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A recently proposed balanced-bracket encoding (Yli-Jyrä and Gómez-
Rodríguez 2017) has given us a way to embed all noncrossing depen-
dency graphs into the string space and to formulate their exact arc-
factored inference problem (Kuhlmann and Johnsson 2015) as the best
string problem in a dynamically constructed and weighted unambigu-
ous context-free grammar. The current work improves the encoding
and makes it shallower by omitting redundant brackets from it. The
streamlined encoding gives rise to a bounded-depth subset approxima-
tion that is represented by a small finite-state automaton. When bounded
to 7 levels of balanced brackets, the automaton has 762 states and
represents a strict superset of more than 99.9999% of the noncrossing
trees available in Universal Dependencies 2.4 (Nivre et al. 2019). In
addition, it strictly contains all 15-vertex noncrossing digraphs. When
bounded to 4 levels and 90 states, the automaton still captures 99.2%
of all noncrossing trees in the reference dataset. The approach is flex-
ible and extensible towards unrestricted graphs, and it suggests tight
finite-state bounds for dependency parsing, and for the main existing
parsing methods.

1 introduction
Dependency structures – rooted trees and more general digraphs –
have tremendous importance in multilingual syntactic analysis and
in the related semantic analysis, and its applicability to the world’s
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languages have been demonstrated recently very strongly by the Uni-
versal Dependencies (UD) initiative.1 The main approaches to pro-
duce syntactic dependency structures include graph-based parsers (Eis-
ner and Satta 1999; McDonald et al. 2005) that usually aim at exact
inference, and transition-based parsers (Nivre 2008) that treat parsing
as beam search that runs in linear time with a small risk of missing the
best analysis. Neural network-based parsers, such as Libovický (2016),
Ma and Hovy (2017) and many more, provide additional flexibility
and high accuracy. In the present work, we advance the long-term
development of a new, code-theoretic parsing approach (Yli-Jyrä and
Gómez-Rodríguez 2017) that may lend itself to unforeseen combina-
tions with the existing approaches.
Parsing that leads to noncrossing trees and graphs (Kuhlmann and

Johnsson 2015) is a simplification of more general approaches that
produce nonprojective trees and ordered graphs with crossing edges.
Although such parsing is limited in coverage, it is a very important,
well-understood core for some more general parsing algorithms. Re-
cently, Yli-Jyrä and Gómez-Rodríguez (2017) have explored an ap-
proach that embeds2 the set of noncrossing digraphs (NXDIGRAPHS) into
the string space Σ∗ using an injective encoding morphism between
the noncrossing digraphs and the corresponding set of code strings
(LNXDIGRAPHS) that form an unambiguous context-free language:

NXDIGRAPHS→ LNXDIGRAPHS, LNXDIGRAPHS ⊆ Σ∗.
The embedding can be used to turn the finite, sentence-specific search
space of noncrossing graphs dynamically into a finite string set where
each string corresponds to a distinct element in the search space. This
gives us a code-theoretic parsing approach that has five advantages:
1. Flexibility: Several subfamilies of noncrossing digraphs can be
treated as alternative search spaces that are treated uniformly by

1http://universaldependencies.org/
2 In mathematics, when some object X is said to be embedded in another

object Y , the obtained embedding is given by some injective and structure-
preserving map f : X → Y . In this work, embedding of graphs is based on code
strings over a code alphabet and should not be confused with continuous vector
space representations, although such an embedding is commonly used in natural
language processing and in modern neural network architectures.
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a generic parser whose search space can be restricted to these
subfamilies (Yli-Jyrä and Gómez-Rodríguez 2017).

2. Context-freeness: The search space can be represented com-
pactly with a context-free grammar that can also have weights
(ibid.).

3. Decidability: These grammars are unambiguous and can be re-
lated to a rich calculus of tree automata. These are then connected
to monadic second-order logic whose formulas define linear-time
decidable properties over ordered trees and tree-decompositions
of graphs (Bojańczyk and Pilipczuk 2016).

4. Compatibility: It is probable that the approach can be combined
with existing parsing frameworks such as graph-based parsing
(McDonald et al. 2005; Kiperwasser and Goldberg 2016; Zheng
2017), transition-based parsing (Dyer et al. 2015; Kiperwasser and
Goldberg 2016), encoder-decoder parsing (Vinyals et al. 2015),
parsing as sequence labeling (Strzyz et al. 2019) and parsing with
recurrent neural network grammars (Dyer et al. 2016; Kuncoro
et al. 2017).

5. Extensibility: There is follow-up work that extends the encoding
developed in this paper to all ordered digraphs (Yli-Jyrä 2019).

In the code-theoretic arc-factored parsing approach (Yli-Jyrä 2012;
Yli-Jyrä and Gómez-Rodríguez 2017), the construction of the com-
pact representation of the complete distribution of potential parses
takes cubic time. The construction involves building, dynamically, a
weighted context-free grammar for the complete parse forest. The ex-
act decoding of the optimal parse is then carried out in time that is lin-
ear to the size of the dynamic grammar. Since the combined complex-
ity of these tasks remains in O(n3), the complexity hits the previously
knownworst-case bound for parsing whose output is restricted to some
families of noncrossing graphs (Kuhlmann and Johnsson 2015). But in
today’s terms, parsing through a cubic time procedure is often consid-
ered too expensive as real-time data applications demand low latency
and high throughput. More efficient parsing algorithms are already
available in the established parsing frameworks. Especially transition-
based parsing is a very successful and efficient parsing framework
(Nivre 2008, 2009; Bohnet et al. 2016) that has inspired recent work
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on transition-based neural network parsing (Dyer et al. 2015; Kiper-
wasser and Goldberg 2016).

According to Covington (2001, 101–102), it is important to study
the constrained computational complexity of parsing algorithms when
they are applied to natural language data:
An important principle of linguistics seems to be that the
worst case does not occur, i.e., people do not actually utter
sentences that put any reasonable parsing algorithm into a
worst-case situation. Human language does not use uncon-
strained phrase-structure or dependency grammar; it is con-
strained in ways that are still being discovered.
The code-theoretic parsing approach has a special advantage in

the study of the constrained computational complexity of parsing algo-
rithms because there the constraints are reflected immediately in the
complexity of the search space embedding. The unknown complex-
ity of the sufficiently constrained search space embedding for natural
language gives rise to the following hypothesis:

Hypothesis
The practically occurring (noncrossing) dependency digraphs
can be embedded into a subset approximation that has a very
compact finite-state representation.

The concrete aim of this article is to investigate the existence of a prac-
tical, very compact finite-state representation for the search space of non-
crossing trees and digraphs in dependency syntactic parsing. Given
an encoding morphism and a depth bound that limits the maximal
complexity of dependency digraphs, the corresponding set of digraphs
will be recognized by a minimal deterministic finite automaton, where
each state has a constant number of transitions. The state complexity of
the minimal automaton depends only on the language it recognizes.
Thus, the only way to reduce the state complexity is to improve the
embedding of the digraphs into a regular, i.e. finite-state language.
The hypothesis is valid, if a very compact finite-state representation
for the practically occurring dependency digraphs exists.

Going from the cubic-time algorithms for noncrossing graphs to
the linear-bounded state complexity of a depth-bounded search space
means that that we are slightly closer to linear-time inference over
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arc-factored weighted parses. However, the scope of the current work
does not allow us to study whether also the representation of the
weighted search space with the arc-factored weights actually remains
linear bounded and compactly represented as a finite-state network.
If the number of possible distinct arc weights in the statistical model
is not bounded by a constant, the dynamic finite-state representation
of the weighted search space is super-linear. But since there are tech-
niques for pruning parse forests (Roark and Hollingshead 2008; Zhang
and McDonald 2014; Zheng 2017), and the weights can be also sim-
plified, e.g. by quantisation, we may avoid such super-linearity. It is,
thus, conceivable that the dynamically weighted search space could
also have a good finite-state approximation if there is a dynamic finite-
state representation for the corresponding unweighted search space.

The structure of this article is as follows. Sections 2.1 and 2.2 con-
tain the definitions and basic results required to understand how the
sets of noncrossing graphs and digraphs are embedded into a context-
free string language. Since a finite bound for the bracketing depth
is desirable, Section 3 seeks a streamlined encoding that would im-
prove on the proposal of Yli-Jyrä and Gómez-Rodríguez (2017) by
radically reducing the bracketing depth of an average parse. A pro-
posal for such a streamlined encoding is presented and formally ana-
lysed in Section 4. Finally, the prior and the streamlined encoding are
evaluated in Section 5 from the point of view of state complexity and
coverage. Section 6 concludes the article and identifies some questions
that remain open after the current work.

2 definitions

We assume that the reader is familiar with the basics of formal lan-
guage theory and especially the theory of context-free grammars,
finite-state automata and finite-state transducers. Algorithms will be
written in a pseudo-formal language that mixes Python-like syntax
with mathematical notation. In the following, we give definitions
for noncrossing graphs and digraphs (Kuhlmann 2015) and the cor-
responding encoding that we will call strong bracketing, S. Strong
bracketing for graphs is defined in Section 2.1, and Section 2.2 de-
fines strong bracketing for digraphs and relates these two classes of
structures.
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2.1 Strong bracketing for noncrossing graphs
A (nonempty) graph is a pair (V, E) where V is a finite, nonempty set
of vertices and E ⊆ {{i, j} ⊆ V | i ̸= j} is a set of edges. Each edge in
a graph may have a label or even a multiset of labels. The complete
graph (V, E) has all possible edges E = {{i, j} ⊆ V | i ̸= j}. The vertices
in graphs are usually an ordered set V = [1, . . . , n] with a linear order
≤. Such an ordered graph (V, E) is given more simply as the pair (n, E).
By working on ordered graphs, we avoid the usual difficulty of defin-
ing equality of graphs through isomorphism: graph (3, {{1,2}}) is not
equivalent to graph (3, {{2,3}}) although these graphs are isomorphic.
In an ordered graph, the edge {i, j} ∈ E can be viewed as an ordered
pair (min {i, j},max {i, j}). Two edges (i, j), (k, l) where i < k are said
to be crossing if k < j < l. The concatenation of two ordered graphs
(n, E1) and (m, E2), denoted by (n, E1) · (m, E2), is (n+m− 1, E) where
E = E1 ∪ {{i + n − 1, j + n − 1} | {i, j} ∈ E2}. An ordered graph is non-
crossing if it has no crossing edges. The set of (nonempty) noncrossing
graphs is denoted as NXGRAPH. Together with the trivial graph (1, {})
and concatenation, this set has the structure of a monoid.
Yli-Jyrä and Gómez-Rodríguez (2017) have proposed an encoding

scheme according to which any noncrossing graph (n, E) can be rep-
resented as a string of brackets. For example, the ordered noncrossing
graph (4,
�{1,2}, {2,4}, {1,4}	) is encoded as the string “[[{}][{} {}]]”,

see Figure 1 (the middle row).
Figure 1:

