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The categorical compositional distributional model of natural lan-
guage provides a conceptually motivated procedure to compute the
meaning of a sentence, given its grammatical structure and the mean-
ings of its words. This approach has outperformed other models in
mainstream empirical language processing tasks, but lacks an effec-
tive model of lexical entailment. We address this shortcoming by ex-
ploiting the freedom in our abstract categorical framework to change
our choice of semantic model. This allows us to describe hyponymy as
a graded order on meanings, using models of partial information used
in quantum computation. Quantum logic embeds in this graded order.

1 introduction
Finding a formalization of language in which the meaning of a sen-
tence can be computed from the meaning of its parts has been a long-
standing goal in formal and computational linguistics.

Distributional semantics represents individual word meanings as
vectors in finite dimensional real vector spaces. On the other hand,
symbolic accounts of meaning combine words via compositional rules
to form phrases and sentences. These two approaches are in some
sense orthogonal. Distributional schemes have no obvious composi-
tional structure, whereas compositional models lack a canonical way
of determining the meaning of individual words. In Coecke et al.
(2010), the authors develop the categorical compositional distribu-
tional model of natural language semantics. This model exploits the
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shared categorical structure of pregroup grammars and vector spaces
to provide a compositional structure for distributional semantics. It
has produced state-of-the-art results in measuring sentence similar-
ity (Kartsaklis et al. 2012; Grefenstette and Sadrzadeh 2011), effec-
tively describing aspects of the human understanding of sentences.

A satisfactory account of natural language should incorporate a
suitable notion of lexical entailment. Until recently, categorical com-
positional distributional models of meaning have lacked this crucial
feature. In order to address the entailment problem, we exploit the
freedom inherent in our abstract categorical framework to change
models. We move from a pure state setting to a category used to de-
scribe mixed states and partial knowledge in the semantics of cate-
gorical quantum mechanics. Meanings are now represented by den-
sity matrices rather than simple vectors. We use this extra flexibil-
ity to capture the concept of hyponymy, where one word may be
seen as an instance of another. For example, red is a hyponym of
colour. The hyponymy relation can be associated with a notion of
logical entailment. Some entailment is crisp, for example: dog en-
tails animal. However, we may also wish to permit entailments of
differing strengths. For example, the concept dog gives high support
to the concept pet, but does not completely entail it: some dogs are
working dogs. The hyponymy relation we describe here can account
for these phenomena. Some crisp entailment can be seen as encod-
ing linguistic knowledge. The kind of entailment we are interested
in here is, in general, about the properties that objects have in the
world, rather than grammatically based entailment. In particular, we
explicitly avoid downward-monotone contexts such as negation. We
do, however, examine the hyponymy between an adjective-noun com-
pound and the head noun. We should also be able to measure entail-
ment strengths at the sentence level. For example, we require that
Cujo is a dog crisply entails Cujo is an animal, but that the statement
Cujo is a dog does not completely entail Cujo is a pet. Again, the re-
lation we describe here will successfully describe this behaviour at
the sentence level. Closely related to the current work are the ideas
in Balkır (2014), Balkır et al. (2016), and Sadrzadeh et al. (2018). In
this work, the authors develop a graded form of entailment based
on von Neumann entropy and with links to the distributional inclu-
sion hypotheses developed by Geffet and Dagan (2005). The authors
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show how entailment at the word level carries through to entail-
ment at the sentence level. However, this is done without taking ac-
count of the grading. In contrast, the measure that we develop here
provides a lower bound for the entailment strength between sen-
tences, based on the entailment strength between words. Some of the
work presented here was developed in the first author’s MSc thesis
(Bankova 2015).
An obvious choice for a logic built upon vector spaces is quan-

tum logic (Birkhoff and von Neumann 1936). Briefly, this logic
represents propositions about quantum systems as projection op-
erators on an appropriate Hilbert space. These projections form
an orthomodular lattice where the distributive law fails in gen-
eral. The logical structure is then inherited from the lattice struc-
ture in the usual way. In the current work, we propose an order
that embeds the orthomodular lattice of projections, and so con-
tains quantum logic. This order is based on the Löwner ordering
with propositions represented by density matrices. When this or-
dering is applied to density matrices with the standard trace nor-
malization, no propositions compare, and therefore the Löwner or-
dering is useless as applied to density operators. The trick we use
is to develop an approximate entailment relationship which arises
naturally from any commutative monoid. We introduce this in gen-
eral terms and describe conditions under which this gives a graded
measure of entailment. This grading becomes continuous with re-
spect to noise. Our framework is flexible enough to subsume the
Bayesian partial ordering of Coecke and Martin (2011) and pro-
vides it with a grading. A procedure is given for determining the
hyponymy strength between any pair of phrases of the same overall
grammatical type. The pair of phrases can have differing lengths.
So, for example, we can compare ‘blond men’ to ‘men’, as these
are both noun phrases. This is possible because within categori-
cal compositional semantics, phrases of each type are reduced to
one common space according to their type, and can be compared
within that space. Furthermore, this notion is consistent with hy-
ponymy at the word level, giving a lower bound on phrase hy-
ponymy.

Density matrices have also been used in other areas of dis-
tributional semantics such as Kartsaklis (2015), Piedeleu (2014),
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Piedeleu et al. (2015), and Blacoe et al. (2013). Quantum logic is used
in (Widdows and Peters 2003) and Rijsbergen (2004).
Entailment is an important and thriving area of research within

distributional semantics. The PASCAL Recognising Textual Entailment
Challenge (Dagan et al. 2006) has attracted a large number of re-
searchers in the area and generated a number of approaches. Previ-
ous lines of research on entailment for distributional semantics in-
vestigate the development of directed similarity measures which can
characterize entailment (Weeds et al. 2004; Kotlerman et al. 2010;
Lenci and Benotto 2012). Geffet and Dagan (2005) introduce a pair
of distributional inclusion hypotheses, where if a word v entails another
word w, then all the typical features of the word v will also occur
with the word w. Conversely, if all the typical features of v also oc-
cur with w, v is expected to entail w. Clarke (2009) defines a vec-
tor lattice for word vectors, and a notion of graded entailment with
the properties of a conditional probability. Rimell (2014) explores the
limitations of the distributional inclusion hypothesis by examining
the properties of those features that are not shared between words.
An interesting approach in Kiela et al. (2015) is to incorporate other
modes of input into the representation of a word. Measures of en-
tailment are based on the dispersion of a word representation, to-
gether with a similarity measure. All of these look at entailment at
the word level.

