
Finite-state Optimality Theory:
non-rationality of Harmonic Serialism

Yiding Hao
Department of Linguistics

Department of Computer Science
Yale University

New Haven, Connecticut, USA

abstract

Keywords:
optimality theory,
harmonic serial-
ism, phonology,
finite-state,
strictly local,
subregular

This paper analyzes the language-theoretic complexity of Harmonic
Serialism (HS), a derivational variant of Optimality Theory. I show
that HS can generate non-rational relations using strictly localmarked-
ness constraints, proving the “result” of Hao (2017), that HS is ratio-
nal under those assumptions, to be incorrect. This is possible because
deletions performed in a particular order have the ability to enforce
nesting dependencies over long distances. I argue that coordinated
deletions form a canonical characterization of non-rational relations
definable in HS.

1 introduction

A classical question in mathematical linguistics concerns whether or
not patterns describable by grammar formalisms resemble natural lan-
guage dependencies (Chomsky 1959; Berwick 1984). An ideal gram-
mar formalism should be expressive enough to generate all attested
languages, but also restrictive enough to exclude patterns thought to
be impossible in natural language.

In phonology, the seminal work of Johnson (1970, 1972) and Ka-
plan and Kay (1994) showed that the Sound Pattern of English (SPE)
formalism of Chomsky and Halle (1968) is equivalent in generative

Journal of Language Modelling Vol 7, No 2 (2019), pp. 49–99

Yiding Hao

power to finite-state transducers (FSTs). Henceforth, it has been gener-
ally accepted that the mapping from underlying phonological repre-
sentations (URs) to surface phonetic representations (SRs) in a given
language can be computed using an FST. Empirical evidence in fa-
vor of this hypothesis can be found in the SPE phonology literature,
as well as in the success of hidden-Markov-model-based approaches
to automatic speech recognition (Baker 1975; Lowerre 1976; Jelinek
1976).

If it is empirically true that phonological mappings are finite-
state, then theoretical frameworks for phonology should ideally de-
scribe only mappings that are finite-state. Frank and Satta (1998) carry
out an analysis of Optimality Theory (OT, Prince and Smolensky 1993,
2004), showing that the full OT framework can describe non-rational
relations, and is therefore too powerful according to the criterion of
finite-stateness. They do this by following Ellison (1994) in thinking
of OT constraints as FSTs that read input–output pairs and emit viola-
tion marks. However, Frank and Satta also find that OT can be made
equivalent to FSTs by assuming that for each constraint there is an up-
per bound on the number of violation marks that the constraint may
assign to any given input–output pair. Accordingly, Karttunen (1998)
has developed a finite-state calculus for implementing this violation-
bounded version of OT.

This paper presents an analysis of Harmonic Serialism (HS), a vari-
ant of OT in which surface forms are computed by recursively applying
incremental changes to underlying forms. These incremental changes
are chosen from a collection of basic operations based on an OT-style
constraint ranking system. Previous work on the expressive power of
HS includes Lamont (2018a,b), who shows that HS can implement
bounded alphabetical sorting if constraints are strictly piecewise and
if the basic operations include metathesis. Hao (2017), on the other
hand, arrives at the main conclusion that if markedness constraints are
strictly local and if the basic operations only include insertion, dele-
tion, and substitution of a single symbol, then HS only produces ra-
tional relation. The present paper disproves the latter “result” by con-
structing an HS grammar that produces a non-rational relation while
fulfilling Hao’s assumptions.

The structure of this paper is as follows. Section 2 defines termi-
nology and notation used in the rest of this paper. Section 3 introduces

[50]

Non-rationality of Harmonic Serialism

the formalism of OT and reviews existing literature in finite-state OT.
Section 4 defines HS along with various kinds of markedness con-
straints. In Section 5, I show that the model from Section 4 can pro-
duce a non-rational relation by relying on carefully coordinated dele-
tions. Section 6 argues that all non-rational mappings in HS are im-
plemented in a manner similar to the non-rational mapping from Sec-
tion 5. Section 7 concludes.

2 preliminaries
Let us adopt the following standard notations and definitions. Z is the
set of integers, and N ⊊ Z is the set of non-negative integers. Unless
otherwise specified, the letters Σ, ∆, and Γ denote finite alphabets not
including the special symbols ⋊ and ⋉. When used, these special sym-
bols represent the left and right boundaries of a string, respectively.

The length of a string x is denoted by |x |, and λ denotes the empty
string, the unique string of length 0. Alphabet symbols are identified
with strings of length 1, Σk denotes the set of strings of length k, Σ≤k

denotes the set of strings of length at most k, Σ∗ denotes the set of all
strings over Σ, and Σ+ denotes the set Σ∗\{λ}. For strings a and b, ab
denotes the concatenation of a and b. This notation is extended to sets
of strings A and B in the usual way. We say that a is a substring of b if
there exist strings l and r such that b = lar.

For sets A and B, A× B is the Cartesian product of A and B. An
n-ary relation over A1, A2, . . . , An is a subset R ⊆ A1 × A2 × · · · × An. If
〈a1, a2, . . . , an〉 ∈ R, then we may write R(a1, a2, . . . , an). If n = 2, then
we may also write a1 R a2. For any sets A, B, and C , the composition
of a relation R ⊆ B × C with a relation S ⊆ A× B is the unique binary
relation R◦S ⊆ A×C such that a R ◦ S c if and only if there exists b such
that a S b and b R c. The transitive closure of a relation R is defined as

R+ :=
∞∪
i=1

R ◦ R ◦ · · · ◦ R︸ ︷︷ ︸
i-many times

.

An equivalence relation over A is a relation R ⊆ A× A satisfying the
following properties.

• For all a ∈ A, a R a (i.e., R is reflexive).
• For all a, b ∈ A, if a R b, then b R a (i.e., R is symmetric).

[51]

Yiding Hao

• For all a, b, c ∈ A, if a R b and b R c, then a R c (i.e., R is transitive).
For each a ∈ A, the equivalence class of a with respect to R is the set
[a]R := {b|b ∈ A, b R a}. The quotient of A under R is the set A/R :=
{[a]R|a ∈ A}. Each element of A/R is called an equivalence class.

A finite-state transducer (FST) is a 6-tuple T = 〈Q,Σ, Γ , I , F,→〉,
where

• Q is a finite set of states;
• Σ is an alphabet called the input alphabet;
• Γ is an alphabet called the output alphabet;
• I ⊆Q is the set of initial states;
• F ⊆Q is the set of final states; and
• →⊆Q× (Σ∪ {λ})× (Γ ∪ {λ})×Q is the transition relation.

We assume without loss of generality that if→(q, x , y, r), then x y ̸= λ.
The extended transition relation is denoted by→∗. The notations q

x:y−→ r
and q

x:y−→∗ r denote → (q, x , y, r) and →∗ (q, x , y, r), respectively. The
behavior of an FST T is the relation [T] defined by x [T] y if and only if
T has an initial state q and a final state r such that q

x:y−→∗ r. A relation
is rational if it is the behavior of an FST.

A finite-state automaton (FSA) is a 5-tuple A= 〈Q,Σ, I , F,→〉, where
• Q is a finite set of states;
• Σ is an alphabet called the input alphabet;
• I ⊆Q is the set of initial states;
• F ⊆Q is the set of final states; and
• →⊆Q× (Σ∪ {λ})×Q is the transition relation.

The extended transition relation is denoted by→∗. The notations q
x−→ r

and q
x−→∗ r denote → (q, x , r) and →∗ (q, x , r), respectively. We say

that A accepts a string w if and only if A has an initial state q and a
final state r such that q

x−→∗ r. The language recognized by A is the set
of all strings accepted by A. A language is regular if it is recognized by
an FSA.

3 background
Optimality Theory (OT, Prince and Smolensky 1993, 2004) is a formal-
ism that defines mappings between URs and SRs using ranked, violable

[52]

Non-rationality of Harmonic Serialism

constraints. An OT grammar is standardly considered to be given by
three components. Firstly, the function Gen takes an input and returns
a set of candidates. Then, the function Eval chooses one or more of
these candidates to be the output of the grammar. The SR of a word
is assumed to be the output of the grammar when given the UR as
input. The computation performed by Eval is parameterized by the
input and by Con, a set of constraints that must be satisfied by input–
output pairs. These constraints typically contradict one another, so
Eval specifies a ranking over Con that determines which constraints
are prioritized over others.1 The relationships among these three com-
ponents are shown visually in Figure 1.

Con

EvalGen SRUR

Figure 1:
The three components
of standard OT

To illustrate, let us consider a concrete example. (1) shows three
words from the Māori language. If a UR ends with a consonant, the
SR is produced by deleting this consonant.
(1) Coda Deletion in Māori (Hohepa 1967; Hale 1973)

a. /hopuk/⇝ [hopu] “catch”
b. /arum/⇝ [aru] “follow”
c. /maur/⇝ [mau] “carry”

A typical OT implementation of this mapping is as follows. Gen takes
a UR as input, and produces as candidates all possible strings that
may be obtained by inserting symbols to the input, deleting symbols
from the input, or changing symbols from the input to other symbols.
From among these possibilities, Eval chooses an output based on the
following constraints from Con. This output is taken to be the SR.

1Other formalisms with violable constraints may feature other methods for
adjudicating between constraints. For example, Harmonic Grammar (Pater 2009;
Potts et al. 2010) features weighted constraints that contribute additively to the
computation of SRs from URs. Ranked constraints give rise to explanations of
linguistic universals based on factorial typology (see Prince and Smolensky 1993,
2004), while weighted constraints account for gang effects (see Pater 2009).

[53]

Yiding Hao

(2) a. Id: Assign one violation for each symbol from the input that
is changed to a different symbol in the output.

b. Dep: Assign one violation for each symbol inserted into the
input.

c. NoCoda: Assign one violation if the input ends with a con-
sonant.2

d. Max: Assign one violation for each symbol deleted from the
input.

Each constraint assigns to each candidate a score, expressed in units
called violations, that measures the degree to which the candidate vi-
olates the constraint. While several possible rankings of the four con-
straints above may yield the mapping shown in (1), for simplicity let
us assume that the four constraints are ranked in the order shown, with
higher-ranking constraints taking priority over lower-ranking ones.
We denote the constraint ranking by

Id≫ Dep≫ NoCoda≫Max.

Now, let us consider an input ending with a consonant. Based on this
constraint ranking, the output cannot be produced by performing sub-
stitutions or insertions, as candidates produced in this manner vio-
late Id and Dep. The output also cannot end with a consonant, lest it
violate NoCoda. Deleting the final consonant violates Max, but this
is tolerated because Max is the lowest-ranked constraint. All candi-
dates produced by Gen without deletion either end with a consonant,
thus violating NoCoda, or avoid a NoCoda violation by inserting or
changing symbols, thus violating Id or Dep. Constraints may be vio-
lated to varying degrees; thus, deleting additional symbols beyond the
final consonant is not possible, because such candidates violate Max
more severely than the candidate that only deletes the final consonant.

The computation of an output is shown in a table called a tableau.3
An example of a tableau is shown in (3). The columns represent the

2Typically, NoCoda assigns a violation for each syllable ending with a con-
sonant (Prince and Smolensky 1993, 2004). For simplicity, syllabification is not
discussed here, hence this alternate statement of NoCoda.

3For simplicity, only violation tableaux are used in this paper. Comparative
tableaux (Prince 2002, 2003) are also commonly used in OT phonology.

[54]

Non-rationality of Harmonic Serialism

constraints, from highest-ranked to lowest-ranked. The rows repre-
sent a selection of candidates produced by Gen. Typically, the candi-
dates shown in a tableau are those used to illustrate or justify claims
about the behavior of the grammar, such as the effect of changing the
constraint ranking. Each cell shows the number of violations the con-
straint assigns to the candidate.4 The candidate that is identical to the
input is known as the faithful candidate. The candidate that is chosen
as the output, marked with the symbol �, is known as the winning
candidate, or winner. For a non-winning candidate, the cell associated
with the highest-ranking constraint that distinguishes the candidate
from the winner is annotated with the symbol !.
(3) /hopuk/⇝ [hopu]

hopuk Id Dep NoCoda Max
a. hopuk 0 0 1! 0

� b. hopu 0 0 0 1
c. hopuku 0 1! 0 0
d. hopuu 1! 0 0 0
e. ho 0 0 0 3!

In (3), we consider the tableau of the grammar described by (2) for
the UR /hopuk/. The faithful candidate violates NoCoda. Candidates
c and d satisfy NoCoda, but violate Dep and Id, respectively. Candi-
dates b and e, obtained by deleting the final consonant, violate only
the lowest-ranked constraint Max. However, because candidate e vi-
olates Max thrice while candidate b violates Max only once, candi-
date b is the winner.

