
Combining logical and distributional
methods in type-logical grammars

Richard Moot
LIRMM, Montpellier University, CNRS

abstract
Keywords:
type-logical
grammar,
Lambek calculus,
theorem proving

We propose a low-level way of combining distributional and logical
ideas into a single formal system. This will be an instantiation of a
more general system, adding weights to proof rules. These weights will
not measure some sort of “confidence the proof is valid”, but rather
act as a way to prefer some proofs over others, where preference can
mean “easier to process (for humans)” or “more coherent (combining
words that make sense together)”. The resulting system of weighted
theorem proving can be implemented either as a best-first proof search
strategy or as a polynomial-time approximation of proof search for
NP-complete parsing problems.

1 introduction

Type-logical grammars (and formal semantics in general) are agnos-
tic about the meaning of atomic terms, such as those corresponding
to nouns and verbs (though not about the meaning corresponding to
words with logical content such as “not”, “and”, “all”, “which”). An-
other way to see this is that in standard formal semantics, entailment
only holds under strict identity of predicates. As a consequence, prac-
tical use of the output of a system computing such formal semantics
depends to a large extent on the available world knowledge (Bos and
Markert 2005), possibly stated in the form of additional axioms or
meaning postulates, stating that “pub’’ and “bar’’ (in one meaning of
the word) are synonyms, and that “good” and “bad” are antonyms, i.e.
“bad” entails “not good” and inversely.

Journal of Language Modelling Vol 6, No 2 (2018), pp. 287–317

Richard Moot

In contrast to formal semantics in the tradition of Montague, dis-
tributional or vector-based semantics take semantic similarity, as mea-
sured by word cooccurrences, as their basic notion. Systems using only
semantic similarity are agnostic about argument structure and agnos-
tic about the meaning of words with logical content. Given a vector of
a sequence of words, it is not a priori clear how to combine these into
the meaning of a phrase. In other words, vector space models are not
compositional by nature, although many ways of computing vector
space semantics for texts exist, and even the simplest models (adding
or averaging all vectors for the words in a larger text) can perform
well on a number of tasks (see Mitchell and Lapata 2010; Pham 2016,
for discussion).

Whereas compositional formal semantics, unless augmented by
specific lexical meanings or meaning postulates, concludes that “good”
and “bad” are unrelated unary predicates, vector semantics concludes
that “good” and “bad” are very similar. Other semantically similar
words are “animal” and “veterinarian”, and “sweater” and “warm”.
The absence of argument structure (who does what to whom) from
the vectors makes “animal” and “veterinarian” similar: even though
many sentences contain both words, these tend to be sentences where
the veterinarian treats or examines the animal, or where the owner
takes an animal to the veterinarian.

There appears to be some complementarity to these two ap-
proaches: formal semantics takes compositionality as its basic princi-
ple but has little to say about the meaning of individual predicates;
vector semantics takes the similarity of predicates as its basic concept
but then has little to say about compositionality and the words with
logical content.

In this paper, we will look at a low-level way of combining distri-
butional and logical ideas into a single formal system. This will be an
instantiation of a more general system, adding weights to proof rules.
These weights will not measure some sort of “confidence the proof
is valid”, but rather act as a way to prefer some proofs over others,
where preference can mean “easier to process (for humans)” or “more
coherent (combining words that make sense together)”. The resulting
system of weighted theorem proving can be implemented either as a
best-first proof search strategy or as a polynomial-time approximation
of proof search for NP-complete parsing problems.

[288]

Combining logical and distributional methods

2 typeʿlogical grammar
and formal semantics

Definition 2.1 (Type-logical grammar) Given a logic L with formu-
las F , a type-logical grammar over L is a tuple 〈Σ, Lex, goal, yield, h〉,
where
1. Σ is a set of words (the vocabulary of the language),
2. the lexicon Lex, is a function from w ∈ Σ to a (non-empty) subset

of F ,
3. goal, the set of goal formulas is a (non-empty) subset of F ,
4. yield is a function from antecedents of L to sequences of formulas,
5. h is a homomorphism from proofs in L to proofs in multiplicative

intuitionistic linear logic representing their “deep structure”.

Informally, a sentence is grammatical whenever the lexicon as-
signs each word in the sentence a formula, and these formulas produce
a derivable statement in the logic. More formally, we say a sentence
w1, . . . , wn is grammatical if for all i, wi ∈ Σ (each word is in the vo-
cabulary) and there is an Ai ∈ Lex(wi) (we choose, for each word, one
of the formulas assigned to it by the lexicon), there is a structure Γ
with yield(Γ) = A1, . . . , An, and there is a C ∈ goal such that the state-
ment Γ ⊢ C is a theorem of the logic L . A sentence is ungrammatical
otherwise.

Many authors choose the set {s} for goal (that is, the only valid
goal category is s, for sentence). However, for more elaborate gram-
mars, we may be interested not only in declarative sentences, but also
in yes-no questions, wh questions, imperatives, etc., and it seems rea-
sonable to allow such sentences to have a different type of meaning
from declarative sentences.

For the Lambek calculus (Lambek 1958), the logic is L, the yield
function is the identity function (since antecedents Γ of L are already
sequences of formulas), and h translates the Lambek calculus slashes
“/” and “\” to the multiplicative linear logic implication “⊸” (and the
product “•” to multiplicative conjunction “⊗”).

For multimodal type-logical grammars (Moortgat 1997), sequents
are of the form Γ ⊢ C where the antecedent Γ is a labelled tree with
unary and binary branches and with formulas as its leaves. The yield

[289]

Richard Moot
Figure 1:

Proof rules and
corresponding
lambda term
operations

A/B : M U→T B : N U

A : (MN)T
/E

B : N U B\A : M U→T

A : (MN)T
\E

. . . [B : xU]i....
A : M T

A/B : (λx .M)U→T /Ii

[B : xU]i
A : M T

B\A : (λx .M)U→T \Ii

function is simply the left-to-right sequence of formulas occurring as
its leaves (i.e. we use the standard definition of the yield of a tree).

2.1 The Lambek calculus
To makes this more concrete, we’ll instantiate the general type-
logical grammar framework to Lambek’s Syntactic Calculus, L (Lam-
bek 1958). Formulas of the Lambek calculus are inductively defined
from a set of atomic formulas, including np (noun phrase), n (common
noun), s (sentence) and pp (prepositional phrase). A formula in the
Lambek calculus is:
• an atomic formula,
• if A and B are formulas, then A/B (pronounced “A over B”, it looks
for a B formula to its right to produce an A), B\A (pronounced “B
under A”, it looks for a B formula to its left to produce an A) are
formulas.1

Figure 1 shows the natural deduction proof rules for the Lambek
calculus (and the associated lambda term assignments).

The elimination rule for “/”, labeled “/E” states that if we have a
proof with conclusion A/B which is assigned term M (of type U → T)
and a proof with conclusion B which is assigned term N (of type U),
then we can combine these two proofs to form a proof of A which is
assigned lambda-term (M N). The order of the premisses is important:
B must occur adjacent to and to the right of A/B. The elimination rule
for \ is left-right symmetric, with B occurring to the immediate left
of B\A.

1To keep the discussion simple, we do not present the natural deduction
proof rules for the product A• B, representing the concatenation of A and B.

