such that all cyclic paths from Q to ; in PSG(A) with
length greater than that bound will be labelled with a string that in-
cludes, as a suffix, the label of an acyclic path from Q to ;. Thus the
set of minimal free forbidden factors of L(A) is just the set of labels
from paths from Q to ; in PSG(A) that do not include the label of any
other such path as a suffix and that do not include self-edges on ;. This
allows us to collect forbidden factors with a breadth-first bottom-up
traversal of PSG(A).
Lemma 2. If v and w label paths from Q to ; in PSG(A) that do not
include loops on ; and v ≼ w, then w= uv for some u ∈ Σ∗.
Proof. v ≼ w iff, by definition, w= uvx for some u, x ∈ Σ∗. Since Q

v⇝ ;
and all vertices S of PSG(A) are subsets of Q, for all vertices S, S

v⇝ ;
as well, and, in particular, Q

u⇝ S
v⇝ ;. Hence x is either ϵ or the path

it labels is a self-loop on ;.
Lemma 3. LetA be a DFA such that L(A) ∈ SL. If a path from Q to ; in
PSG(A) includes a cycle other than a trivial cycle on Q or ;, then there is a
finite bound on the number of times the cycle can be taken before the label
of the path includes the label of an acyclic path from Q to ; as a suffix.
Proof. Since L(A) is SL, any cycle must be a cycle of singletons. Sup-
pose then that there is a path:

Q
u⇝ {q0} v⇝ {q1} w⇝ {q0} x⇝ ;

where, possibly, v may be a prefix of x . Since q0, q1 ∈Q there must be
a path:

Q
u⇝ S0

v⇝ S1
w⇝ S2

v⇝ S3 · · ·
where q0 ∈ S2i and q1 ∈ S2i+1 for i ≥ 0. Since there are no cycles of
non-singletons, by Lemma 1 the sequence of Sis must ultimately be
decreasing in size. Thus, for some n it resolves to:

Q
v⇝ S1

w⇝ S2
v⇝ S3 · · · w⇝ S2n = {q0} x⇝Q

So (vw)n x labels a path from Q to ; and will be a suffix of all paths Q
to ; that take the {q0}⇝ {q1} cycle at least 2n times.

[154]

Extracting Subregular constraints

An example of this lemma, taken from the PSG of the canonical
automaton for Cairene Arabic, is shown in Figure 1.

Ĺ

S

L

SH

L
S

{0,1,2,3,4,5}

{2,5}

{5}

{ }

{4}

{2,3,5}

S

L
H

L

H́

Ĺ

L
H

Ĺ

H́

H́

H

H

Ś

S

Ś

Ś

H́

Ś Ĺ H́

Ś

Ĺ

Figure 1:
Lemma 3: The cyclic path is labelled S(L)∗ĹS.
The acyclic path is labelled LĹS

Theorem 1. If L(A) ∈ SL then a string w is a free forbidden factor of
L(A) ∈ SL iff it labels a path in PSG(A) from Q to ;. It is minimal if that
path does not include any cycles other than cycles of singletons and w does
not include the label of any other such path as a suffix.

[155]

James Rogers, Dakotah Lambert

Note that if L(A) ∈ SL then the only cycles of non-singletons will
be trivial cycles on ;. Labels of paths including these will include some
free forbidden factor as a prefix and are thus not minimal.

Paths including cycles of singletons are necessary since none of
the paths labelled u(vw)i x as in the proof of Lemma 3 is labelled with
a factor of any of the others; they are minimal with respect to each
other. It is only the label of the acyclic path that subsumes the labels
of further iterations.
4.3 Final forbidden factors
Suppose A is a DFA. A factor w is a final forbidden factor of L(A) iff
there is no path from q0 to an accepting state in the transition graph
of A that includes w as a suffix but there is some path from q0 to
an accepting state that includes w as a proper substring. (If there is
no such accepting path, then w is a free forbidden factor.) If A is
normalised then w is a final forbidden factor iff all paths labelled w
from any state inQ end at a non-accepting state and there is some such
path. This will be the case iff the path from Q in PSG(A) labelled w
ends at a non-empty vertex that is disjoint with F .
Proposition 3. No final forbidden factor of any stringset includes a free
forbidden factor of that stringset as a substring.

This is because no string includes a free forbidden factor any-
where, whereas final forbidden factors are forbidden only as suffixes;
to be final but not free, there must be some string that includes the
factor as a non-suffix.

In terms of the PSG free forbidden factors label paths from Q to ;,
so as long as we only consider paths that lead to non-empty vertices,
we don’t have check to see if the factor is subsumed by a free forbidden
factor. Note, though, that a final forbidden factor may include another
as a suffix. (It is irrelevant whether it includes a final forbidden factor
as a non-suffix, since final forbidden factors are, by definition, only
relevant as suffixes.)
Lemma 4. If a path from Q to a non-empty vertex disjoint from F in
PSG(A), with L(A) ∈ SL, includes a cycle other than a trivial cycle on Q,
then there is a finite bound on the number of times the cycle can be taken
before the label of the path includes the label of an acyclic path from Q to
a non-empty vertex disjoint from F as a suffix.

[156]

Extracting Subregular constraints

Theorem 2. If L(A) ∈ SL then a string w is a final forbidden factor of
L(A) ∈ SL iff it labels a path in PSG(A) from Q to a non-empty vertex
disjoint from F . It is minimal if that path does not include any cycles other
than cycles of singletons and w does not include the label of any other such
path as a suffix.

The proofs are essentially the same as the proof of Lemma 3 and
Theorem 1.
4.4 Algorithms for extracting forbidden local factors
Theorem 1 guarantees that if we do a breadth-first bottom-up traversal
of PSG(A) then we will discover each minimal forbidden factor before
we discover any of its proper suffixes. Expanding the frontier of the
search in discrete stages, every (reverse) path from ; to Q found in the
kth stage will be a minimal forbidden k-factor.