3.1 Finite-State Optimality Theory
Māori coda deletion, as described here, is implemented by the FST in
Figure 2. Recall that an FST is a device that reads an input string from
left to right and produces an output while doing so. Throughout the
course of its computation, the FST can be in one of a finite collection of
states, serving as a limited form of memory. The diagram in Figure 2

4Numbers of violations are typically represented in unary notation over the
symbol ∗. Arabic numerals are used here because some parts of this paper repre-
sent numbers of violations using algebraic expressions.

[55]

Yiding Hao
Figure 2:

An FST that deletes codas

q0start q1

x : x
C : λ
V : V

is interpreted as follows. The FST begins in state q0. After reading
each symbol, the FST may choose to add that symbol to the output
while remaining in state q0 (x : x), or transition to state q1. Should the
machine choose the latter, it must either read a vowel and add it to the
output (V : V), or read a consonant and omit it from the output (C : λ).
The two circles around q1 indicate that the computation is allowed to
end there; the FST crashes if its computation ends at q0. Since the FST
in Figure 2 has no permissible actions once it has entered state q1, on
any given input it must remain in q0, outputting a copy of its input,
and then transition to q1 while reading the last input symbol. If the
last input symbol is a consonant, that consonant is deleted. We say
that Māori coda deletion is rational, since it can be implemented by
an FST.

In general, OT can define mappings that cannot be computed us-
ing an FST. To see how this is possible, let us consider an example
of a grammar defining a non-rational relation. In this grammar, given
by Gerdemann and Hulden (2012), Gen once again produces candi-
dates by inserting symbols into the UR, deleting symbols from the UR,
and changing symbols of the UR into other symbols. Con contains
the following four constraints, shown in order from highest-ranking
to lowest-ranking.5

(4) a. Dep: Assign one violation for each symbol inserted into the
input.

b. Id: Assign one violation for each symbol from the input that
is changed to a different symbol in the output.

c. Agr: Assign one violation for each occurrence of the sub-
string ab or ba in the output.

d. Max: Assign one violation for each symbol deleted from the
input.

5Again, this is not the only ranking with the intended behavior; for example,
Dep and Id may be switched without consequence.

[56]

Non-rationality of Harmonic Serialism

Suppose that URs are strings over the alphabet Σ= {a, b} and SRs are
strings over the alphabet ∆ = {a, b, c}. Consider an input of the form
a∗b∗, such as aaabb. A tableau for aaabb is shown in (5).

(5) aaabb⇝ aaa

aaabb Dep Id Agr Max
a. aaabb 0 0 1! 0
b. aaacbb 1! 0 0 0
c. aaaaa 0 2! 0 0
d. bbbbb 0 3! 0 0

� e. aaa 0 0 0 2
f. bb 0 0 0 3!

The faithful candidate a violates Agr, since it contains the substring
ab. Candidates satisfying Agr cannot be chosen as the winner if they
are formed by inserting or changing symbols, since such candidates
violate the higher-ranking constraints Dep and Id, respectively. Thus,
candidates b, c, and d cannot be the winner. An Agr-obeying can-
didate may be obtained by deleting all the as or the bs, resulting in
candidates f and e, respectively. Because Agr ≫ Max, violation of
Max in order to satisfy Agr is warranted. Between candidates f and
e, the candidate that involves less deletion, namely candidate e, vio-
lates Max to a lesser degree, and is therefore chosen as the winner.

In general, when presented with a UR of the form a∗b∗, this gram-
mar deletes all instances of either a or b, whichever symbol occurs
less frequently. This kind of mapping, in which the SR depends on the
frequency of each symbol in the UR, is known as a majority-rules map-
ping (Baković 1999, 2000). Since counting the number of as and bs in
a string requires infinite-state memory, finite-state transducers cannot
compute majority-rules mappings.

Examining tableau (5), we see that the adjudication between can-
didates e and f is done by counting the number of symbols deleted from
the UR. Thus, OT is endowed with the ability to count by the fact that
constraints may be violated to varying degrees. Because of this insight,
existing approaches to finite-state OT have sought to strip constraints
of counting power by imposing restrictions on how constraints may
assign violation marks, or how two candidates may be compared with

[57]

Yiding Hao

one another. Using the nomenclature of Eisner (2002), the current
proposals for restricted constraints are listed below.
(6) a. n-Bounded Approximation (Frank and Satta 1998; Kart-

tunen 1998): Each constraint may assign at most n-many
violations.

b. Matching (Gerdemann and van Noord 2000; Gerdemann
and Hulden 2012): Each constraint is computed by an FST
that reads candidates and emits violation marks, and can-
didate y is considered worse than candidate z if the set of
positions where violations are assigned to y is a strict su-
perset of those for z.

c. Directional Evaluation (Eisner 2000): Each constraint is
computed by an FST. Candidates are compared to each other
by scanning them left-to-right or right-to-left in parallel, and
a candidate is eliminated as soon as it receives a violation
that at least one other candidate does not receive.

While these approaches do not reflect the version of OT used in
phonology, each of them has a finite-state implementation, and there-
fore none of them can generate majority-rules mappings. Beyond these
approaches, Riggle (2004) proposes an algorithm called the Optimality
Transducer Construction Algorithm (OTCA) that takes an OT grammar
and attempts to produce an FST computing the mapping defined by
the grammar. However, this algorithm is not guaranteed to terminate.

4 harmonic serialism

Harmonic Serialism (HS) is a variation of OT in which SRs are pro-
duced by making incremental changes to URs. In HS, for any given
input, Gen is assumed only to produce candidates that may be ob-
tained by applying to the input one of a small collection of basic op-
erations. Most existing HS analyses assume that these operations may
insert, delete, or change at most one symbol of the input, so that can-
didates differ from the input by an edit distance of at most 1 (Mc-
Carthy 2007). Other proposals for basic operations include applying
multiple instances of the same one-symbol change (McCarthy 2008;
Walker 2008, 2010), creating and adjoining syllables (Elfner 2009,

[58]

Non-rationality of Harmonic Serialism

2016), creating feet and assigning stress (Pruitt 2008, 2012), and in-
serting or deleting autosegmental association lines (McCarthy 2009).
In order to effect more dramatic changes to URs, HS stipulates that
recursive calls to the grammar are made until a fixed point is reached.
In other words, suppose y is the winning candidate chosen by Eval
for the UR x . If y = x , then y is the SR for x . If not, then the SR for x
is the SR for y. This process is illustrated in Figure 3.

Con

EvalGen Faithful? SRUR

No

Yes

Figure 3:
Harmonic
Serialism

To see how HS works, let us consider an example due to McCarthy
(2010). In Classical Arabic, the two symbols [ʔi] are appended to the
beginning of the SR if the UR begins with more than one consonant.
For example, the SR for the UR /fʕal/ “do!” is [ʔifʕal]. One possible
constraint ranking deriving the correct SR is shown below.
(7) a. *CO: Assign one violation if the word begins with more than

one consonant.
b. Max: Assign one violation for each symbol deleted from the

input.
c. Id: Assign one violation for each symbol from the input that

is changed to a different symbol in the output.
d. Onset: Assign one violation if the word does not begin with

a consonant.
e. Dep: Assign one violation for each symbol inserted into the

input.
Since the constraint *CO outranks all faithfulness constraints, any vi-
olations of *CO occurring in a UR must be repaired in the SR. The fact
that Dep is the lowest-ranking faithfulness constraint means that *CO
will be repaired via insertion. Let us assume that low-ranking marked-
ness constraints not shown above ensure that any inserted vowel is i,

[59]

Yiding Hao

and any inserted consonant is ʔ.6 Accordingly, on input fʕal, we see
that the winner repairs the *CO violation by inserting a vowel.
(8) Step 1: fʕal⇝ ifʕal

fʕal *CO Max Id Onset Dep
a. fʕal 1! 0 0 0 0
b. ʕal 0 1! 0 0 0
c. iʕal 0 0 1! 1 0

� d. ifʕal 0 0 0 1 1
The tableau above follows McCarthy (2007) in assuming that Gen can
only change a single symbol. Thus, the final SR [ʔifʕal] is not available
among the candidates shown. Since the winner in (8) is not the faithful
candidate, the grammar is called a second time.
(9) Step 2: ifʕal⇝ ʔifʕal

ifʕal *CO Max Id Onset Dep
a. ifʕal 0 0 0 1! 0
b. fʕal 1! 1 0 0 0
c. ʔfʕal 1! 0 1 0 0

� d. ʔifʕal 0 0 0 0 1
This time, the input violates Onset, since it begins with a vowel. Since
Dep is still the lowest-ranking faithfulness constraint, the winning can-
didate is the one that repairs the Onset violation by inserting a con-
sonant. Since the winner is not the faithful candidate, the grammar is
called for a third time.
(10) Step 3: Convergence

ʔifʕal *CO Max Id Onset Dep
� a. ʔifʕal 0 0 0 0 0

b. ifʕal 0 1! 0 1 0
c. iifʕal 0 0 1! 1 0
d. iʔifʕal 0 0 0 1! 1

This time, the input does not violate any of themarkedness constraints.
The unfaithful candidates introduce gratuitous violations of faithful-

6This is known as the emergence of the unmarked (McCarthy and Prince 1994).

[60]

Non-rationality of Harmonic Serialism

ness constraints, so they are all eliminated. Since the faithful candi-
date is chosen as the winner, the grammar terminates here. We say
that the grammar has converged to the output [ʔifʕal], so it is chosen
as the final SR for the UR /fʕal/.

Applications of HS in OT phonology are typically motivated by
phonological phenoma that are most elegantly explained by decom-
posing the UR–SR mapping into several derivational steps. Such phe-
nomena famously include examples of opacity. Elfner (2009, 2016),
for example, studies opaque interactions between vowel insertion
and stress assignment, and adopts an HS analysis that implements
the two processes separately, allowing them to interfere with one
another. Other arguments in favor of HS note that phonological
processes seem to be composed of small, incremental operations.
Pruitt (2008), for example, argues that locality effects in foot pars-
ing are best explained by the gradual nature of Gen in HS. A brief
survey of phonological research in HS can be found in McCarthy
(2010).

The remainder of this section declares the assumptions about HS
that I make in order to construct the non-rational HS grammar in Sec-
tion 5. Subsection 4.1 formally defines the version of HS studied in
this paper. Subsection 4.2 defines the basic operations of Gen this
paper utilizes, as well as a restrictive class of markedness constraints
that includes the constraints appearing in Section 5.

4.1 Formalization of Harmonic Serialism
For completeness, this section presents a formal definition of HS. The
formalization here roughly follows Ellison’s (1994) formalization of
standard OT, which forms the basis of other formalizations appearing
in finite-state OT. There, Gen is taken to be an FST producing candi-
dates. Each constraint is modelled by an FST that reads candidates and
emits numbers in unary notation. The behavior of Eval is described
by an ordering relation on candidates induced by the constraint rank-
ing mechanism.
Definition 11. A constraint overΣ is a rational function c :

�
Σ≤1×Σ≤1
�∗

→ N. A constraint ranking over Σ is a sequence 〈c1, c2, . . . , cn〉, where
each ci is a constraint over Σ. For each i, j, we say that ci outranks c j

and write ci ≫ c j if i < j.

[61]

Yiding Hao

Definition 12. An HS Grammar is an ordered triple 〈Σ,Gen,Con〉,
where

• Σ is an alphabet;
• Gen : Σ∗→ �Σ≤1 ×Σ≤1

�∗ is a rational relation; and
• Con is a constraint ranking over Σ.
The above definition departs from Ellison (1994) in that candi-

dates are represented as strings of pairs rather than strings of alpha-
bet symbols. This kind of representation allows Definition 12 to model
faithfulness constraints (Chen-Main and Frank 2003), which depend
on both the input and the potential output represented by a candidate.
The pair-string representation is also standardly used in OT analyses
following Correspondence Theory (McCarthy and Prince 1995). I follow
Riggle (2004) in modelling constraints as FSTs that read pair strings
and emit violations.
Definition 13. A candidate over Σ is a string in �Σ≤1 ×Σ≤1

�∗. We may
sometimes denote the candidate 〈x1, y1〉〈x2, y2〉 . . . 〈xn, yn〉 using the
notation x1 x2 . . . xn 7→ y1 y2 . . . yn.

Eval was formalized by Samek-Lodovici and Prince (1999,
2002), who noted that the behavior of an HS grammar towards a can-
didate x 7→ y is completely dependent on the number of violations
assigned to x 7→ y by each constraint. To that end, Samek-Lodovici
and Prince identify candidates with their violation profiles, or costs.
Definition 14. Let C = 〈c1, c2, . . . , cn〉 be a constraint ranking over Σ.
For x 7→ y ∈ �Σ≤1 ×Σ≤1

�∗, the cost of x 7→ y with respect to C is the
vector

cC(x 7→ y) := 〈c1(x 7→ y), c2(x 7→ y), . . . , cn(x 7→ y)〉 ∈ Nn.