An example of
an ordered graph

Ordered graph (4,
�{1,2}, {2,4}, {1,4}	): 1 2 3 4

Yli-Jyrä and Gómez-Rodríguez (2017): [[ {} ][ {} {} ]]

Our “{}” optimisation in Section 5: [[ • ][ • • ]]

The original reason for using the curly brackets “{}” in Yli-Jyrä and
Gómez-Rodríguez (2017) was that, with them, the code strings respect
the balanced bracketing and form a subset of a Dyck language. They
also encode, intuitively, the successor edges over the vertices. Since
these motivations for the curly brackets are less important in the cur-
rent work, it is plausible to replace “{}” with a single character “-”
to optimise the code strings; see Figure 1 (last row). This optimisa-
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tion will be discussed later in this paper, in Section 5, but we stick
momentarily to the original encoding (Yli-Jyrä and Gómez-Rodríguez
2017) that uses curly brackets. In both encoding schemes, the square
brackets “[” and “]” connect the vertices by spanning the gaps that
separate them. In particular, each pair of matching square brackets
“[...]” correspond to an arc between two vertices. Because the brack-
ets in this encoding always come in pairs, we will call this encoding a
strong bracketing, S.
The encoding function encS that maps the elements of NXGRAPH to

the elements of the monoid {[,], {, }}∗ is implemented by an algorithm
that is given in Figure 2. Since the algorithm is not used during parsing,
we give a simple, unoptimised version that is designed to illustrate the
encoding scheme. This algorithm runs in O(n2) time, but more efficient
algorithms exist.

def encS((n,E) ∈ NXGRAPH):
1 str = ϵ
2 for i in [1,2,...,n]:
3 for j in [i-1,i-2,...,1]:
4 if {j,i} in E:
5 str += “]”
6 for j in [n,n-1,...,i+1]:
7 if {i,j} in E:
8 str += “[”
9 if i<n:
10 str += “{” + “}”
11 return str

def decS(str ∈ LNXGRAPH,S):
1 (n,E) = (1,{})
2 stk = ϵ
3 for c in str:
4 if c == “[”:
5 stk.push(n)
6 if c == “]”:
7 i = stk.pop()
8 E += { {i,n} }
9 if c == “{”:
10 n += 1
11 return (n,E)

Figure 2:
The encoding
and decoding
algorithms
for noncrossing
ordered graphs

Lemma 2.1. The encoding encS maintains an iconic correspondence be-
tween the parts of the graph and the string structure.
Proof. The encoding function, encS, produces a closing square bracket
for the right end of the edge, an opening square bracket for the left
end of the edge and a pair of curly brackets to indicate that adjacent
vertices are in a successor relation with each other. The length of the
code string is exactly 2|E|+ 2n− 2 characters when n > 0. The empty
string ϵ encodes the unit graph that consists of a single vertex. In other
words, the encoding is based on an iconic correspondence between the
graph and the bracketing.
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Figure 3:

An example
sentence with
a noncrossing

parse
[ [ [ ][ [ ][ ]]]][ ]
Ich kann dieses Geschäft nur wärmstens empfehlen .
I can this business only highly recommend .

<nsubj
<aux

<det

<obj

<advmod <advmod punct>

I highly recommend this business.

To see how the encoding applies to a syntactic dependency anal-
ysis of a natural language sentence, such an analysis for an example
sentence is given in Figure 3. The sentence is in German and it reads Ich
kann dieses Geschäft nur wärmstens empfehlen. Under the line contain-
ing this sentence, there are a word-by-word English translation and a
free translation in English. At the top of the figure, there is a diagram
of an undirected graph that indicates the dependencies between the
vertices, i.e. the tokens that constitute the sentence. The label of each
edge specifies the direction of the dependent vertex-token and the cate-
gory of this vertex-token from the perspective of the head vertex-token
that is at the opposite end of the edge.

Between the graph diagram and the German sentence, there is a
line that contains a bracket string. In this bracket string, the iconic cor-
respondence between the brackets and the edge degree of each vertex-
token is clearly recognizable, but this string does not show the curly
brackets that separate the vertices of the graph. With the curly brack-
ets, the bracket string is “[{}[{}[{}][{}[{}][{}]]]][{}]”. It is also possible
to add the edge labels at the corresponding brackets:

[ <nsubj {}[ <aux {}[ <det {}][ <obj {}[ <advmod {}][ <advmod {}]]]][{} punct> ].

The encoding considered in the current article ignores the edge labels
in order to keep the presentation clear. Recall that the current goal is
not to develop a front-end descriptive formalism for linguists but to
investigate the search space of noncrossing dependency graphs from
the perspective of its state complexity.
Lemma 2.2. The encoding function encS is a bijection whose inverse can
be computed in linear time.
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Proof. The right side of Figure 2 presents a decoding algorithm, decS,
that maps bracket strings to noncrossing graphs. The obtained func-
tion can be easily seen to be the inverse of encS. Thus, the encoding
function is a bijection between its domain and the range.

Since the for-loop in the decoding algorithm decS needs only as
many iterations as there are characters in the argument str, it com-
putes the inverse of encS in linear time.
According to Lemma 2.2, any noncrossing graph is in a 1-to-1 re-

lationship with the corresponding string that encodes the graph. These
strings constitute a subset LNXGRAPH,S of the free monoid {[,], {, }}∗. Since
the input of the decoding algorithm in Figure 2 is restricted to the out-
puts of encS, the algorithm ignores the right curly bracket “}” in code
strings.
Lemma 2.3. The range of encS, LNXGRAPH,S, is an unambiguous context-
free language.
Proof. There is an unambiguous grammar that describes the range of
the encoding function.

(1) S→Q S | {} S | ϵ S′→Q S′′ | {} S S′′→Q S | {} S

Q→ [S′].

We make three observations of the grammar:
Firstly, this grammar produces balanced bracketing over {[,], {, }}

where the opening and the closing curly brackets are always adjacent,
like in line 10 of the encS algorithm.

Secondly, by the productions for the phrases S′ and S′′, each level
of square brackets “[]” contains one pair of curly bracket of its own
or two or more nested square brackets. Thus we may have substrings
“[{}]”, “[{}[{}]]”, and “[[{}][{}]]” but not substrings “[]” or “[[]]”.
This principle avoids connecting a pair of vertices more than once
and corresponds to the fact that lines 3–8 in the encoding algorithm
(Figure 2) produce exactly one pair of square brackets per edge.

Thirdly, whenever two balanced substrings correspond to two
subgraphs, they can be concatenated without adding any curly brack-
ets or vertices between them. Concatenation corresponds to the S
rule(s) in the grammar and the immediate succession between lines
3–5 and 5–8 in the algorithm.
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These observations can be extended to an inductive formal proof
over well-formed substrings and the corresponding graphs.

Graph concatenation generates the monoid (NXGRAPH, ·, (1, {})) of
noncrossing ordered graphs where the trivial graph (1, {}) is the iden-
tity element. The string concatenation of the encoded noncrossing
graphs generates the monoid (LNXGRAPH,S, ·,ϵ) where the empty string ϵ
is the identity element.
Lemma 2.4. The encoding function encS is a homomorphism between the
concatenation monoid of noncrossing graphs NXGRAPH and the concatena-
tion monoid of code strings LNXGRAPH,S.

Proof. It is is easy to verify that the encoding encS respects the monoid
structure: firstly, the encoding is compositional in the sense that
encS(n, E1) ·encS(m, E2) = encS((n, E1) ·(m, E2)). Secondly, the identity
element of the first monoid is the trivial graph (1, {}) that is encoded
as the empty string ϵ, the identity element of the second monoid. Thus
the encoding is a homomorphism.

In grammars for bracketed graphs, it is often handy to use produc-
tion schemas that are more expressive than the standard context-free
productions. Extended context-free grammars (ECFG) (Salomaa 1973)
extend grammar productions to production schemas whose right-hand
sides are regular languages over the nonterminal and terminal sym-
bols. ECFGs are weakly equivalent to context-free grammars but more
succinct and flexible. In particular, any right linear grammar is equiv-
alent to a ECFG that has just one rule schema and whose derivations
have only one rewriting step. This expressivity of ECFG is very nice
when we do not need too fine-grained derivation trees but rather
want to reduce the height of derivation trees during the recognition
of strings.
Lemma 2.5. There is an extended context-free grammar that generates
the language LNXGRAPH,S with derivation steps that correspond 1–1 to the
pairs of brackets (except the topmost step).

Proof. The original grammar of Lemma 2.3 can be written as an ex-
tended context-free grammar that removes some recursion and uses
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regular expressions instead:
S→ �Q | {}�∗(2)
Q→ [S′] S′→ �Q | {}� S′′ | {} S′′→ �Q | {}�+(3)

By substitution of S′ and S′′, we replace (3) to obtain:
Q→ [
�

{} | �Q | {}
� �

Q | {}
�+�

](4)
Each production schema consists of a left-hand-side (lhs) and a right-
hand side (rhs) – a nonterminal and a regular language.
ECFGs reduce beautifully to the iterated application of finite-state

transducers (FSTs). We prove just the following special case.
Lemma 2.6. There is a finite-state transducer that represents the grammar
of the proof of Lemma 2.3. Its transitive closure generates the language
LNXGRAPH,S when restricted to the start symbol S in the input side and the
terminal symbol string in the output side.
Proof. Starting from the grammar of Lemma 2.5, we will construct one
possible transducer representation. First, the two production schemas
(2) and (3) compile into two finite-state transducers. Each transducer
maps the lhs of the corresponding production to the corresponding rhs.
A larger transducer TG is constructed from these two subtransducers
with additional epsilon transitions and self-loop transitions that accept
any terminal symbols that have been produced in the earlier stages of
the derivation.

The constructed grammar transducer TG is shown in (5).