There may be more than one such path so we do need to avoid
gathering more than one instance of the factor. In general, there will
be open paths (not reaching Q) that are labelled with the same factor.
Extended to Q, they would include the factor as a proper suffix. So we
exclude these from the frontier for the next stage.

We structure the bottom-up traversal of PSG(A) as a top-down
traversal of PSGR(A), in which each of the edges of PSG(A) is re-
versed. For convenience (and convergence) we trim self-edges on ;
and Q while reversing the graph. Since we are traversing bottom-up,
we actually find wR of each factor w, but we gather these in a list
structure, inserting at the head, which reverses the factor again as we
construct it.

For the purposes of the algorithm, a Path in an edge-labelled graph
〈V, E〉, as a computational structure, is a three-tuple 〈v, S, w〉, where
v ∈ V is the final vertex of the path, S ⊆ V is the (unordered) set of
vertices along the path and w ∈ Σ∗ is the sequence of labels of the edges
in the path, in reverse order. A Frontier is a set of paths. Forbidden
factors are gathered in stages, with Stagei expanding Frontieri−1 to
Frontieri, gathering the set FFi of all minimal forbidden i-Factors in
the process.

The initial frontier Frontier0, when searching for free forbidden
factors, includes just the trivial (0-length) path from ;. When searching
for final forbidden factors, Frontier0 includes the trivial path from each
vertex that is a subset of Q− F .

[157]

James Rogers, Dakotah Lambert

Theorem 1 guarantees that, if we eliminate paths labelled with a
forbidden i-Factor from Frontieri the search will converge after finitely
many iterations, k, with Frontierk empty. (Note it is an empty set of
Paths, not a set including a path ending at ;.) The set of minimal free
forbidden factors will be the union of the sets of factors gathered at
stages 2 through k, where L(A) ∈ SLk. (Forbidden 1-factors are not in-
cluded, since they are forbidden units.) The search for final forbidden
factors will terminate after k − 1 iterations, with the minimal k-final
forbidden factors including the right-end marker.

The time complexity of these algorithms is Θ(card(Σ)k), which is
optimal for algorithms that return sets of k-factors. For an arbitrary
automaton that recognises an SL stringset, we know from the pair-
graph algorithm that k is no more than card(Q)2. Thus the complexity
is O(card(Σ)(card(Q)2)).
4.5 Initial forbidden factors
The initial forbidden factors of L(A) are just the final forbidden fac-
tors of L(A)R. We identify these by constructing A R and applying
the algorithm for identifying final forbidden factors. This adds a de-
terminisation step prior to generating the PSG, so this ends up being
doubly exponential in the size of the automaton, O(card(Σ)(2(card(Q)2))).
As a practical matter, this was not an issue in our application, so we
did not pursue a direct algorithm, but it would be worthwhile to do
so in future work.
4.6 Forbidden words for SL stringsets
If L(A) ∈ SLk andA is deterministic, then the words it forbids are just
the labels of paths of length k− 2 (to allow for the endmarkers) from
the (single) initial state to a state in Q − F . These can be gathered by
doing a bounded traversal ofA . The time complexity of this traversal
is Θ(card(Σ)k), thus O(card(Σ)(card(Q)2)).
4.7 Forbidden units
IfA is normalised (minimal and trim), the forbidden units of L(A) are
just the symbols of Σ that do not label any edge in δ. In PSG(A) these
will label edges Q to ; and will be gathered in Stage1 while gathering
free forbidden factors. But these may not be the only forbidden units of
interest. In many applications there will be an alphabet that includes

[158]

Extracting Subregular constraints

all symbols that occur in any of a collection of stringsets and the subset
of that alphabet that is not included in the alphabet of the FSA will
also be significant. This is the case in many linguistic applications, for
example (as in “this lect forbids unstressed heavy syllables”).

In those applications we need to include the difference between
some default alphabet and the set of symbols that label edges in A .
Since we are building PSG(A) anyway, the simplest way of doing this
is to just take the difference between the default alphabet and the la-
bels of the out-edges from Q. If we union that with the labels of the
subset of those edges that lead to ; we get the free forbidden 1-factors
as well. We can avoid gathering the latter in both the set of free for-
bidden factors and the set of forbidden units by not including the for-
bidden factors gathered in Stage1. (Or, in order to simplify the code,
by removing them from the set of free forbidden factors.)

Both of these approaches involve constructing the PSG and are
consequently exponential in the number of states in the automaton.
Alternatively, if all that is needed is the set of forbidden units, the set
of permitted units can be gathered from the set of transitions of the
automaton in time Θ(card(Q)2 ·card(Σ)). The forbidden units are then
the difference between the default alphabet (plus the alphabet of the
automaton, if it is not known to be a subset of the default) and the set
of permitted units.

5 approximating regular stringsets in sl
Every stringset can be fully defined by the conjunction of a set of SL
constraints (possibly trivial: Σ∗, ; and Σ+ are SL1, SL1 and SL2, respec-
tively) along with a set of properly non-SL constraints. In applications
that are exploring constraints across a collection of stringsets – most
linguistic applications for instance – these SL constraints are signifi-
cant. If the stringset is Regular we can factor the constraints so that
the non-SL constraints capture just the non-strictly-local aspects of the
patterns.

The problem isn’t finding factors that characterise the stringset;
the problem is that there are too many of them. Σ∗− L(A), augmented
with left and right endmarkers, is a set of forbidden factors that char-
acterises L(A) exactly. It is, of course, in general infinite.

The algorithms for SL stringsets are still partially correct for non-
SL stringsets. The problem is that if L(A) is non-SL, then there will be

[159]

James Rogers, Dakotah Lambert

non-singleton cycles (in addition to those on ;) and the traversal will
not terminate. These non-singleton cycles actually localise the reason
that the stringset is not SL. They capture circumstances under which
the automaton fails to synchronise ever; they identify places in which
SSC (Proposition 1) fails for L(A).