Candidates violating lower-ranked constraints are preferred over
candidates violating higher-ranked constraints, and candidates incur-
ring few violations of a particular constraint are preferred over can-
didates incurring many violations of that constraint. This preference
relation is represented by an ordering over cost vectors.
Definition 15. Let a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉 be vec-
tors in Zn. We say that a is more harmonic than b, and write a ≻H b, if
there exists j ∈ {1,2, . . . , n} such that a j < b j and for all i < j, ai ≤ bi.
We write a ⪰H b if a ≻H b or a = b.7

7Note that ≻H is the lexicographic ordering on Zn.

[62]

Non-rationality of Harmonic Serialism

Under Definition 15, candidates with more harmonic cost vectors
are preferred over candidates with less harmonic cost vectors. There-
fore, among a set of candidates, Eval chooses the candidate with the
most harmonic cost vector as the winner.
Definition 16. Let C be a constraint ranking over Σ. The function
EvalC : P
��
Σ≤1 ×Σ≤1
�∗�→ P(Σ∗) is defined by

EvalC(K) :=
�

y
��x 7→ y ∈ K , cC(x 7→ y) = max

α7→β∈K
cC(α 7→ β)
	
,

where max is taken with respect to ⪰H .8
Finally, let us conclude this subsection by defining the UR–SR

mapping H+G generated by an HS grammar G.
Definition 17. Let G = 〈Σ,Gen,Con〉 be an HS grammar. The relation
HG is defined as follows: x HG y if and only if y ∈ EvalCon(Gen(x)).
The relation H+G is defined as follows: x H+G y if and only if y HG y
and there exist x1, x2, . . . , xn such that x1 = x , xn = y, and for each i,
x i HG x i+1. If x HG y, then we say that y is an output of G on input x .
If x H+G y, then we say that G converges to y on input x .
Example 18. Fix Σ= {a, b}. Let us construct a simple HS grammar in
order to illustrate how Gen and Con may be implemented using FSTs.
Suppose Gen inserts, deletes, or substitutes a single symbol from its
input, and suppose Con consists of a single constraint, shown below.
(19) *CC: Assign one violation for each instance of bb in the output.
Intuitively, *CC declares a dispreference for outputs containing con-
sonant clusters.

Gen is implemented by the FST in (20).
(20) FST for Gen (x , y ∈ Σ≤1; x ̸= y)

q0start q1

x : 〈x , x〉

x : 〈x , y〉

x : 〈x , x〉

*CC is implemented by the FST in (21). Here, • represents any
symbol from Σ≤1, so that an arc from state q to state r labelled with

8Note that despite the notationmaxx ′ 7→y ′∈K cC (x ′ 7→ y ′), EvalC is not choosing
the candidate with the “maximum cost,” since what is maximal is the harmonicity
of the cost vector.

[63]

Yiding Hao

〈•, y〉 : z means that q
〈a,y〉:z−−−→ r, q

〈b,y〉:z−−−→ r, and q
〈λ,y〉:z−−−→ r are all possible

transitions of the FST.
(21) FST for *CC (x ∈ Σ∪ {λ})

q0start q1

〈•, a〉 :
〈•, b〉 :

〈•, a〉 :

〈•, b〉 : ∗

On input abbba, Gen produces candidates such as abbba 7→
abbba, abbba 7→ ababba, and abbba 7→ abba.9 For the candidate
abbba 7→ abbba, the FST for *CC outputs ∗∗; for abbba 7→ ababba
and abbba 7→ abba, it outputs ∗. Thus, *CC(abbba 7→ abbba) = 2,
while *CC(abbba 7→ ababba) = *CC(abbba 7→ abba) = 1. Since
*CC is the only constraint, we have cCon(abbba 7→ abbba) = 〈2〉 and
cCon(abbba 7→ ababba) = cCon(abbba 7→ abba) = 〈1〉. Observe that
〈1〉 ≻H 〈2〉.
4.2 Assumptions about HS
The previous subsection defined an HS grammar as a tuple 〈Σ,Gen,
Con〉, but did not address the question of what kinds of FSTs may
implement Gen or constraints of Con. This subsection presents the
following weak assumptions about HS grammars, which suffice to con-
struct the non-rational HS grammar in Section 5.

• Gen can insert a single symbol, delete a single symbol, or change
a single symbol to another symbol.

• Markedness constraints are strictly local.
• Each faithfulness constraint is defined by a set of banned opera-
tions, assigning one violation to any candidate produced by ap-
plying a banned operation.

These assumptions are made explicit in Subsections 4.2.1, 4.2.2, and
4.2.3, respectively.

9Technically, the notation abbba 7→ abba does not specify which of the bs is
deleted. This is not consequential for the rest of the paper.

[64]

Non-rationality of Harmonic Serialism

4.2.1 Basic operations of Gen
I assume that Gen performs at least the following basic operations.
Definition 22. Let Σ be an alphabet. An operation over Σ is an ordered
pair 〈a, b〉, denoted a 7→ b, where a, b ∈ Σ≤1 and ab ̸= λ. We refer to
a 7→ b simply as an operationwhen the alphabetΣ is clear from context.
Additionally, we say that a 7→ b is

• an insertion if a = λ,
• a deletion if b = λ,
• a substitution if λ ̸= a ̸= b ̸= λ, and
• an identity if a = b.

Definition 23. Let Σ be an alphabet, and define the string of pairs

ω := 〈x1, y1〉〈x2, y2〉 . . . 〈xn, yn〉 ∈
�
Σ≤1 ×Σ≤1
�∗

.

For any operation a 7→ b over Σ, we say that ω is an application of
a 7→ b if there exists i ∈ {1,2, . . . , n} such that a 7→ b = x i 7→ yi and
x j 7→ y j is an identity as long as j ̸= i. When ω is an application of an
operation a 7→ b, we may denote ω by ω = x1 x2 . . . xn 7→ y1 y2 . . . yn.
Without explicitly specifying the operation a 7→ b, we may refer to
ω as a change. If a 7→ b is an identity, then we say that ω is faithful;
otherwise, ω is unfaithful.

A change, as defined above, is an insertion, a deletion, or a sub-
stitution of a single input symbol. In practice, HS grammars consid-
ered in OT phonology rely on much richer operations. For example,
the syllable-building operations of Elfner (2009, 2016) and the foot-
building operations of Pruitt (2008, 2012) may change multiple sym-
bols of the input, depending on how syllables and feet are represented.
However, the availability of richer operations does not change the re-
sult of Section 5 as long as the basic operations above are available.

4.2.2 Markedness constraints
I assume that markedness constraints are strictly local in the following
sense.
Definition 24. A constraint c is a markedness constraint if for every
x 7→ z and y 7→ z, c(x 7→ z) = c(y 7→ z). Otherwise, c is a faithfulness
constraint.

[65]

Yiding Hao

Definition 25. A markedness constraint c over Σ is strictly k-local
(k-SL) if there exists a set S ⊆ (Σ ∪ {⋊,⋉})k such that for any can-
didate x 7→ y, c(x → y) is the number of unique decompositions of
the string ⋊k−1 y⋉k−1 into substrings l, s, r such that ⋊k−1 y⋉k−1 = lsr
and s ∈ S. We say that c bans s if s ∈ S. A markedness constraint is
strictly local (SL) if it is k-SL for some k.

SL constraints are constraints of the form “Assign one violation
for each instance of ….” Thus, the constraint *CC from Example 18 is
a 2-SL constraint that bans the substring bb. Other markedness con-
straints may be SL even if they are stated differently. For example,
NoCoda from (2) is a 2-SL constraint banning substrings of the form
x⋉, where x is a consonant. Similarly, *CO from (7) is a 3-SL constraint
banning substrings of the form ⋊x y, where x and y are both conso-
nants. Observe also that the constraint Agr from the non-rational stan-
dard OT grammar of (4) is a 2-SL constraint banning the substrings ab
and ba. Therefore, non-rational mappings in OT may be implemented
using only markedness constraints that are SL.

The definition of SL constraints above is based on the strictly local
languages of McNaughton and Papert (1971), a small subclass of the
regular languages belonging to the subregular hierarchy. Intuitively, a
language L is k-strictly local (k-SL) if there exists a k-SL markedness
constraint c such that c(x 7→ x) = 0 for every x ∈ L. A related sub-
regular class of languages is the tier-based strictly local (TSL) languages,
a generalization of the SL languages in which banned substrings may
be interrupted by symbols from a designated subset of the alphabet.
The class of TSL languages was defined by Heinz et al. (2011), who
propose it as a formal characterization of the kinds of phonotactic
dependencies that may occur in natural language phonology. Vari-
ous forms of justification have been given for this hypothesis. Local
phonotactic restrictions on what kinds of phonemes can occur adja-
cent to one another are clearly SL, and therefore TSL. Additionally,
Heinz (2007), Edlefsen et al. (2008), Heinz (2009), and Heinz (2014)
study the typology of stress patterns across languages, showing that
they are usually TSL, while McMullin (2016) and McMullin and Hans-
son (2016) show that long-distance consonant interactions are tier-
based strictly 2-local. Experimentally, Rogers and Pullum (2011), Lai
(2012), Lai (2015), and McMullin (2016) investigate the ability of hu-
mans and non-human animals to learn linguistic and non-linguistic

[66]

Non-rationality of Harmonic Serialism

patterns, and find that patterns that are learned successfully can be
modelled by TSL languages.

4.2.3 Faithfulness constraints
Finally, I assume that each faithfulness constraint c is associated with
a set O of operations such that c(x 7→ y) = 1 if x 7→ y is an application
of an operation in O, and c(x 7→ y) = 0 otherwise. For each o ∈ O, we
say that c bans o.

The faithfulness constraints Dep, Max, and Id are all of this form,
since they ban all insertions, all deletions, and all substitutions, re-
spectively. Section 5 will make use of faithfulness constraints that ban
deletions of a particular alphabet symbol.

5 nonʿrational mappings in hs

Define the function f :
�
a2 b2
�+

a2ca2
�
b2a2
�+→ Σ∗ as follows.

f
��

a2 b2
�m+1

a2ca2
�
b2a2
�n+1�

:=

(�
a2 b2
�m−n

a2ca2, m≥ n

a2ca2
�
b2a2
�n−m

, m≤ n

This function is defined on inputs consisting of a c preceded by a string
in �a2 b2
�+

a2 and followed by a string in a2
�
b2a2
�+. The behavior of

f is to delete an integer number of b2a2 units to the left of the c,
along with the same number of a2 b2 units to the right of the c. The
function deletes as many b2a2 and a2 b2 units as possible, so that the
total number of units deleted depends on the length of the material
to the left of the c or the material on the right of the c, whichever is
shorter. Since the number of b2a2s deleted must match the number of
a2 b2s deleted, I refer to f as the matching deletion function.

The goal of this section is to show that matching deletion is not
finite-state, and that HS can implement it under the weak assumptions
from Subsection 4.2. Intuitively, computing f requires comparing the
lengths of two substrings of its input, separated by the special char-
acter c. Since FSTs are not capable of this kind of computation, f is
non-rational. I begin this section by making this argument rigorous
in Subsection 5.1. In Subsection 5.2, I construct an HS grammar with
6-SL markedness constraints that maps an underlying form x to the

[67]

Yiding Hao

surface form f (x) as long as x is within the domain of f . Since ratio-
nal relations are closed under domain restriction to regular subsets,
the relation described by this HS grammar is not rational.
5.1 Non-rationality of matching deletion
The non-rationality of matching deletion can be proven using a
straightforward application of the Pumping Lemma, a standard tool in
formal language theory.10
Lemma 26 (Pumping Lemma). Let L be a regular language. There exists
an integer p ≥ 1 such that every string ξ ∈ L of length at least p may be
decomposed into three substrings ξ = αβγ such that |β | > 1, |αβ | < p,
and αβ+γ ⊆ L. The number p is called the pumping length of L.

Intuitively, the Pumping Lemma describes the behavior of FSAs
when reading long strings. Since an FSA A only has finitely many
states, when ξ is sufficiently long, there must be some state q that
A enters at least twice when reading ξ. The substring β is the sub-
string that is read during the two occurrences of q; i.e., q

β−→∗ q. Since
q
β−→∗ q

β−→∗ q, the substring β may be repeated arbitrarily many times
without producing a string not accepted by A.

To adapt the Pumping Lemma to rational relations, observe that
an FST over input alphabet Σ and output alphabet Γ may be thought of
as an FSA over the alphabet Σ≤1×Γ≤1 by replacing each FST transition
q

x:y−→ r with an FSA transition q
〈x ,y〉−−→ r (Kaplan and Kay 1994). Thus,

the matching deletion function f may be thought of as a language by
encoding each pair 〈x , f (x)〉 as a string of pairs. Unlike in Subsection
4.2.1, here we cannot make any assumptions regarding which sym-
bols of x are aligned with which symbols of f (x) in the pair-string
representation. Instead, since the representation of f as a language is
not unique, we must show that no language representing f is regular.