Attempts have also been made to incorporate entailment mea-
sures with elements of compositionality. Baroni et al. (2012) exploit
the entailment relations between adjective-noun and noun pairs to
train a classifier that can detect similar relations. They further develop
a theory of entailment for quantifiers. The approach that we propose
here has the characteristic that it can be applied to more types of
phrases and sentences than just adjective-noun and noun-noun type
phrases.

Another approach to compositional vector-based entailment is the
use of deep neural networks to represent logical semantics, as in Bow-
man et al. (2015), for example. The drawback with the use of this sort
of method is that the transparency of the compositional method is lost:
the networks may indeed learn how to represent logical semantics but
it is not clear how they do so. In contrast, the method we propose has
a clear basis in formal semantics and links to quantum logic.
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2 categorical compositional
distributional meaning

Compositional and distributional accounts of meaning are unified
in Coecke et al. (2010), constructing the meaning of sentences from
the meanings of their component parts using their syntactic structure.

2.1 Pregroup grammars
In order to describe syntactic structure, we use Lambek’s pregroup
grammars (Lambek 1997). Within the standard categorical composi-
tional distributional model, it is possible to move to other forms of
categorial grammar, as argued in Coecke et al. (2013). This is due to
the fact that the category of finite-dimensional vector spaces is par-
ticularly well-behaved, and so grammars with greater or lesser struc-
ture may be used. A pregroup (P,≤, ·, 1, (−)l , (−)r) is a partially ordered
monoid (P,≤, ·, 1) where each element p ∈ P has a left adjoint pl and
a right adjoint pr , such that the following inequalities hold:

(1) pl · p ≤ 1≤ p · pl and p · pr ≤ 1≤ pr · p
Intuitively, we think of the elements of a pregroup as linguistic types.
The monoidal structure allows us to form composite types, and the
partial order encodes type reduction. The important right and left ad-
joints then enable the introduction of types requiring further elements
on either their left or right respectively.

The pregroup grammar PregB over an alphabet B is freely con-
structed from the atomic types inB . In what follows we use an alpha-
bet B = {n, s}. We use the type s to denote a declarative sentence and
n to denote a noun. A transitive verb can then be denoted nrsnl . If a
string of words and their types reduces to the type s, the sentence is
judged grammatical. The sentence John kicks cats is typed n (nrsnl) n,
and can be reduced to s as follows:

n (nrsnl) n≤ 1 · snl n≤ 1 · s · 1≤ s

This symbolic reduction can also be expressed graphically, as shown
in Figure 1. In this diagrammatic notation, the elimination of types by
means of the inequalities n · nr ≤ 1 and nl · n≤ 1 is denoted by a ‘cup’.
The fact that the type s is retained is represented by a straight wire.
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Figure 1:

A transitive sentence in the graphical calculus
John kicks cats

n s nnr nl

2.2 Compositional distributional models
The symbolic account and distributional approaches are linked by the
fact that they are both compact closed categories. This compatibility
allows the compositional rules of the grammar to be applied in the
vector space model. In this way, we can map syntactically well-formed
strings of words into one shared meaning space.
A compact closed category is a monoidal category in which for each

object A there are left and right dual objects Al and Ar , and corre-
sponding unit and counit morphisms ηl : I → A⊗ Al , ηr : I → Ar ⊗ A,
εl : Al ⊗ A→ I , εr : A⊗ Ar → I such that the snake equations hold:

(1A⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εr ⊗ 1A) ◦ (1A⊗ηr) = 1A

(εl ⊗ 1Al ) ◦ (1Al ⊗ηl) = 1Al (1Ar ⊗ εr) ◦ (ηr ⊗ 1Ar ) = 1Ar

The underlying poset of a pregroup can be viewed as a com-
pact closed category with the monoidal structure given by the pre-
group monoid, and εl ,ηl ,ηr ,εr the unique morphisms witnessing the
inequalities of (1).

Distributional vector space models live in the category FHilb of
finite dimensional real Hilbert spaces and linear maps. FHilb is com-
pact closed. Each object V is its own dual and the left and right unit
and counit morphisms coincide. Given a fixed basis {|vi〉}i of V , we
define the unit by η : R → V ⊗ V :: 1 7→ ∑i |vi〉 ⊗ |vi〉 and counit by
ε : V ⊗ V → R ::

∑
i j ci j |vi〉 ⊗ |v j〉 7→∑i cii. Here, we use the physicists’

bra-ket notation, for details see Nielsen and Chuang (2011).
2.3 Graphical calculus
The morphisms of compact closed categories can be expressed in a
convenient graphical calculus (Kelly and Laplaza 1980) which we will
exploit in the following sections. Objects are labelled wires, and mor-
phisms are given as vertices with input and output wires. Composing
morphisms consists of connecting input and output wires, and the ten-
sor product is formed by juxtaposition, as shown in Figure 2.
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Figure 2:
Monoidal graphical calculus

By convention the wire for the monoidal unit is omitted. The mor-
phisms ε and η can then be represented by ‘cups’ and ‘caps’ as shown
in Figure 3. The snake equations can be seen as straightening wires,
as shown in Figure 4.

εl εr

ηrηl

Figure 3:
Compact structure graphically

A Al A = A A Ar A = A

AlAlAlAr = A =Ar ArA

Figure 4:
The snake equations

2.4 Grammatical Reductions in Vector Spaces
Following Preller and Sadrzadeh (2011), reductions of the pregroup
grammarmay bemapped onto the category FHilb of finite dimensional
Hilbert spaces and linear maps using an appropriate strong monoidal
functor Q:

Q : Preg→ FHilb

Strong monoidal functors automatically preserve the compact closed
structure. For our example Preg{n,s}, we must map the noun and
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sentence types to appropriate finite dimensional vector spaces:
Q(n) = N Q(s) = S

Composite types are then constructed functorially using the corre-
sponding structure in FHilb. Each morphism α in the pregroup is
mapped to a linear map interpreting sentences of that grammatical
type. Then, given word vectors |wi〉 with types pi, and a type reduc-
tion α : p1, p2, . . . , pn → s, the meaning of the sentence w1w2 . . . wn is
given by:

|w1w2 . . . wn〉=Q(α)(|w1〉 ⊗ |w2〉 ⊗ . . .⊗ |wn〉)
For example, as described in Section 2.1, transitive verbs have type
nrsnl , and can, therefore, be represented in FHilb as a rank 3 space
N ⊗ S ⊗ N . The transitive sentence John kicks cats has type n(nrsnl)n,
which reduces to the sentence type via εr ⊗ 1s ⊗ εl . So representing
|kicks〉 by:

|kicks〉=∑
i jk

ci jk |ei〉 ⊗ |s j〉 ⊗ |ek〉

using the definitions of the counits in FHilb we then have:
|John kicks cats〉= εN ⊗ 1S ⊗ εN (|John〉 ⊗ |kicks〉 ⊗ |cats〉)