[290]

Combining logical and distributional methods

The introduction rule, labeled “/I”, states that if we have a proof
of A with lambda-term M of some type T , which we have derived
while using a hypothesis B, which is assigned a variable x of type U
and which is the rightmost undischarged hypotheses of this proof,
then we can discharge this B hypothesis to derive A/B of type U → T
with term λx .M . The discharged hypothesis is co-indexed with the
rule, using an index i unique to the proof (for the Lambek calculus
without product, this index is strictly speaking superfluous, since the
leftmost and rightmost undischarged hypotheses are uniquely deter-
mined for each subproof). The introduction rule for \I is again left-
right symmetric, requiring B to be the leftmost undischarged hypo-
thesis.

We will write A1, . . . , An ⊢ C for a proof with undischarged hy-
potheses A1, . . . , An (in the given order) and conclusion C .

As an example, the following Lambek calculus proof shows that
“moons which Galileo discovered” is a noun n. To make the proof more
readable, the lexical entries have been indicated as the conclusions of
a rule Lex with the word occurring above it and the corresponding
formula assigned by the lexicon below it (we will add the lambda
terms later).

moons
n Lex

which
(n\n)/(s/np) Lex

Galileo
np Lex

discovered
(np\s)/np Lex

[np]1
np\s /E

s \E
s/np /I1

n\n /E

n \E

We can read off the lexical assignments from the undischarged
leaves of the proof above. So “discovered” is a transitive verb, looking
for a noun phrase (np, its object) to its right, then for a noun phrase (its
subject) to its left to form a sentence s. The relativiser “which” looks
for a complex formula s/np (that is a sentence missing a noun phrase
in its rightmost position) to its right and for a noun to its left. The
hypothetical np corresponds to a trace in mainstream syntactic theory.
A weakness of the Lambek calculus is that this analysis does not extend
to only slightly more complicated examples such as “moons which
Galileo discovered in 1610”, where the hypothetical noun phrase no

[291]

Richard Moot

longer occurs in a peripheral position. Many variants and extensions of
the Lambek calculus have been developed with the goal of solving this
and other problems (see, for example Moortgat 1997; Morrill 2011).

Given the lexicon, the phrase “moons which Galileo discovered”
is a noun n iff the following holds.

n, (n\n)/(s/np),np, (np\s)/np ⊢ n
The proof above shows this statement holds. Even though it is easy

to verify this proof is correct by inspecting each rule application, it
may not be immediately obvious how to find natural deduction proofs.
In the next section, we will present a proof search procedure for the
implicational fragment of Lambek calculus natural deduction.
2.2 Proof search in natural deduction
For our proof search procedure, the notion of result is useful.
Definition 2.2 Given a formula F , its result is the atomic subformula of
F defined as follows.

result(A) = A if A atomic
result(A/B) = result(A)

result(B\A) = result(A)

Essentially, the result is the atomic formula we obtain once we have
combined a formula with all its arguments. So the result of (np\s)/np
is s and the result of (n\n)/(s/np) is n. Proof search for a sequent
A1, . . . , An ⊢ C in natural deduction works as follows (a more precise
description can be found in Moot and Retoré 2012).
1. If C is a complex formula, apply the appropriate introduction rules
until we obtain an atomic formula p (this may add formulas to the
left of A1 and to the right of An).

2. Select an active hypothesis H of the proof such that result(H) = p
(that is, select a formula which eventually produces the current
atomic goal formula).

3. Our current sequent is of form A1, . . . , Ai−1, H, Ai+1, . . . , An ⊢ p and
we need to subdivide the formulas to the left of H (A1, . . . , Ai−1)
into m subsequences Γ1, . . . , Γm, where m is the number of argu-
ments H takes to its left, and we need to subdivide the formu-
las to the right of H (Ai+1, . . . , An) into k subsequences ∆1, . . . ,∆k

[292]

Combining logical and distributional methods

where k is the number of arguments H takes to its right (this fails
if H selects no arguments to its left and A1, . . . , Ai−1 is not empty,
and similarly if H has no arguments to its right and Ai+1, . . . , An is
not empty). We apply all elimination rules to H until we arrive
at atomic formula p, then recursively find the proofs from step 1
for each of the arguments: proofs Γq ⊢ Bq for arguments to the
left and proofs ∆r ⊢ Dr for arguments to the right. In the simplest
case with a single argument on the right and a single argument
on the left, H = (B\p)/D; there is no need for splitting the Ai fur-
ther and we simply try to find proofs for A1, . . . Ai−1 ⊢ B and for
Ai+1, . . . , An ⊢ D. Succeed if all recursive steps succeed. If not, try
other subdivisions of the hypotheses. Fail when there is no way
to divide the hypotheses such that all subproofs succeed.
The algorithm above has non-determinism in two places. The

first step is deterministic, but in the second step there may be sev-
eral choices for the atomic goal formula and in the third step there
may be several ways to split up the sequence of formulas (we need
multiple arguments either to the right or to the left for this).
As an example, the sequent n, (n\n)/(s/np),np, (np\s)/np ⊢ n has

an atomic conclusion, so nothing needs to be done for the first step.
For the second step, there is the choice of two formulas: either n (cor-
responding to “moons”) or (n\n)/(s/np) (corresponding to “which”).
The first choice fails immediately since there are still formulas to the
right which are not arguments of the formula producing the result (as
it is atomic). The second choice provides a formula looking for an s/np
to its right and an n to its left. Simply writing out the required elimi-
nation rules and separating the hypotheses produces the following.

moons
n Lex
.... δ1

n

which
(n\n)/(s/np) Lex

Galileo
np Lex

discovered
(np\s)/np Lex
.... δ2

s/np
n\n /E

n \E

We now need to complete the procedure recursively to find the
proofs δ1 and δ2. The first subproof is trivial: we are looking for a noun
and there is one, so δ1 is empty and the n premiss and the n conclusion

[293]

Richard Moot

of δ1 become the same formula occurrence. The second subproof has
a complex goal, so according to step 1 we apply the introduction rule
for “/” which produces the following.

moons
n Lex

which
(n\n)/(s/np) Lex

Galileo
np Lex

discovered
(np\s)/np Lex [np]1.... δ3s

s/np /I1

n\n /E

n \E

Our subproof δ3 requires us to prove np, (np\s)/np,np ⊢ s. Since s
is atomic and only the transitive verb has s as its goal, this produces
the following.

moons
n Lex

which
(n\n)/(s/np) Lex

Galileo
np Lex.... δ4

np

discovered
(np\s)/np Lex

[np]1.... δ5

np
np\s /E

s \E
s/np /I1

n\n /E

n \E

We can complete the proof by identifying the atomic noun phrases
in δ4 and in δ5. The given proof procedure is top-down and enumer-
ates eta-long beta-normal form proofs. In addition, different proofs
correspond to different meanings, that is, different proofs will have
different lambda terms assigned to them using the term assignment
of Figure 1. This correspondence between natural deduction proofs
and lambda-terms is the well-known Curry-Howard correspondence.
It is not an isomorphism for the Lambek calculus, since not all intu-
itionistic proofs have a corresponding Lambek calculus proof. Even
stronger, not all multiplicative intuitionistic linear logic proofs have a
corresponding Lambek calculus proof: the Lambek calculus is a logic
without contraction and weakening, like linear logic, but also without
the exchange rule.

Adding the term assignment of Figure 1 produces the following
proof.