The proof will proceed as follows. We will consider an input x
with a long left-hand side and an even longer right-hand side, so that
the left-hand side is completely deleted by f . We will show that the
substring β represents some number of a2 b2 units from the input and
some number of b2a2 units from the output. Thus, repeating β results
in increasing the number of a2 b2s in x and b2a2s in f (x). However,

10A complete treatment of the Pumping Lemma may be found in formal lan-
guage theory textbooks such as Sipser (2013).

[68]

Non-rationality of Harmonic Serialism

since the left-hand side is much shorter than the right-hand side, the
number of b2a2s on the right-hand side of f (x) must decrease when
the number of a2 b2s on the left-hand side of x increases, whence a
contradiction.
Theorem 27. The matching deletion function f is not rational.
Proof. Suppose that f were computed by an FST T . Thinking of T as
an FSA, let p be the pumping length of T . Let

x :=
�
a2 b2
�2p

a2ca2
�
b2a2
�4p

, so that
f (x) = a2ca2
�
b2a2
�2p

,

and let ξ be the string over Σ≤1 × Σ≤1 corresponding to the pair
〈x , f (x)〉 ∈ [T].

By the Pumping Lemma, since |ξ| > p, there exist α,β ,γ such
that ξ = αβγ, |β | > 1, |αβ | < p, and αβ+γ ⊆ [T]. Writing β =
〈y1, z1〉〈y2, z2〉 . . . 〈yn, zn〉, let y := y1 y2 . . . yn and z := z1z2 . . . zn, so that
β represents T reading the substring y and emitting the substring z as
output.

Now, observe that the domain of f is �a2 b2
�+

a2ca2
�
b2a2
�+, and

the range of f is �a2 b2
�+

a2ca2∪a2ca2
�
b2a2
�+. Any string in either the

domain or the range of f contains an integer number of a2 b2s or b2a2s
surrounding an a2ca2 in the middle. Therefore, since αβ+γ ⊆ [T], and
since y must be a substring of the first p-many symbols of x , there
must exist i and j such that the pair-string αββγ represents the pair
〈x ′, f (x ′)〉, where

x ′ =
�
a2 b2
�2p+i

a2ca2
�
b2a2
�4p and

f (x ′) = a2ca2
�
b2a2
�2p+ j

.

Since |αβ | < p, we must have i < p, so 2p + i < 4p. According to the
definition of f ,

f (x ′) = a2ca2
�
b2a2
�4p−(2p+i)

= a2ca2
�
b2a2
�2p−i

,

so j = −i. Since a string cannot have a negative length, we must
have j = i = 0. However, this implies that |β | = 0, contradicting the
Pumping Lemma, so we conclude that f cannot be computed by an
FST.

[69]

Yiding Hao

5.2 Matching deletion in HS
Having shown that f is not rational, let us now implement f in HS.
We shall do this by constructing a grammar that, given a UR of the
form �a2 b2
�m+1

a2ca2
�
b2a2
�n+1, behaves as follows.

• First, delete the a immediately to the right of the c:�
a2 b2
�m+1

a2ca2
�
b2a2
�n+1⇝
�
a2 b2
�m+1

a2ca
�
b2a2
�n+1

.

• Next, delete the a immediately to the right of the c:�
a2 b2
�m+1

a2ca
�
b2a2
�n+1⇝
�
a2 b2
�m+1

a2c
�
b2a2
�n+1

.

• Next, delete the a immediately to the left of the c:�
a2 b2
�m+1

a2c
�
b2a2
�n+1⇝
�
a2 b2
�m+1

ac
�
b2a2
�n+1

.

• Next, delete the a immediately to the left of the c:�
a2 b2
�m+1

ac
�
b2a2
�n+1⇝
�
a2 b2
�m+1

c
�
b2a2
�n+1

.

• Next, do the same with the bs adjacent to the c; delete the two bs
immediately to the right, and then the two bs immediately to the
left: �

a2 b2
�m+1

c
�
b2a2
�n+1⇝ · · ·⇝ �a2 b2

�m
a2ca2
�
b2a2
�n

.

The effect of these eight derivational steps is to delete a full b2a2 from
the right and a full a2 b2 from the left. This process continues until
either the left side has no more a2 b2s or the right side has no more
b2a2s. If m ≤ n, then the total number of b2a2s and a2 b2s deleted is
m+ 1, so the SR is a2ca2

�
b2a2
�n−m. If m≥ n, then the total number of

b2a2s and a2 b2s deleted is n+ 1, so the SR is �a2 b2
�m−n

a2ca2.
To obtain this behavior, the grammar we construct must fulfill

three criteria. Firstly, the grammar needs to contain markedness con-
straints against substrings occurring near the c. This is because HS
grammars can only perform unfaithful operations in order to repair
violations of markedness constraints, so the deletions performed by
the grammar must destroy banned substrings. Secondly, the gram-
mar must contain a mechanism for ensuring that the symbols adja-
cent to the c are deleted in the correct order – first to the right of

[70]

Non-rationality of Harmonic Serialism

the c, and then to the left of the c. If the grammar were allowed
to delete symbols adjacent to the c in an arbitrary order, then there
would be no non-rational dependency between the number of a2 b2s
deleted to the left of the c and the number of b2a2s deleted to the
right of the c. Finally, the grammar must ensure that no more dele-
tions occur when all the material either to the left or to the right
of the a2ca2 center marker has been deleted. Otherwise, the gram-
mar would associate each UR with the SR a2ca2, resulting in a ratio-
nal map.

These three components of the construction are presented in Sub-
sections 5.2.1, 5.2.2, and 5.2.3, respectively. Subsection 5.2.4 shows
how the three components are combined together to form an HS gram-
mar implementing f .
5.2.1 Motivating deletion
Let us assume that faithfulness constraints are ranked so that the only
possible actions of the grammar are to delete an a, to delete a b, or to
do nothing. The behavior we wish to implement is for the grammar
to delete symbols adjacent to the c. These deletions are driven by two
markedness constraints, ranked in the order shown below.
(28) a. *ab: Assign one violation for each occurrence of ab or ba.

b. *caa: Assign one violation for each occurrence of caa, aac,
cbb, or bbc.

Consider a string �a2 b2
�m+1

a2ca2
�
b2a2
�n+1 in f ’s domain. Every sym-

bol of this string other than those comprising the aca in the mid-
dle forms part of an ab or ba sequence banned by *ab. Since each
a2 b2 segment and each b2a2 segment introduces one ab substring and
one ba substring, the total number of violations assigned by *ab is
2(m + 1) + 2(n + 1) = 2(m + n) + 4. The a2ca2 segment in the middle
consists of two overlapping instances of substrings banned by *caa,
namely a2c and ca2. Thus, *caa assigns 2 violations in total.

Since every a is adjacent to another a and every b is adjacent to
another b, deleting a single a or a single b cannot repair a violation
of *ab. This is seen in candidate d of tableau (29a): there, an a is
deleted from the last a2 b2 segment to the left of the c, but the number
of violations of *ab does not change. On the other hand, deleting one
of the as adjacent to the c results in the destruction of either the ca2

[71]

Yiding Hao

segment or the a2c segment, so the number of violations assigned by
*caa is reduced by 1. Thus, the first step of the derivation is to delete
an a adjacent to the c.

The result of the first step is a string in which the c is flanked by
two as on one side and a single a on the other. These are shown in
candidates b and c of (29a).11 Since the single a is no longer adjacent
to another a, it now forms an ab segment with the neighboring b that
is vulnerable to deletion. This is shown in candidate b of (29b). While
it is still possible to repair a violation of *caa by deleting an a on
the other side of the c, as in candidate c of (29b), repairing *caa is
dispreferred to repairing *ab because the latter constraint outranks
the former. Thus, the second step of the grammar’s derivation is to
delete the single a that occurs between the c and a b.
(29) a. First repair *caa…

(a2 b2)m+1a2ca2(b2a2)n+1 *ab *caa

a. (a2 b2)m+1a2ca2(b2a2)n+1 2(m+ n) + 4 2!

� b. (a2 b2)m+1a2ca(b2a2)n+1 2(m+ n) + 4 1

� c. (a2 b2)m+1aca2(b2a2)n+1 2(m+ n) + 4 1

d. (a2 b2)mab2a2ca2(b2a2)n+1 2(m+ n) + 4 2!

b. …then repair *ab

(a2 b2)m+1a2ca(b2a2)n+1 *ab *caa

a. (a2 b2)m+1a2ca(b2a2)n+1 2(m+ n) + 4! 1

� b. (a2 b2)m+1a2c(b2a2)n+1 2(m+ n) + 3 2

c. (a2 b2)m+1aca(b2a2)n+1 2(m+ n) + 4! 0

Observe that while destroying the ab segment in (29b), the gram-
mar has created a cb2 segment, which is banned by *caa. This is per-
missible because *ab outranks *caa, so introducing a new violation
of the latter is justified by removing a violation of the former. The
result of the two derivational steps is again a string in which *caa is
violated twice and *ab cannot be repaired. In general, the effect of the
two constraints of (28) is to ensure that deletions occur two at a time:

11Both candidates have been marked as winning candidates, but in the next
subsection candidate c will be eliminated as a possible winner.

[72]

Non-rationality of Harmonic Serialism

first an a or a b to the left or to the right of the c, and then the other
a or b on the same side of the c.
5.2.2 Enforcing directionality
The constraints of (28) create a mechanism by which the grammar is
now required to delete as and bs adjacent to the c two at a time. The
next step is to ensure that these pairs of deletions occur in the correct
order: first the as on the right, then the as on the left, then the bs on the
right, then the bs on the left. This particular ordering of the deletions
ensures that every eight derivational steps, exactly one complete a2 b2

segment to the left of the c and one complete b2a2 segment to the right
of the c are deleted. Therefore, no partial a2 b2 or b2a2 segment may
remain at the end of the derivation, and the number of a2 b2s deleted
must always match the number of b2a2s deleted.

In (29b), we see that a deletion repairing *ab must always occur
on the same side of the c as the previous deletion repairing *caa. How-
ever, in (29a) we see that the constraints of (28) allow for a choice be-
tween two possible actions: destroying a ca2 or cb2 segment by delet-
ing to the right of the c, or destroying an a2c or b2c segment by delet-
ing to the left. The goal of this subsection is to remove this choice by
imposing a preference for correct deletions over incorrect ones.

To that end, consider the possible strings that may be obtained
from �a2 b2
�m+1

a2ca2
�
b2a2
�n+1 by deleting symbols adjacent to the c in

the manner described in Subsection 5.2.1. Any such string containing
two violations of *caa and no repairable violations of *ab must adhere
to one of the following patterns.
(30) a. Σ∗a2ca2Σ∗

b. Σ∗a2cb2Σ∗

c. Σ∗b2cb2Σ∗

d. Σ∗b2ca2Σ∗

After a *caa violation is repaired, the resulting string contains either
an a sandwiched between the c and a b or a b sandwiched between the
c and an a. The location of the single a or b reflects the location of the
*caa-repairing deletion: either both occur to the left of the c or both
occur to the right of the c. (31) shows that eight unique configurations
can be reached from one of the patterns in (30) by deleting either on
the left or on the right.

[73]

Yiding Hao

(31) a. Σ∗a2ca2Σ∗⇝ Σ∗baca2Σ∗ (left)/Σ∗a2cabΣ∗ (right)
b. Σ∗a2cb2Σ∗⇝ Σ∗bacb2Σ∗ (left)/Σ∗a2cbaΣ∗ (right)
c. Σ∗b2cb2Σ∗⇝ Σ∗abcb2Σ∗ (left)/Σ∗b2cbaΣ∗ (right)
d. Σ∗b2ca2Σ∗⇝ Σ∗abca2Σ∗ (left)/Σ∗b2cabΣ∗ (right)

Since the eight configurations are unique, from each configuration on
the right-hand side of an ⇝ above it is possible to recover both the
pattern from (30) on the left-hand side and whether the configuration
was obtained by deleting on the left or the right.