=
∑
i jk

ci jk 〈John|ei〉 ⊗ |s j〉 ⊗ 〈ek|cats〉

=
∑

j

∑
ik

ci jk 〈John|ei〉 〈ek|cats〉 |s j〉

Diagrammatically,
John kicks cats

=

John

kicks

cats

The category FHilb is actually a †-compact closed category.
A †-compact closed category is a compact closed category with an
additional dagger functor that is an identity-on-objects involution, sat-
isfying natural coherence conditions. In the graphical calculus, the
dagger operation “flips diagrams upside-down”. In the case of FHilb
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the dagger sends a linear map to its adjoint, and this allows us to
reason about inner products in a general categorical setting, so that
meanings of sentences may be compared using the inner product to
calculate the cosine distance between vector representations.
The abstract categorical framework we have introduced allows

meanings to be interpreted not just in FHilb, but in any †-compact
closed category. We will exploit this freedom when we move to den-
sity matrices. Detailed presentations of the ideas in this section are
given in Coecke et al. (2010) and Preller and Sadrzadeh (2011) and
an introduction to relevant category theory in Coecke and Paquette
(2011).

3 density matrices in categorical
compositional distributional semantics

3.1 Positive operators and density matrices
The methods outlined in Section 2 can be applied to the richer setting
of density matrices. Density matrices are used in quantum mechan-
ics to express uncertainty about the state of a system. For unit vec-
tor |v〉, the projection operator |v〉 〈v| onto the subspace spanned
by |v〉 is called a pure state. Pure states can be thought of as giv-
ing sharp, unambiguous information. In general, density matrices are
given by a convex sum of pure states, describing a probabilistic mix-
ture. States that are not pure are referred to as mixed states. Necessary
and sufficient conditions for an operator ρ to encode such a mixture
are:
• ∀v ∈ V. 〈v|ρ|v〉 ≥ 0,
• ρ is self-adjoint,1
• ρ has trace 1.

Operators satisfying the first two axioms are called positive operators.
The third axiom ensures that the operator represents a convex mixture
of pure states. Relaxing this condition gives us different choices for
normalization.

1As we are dealing with real-valued positive operators, this condition is nec-
essary.
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3.2 Representing words as positive matrices
Within standard distributional semantics, words are represented as
vectors, where the values on specific dimensions correspond to some
function of the frequency with which they co-occur with the words
represented by the basis vectors. The vector space induced can be
modified or reduced using singular value decomposition or other tech-
niques, where the basis vectors no longer have specific meanings. In
order to represent words as density matrices, we first observe that each
word vector has a corresponding pure matrix:

|cat〉 7→ |cat〉 〈cat|
Words which are more general can be built up by taking sums

over pure matrices. We can think of the meaning of the word pet as
represented by:
⟦pet⟧=pd |dog〉 〈dog|+ pc |cat〉 〈cat|+ pt |tarantula〉 〈tarantula|+ . . .

where ∀i.pi ≥ 0 and
∑

i

pi = 1

In general, we consider the meaning of a word w to be given by
a collection of unit vectors {|wi〉}i, where each |wi〉 represents an in-
stance of the concept expressed by the word. Each |wi〉 is weighted
by pi ∈ [0,1], such that ∑i pi = 1. These describe the meaning of w as
a weighted combination of exemplars. Then the density operator:

⟦w⟧=∑
i

pi |wi〉 〈wi |

represents the word w.
This is an extension of the distributional hypothesis. The coeffi-

cients pi may be determined as a function of the frequency with which
each word represented by a pure matrix co-occurs with the word rep-
resented by ⟦w⟧, for example.
3.3 The CPM construction
Applying Selinger’s CPM construction (Selinger 2007) to FHilb pro-
duces a new †-compact closed category in which the states are positive
operators. This construction has previously been exploited in a linguis-
tic setting in Kartsaklis (2015), Piedeleu et al. (2015), and Balkır et al.
(2016).
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Throughout this section C denotes an arbitrary †-compact closed
category.
Definition 1 (Completely positive morphism). A C -morphism φ :
A∗ ⊗ A→ B∗ ⊗ B is said to be completely positive (Selinger 2007) if there
exists C ∈ Ob(C ) and k ∈ C (C ⊗ A, B), such that φ can be written in the
form:

(k∗ ⊗ k) ◦ (1A∗ ⊗ηC ⊗ 1A)

Identity morphisms are completely positive, and completely pos-
itive morphisms are closed under composition in C , leading to the
following:
Definition 2. If C is a †-compact closed category then CPM(C ) is a
category with the same objects as C and its morphisms are the completely
positive morphisms.

The †-compact structure required for interpreting language in our
setting lifts to CPM(C ):
Theorem 1. CPM(C ) is also a †-compact closed category. There is a
functor:

E :C → CPM(C )
k 7→ k∗ ⊗ k

This functor preserves the †-compact closed structure, and is faithful “up
to a global phase” (Selinger 2007).

3.4 Diagrammatic calculus for CPM(C )
As CPM(C ) is also a †-compact closed category, we can use the graphi-
cal calculus described in Section 2.3. By convention, the diagrammatic
calculus for CPM(C ) is drawn using thick wires. The corresponding di-
agrams in C are given in Table 1.
In the vector space model of meaning the transition between syn-

tax and semantics was achieved by using a strong monoidal functor
Q : Preg→ FHilb. Language can be assigned semantics in CPM(FHilb)
in an entirely analogous way via a strong monoidal functor:

S : Preg→ CPM(FHilb)
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Table 1:

Table of diagrams in CPM(C ) and C CPM(C ) C
E(ε) = ε∗ ⊗ ε ε : A∗ ⊗ A∗ ⊗ A⊗ A→ I
A∗ A A∗ A∗ A A

ε : |ei〉 ⊗ |e j〉 ⊗ |ek〉 ⊗ |el〉 7→ 〈ei |ek〉 〈e j |el〉

E(η) = η∗ ⊗η η : I → A⊗ A⊗ A∗ ⊗ A∗

A∗ A A∗ A∗ A A

η : 1 7→∑i j |ei〉 ⊗ |e j〉 ⊗ |ei〉 ⊗ |e j〉

f2f1

A C

B D

f2f1

A∗ C∗ C A

B∗ D∗ D B

f1 ⊗ f2 : A∗ ⊗ C∗ ⊗ C ⊗ A→ B∗ ⊗ D∗ ⊗ D⊗ B

Definition 3. Let w1, w2 . . . wn be a string of words with corresponding
grammatical types t i in PregB . Suppose that the type reduction is given
by t1, . . . tn

r−→ x for some x ∈ Ob(PregB). Let ⟦wi⟧ be the meaning of
word wi in CPM(FHilb), i.e. a state of the form I → S(t i). Then the mean-
ing of w1w2 . . . wn is given by:

⟦w1w2 . . . wn⟧= S(r)(⟦w1⟧⊗ . . .⊗ ⟦wn⟧)
We now have all the ingredients to derive sentence meanings

in CPM(FHilb).
Example 1. We firstly show that the results from FHilb lift to CPM(FHilb).
Let the noun space N be a real Hilbert space with basis vectors given
by {|ni〉}i, where for some i, |ni〉 = |Clara〉 and for some j, |n j〉 = |beer〉.
Let the sentence space be another space S with basis {|si〉}i. The verb |likes〉
is given by:

|likes〉=∑
pqr

Cpqr |np〉 ⊗ |sq〉 ⊗ |nr〉

[ 236 ]



Compositional graded hyponymy

The density matrices for the nouns Clara and beer are in fact pure states
given by:
⟦Clara⟧= |ni〉 〈ni | and ⟦beer⟧= |n j〉 〈n j |

and similarly, ⟦likes⟧ in CPM(FHilb) is:
⟦likes⟧= ∑

pqr tuv

Cpqr Ctuv |np〉 〈nt | ⊗ |sq〉 〈su| ⊗ |nr〉 〈nv |

The meaning of the composite sentence is simply (ϵN ⊗ 1S ⊗ ϵN ) applied
to (⟦Clara⟧⊗ ⟦likes⟧⊗ ⟦beer⟧) as shown in Figure 5, with interpretation
in FHilb shown in Figure 6.
Clara likes beer

S NN NN

Figure 5:
A transitive sentence in CPM(C )

N S N ′ N ′ N ′NNN N ′ S

Clara likes beer Figure 6:
A transitive sentence in C with pure states

In terms of linear algebra, this corresponds to:
⟦Clara likes beer⟧= φ(⟦Clara⟧⊗ ⟦likes⟧⊗ ⟦beer⟧)

=
∑
qu

Ciq jCiu j |sq〉 〈su|

This is a pure state corresponding to the vector ∑q Ciq j |sq〉.
However, in CPM(FHilb) we can work with more than the pure

states.
Example 2. Let the noun space N be a real Hilbert space with basis vectors
given by {|ni〉}i. Let:

|Annie〉=∑
i

ai |ni〉 , |Betty〉=
∑

i

bi |ni〉 , |Clara〉=
∑

i

ci |ni〉
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|beer〉=∑
i

di |ni〉 , |wine〉=
∑

i

ei |ni〉
and with the sentence space S, we define:

|likes〉=∑
pqr

Cpqr |np〉 ⊗ |sq〉 ⊗ |nr〉

|appreciates〉=∑
pqr

Dpqr |np〉 ⊗ |sq〉 ⊗ |nr〉
Then, we can set:
⟦the sisters⟧= 1

3
(|Annie〉 〈Annie|+ |Betty〉 〈Betty|+ |Clara〉 〈Clara|)

⟦drinks⟧= 1
2
(|beer〉 〈beer|+ |wine〉 〈wine|)

⟦enjoy⟧= 1
2
(|like〉 〈like|+ |appreciate〉 〈appreciate|)

Then, the meaning of the sentence:
s = The sisters enjoy drinks

is given by:⟦s⟧= (ϵN ⊗ 1S ⊗ ϵN )(⟦the sisters⟧⊗ ⟦enjoy⟧⊗ ⟦drinks⟧)
Diagrammatically, this is shown in Figure 7.

Figure 7:
A transitive sentence in C with impure states

N S N ′ N ′ N ′NNN N ′ S

The sisters enjoy drinks

The impurity is indicated by the fact that the pairs of states are con-
nected by wires (Selinger 2007).

4 predicates and entailment
If we consider a model of (non-deterministic) classical computation, a
state of a set X is just a subset ρ ⊆ X . Similarly, a predicate is a sub-
set A⊆ X . We say that ρ satisfies A if:

ρ ⊆ A
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which we write as ρ ⊩ A. Predicate A entails predicate B, written A |= B,
if for every state ρ:

ρ ⊩ A ⇒ ρ ⊩ B

Clearly this is equivalent to requiring A⊆ B.

4.1 The Löwner order
As our linguistic models derive from a quantum mechanical formal-
ism, positive operators form a natural analogue for subsets as our pred-
icates. This follows ideas in D’Hondt and Panangaden (2006) and ear-
lier work in a probabilistic setting in Kozen (1983). Crucially, we can
order positive operators (Löwner 1934).
Definition 4 (Löwner order). For positive operators A and B, we define:

A⊑ B ⇐⇒ B − A is positive

If we consider this as an entailment relationship, we can follow
our intuitions from the non-deterministic setting. Firstly, we introduce
a suitable notion of satisfaction. For positive operator A and density
matrix ρ, we define ρ ⊩ A as the positive real number tr(ρA).

This generalizes satisfaction from a binary relation to a binary
function into the positive reals. We then find that the Löwner order
can equivalently be phrased in terms of satisfaction as follows:
Lemma 1 (D’Hondt and Panangaden 2006). Let A and B be positive
operators. A⊑ B if and only if for all density operators ρ:

ρ ⊩ A ≤ ρ ⊩ B

Linguistically, we can interpret this condition as saying that ev-
ery noun, for example, satisfies predicate B at least as strongly as it
satisfies predicate A.

4.2 Quantum logic
Quantum logic (Birkhoff and von Neumann 1936) views the projection
operators on a Hilbert space as propositions about a quantum system.
As the Löwner order restricts to the usual ordering on projection op-
erators, we can embed quantum logic within the poset of projection
operators, providing a direct link to existing theory.
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4.3 A general setting for approximate entailment
We can build an entailment preorder on any commutative monoid,
viewing the underlying set as a collection of propositions. We then
write A |= B and say A entails B if there exists a proposition D such
that A+ D = B. If our commutative monoid is the powerset of some
set X , with union the binary operation and unit the empty set, then
we recover our non-deterministic computation example from the pre-
vious section. If, on the other hand, we take our commutative monoid
to be the positive operators on some Hilbert space, with addition of
operators and the zero operator as the monoid structure, we recover
the Löwner ordering.
In linguistics, we may ask ourselves: does dog entail pet? Naïvely,

the answer is clearly no, not every dog is a pet. This seems too crude
for realistic applications though, most dogs are pets, and so we might
say dog entails pet to some extent. This motivates our need for an ap-
proximate notion of entailment.