[294]

Combining logical and distributional methods

moons
n : m

Lex
which

(n\n)/(s/np) : w
Lex

Galileo
np : g Lex

discovered
(np\s)/np : d

Lex
[np : x]1

np\s : (d x)
/E

s : ((d x) g)
\E

s/np : λx .((d x) g)
/I1

n\n : (w (λx .((d x) g)))
/E

n : ((w (λx .((d x) g)))m)
\E

Each lexical assumption of the proof is assigned a unique variable
(in the example above, this variable is the first letter of the correspond-
ing word for the convenience of the reader) and these have exactly one
free occurrence in the final term (these are linear lambda terms, since
each abstraction binds exactly one variable as well). The lexicon as-
signs both a formula and a corresponding lambda term to each lexical
entry. Computing the formal semantics corresponds to replacing each
word by its lexical semantics. In the current case, ignoring complica-
tions such as tense and the plural, many words have a trivial meaning
assignment, so we replace m by the constant moone→t (or, if we prefer,
by its eta expansion λx e.moon(x)), d by the constant discovere→(e→t), g
by the constant Galileoe. The crucial case is the lexical assignment for
“which”, for which we replace w by λQe→tλP e→tλy e.(P y)∧(Q y). Mak-
ing all lexical substitutions in our original term ((w (λx .((d x) g)))m)
produces the following term.

((λQλPλy.((P y)∧ (Q y))) (λx .((discover x)Galileo)))moon

We apply beta-reduction by substituting λx .((discover x)Galileo) for Q,
which produces the following.

(λPλy.((P y)∧ ((λx .((discover x)Galileo)) y)))moon

A second beta-reduction replaces x by y as follows.

(λPλy.((P y)∧ ((discover y)Galileo)))moon

The final beta-reduction replaces P by moon to produce the following
normal form.

λy.((moon y)∧ ((discover y)Galileo))

[295]

Richard Moot

According to the standard notational conventions of Montague seman-
tics (Gamut 1991), this corresponds to the following more natural
term.

λy.(moon(y)∧ discover(Galileo, y))

That is, the y such that they are moons andwere discovered by Galileo.

2.3 Proof nets
Type-logical grammars generally have multiple proof systems which
are provably equivalent (in the sense that they derive the same the-
orems). Having multiple proof systems available is a great benefit,
because meta-theoretical properties are often easier to prove in one
system than in another.

Even though natural deduction is a nice proof system producing
proofs which are fairly easy to read and which have a direct connec-
tion to the semantics, we will introduce a second proof system, proof
nets, which makes some aspects of proof combinatorics easier to see2.

Proof nets are a proof system introduced for linear logic by Gi-
rard (1987). Proof nets represent proofs as (hyper)graphs, where the
vertices are (polarized) formulas and the hyperlinks represent a con-
nection between the main formula of a rule and its immediate subfor-
mulas. The links for the Lambek calculus are shown in Table 1. The
formulas above a link are its premisses whereas the formulas below it
are its conclusions. The axiom link, on the top left of Table 1 has no
premisses and two conclusions (the order between them is irrelevant),
whereas the cut link, on the top right, has two premisses (in any order)
and no conclusions). The cut link is presented only for completeness,
since the Lambek calculus satisfies cut elimination, we never need to
use a cut link when using proof nets for proof search.

The links for the negative implications correspond to the natural
deduction elimination rules, though the complex formula is the con-
clusion of the link and the main premiss of the elimination rule. The
links for the positive implications correspond to the introduction rules,
with the withdrawn hypothesis as the negative premiss of the rule.

Positive and negative formulas correspond essentially to un-
negated and negated formulas (as in the classical equivalences be-

2Another advantage of proof nets is that, unlike natural deduction, adding
the product rules to the proof net calculus presents no complications.

[296]

Combining logical and distributional methods

−
A

+
A

−
A

+
A

−
B \ A

+
B

−
A

+
B \ A

+
A

−
B

−
A/ B

−
A

+
B

+
A/ B

−
B

+
A

Table 1:
Links for Lambek
calculus proof
structures

tween B → A ≡ ¬B ∨ A and ¬(B → A) ≡ B ∧ ¬A). In the context of
linear logic, polarities function as a restriction on classical formulas
to ensure the intuitionistic restriction to a single conclusion. The dis-
tinction between solid and dotted links corresponds to the distinction
between a logical conjunction (solid) and a logical disjunction (dot-
ted). This distinction plays a key role in deciding the correctness of
proof structures below.

Given a statement A1, . . . , An ⊢ C , we obtain a proof frame by un-
folding the formulas according to the logical links on the bottom row
of Table 1, using the negative unfolding for the Ai and the positive
unfolding for C , until we reach the atomic formulas. We then connect
the atomic formulas by means of the axiom link shown on the top left
of Table 1. We need to respect the linear order of the premisses for the
logical links (and the linear order of the formulas in the sequent), but
the axiom link can connect a positive and a negative atom in either
order.

Figure 2 shows the formula unfolding corresponding to “moons
which Galileo discovered”. The occurrences of the atomic formulas
have been numbered to allow easy reference to them; these numbers
are not a formal part of the proof structure. We saw the natural deduc-
tion proof for this noun in Section 2.1. When all axioms of a formula
unfolding have been linked we call the resulting structure a proof struc-
ture. Not all proof structures correspond to proofs. The proof structures
which do are proof nets. As we will see, we can distinguish proof nets
from other proof structures just by looking at properties of the graph.
For the formula unfolding, it is immediately clear what the search

space for potential proofs is: we need to find a 1-1 matching between
positive and negative occurrences of the same atomic formula. So for
Figure 2, we need to match the positive s1 to the negative s2 (there

[297]

Richard Moot
Figure 2:
Formula

unfolding for
“moons which

Galileo
discovered”

−
(n \ n)/(s / np)

−
n \ n

+
n2

−
n3

+
s / np

−
np1

+
s1

−
n1

−
np2

−
(np \ s)/np

−
np \ s +

np4

+
np3

−
s2

+
n4

moons which Galileo discovered

−
n1

−
n3

+
n2

+
n4

−
np1

−
np2

+
np3

+
np4

−
s2

+
s1

is only one possible solution here), the two positive n’s to the two
negative ones, and the two positive np’s to the two negative ones. The
squares at the bottom of Figure 2 summarise the possibilities.

For Lambek calculus proof nets, the matching of atomic formu-
las must be planar. Planarity corresponds to non-commutativity of the
logic and it therefore holds for the Lambek calculus but not for its ex-
tensions. Given that there is only one possibility for s, planarity con-
strains the possible axiom connections for the np formulas: when the
two s formulas have been connected, the negative np2 corresponding to
“Galileo” can only be connected to the leftmost (subject) noun phrase
np3 of “discovered” since connecting it to the rightmost (object) noun
phrase would force the link to cross the s axiom link. Similarly, the
negative np1 of “which” can only be linked to the object np4 of “dis-
covered” when we require a planar connection.

Finally, there are two planar matchings possible between the two
positive and the two negative nouns: we either connect the negative
n1 of “moons” to the positive n2 of “which” and the negative n3 of
“which” to the positive goal n4, or vice versa (we had the same choice
for natural deduction proof search in Section 2.2).
However, only one of these two possibilities produces a proof net.

There are many graph-theoretical ways to characterise the proof nets
among other proof structures. One simple way, due to Danos (1990),
uses the graph contractions shown in Figure 3.