When the deletions are performed in the correct order, the inter-
mediate strings encountered in the derivation of the grammar cycle
through the four patterns of (30), in the order shown. Because of this,
whether the correct deletion occurs to the left or the right of the c is
completely determined by whether the input matches pattern (30a),
(30b), (30c), or (30d). Four of the eight configurations in (31) reflect
the result of performing the correct action based on the pattern from
(30). The remaining four configurations are obtained when incorrect
actions are performed. Therefore, the correct order of the deletions
can be enforced using a markedness constraint against the four con-
figurations reflecting incorrect deletions.
(32) *baca: Assign one violation for each occurrence of baca, acba,

abcb, or bcab.
To illustrate, consider again the tableau of (29a), but this time

including the constraint *baca. For considerations of space, let M :=
2(m+ n) + 4. While both candidates b and c were marked as winners
in (29a), in (33) candidates b and c are distinguished by the latter’s
violation of *baca. Thus, only candidate b, in which deletion occurs
to the right of the c, is a winner in (33).
(33) *baca distinguishes between candidates b and c

(a2 b2)m+1a2ca2(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1a2ca2(b2a2)n+1 M 2! 0

� b. (a2 b2)m+1a2ca(b2a2)n+1 M 1 0

c. (a2 b2)m+1aca2(b2a2)n+1 M 1 1!
d. (a2 b2)mab2a2ca2(b2a2)n+1 M 2! 0

[74]

Non-rationality of Harmonic Serialism

Since the purpose of *baca is to distinguish between candidates
that are treated identically by the other markedness constraints, the
ranking of *baca relative to *ab and *caa is inconsequential. This
is indicated by the dashed line in tableau (33) separating the *baca
column from the other columns. For convenience, tableaux in the re-
mainder of this section will show the three markedness constraints in
the order presented in (33).
5.2.3 Stopping condition
We have now seen that (28) and (32) together create the eight-step
effect of deleting a full b2a2 to the right of the c and a full a2 b2 to the
left of the c. The final step of the construction is to force the grammar
to converge to a final SR when one of the two sides runs out of a2 b2s or
b2c2s. This has occurred when the string matches one of the following
patterns.
(34) a. Σ∗ba2ca2

b. a2ca2 bΣ∗

c. a2ca2

Pattern (34c) occurs when the original UR �a2 b2
�m+1

a2ca2
�
b2a2
�n+1

contains the same number of a2 b2s to the left of the c as b2a2s to the
right of the c; i.e., when m= n. (34a) occurs when m> n, and therefore
the right side runs out of b2a2s before the left side runs out of a2 b2s.
(34b) occurs when m< n.

As in Subsection 5.2.2, we can consider the configurations that re-
sult when a symbol adjacent to the c is deleted from a string matching
one of the patterns in (34).
(35) a. Σ∗ba2ca2⇝ Σ∗baca2 (left)/Σ∗ca (right)

b. a2ca2 bΣ∗⇝ acΣ∗ (left)/a2cabΣ∗ (right)
c. a2ca2⇝ aca2 ∈ acΣ∗ (left)/a2ca ∈ Σ∗ca (right)

Since no further deletions should occur when one of the patterns in
(34) is reached, all the configurations on the right-hand side of an
⇝ above reflect incorrect deletions, so all the configurations must be
banned by a markedness constraint.
(36) Stop: Assign one violation for each occurrence of baca2⋉, ca⋉4,

⋊4ac, or ⋊a2cab.

[75]

Yiding Hao

Each of the deletions shown in (35) repairs a violation of *caa, so
Stop must rank above *caa.

To confirm that Stop behaves as intended, let us consider a string
in which the left side contains no a2 b2 segments, but the right side
contains at least one b2a2 segment.
(37) Converging to a final UR

a2ca2(b2a2)n+1 Stop *ab *caa F
� a. a2ca2(b2a2)n+1 0 2n+ 2 2 0

b. aca2(b2a2)n+1 1! 2n+ 2 1 1

c. a2ca(b2a2)n+1 1! 2n+ 2 1 1

d. a2ca2 ba2(b2a2)n 0 2n+ 2 2 1!
Since no violation of *baca can be introduced by deleting a single a or
b from a2ca2(b2a2)n+1, *baca is not shown in the tableau above. Can-
didate b, obtained by deleting an a to the left of the c, contains the
banned substring ⋊4ac, so it violates Stop. Candidate c, obtained by
deleting an a to the right of the c, contains ⋊a2cab, so it also violates
Stop. These violations of Stop eliminate b and c as potential win-
ners. Observe that none of the markedness constraints distinguishes
between candidate a, the faithful candidate, and candidate d, obtained
by deleting a b not adjacent to the c. Instead, candidates like d are
eliminated by low-ranking faithfulness constraints against deleting as
and bs, represented collectively in the column labelled “F.”
5.2.4 Constraint ranking
To complete the construction, all that remains is to arrange the
markedness constraints of (28), (32), and (36) and relevant faithful-
ness constraints to form a ranking that produces the desired behavior.
Let us briefly summarize the ranking requirements identified in the
previous subsections.

• *ab≫ *caa.
• The ranking of *baca is inconsequential.
• Stop≫ *caa.

The faithfulness constraints need to ensure that the only permissible
actions, other than doing nothing, are deleting an a or a b. The con-
straints Id and Dep can be used to ban substitutions and insertions, re-

[76]

Non-rationality of Harmonic Serialism

*ab

*caa

*Maxa *Maxb

*MaxcStop

Id Dep

*baca

Figure 4:
Required ranking relations
among constraints

spectively. The constraint Max will be replaced with three constraints,
each of which bans deletion of a particular alphabet symbol.
(38) a. Id: Assign one violation for each symbol from the input that

is changed to a different symbol in the output.
b. Dep: Assign one violation for each symbol inserted into the

input.
c. Maxa: Assign one violation for each a deleted from the

input.
d. Maxb: Assign one violation for each b deleted from the

input.
e. Maxc: Assign one violation for each c deleted from the

input.
To allow deletions to occur, Maxa and Maxb must rank below *caa,
and to ban substitutions and insertions, Id and Dep must rank above
*ab. Since deleting a c cannot repair a violation of *ab, Maxc needs
to rank above *caa, but not necessarily above *ab. These ranking re-
quirements, along with the requirements for markedness constraints,
are shown visually in Figure 4. Any ranking compatible with Figure
4 produces the desired behavior, so let us simply assume the ranking
shown below.
Id≫ Dep≫Maxc ≫ Stop≫ *ab≫ *caa≫ *baca≫Maxa≫Maxb

Theorem 39. There exists an HS grammar with strictly local marked-
ness constraints that generates a non-rational mapping between underlying
forms and surface forms.
Proof. Let us confirm that the HS grammar we have constructed be-
haves as expected. Given a UR x = (a2 b2)m+1a2ca2(b2a2)n+1, the gram-
mar should produce f (x) as the SR. As mentioned before, since the

[77]

Yiding Hao

restriction of a rational function to a regular subset of its domain is
still rational, any grammar that computes f on its domain implements
a non-rational function in general.

I will proceed by first showing that the grammar implements the
eight-step derivational process that deletes exactly one a2 b2 to the
left of the c and one b2a2 to the right of the c. Then, I show that
Stop correctly implements the stopping condition that terminates the
derivation.

Subsections 5.2.1 and 5.2.2 showed that the first two steps of the
eight-step process behave as expected. The following tableaux show
the remaining six steps. As before, let us define M := 2(m+ n) + 4.
(40) a. Deleting an a on the left

(a2 b2)m+1a2c(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1a2c(b2a2)n+1 M − 1 2! 0

� b. (a2 b2)m+1ac(b2a2)n+1 M − 1 1 0

c. (a2 b2)m+1a2cba2(b2a2)n M − 1 1 1!

b. Deleting another a on the left
(a2 b2)m+1ac(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1ac(b2a2)n+1 M − 1! 1 0

� b. (a2 b2)m+1c(b2a2)n+1 M − 2 2 0

c. Deleting a b on the right
(a2 b2)m+1c(b2a2)n+1 *ab *caa *baca

a. (a2 b2)m+1c(b2a2)n+1 M − 2 2! 0

� b. (a2 b2)m+1cba2(b2a2)n M − 2 1 0

c. (a2 b2)ma2 bc(b2a2)n+1 M − 2 1 1!

d. Deleting another b on the right
(a2 b2)m+1cba2(b2a2)n *ab *caa *baca

a. (a2 b2)m+1cba2(b2a2)n M − 2! 1 0

� b. (a2 b2)m+1ca2(b2a2)n M − 3 2 0

[78]

Non-rationality of Harmonic Serialism

e. Deleting a b on the left
(a2 b2)m+1ca2(b2a2)n *ab *caa *baca

a. (a2 b2)m+1ca2(b2a2)n M − 3 2! 0

� b. (a2 b2)ma2 bca2(b2a2)n M − 3 1 0

c. (a2 b2)m+1ca(b2a2)n M − 3 1 1!

f. Deleting another b on the left
(a2 b2)ma2 bca2(b2a2)n *ab *caa *baca

a. (a2 b2)ma2 bca2(b2a2)n M − 3! 1 0

� b. (a2 b2)ma2ca2(b2a2)n M − 4 2 0

Tableaux (40a), (40c), and (40e) are analogous to tableaux (29a)
and (33): *caa is violated twice, *ab violations cannot be repaired,
and *baca causes the grammar to choose the correct deletion to re-
pair *caa over the incorrect one. Tableaux (40b), (40d), and (40f),
like (29b), repair a violation of *ab while introducing a violation of
*caa. The winner in (40f), after the eighth step of the derivation, is
(a2 b2)ma2ca2(b2a2)n – the result of deleting exactly one a2 b2 and one
b2a2 from x .

The final part of the proof is to show that the stopping con-
dition behaves as expected. (37) showed that Stop correctly ter-
minates the derivation when m < n. The following tableaux show
that the derivation terminates correctly when m > n and when
m= n.
(41) a. Converging when m> n

(a2 b2)m+1a2ca2 Stop *ab *caa F
� a. (a2 b2)m+1a2ca2 0 2m+ 2 2 0

b. (a2 b2)m+1a2ca 1! 2m+ 2 1 1

c. (a2 b2)m+1aca2 1! 2m+ 2 1 1

d. (a2 b2)ma2 ba2ca2 0 2m+ 2 2 1!

[79]

Yiding Hao

b. Converging when m= n

a2ca2 Stop *ab *caa F
� a. a2ca2 0 0 2 0

b. aca2 1! 0 1 1

c. a2ca 1! 0 1 1

Candidate b of (41a) is eliminated by Stop because it contains
the offending substring ca⋉4. Similarly, candidate c contains baca2⋉.
As in (37), candidate d is eliminated by low-ranking faithfulness con-
straints. In (41b), b and c are the only candidates that may be obtained
by deleting an a. These candidates contain ⋊4ac and ca⋉4, respec-
tively, so they are eliminated by Stop.

6 canonical nonʿrational mappings
We have now seen that in general, HS grammars with SL marked-
ness constraints can produce non-rational relations. Computing the
matching deletion function requires the ability to enforce dependen-
cies between arbitrarily many nesting pairs of a2 b2 and b2a2 units
separated by arbitrarily long distances. While the markedness con-
straints *caa and *ab are only sensitive to the material immediately
adjacent to the c, deletion was able to extend the reach of these con-
straints by moving a2 b2 and b2a2 units close to the c. The carefully
choreographed manner in which the deletions were carried out al-
lowed the grammar to maintain nesting dependencies reminiscent of
context-free grammars.

The result of the previous section raises the question of what kinds
of non-rational mappings HS can generate. The goal of this section
is to argue that all non-rational relations generated by HS involve
coordinated deletions that occur on opposite sides of some center
marker. Thus, the matching deletion function is a canonical exam-
ple of a non-rational mapping in HS, just as majority-rules mappings
may be seen as canonical examples of non-rational mappings in stan-
dard OT.

Hao (2017) attempted to construct a finite-state model of HS by
first showing that HG is rational for any HS grammar G, and then ap-
plying an algorithm due to Abdulla et al. (2002, 2003) that takes an

[80]

Non-rationality of Harmonic Serialism

FST as input and attempts to construct an FST computing its transi-
tive closure. Subsection 6.1 reviews this algorithm in detail, includ-
ing sufficient conditions for its termination. Subsection 6.2 argues
that HS grammars violate these conditions exactly when performing
coordinated deletions. In particular, I will show that HS grammars
with SL markedness constraints are rational if they cannot perform
deletion.
6.1 Transducer iteration
Computing the transitive closure of a relation is a difficult prob-
lem. Since transitions between Turing machine configurations can
be modelled by rational relations, the halting problem can be re-
duced to finding the transitive closure of a rational relation. Nonethe-
less, the problem of computing transitive closures, or approxima-
tions thereof, is of substantial practical interest. The field of model
checking, for example, is concerned with determining what states of
a program or other computational system can be reached from an
initial configuration, and in particular whether any of these reach-
able states indicate undesirable behavior. Several studies in this area
have explored the possibility of performing reachability analysis us-
ing FSTs by modelling state transitions as rational relations. To that
end, partial algorithms have been developed that attempt to pro-
duce FSTs computing the transitive closures of rational relations. One
approach, developed by Bouajjani et al. (2000), Jonsson and Nils-
son (2000), Abdulla et al. (2002), and Abdulla et al. (2003), consid-
ers infinite-state transducers computing transitive closures and de-
fines a behavior-preserving equivalence relation under which the
state set has a finite quotient. Another approach, due to Dams et al.
(2001a,b, 2002), also attempts to produce a finite quotient of an in-
finite state set, but the equivalence relation is constructed algorith-
mically while computing increasingly large compositions of an FST
with itself.