As with the set of forbidden words, the set of labels of the paths in
PSG(A) fromQ to ; that include non-singleton cycles are all legitimate
forbidden factors of L(A), but again there are infinitely many of them.
The stringset they define is what we would like to isolate as the non-SL
fragment of L(A).

It is tempting to try modifying the traversal so it follows only
singleton cycles. But, unfortunately, if there are non-singleton cy-
cles the chain of the proof of Lemma 3 may be infinite, so there
is no guarantee of termination even when following only singleton
cycles.

Even if this were not the case, in general forbidden factors that
label paths that take a non-singleton cycle one or more times can
be necessary constraints in defining the SL fragment of a stringset.
The reason is that it may be the case that there are acyclic paths
that eventually subsume, in the sense of being included as a substring
(specifically, being a suffix: see Lemma 2), paths with further itera-
tions of the cycle. The subsuming path may be longer than the cyclic
one and it may take several iterations of the cycle to form the acyclic
path as a suffix.

The issue is termination. How many times must a cycle be taken
before it has yielded all of the additional forbidden factors that are not
just instances of an unbounded pattern? Note that if the cyclic paths
will ultimately be subsumed, there will be at least one path fromQ that
will eventually be a suffix of that path. Traversing the PSG bottom-up,
these paths will share the same initial sequence of labels.
Lemma 5. Let A be any DFA. If a path from Q to ; in PSG(A) includes
a cycle other than a trivial cycle on Q or ;, then either:

• there is a finite bound on the number of times the cycle can be taken
before the label of the path includes the label of an acyclic path from
Q to ; as a suffix

• or there is a finite bound on the number of times the cycle can be
taken before all paths with labels that share the same suffix as this

[160]

Extracting Subregular constraints

one, beginning at the first iteration of the cycle, are instances of a
non-SL pattern.
This is simply because if there is no acyclic path with labels that

share the same suffix, then the label of the path is an instance of
a factor that contains a substring that can be iterated unboundedly
many times.

In order to identify the factors that label cyclic paths from Q to
; which will eventually be subsumed by an acyclic path, i.e., that are
not simply instances of an unbounded pattern, we modify the bottom-
up algorithm to follow all paths in parallel.8 Rather than a frontier
that is a set of paths, the frontier becomes a set of equivalence classes
of paths with each path in a class sharing the same sequence of labels.
If a class includes a path that reaches Q, then all paths in the class are
subsumed by that path; the class is removed from the frontier of the
traversal. On the other hand, if a class includes only cyclic paths, then
it will never be subsumed in this way, the paths in the class are in-
stances of unbounded patterns and we drop them; hence this traversal
can be limited to acyclic paths and is guaranteed to terminate in time
bounded by the size of the PSG, i.e. Θ(2card(Q)).

The same strategy suffices for initial and final factors with the
initial frontier taken to be the single class of trivial paths from subsets
of Q that are disjoint with F , all of which are labelled ϵ. Note that
the naïve algorithm for initial forbidden factors is in this case triply
exponential in the size of the automaton.

In gathering forbidden words of non-SL stringsets the bound k
is not known from building the PSG, but it can be estimated by the
maximum of the length of the longest free forbidden factor minus
2, the length of the longest forbidden final or initial factor minus 1
and the length of the longest acyclic path from a start state to a non-
accepting state in the automaton. This bound can be found implicitly
while gathering the forbidden words. Once all words shorter than the
bounds provided by the free, final and initial forbidden factors have
been collected, all cyclic paths can be trimmed.

Unlike the case of SL stringsets, there is no smaller bound on the
size of the factors in the approximation. The time complexity of the

8The reversed PSG is non-deterministic and this is just the same strategy used
in determinising an NFA using the powerset construction.

[161]

James Rogers, Dakotah Lambert

traversals of these algorithms is O(card(Σ)(2card(Q))). The number of for-
bidden factors of an SL approximation of a non-SL Regular stringset
is similarly bounded above, although we leave open the question of
whether there are DFAs that witness this complexity (i.e., whether it is
a big-Ω bound, as well). But relative to this upper bound the algorithm
is optimal, and if a smaller bound can be established the traversal will
almost certainly be bounded in the same way. The following theorem
shows that the approximation is optimal in the sense of producing a
stringset of minimal size.
Theorem 3. If L(A) is non-SL, the free, final and initial forbidden factors
gathered by the modified bottom-up traversal of PSG(A), when combined
with the forbidden words up to the bound given above, define the minimal
SL superset of L(A) that does not include the effect of arbitrarily many
instances of properly non-SL constraints.
Proof. By Theorems 1 and 2, every path fromQ to ; or a vertex disjoint
from F is either a free forbidden or final forbidden factor of L(A),
respectively. The same is true for the initial forbidden factors and the
forbidden words. Thus the approximation does not exclude any string
that is not also excluded by L(A).

Those paths that are trimmed in the traversal either include an-
other such path as a suffix or are instances of an unbounded pattern,
i.e., include iterations of non-singleton cycles that may be iterated ar-
bitrarily many more times without being subsumed by an acyclic path.
These instances of unbounded patterns are the (infinite) set of forbid-
den factors defined by a properly non-SL constraint. Since the con-
straints are all negative, these instances can only reduce the stringset
defined by the constraints. Including all of them yields L(A); includ-
ing none of them yields the SL approximation that is minimal in the
sense of the theorem.
5.1 Residue automata
As noted in the proof of Theorem 3, the approximation, if not exact,
will overgenerate. We turn now to the problem of characterising the
strictly non-SL constraints that it omits.

Most work on approximating stringsets with stringsets in a weaker
complexity class has focused on approximating CFLs with Regular
stringsets (Nederhof 2000 includes a good survey) or Tree-Adjoining

[162]

Extracting Subregular constraints

Stringsets (TALs) with CFLs (Schabes and Waters 1993; Rogers 1994).
Whenever the class of stringsets that is being approximated includes
CFLs, the (symmetric) difference between the approximation and the
target will not, in general, be a decidable set. Consequently, there is
little that can be determined about that difference.