We first remove all formula information from a proof structure,
replacing formula occurrence by unique vertex indices v0, v1, . . ., then

[298]

Combining logical and distributional methods

vi

v j

vi

v j

⇒p

vi

v j

vi⇒c

Figure 3:
Contractions for proof nets

applying the contractions. A proof structure is a proof net iff it con-
tracts to a single vertex using these contractions. The condition on
the rightmost contraction is that the two vertices are distinct. In other
words, if the proof structure has a cycle containing only solid links,
then we can use this contraction to reduce this cycle to a self-loop,
but we can never eliminate it. Similarly, the contractions only shorten
paths, but do not create new ones. Therefore, if a proof structure is
disconnected, it will never contract to a single point. The leftmost re-
duction corresponds to the dotted links for the positive implications
and it essentially requires us to “join” the two premisses of the link.
As the previous discussion suggests, the contraction criterion is quite
close to the more well-known acyclicity and connectedness condition
(Danos and Regnier 1989). However, the contraction condition has
the advantage of allowing a compact representation of intermediate
structures in proof search, and is therefore more suitable for proof
search (Moot 2017).

With this in mind, it is clear that of the two possible connections
between the n formulas, connecting the two n formulas of “which” to-
gether produces a cycle of solid links, and therefore a structure which
doesn’t contract to a point. In addition, connecting the noun “moons”
to the goal formula produces an axiom link disconnected from the
rest of the structure. Therefore, the structure shown in Figure 4 is the
only proof net given this sequence of formulas. It is easy to verify it
contracts to a point given the contractions of Figure 3. One way of
proceeding is eliminating all “dangling” links (that is, links connect-
ing a single vertex to the rest of the structure). When such links have
been recursively removed, we end up with the pair of dotted links and
a solid path between the positive s and the negative np of this dot-
ted link. We can contract this path to a single vertex, producing the
correct configuration for contracting the pair of dotted links and ap-
ply the final contraction to the resulting solid link to produce a single
vertex.

[299]

Richard Moot
Figure 4:

Proof net for
“moons which

Galileo
discovered”

−
(n \ n)/(s / np)

−
n \ n

+
n

−
n

+
s / np

−
np +

s

−
n

−
np

−
(np \ s)/np

−
np \ s +

np

+
np −

s

+
n

moons which Galileo discovered

3 combinatorics and complexity

Using type-logical grammars for computing the meaning of sentences
and using the resulting meaning for different tasks (entailment, ques-
tion answering, etc.) has the following bottlenecks.
1. Lexical lookup. For wide-coverage grammars, the number of for-
mulas that the lexicon assigns to many common words is rather
large.

2. Proof combinatorics. Finding a proof (or the best proof for some
numerical definition of best) is NP-complete for most type-logical
grammars.

3. Meaning computation. Computing the meaning of a sentence is
done by substituting lexical lambda terms and then normalis-
ing the resulting simply typed lambda term. Normalising simply
typed lambda terms is known to be of non-elementary complex-
ity.

4. Meaning use. Questions of logical entailment between sentences
are undecidable, even in the first-order case.
The focus of the rest of this article will be on Item 2, proof com-

binatorics, but I will offer some brief remarks on the other items.

A probabilistic lexicon The number of lexical formulas per word is a
major problem for real-world applications. However, when we fix a
set of possible formulas and have enough examples of sentences with
the correct formula assignment, we can define a probability model

[300]

Combining logical and distributional methods

over words, together with a limited amount of context (typically the
two preceding and succeeding words). This general approach is called
supertagging (Bangalore and Joshi 2011) and it has been applied suc-
cessfully to many formalisms including type-logical grammars (Moot
2010, 2014b, presents supertaggers for multimodal type-logical gram-
mars for Dutch and for French).
Since the topic of supertagging has been discussed at length else-

where and provides good, practical solutions to the problem of lexical
ambiguity we will not elaborate on it here.

Meaning computation Schwichtenberg (1982) shows that normalis-
ing simply typed lambda terms has non-elementary worst-case com-
plexity. This complexity result essentially exploits recursive copy-
ing. However, there are many implementations of the simply typed
lambda calculus for computational linguistics which perform rather
efficiently, and this in spite of the fact that, in general, little effort is
spent on optimising the implementation of the normalisation compo-
nent. We claim that the meaning recipes necessary for the lexicon are
all terms of soft linear logic, and hence can be reduced in polynomial
time (Lafont 2004; Baillot and Mogbil 2004). This accounts for the
observed fact that lambda term normalisation is not a real bottleneck
in practice (Moot and Retoré 2016).

Logical entailment Given that logical entailment is undecidable in
general, there are two basic strategies:
1. We can use an off-the-shelf theorem prover (generally using some
time limit) and simply see whether it finds a proof. Bos and Mark-
ert (2005) use this approach (as well as some more approximative
measures).

2. We can use an incomplete but decidable logical fragment for com-
puting entailment. Abzianidze (2017) uses this approach.
In both cases, the result is a high-precision but low-recall system

(that is, when the system produces an answer, it is usually right, but
there are many correct answers for which no proofs are found). The
main bottleneck to improving recall is adding a logical formalisation
of a sufficient amount of world knowledge (without reducing prover
performance), a classic problem in artificial intelligence.

[301]

Richard Moot

4 weighted proof systems

Given a sequent Γ ⊢ C , the formula unfolding into a proof frame gives
a compact representation of the proof combinatorics for the given se-
quent. We can combine positive and negative occurrences of the same
atomic formulas until we obtain a proof structure. An atomic formula
a with n positive and n negative occurrences (the number of positive
and negative occurrences for each atomic formula must be equal if
the sequent is derivable; this is called the count check) corresponds
to an n× n matrix, and a potential reading for this sequent, that is a
proof structure, is a perfect matching between positive and negative
occurrences.

When we fill the matrix with weights (we will discuss some dif-
ferent ways of computing these weights below), it becomes possible to
compute the best proof structure according to these weights. We can
either use best-first search, connecting the “best’’ axiom links first for
each local choice, or use a k-best proof structure computation, comput-
ing the k total links which are the best globally. Given that computing
the k-best proof structures this way can be done in polynomial time
(Kuhn 1955), there is no guarantee that the best proof structure is ac-
tually a proof net (unless P=NP). However, we can use a polynomial
k-best system as an incomplete approximation of proof search.
Given two atomic formulas a1 and a2 of the same type (n, np, s)

but of opposite polarity there are different ways of assigning a weight
to the possible axiom link between them.
1. We can use the distance between words as weight, using dis-
tance 0 when the two atomic formulas are subformulas of the
same formula occurrence, distance 1 between adjacent words, etc.

2. We can use a probability-like measure, estimated from proof nets
in a large corpus.

3. We can use the word similarity measure between w1 and w2.
We will discuss each of these alternative measures in turn in the

next sections.

4.1 Word distance
One simple metric to use is word distance, preferring axiom connec-
tions between closer words. This gives a strong preference to linking

[302]

Combining logical and distributional methods

atomic subformulas of the same formula, followed by linking atomic
subformulas of adjacent formulas.
Given a proof net with k axiom links, when processing this proof

net left-to-right performing axiom links as soon as possible, this will
mean each link of distance of n will cause the leftmost corresponding
atom to be open/unlinked for n steps. Measuring the number of open
axioms after each word has been proposed as a straightforward model
of human sentence processing which, in spite of its simplicity, makes a
number of correct predictions about processing (Johnson 1998; Mor-
rill 1998, 2011).