0

[,],{}

1ε₁ 4

ε

5
ε₂

2ε₍ 10ε₎

6
ε₍

7
Q:[

8ε:Q

9ε:{}

ε:Q,
ε:{}

  ε:Q,  
  ε:{}  

ε:]
3 ε₎

ε:Q, ε:{}
S:ε

(5)

In this transducer, an edge label with a colon indicates that an input
string is replaced with some other factor in the output. For example,
ε:{} indicates that the empty string ε is replaced with the string “{}”.
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There are also some edges that do not have labels with a colon. Such
labels denote a transition that copies its input to the output. Note that
the production schemas (2) and (4) appear as subtransducers in the
whole. The first corresponds to the transducer between states 2 and 3,
and the second corresponds to the transducer between states 6 and 10.
The epsilon symbols ϵ1,ϵ2,ϵ(,ϵ) denote empty strings like ϵ. The first
two avoid cluttering the diagram and the latter two mark the begin-
ning and end of a rule application. From the perspective of the current
proof, these epsilons could have been replaced with ϵ and removed
from the transducer all together (Mohri 1997).
The transitive closure of this transducer maps the start symbol

to all the intermediate (“sentential form”) strings that can be derived
from S with the production schemas. When these strings are restricted
to the terminal alphabet {[,],{,}}, we obtain the string language gen-
erated by the original grammar.
2.2 Strong bracketing for noncrossing digraphs
A (nonempty) digraph is a pair (V,A) where V is a nonempty set of
vertices and A ⊆ {(i, j) ∈ V × V | i ̸= j} is a set of arcs. Each arc (u, v),
written as u→ v, is a directed edge from vertex u to vertex v. A digraph
(V, A) is inverted if (i, j) ∈ A implies ( j, i) ∈ A. The complete digraph (V, A)
has all possible arcs A = {(i, j) ∈ V × V | i ̸= j}. The underlying graph
of a digraph (V, A) is the graph (V, EA) where EA = {{u, v} | (u, v) ∈ A}
is the set of underlying edges. Note that the cardinality |EA| of the set
of underlying edges can be smaller than the cardinality |A | of the set
of arcs. An ordered digraph (n, A) is a digraph (V, A) with ≤-ordered
vertices V = [1, . . . , n] and a noncrossing digraph (n, A) is an ordered
digraph whose underlying ordered graph (n, EA) is noncrossing. The
set of (nonempty) noncrossing digraphs is denoted as NXDIGRAPH. This
set extends to a concatenation monoid in the same way as the carrying
set of the concatenation monoid of noncrossing graphs.
Lemma 2.7. There is a bijection between ordered digraphs and ordered
graphs with 3 labels for edges.
Proof. Let C = {← ,→ ,↔} be the set of three edge labels. Let f
be the trivial function that maps each ordered digraph (n, A) to its
underlying graph (n, EA) and a labelling function λ : EA→ C such that
λ({i, j}i< j) =↔ if (i, j), ( j, i) ∈ A, λ({i, j}i< j) = → if (i, j) ∈ A, ( j, i) /∈ A
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and λ({i, j}i< j) = ← if (i, j) /∈ A, ( j, i) ∈ A. Conversely, the inverse of
fmaps the pair of (n, EA) and a labelling function λ : EA → C back to
a digraph (n, A) where A = {(i, j), ( j, i) | λ({i, j}) = ↔ }∪ {(i, j) | i <
j,λ({i, j}) = ← }∪ {( j, i) | i < j,λ({i, j}) = → }. Since the inverse f −1

is also a function, f is a bijection.

By Lemma 2.7, an encoding for digraphs is available if we can add
labels to edges. In Yli-Jyrä and Gómez-Rodríguez (2017), edge labels
are used to signal the type of their larger configuration context.
Lemma 2.8. There is an iconic, invertible and homomorphic encoding for
digraphs.

Proof. Any noncrossing ordered digraph (n, A) can be encoded with
slight modifications to the encoding algorithm encS for noncrossing
graphs: instead of printing “[. . .]” for an edge {i, j} ∈ EA, i ≤ j, the
algorithm should now print

“/ · · ·>” if (i, j) ∈ A, ( j, i) ̸∈ A;

“< . . . /” if (i, j) /∈ A, ( j, i) ∈ A;

“ [ . . . ] ” if (i, j), ( j, i) ∈ A.

This extends the image of the encoding function to the language of
encoded noncrossing digraphs, LNXDIGRAPH,S. The output of the changed
encoding function respects the concatenation of digraphs. Correspond-
ing changes are introduced to decS to obtain an inverse function for
the encoding function.

By Lemma 2.8, we encode the ordered digraph (4, {(4,1), (1,2),
(4,2)}) as the string “</{}><{}{} //”. Similarly, the digraph in Figure 3
is encoded as the string “<{}<{}<{} /<{}<{} /<{} /////{}>”.
It is not necessary to have two separate encoding functions encS

for noncrossing graphs and noncrossing digraphs. Lemma 2.9 effec-
tively states that we can embed NXGRAPH into NXDIGRAPH.
Lemma 2.9. There is a bijection between graphs and inverted digraphs.

Proof. Let f be a function that maps each inverted digraph (V, A) to a
graph (V, E) where E = {{i, j} | (i, j), ( j, i) ∈ A}. The definition of f is
straightforward. The inverse f −1 of f relates each graph (V, E) to an
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inverted digraph (V, A) where A= {(i, j), ( j, i) | {i, j} ∈ E}. Since this is
also a function, f is a bijection.

By Lemma 2.9, graphs can be treated as special cases of digraphs.
Yli-Jyrä and Gómez-Rodríguez (2017) employ the encoding of non-
crossing digraphs and Lemma 2.9 (implicitly) to construct unambigu-
ous context-free languages that encode important families of digraphs
and graphs. Such context-free languages correspond to the rooted non-
crossing trees, the projective trees, the noncrossing dags, the noncross-
ing weakly connected dags, unoriented noncrossing trees and many
other families of noncrossing digraphs and graphs.

Although digraph bracketing is more general and expressive than
the graph bracketing, it has two practical disadvantages due to which
we prefer to focus, in the rest of this article, on the encoding of (unla-
belled) noncrossing graphs whenever possible.
• Firstly, the ordered digraph bracketing is more difficult to inter-
pret than square brackets that contain less information. To get a
possibly more readable notation, the direction of the edges can be
encoded using subscripted square brackets: plain square brackets
would indicate inverted or undirected edges, but a specific orien-
tation of the corresponding edges is indicated with subscripts as
in “[<{}[<{}[<{}] /[<{}[<{}] /[<{}] /] /] /] /[/{}]>”.
• Secondly, since the different types of left and right brackets must
match each other, bracketing of digraphs require more states
in the finite-state approximation. The increased complexity is
needed to keep track of the open brackets. This consideration
in the encoding complexity may be addressed with one-sided
labelling, e.g., by dropping the subcripts of the right square
brackets:

[<{}[<{}[<{}][<{}[<{}][<{}]]]][/{}],

the left square brackets:

[{}[{}[{}] /[{}[{}] /[{}] /] /] /] /[{}]>,

or, for example, the head side brackets:

[<{}[<{}[<{}][<{}[<{}][<{}]]]][{}]>.
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The families of noncrossing trees and noncrossing rooted trees
can be treated as restrictions of the sets of noncrossing graphs and
digraphs. These families are not treated separately in this article (ex-
cept the observation on the state complexity of the search space of
projective trees on page 205). In fact, the present work on noncross-
ing graphs generalizes to all 50 subfamilies of noncrossing graphs de-
scribed in Yli-Jyrä and Gómez-Rodríguez (2017), although the current
discussion of these is restricted to the most general case.

3 the problem of unbounded depth

Normal-looking natural language sentences may give rise to a surpris-
ingly high complexity when measured in terms of the depth of nested
brackets and overlapping edges.

[ [ [ [ ][[ [ ]][ [ [ [[ [ ]] ][ ]][ ]]] ]][[ [ [ ]] [ [ ]]]]] ...
# For når f.eks. H. frå partiet med det meir eller mindre passande namnet “F.s.partiet” seier at vi har... kan ein spekulere ...
# Since when e.g. H. from the party with the more or less suitable name “FS-Party” says that we have... can one speculate ...

Figure 4: The underlying dependency tree of a Nynorsk (Norwegian) sentence

Figure 4 shows the parse or analysis of a sentence found in a tree-
bank that follows the Universal Dependencies annotation scheme. The
figure does not show all the details of the edge orientation and labels,
but it reveals that the underlying graph of the parse is a noncrossing
tree. The exceptional complexity of this ordered graph comes from its
multiple levels of overlapping edges. These overlapping edges corre-
spond to nested brackets. Due to the overlapping, the original encod-
ing (Yli-Jyrä and Gómez-Rodríguez 2017) requires, in fact, up to 10
levels of square brackets. The sentence demonstrates that natural lan-
guage sentences may involve many levels of overlapping dependency
edges even though no clausal center embedding is clearly present.

Another observation from Figure 4 is that the current visualisa-
tion of overlapping edges is not very readable, and the corresponding
brackets are stacked up to form almost meaningless sequences. It is,
thus, obvious that this kind of bracketing requires many states in a
finite-state approximation. In this section, our objective is to find a
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new, simpler way to encode and draw diagrams of dependency anal-
ysis, and to reduce the state complexity of the encoding.
3.1 Deep nesting outside dependency graphs
Balanced bracketing has been used in many contexts that include but
are not restricted to Generative Grammar, programming languages
and document markup systems. In Generative Grammar, so-called
P-markers have been used to describe phrase-structure trees. In the
Lisp programming language (Teitelman 1978), a large number of
parentheses are typically needed in lists that constitute the funda-
mental data structure of the programming language. The XML markup
language and its predecessor, SGML (Goldfarb 1999), use brackets to
indicate trees.

Deep nesting of brackets is a standard source of difficulties in ap-
plications of balanced bracketing. For example, it is well known that
adding P-markers to context-free grammars changes their tail recur-
sion into center-embedding (Langendoen 1975). The change converts
regular, right- or left-linear context-free grammars into grammars that
generate non-regular languages (except if the grammar is completely
recursion-free and generates a finite language). Also, in Lisp programs
and structured SGML and XML documents, brackets can be nested ar-
bitrarily, and specialized markup editors are needed to keep track of
the open brackets while editing them. Often the problem is in left- or
right-linear recursion whose balanced bracketing is inconvenient due
to the unbounded nesting.