We have the advantage that all of our stringsets are Regular, and
so the difference is not only decidable but an automaton recognising
it is effectively constructible. Moreover, in this case, we know that
every string excluded by the approximation is necessarily excluded by
the target. The approximation never undergenerates. To isolate the
non-SL characteristics of the target, we construct an automaton that
recognises exactly the set of strings that are overgenerated by the SL
approximation.

Using well-known algorithms for combining automata, an au-
tomaton AFF that recognises the set of strings licensed by the set of
forbidden factors can be constructed. One starts with deterministic
automata that recognise each of the given factors, complements them
and then builds the automaton that recognises the intersection of
those complements. It is then straightforward to construct Ares, the
residue automaton,9 which recognises exactly L(AFF) − L(A). This
residue automaton captures exactly the non-SL aspects of L(A).

6 strictly piecewise stringsets

A stringset L is Strictly k-Piecewise (L ∈ SPk) iff it is strictly determined
by its k-subsequences.

Let G<L,k
def
= F<≤k(L) be the set of piecewise factors that occur in L.

Then the stringset generated by G<L,k is:

L(G<L,k) =
¦

w ∈ Σ∗ | F<≤k(w) ⊆ G<L,k

©
.

If L ∈ SPk then L(G<L,k) = L.
9The term “residue” is motivated from the perspective of factoring con-

straints. These automata should not be confused with the residual automata of De-
nis et al. (2002), NFAs in which every state corresponds to the residual stringset
w.r.t. some prefix. “Residual” in that context is justified from the perspective of
factoring strings.

[163]

James Rogers, Dakotah Lambert

Let G<L,k = F<≤k(Σ
∗) − G<L,k, the set of forbidden piecewise factors

of L. This is more natural in many applications, including many lin-
guistic ones (as in “no syllable with primary stress occurs following
another such syllable”). Given G<L,k, the stringset L can be described
as the intersection of the complements of finitely many shuffle ideals:

L =
∩

w∈G<L,k

�
SI(w)
�
.

A stringset is said to be SP if it is SPk for any finite k. The following
propositions characterise SP and SPk.
Proposition 4 (Subsequence Closure). A stringset L is SP iff

(∀w ∈ L, v ∈ Σ∗)[v ⊑ w =⇒ v ∈ L].
This is because if v ⊑ w and w is in L, then v is a permitted factor

and thus cannot be excluded from the stringset.
Proposition 5. An SP stringset L is SPk iff�∀w ̸∈ L

���∃v ̸∈ L
�� |v| ≤ k ∧ v ⊑ w

��.
In other words, if L ∈ SPk and a string w is forbidden in L, then w

contains a subsequence v of length less than or equal to k such that v
is also forbidden in L.

The properties of Strictly Piecewise stringsets combine to allow
efficient extraction of G<L,k from the automaton representation of such
a stringset.
Theorem 4. If A is a DFA representing an SP stringset, then a factor w
is a forbidden subsequence of L(A) iff there is no path labelled w from the
initial state, q0, to an accepting state.
Proof. Let w ∈ Σ∗ be a string. We first show that if there is no path
labelled w from the initial state q0 to an accepting state, then w is a
forbidden subsequence of L(A). Suppose the hypothesis; i.e., that for
all accepting states q f , there is no path q0

w⇝ q f . Then w ̸∈ L(A), and
by the contrapositive of Proposition 4, for all strings x ∈ Σ∗, if w ⊑ x ,
then x ̸∈ L(A). Then w is by definition a forbidden subsequence.

Next, we show that if w is a forbidden subsequence of L(A), then
there is no path labelled w from the initial state q0 to an accepting

[164]

Extracting Subregular constraints

state q f . Let w be a forbidden subsequence. Since A is deterministic,
there is exactly one path from q0 labelled w. Since w is a forbidden
subsequence and necessarily a subsequence of itself, w ̸∈ L(A). So the
final state of this path must not be accepting. In other words, there is
no path labelled w from the initial state, q0, to an accepting state.

A direct consequence of Theorem 4 is that, ifA is a DFA that rep-
resents an SP stringset, then its forbidden factors can be extracted by
a simple traversal of the graph, collecting the strings that do not end
in an accepting state. One concern is that a graph may have cycles,
but in the case of a cyclic path q0

w⇝ q1
x⇝ q1

y⇝ q2 there is also a path
q0

w⇝ q1
y⇝ q2 that avoids the cycle, and in this case wx y is a permit-

ted subsequence iff wy is. So an acyclic traversal of a DFA of an SP
stringset L is sufficient to extract G<L,k. This extraction algorithm is thus
Θ(card(Σ)card(Q)). Since the maximum length of a piecewise factor of
the SP stringset recognized by A is card(Q), this is also the num-
ber of possible forbidden factors of that stringset and this algorithm
is optimal for algorithms that return the set of subsequences. To re-
duce the result to a minimal set of forbidden factors is quadratic in the
same measure, as each extracted factor must be tested for subsequence
against each longer one. Given this minimal set of forbidden factors,
the necessary factor width k is simply the size of the longest factor.

Note that this traversal will not necessarily yield the expected
result on an arbitrary NFA, as an edge could be missing following one
path but present following another with the same label.

7 approximating regular stringsets in sp

The minimal SP superset of any stringset L is just the closure of L
under subsequence: any such superset must include L, and every SP
superset must be closed under subsequence.

In Section 6 we describe an algorithm to extract subsequences
from DFAs that represent SP stringsets. To use this to obtain an SP
approximation of an arbitrary Regular stringset the DFA must first
be closed under subsequence. We can achieve this closure by adding
edges on ϵ in parallel to each existing edge of the automaton; Theo-
rem 5 shows that the set of permitted subsequences of this generated
stringset is exactly the same as that of the input.