We illustrate this by examining the contrast between Dutch and
German verb clusters. Verb clusters in both Dutch and German can
have a sequence of verb arguments followed by a sequence of verbs
selecting these arguments. The difference between German and Dutch
is that German verbs select these arguments right-to-left (that is, the
leftmost verb selects the rightmost argument) and the Dutch verb se-
lect these arguments left-to-right (that is, the leftmost verb selects the
leftmost argument). This is illustrated by the following contrast.
(1) Wolfgang

Wolfgang
hat
has
die
the
Lehrerin
teacher

die
the
Murmeln
marbles

aufräumen
collect

helfen
help

Wolfgang helped the teacher collect the marbles
(2) Jantje

Jantje
heeft
has

de
the
lerares
teacher

de
the
knikkers
marbles

helpen
help

opruimen
collect

Jantje helped the teacher collect the marbles
Bach et al. (1986) find that, in an experimental setting, German sen-
tences like the one above are harder for German native speakers than
the Dutch sentences are for Dutch native speaker: although the dif-
ference is not very large, the German sentences are not only judged
as harder by the German speakers, but the German test subjects also
make more comprehension errors.
Figure 5 shows the proof net corresponding to sentence (1). The

noun phrases “die Lehrerin” and “die Murmeln” have been not been
treated as a combination of np/n and n but as a simple np to reduce
the size of the proof net. This will not affect the comparison with the
Dutch example.3

3Some other simplifications have been made: neither the German auxiliary
“hat” nor the Dutch auxiliary “heeft” can select a simple infinitive argument (i.e.

[303]

Richard Moot
Figure 5:

Proof net for
“Wolfgang hat
die Lehrerin die

Murmeln
aufräumen
helfen”

−
np

−
(np \ s)/inf

−
np \ s +

inf

+
np −

s

−
np

−
np

−
np \ inf

+
np

−
inf

−
inf \ (np \ inf)

+
inf

−
np \ inf

+
np

−
inf

+
s

Wolfgang hat dL dM aufrämen helfen
1 2 3 4 4 1

Computing the processing complexity using a proof net such as
the one shown in Figure 5 requires us to make some choices. We can
assume that the hearer knows to expect a sentence (and therefore put
the goal formula initially). Morrill (2011) chooses this option. We can
also keep the goal formula at the end, as done here.

There are some other potential complexity issues to take into ac-
count: some choices of lexical formulas and of axiom links lead to
failure and it is possible that this affects processing complexity (at
least it does so for a computer implementation). The size of the par-
tial proof net constructed so far may also play a role (the size of the
contracted partial proof net according to the contractions of Figure 3
seems a good candidate for such a size measure).
Morrill and Johnson use the simplest solution here, measuring

complexity by the successful proof nets when processed left to right,
counting the number of unlinked axioms at each step.
Figure 5 shows a dotted column after each word, together with a

count of the number of axioms it crosses. In the example, after the first
word, “Wolfgang”, there is a single unlinked np, therefore the count is
1. After “hat”, the np of “Wolfgang” becomes linked but an unlinked
s and an unlinked inf are added, leaving a total of 2 unlinked atoms.

we have “Die Lehrerin hat die Murmeln aufgeräumt”, with a past participle rather
than an infinitive); they only take an infinitive argument when this infinitive
itself selects for another infinitive. This can be solved either by adding features
or by distinguishing the atomic types. Bach et al. (1986) note that for German
(but not for Dutch) both grammar textbooks and speakers disagree over whether
the final verb should be an infinitive or a past participle.

[304]

Combining logical and distributional methods

−
np

−
(np \ s)/inf

−
np \ s +

inf

+
np −

s

−
np

−
np

−
np \ inf

+
np

−
inf

−
(np \ inf)/inf

+
inf

−
np \ inf

+
np

−
inf

+
s

Jantje heeft dl dk helpen opruimen
1 2 3 4 3 1

Figure 6:
Proof net for
“Jantje heeft de
lerares de
knikkers helpen
opruimen”

In general, the complexity profile of verb clusters in German (and in
Dutch) rises when the arguments of the verbs in the cluster are en-
countered (the noun phrases “die Lehrerin” and “die Murmeln”), then
descends when the verbs start selecting their arguments. This provides
an explanation for why these sentences quickly become unacceptable
with multiple levels of embedding.
The complexity profile of Figure 5 has a maximum complexity

of 4 and a total complexity of 15.
To provide a proof net for the Dutch example (2), we need some-

what more complex proof net machinery, since the crossed dependen-
cies of Dutch cannot be handled by planar structures. Since these more
complicated proof nets do not affect our chosen complexity measure,
we will simply look at the complexity profile for the non-planar proof
net in Figure 6: this is not a Lambek calculus proof net, and we assume
a proof net calculus which allows only this structure for the example
sentence.
The complexity profiles of the two sentences are the same until

the first infinitive, but then the Dutch sentence has a slight advantage:
its maximum complexity, like the German example, is 4; but its total
complexity is 14, compared to 15 for the German example. This ad-
vantage becomes somewhat more pronounced when we add a third
and a fourth verb.
These examples are interesting because many known psycholin-

guistic facts, even some fairly subtle ones like shown here, are a direct
consequence of rather minimal assumptions about a model of process-
ing. Morrill (2011) presents many other examples.

[305]

Richard Moot

4.2 Corpus estimation
Given a sequent, it is not hard to define a probability distribution over
its proof structures: to obtain such a probability distribution we sim-
ply need to fill the n×n matrix for each atomic formula in such a way
that all rows and all columns sum to 1. In other words, each atomic
formula is assigned a probability distribution over the atomic formu-
las of opposite polarity. For example, looking to Figure 6, for a full
proof search the negative np corresponding to ‘Jantje’ can be linked
to the positive np of ‘heeft’, the positive np of ‘helpen’ and the pos-
itive np of ‘opruimen’ and the sum of these probabilities must be 1.
Similarly, the positive np of ‘heeft’ can be linked to the negative np
of ‘Jantje’, the negative np of ‘de lerares’ and the negative np of ‘de
knikkers’.

Mathematically, it is much harder to define a probability dis-
tribution over proof nets. When we define a probability distribution
over proof structures, we assign a non-zero probability to structures
which do not correspond to proofs. Even though it makes sense a priori
to want non-proofs to have zero probability, this entails that an un-
derivable sequent should fail to be assigned a probability distribution
at all, since no axiom link can contribute to a proof. However, this
means assigning probabilities becomes an NP-hard problem, since we
would be able to decide derivability of a sequent from the success or
failure of computing a probability distribution.

Accepting the assignment of non-zero probability to axiom links
which are not part of any proof is comparable to probabilistic context-
free grammar parsers assigning non-zero probability to constituents
which cannot be part of a derivation of the complete string.

The question for probability assignment is how likely is the nth
atomic formula of word w1 to combine with the kth atomic formula
of w2 (with some form of backoff, for example to the two part-of-
speech tags). In general, we can use well-known statistical methods
(Berger et al. 1996) to compute a probability function from any combi-
nation of properties from formulas, words and context. This possibility
has so far been little explored in the context of type-logical grammars.
In terms of assigning weights to atomic formulas, this is not funda-

mentally different from the other weighted approaches discussed here.
It has the advantage over the other methods that it can distinguish be-
tween different arguments of the same formula (neither the distance

[306]

Combining logical and distributional methods

measure nor the vector similarity measure does this). However, it has
the disadvantage that it requires a large amount of annotated data to
estimate the probabilities.