For proposition E, we say that A entails B to the extent E if:
A |= B + E

We think of E as a error term, for instance in our dogs and pets exam-
ple, E adds back in dogs that are not pets. Expanding definitions, we
find A entails B to extent E if there exists D such that:
(2) A+ D = B + E

From this more symmetrical formulation it is easy to see that for ar-
bitrary propositions A, B, proposition A trivially entails B to extent A,
as by commutativity:

A+ B = B + A

It is therefore clear that the mere existence of a suitable error term is
not sufficient for a weakened notion of entailment. If we restrict our
attention to errors in a complete meet semilattice EA,B, we can take the
lower bound on the E satisfying equation (2) as our canonical choice.
Finally, if we wish to be able to compare entailment strengths globally,
this can be achieved by choosing a partial orderK of “error sizes” and
monotone functions:

EA,B

κA,B−−→K
sending errors to their corresponding size.
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For example, if A and B are positive operators, we take our com-
plete lattice of error terms EA,B to be all operators of the form (1− k)A
for k ∈ [0,1], ordered by the size of 1−k. We then take k as the strength
of the entailment, and refer to it as k-hyponymy.
In the case of finite sets A, B, we take EA,B = P (A), and take the

size of the error terms as:
cardinality of E
cardinality of A

measuring “how much” of A we have to supplement B with, as indi-
cated in the shaded region below:

B

A

In terms of conditional probability, the error size is then:
P(A | ¬B)

These general error terms are strictly more general than the k-hypo-
nymy.

5 hyponymy in categorical compositional
distributional semantics

Modelling hyponymy in the categorical compositional distributional
semantics framework was first considered in Balkır (2014). She in-
troduced an asymmetric similarity measure called representativeness
on density matrices based on quantum relative entropy. This can be
used to translate hyponym-hypernym relations to the level of positive
transitive sentences. Our aim here will be to provide an alternative
measure which relies only on the properties of density matrices and
the fact that they are the states in CPM(FHilb). This will enable us
to quantify the strength of the hyponymy relationship, described as
k-hyponymy. The measure of hyponymy that we use has an advan-
tage over the representativeness measure. Due to the way it combines
with linear maps, we can give a quantitative measure to sentence-level
entailment based on the entailment strengths between words, whereas
representativeness is not shown to combine in this way.
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5.1 Properties of hyponymy
Before proceeding with defining the concept of k-hyponymy, we give
two properties of hyponymy that can be captured by our newmeasure.
• Asymmetry. If A is a hyponym of B, then usually, B is not a hy-
ponym of A.
• Pseudo-transitivity. If X is a hyponym of Y and Y is a hyponym
of Z, then X is a hyponym of Z. However, if the hyponymy is not
perfect, then we get a weakened form of transitivity.
The measure of hyponymy that we described above and named k-

hyponymy will be defined in terms of density matrices – the containers
for word meanings. The idea is then to define a quantitative order on
the density matrices, which is not a partial order, but does give us an
indication of the asymmetric relationship between words.

5.2 Ordering positive matrices
A density matrix can be used to encode the precision that is needed
when describing an action. In the sentence I took my pet to the vet,
we do not know whether the pet is a dog, cat, tarantula, and so
on. The sentence I took my dog to the vet is more specific. We then
wish to develop an order on density matrices so that dog, as rep-
resented by |dog〉 〈dog| is more specific than pet as represented by⟦pet⟧. This ordering may then be viewed as an entailment rela-
tion, and entailment between words can lift to the level of sen-
tences, so that the sentence I took my dog to the vet entails the sen-
tence I took my pet to the vet. Note that we do not require that the sen-
tences have exactly the same structure. For example, we would like
I took my brown dog to the vet to entail I took my dog to the vet, and we
would expect this to happen because brown dog should entail dog.
We now define our notion of approximate entailment, following

the discussions of Section 4.3:
Definition 5 (k-hyponym). We say that A is a k-hyponym of B for a
given value of k in the range (0,1] and write A²k B if:

0⊑ B − kA

Note that such a k need not be unique or even exist at all.

[ 242 ]



Compositional graded hyponymy

Definition 6 (kmax hyponym). kmax is the maximum value of k ∈ (0,1]
for which we have A²kmax

B.
In general, we are interested in the maximal value kmax for which

k-hyponymy holds between two positive operators. This kmax value
quantifies the strength of the entailment between the two operators.

In what follows, for operator Awe write A+ for the corresponding
Moore-Penrose pseudo-inverse and supp(A) for the support of A.
Lemma 2 (Balkır 2014). Let A, B be positive operators.

supp(A) ⊆ supp(B) ⇐⇒ ∃k.k > 0 and B − kA≥ 0

Lemma 3. For positive self-adjoint matrices A, B such that:
supp(A) ⊆ supp(B)

B+A has non-negative eigenvalues.
We now develop an expression for the optimal k in terms of the

matrices A and B.
Theorem 2. For positive self-adjoint matrices A, B such that:

supp(A) ⊆ supp(B)

the maximum k such that B − kA ≥ 0 is given by 1/λ where λ is the
maximum eigenvalue of B+A.
Proof. We wish to find the maximum k for which

∀|x〉 ∈ Rn. 〈x | (B − pA) |x〉 ≥ 0

Since supp(A) ⊆ supp(B), such a k exists. We assume that for k = 1,
there is at least one |x〉 such that 〈x | (B − kA) |x〉 ≤ 0, since otherwise
we’re done. For all |x〉 ∈ Rn, 〈x | (B−kA) |x〉 increases continuously as k
decreases. We therefore decrease k until 〈x | (B− kA) |x〉 ≥ 0, and there
will be at least one |x0〉 at which 〈x0| (B−kA) |x0〉= 0. These points are
minima so that the vector of partial derivatives ∇〈x0| (B − k0A) |x0〉 =
2(B − k0A) |x0〉= −→0 (requires B, A self-adjoint).