To overcome the challenges of deep nesting in strong balanced
bracketing, there are several approaches and techniques that are
closely related to each other. The techniques make the bracketing
unbalanced in a controlled and reversible ways. As to Generative
Grammar, Chomsky (1963) already proposed omitting left or right
brackets of P-markers in contexts where the original bracketing can
be recovered without ambiguity. This idea of “semibrackets” was
used to turn context-free grammars into grammars that produce weak
bracketing, and to turn any non-self-embedding grammar as a whole
into a finite-state transducer (Langendoen 1975; Krauwer and des
Tombe 1981; Langendoen and Langsam 1984; Yli-Jyrä 2003c; Hulden
and Silfverberg 2014). A complementary idea appears in InterLISP
(Teitelman 1978, Section 2: Using Interlisp, page 2.4) where the pro-
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grammer could close any unfinished round brackets with just one
square bracket (]), a.k.a. “super-parentheses”: “a right square bracket
automatically supplies enough right parentheses to match back to the
last left square bracket (in the expression being read), or if none has
appeared, to match the first left parentheses”. For example, this gives
the following short-hand notations:

short-hand expansion(6)
(A(B(C] = (A(B(C)))

(A[B(C(D]E) = (A(B(C(D)))E)

The role of “super-parentheses” (Teitelman 1978), or “superbrackets”
in the sequel, is complementary to that of “semibrackets” that indi-
cate the location of an initial or a final embedding (Chomsky 1963;
Langendoen 1975): they close arbitrarily many one-sided brackets
It is not always easy to take advantage of weak bracketing that

is based on superbrackets and semibrackets. The SGML standard (ISO
8879:1986) allowed the omission of redundant brackets, but this ca-
pacity of the standard made SGML-documents difficult to validate and
parse, and contributed to the abandoning of the standard, in favour
of XML. Elsewhere, a version of weak bracketing in the framework of
Finite-State Intersection Grammar (Koskenniemi 1990) was used in an
encoding scheme where an unbalanced clause-boundary marker “@/”
indicated left or right recursion of clauses, leaving some unresolved
ambiguity in the encoding on purpose: in (7), the sentence contains
two levels of final clausal embedding, and in (8), there is an initial
clause embedding. Thus, the markup used in the grammar framework
did not indicate which clause is a subordinate clause and which is the
main clause.

It was a dog @/ that ate the mouse @/ that chased the cat.(7)
If the rats ate the cat @/ we were surprised.(8)

Our present discussion does not try to advocate weak bracket-
ing as a markup formalism for annotated data, because the benefits
of weak bracketing for human-computer interaction are controver-
sial. Instead, the focus of the research is on possible benefits for the
state complexity when the subfamilies of graphs or the corresponding
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search spaces are represented as string languages. The prior experi-
ences with weak bracketing, in fact, suggest that its main advantage
is related to the more natural treatment of left- and right-linear recur-
sion and to the computational benefits of such a treatment.
3.2 Tail recursion in dependency bracketing
The idea of weak bracketing has gone almost unrecognised in the con-
text of the dependency or edge bracketing of Yli-Jyrä and Gómez-
Rodríguez (2017) since such bracketing is historically unrelated to
P-markers and their recursion problems. In the dependency bracket-
ing, right-linear embedding corresponds to local bracketing that does
not introduce any recursive center-embedding. For example, tail re-
cursion in (9) does increase the depth of dependency bracketing.

It was a dog[ that[]]ate the mouse[that[]]chased the cat.(9)
Close to the earliest use of dependency bracketing is due to Greibach
(1973) who used brackets to mark “phrase-subphrase” dependen-
cies and to represent context-free languages via specifically brack-
eted Greibach Normal-Form (GNF) grammars. This bracketing main-
tains the regularity of the language although it contains balanced
brackets: since a right-linear grammar (10) is already in a GNF,
adding “phrase-subphrase” brackets converts it to another non-self-
embedding context-free grammar (11) that generates a regular lan-
guage. The same is not true for P-markers, which produce a grammar
(12) that generates a non-regular language.

S→ aSb Sb→ bSb Sb→ ϵ(10)
S→ a [Sb

Sb Sb→ ]Sb
b [Sb

Sb Sb→ ]Sb
(11)

S→ aSb Sb→ [Sb
bSb ]Sb

Sb→ [Sb
]Sb

(12)
Bracketed “phrase-subphrase” dependencies have been rediscovered
in projective dependency parsing by Oflazer (2003) and in nonprojec-
tive dependency parsing by Yli-Jyrä (2003b). The bracketing in pro-
jective dependency parsing has been developed further to obtain a
Chomsky-Schützenberger representation for the string set and the set
of structures generated by a projective dependency grammar (Yli-Jyrä
2005a) and a Link Grammar (Ginter et al. 2006), to obtain a cubic-
time projective dependency parsing algorithm (Yli-Jyrä 2012), and
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finally to obtain a synthesis where the representation and the algo-
rithm are combined and generalised to noncrossing graphs (Yli-Jyrä
and Gómez-Rodríguez 2017). There has also been some research on
bracketing schemes that apply to nonprojective dependency parsing
(Yli-Jyrä 2003b, 2004; Gómez-Rodríguez and Nivre 2010; Yli-Jyrä and
Nykänen 2014).
3.3 Unbounded branching in dependency graphs
It now comes as a surprise that the encoding scheme for noncrossing
(di)graphs generates deeply nested brackets when the scheme is ap-
plied to syntactic analysis of natural language. The key observation
is that multiple sibling edges give rise to adjacent copies of similar
brackets:

0 1 2 3 4(13)
[ {} [ {} [ {} [ {} ]]]]](14)

The encoding of siblings create nested brackets that are similar to
what one obtains in tail recursion. So, if there is no bound for the edge-
degree of vertices, the encoded graphs can require a self-embedding
grammar even if the graphs would be as simple as star-graphs (trees
where one vertex has vertex-degree n − 1 and all other nodes have
vertex-degree 1).

4 new encoding and visualisation
Interestingly, it turns out that we can use “superbrackets” and “semi-
brackets”, introduced for Lisp, P-markers and SGML, when we encode
dependency graphs. The intuitive idea is simple: an outermost edge is
replaced with superbrackets “[[” and “]]” that mark the incident ver-
tices. If the left incident vertex has more edges on the right, their re-
spective end vertices are marked with “]”. If the right incident vertex
has more edges on the left, their respective end vertices are marked
with “[”. The brackets “]” and “[” are called semibrackets. The process
is repeated until all outermost edges and their shorter siblings have
been converted in this way. As a whole, we call this encodingweak (de-
pendency) bracketing. The prototypical example (13) is encoded with
weak bracketing (15).
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[[ {} [ {} [ {} [ {} ]](15)
The weak bracketing separates edges into three categories: The super-
bracketed edges, the left (inner) siblings of superbracketed edges, and
the right (inner) siblings of the superbracketed edge. In the following,
we use this classification to reduce the visual clutter of dependency
diagrams: the inner siblings of the superbracketed edges are drawn
below the line of vertices:

0 1 2 3 4

(16)

The classification of edges is based barely on the graph structure and
is, therefore, not dependent on processing order. However, the cate-
gory of an edge is not a local property: the category of an edge alter-
nates between a superbracketed edge and a sibling edge. Such alterna-
tion starts from the outermost edge and proceeds transitively towards
inner edges:

0 1 2 3 4 5

(17)

[[ {} [[ {} [ {} [ {} ]]] {} ]](18)
The technique extends to situations where one vertex is is connected
to both ends of the outermost edge with sibling edges:

0 1 2 3 4(19)

[[ {} ] {} ][ {} [ {} ]](20)
Figure 5 shows how the improved encoding is applied to a real de-
pendency tree. The obtained graphical representation is immediately
more readable in a very systematic way.
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[[ [ [[ [[ ]][[[ [ ]][[ [ [[ [[ [[ ]]] ]][ ]][ ]] ]][[[ [ [ ]] [ [ ]] ...
# For når f.eks. H. frå partiet med det meir eller mindre passande namnet “F.s.partiet” seier at vi har... kan ein spekulere ...
# Since when e.g. H. from the party with the more or less suitable name “F.s.Party” says that we have... can one speculate ...

Figure 5: The application of the weak bracketing to the Nynorsk parse tree

Lemma 4.1. There is a context-free grammar that generates the relation
between the strong and the weak bracketing for noncrossing graphs.
Proof. In the grammar of Lemma 2.6, we can distinguish three kinds
of occurrences of the nonterminal Q: the initial Q I , the central QC

and the final QF . Each of these will be bracketed differently by the
following grammar whose terminal alphabet is a pair alphabet Σ =
{{:{, }:},[:ϵ,]:ϵ,[:[,]:],[:[[,]:]]}. The pair symbols in this alphabet are
constructed from the empty string ϵ and the input and output symbols,
and from the colon that separates them.

S→ �QC | {:{}:}
�∗(21)

Q I → [:ϵ S′ ]:](22)
QC → [:[[ S′ ]:]](23)
QF → [:[ S′ ]:ϵ(24)
S′→ �Q I | {:{}:}

�
S′′ | {:{}:}(25)

S′′→ �QC | {:{}:}
�∗ �

QF | {:{}:}
�(26)

Each symbol in the terminal alphabet of this grammar is a pair a:b
where a ∈ Σ∗1 is the input factor and b ∈ Σ∗2 is the output factor.
The alphabet of the input strings is Σ1 = {{, },[,]} and the alphabet
of the output strings is Σ2 = {{, },[,],[[,]]}. The factor ϵ, in partic-
ular, is the empty string. Let w = (a1:b1) . . . (an:bn) ∈ Σ∗ be a string
generated by the grammar. The concatenation of the input factors
a1, . . . , an constitutes the input string a1 . . . an and the concatenation of
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the output factors b1, . . . , bn constitutes the output string b1 . . . bn. To-
gether, the input and the output constitute a pair (a1 . . . an, b1 . . . bn) ∈
Σ∗1×Σ∗2. In this way, the grammar defines a relation between the input
strings Σ∗1 and the output strings Σ∗2. For example, the grammar relates
the input “[[{}]{}]” to the output “[[{}]{}]]”.
In contrast to the language of strong bracketing for noncrossing

graphs, LNXGRAPH,S, we denote the language of weak bracketing for non-
crossing graphs with LNXGRAPH,W.
Lemma 4.2. There is an extended context-free grammar that generates
the language of weak bracketing (LNXGRAPH,W) with derivation steps that
correspond 1–1 to the pairs of superbrackets (except the topmost step).
Proof. The language LNXGRAPH,W of the encoded noncrossing graphs is
generated by an extended context-free grammar:

S→ ( {} |Q )∗
Q→ [[ S] E S[ ]] | [[ S! ]](27)

E]→ ϵ | ] E[ → ϵ | [ E→ [ | ][
S!→
�

{}
�

E] Q
�∗

E]
�∗

{}(28)
S]→
�

{}
�

E] Q
�∗

E]
�∗

{}
�

E] Q
�∗(29)

S[→
�

Q E[
�∗

{}
�

E[
�

Q E[
�∗

{}
�∗(30)

To expand the right-hand side of the production schema (27), we sub-
stitute the nonterminal symbols S!, S], S[, E], E[, and E with the right-
hand sides of the corresponding production schemas. One application
of the expanded production schema then corresponds to exactly one
level of superbrackets.
Lemma 4.3. There is a finite-state transducer whose transitive closure
maps the start symbol S to the languageLNXGRAPH,W.
Proof. Figure 6 shows a transducer that represents the grammar of
Lemma 4.2. In this transducer, the transitions that copy the input fac-
tor to the output are indicated with simple labels that do not contain
a colon. Starting from the input string S, the transitive closure of this
transducer generates exactly the language of the grammar when out-
put strings of the closure are restricted to the terminal strings.
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Figure 6:
A finite-state
transducer that
represents the
grammar of
Lemma 4.2

Lemma 4.4. There is a bijective encoding morphism from the monoid of
noncrossing graphs to the language LNXGRAPH,W.