4.3 Vector similarity
An advantage of using vector similarity rather than a large corpus of
parsed text is that it is much easier to obtain the former than it is
to obtain the latter: a high-quality parsed corpus of sufficiently large
size requires an enormous effort in times of person-hours; on the other
hand, computing word vectors can be done automatically and, using
the enormous amount of text available on the internet, on a scale un-
realistic for any manual method. Computing word vectors from the
web still requires an important effort in crawling, cleaning, duplicate
detection, etc., but nowhere near the person-hours needed to manu-
ally annotate a similar size corpus, something especially relevant for
under-resourced languages: as discussed by Kilgarriff and Grefenstette
(2003), even ‘smaller’ languages such as Icelandic, Basque, Latin and
Esperanto have over 50 million words of text available according to
conservative estimates. For many of the most-used languages on the
internet, cleaned-up and (automatically) annotated versions of this
content are freely available and can be used to extract word vectors
(Baroni et al. 2009).
Weighting axiom links according to the similarity of the words

given by distributional semantics means preferring connections be-
tween words with related meanings (this appears to be close to the
notion of discourse coherence as used by Asher and Lascarides 2003,
only in a more shallow, syntactic context).

Even though this basic idea is easily stated, implementing it re-
quires making some choices. While distributional semantic similarity
is easily defined for two words, defining it for two complex expressions
is essentially the compositionality problem for vector space semantics.

A simple solution would be to choose the vector sum for composi-
tion, and this already performs surprisingly well on several similarity
tasks. However, the vector sum approach is ill-adapted to preferences
in type-logical proofs: given that we need to match the atomic subfor-
mulas of all words in a sentence in any case, and given that the vector
sum operation is associative and commutative, this would not allow

[307]

Richard Moot

us to distinguish between different word groupings (or even between
different word orders).
We therefore need a slightly more sophisticated method for com-

bining vector similarity with proof rules. We adapt the basic idea of
lexicalised parsing with context-free grammars and use a head word
for each expression — the verb for a verb phrase, the noun for a
noun phrase, etc. In the context of type-logical grammar, we there-
fore specify the following general principles, as sort of type-logical
equivalences to the head percolation principles of Magerman (1994):
1. the head of a lexical hypothesis is the word itself,
2. the head of the combination of A/A with A and of A with A\A is
the head of A

3. the head of np/n with n (resp. pp/np with np) is the head of the
noun n (resp. the head of the noun phrase np)

4. the head of other formulas A/B and B\A, with A ̸= B, is the head
of A.
Moreover, for the semantic assignments in a type-logical lexicon,

we can distinguish between the lexical entries whose semantic content
is purely logical (using only the logical constants like “¬” “∧”, “∀”, and
a few other predicates whose meaning is invariant across models, like
“=”and “<”) and those whose semantic content is not (these typically
contain predicates like “love” and “book” corresponding to the lexical
entry itself).4

The basic elements in our formal setup are now triples contain-
ing a formula, a head word, and vector distance weight, with each lex-
ical entry starting with the word lemma as its head and distance
zero. For each elimination rule, the new head word is defined by the
propagation rules above (it is the head of the argument when the
functor is a modifier, a determiner or a preposition, and the head
of the functor otherwise) and the weight is updated by adding the
weights of the two premisses and additionally adding the distance
of the two head words according to the vector model. The rule be-

4This contrast is unfortunately not as sharp as we would like it to be: while
it is simple to see “all” and “some” as purely logical, it is much less easy to see
how other words such as “few” and “many” can be interpreted in terms of purely
logical operators.

[308]

Combining logical and distributional methods

low presents a general elimination rule operating on triples (with
“⊸” generalising over both “/” and “\”) according to this descrip-
tion.

〈w1, h1, A⊸ B〉 〈w2, h2, A〉
〈w1 +w2 + d(h1, h2), h, B〉 ⊸ E

From a purely logical point of view (that is, looking only at the
third element of the triple), this rule operates just like a normal elim-
ination rule. The head h of the conclusion will be either h1 or h2 de-
pending on the head propagation rules described above. The weight
computation uses a distance measure d computing the distance be-
tween the two head words and simple addition. Nothing in partic-
ular hinges on the use of “+” here; any function monotone in both
its arguments can be used here. Many choices are also possible for
the distance measure d, but in the examples below we use the sim-
ple cosine measure which is the most commonly used for distribu-
tional similarity. The cosine measure produces 1 when the vectors
point in the exact same direction, 0 when the vectors are orthog-
onal.5 This ensures the highest-weight proof combines the nearest
vectors.

For the introduction rules, it is somewhat more difficult to define
the proper elements for the discharged hypothesis of the rule. We can
simply choose zero for its weight, but it is unclear what the proper
head word for a hypothesised constituent is. One simple solution is
to assign the empty word ε to such hypotheses and stipulate that the
empty word has distance zero to all other words (i.e. for all w, d(ε, w) =
d(w,ε) = 0). This would give the following introduction rule.

〈0,ε, B〉....〈w, h, A〉
〈w, h, B ⊸ A〉 ⊸ I

We can also use a somewhat more sophisticated rule for subproofs
of the following form.

5 In principle, we can have -1 when the vectors point in the exact oppo-
site direction, although many methods are guaranteed to obtain positive vectors
only.

[309]

Richard Moot

....〈w1, h1, (B ⊸ A)⊸ C〉

[〈0,h1, B〉]k....〈w2, h2, A〉
〈w2, h2, B ⊸ A〉 ⊸ Ik

〈w1 +w2, h1, C〉 ⊸ E

Where for relative pronouns A = s, B = np and C = n\n, and for
generalised quantifiers A= s, B = np and C = s. Essentially, h1 is prop-
agated from the left premiss of the elimination rule to the hypothesis
of the introduction rule. This works well since the head word of a de-
terminer phrase (of type (np ⊸ s)⊸ s) is its noun, and similarly, the
noun argument of the relative pronoun is semantically identical to the
extracted noun phrase B = np.

As a concrete example, a French fragment like “concert de piano
gratuit”, like its English translation “free piano concert”, has two pos-
sible readings, one where there is a piano concert which is free and
one where a free piano is used to give a concert. This type of ambi-
guity, although somewhat reduced by noun/adjective agreement, is
quite common in the French Treebank (Abeillé et al. 2003) and ap-
parently a difficult construction both for journalists and annotators.
Treating this example according the the method described above pro-
vides the following (to reduce horizontal space, we have used w1, w2

and w3 for the weight terms to be discussed later).6

concert
〈0, concert,n〉 Lex

de
〈0,de, (n\n)/n〉 Lex

piano
〈0,piano,n〉 Lex

〈w1,piano,n\n〉 /E

〈w2, concert,n〉 \E gratuit
〈0, gratuit,n\n〉 Lex

〈w3, concert,n〉 \E

The weight w1 of the proof showing “de piano” is of type n\n is
equal to the weight of its to premisses (both zero) plus the distance
between the heads of the two premisses of the rule, “de” and “piano”
in our case, which have a distance of 0.0740, so we conclude w1 is
0.0740. We can now compute the weight of the proof showing “concert
de piano” to be of type n by combining the weight 0 of “concert” with

6Here and elsewhere, all weights are computed used the models provided by
Fauconnier (2016) at http://fauconnier.github.io/#software

[310]

Combining logical and distributional methods

the weight 0.0740 of “de piano” and adding the distance between the
two head words “concert” and “piano’, which is 0.4398 (that is, these
words are fairly close) to arrive at w2 = 0.5138. Finally, we combine
this n with the adjective “gratuit” to compute the final weight w3 by
adding the previously computed w2 to 0 (the weight of “gratuit”) and
adding the distance between “concert” and “gratuit”, which is 0.1921.
This gives us a total weight w3 of 0.7059 for this reading (note that
this number is not a probability and meaningful only in comparison
to similarly computed numbers).