Therefore B |x0〉 = k0A |x0〉, and so 1/k0B+B |x0〉 = B+A |x0〉. Since
B+B is a projector onto the support of B and supp(A) ⊆ supp(B), we
have:

1/k0 |v0〉= B+A |v0〉
where |v0〉= B+B |x0〉, i.e., 1/k0 is an eigenvalue of B+A.
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Now, B+A has only non-negative eigenvalues, and in fact any pair
of eigenvalue 1/k and eigenvector |v〉 will satisfy the condition B |v〉=
kA |v〉. We now claim that to satisfy ∀|x〉 ∈ Rn. 〈x | (B − kA) |x〉 ≥ 0, we
must choose k0 equal to the reciprocal of the maximum eigenvalue λ0

of B+A. For a contradiction, take λ1 < λ0, so 1/λ1 = k1 > k0 = 1/λ0.
Then we require that ∀|x〉 ∈ Rn. 〈x | (B− k1A) |x〉 ≥ 0, and in particular
for |v0〉. However:

〈v0| (B − k1A) |v0〉 ≥ 0 ⇐⇒ 〈v0|B |v0〉 ≥ k1 〈v0|A |v0〉
⇐⇒ k0 〈v0|A |v0〉 ≥ k1 〈v0|A |v0〉
contradiction, since k0 < k1

We therefore choose k0 equal to 1/λ0 where λ0 is the maximum eigen-
value of B+A, and 〈x | (B − k0A) |x〉 ≥ 0 is satisfied for all |x〉 ∈ Rn.
5.3 Properties of k-hyponymy
• Reflexivity: k-hyponymy is reflexive for k = 1.
• Symmetry: k-hyponymy is neither symmetric nor anti-symmetric.
• Transitivity: k-hyponymy satisfies a version of transitivity. Sup-
pose A²k B and B ²l C . Then A²kl C , since:

B ⊑ kA and C ⊑ lB =⇒ C ⊑ klA

by transitivity of the Löwner order.
For the maximal values kmax, lmax, mmax such that A²kmax B, B ²lmax
C and A²mmax C , we have the inequality mmax ≥ kmaxlmax.
• Continuity: For A ²k B, when there is a small perturbation to A,
there is a correspondingly small decrease in the value of k. The
perturbation must lie in the support of B, but can introduce off-
diagonal elements.

Theorem 3. Given A ²k B and density operator ρ such that supp(ρ) ⊆
supp(B), then for any ϵ > 0 we can choose a δ > 0 such that:

A′ = A+δρ =⇒ A′ ²k′ B and |k− k′|< ϵ
Proof of Theorem 3. We wish to show that we can choose δ such that
|k − k′| < ϵ. We use the notation λmax(A) for the maximum eigen-
value of A. A′ = A + δρ satisfies the condition of Theorem 2, that
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supp(A′) ⊆ supp(B), since suppose |x〉 ̸∈ supp(B). supp(A) ⊆ supp(B), so
|x〉 ̸∈ supp(A) and A |x〉= 0. Similarly, ρ |x〉= 0. Therefore (A+ρ) |x〉=
A′ |x〉= 0, so |x〉 ̸∈ supp(A′).

By Theorem 2 we have:

k =
1

λmax(B+A)
, and k′ = 1

λmax(B+A′)

(3) k− k′ = λmax(B+A′)−λmax(B+A)
λmax(B+A′)λmax(B+A)

We may treat the denominator of (3) as a constant. We expand the nu-
merator and apply Weyl’s inequalities (Weyl 1912). These inequalities
apply only to Hermitian matrices, whereas we need to apply these to
products of Hermitian matrices. Since B+, A, and ρ are all real-valued
positive semidefinite, the products B+A and B+ρ have the same eigen-
values as the Hermitian matrices A

1
2 B+A

1
2 and ρ 1

2 B+ρ
1
2 . Now:

λmax(B+A′)−λmax(B+A) = λmax(B+A+δB+ρ)−λmax(B+A)

≤ λmax(B+A) +δλmax(B+ρ)−λmax(B+A)

= δλmax(B+ρ)≤ δλmax(B+)λmax(ρ)≤ δλmax(B+)

Therefore:

(4) k− k′ ≤ δ λmax(B+)
λmax(B+A′)λmax(B+A)

so that given ϵ, A, B, we can always choose a δ to make k− k′ ≤ ϵ.
5.4 Scaling
When comparing positive operators, in order to standardize themagni-
tudes resulting from calculations, it is natural to consider normalizing
their trace so that we work with density operators. Unfortunately, this
is a poor choice when working with the Löwner order as distinct pairs
of density operators are never ordered with respect to each other, i.e.,
for density operators σ, τ, σ ⊑ τ⇒ σ = τ. Another option is to bound
operators as having maximum eigenvalue 1, as suggested in D’Hondt
and Panangaden (2006). With this ordering, the projection operators
regain their usual ordering and we recover quantum logic as a subor-
der of our setting.
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Our framework is flexible enough to support other normalization
strategies. The optimal choice for linguistic applications is left to fu-
ture empirical work. Other ideas are also possible. For example we
can embed the Bayesian order (Coecke and Martin 2011) within our
setting via a suitable transformation on positive operators as follows:
1. Diagonalize the operator, choosing a permutation of the basis vec-
tors such that the diagonal elements are in descending order.

2. Let di denote the i th diagonal element. We define the diagonal of
a new diagonal matrix inductively as follows:

d ′0 = d0 d ′i+1 = d ′i ∗ di+1

3. Transform the new operator back to the original basis.
Further theoretical investigations of this type are left to future work.
5.5 Representing the order in the ‘Bloch disc’
The Bloch sphere, Bloch (1946), is a geometrical representation of
quantum states. Very briefly, points on the sphere correspond to pure
states, and states within the sphere to impure states. Since we consider
matrices only over R2, we disregard the complex phase which allows
us to represent the pure states on a circle. A pure state cos(θ/2) |0〉+
sin(θ/2) |1〉 is represented by the vector (sin(θ ), cos(θ )) on the circle.

We can calculate the entailment factor k between any two points
on the disc. Figure 8 shows contour maps of the entailment strengths
for the state with Bloch vector v = ( 3

4 sin(π/5), 3
4 cos(π/5)), using the

maximum eigenvalue normalization.

6 results on compositionality
This section provides results and examples on how the notion of hy-
ponymy we have proposed interacts with the compositionality out-
lined in Section 2. We firstly give an example showing that phrases of
different lengths can be compared. We then give a theorem and exam-
ple to show that our notion of hyponymy ‘lifts’ to the sentence level,
and that the k-values are preserved in a very intuitive fashion.
6.1 k-hyponymy in phrases of varying length
We can calculate the extent to which any pair of sentences or phrases
are hyponyms of each other. We go back to the simple example in
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Entailment strengths
in the Bloch disc for the state
with Bloch vector v

the introduction, comparing ‘blond men’ to ‘men’. Suppose our vector
space has basis vectors |blond〉, |brunette〉, |male〉, |female〉. Then the
word ‘men’ can be given by:
⟦men⟧= 1

3
(|blond〉 〈blond|+ |brunette〉 〈brunette|+ |male〉 〈male|)

signifying that we are agnostic over all vectors with dimensions
|blond〉, |brunette〉, |male〉.