[165]

James Rogers, Dakotah Lambert

Theorem 5. IfA is a DFA andA ′ is the automaton produced by adding
ϵ-edges in parallel to each existing edge of A (applying the subsequence
closure algorithm), then the set of permitted factors of L(A) is the same
as that of L(A ′).
Proof. In order to show that these sets are equal, we will show that
each is a subset of the other.

To show that the set of permitted subsequences of L(A) is a subset
of that of L(A ′), let u ∈ Σ∗ be a permitted subsequence of L(A). Then
there exists a word v ∈ L(A) such that u⊑ v, and since L(A) ⊆ L(A ′)
by construction, it follows that v ∈ L(A ′). Thus u is a permitted subse-
quence in the latter. Since this holds for all such u, the set of permitted
subsequences of L(A) is a subset of that of L(A ′).

To show that the reverse holds as well, let w ∈ Σ∗ be a permitted
subsequence of L(A ′). Then there exists some string x ∈ L(A ′) such
that w ⊑ x . Since A ′ was formed by allowing a computation to skip
edges in A , there must exist some string y ∈ L(A) such that x ⊑ y.
By transitivity, it follows that w ⊑ y and thus w is a permitted subse-
quence of L(A). Since this holds for all such w, the set of permitted
subsequences of L(A ′) is a subset of that of L(A).

Since each is a subset of the other, these sets are equal.
Since L(A ′) is by construction closed under subsequence, it is

Strictly Piecewise; Theorem 5 guarantees that its permitted subse-
quences are the same as those of L(A). If the desired outcome is
simply an SP approximation, this algorithm is good: this subsequence
closure is the closest SP approximation that contains its input as a
subset, and the NFA is produced in linear time in the number of node
pairs, Θ(card(Q ×Q)). If all that is needed is the approximation, this
NFA can be determinised and is of size Θ(2card(Q)). The extraction al-
gorithm from Section 6 can then be used, if desired, to extract the set
of forbidden factors from this approximation. The time complexity of
the whole process is Θ(card(Σ)(2card(Q))).

On the other hand, a modified version of the algorithm is more
efficient. Let A be a trim DFA, and create a map ec : Q → {Q} such
that ec(q) is the set of states reachable from q (the ϵ-closure of q). As
finding ec(q) is a graph traversal that touches each edge exactly once,
it is Θ(card(Σ×Q)). In the worst case, we find this for each state, so
finding the ϵ-closure map is Θ(card(Σ×Q×Q)).

[166]

Extracting Subregular constraints

To compute the subsequence closure of A without explicitly in-
cluding any edges on ϵ, we must create new edges and determine the
set of initial and accepting states. For each edge 〈σ, p, q〉, create new
edges {〈σ, p, r〉 | r ∈ ec(q)}. Since every state is reachable from the ini-
tial state, in the subsequence closure the set of initial states is simply
the set of all states. Since A is trim, if there is any accepting state
at all, then every state must be able to reach a final state, and thus
similarly in the subsequence closure the set of accepting states is also
the set of all states. Since the original automaton A is deterministic,
there are at most card(Σ×Q) edges, and since card(ec(q)) is at most
card(Q), assuming sublinear lookup of ec(q), the computation of this
subsequence closure is then Θ(card(Σ×Q×Q)).

Next, add a marked non-accepting sink state ⊥ ̸∈Q and complete
the automaton, adding edges to ⊥ from each state q for each sym-
bol not already labelling an out-edge of q. The time complexity of the
completion is Θ(card(Σ×Q)). BecauseA was trim, this sink will nec-
essarily be the unique non-accepting sink. Then there will be at most
card(Σ×Q) edges out of each state.

From this point, we traverse the automaton nondeterministically
(grouping paths with the same label) from the set of initial states
(equal to Q), where the desired paths are those that end in the unique
non-accepting sink state ⊥ and at least one component path is acyclic.
If all component paths are cyclic, then there is a strictly shorter for-
bidden subsequence that subsumes it, thus the paths are bounded
in length by that of the longest possible acyclic path: card(Q). We
alleviate the concern that in an NFA a factor may appear to be
forbidden along one path but actually be permitted along another
through the requirement that all component paths lead to ⊥. Then
since paths will be at most card(Q) edges long where each may be
any of the Θ(card(Σ×Q)) edges that start at the current state, we
gather Θ(card(Σ×Q)card(Q)) paths. The overall time complexity for
this modified algorithm is then the sum of each step, dominated by
the gathering of paths. In all, it is Θ(card(Σ×Q)card(Q)).

Again, finding aminimal set requires a quadratic-time filter across
the extracted factors, which can either be done during the extraction
or as a post-processing step.

As the longest forbidden factor is of length Θ(card(Q)), there are
Θ(Σcard(Q)) possible minimal forbidden factors and this modified algo-

[167]

James Rogers, Dakotah Lambert

rithm for extracting piecewise factors from a non-SP stringset is still
suboptimal, though it is still of lower asymptotic complexity than de-
terminising and using the algorithm of Section 6.

If all that is needed is the Strictly Piecewise approximation, the
NFA of the subsequence closure can be produced in Θ(card(Q×Q))
time, or the DFA in Θ(2card(Q)) time. If the set of forbidden factors
is desired, the algorithm described in this section provides this in
Θ(card(Σ×Q)card(Q)) time. It should be noted that the Strictly Piece-
wise factors of Regular stringsets are derived from the approximation,
in contrast to the Strictly Local factors and approximations where this
relationship is inverted. This saves a considerable amount of time in
practice.

We now demonstrate the application of this procedure by apply-
ing it to the stress pattern of Amele, described in StressTyp2 (Goede-
mans et al. 2015) as follows: “In words of all sizes, primary stress falls
on the leftmost heavy syllable, else on the initial syllable.” This is
shown in Figure 2.