The second proof looks as follows.

concert
〈0, concert,n〉 Lex

de
〈0,de, (n\n)/n〉 Lex

piano
〈0,piano,n〉 Lex

gratuit
〈0, gratuit,n\n〉 Lex

〈w1,piano,n〉 \E
〈w2,piano,n\n〉 /E

〈w3, concert,n〉 \E
Even though the second reading uses the exact same words, it

combines them in a different way, and this affects the weight calcu-
lations. We now combine “piano’ and “gratuit” first, to obtain w1 =
0+0+d(piano, gratuit) = 0.0695. We then combine this result with “de”
and calculate w2 = 0+ w1 + d(de,piano) = 0.0695+ 0.0740 = 0.1435.
Finally, we combine the previous result with “concert” and calculate
w3 = 0+w2 + d(concert,piano) = 0.1435+ 0.4398= 0.5833.
These calculations show a preference for the first reading, where

the concert is free rather than the piano. The key difference between
the two readings is that d(concert, gratuit) > d(piano, gratuit), whereas
the other computed terms are equal.

We can use the same method to compute “voir la fille avec les
lunettes” (to see the girl with the glasses), since d(voir, lunettes) >
d(fille, lunettes), which gives a preference for “voir ... avec les lunettes”
over “fille avec les lunettes”.

Using semantic relatedness like this is, of course, not without its
defects. For example, the verb phrase “saw the star with the telescope”
is structurally identical to the example above, but has only one plau-
sible reading, where “with the telescope” is a verb phrase modifier.
However, “star” and “telescope” are closer semantically than “girl”
and “telescope” are. The problem here is essentially that semantic vec-
tor similarity as we are using it here doesn’t give us any information
about argument structure.

[311]

Richard Moot

This suggests the need for more sophisticated ways to combine
vector semantics, such as used by Baroni and Lenci (2010). In the
context of a real-world system, the lexicon is a probability distribution
over a finite set of formulas and therefore the highest-weight proof for
a sentence must be a combination of the probability over the formu-
las with the weight over the axioms. The right way of combining the
weights of the supertagger (a probability distribution over formulas)
with the vector weights needs to be determined empirically, of course.
Two simple possibilities are:
1. taking the best supertagger sequence for which a proof is found,
then finding the maximum weight proof for this sequence;

2. combine the supertagger probabilities with the weight of the
proof into a single weighted sum; that is, we treat finding the
relative importance of the two weights as a standard machine
learning objective to be determined empirically.
In the case of “voir l’étoile avec le téléscope” (see the star with

the telescope), the supertagger (Moot 2014b) strongly prefers adverbial
use of “with” over adjectival use (26.4% against 0.9%), a very strong
preference in favour of the preferred reading. Therefore, in a real-
world system this problem disappears unless the weighted sum gives
a very strong priority to the vector weight component.
4.4 Vector similarity and proof nets
We can adapt the above strategy with minor modifications to a proof
net parser. This is done by replacing atomic formulas by binary pred-
icates, where the first argument represents the head and the second
argument the weight. For weights, we use the real numbers with the
usual function “+” and the d(w1, w2) function computing the distance
between two words w1 and w2. Instead of having extra-logical head
percolation and weight computation principles, these now form a part
of the lexical entries (although these extra-logical principles would
explain many common patterns occurring in the lexical entries and
would make it possible to create an automatic compilation step adding
the head and weight arguments to a ‘standard’ lexicon). Using first-
order arguments has many applications, including as a solution for
the Dutch verb clusters we’ve seen in Section 4.1 (Moot 2014a). As
we use them here, these arguments are extra-grammatical and serve

[312]

Combining logical and distributional methods

lex(book) = n(book, 0)

lex(the) = np(X , w)/np(X , w)

lex(interesting) = n(X , w+ d(interesting, X))/n(X , w)

lex(read) = (np(X , w1)\s(read, w1+w2+d(w1, read)+d(w2, read))/np(Y, w2)

lex(which) = (n(X , w1)\n(X , w1 +w2))/(s(Y, w2)/np(X , 0)

lex(every) = (s(Y, w1 +w2)/(np(X , 0)\s(Y, w2)))/n(X , w1)

Table 2:
Lexical
assignments with
head word and
weight
computation
information

only as a way to compute preferences among different proofs using
the same formulas.
As before, atomic content words, like the noun “book” are as-

signed the entry n(book, 0). That is, the head constituent of the noun is
“book” itself and the weight assigned to this expression is zero. Table 2
lists some other lexical entries in the current context.
As shown in the table, the determiner “the” is assigned an en-

try simply copying both the head word and the weight, following the
principles of a purely logical word in the previous section.
An adjective such as “interesting” on the other hand copies the

head word, but adds the distance between the head word to the pre-
vious weight.7
Similarly, the transitive verb “read” adds both the distance be-

tween the verb and its subject and the distance between the verb and
its object to the weight of its two arguments.
The weighted entry for “which” requires some explanation. First

of all, the head word X of the resulting noun is the same as the head
of the argument noun (this behaviour is consistent with a noun mod-
ifier, and it makes, for example, “book which ...” behave the same as
“book” in this respect). Second, the extracted np, being a hypothetical
element, starts at weight 0 and shares the head with the noun argu-
ment. This approach therefore expects the long-distance dependency

7Modifiers of modifiers (e.g. adverbs like “very”) cannot be handled in the
same way as in the natural deduction based account of the previous section. Since
they modify the adjective or adverb they select, and since these no longer contain
this adjective or adverb as their head word, we can no longer compute the dis-
tance between e.g. “very” and “interesting”, and between “very” and “quickly”
since both “interesting” and “quickly” are not arguments of any of their atomic
subformulas. The natural deduction approach of the previous section assigns
heads to formulas with no requirement that these be atomic, and this provides a
potential benefit for these cases.

[313]

Richard Moot

between a noun and a relative clause to occur most likely between the
head noun and the verb which is semantically closest to it.
Compared to the standard proof net matching algorithm using

minimisation (or maximisation) of weight, we have now added com-
putation of weights to the matching process. This presents something
of a complication. However, since we need to do only simple computa-
tions (addition, vector cosine) in each cell of the matrices representing
the search space, this doesn’t make a big difference computationally.

4.5 Limitations
The current method doesn’t distinguish between object and subject
arguments and this is an important weakness.8 This limitation is es-
sentially a consequence of the division of labour between the distri-
butional and type-logical approaches: the type-logical component of
the system is solely responsible for word order while the distributional
component only tests for similarity between a verb and its argument,
taking neither grammatical nor structural considerations into account.
We therefore need either a more subtle similarity measure or another
way of distinguishing the likely relations between a verb and its dif-
ferent arguments.