The adjective ‘blond’ is viewed as an operator which takes nouns
to blond nouns. This is given by the following:⟦blondadj⟧= (|blond〉 ⊗ |blond〉)(〈blond| ⊗ 〈blond|)

+ (|blond〉 ⊗ |brunette〉)(〈brunette| ⊗ 〈blond|)
+
∑

i, j ̸∈{blond,brunette}
(|i〉 ⊗ |i〉)(〈 j| ⊗ 〈 j|)

Then ⟦blond men⟧= (1N⊗N ⊗ εN⊗N )(⟦blondadj⟧⊗ ⟦men⟧)
=

2
3
|blond〉 〈blond|+ 1

3
|male〉 〈male|

Then if Carlos is described by the pure state
|Carlos〉= 1p

2
(|blond〉+ |male〉)
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we have ⟦Carlos⟧= |Carlos〉 〈Carlos|²k ⟦blond men⟧
for k = 4

9 by Theorem 2. For Janette described by the pure state|Janette〉= 1p
2
(|blond〉+ |female〉), we have
⟦Janette⟧= |Janette〉 〈Janette|²k ⟦blond men⟧

for k = 0, since supp(⟦Janette⟧) ̸⊆ supp(⟦blond men⟧).
An obvious line of enquiry here is to consider how to build this

type of adjective operator computationally. One strategy might be
to extend the linear regression approach from Baroni and Zamparelli
(2010) and Grefenstette et al. (2013), having built representations of
‘noun’ and the noun phrase ‘blond noun’. Techniques for building den-
sity matrix representations of nouns are described in Sadrzadeh et al.
(2018).
6.2 Sentence k-hyponymy
We can show that the application of k-hyponymy to various phrase
types holds in the same way. In this section we provide a general proof
for varying phrase types. We adopt the following conventions:
• A positive phrase is assumed to be a phrase in which individual
words are upwardly monotone in the sense described by (Barwise
and Cooper 1981; MacCartney and Manning 2007). This means
that, for example, the phrase does not contain any negations, in-
cluding words like not.
• The length of a phrase is the number of words in it, not counting
definite and indefinite articles.

Theorem 4 (Sentence k-hyponymy). Let Φ and Ψ be two positive phrases
of the same length and grammatical structure, expressed in the same noun
spaces N and sentence spaces S. Denote the words of Φ, in the order in
which they appear, by A1, . . . , An. Similarly, denote these in Ψ by B1, . . . , Bn.
Let their corresponding density matrices be denoted by ⟦A1⟧, . . . ,⟦An⟧
and ⟦B1⟧, . . . ,⟦Bn⟧ respectively. Suppose that ⟦Ai⟧ ²ki

⟦Bi⟧ for i ∈
{1, . . . , n} and some ki ∈ (0,1]. Finally, let φ be the sentence meaning
map for both Φ and Ψ, such that φ(Φ) is the meaning of Φ and φ(Ψ) is the
meaning of Ψ. Then:

φ(Φ)²k1···kn
φ(Ψ)
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so k1 · · · kn provides a lower bound on the extent to which φ(Φ) en-
tails φ(Ψ).
Proof of Theorem 4. First of all, we have ⟦Ai⟧²ki

⟦Bi⟧ for i ∈ {1, . . . , n}.
This means that for each i, we have positive matrices ρi and non-
negative reals ki such that ⟦Bi⟧= ki⟦Ai⟧+ρi. Now consider the mean-
ings of the two sentences. We have:

φ(Φ) = ϕ(⟦A1⟧⊗ . . .⊗ ⟦An⟧)
φ(Ψ) = φ(⟦B1⟧⊗ . . .⊗ ⟦Bn⟧)

= φ ((k1⟦A1⟧+ρ1)⊗ . . .⊗ (kn ⟦An⟧+ρn)

= (k1 · · · kn)φ(⟦A1⟧⊗ . . .⊗ ⟦An⟧) +φ(P)
where P consists of a sum of tensor products of positive matrices,
namely:

P =
∑

S⊂{1,...,n}

n⊗
i=1

σi

where:

σi =

(
ki⟦Ai⟧ if i ∈ S

ρi if i ̸∈ S
(5)

Then we have:

φ(Ψ)− (k1 . . . kn)φ(Φ) = φ(P)≥ 0

since P is a sum of tensor products of positive matrices, and φ is a
completely positive map. Therefore:

φ(Φ)²k1···kn
φ(Ψ)

as required.
Intuitively, this means that if (some of) the words of a sentence Φ

are k-hyponyms of (some of) the words of sentence Ψ, then this hy-
ponymy is translated into sentence hyponymy. Upward-monotonicity
is important here, in particular as introduced by some implicit quan-
tifiers. It might be objected that dogs bark should not imply pets bark.
If the implicit quantification is universal, then this is true, however
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the universal quantifier is downward monotone in the first argu-
ment, and therefore does not conform to the convention concern-
ing positive phrases. If the implicit quantification is existential, then
some dogs bark does entail some pets bark, and the problem is averted.
Discussion of the behaviour of quantifiers and other word types is
given in, for example, Barwise and Cooper (1981) or MacCartney and
Manning (2007).

The quantity k1 · · · kn is not necessarily maximal, and indeed usu-
ally is not. As we only have a lower bound, zero entailment strength
between a pair of components does not imply zero entailment strength
between entire sentences.
Corollary 1. Consider two sentences:

Φ=
⊗

i

⟦Ai⟧ Ψ =
⊗

i

⟦Bi⟧
such that for each i ∈ {1, . . . , n} we have ⟦Ai⟧ ⊑ ⟦Bi⟧, i.e. there is strict
entailment in each component. Then there is strict entailment between the
sentences φ(Φ) and φ(Ψ).