The transducer iteration algorithm used in Hao (2017) is the
quotient-based algorithm of Abdulla et al. (2002) and Abdulla et al.
(2003). Since this algorithm is only compatible with FSTs that perform
substitutions, Hao’s construction simulates insertions and deletions by
thinking of them as substitutions involving a designated alphabet sym-
bol representing λ. Abdulla et al.’s technique relies on the observation

[81]

Yiding Hao

that for any FST T , the composition of [T] with itself n times for some
fixed n is a rational relation. An infinite-state transducer for [T]+ is
produced using a construction for the n-fold composition of T by tak-
ing n to infinity. The size of the state set is reduced by identifying states
with the same behavior and merging them. The algorithm terminates
if finitely many states remain after merging is complete. This termina-
tion condition gives us a sufficient condition for the rationality of [T]+.

Subsection 6.1.1 describes the construction for the infinite-state
transducer computing [T]+. Subsection 6.1.2 presents the equivalence
relation used to collapse the infinite state set into a possibly finite one.
6.1.1 Column transducers
To understand the construction for the n-fold composition of an FST,
let us consider a concrete example.
Example 42. Consider the following FST over the alphabet Σ= {a, b}.
(43) An FST that changes the first b to an a

q0start q1

a : a

b : a

a : a
b : b

The behavior of FST (43) is to change the first b it encounters to an
a. The transitive closure of this relation would change the first n in-
stances of b to as, where the value of n is chosen nondeterministically.
This is clearly finite-state, since it can be computed by the FST shown
below in (44).
(44) An FST that changes the first n-many bs to as

q0start q1

a : a
b : a

b : a

a : a
b : b

The intuition behind Abdulla et al.’s technique is as follows. We
can understand the behavior of an FST on a particular input by in-
specting its run – the sequence of states entered into during the course

[82]

Non-rationality of Harmonic Serialism

of the computation. For example, (45) shows the runs of (43) when it
is applied twice to the input aabb, producing first aaab and then aaaa.
(45) Runs of FST (43) on input aabb

Time: 0 1 2 3 4

Input 1: a a b b

Run 1: q0 q0 q0 q1 q1

Input 2: a a a b

Run 2: q0 q0 q0 q0 q1

Input 3: a a a a

During the first run of (43), the FST is in state q0 for three time steps,
and then state q1 for two time steps. During the second run, (43) is
in state q0 for four time steps, and then state q1 for one time step.
The behavior of (43) when it is applied twice to some input can be
described by inspecting the columns of table (45). These columns de-
scribe, for each time step, the state of the FST during each of its it-
erations. Based on this, we may construct an FST that simulates two
iterations of (43) by taking each state to represent a column of (45).
The run of such a transducer, shown in (46), resembles table (45), ex-
cept that the “Input 2” row is omitted and the “Run 1” and “Run 2”
rows are merged.
(46) Combining the two runs of (45)

Time: 0 1 2 3 4

Input: a a b b

Run: q0 q0 q0 q1 q1

q0 q0 q0 q0 q1

Output: a a a a

Whenever the transitions p
x:y−→ q and r

y:z−→ s occur in (43), an FST
whose behavior is described by (46) has the transition pr

x:z−→ qs. For
example, between time steps 2 and 3, (45) shows that (43) undergoes
the transition q0

b:a−→ q1 during its first run and q0
a:a−→ q0 during its

second run. Accordingly, (46) shows that the 2-fold iteration of (43)
undergoes the transition q0q0

b:a−→ q1q0 from time step 2 to time step
3. By combining all possible transitions of (43) in this way, we obtain
the FST shown below.

[83]

Yiding Hao

(47) The composition of (43) with itself

q0q0start q1q0 q1q1

a : a

b : a

a : a

b : a

a : a
b : b

The three states of (47) represent the three possible values that might
appear in a column of table (45). The FST is in state q0q0 when it
has not seen any bs. The FST enters state q1q0 after seeing the first
b. This represents the fact that (43) enters state q1 on upon seeing b
in its first iteration. However, because the b is changed to an a, (43)
does not enter state q1 in its second iteration until the second b of the
original input is seen. When this happens, (47) enters state q1q1. It is
clear that the behavior of (47) is to change the first two bs of its input
to as.

Note that the state q0q1 does not appear in (47). This is be-
cause (43) can only be in state q0 at time t if it has not emit-
ted any bs, so the output of the first run cannot contain any bs
before time t. However, (43) can only be in state q1 if it has
seen at least one b. Since the input to the second run, which is
the output of the first run, does not contain any bs before time
t, (43) cannot enter state q1 during its second run until after
time t.

The ideas discussed in Example 42 are formalized as follows.
Definition 48. An FST 〈Q,Σ, Γ , I , F,→〉 is same-length if for every q, r ∈
Q, q

a:b−→ r implies that |a|= |b|= 1.
Definition 49. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. For each
n > 1, the n-fold column transducer for T is defined as the transducer
T n := 〈Qn,Σ,Σ, In, F n,→n〉, where for each q1q2 . . . qn, r1r2 . . . rn ∈Qn,

q1q2 . . . qn
a:b−→n r1r2 . . . rn

holds if and only if there exist a0, a1, . . . , an ∈ Σ such that a0 = a, an = b,
and for each i ∈ {1,2, . . . , m}, qi

ai−1:ai−−−→ ri.
For each n, [Tn] is the n-fold composition of [T] with itself. A

transducer for [T]+ is created by taking the union of all the Tns.

[84]

Non-rationality of Harmonic Serialism

Definition 50. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. The
column transducer for T is defined as the transducer T+ := 〈Q+,Σ,Σ, I+,
F+,→+〉, where

→+ =→∪
�∞∪

n=2

→n

�
.

Since T+ has infinitely many states, it is not an FST. The next sub-
section shows how we can attempt to reduce the size of the state set by
taking its quotient under an equivalence relation. An FST equivalent
to T+ is obtained if the quotient is finite.
6.1.2 Quotient transducers
The technique for merging states is based on eliminating repetitions
of copying states – states whose behavior is to copy the input.
Definition 51. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. A state
q is left-copying if for every start state q0 ∈ I , q0

a:b−→∗ q implies a = b.
A state q is right-copying if for every accept state q f ∈ F , q

a:b−→∗ q f

implies a = b. A state q is non-copying if it is neither left-copying nor
right-copying. A state q is copying if it is not non-copying.

For a state q to be left-copying means that the only way to reach
q is for the transducer to copy its input. For q to be right-copying
means that once q has been reached, the only possible action of the
transducer is to copy its input. The equivalence relation on the states
of T+ is defined by merging any two columns that are identical except
for repetitions of copying states of T .
Definition 52. Let T = 〈Q,Σ,Σ, I , F,→〉 be a same-length FST. Define
the equivalence relation ≃T over Q+ as follows. We say that q ≃T r if
and only if we can write

q = qp1
1 qp2

2 . . . qpm
m

r = qr1
1 qr2

2 . . . qrm
m ,

where pi = ri whenever qi is non-copying and for each j, p j > 0 and
r j > 0. The quotient transducer for T is defined as the transducer T≃ :=

〈Q+/≃,Σ,Σ, I/≃, F/≃,⇒〉, where [q]≃T

a:b
=⇒ [r]≃T

if and only if q
a:b−→+ r.

Since ≃ does not distinguish between multiple repetitions of the
same copying state, a canonical notation for equivalence classes of
≃ can be defined by replacing qpi

i and qri
i with q+i whenever qi is a

[85]

Yiding Hao

copying state. For example, if q is copying but p and r are not, then
the column p8q5r9 belongs to the equivalence class p8q+r9.
Example 53. Consider again the FST (43). The state q0 is left-copying,
since the only transition reaching q0 copies an a to the output stream.
The state q1 is right-copying, since the unique transition from q1 copies
an a or a b to the output stream. In (47), we saw that the columns of
length 2 for the column transducer of (43) are q0q0, q1q0, and q1q1. In
general, columns obtained by iterating (43) are of the form q∗1q∗0. Since
q1 is right-copying and q0 is left-copying, the quotient transducer for
(43), shown below, contains three states: q+0 , q+1 q+0 , and q+1 .
(54) Quotient transducer for (43)

q+0start q+1 q+0 q+1

a : a

b : a

a : a
b : a

b : a

a : a
b : b

It is easy to see that the transducer above has the same behavior as
(44), the transducer computing the transitive closure of (43).

Abdulla et al. (2002) prove that merging states in this way does
not change the behavior of T+ under the condition that no reachable
column in Q+ contains a substring of the form pq, where p ̸= q and
p and q are both left-copying or both right-copying. They ensure that
this condition is fulfilled by requiring that T be deterministic. Abdulla
et al. (2003) relaxes the assumption of determinism by introducing an
algorithm that makes the portion of T containing only the left-copying
states deterministic, and the portion of T containing only the right-
copying states reverse-deterministic. FSTs preprocessed in this man-
ner are called bideterministic, and any same-length FST can be bideter-
minized. Once an FST has been bideterminized, it can be safely used
to construct a quotient transducer without changing the behavior of
the column transducer.
Theorem 55 (Abdulla et al. 2002, 2003). If T is same-length and bide-
terministic, then [T≃] = [T+] = [T]+.

The algorithm for constructing T≃ from an FST T is as follows.
First, T is made bideterministic. Then, the algorithm constructs T n

for n increasingly large, while taking the quotient of the state set

[86]

Non-rationality of Harmonic Serialism

after each iteration. The algorithm terminates when T n = T n+1 after
columns have been merged based on ≃.
1: procedure Closure(T)
2: Initialize T≃← T , but with each state q replaced with [q]≃.
3: Make T≃ bideterministic.
4: do
5: Set T ′≃← T≃.
6: for each transition [q]≃

a:b
=⇒ [r]≃ of T≃ and s

b:c−→ t of T do
7: Add the transition [qs]≃

a:c
=⇒ [r t]≃ to T≃.

8: Remove unreachable states from T≃.
9: while T≃ ̸= T ′≃
10: return T≃.

Algorithm 56:
Constructing T≃
from T , Abdulla
et al. (2002,
2003)

Each iteration of the algorithm discovers equivalence classes of
T≃ with increasingly longer canonical names. If the length of the
canonical name of a reachable state in T≃ is bounded by some n ∈
N, then after the nth iteration all reachable states of T≃ will have
been discovered, and the exit condition for the while-loop on line
9 will be satisfied. This gives us the termination condition for the
algorithm.
Theorem 57 (Abdulla et al. 2002, 2003). Let T = 〈Q,Σ,Σ, I , F,→〉 be a
same-length FST. If the following conditions are met, then [T]+ is rational.

• There is a bound on the number of non-copying states from Q appear-
ing in the reachable states of T+.

• There is a bound on the number of alternations between left-copying
and right-copying states from Q appearing in the reachable states
of T+.

Example 58. Let G be the HS grammar described at the beginning
of Section 4. Recall that this grammar describes a process of Classical
Arabic wherein an SR receives the prefix [ʔi] if the UR begins with a
consonant cluster. The behavior of HG is as follows. If the input be-
gins with a consonant cluster, then HG adds an i to the beginning.
If the input begins with a vowel, then HG adds a ʔ to the beginning.
For example, the SR [ʔifʕal] for the UR /fʕal/ “do!” is derived as fol-
lows: fʕal HG ifʕal HG ʔifʕal HG ʔifʕal. An FST T with this behav-
ior is shown below. To ensure that T is same-length, the symbol ⊥

[87]

Yiding Hao

represents λ, and insertions are represented as substitutions of ⊥ for
other symbols. Let us assume that for each state q, T has the transition
q
⊥:⊥−−→ q.

(59) An FST for HG (C is a consonant, V is a vowel)

q0start q3

q1

q4

q2

⊥ : i

⊥ : ʔ
C : C

C : C

C : C

C : C

C : C

V : V

V : VV : V

V : V

The start state q0 is a left-copying state, while q1, q2, q3, and q4 are
right-copying states. Observe that the sub-automaton containing only
state q0 is deterministic, while the sub-automaton excluding state q0

is reverse-deterministic. Therefore, T is already bideterministic.
Let us apply Abdulla et al.’s algorithm to T . The equivalence class

q+0 is the start state of T≃. Bideterminism guarantees that no equiv-
alence class of T≃ has a canonical name containing pq where p ̸= q
and p and q are both left-copying or both right-copying. Therefore,
after the first iteration, the new states added to T≃ are q+0 q+1 , q+0 q+2 ,
q+0 q+3 , q+0 q+4 , q+1 q+0 , q+2 q+0 , q+3 q+0 , and q+4 q+0 . Starting from the start state
q+0 , the new transitions q+0

⊥:i
=⇒ q+0 q+1 and q+0

⊥:c
=⇒ q+0 q+3 , with c = ʔ, are

added to T≃ based on the condition in line 6. From q+0 q+3 , the transi-
tion q+0 q+3

⊥:i
=⇒ q+1 is added. No other new transitions begin at one of the

currently reachable states, so the first iteration terminates here. The
new transitions are shown below.