5 conclusions and future work

We have given an overview of several methods of adding weights to
proof search in type-logical grammars. With the exception of Bonfante
and de Groote (2001), this possibility has been seldom discussed in the
type-logical grammar literature, to our surprise. We have given appli-
cations of weighted proof search to modelling human processing, to
finding parses most similar to those found in a given corpus, and to
finding parses which prefer grouping similar words together. These
methods still need to be thoroughly evaluated beyond the manually
calculated examples shown here. Fortunately, for many current type-
logical grammars and their theorem provers, the groundwork for in-
corporating weighted proof search has already been laid down. Given

8As discussed in Section 4.2, we can incorporate this when estimating prob-
abilities from a corpus, but not for the other methods discussed here, i.e. vector
similarity and word distance.

[314]

Combining logical and distributional methods

the many potential applications of weighted proof search, we look for-
ward to testing these methods against available data for parsing and
human processing.

references
Anne Abeillé, Lionel Clément, and François Toussenel (2003), Building a
Treebank for French, in Anne Abeillé, editor, Treebanks, volume 20 of Text,
Speech and Language Technology, pp. 165–187, Springer.
Lasha Abzianidze (2017), A natural proof system for natural language, Ph.D.
thesis, Tilburg University.
Nicolas Asher and Alex Lascarides (2003), Logics of Conversation, Cambridge
University Press.
Emmon Bach, Colin Brown, and William Marslen-Wilson (1986), Crossed
and Nested Dependencies in German and Dutch: A Psycholinguistic Study,
Language and Cognitive Processes, 1(4):249–262.
Patrick Baillot and Virgile Mogbil (2004), Soft Lambda-calculus: A
Language for Polynomial Time Computation, in Foundations of software science
and computation structures, pp. 27–41, Springer.
Srinivas Bangalore and Aravind Joshi (2011), Supertagging: Using Complex
Lexical Descriptions in Natural Language Processing, MIT Press, Cambridge,
Massachusetts.
Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros
Zanchetta (2009), The WaCky Wide Web: A Collection of Very Large
Linguistically Processed Web-Crawled Corpora, Language Resources and
Evaluation, 43(3):209–226.
Marco Baroni and Alessandro Lenci (2010), Distributional Memory: A
General Framework for Corpus-based Semantics, Computational Linguistics,
36(4):673–721.
Adam Berger, Stephen Della Pietra, and Vincent Della Pietra (1996), A
Maximum Entropy Approach to Natural Language Processing, Computational
Linguistics, 22(1):39–71.
Guillaume Bonfante and Philippe de Groote (2001), Stochastic Lambek
Categorial Grammars, in Geert-Jan Kruijff, Larry Moss, and Richard T.
Oehrle, editors, Proceedings of FGMOL 2001, volume 53 of Electronic Notes in
Theoretical Computer Science, Elsevier.
Johan Bos and Katja Markert (2005), Recognising Textual Entailment with
Logical Inference, in Proceedings of the 2005 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2005), pp. 628–635.

[315]

Richard Moot

Vincent Danos (1990), La logique linéaire appliquée à l’étude de divers processus
de normalisation (principalement du λ-calcul) [Linear logic applied to the study of
various normalisation processes (mainly of the lambda calculus)], Ph.D. thesis,
University of Paris VII.
Vincent Danos and Laurent Regnier (1989), The Structure of Multiplicatives,
Archive for Mathematical Logic, 28:181–203.
Jean-Philippe Fauconnier (2016), Acquisition de liens sémantiques à partir
d’éléments de mise en forme des textes : exploitation des structures énumératives
[Acquisition of semantic relations from text layout elements: exploitation of
enumerative structures], Ph.D. thesis, Université de Toulouse.
L. T. F. Gamut (1991), Logic, Language and Meaning, volume 2, The University
of Chicago Press.
Jean-Yves Girard (1987), Linear Logic, Theoretical Computer Science, 50:1–102.
Mark Johnson (1998), Proof Nets and the Complexity of Processing
Center-Embedded Constructions, Journal of Logic, Language and Information,
7(4):443–447.
Adam Kilgarriff and Gregory Grefenstette (2003), Introduction to the
Special Issue on the Web as Corpus, Computational Linguistics, 29:333–347.
Harold W. Kuhn (1955), The Hungarian Method for the Assignment Problem,
Naval Research Logistics Quarterly, 2:83–97.
Yves Lafont (2004), Soft Linear Logic and Polynomial Time, Theoretical
Computer Science, 318(1):163–180.
Joachim Lambek (1958), The Mathematics of Sentence Structure, American
Mathematical Monthly, 65:154–170.
David M. Magerman (1994), Natural language parsing as statistical pattern
recognition, Ph.D. thesis, University of Pennsylvania.
Jeff Mitchell and Mirella Lapata (2010), Composition in Distributional
Models of Semantics, Cognitive Science, 34:1388–1429.
Michael Moortgat (1997), Categorial Type Logics, in Johan van Benthem
and Alice ter Meulen, editors, Handbook of Logic and Language, chapter 2,
pp. 93–177, Elsevier/MIT Press.
Richard Moot (2010), Automated Extraction of Type-logical Supertags from
the Spoken Dutch Corpus, in Srinivas Bangalore and Aravind Joshi, editors,
Complexity of Lexical Descriptions and its Relevance to Natural Language
Processing: A Supertagging Approach, chapter 12, pp. 291–312, MIT Press,
Cambridge, Massachusetts.
Richard Moot (2014a), Extended Lambek Calculi and First-order Linear Logic,
in Claudia Casadio, Bob Coecke, Michael Moortgat, and Philip Scott,
editors, Categories and Types in Logic, Language, and Physics: Essays dedicated to

[316]

Combining logical and distributional methods

Jim Lambek on the Occasion of this 90th Birthday, number 8222 in Lecture Notes
in Artificial Intelligence, pp. 297–330, Springer, Heidelberg.
Richard Moot (2014b), A Type-logical Treebank for French, Journal of
Language Modelling, 2(2).
Richard Moot (2017), The Grail Theorem Prover: Type Theory for Syntax and
Semantics, in Zhaohui Luo and Stergios Chatzikyriakidis, editors, Modern
Perspectives in Type Theoretical Semantics, Springer.
Richard Moot and Christian Retoré (2012), The Logic of Categorial Grammars:
A Deductive Account of Natural Language Syntax and Semantics, number 6850 in
Lecture Notes in Artificial Intelligence, Springer, Heidelberg.
Richard Moot and Christian Retoré (2016), Natural Language Semantics and
Computability, Technical report, LIRMM.
Glyn Morrill (1998), Incremental Processing and Acceptability, Technical
Report LSI–98–46–R, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya.
Glyn Morrill (2011), Categorial Grammar: Logical Syntax, Semantics, and
Processing, Oxford University Press, Oxford.
The Nghia Pham (2016), Sentential Representations in Distributional Semantics,
Ph.D. thesis, University of Trento.
Helmut Schwichtenberg (1982), Complexity of Normalization in the Pure
Typed Lambda-Calculus, in The L. E. J. Brouwer Centenary Symposium,
pp. 453–457, North-Holland.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[317]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Type-logical grammarand formal semantics
	The Lambek calculus
	Proof search in natural deduction
	Proof nets

	Combinatorics and complexity
	Weighted proof systems
	Word distance
	Corpus estimation
	Vector similarity
	Vector similarity and proof nets
	Limitations

	Conclusions and Future Work