Proof of Corollary 1. Since ki = 1 for each i = {1, . . . , n},
φ(Φ)²k1···kn

φ(Ψ) =⇒ φ(Φ)²1 φ(Ψ)

=⇒ φ(Φ)≤ φ(Ψ)

We consider a concrete example. Suppose we have a noun space N
with basis {|ei〉}i, and sentence space S with basis {|x j〉} j We consider
the verbs nibble, scoff and the nouns cake, chocolate:

nibble
,

scoff
,
cake

,
chocolate

where these nouns and verbs are pure states. The more general eat and
sweets are given by:

eat
=

1
2

 nibble
+

scoff 
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sweets
=

1
2

 cake + chocolate


Then
scoff

²1/2

eat
and

cake
²1/2

sweets

We consider the sentences:

s1

=

John scoffs cake

,

s2

=

John eats sweets

and as per Theorem 4, we will show that ⟦s1⟧ ²kl ⟦s2⟧ where kl =
1
2 × 1

2 =
1
4 . Expanding ⟦s2⟧ we obtain:

s2

=
1
4


John scoffs cake

+

John scoffs choc

+

John nibbles cake

+

John nibbles choc 
Therefore:

s2

− 1
4

s1

=
1
4


John scoffs choc

+

John nibbles cake

+

John nibbles choc 
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We can see that ⟦s2⟧− 1
4⟦s1⟧ is positive by positivity of the individual

elements and the fact that positivity is preserved under addition and
tensor product. Therefore ⟦s1⟧²kl ⟦s2⟧ as required.
7 a toy experiment

To investigate the effectiveness of the model we perform a toy ex-
periment using a simplified version of the model. We use the dataset
introduced in Balkır et al. (2016). This dataset consists of pairs of sim-
ple sentences annotated by humans as to whether the first sentence
entails the second. Example pairs are:
recommend development |= suggest improvement
progress reduce |= development replace

The first sentence is rated highly by humans for entailment, whereas
the second has lower ratings. The sentences are either noun-verb or
verb-noun, and they are of the same type within the pairs.

We use simplified models of composition which we detail as fol-
lows. The first model is a baseline, where we use only the verb to
predict the entailment between the two sentences. For the second and
third models, we use the notion of a Frobenius algebra. As described
in Kartsaklis et al. (2012), we can ‘lift’ lower-order vectors and tensors
to higher-order ones. This means that we can obtain a representation
for the verb by lifting a density matrix representation. This has the im-
portant aspect that the dimensionality needed to represent the word is
greatly reduced. In the category CPM(FHilb), there are two Frobenius
algebras we can use. The first equates to a pointwise multiplication of
the noun and the verb, and the second is expressed by

ρ(s) = ρ(n)1/2ρ(v)ρ(n)1/2

where ρ(s), ρ(n), and ρ(v) indicate density matrices for the sentence,
noun, and verb respectively.

The last model we examine is an additive model. In general, addi-
tion of two positive operators will not be a morphism in CPM(FHilb).
However, in the particular case where the operators are density ma-
trices, we can design a morphism that will implement addition. We
give this morphism diagrammatically in Figure 9.
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+ = +

Figure 9:
Morphism
implementing
addition of
density matrices

To build density matrices for the nouns and verbs, we firstly
collect a set of hyponyms for each word. To do this, we use Word-
Net (Miller 1995) via the Natural Language ToolKit (nltk) package in
Python (Bird et al. 2009). We traverse the WordNet graph below each
word to a depth of 8, and collect lemma names of every hyponym
encountered. We then use GloVe vectors (Pennington et al. 2014) to
build representations of each word as follows. Firstly, note that in
fact the majority of the hyponyms encountered in WordNet were not
present in the off-the-shelf GloVe dataset. Approximately 47,000 hy-
ponyms were found across all words in the sentence pairs, of which
approximately 10,000 were in the GloVe dataset. To build the density
matrix representations for each word, we simply summed the density
matrices corresponding to each GloVe vector for each hyponym of the
word, and normalised. We added in some small random values along
the diagonal, uniformly distributed over [0,10−3) and renormalised.
This step is used to ensure that there is some minimal amount of en-
tailment between every word. After creating sentence vectors from the
composition of noun and verb vectors, we calculated the entailment
using the result from Theorem 2. We ran the experiments over 50, 100,
200, and 300 dimension vectors. We judged the results by computing
Spearman’s ρ between the generated results and the mean of the hu-
man judgements. The best results were obtained with 50 dimensional
vectors which we report in Table 2.

Model ρ p

Verb-only 0.268 > 0.25

Frobenius mult. 0.508 > 0.05

Frobenius n.c. 0.436 > 0.05

Additive 0.643 > 0.001

Inter-annotator 0.66 –

Table 2:
Results in the sentence entailment task
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All the compositional models beat the verb-only baseline. The
highest scoring model was the additive model, achieving close to inter-
annotator agreement. Note that the sentences were extremely simple,
and so it would be good to see how the commutative additive model
fares when presented with more complex sentences. The best results
from Balkır et al. (2016) were ρ = 0.66 for a vector-based model using
the Spearman’s ρ metric and our results are comparable. These vec-
tors were built using part-of-speech information which our model did
not use, so there is scope for improvement in that direction.

8 conclusion

Integrating a logical framework with compositional distributional se-
mantics is an important step in improving this model of language.
By moving to the setting of density matrices, we have described a
graded measure of hyponymy that may be used to describe the extent
of hyponymy between two words represented within this enriched
framework. This approach extends uniformly to provide hyponymy
strengths between two phrases of the same type. That type can be
any part of speech for which entailment makes sense, such as a noun
phrase, verb phrase, or sentence. This includes pairs of phrases with
differing numbers of words. We have also shown how a lower bound
on hyponymy strength of phrases of the same structure can be calcu-
lated from their components.

Whilst we have given a means for modelling hyponymy in a com-
positional manner, and provided results on how hyponymy strengths
compose, the task of integrating logical and distributional semantics is
extremely wide-ranging. We mention here a number of areas to which
we can start to contribute.

As mentioned in the introduction, some forms of crisp entailment
are based in grammatical structure. So, for example, some adjectives
interact with nouns to narrow down concepts, as in our example of
‘blond men’, and we therefore have that ‘blond men’ is a hyponym of
‘men’. Other adjectives should not operate in this way, such as former
in former president. This phenomenon is related to the notion of down-
ward monotone contexts and the inclusion of negative words like not,
or negative prefixes. At present, our model cannot effectively account
for downward-monotone phenomena. In order to do so, additional
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structure, such as some form of involution, must be added to begin to
model these phenomena.
The area of grammatical kinds of entailment also includes phe-

nomena such as verb-phrase ellipsis. The framework developed here
is all within the category of pregroups, and in order to be able to
model more complex grammatical phenomena, we may need to move
to other grammar categories. This has started to be developed in Kart-
saklis et al. (2016) and we may therefore be able to use these methods
within our current model.
The area of quantification is an important one. Hedges and

Sadrzadeh (2016) have started to develop a theory of quantification
within this framework, and so this is an area is which extension could
be possible.
Another line of inquiry is to examine transitivity behaves. In some

cases entailment can strengthen. We had that dog entails pet to a cer-
tain extent, and that pet entails mammal to a certain extent, but that
dog completely entails mammal.
Our framework supports different methods of scaling the positive

operators representing propositions. Empirical work will be required
to establish the most appropriate method in linguistic applications.
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