[88]

Non-rationality of Harmonic Serialism

(60) Transitions added during the first iteration (the dashed arrow
represents an existing transition)

q+0start

q+1 q+0 q+3q+0 q+1

⊥ : i ⊥ : ʔ⊥ : i

⊥ : i

In the second iteration, the new states added are q+0 q+3 q+0 and
q+0 q+1 q+0 . Note that (60) has no transitions originating from q+0 q+1 , and
the sole transition originating from q+0 q+3 emits a vowel as output.
However, the no transition T from q0 reads a vowel as input, so no
new transitions are added. Since T≃ has not changed during the sec-
ond iteration, the algorithm terminates, returning an FST with the
transitions in both (59) and (60). Observe that the behavior of this
FST is to either simulate (59) or to add ʔi before a consonant cluster
– exactly the behavior of [T]+.
6.2 Matching deletion and copying-state alternations
Theorem 57 identifies two conditions under which the transitive clo-
sure [T]+ of a same-length rational relation [T] is rational. This
subsection applies Theorem 57 to FSTs computing HG, developing
some intuition on when the transitive closure of HG is rational. Ob-
serve first that Theorem 57 is simplified in the case of FSTs imple-
menting a single change because the first condition is automatically
satisfied.
Proposition 61. Suppose T is a same-length FST such that x [T] y if
and only if x 7→ y is a single change. Then, every reachable state of T is
left-copying or right-copying.
Proof. Suppose q is a reachable non-copying state of T . Then, there
exist a starting state q0 and an accepting state q f such that

• q0
a:b−→∗ q with a ̸= b and

• q
c:d−→∗ q f with c ̸= d.

[89]

Yiding Hao

Thus, ac [T] bd. However, since a ̸= b and c ̸= d, at least two symbols
of ac must differ from their counterparts in bd, so ac 7→ bd cannot be
a change. Thus, T cannot have any reachable non-copying states.

The remaining condition of Theorem 57 is a bound on the num-
ber of alternations between left-copying and right-copying states
in the reachable columns of T+. Suppose T is a same-length FST
implementing a single change. If T enters a left-copying state at
time t, then it has copied its input between time steps 0 and t,
so the single change that T implements occurs after time t. Sim-
ilarly, if T enters a right-copying state at time t, then the single
change occurs before time t, since T can only copy its input af-
ter time t. This means that a bound on the number of alterna-
tions between left-copying and right-copying states corresponds to a
bound on the number of times T can make a change before time t
followed by a change after time t and vice versa, for each time
step t.
Example 62. Define the matching substitution function g as follows.

g
��

a2 b2
�m+1

a2ca2
�
b2a2
�n+1�

:=

(�
a2 b2
�m−n �⊥4
�n+1

a2ca2
�⊥4
�n+1

, m≥ n�⊥4
�m+1

a2ca2
�⊥4
�m+1 �

b2a2
�n−m

, m≤ n

This function is like the matching deletion function, except that in-
stead of deleting symbols adjacent to the c, g replaces themwith⊥. Let
G be the HS grammar for the matching deletion function constructed
in Section 5, and let T be a same-length FST that implements HG,
except that deleted symbols are replaced with ⊥.

On input �a2 b2
�m+1

a2ca2
�
b2a2
�n+1, T reads the symbol c between

time steps t = 4(m+ 1) + 2= 4m+ 6 and t + 1= 4m+ 7. For each a2 b2

unit and b2a2 unit that is changed to ⊥4, T makes two substitutions
after time t and two substitutions before time t. Thus, at time t, T≃ is
in the state �q+L q+R

�k, where qL is left-copying, qR is right-copying, and
k is the total number of a2 b2 and b2a2 units deleted. Since k can be
arbitrarily large for large values of m and n, there is no bound on the
number of alternations between right-copying and left-copying states
in the reachable columns of T+, so T does not fulfill the termination
conditions for Abdulla et al.’s (2002) algorithm.

[90]

Non-rationality of Harmonic Serialism

As Example 62 shows, the kind of single-change behavior that
is incompatible with Theorem 57 – the kind that alternates between
making changes before and after a certain position in the string – is ex-
actly the kind of behavior forHG that is used to implement the match-
ing deletion function. This justifies the claim that non-rational map-
pings in HS with strictly local markedness constraints consist of coor-
dinated changes occurring on opposite sides of some center marker.
The following example illustrates how deletion makes such behavior
possible.
Example 63. Recall that, in Section 5, the markedness constraint
*baca was used to ensure that deletions occurred in the correct or-
der. By specifying a set of banned substrings containing the c, *baca
is able to enforce a dependency between the choice of which deletion
is carried out and the material that exists on each side of the c.

Now, consider the matching substitution function. It is straight-
forward to modify the grammar from Section 5 for the matching dele-
tion function so that substitions of a or b for ⊥ are performed in place
of deletions. However, as more and more symbols are changed to ⊥,
the a2 b2 and b2a2 units closest to the c become arbitrarily far away
from each other. This suggests that no finite set of banned substrings
can enforce a dependency between the two sides of the c, since for long
inputs the number of ⊥s adjacent to the c will exceed the maximum
length of a banned substring attempting to enforce the dependency. In
other words, deletion makes coordinated changes possible by making
the dependency between the deletions local.

7 conclusion

In the preceding sections, we have seen that HS can generate a
non-rational mapping by performing deletions that occur on oppo-
site, alternating sides of some center marker. These deletions cre-
ate context-free nesting dependencies between various portions of the
deleted material. Although SL constraints by definition can only en-
force dependencies across a bounded distance, we saw that deletion
was able to extend the reach of SL constraints by moving far-away
material into their domains of influence.

The matching deletion function defined in Section 5 differs qual-
itatively from the majority-rules deletion mappings presented in

[91]

Yiding Hao

Section 3. Majority-rules deletion reflects the ability of standard OT
to perform global optimization. Because standard OT does not assume
Gen to be limited to one change at a time, faithfulness constraints
have the ability to measure the degree to which SRs differ from URs.
Thus, in the example from Section 3, Max is responsible for deter-
mining which symbol should be deleted from the input string. This
determination itself is not rational, since FSTs cannot distinguish be-
tween large numbers of as and bs. It is not obvious whether or not HS
can implement majority-rules deletion using SL constraints because
the limited nature of Gen strips faithfulness constraints of the abil-
ity to count the number of symbols deleted across the string, so that
both markedness constraints and faithfulness constraints are limited
to a local domain of influence. However, as Lamont (2018a,b) shows,
majority-rules mappings are possible in HS if markedness constraints
are given global scope, compensating for the limited power of faith-
fulness constraints.

While the majority-rules mapping reflects the global nature of op-
timization in standard OT, the matching deletion function reflects the
derivational nature of HS and the propensity of HS derivations to con-
verge to a fixed point.12 The constraints *baca and Stop are able to
control the deletion process powered by *ab and *caa by exploiting
the fact that intermediate strings can encode the previous action of
the grammar. Thus, despite the limited power of constraints in HS,
complex computations are still made possible if state is encoded into
the intermediate strings produced in a derivation. This kind of tech-
nique has been used in the HS phonology literature to derive certain
complex patterns. For example, McCarthy (2008) gives an HS deriva-
tion of rhythmic syncope, a mapping in which every second vowel is
deleted, by first organizing phonemes into two-syllable feet, then as-
signing stress to the first syllable in each foot, and then deleting the
unstressed vowels. This cascade of processes serves to mark up the UR
with syllable boundaries, foot boundaries, and stress markers, so that
it is possible for an SL constraint to determine by inspection whether
or not a vowel belongs to an even-numbered position within the string.
While McCarthy presents this analysis of rhythmic syncope as an ad-

12Moreton (1999, 2004) shows that derivations driven by OT-style ranked
constraint systems must always converge to a fixed point.

[92]

Non-rationality of Harmonic Serialism

vantage of HS over standard OT, the construction of Section 5 shows
that encoding state in intermediate strings can enable computations
that are too complex for phonology.

While this paper has shown that HS is not rational, I have left open
the question of finding a suitable limitation of HS that would elim-
inate the possibility of generating non-rational mappings. Using Ab-
dulla et al.’s algorithm on Hao’s (2017) model would provide a method
to construct an FST for an HS grammar, although there is no guarantee
that the algorithm would terminate. Thus, the approach to finite-state
OT studied here is similar to Riggle’s (2004) OTCA, which does not im-
pose any a priori restrictions on standard OT, but also does not have a
guarantee of termination. One possibility for a finite-state restriction
might be to replace recursive calls to the grammar with a bounded
cascade of distinct phonological processes, in the style of McCarthy’s
implementation of rhythmic syncope. I leave the development of such
ideas for future work.

acknowledgements

I would like to thank Ryan Bennett and Robert Frank for suggesting the
line of inquiry that led to this paper and for their extensive discussions
on this topic. Andrew Lamont, Dustin Bowers, Nicholas Hathaway, and
the audience at FSMNLP provided additional useful feedback. Finally,
I would like to thank Frank Drewes and the anonymous reviewers
for their rigorous evaluation of this work and their guidance in its
development.

references
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso
(2002), Regular Model Checking Made Simple and Effcient, in Luboš Brim,
Mojmír Křetínský, Antonín Kučera, and Petr Jančar, editors, CONCUR
2002—Concurrency Theory: 13th International Conference, Brno, Czech Republic,
August 20–23, 2002, Proceedings, volume 2421 of Lecture Notes in Computer
Science, pp. 116–131, Springer Berlin Heidelberg, Berlin, Germany, ISBN
978-3-540-45694-0, doi:10.1007/3-540-45694-5_9.
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso
(2003), Algorithmic Improvements in Regular Model Checking, in Warren A.
Hunt and Fabio Somenzi, editors, Computer Aided Verification: 15th

[93]

Yiding Hao

International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003.
Proceedings, volume 2725 of Lecture Notes in Computer Science, pp. 236–248,
Springer Berlin Heidelberg, Berlin, Germany, ISBN 978-3-540-45069-6,
doi:10.1007/978-3-540-45069-6_25.
James K. Baker (1975), The DRAGON System—An Overview, IEEE
Transactions on Acoustics, Speech, and Signal Processing, 23(1):24–29, ISSN
0096-3518, doi:10.1109/TASSP.1975.1162650.
Eric Baković (1999), Assimilation to the Unmarked, in Jim Alexander,
Alexis Dimitriadis, Na-Rae Han, Elsi Kaiser, Michelle Minnick Fox,
Christine Moisset, and Alexander Williams, editors, Proceedings of the 23rd
Annual Penn Linguistics Colloquium, volume 6.1 of University of Pennsylvania
Working Papers in Linguistics, pp. 1–16, Penn Graduate Linguistics Society,
Philadelphia, PA, USA.
Eric Baković (2000), Harmony, Dominance and Control, PhD dissertation,
Rutgers University, New Brunswick, NJ, USA.
Robert C. Berwick (1984), Strong Generative Capacity, Weak Generative
Capacity, and Modern Linguistic Theories, Computational Linguistics,
10(3-4):189–202, ISSN 0891-2017.
Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili
(2000), Regular Model Checking, in E. Allen Emerson and Aravinda Prasad
Sistla, editors, Computer Aided Verification: 12th International Conference, CAV
2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture
Notes in Computer Science, pp. 403–418, Springer Berlin Heidelberg, Berlin,
Germany, ISBN 978-3-540-45047-4, doi:10.1007/10722167_31.
Joan Chen-Main and Robert Frank (2003), Implementing Faithfulness
Constraints in a Finite State Model of Optimality Theory, in Pádraig
Cunningham, Tim Fernando, and Carl Vogel, editors, Proceedings of the
14th Irish Conference on Artificial Intelligence and Cognitive Science, pp. 28–33,
Trinity College Dublin, Dublin, Ireland.
Noam Chomsky (1959), On Certain Formal Properties of Grammars,
Information and Control, 2(2):137–167, ISSN 0019-9958,
doi:10.1016/S0019-9958(59)90362-6.
Noam Chomsky and Morris Halle (1968), The Sound Pattern of English,
Harper & Row, New York, NY, USA, 1 edition, ISBN 978-0-06-041276-0.
Dennis Dams, Yassine Lakhnech, and Martin Steffen (2001a), Iterating
Transducers, Technical Report TR-ST-01-03, University of Kiel Institut für
Informatik und praktische Mathematik, Kiel, Germany.
Dennis Dams, Yassine Lakhnech, and Martin Steffen (2001b), Iterating
Transducers, in Gérard Berry, Hubert Comon, and Alain Finkel, editors, 13th
International Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings,

[94]