Proof. The left column of Figure 7 contains the algorithm encW that
maps a noncrossing graph (n, E) to an encoding that is based on weak
bracketing. This algorithm works by iterating the vertex index i over
the ordered vertices [1, . . . , n].
• On lines 7–10, the algorithm adds a closing superbracket “]]” if it
is time to remove the corresponding edge from the stack (stk).
• On lines 11–12, the algorithm adds a semibracket “]” if vertex i
ends a shorter sibling of the topmost edge in the stack.

def encW( (n,E) ∈ NXGRAPH ):
1 stk = [(0,n+1)]
2 str = “”
3 for i in [1,2,...,n]:
4 if i > 1:
5 str += “{}”;
6 (l,r) = stk.top()
7 if i == r:
8 str += “]]”
9 stk.pop()
10 (l,r) = stk.top()
11 if {l,i} in E:
12 str += “]”
13 if {i,r} in E:
14 str += “[”
15 for j in [r-1,r-2,...,i+1]:
16 if {i,j} in E:
17 str += “[[”
18 stk.push( (i,j) )
19 break
20 return str

def decW( str ∈ LNXGRAPH,W ):
1 n = 1
2 E = {}
3 stk = []
4 for a in str:
5 if a == “[[”:
6 stk.push([n])
7 elif a == “{”:
8 n += 1
9 elif a == “]”:
10 E += { {stk.top[0],n} }
11 elif a == “[”:
12 stk.top() = stk.top() + [n]
13 elif a == “]]”:
14 for j in stk.pop():
15 E += { {j,n} }
16 return (n,E)

Figure 7:
Functions that
encode/decode
noncrossing
graphs using
weak bracketing

[ 199 ]



Anssi Yli-Jyrä

• On lines 13–14, the algorithm adds a semibracket “[” if vertex i
starts a shorter sibling of the topmost edge in the stack.
• On lines 15–19, the algorithm adds an opening superbracket “[[”
if vertex i starts a superbracketed edge that is not a shorter sibling
of the topmost edge in the stack.
• Between iterations, on lines 4–5, the algorithm adds a vertex
boundary “{}”.

It is easy to see that the algorithm encW always terminates, and
it implements a mapping from all noncrossing graphs to strings in
LNXGRAPH,W. It is also easy to see that the algorithm respects concatena-
tion: encW((n, E1)) · encW((m, E2)) = encW((n, E1) · (m, E2)).

Conversely, the right column of Figure 7 contains the algorithm
decW that maps strings in LNXGRAPH,W to noncrossing graphs. The algo-
rithm reads its input string from left to right.
• On lines 5–6, when the opening superbracket “[[” is read, the
algorithm pushes to the stack a list that just contains the current
vertex n.
• On lines 7–8, when the left curly bracket “{” is read, the algorithm
starts a new vertex by incrementing n. The right curly bracket “}”
is just ignored in the well-formed input.
• On lines 9–10, when the right semibracket “]” is read, the algo-
rithm looks for the first vertex number in the topmost list in the
stack and adds an edge between it and the current vertex.
• On lines 11–12, when the left semibracket “[” is read, the algo-
rithm adds the current vertex to the topmost list in the stack.
• On lines 13–15, when the closing superbracket “]]” is read, the
algorithm pops the topmost list from the stack and adds an edge
between the current vertex and the vertices in this list.
It is easy to verify that the decoding algorithm decW runs in linear

time to the length of the input string.

Lemma 4.5. There is an algorithm to compute the bracketing depth of
graphs in weak bracketing.

Proof. The algorithm for computing the weak bracketing depth of a
graph (n, E) is given in Figure 8.
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def depthW((n,E)):
1 d = maxd = 0
2 for c in encW(n,E):
3 if c == “[[”:
4 d += 1
5 maxd = max(maxd,d)
6 elif c == “]]”:
7 d -= 1
8 return maxd

Figure 8:
An algorithm for measuring
the depth of the balanced brackets
in weak edge bracketing

For example, the algorithm depthW returns value 0 for graph
(2,
�	
) and 1 for graph (3,

�{1,3}, {2,3}	) because these graphs encode
as “{}” and “[[{}[{}]]”. For (4,

�{1,4}, {2,3}	), the algorithm returns a
depth of 2 because its code string “[[{}[[{}]]{}]]” contains two levels of
superbrackets.
Lemma 4.6. There is a conventional unambiguous context-free grammar
for the streamlined encoding of noncrossing graphs, LNXGRAPH,W.

Proof. The grammar of Lemma 4.2 is turned into a conventional
context-free grammar

S→ {} S | Q S | ϵ
Q→ [[ S] E S[ ]] | [[ S! ]](31)

E]→ ϵ | ] E[ → ϵ | [ E→ [ | ][
S! → {} | {} T ; T → E] {} T | E] {} | E] Q T(32)
S] → {} | {} U ; U → E] {} U | E] {} | E] Q U | E] Q(33)
S[ → W ; W → Q E[ W | {} E[ W | {}(34)

To obtain this grammar, we take each right-hand-side that describes a
regular language over an alphabet Σ∪V and replace it with a context-
free subgrammar that generates this regular language. In this way, the
production schemas (28)–(30) expand, respectively, to the subgram-
mars (32)–(34). It is now easy to verify that the resulting grammar,
as a whole, is unambiguous. Especially, the production schema (31)
is unambiguous, since S! does not generate [ outside an embedded Q
while E always generates [.
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5 evaluation of the encoding schemes

5.1 Variants of the two encoding schemes
Until now, we have given ECFG grammars for two different encod-
ings for graphs. When these grammars are extended to brackets that
indicate the direction of an edge on both sides, we obtain grammars
for two different encodings for digraphs. For example, in the ECFG
grammar of Lemma 2.6, the grammar is extended with two additional
rules

Q→ /S′> Q→ <S′\(35)

We call the encoding of Yli-Jyrä and Gómez-Rodríguez (2017) the
strong bracketing (S) and the currently proposed encoding the weak
bracketing (W). In addition to these, we identify three optimisations
that are available to both strong and weak bracketing:
1. The first optimisation (“{}”) simplifies the pair of curly brackets
by replacing it with an atomic symbol: a bullet dot “•”:

{ } → •(36)

2. The second optimisation (“1”) is to eliminate the difference be-
tween the symbols used as a left bracket:

[[<→ [[ [[/→ [[ <→ [ /→ [(37)

3. The third optimisation (“[{}]”) introduces new vertex boundaries
“•
[]
”, “•

<\
”, and “•

/>
” in order to compress the edges between adja-

cent vertices as follows:

[•]→ •
[]

[<•]\→ •
<\

[/•]>→ •
/>

(38)
[[•]]→ •

[]
[[<•]]\→ •

<\
[[/•]]>→ •

/>
(39)

[[α•]→ [[α•
[]

[[α•]\→ [[α•
<\

[[α•]>→ [[α•
/>

(40)
[•]]β → •

[]
]]β [<•]]β → •

<\
]]β [/•]]β → •

/>
]]β(41)

where α ∈ {ϵ,<,/} and β ∈ {ϵ,>,\}.
This optimisation implies the “{}”-optimisation.
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These optimisations are meant to optimise the state complexity of
finite-state automata, but they also come with some trade-offs. The
main disadvantage of the “1”-optimisation is that the information
about the direction is no longer locally present at the bracket where
one might need it. The “[{}]”-optimisation suffers from an increased
alphabet size.

The Cartesian product of two encoding schemes and three opti-
misations gives us twelve different bracketing schemes:

{S,W} × {ϵ,“1”} × {ϵ,“{}”,“[{}]”}.
We will not compare all of these schemes in detail, but we will include
some of them in experiments to get an idea of their relative efficiency.
The corresponding bracket alphabets for digraph encoding schemes
are summarised in Table 1.

Strong bracketing Weak bracketing
(Lemma 2.6) (Lemma 4.2)

S [,<,/,],\,>,{,} W [[,[[<,[[/,]],]]\,[[>,[,<,/,],\,>,{,}

S{} [,<,/,],\,>,• W{} [[,[[<,[[/,]],]]\,[[>,[,<,/,],\,>,•
S[{}] [,<,/,],\,>,•, •

[]
, •
<\

, •
/>

W[{}] [[,[[<,[[/,]],]]\,[[>,[,<,/,],\,>,•, •
[]

, •
<\

, •
/>

S1 [,],\,>,{,} W1 [[,]],]]\,[[>,[,<,/,],\,>,{,}

S1{} [,],\,>,• W1{} [[,]],]]\,[[>,[,<,/,],\,>,•
S1[{}] [,],\,>,•, •

[]
, •
<\

, •
/>

W1[{}] [[,]],]]\,[[>,[,<,/,],\,>,•, •
[]

, •
<\

, •
/>

Table 1:
The alphabets
of different
encoding
schemes and
their variants

5.2 State complexity of finite search spaces
Table 2 reports the size and the state complexity of the search spaces
as the function of the number of vertices, n. The first two columns indi-
cate, for example, that there are 1,792 noncrossing 4-vertex digraphs.
The deterministic state complexity of this “4-vertex” search space is
490, 334, 30, 106, 19, or 10 states, depending on the encoding (S
or W) and the additional optimisations (“{}”, “1{}”, “1[{}]”).

We learn from Table 2, firstly, that the state complexity of the
search space grows exponentially with the number of vertices in the di-
graphs, regardless of the encoding scheme. The context-free represen-
tation of Yli-Jyrä and Gómez-Rodríguez (2017) is immune to the state
complexity concerns, but a straightforward depth-bounded finite-state
approximation of the S scheme explodes immediately.
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Table 2:

The DFA state
complexity

of finite search
spaces

n Digraphs S S{} S1{} W W1{} W1[{}]

1 1 1 1 1 1 1 1
2 4 12 8 4 12 4 2
3 64 80 54 12 26 8 6
4 1,792 490 334 30 106 19 10
5 62,464 2,952 2,018 68 207 33 24
6 2,437,120 27,040 12,126 146 704 61 38
7 101,859,328 106,372 72,778 304 1,327 95 72

The rapid growth of the state complexity is explained by the fact
that larger digraphs involve more open brackets and both encodings
(S and W) keep a record of the type of the open brackets as well as
of the intermediate constituent structure of each level, corresponding
to the right-hand-side of the production schemas (4) and (27) that ex-
pand the nonterminal symbolQ in each grammar. In addition, the state
space must keep track of the total number of vertices produced so far.
Overall, the state complexity of the strong bracketing compares poorly
against the superset approximations of context-free phrase structure
grammars (Nederhof 2000).