Figure 2:
The application

of the
subsequence

closure
algorithm to

Amele. At left,
the normalised

DFA representing
Amele itself; in

centre, the
addition of

ϵ-edges; and at
right, the

normalised result

L

σ

L

Ĺ

H́

L

H́

3

1

4

2 L, ϵ

σ

L

Ĺ, ϵ

H́, ϵ

L

H́, ϵ

3

1

4

2 L

σ

L

Ĺ

∗
H

L

∗
H

3

1

4

2

Note that Amele is fully described by a set of forbidden subse-
quences and one additional constraint: that some syllable with pri-
mary stress must occur, which, following Hyman (2009), we will re-
fer to as obligatoriness. The (non-trimmed) residue of the subsequence

[168]

Extracting Subregular constraints

σ́

σ ∗
σ

1 2

Figure 3:
The residue of Amele’s Strictly Piecewise
approximation

closure of Amele with Amele itself is shown in Figure 3. The comple-
ment of this residue (the coresidue) is exactly obligatoriness. While it
does not always work out this cleanly, this certainly motivates further
analysis of the residue in order to obtain additional constraints.

8 local and piecewise testable constraints

As Rogers et al. (2012) showed, three quarters of the lects in the
StressTyp2 database are Strictly Local. They also identified a set of
Strictly Piecewise constraints that enforce aspects of the remaining
lects, although SL and SP constraints are not sufficient by them-
selves. Working analytically from the English glosses of the stress
patterns, they derived a set of nine Locally Testable constraints that,
together with the SL and SP constraints suffice to define 104 of the
106 patterns, the exceptions being Cyrenaican and Negev Bedouin
Arabics, which are properly Regular.10 Thus they established that,
with those two exceptions, all of the stress patterns are, at most,
conjunctions of Locally Testable and Strictly Piecewise (LT+SP) con-
straints.

Most prominent among these LT constraints is the requirement
that primary stress falls on some syllable of every word, i.e. obligatori-
ness. Since SP stringsets are closed under substring and SL stringsets
are closed under substitution of suffixes, this requirement cannot be
enforced, in general, by any conjunction of SL and SP constraints. In
the lects that are SL, primary stress is required to fall within a fixed dis-
tance of either the initial or final syllable which allows obligatoriness
to be enforced by initial or final forbidden factors. But SP constraints
are oblivious to the ends of words, which accounts for the fact that
none of the lects are purely SP.

Note that the complement of obligatoriness – that no primary
stress occurs – is SL1, which puts it in the class of co-SL constraints.

10Regular but not Star-Free. See McNaughton and Papert (1971).

[169]

James Rogers, Dakotah Lambert

These are constraints that are disjunctions of positive literals, a sig-
nificantly restricted subset of the full set of LT constraints. From a
cognitive perspective, co-SL constraints are very nearly as simple as
SL constraints. Paraphrasing, SL constraints correspond to “you can’t
say X”, where the X is a fixed string of syllables, while co-SL con-
straints correspond to “you can’t not say X”. Note though that, in gen-
eral, since co-SL constraints are disjunctive, X may be a set of alter-
natives.

In the case of obligatoriness, though, there is a single disjunct.
All that is required is that primary stress is identifiable somewhere.
Adding obligatoriness to the sets of forbidden local and piecewise fac-
tors we extract allows us to characterise another 18 lects: 98 of the 106
lects (92.5%) are SL + SP + obligatoriness and thus extremely simple
in the cognitive resources they require.

This raises the question of whether we can capture the remaining
lects by extracting their co-SL constraints. Unfortunately, this is not as
simple as just complementing the stringset and extracting forbidden
factors. While the original stringset may (in our case, will) enforce a
positive literal constraint, it will be lost in the noise of all of the strings
that fail to be in the original stringset for other reasons.
Proposition 6. If L is a stringset that forbids piecewise or free local fac-
tors, then L cannot forbid piecewise or free, initial or final local factors. If
L forbids only initial local factors, L cannot forbid piecewise, free or final
local factors, although it may forbid initial local factors. The same is true,
mutatis mutandis, of final local factors.

To see why this is so, suppose L has an initial forbidden local
factor v. It follows that for all w ∈ Σ∗, vw is not in L. Since this applies
for all w, L has neither free nor final forbidden local factors, nor does
it have any forbidden piecewise factors.

If v were instead a free forbidden local factor or a forbidden piece-
wise factor, these same conclusions hold. However, it is also true in
that case that for all w ∈ Σ∗, wv is not in L. Since this applies for all
w, L has no initial forbidden factors either.

If v were instead a final forbidden local factor, then LR has an
initial forbidden local factor (vR). Thus LR has neither free nor final
forbidden factors. As they are equivalent, this holds for L

R. Then L has
neither free nor initial forbidden factors.

[170]

Extracting Subregular constraints

The situation is not hopeless, though. Having identified forbid-
den local and piecewise factors, we can look for co-SL or co-SP con-
straints in the residue set, the difference between our approximation
and the original stringset. Since the forbidden factor constraints have
been stripped from this, we can in principle and do in fact get useful
co-SL constraints in this way. This is an extension of the methodology
that is demonstrated in Section 7 which resulted in the isolation of
obligatoriness. This allows us to formally characterise all of the lects
that are SL + SP + co-SL ab initio, fully computationally.

For the non-strict, non-co-strict constraints, we fall back on the LT
constraints identified in the prior work. We treat these as hypotheses
and systematically test each subset of the constraints to see if it suffices
to complete our approximation. In this way, we determined that five of
the eight non-strict, Subregular constraints identified in that work turn
out to be unnecessary. The remaining three are of the form ¬X ∨¬H́⋉
where X ∈ {H, H̀, S}.

Each of the two properly Regular stringsets was associated, in the
prior work, with a specific Regular constraint. But since one of these
constraints is just the conjunction of the other with a fourth LT con-
straint (¬Ĺ ∨ ⋊Ĺ⋉, i.e., primary stress falls on a light syllable only in
monosyllabic words), these can be unified with a single, simple and
linguistically suggestive Regular constraint: that a light syllable with
primary stress is immediately preceded by an uninterrupted sequence
of an odd number of unstressed light syllables that is not itself imme-
diately preceded by more unstressed light syllables. In the actual anal-
ysis from StressTyp2, this shows up as a requirement that unstressed
syllables and those with secondary stress alternate, with the secondary
stress syllables not surfacing.