Non-rationality of Harmonic Serialism

volume 2102 of Lecture Notes in Computer Science, pp. 286–297, Springer Berlin
Heidelberg, Berlin, Germany, ISBN 978-3-540-44585-2,
doi:10.1007/3-540-44585-4_27.
Dennis Dams, Yassine Lakhnech, and Martin Steffen (2002), Iterating
Transducers, The Journal of Logic and Algebraic Programming, 52–53:109–127,
ISSN 1567-8326, doi:10.1016/S1567-8326(02)00025-5.
Matt Edlefsen, Dylan Leeman, Nathan Myers, Nathaniel Smith, Molly
Visscher, and David Wellcome (2008), Deciding Strictly Local (SL)
Languages, in Jon Breitenbucher, editor, Proceedings of the Midstates
Conference for Undergraduate Research in Computer Science and Mathematics,
pp. 66–73, College of Wooster, Wooster, OH, USA.
Jason Eisner (2000), Directional Constraint Evaluation in Optimality Theory,
in Proceedings of the 18th Conference on Computational Linguistics, volume 1,
pp. 257–263, Association for Computational Linguistics, Saarbrücken,
Germany, ISBN 1-55860-717-X, doi:10.3115/990820.990858.
Jason Eisner (2002), Comprehension and Compilation in Optimality Theory,
in Proceedings of 40th Annual Meeting of the Association for Computational
Linguistics, pp. 56–63, Association for Computational Linguistics, Philadelphia,
PA, USA, doi:10.3115/1073083.1073095.
Emily Elfner (2009), Syllabification and Stress-Epenthesis Interactions in
Harmonic Serialism, Rutgers Optimality Archive, ROA-1047.
Emily Elfner (2016), Stress-Epenthesis Interactions in Harmonic Serialism, in
John J. McCarthy, Joe Pater, Vieri Samek-Lodovici, and Armin Mester,
editors, Harmonic Grammar and Harmonic Serialism, Advances in Optimality
Theory, pp. 261–300, Equinox Publishing, Sheffield, United Kingdom, ISBN
978-1-84553-149-2.
T. Mark Ellison (1994), Phonological Derivation in Optimality Theory, in
Proceedings of the 15th Conference on Computational Linguistics, volume 2,
pp. 1007–1013, Association for Computational Linguistics, Kyoto, Japan,
doi:10.3115/991250.991312.
Robert Frank and Giorgio Satta (1998), Optimality Theory and the
Generative Complexity of Constraint Violability, Computational Linguistics,
24(2):307–315, ISSN 0891-2017.
Dale Gerdemann and Mans Hulden (2012), Practical Finite State Optimality
Theory, in Proceedings of the 10th International Workshop on Finite State Methods
and Natural Language Processing, pp. 10–19, Association for Computational
Linguistics, San Sebastián, Spain.
Dale Gerdemann and Gertjan van Noord (2000), Approximation and
Exactness in Finite State Optimality Theory, in Jason Eisner, Lauri
Karttunen, and Alain Thériault, editors, Finite-State Phonlogy: Proceedings

[95]

Yiding Hao

of the Fifth Workshop on the ACL Special Interest Group in Computational
Phonology, pp. 34–45, Association for Computational Linguistics, Luxembourg
City, Luxembourg.
Kenneth Hale (1973), Deep-Surface Canonical Disparities in Relation to
Analysis and Change: An Australian Example, in Thomas A. Sebeok, editor,
Current Trends in Linguistics, volume 8: Linguistics in Oceania, pp. 401–458,
Mouton, The Hague, Netherlands.
Yiding Hao (2017), Harmonic Serialism and Finite-State Optimality Theory, in
Frank Drewes, editor, Proceedings of the 13th International Conference on Finite
State Methods and Natural Language Processing, pp. 20–29, Association for
Computational Linguistics, Umeå, Sweden, doi:10.18653/v1/W17-4003.
Jeffrey Heinz (2009), On the Role of Locality in Learning Stress Patterns,
Phonology, 26(2):303–351, ISSN 0952-6757, doi:10.1017/S0952675709990145.
Jeffrey Heinz (2014), Culminativity Times Harmony Equals Unbounded Stress,
in Harry van der Hulst, editor, Word Stress: Theoretical and Typological Issues,
pp. 255–275, Cambridge University Press, Cambridge, United Kingdom, ISBN
978-1-107-03951-3, doi:10.1017/CBO9781139600408.012.
Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner (2011), Tier-Based
Strictly Local Constraints for Phonology, in Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies, pp. 58–64, Association for Computational Linguistics, Portland,
OR, USA.
Jeffrey Nicholas Heinz (2007), Inductive Learning of Phonotactic Patterns, PhD
dissertation, University of California, Los Angeles, Los Angeles, CA, USA.
Patrick W. Hohepa (1967), A Profile Generative Grammar of Maori, number 20
in Indiana University Publications in Anthropology and Linguistics, Waverly
Press, Baltimore, MD, USA.
Frederick Jelinek (1976), Continuous Speech Recognition by Statistical
Methods, Proceedings of the IEEE, 64(4):532–556, ISSN 0018-9219,
doi:10.1109/PROC.1976.10159.
C. Douglas Johnson (1970), Formal Aspects of Phonological Description, PhD
dissertation, University of California, Berkeley, Berkeley, CA, USA.
C. Douglas Johnson (1972), Formal Aspects of Phonological Description,
Mouton, The Hague, Netherlands.
Bengt Jonsson and Marcus Nilsson (2000), Transitive Closures of Regular
Relations for Verifying Infinite-State Systems, in Susanne Graf and Michael
Schwartzbach, editors, 6th International Conference, TACAS 2000, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2000, Berlin, Germany, March 25–April 2, 2000, Proceedings, volume 1785 of
Lecture Notes in Computer Science, pp. 220–235, Springer Berlin Heidelberg,
Berlin, Germany, ISBN 978-3-540-46419-8, doi:10.1007/3-540-46419-0_16.

[96]

Non-rationality of Harmonic Serialism

Ronald M. Kaplan and Martin Kay (1994), Regular Models of Phonological
Rule Systems, Computational Linguistics, 20(3):331–378, ISSN 0891-2017.
Lauri Karttunen (1998), The Proper Treatment of Optimality in
Computational Phonology, in Proceedings of the International Workshop on Finite
State Methods in Natural Language Processing, pp. 1–12, Association for
Computational Linguistics, Ankara, Turkey.
Regine Lai (2015), Learnable vs. Unlearnable Harmony Patterns, Linguistic
Inquiry, 46(3):425–451, ISSN 0024-3892, doi:10.1162/LING_a_00188.
Yeeking Regine Lai (2012), Domain Specificity in Learning Phonology, PhD
dissertation, University of Delaware, Newark, DE, USA.
Andrew Lamont (2018a), Precedence Is Pathological, conference presentation
at Phonology in the Northeast, Cambridge, MA, USA.
Andrew Lamont (2018b), Precedence Is Pathological: The Problem of
Alphabetical Sorting, conference presentation at the West Coast Conference on
Formal Linguistics, Los Angeles, CA, USA.
Bruce T. Lowerre (1976), The HARPY Speech Recognition System, PhD
dissertation, Carnegie-Mellon University, Pittsburgh, PA, USA.
John J. McCarthy (2007), Hidden Generalizations: Phonological Opacity in
Optimality Theory, Advances in Optimality Theory, Equinox Publishing,
Sheffield, United Kingdom, ISBN 978-1-84553-051-8.
John J. McCarthy (2008), The Serial Interaction of Stress and Syncope,
Natural Language & Linguistic Theory, 26(3):499–546, ISSN 1573-0859,
doi:10.1007/s11049-008-9051-3.
John J. McCarthy (2009), Harmony in Harmonic Serialism, Rutgers Optimality
Archive, ROA-1009.
John J. McCarthy (2010), An Introduction to Harmonic Serialism, Language
and Linguistics Compass, 4(10):1001–1018, ISSN 1749-818X,
doi:10.1111/j.1749-818X.2010.00240.x.
John J. McCarthy and Alan Prince (1994), The Emergence of the
Unmarked: Optimality in Prosodic Morphology, in Mercè Gonzàlez, editor,
Proceedings of the North East Linguistics Society 24, pp. 333–379, GLSA
Publications, Amherst, MA, USA.
John J. McCarthy and Alan Prince (1995), Faithfulness and Reduplicative
Identity, University of Massachusetts Occasional Papers in Linguistics, 18: Papers in
Optimality Theory:249–384.
Kevin McMullin and Gunnar Ólafur Hansson (2016), Long-Distance
Phonotactics as Tier-Based Strictly 2-Local Languages, in Proceedings of the 2014
Annual Meeting on Phonology, Proceedings of the Annual Meetings on
Phonology, pp. 13–24, Linguistic Society of America, Cambridge, MA, USA,
doi:10.3765/amp.v2i0.3750.

[97]

Yiding Hao

Kevin James McMullin (2016), Tier-Based Locality in Long-Distance
Phonotactics: Learnability and Typology, Ph.D. thesis, University of British
Columbia, Vancouver, Canada.
Robert McNaughton and Seymour A. Papert (1971), Counter-Free Automata,
number 65 in Research Monograph, MIT Press, Cambridge, MA, USA, ISBN
978-0-262-13076-9.
Elliott Moreton (1999), Non-Computable Functions in Optimality Theory,
Rutgers Optimality Archive, ROA-364.
Elliott Moreton (2004), Non-Computable Functions in Optimality Theory, in
John J. McCarthy, editor, Optimality Theory in Phonology: A Reader,
pp. 141–164, Blackwell Publishing, Oxford, United Kingdom, ISBN
978-0-470-75617-1, doi:10.1002/9780470756171.ch6.
Joe Pater (2009), Weighted Constraints in Generative Linguistics, Cognitive
Science, 33(6):999–1035, ISSN 1551-6709,
doi:10.1111/j.1551-6709.2009.01047.x.
Christopher Potts, Joe Pater, Karen Jesney, Rajesh Bhatt, and Michael
Becker (2010), Harmonic Grammar with Linear Programming: From Linear
Systems to Linguistic Typology, Phonology, 27(1):77–117, ISSN 1469-8188,
doi:10.1017/S0952675710000047.
Alan Prince (2002), Arguing Optimality, Rutgers Optimality Archive, ROA-562.
Alan Prince (2003), Arguing Optimality, University of Massachusetts Occasional
Papers in Linguistics, 26.
Alan Prince and Paul Smolensky (1993), Optimality Theory: Constraint
Interaction in Generative Grammar, Technical Report 2, Rutgers University,
New Brunswick, NJ, USA.
Alan Prince and Paul Smolensky (2004), Optimality Theory: Constraint
Interaction in Generative Grammar, Blackwell Publishing, Malden, MA, USA,
ISBN 978-1-4051-1932-0.
Kathryn Pruitt (2008), Iterative Foot Optimization and Locality in Stress
Systems, Rutgers Optimality Archive, ROA-999.
Kathryn Ringler Pruitt (2012), Stress in Harmonic Serialism, PhD dissertation,
University of Massachusetts Amherst, Amherst, MA, USA.
Jason Alan Riggle (2004), Generation, Recognition, and Learning in Finite State
Optimality Theory, PhD dissertation, University of California, Los Angeles, Los
Angeles, CA, USA.
James Rogers and Geoffrey K. Pullum (2011), Aural Pattern Recognition
Experiments and the Subregular Hierarchy, Journal of Logic, Language and
Information, 20(3):329–342, ISSN 1572-9583, doi:10.1007/s10849-011-9140-2.
Vieri Samek-Lodovici and Alan Prince (1999), Optima, Rutgers Optimality
Archive, ROA-363.

[98]

Non-rationality of Harmonic Serialism

Vieri Samek-Lodovici and Alan Prince (2002), The Fundamental Properties
of Harmonic Bounding, Technical Report TR-71, Rutgers Center for Cognitive
Science, Piscataway, NJ, USA.
Michael Sipser (2013), Introduction to the Theory of Computation, Cengage
Learning, Boston, MA, USA, 3 edition, ISBN 978-1-133-18781-3.
Rachel Walker (2008), Gradualness and Fell-Swoop Derivations, conference
presentation at the UCSC Graduate Alumni Conference, Santa Cruz, CA, USA.
Rachel Walker (2010), Nonmyopic Harmony and the Nature of Derivations,
Linguistic Inquiry, 41(1):169–179, ISSN 00243892,
doi:10.1162/ling.2010.41.1.169.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[99]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Preliminaries
	Background
	Finite-State Optimality Theory

	Harmonic Serialism
	Formalization of Harmonic Serialism
	Assumptions about HS
	Basic operations of Gen
	Markedness constraints
	Faithfulness constraints

	Non-Rational Mappings in HS
	Non-rationality of matching deletion
	Matching deletion in HS
	Motivating deletion
	Enforcing directionality
	Stopping condition
	Constraint ranking

	Canonical Non-Rational Mappings
	Transducer iteration
	Column transducers
	Quotient transducers

	Matching deletion and copying-state alternations

	Conclusion