Secondly, we learn from Table 2 that weak bracketing gives a
clear advantage over the strong bracketing. The state complexity of the
original encoding (S) blows up after 3 vertices and reaches 106,372
DFA states when there are 7 vertices. The state complexity of the weak
bracketing scheme is substantially lower than the strong bracketing
(S). With 7 vertices,W requires only 1,327 states, which is an 80-times
improvement over the strong bracketing scheme. Moreover, it seems
that S simply grows faster and faster in comparison to W when n in-
creases. The lower growth rate of the complexity of W is explained
by the fact that W does not open more than one superbracket “[[” per
every two vertices whereas S opens one pair of brackets per edge.

Similar results are obtained for subfamilies of noncrossing graphs.
Figure 9 compares the state complexity of the search spaces of three
different families of noncrossing graphs as a function of the number
of vertices or words in the sentence. The figure indicates that the ad-
vantage of weak bracketing (W) in contrast to strong bracketing (S)
is relatively robust across different families of noncrossing graphs: di-
graphs, projective trees and graphs are all more compactly presented
with weak bracketing than with strong bracketing.
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Figure 9:
Weak bracketing brings exponential
savings in the size of the DFA
representing the search space
of a sentence when the search space
consists of digraphs, projective trees,
or graphs

In sum, the exponential growth of the state space seems to be
unavoidable for the set of noncrossing graphs, which reflects the fact
that bijective encoding is more difficult than an a superset approxi-
mation of the search space. But the state space complexity improves
dramatically with our new techniques: weak bracketing, search space
restrictions to noncrossing subfamilies, and optimisations in the en-
coding scheme. The columns for S{}, S1{},W1{}, andW1[{}] in Table 2,
on page 204, show the improved state complexity of some combined
optimisations. These indicate that the state complexity drops, quite
dramatically, from S and S{} to S1{} (from 106,372 and 72,778 to 304
states for n=7) and from W to W1{} (from 1,327 to 95 states). A fur-
ther improvement is given by the “[{}]”-optimisation (from 95 to 72
states for 7 vertices).

Along with the weak bracketing, another big improvement in
the state complexity of unweighted search space is due to the “1”-
optimisation: thanks to these two improvements, we are able to build
complete search spaces for relatively large ordered graphs with at least
30-vertices. Table 3 gives an idea of the implications of these improve-
ments. In short, they can now be expressed as follows:
• The complete search space of all 10-vertex noncrossing graphs
and digraphs is represented by a deterministic automaton that
has 254 states.
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Table 3:

State complexity
of larger search

spaces

n Encoded graphs W1 W1{} W1[{}]
10 21,292,032 492 363 254
... ... ... ... ...
19 29,312,424,612,462,592 12,395 9,347 7,569
20 314,739,971,287,154 688 18,276 13,693 10,114
21 3,393,951,437,605,044,224 24,925 18,807 15,228
... ... ... ... ...
30 ≈ 7.681 · 1027 589,598 442,177 327,494

• The complete search space of all 30-vertex noncrossing graphs
and digraphs is represented by a deterministic automaton that
has 327,494 states.

5.3 State complexity of bounded-depth grammars
Bounding the bracketing depth in the encoding schemes turns the re-
spective grammars into subset approximations. Each approximation
is equivalent to a cyclic finite-state automaton that recognises a reg-
ular language. We now turn our focus to the state complexity of such
bounded-depth grammars and their languages.
Table 4 illustrates the relative parsimony of W1{} against S1{}

when the depth of balanced bracketing, d, grows. The table shows
thatW1{} captures the complete 7-vertex search space of 101,859,328
digraphs already with 3 levels of balanced brackets, while S1{} needs 6
levels of brackets to capture the same search space. When we increase

Table 4:
The state

complexity and
the largest
contained

complete search
space of

depth-bounded
grammars

d n-Digraphs n S1{} n-Digraphs n W1{}

0 1 1 1 1 1 1
1 4 2 3 4 2 6
2 64 3 8 62,464 5 18
3 1,792 4 18 101,859,328 7 42
4 62,464 5 38 201,889,939,456 9 90
5 2,437,120 6 78 443,939,433,742,336 11 186
6 101,859,328 7 158 1,041,383,605,688,860,672 13 378
7 4,459,528,192 8 318 ≈ 2 · 1021 15 762
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d Sd S{}d S1{}d W{}d W1d W1{}d W1[{}]d

0 2 1 1 1 2 1 1
1 11 7 3 2 9 6 7

d + 1 6sd+2 6sd+4 2sd+2 6sd+17 2sd+7 2sd+6 2sd+6

2 68 46 8 23 25 18 20
3 410 280 18 155 57 42 46
4 2,462 1,684 38 947 121 90 98
5 14,774 10,108 78 5,699 249 186 202
6 88,646 60,652 158 34,211 505 378 410
7 531,878 363,916 318 205,283 1,017 762 826

Table 5:
The DFA state
complexity of the
bounded-depth
grammar

both these bounds with one more level, the 8-vertex search space in
S1{} is only 44 times larger, whereas the search space captured byW1{}
has 9-vertex graphs and grows 1,998 times larger. Thus, the growth
of the weakly bracketed search space is roughly quadratic to growth
of the strong bracketing. This trend becomes even more striking when
the bracketing gets deeper.
Table 5 shows the state complexity of the bounded-depth gram-

mar as the function of the bracketing depth (d) and the used encod-
ing scheme. The first impression is that strong bracketing (S) and
weak bracketing (W) give rise to very similar state complexity of the
bounded-depth grammars: whileW{} is more compact than S{}with its
34,211 states against 60,652 states, S1{} initially looks more compact
than W1{} with its 158 states against 378 states.
We already learned from Table 4 that two levels in S compare

roughly to one level in W. Besides this, the depth of the latter is not
sensitive to unbounded branching. Therefore, the complexity of the
bounded grammar for weak bracketing is more interesting than the
complexity of the bounded grammar for strong bracketing.
We now have an idea about the state complexity of a deterministic

finite automaton that recognizes languages of different bounded gram-
mars for strong and weak bracketing. As we from now on talk about
the state complexity of bounded grammars, we will focus on the weak
bracketing (W) and on its one-sided variant (W1). Its “{}”-optimisation
is even more succinct, but the “[{}]”-optimisation appears to be harm-
ful to the state complexity of the bounded grammars.
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5.4 Formal coverage of bounded grammars
When the bound d for the depth of bracketing is fixed, the depth of
bracketing does not grow arbitrarily when the length of input sentence
changes. A grammar with a fixed bound will be applied to short sen-
tences as well as to long sentences. This raises the question of what
happens with the coverage and the state complexity of the restricted
search space when the sentence is exceptionally long.
When we process a growing number of vertices, the first con-

sequence of using a bounded-depth grammar is that there will be a
bound k for the number of vertices beyond which the bounded gram-
mar ceases to capture the complete search space of the noncrossing
graphs. Beyond this point, the search space will be limited by the
bounded depth. The state complexity of the limited search space will
then grow linearly with the number of vertices when the number of
vertices continues to grow enough.

For example, let us restrict the depth of bracketing to 6 levels,
which gives us a bounded grammar with 505 states. The largest com-
plete search space captured by this grammar consists of 13-vertex
graphs (or digraphs, whose state complexity is the same under the
W1 encoding scheme).

If we now extract 21-vertex graphs from the same grammar, we
will get only a proper subset of all 21-vertex graphs because graphs
that require more than 6 levels of brackets are missing. Capturing the
complete search space for 21-vertex graphs requires 10 levels of brack-
eting. Table 6 shows in detail what happens to the search space of
21-vertex graphs when we decrease the maximum depth of bracket-

Table 6:
98.96% coverage

of 21-vertex
graphs requires
only 6 bracket
levels and only
1/8th of the full
coverage states

d W1d W1d ∩W1n=21 The number/% of 21-vertex graphs
3 57 929 3.7% 872,294,071,717,330,944 25.70143%
4 121 1,765 7.1% 2,313,578,416,163,258,368 68.16769%
5 249 3,181 12.7% 3,131,655,209,939,369,984 92.27166%
6 505 5,501 22.1% 3,358,682,892,406,358,016 98.96084%
7 1,017 9,117 36.6% 3,391,549,974,785,294,336 99.92924%
8 2,041 14,301 57.4% 3,393,882,839,790,387,200 99.99798%
9 4,089 20,573 82.5% 3,393,950,914,747,301,888 99.99998%

10 8,185 24,925 100.0% 3,393,951,437,605,044,224 100.00000%
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Figure 10:
The state complexity of the limited
search space W1d=6 grows only
linearly with sentence length after
13 vertices, while the exact search
space representation explodes
quickly. At the same time, the
coverage of the limited search space
remains close to 100%
for many more vertices

ing. Quite surprisingly, the 6-bounded grammar still contains 98.96%
of all 21-vertex graphs!
The linear growth of the state complexity of the limited search

space gives a huge advantage over the standard situation where the
complete search space requires an exponentially growing number of
states as a function of the number of vertices. This point is illustrated
by Figure 10. This is also illustrated by Table 6, which shows that
the state complexity of this limited search space is only 1/5 of the
state complexity of the complete search space and the state complexity
of the corresponding bounded grammar is only 6.2% (505 states) of
the state complexity of the 10-bounded grammar (8,185 states). Thus,
limiting the search space of long sentences by depth is an effective
way to reduce the number of states in the grammar and search space
representations. This reduction is necessary in practice because there
is no fixed limit for the length of natural language sentences: as a
challenge for parser developers, the Universal Dependencies treebanks
contain a few really long sentences that have more than 500 tokens.

Table 7 describes the state complexity of extremely large limited
search spaces that contain 8-, 16-, 32-, …, and 512-vertex noncross-
ing graphs bounded to 7 levels of brackets. The 7-bounded grammar
W1d=7 can be represented, according to Table 5, with 762 states. For
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Table 7:

The linear growth of the state complexity
of the limited search space

with at most 7 levels of balanced brackets

n
Upper bound
((2n− 1) · 762) Actual states

8 11,430 157
16 23,622 3,029
32 48,006 15,221
64 96,774 39,605
128 194,310 88,373
256 389,382 185,909
512 779,526 380,981

each integer n ≥ 1, there is a finite-state automaton whose language
W1n constrains the graph size to n vertices. The state complexity of
W1n is exactly (2n − 1) states. By multiplying the state complexities
of the depth-bounded grammar W1d=7 and the graph size constraint
W1n, we obtain an upper bound for the state complexity of the limited
search space of n-vertex noncrossing graphs with a maximum depth
of 7 brackets. However, the actual state complexity of the intersection
of the two languages is slightly smaller: instead of 779,526 states, we
will need only 380,981 states to represent the limited search space
of 512-vertex graphs. Thus, with seven levels of brackets, this can be
summarised as follows:
• The bounded grammar of noncrossing graphs requires at most
762 DFA states.
• The largest complete search space contained in the bounded
grammar consists of noncrossing graphs that have 15 vertices.
• The limited search space for 512-token sentences requires 380,981
DFA states with the W1 encoding scheme.