9 results and prospectus

We have designed and implemented algorithms that, given a finite-
state automaton, compute a set of forbidden words, units, initial, free
and final local factors that define an SL approximation of the stringset
recognised by the FSA, along with a minimal DFA that recognises the
residue set: the set of strings in the approximation that are not in the
stringset recognised by the FSA. Similarly, we have designed and im-
plemented an algorithm that computes a set of forbidden piecewise

[171]

James Rogers, Dakotah Lambert

factors that define an SP approximation. The intersection of these ap-
proximations is an SL + SP approximation. Then, working with the
residue automaton, which recognises exactly the set of strings the ap-
proximation accepts that are not in the original stringset, we identify
the forbidden factors in its complement. Those that are consistent with
the original stringset are required factors of that stringset, that is, they
are co-SL constraints. This gives us an SL+SP+co-SL approximation.
If the FSA recognises a stringset that is in the union of these three
types then the approximation is exact.

We have used these algorithms to implement a system that com-
pletely characterises any Regular stringset that is SL+SP+co-SL, fully
computationally. We have applied this to the lects in the StressTyp2
database. SL+SP+co-SL constraints cover 98 (92.5%) of the 106 lects
in the database that have corresponding FSAs.

For the remaining 6 Subregular lects, we have systematically
tested the sufficiency of each of the subsets of the properly LT con-
straints that Rogers et al. (2012) employed in their characterisation.
Of these, only obligatoriness and three other constraints were needed
to fully characterise these lects. The only properly Regular constraint
that is required in characterising the remaining two lects is a hidden
alternation pattern that requires an odd number of syllables to occur
in certain spans of the word. This is about as simple as non-trivial
properly Regular constraints can get and it is reminiscent of the no-
tion of metrical foot that plays an important role in much phonotactic
analysis.

Our results sharpen the results of the prior work in the follow-
ing additional ways. For the individual lects the maximum number
of forbidden words is 20. Since the size of our default alphabet is 15
(five degrees of weight and three degrees of stress) and all lects have
at least one weight and two levels of stress, the maximum number of
forbidden units is 13. The maximum number of forbidden initial fac-
tors is 15. The maximum number of forbidden free and final factors
is 386 and 117, respectively, but these are all due to Pirahã, an out-
lier. Without Pirahã they are 185 and 32, respectively. The maximum
number of forbidden subsequences is 90, but this is due to Bhojpuri
(per Shukla Tiwari), another outlier. Without this lect it is 18.

For the union factor types, there are 14 distinct forbidden units
(only unstressed light syllables occur in every lect), 44 distinct for-

[172]

Extracting Subregular constraints

bidden words, 35 distinct initial forbidden factors, 904 distinct free
forbidden factors and 230 distinct final forbidden factors. The max-
imum width of forbidden words, initial factors and free factors is 5.
The maximum width of final forbidden factors is 6, due to a single lect
(Içuã Tupi) which is also the only example of a properly SL6 stringset,
the other SL patterns all being SL5 or less. There are 126 distinct for-
bidden subsequences with a maximum width of 4, but this again is
due to Bhojpuri (per Shukla Tiwari). Without this lect, the maximum
width is only 3.

That is still a lot of factors, too many to draw much insight from.
But these are all in ground form, with each syllable and stress com-
bination represented by a distinct alphabet symbol. In future work
we plan to adapt the alphabet type to be tuples of features or perhaps
non-reëntrant feature structures (adding full feature structures we will
leave for others), which will provide opportunities to generalise across
those features. We know, just from the phonology, that this will reduce
the total number of exemplars significantly.

The algorithms we have presented here have asymptotic time
complexity that is exponential in the size of the automaton if the
stringset it recognises is Strictly Local or Strictly Piecewise. If it is
not, they obtain an optimal Strictly Local approximation in time dou-
bly exponential in the size of the automaton. (The naïve algorithm
for finding initial forbidden factors, which suffices for our applica-
tion, is doubly exponential.) The complexity of the algorithm for ob-
taining the optimum SP approximation is still just singly exponential.
This relatively high degree of complexity is typical of algorithms in
this domain, most of which are based on properties of the Syntactic
Monoid (or Semigroup), which is exponential in the size of the au-
tomaton; the powerset graph is only marginally smaller than the Syn-
tactic Monoid. With the exception of the naïve algorithm, they are all
optimal for algorithms that return the sets of forbidden factors of the
stringset.

In practice, the algorithms are quite efficient on moderate sized
automata. The full methodology, running on our Haskell workbench,
processes the entire set of 106 lects (≤ 33 states) in under one minute
running on an AMD64 based PC with four cores at 3.7 GHz with 12GB
of RAM, with a disproportionate fraction of that time spent processing
the SL stringsets with large k. Thus the workbench, with only minimal

[173]

James Rogers, Dakotah Lambert

optimisation, has proven to be a useful interactive tool for exploring
Regular sets of strings.

Nevertheless, the performance can certainly be improved signif-
icantly. The asymptotic bound is due to the potential size of the set
of factors. This is not, however, the dominant factor in the practical
performance. Rather it is the time it takes to generate a minimal DFA
from the forbidden factors. This is only necessary for construction of
the residue automata. If all that is required is the sets of factors it
can be dispensed with. Moreover, it is an easy target for optimisation
and is of the type of “embarrassingly parallel” algorithms that Haskell
can parallelise extremely effectively. In essence, the performance will
ultimately be bound only by the number of cores one has available.

acknowledgements

The work reported here builds on the work of at least a dozen un-
dergraduate students and alumni of Earlham College over the course
of about ten years. We are greatly indebted to their willingness to
think carefully about hard problems and to collaborate effectively both
within the group and over time. We are also indebted to the collabora-
tion of Jeff Heinz and his students in Linguistics and Cognitive Science
at the University of Delaware, and to the detailed and extremely help-
ful suggestions of the anonymous reviewers.

references
Pascal Caron (2000), Families of locally testable languages, Theoretical
Computer Science, 242:361–376.
Jane Chandlee (2014), Strictly local phonological processes, Ph.D. thesis,
University of Delaware.
François Denis, Aurélien Lemay, and Alain Terlutte (2002), Residual finite
state automata, Fundamenta Informaticae, 51(4):339–368.
Matt Edlefsen, Dylan Leeman, Nathan Myers, Nathaniel Smith, Molly
Visscher, and David Wellcome (2008), Deciding strictly local (SL)
languages, in Jon Breitenbucher, editor, Proceedings of the Midstates
Conference for Undergraduate Research in Computer Science and Mathematics,
pp. 66–73.

