
Computing and classifying reduplication
with 2-way finite-state transducers

Hossep Dolatian and Jeffrey Heinz
Stony Brook University

ABSTRACT

Keywords:
reduplication,
2-way finite state
transducer, finite
state morphology

This article describes a novel approach to the computational modeling
of reduplication. Reduplication is often treated as a stumbling block
within finite-state treatments of morphology because they cannot ad-
equately capture the productivity of unbounded copying (total redu-
plication) and because they cannot describe bounded copying (par-
tial reduplication) without a large increase in the number of states.
We provide a comprehensive typology of reduplicative processes and
show that an understudied type of finite-state machine, 2-way deter-
ministic finite-state transducers (2-way D-FSTs), captures virtually all
of them. Furthermore, the 2-way D-FSTs have few states, are in prac-
tice easy to design and debug, and are linguistically motivated in terms
of the transducer’s origin semantics or segment alignment. Most of
these processes, and their corresponding 2-way D-FSTs, are available
in an online database of reduplication (RedTyp). We classify these 2-
way D-FSTs according to the concatenation of known subclasses of
regular relations and show that the majority fall into the Concate-
nated Output Strictly Local (C-OSL) class. Other cases require higher
subclasses but are still definable by 2-way D-FSTs.

Journal of Language Modelling Vol 8, No 1 (2020), pp. 179–250

Hossep Dolatian, Jeffrey Heinz

1 INTRODUCTION

Reduplication is a cross-linguistically common word-formation pro-
cess involving copying. Given a word, reduplication can copy either a
bounded (1a) or unbounded (1b) number of segments. The symbol ∼
marks the boundary between the two copies.
(1) a. Partial Reduplication Agta (Moravcsik 1978, 311)

takki → tak∼takki ‘leg’ → ‘legs’
b. Total Reduplication Indonesian (Cohn 1989, 308)
buku → buku∼buku ‘book’ → ‘books’

Reduplication is used in the majority of the world’s languages,
and total reduplication is more common than partial reduplication.
The World Atlas of Language Structures (WALS) database documents
that 278 out of 368 (75%) languages have total and partial reduplica-
tion (Rubino 2013). 35 additional languages (10%) use only total, not
partial, reduplication. The 55 (15%) remaining languages do not have
productive reduplication, but this figure is debatable.1 Therefore, de-
veloping analyzable and efficient computational models of reduplica-
tion is important.

Although reduplication is well-studied, it is a computationally
challenging process (Sproat 1992). In computational linguistics, most
morphological and phonological processes can be analyzed with finite-
state calculus in terms of rational languages and transductions (Kaplan
and Kay 1994; Beesley and Karttunen 2003). However, reduplicative
processes cannot be easily modeled with the same finite-state systems.
For total reduplication, this is because those finite-state systems can-
not express unbounded copying in the first place (Culy 1985). As for
partial reduplication, those finite-state systems are often described as
unwieldy because of the state explosion caused by partial reduplica-
tion (Roark and Sproat 2007, 54). Section 2 of this article explains why
reduplication is computationally challenging while reviewing previ-
ous computational approaches to this linguistic phenomenon.

1Most of the exceptional languages are Indo-European, but some argue that
these languages still use total reduplication (Ghomeshi et al. 2004; Stolz et al.
2011).

[180]

Reduplication with 2-way FSTs

In this context, the primary contribution of this article is to show
that a specific understudied type of finite-state technology can ac-
count for virtually all reduplicative processes. This type of transducer
is known as a 2-way Finite-State Transducer or 2-way FST (Savitch
1982; Engelfriet and Hoogeboom 2001; Filiot and Reynier 2016).2
In theoretical computer science, 2-way FSTs are known to be able to
model unbounded copying (Engelfriet and Hoogeboom 2001). To our
knowledge, we are the first to apply 2-way FSTs to computational lin-
guistics.3

The FSTs used in most of computational linguistics are more ac-
curately called 1-way FSTs. They can only read the input once in
one direction. 2-way FSTs are more expressive because the read head
can move back and forth on the input tape. On the other hand, the
write head can only move forward on the output tape. For this rea-
son, they are less expressive than Turing machines. It is this back-and-
forth movement of the read head that allows 2-way FSTs to adequately
model reduplication without the difficulties faced by 1-way FSTs. This
article introduces deterministic 2-way finite-state transducers (2-way
D-FSTs) in Section 3, along with their formal definition (Section 3.1),
illustrative examples of reduplication (Section 3.2), and their compu-
tational properties (Section 3.3).