5.5 Empirical coverage of bounded grammars
An experiment was carried out to apply the bracketing depth measure
to the noncrossing trees in the Universal Dependencies (UD) treebanks
(Nivre et al. 2019). In order to verify that the treebank size does not
significantly affect the results, we carried out the same experiment on
two different releases of UD treebanks. In the v2.4 release, there are
146 treebanks and 83 languages, while in the v2.0 release, there are 70
treebanks and 50 languages and about half the number of the trees. In
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the experiment, we focused on the primary dependencies that define
rooted trees. Of the total 1,234,587 rooted trees in the v2.4 data set,
90.5% (1,117,332) are noncrossing, and typically nonprojective. We
encoded these trees with the W encoding scheme and computed the
depth of the bracketing with the algorithm depthW shown previously
in Figure 8.
For the purpose of succinct reporting of the results, the number

of languages was reduced by grouping some closely related languages
into larger buckets. For example, our “Scandinavian” is a group of
languages containing Bokmål, Danish, Nynorsk, and Swedish, and An-
cient Greek and Old Russian were grouppedwith their moden variants.
However, we did not group Latin with Italian. Although such grouping
might remove the sharpest distinctions between languages, it became
as a surprise that the depth-based cross-lingual complexity differences
decayed so quickly when the depth increased beyond 3 levels. Thus,
the row “noncrossing” describes surprisingly well a language indepen-
dent tendency where the depth of bracketing for noncrossing trees is
mostly very low.
The percentage of noncrossing trees and the coverage of the mea-

sured complexity levels are shown in Table 8. The first two numer-
ical columns show the percentage and the absolute number of non-
crossing trees among all trees for the corresponding language subset.
In other columns, the coverage of depth-bounded bracketing is com-
puted against the number of noncrossing trees for the corresponding
language subset. The row with the label “noncrossing” corresponds to
the set of all languages. Its first two columns tell the percentage and
the absolute number of noncrossing trees in the whole UD data set.
The mixed data set considered all trees equal in weight regardless of
the size of the tree and the size of the containing treebank.

The results in the table are illuminating in two ways. Firstly,
the results indicate that a bounded search space with 7 levels of su-
perbrackets is capable of covering 99.999% of the noncrossing trees
in the v2.0 and v2.4 versions of the UD dataset. Since 7 levels re-
quire only 762 DFA states in “W1{}d”-encoding, this result supports
our hypothesis according to which the practically occurring noncross-
ing dependency digraphs can be embedded in a subset approximation that
has a very compact finite-state representation. Secondly, we observe
that the bounded space with 4 levels of superbrackets and 90 states
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Table 8: The coverage of depth-boundedWd grammars measured against UD v2.0
and v2.4 trees that are noncrossing and do not contain epsilon nodes

Language Noncrossing Depth 1 2 3 4 5 6 7 8

all v2.0 trees 100.0% 630,518
noncrossing 86.7 % 546,492 16.1% 57.7% 91.6% 99.2% 99.95% 99.999% 100.000% 100.000%

all v2.4 trees 100.0% 1,234,587
noncrossing 90.5% 1,117,332 16.6% 57.8% 91.8% 99.2% 99.95% 99.998% 100.000% 100.000%
Arabic 97.2% 27,608 5.0% 21.1% 64.7% 94.5% 99.70% 99.986% 100.000% 100.000%
Catalan 95.5% 15,931 1.7% 23.0% 75.7% 97.2% 99.78% 100.000% 100.000% 100.000%
Czech 88.3% 112,595 15.0% 52.4% 91.4% 99.2% 99.95% 99.999% 100.000% 100.000%
German 92.9% 178,229 10.9% 52.5% 91.9% 99.4% 99.97% 99.998% 100.000% 100.000%
English 94.7% 32,811 16.5% 57.1% 93.5% 99.5% 99.99% 100.000% 100.000% 100.000%
Spanish 94.5% 32,789 2.3% 29.2% 82.1% 98.2% 99.90% 100.000% 100.000% 100.000%
Finnish 93.5% 32,589 39.3% 80.4% 97.3% 99.7% 99.98% 99.997% 100.000% 100.000%
French 91.6% 57,459 20.0% 59.1% 92.2% 99.3% 99.97% 99.995% 100.000% 100.000%
Greek 54.8% 18,364 31.4% 81.7% 97.7% 99.8% 99.99% 100.000% 100.000% 100.000%
Hebrew 97.0% 6,032 2.3% 28.8% 82.6% 98.9% 99.95% 100.000% 100.000% 100.000%
Hindi 86.2% 16,843 3.4% 50.6% 88.5% 98.7% 99.93% 99.988% 100.000% 100.000%
Croatian 91.0% 8,205 3.8% 39.3% 89.3% 99.3% 99.94% 100.000% 100.000% 100.000%
Hungarian 72.9% 1,312 4.0% 32.9% 79.1% 96.5% 99.70% 99.924% 100.000% 100.000%
Italian 98.1% 33,398 5.7% 50.8% 90.9% 98.9% 99.91% 99.997% 100.000% 100.000%
Japanese 99.8% 66,950 25.5% 75.3% 96.8% 99.8% 99.99% 100.000% 100.000% 100.000%
Korean 88.6% 30,758 17.5% 70.5% 96.4% 99.8% 99.99% 100.000% 100.000% 100.000%
Latin 67.2% 28,002 31.5% 74.3% 95.7% 99.6% 99.98% 100.000% 100.000% 100.000%
Latvian 90.4% 11,772 13.5% 52.1% 90.7% 98.9% 99.92% 100.000% 100.000% 100.000%
Dutch 88.3% 18,481 23.8% 68.7% 95.3% 99.4% 99.95% 99.989% 100.000% 100.000%
Polish 96.1% 38,882 16.8% 71.4% 96.2% 99.7% 99.98% 100.000% 100.000% 100.000%
Portuguese 87.1% 19,553 6.2% 42.1% 89.1% 99.2% 99.96% 100.000% 100.000% 100.000%
Romanian 93.1% 20,275 3.8% 37.6% 88.2% 99.1% 99.95% 100.000% 100.000% 100.000%
Russian 90.0% 79,657 16.3% 57.4% 91.8% 99.2% 99.95% 99.996% 99.999% 100.000%
Slovenian 86.7% 9,699 25.7% 66.5% 96.5% 99.8% 100.00% 100.000% 100.000% 100.000%
Scandinavian 91.5% 54,890 16.9% 62.6% 95.2% 99.7% 99.98% 100.000% 100.000% 100.000%
Turkish 92.8% 8,753 43.7% 85.2% 97.3% 99.7% 99.98% 100.000% 100.000% 100.000%
Chinese 99.5% 18,544 46.3% 73.9% 92.1% 98.7% 99.90% 99.995% 100.000% 100.000%
others 91.7% 136,951 18.2% 63.1% 93.6% 99.4% 99.96% 99.996% 99.999% 100.000%

[ 212 ]



How to embed trees in a regular language

is so large that it does not necessarily restrict the performance of
state-of-the-art statistical parsers if the gold tree is noncrossing: the
finite-state search space contains almost 99.2% of the gold noncross-
ing trees. The related measure – unlabeled attachment score (UAS) –
of the best dependency parsers is typically below 98%3 but these
parsers and the used benchmarks are not limited to nonprojective
gold trees.

The results prompt further work on statistical explanations of this
phenomenon. It would also seem extremely important to try to de-
velop a more general encoding. If a similar depth limit works well for
an encoding that covers nonprojective trees, the corresponding search
space would become relevant for parser development in the future.
There are already some follow-up results suggesting that this is actu-
ally the case (Yli-Jyrä 2019).

5.6 The contrast between theory and data
There is a striking contrast between the theoretically limited coverage
of depth-bounded grammars and their surprisingly good empirical
coverage:
• From the theoretical point of view, the bounded grammar with
6 levels (Table 6 and Figure 10) is a finite-state approximation
that represents a restricted subspace of parses. The theoretical
coverage of this subspace drops rapidly below 99% when the sen-
tence length grows beyond 20 token-vertices.
• From the empirical point of view (Table 8), six levels of brackets
seem to cover more than 99.998% of the noncrossing trees in the
actual linguistic data.

The contrast between theory and practice calls for an explanation: we
want to know why the limited bracketing depth gives so much bet-
ter practical coverage than what we would expect from a flat distri-
bution. The first explanation for the high coverage of the noncross-
ing trees is that most trees in the data set are short. We do not know
how representative the UD treebanks actually are, as samples, and it
is, indeed, perfectly possible that some treebanks are biased towards
short sentences. The solid curve in Figure 11 shows how the average

3http://nlpprogress.com/english/dependency_parsing.html
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Figure 11: Solid line: the distribution of length ranges; dashed line: the percent-
age of noncrossing trees per length range in the v2.0 dataset

probability of the length range decreases as a function of sentence
length in the data set. The length ranges in this plot were [2,2], …,
[9,9], [10,11], …, [24,25], [26, 28], [29, 31], [32, 35], [36, 41],
[42, 52], [53, 610], and each of them was represented by the me-
dian length, which is 62 for the last length range. The curve roughly
indicates that relatively short sentence lengths are more probable than
wide length ranges. In fact, although the tail range of lengths is quite
long and nonempty, its probability mass is almost invisible in the big
picture.
Another explanation for the extremely good coverage of low

bracketing depths in Table 8 could be that longer and more deeply
bracketed sentences are more likely to have crossing edges. The dashed
curve in Figure 11 indicates that the percentage of noncrossing parse
trees decreases when the sentence length increases. Quickly after the
sentence length becomes long enough to have any crossing edges, the
probability of noncrossing parses steps down to some 90% on aver-
age in the data set. Then, as the sentence length continues to increase
further, this probability drops slowly until it goes below 70% of all
sentences in the length range that contains the longest sentences in
the data set. Thus, the parses of longer sentences are more likely to be
excluded from the set of noncrossing trees than the parses of shorter
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but more common sentences. As the result, a random sentence in the
data set is relatively short and expected to be noncrossing with a high
probability (90.5%).
The observation that the distribution of the noncrossing parses

contains more shorter sentences does not mean that sentences with
crossing edges are otherwise substantially “deeper”. In fact, our pre-
liminary experiments on a more general bracketing scheme for all sen-
tences suggest that the bracketing depth of all sentences differs very
little from the bracketing depth of noncrossing sentences. Longer sen-
tences may simply be more likely to have complex combinations of
edges because they contain more places where a crossing or multiple
overlapping can occur. In further work on encoding for unrestricted
graphs, it would be possible to test how much crossing edges actually
contribute to the local depth of the required bracketing.
The third possible explanation could be based on a psychological

model that would predict the tendency to avoid long-distance depen-
dencies (Gibson 1998) and multiple overlapping of edges when the
sentence length grows arbitrarily. We could also look for an expla-
nation from bounded memory models (Miller 1956; Kornai and Tuza
1992). With such models, it may be possible to understand why the
nesting of superbrackets in the weak bracketing of data is so limited.
The language specific percentages of the noncrossing analyses de-

pend on the choice of the annotation scheme (Havelka 2007). It is very
possible that the uniform principles of the UD annotation scheme are
not optimal for all languages. But we can perhaps interpret the over-
all low bracketing depth in the massively multilingual data set as a
sign of some kind of cross-lingual uniformity in the complexity scale,
which is a surprise because languages differ a lot in their strategies to
minimise syntactic complexity.