[174]

Extracting Subregular constraints

Margaret Fero, Dakotah Lambert, Sean Wibel, and James Rogers (2014),
Abstract categories of phonotactic constraints, https:
//apps.cur.org/ncur2018/archive/Display_NCUR.aspx?id=83628,
Retrieved 30 January 2018, presented at the National Conference on
Undergraduate Research (NCUR’14).
Jie Fu, Jeffrey Heinz, and Herbert G. Tanner (2011), An algebraic
characterization of strictly piecewise languages, in Mitsunori Ogihara and Jun
Tarui, editors, Theory and applications of models of computation, volume 6648 of
Lecture Notes in Computer Science, pp. 252–263, Springer, Berlin.
R. W. N. Goedemans, Jeffrey Heinz, and Harry van der Hulst (2015),
StressTyp2, http://st2.ullet.net/, retrieved 30 January 2018.
Jeffrey Heinz (2010), Learning long-distance phonotactics, Linguistic Inquiry,
41(4):623–661.
Jeffrey Heinz (2018), The computational nature of phonological
generalizations, in Larry Hyman and Frank Plank, editors, Phonological
typology, volume 23 of Phonetics and Phonology, chapter 5, pp. 126–195,
Mouton De Gruyter, Berlin.
John E. Hopcroft and Jeffrey D. Ullman (1979), Introduction to automata
theory, languages and computation, Addison-Wesley, Boston, MA.
Larry M. Hyman (2009), How (not) to do phonological typology: the case of
pitch-accent, Language Sciences, 31(2–3):213–238.
Adam Jardine (2016), Locality and non-linear representations in tonal phonology,
Ph.D. thesis, University of Delaware.
M. Lothaire, editor (1983), Combinatorics on words, Cambridge University
Press, New York.
Robert McNaughton and Seymour Papert (1971), Counter-free automata,
MIT Press, Cambridge, MA.
Mark-Jan Nederhof (2000), Practical experiments with regular
approximation of context-free languages, Computational Linguistics, 26(1).
http://aclweb.org/anthology/J00-1003.
Geofforey K. Pullum and Barbara C. Scholz (2001), On the distinction
between model-theoretic and generative-enumerative syntactic frameworks, in
Philippe de Groote, Glyn Morrill, and Christian Retoré, editors, Logical
Aspects of Computational Linguistics: 4th international conference, volume 2099 of
Lecture Notes in Artificial Intelligence, pp. 17–43, Springer Verlag, Berlin.
James Rogers (1994), Capturing CFLs with tree adjoining grammars, in
Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics (ACL’94), pp. 155–162, Association for Computational Linguistics,
Las Cruces, NM.

[175]

https://apps.cur.org/ncur2018/archive/Display_NCUR.aspx?id=83628
https://apps.cur.org/ncur2018/archive/Display_NCUR.aspx?id=83628
http://st2.ullet.net/
http://aclweb.org/anthology/J00-1003

James Rogers, Dakotah Lambert

James Rogers (1996), A model-theoretic framework for theories of syntax, in
Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics (ACL’96), pp. 10–16, Association for Computational Linguistics,
Santa Cruz, CA.
James Rogers, Jeff Heinz, Margaret Fero, Jeremy Hurst, Dakotah
Lambert, and Sean Wibel (2012), Cognitive and sub-regular complexity, in
Glyn Morrill and Mark-Jan Nederhof, editors, Formal Grammar 2012,
volume 8036 of Lecture Notes in Computer Science, pp. 90–108, Springer, Berlin.
James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher,
David Wellcome, and Sean Wibel (2010), On languages piecewise testable in
the strict sense, in Christian Ebert, Gerhard Jäger, and Jens Michaelis,
editors, The mathematics of language: revised selected papers from the 10th and
11th biennial conference on the mathematics of language, volume 6149 of Lecture
Notes in Artificial Intelligence, pp. 255–265, FoLLI/Springer, Berlin.
Geoffrey Sampson (1975), The form of language, Weidenfeld and Nicolson,
London.
Yves Schabes and Richard C. Waters (1993), Lexicalized context-free
grammars, in Proceedings of the 31st Annual Meeting of the Association for
Computational Linguistics (ACL’93), pp. 121–129, Association for Computational
Linguistics, Columbus, OH.
Imre Simon (1975), Piecewise testable events, in Helmut Brakhage, editor,
Automata theory and formal languages, volume 33 of Lecture Notes in Computer
Science, pp. 214–222, Springer Verlag, Berlin.
Wolfgang Thomas (1982), Classifying regular events in symbolic logic, Journal
of Computer and Systems Sciences, 25(3):360–376.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[176]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Overview of this paper
	Formal preliminaries
	Local and piecewise factors
	A unifying perspective

	Strictly local stringsets
	Classes of forbidden local factors
	Free forbidden factors
	Final forbidden factors
	Algorithms for extracting forbidden local factors
	Initial forbidden factors
	Forbidden words for stringsets
	Forbidden units

	Approximating Regular stringsets in SL
	Residue automata

	Strictly Piecewise stringsets
	Approximating Regular stringsets in SP
	Local and Piecewise Testable constraints
	Results and prospectus