The v2.0 data set contains seven sentences whose parses require
seven levels of superbrackets. In the Appendix, we visualise the depen-
dency structures of these seven noncrossing parses. The first observa-
tion from these examples is that their lengths are surprisingly high
considering that these sentences are noncrossing: their lengths are be-
tween 29 and 106 tokens. This indicates that even long sentences can
have noncrossing parses. Secondly, the examples indicate that the new
encoding scheme is practically very effective as superbracketed edges
have many sibling edges. The weak bracketing scheme divides the
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set of edges into two categories, both of which contain a substantial
number of overlapping edges. The divided visualisation of noncross-
ing trees has an advantage that although there are up to 15 overlap-
ping edges and these sentences are pretty long, the paths in the visu-
alised trees are relatively easy to follow from a distance, at a schematic
level.4

5.7 On the errors in the data
It is obvious that treebanks contain a certain number of OCR errors,
preprocessing errors and annotation errors. Annotation errors are typ-
ically due to the limitations or inconsistencies in the annotation man-
ual or to other human factors that cause inconsistencies and mistakes.
Although there is always a reason for annotation errors, we assume
that they distribute almost randomly, having non-systematic effects
on the depth of the dependency trees.

We had no realistic methods to try to estimate how often annota-
tion errors occur. We just inspected a few most complex trees that we
could find and comprehend. In such checking, we found no specific
correlation between depth and errors.

6 conclusion

The topic of this paper was to find a regular language that encodes
noncrossing dependency graphs in treebanks. Our methodological ap-
proach used two different dependency bracketing schemes. The first
encoding scheme – strong bracketing – has been presented previously
and it has been applied to the description of several subfamilies of non-
crossing graphs by Yli-Jyrä and Gómez-Rodríguez (2017). This scheme
is based on balanced bracketing of edges. It uses three disjoint pairs of
brackets to indicate three different orientations of edges. The second
scheme – weak bracketing – does not properly appear in prior work
and it is, therefore, a significant new contribution. In this encoding
scheme, sibling edges are encoded with one-sided, weak brackets. We
also considered optimisations to both bracketing schemes.

4The schematic nature of the Arabic sentence is a gap in the data set used,
not a typographical problem.
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The main result of this paper is that the new encoding scheme
gives rise to a shallower and, in certain sense, less complex balanced
bracketing than the previously known encoding scheme.
When we started the current work we did not know if such a

shallow approach to dependency bracketing would even be possi-
ble and generalizable to noncrossing graphs. Our idea was to reduce
the depth of dependency bracketing by omitting brackets when they
share the same end of an edge. When this idea was conceived, we
did not know if it would bring any practical benefits compared to the
first scheme. But the investigation of the idea led to a few important
results:

1. The discovery of a streamlined dependency bracketing
In this article, the weak dependency bracketing is presented and
evaluated for the first time. Now we know that the scheme ex-
ists and corresponds to an unambiguous context-free language
(Lemma 4.6), and that it has a deterministic, computable bijection
from the set of (di)graphs (Lemma 4.4). This scheme constitutes
a unique continuation to the history of ideas that aim at reducing
complex balanced bracketing.

2. A context-free transduction between the two encodings
Now we also know that the two bracketing schemes can be re-
lated to each other with a context-free (non-deterministic push-
down) transducer (Lemma 4.1). This transducer can be used
to convert between the strong and the weak bracketing and to
reduce the context-free encodable families of graphs (Yli-Jyrä
and Gómez-Rodríguez 2017) to the weak dependency bracketing.
This widens the possibilities of both bracketing schemes. Since
there is a computable transduction between the strong and weak
bracketing, all 50 subfamilies of noncrossing graphs character-
ized in Yli-Jyrä and Gómez-Rodríguez (2017) can be encoded
with context-free languages that describe their weak bracket-
ing. We observe, on page 205, that the search space of projec-
tive trees has a smaller state complexity than the noncrossing di-
graphs, but the state complexity of some specialized search spaces
of noncrossing subfamilies may be also slightly higher than the
state complexity of the search space that contains all noncrossing
graphs.
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3. A low complexity bound with high empirical coverage
In dependency bracketing like Yli-Jyrä and Gómez-Rodríguez
(2017), bounded-depth bracketing does not make the language
finite, but the current work demonstrates that the weak brack-
eting is still useful because it stabilises the empirically ob-
served depth of dependency bracketing: two levels of super-
brackets cover already 58% of the noncrossing trees, three
levels cover 92% and five 99.95%. Seven levels of superbrackets
give the amazing 99.9998% coverage (with two excluded trees)
over the massively multilingual set of dependency treebanks,
UD v2.4.
The current work suggests several directions for further develop-

ments of the presented framework. We conclude this paper by intro-
ducing some of these directions.

6.1 Fast Parsing and Neural Weighting
The new empirical bounds open a door to new optimisations towards
very efficient dependency parsing of multiple families of noncrossing
graphs. An arc-factored, weighted, depth-bounded grammar for the
strongly bracketed search space can be constructed in quadratic time.
However, it is open whether a similar result is true for weakly brack-
eted search spaces.
The current work also demonstrated the existence of a high-

coverage finite-state representation of a bounded grammar for non-
crossing structures. When such a finite-state grammar is matched with
a simplified arc weighting model, we would be very close to a linear-
time graph-based parsing of bounded families of graphs.
In some state-of-the-art graph-based dependency parsers, the arc

weights are computed with neural networks and the statistical infer-
ence is based on an algorithm that finds the maximum spanning tree
(Libovický 2016; Ma and Hovy 2017) or best path (Rastogi et al. 2016).
The current work is compatible with such hybrid models. It remains to
be seen how the models could then be optimised together and how the
search space representation interacts with the training of the weight-
ing model.

Transition-based dependency parsing is mainly based on very ex-
pressive transition systems. If the current work could be extended
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to nonprojective trees, a finite-state model of the bounded grammar
could perhaps be used to handle neural transition systems and to im-
prove nondeterministic strategies in these parsers.
Besides transition-based parsing, there are several other neural

network based parsing models to which the current encoding or its
unrestricted extension (Yli-Jyrä 2019) could be integrated, as men-
tioned in the introduction.
6.2 Generality and Definable Properties of Graphs
Since the noncrossing graphs have bounded treewidth, it is possible to
obtain many efficient algorithms for them. Especially, there is an algo-
rithmic metatheorem (Courcelle 1990) that states that any graph prop-
erty in monadic second order logic (MSO) can be decided in linear time
for bounded-treewidth graphs. Yli-Jyrä and Gómez-Rodríguez (2017)
can be seen as a start for a research that reconstructs this metatheo-
rem via dependency bracketing and context-free grammars in the case
of noncrossing graphs. It is, indeed, possible to create an algorithm li-
brary that implements MSO logic for noncrossing graphs, using the
currently explored encoding schemes.

The currently presented encoding is a crucial step towards more
comprehensive bracket-based encoding of graphs. It is possible to de-
velop similar encoding schemes for unrestricted ordered graphs. In-
deed, we have already worked on an encoding that generalises ele-
gantly to all ordered graphs. The description of the generalised en-
coding will appear separately (Yli-Jyrä 2019).
6.3 Learnability of subregular approximations of syntax
By showing that the positive examples in the training data have a ro-
bust bound for the depth of bracketing in the context-free encoding,
the dependency structures can be seen as a regular language, with
a truncated Chomsky-Schützenberger representation. It has been pre-
viously observed that such regular languages are often star-free (Yli-
Jyrä 2003a, 2005a,b), but their descriptive complexity depends on the
bracketing depth (Yli-Jyrä 2008, 2005c). Thus, they do not belong to
any of the basic subregular classes of languages that have been shown
to be learnable from positive data (Heinz and Rogers 2013). From the
structure of languages in Yli-Jyrä and Gómez-Rodríguez (2017), we
can infer that learning non-local properties of noncrossing graphs also
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requires learning latent labeling of their bracketing. These challenges
put a strain on the research on such subregular language classes that
would allow us to learn finite-state approximations of syntax from
treebanks. This research could be related to representation learning
in neural networks.
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té

53
fu
n
kc
e

54 .

Fig
ur
e1
4:
Cz
ec
h

[ 222 ]



How to embed trees in a regular language

1
H
a
rt
u
n
g

2
sc
h
re
ib
t

3 :
4 ”

5 Ic
h

6
h
a
tt
e

7
so
fo
rt

8
V
er
d
a
ch
t

9 a
u
f

1
0

ei
n
en

1
1

M
et
eo
r

1
2 ,

1
3

b
eg
a
b

1
4

m
ic
h

1
5

so
g
le
ic
h

1
6
zu

1
7

d
em

1
8

L
a
n
d
w
ir
t

1
9 ,

2
0

u
n
d

2
1 es

2
2

g
el
a
n
g

2
3 ,

2
4

d
en

2
5

ei
g
en
a
rt
ig
en

2
6

S
te
in

2
7 ,

2
8

d
er

2
9

sc
h
o
n

3
0

v
o
r

3
1

ei
n
em

3
2

J
a
h
r

3
3

g
ef
u
n
d
en

3
4

u
n
d

3
5

in
zw

is
ch
en

3
6

a
u
f

3
7

ei
n
en

3
8

S
te
in
h
a
u
fe
n

3
9

a
n

4
0

d
em

4
1

H
a
u
se

4
2

a
b
g
ew

o
rf
en

4
3

w
a
r

4
4 ,

4
5
zu

4
6

en
td
ec
k
en

4
7 ”

4
8 .

Fig
ur
e1
5:
Ge
rm
an

1
S
ze
rd
á
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té
s

1
9

m
eg
á
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ö
r

2
9

sü
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