The fact that the 2-way FSTs used in this article are deter-
ministic is significant. It is well known that deterministic 1-way
FSTs are less expressive than non-deterministic 1-way FSTs (El-
got and Mezei 1965; Schützenberger 1975; Choffrut 1977; Mohri
1997; Heinz and Lai 2013). Similarly, 2-way D-FSTs are less ex-
pressive than non-deterministic 2-way FSTs (Culik and Karhumäki
1986). Consequently, the empirical result that reduplication can
be modeled with deterministic 2-way FSTs is in line with work
which shows that various phonological and morphological pro-
cesses can be described with deterministic finite-state technology
(Chandlee et al. 2012; Gainor et al. 2012; Chandlee and Heinz

2This article builds off of our previous work on using 2-way FSTs for redu-
plication (Dolatian and Heinz 2018a,b, 2019a,b).

32-way finite-state acceptors (2-way FSAs) have been used to model non-
concatenative Semitic morphology (Narayanan and Hashem 1993) and to parse
dependency grammars (Nelimarkka et al. 1984).

[181]

Hossep Dolatian, Jeffrey Heinz

2012; Heinz and Lai 2013; Chandlee 2014; Luo 2017; Payne 2014,
2017).

In the later part of this article, we provide a comprehensive
cross-linguistic survey of reduplicative processes based on earlier ty-
pological studies (Moravcsik 1978; Rubino 2005; Inkelas and Down-
ing 2015a), with reduplication defined as an input-to-output function
(McCarthy and Prince 1995). This survey is documented in a database
we constructed, which we call The RedTyp database. It contains en-
tries for 138 reduplicative processes from 91 languages and a 2-way D-
FST for each entry. Aspects of this survey are presented in Sections 3–
4, and discussed in detail in Section 6.

In Section 4, we compare 2-way D-FSTs to 1-way FSTs in terms
of empirical coverage (Section 4.1), practical utility (Section 4.2), and
linguistic motivation (Section 4.3). We argue that 2-way D-FSTs are
linguistically motivated in that they capture the correspondence rela-
tions underlying the base and the reduplicant in a linguistically natu-
ral way. These correspondence relations are couched in terms of origin
semantics (Bojańczyk 2014). We use origin semantics as a diagnostic
for the strong generative capacity of reduplicative functions. (We do
not claim that origin semantics matches linguistic intuitions exactly in
every case, but rather that it approximately does so in many instruc-
tive cases.)

The final contribution of this article is an attempt to classify redu-
plicative processes according to subclasses of 2-way D-FSTs in Sec-
tion 6. The first result we already mentioned: the full typology of redu-
plicative processes can be modeled with deterministic 2-way D-FSTs.
These subclasses are defined in terms of concatenations of subclasses
of 1-way FSTs. Our next result is that approximately three-quarters of
the typology is expressible with the concatenation of Output Strictly
Local (OSL) functions (Chandlee et al. 2015). The remainder of the ty-
pology is expressible with the concatenation of sequential functions,
with some arguably requiring sweeping transducers or unrestricted
2-way D-FSTs.

We review these contributions and conclude in Section 7.

[182]

Reduplication with 2-way FSTs

2BACKGROUND ON COMPUTATION
OF REDUPLICATION

Within computational linguistics, reduplication has been a challeng-
ing process to model (Culy 1985; Sproat 1992; Roark and Sproat 2007;
Hulden 2009a; Chandlee 2014, 2017). Finite-state technology, as cur-
rently practiced, cannot adequately and elegantly describe many cases
of productive reduplication, especially unbounded total reduplication.
There are three kinds of issues: empirical coverage, practical util-
ity, and matching the intensional description of reduplication. We
discuss these challenges in Section 2.1. In response to these prob-
lems, some have proposed finite-state approximations for reduplica-
tion (Section 2.2) or developing more expressive systems just for total
reduplication (Section 2.3). The latter approach however implies that
total reduplication is ontologically different from partial reduplica-
tion, and thus should be computed differently. In Section 2.4, we dis-
cuss this implication and show that the evidence for it is inconclusive.
We summarize in Section 2.5.

2.1Why reduplication is challenging

Reduplication is challenging because segmental copying entails multi-
ple crossing dependencies between the two copies. When the number
of copied segments (and thus the number of crossing dependencies) is
bound to some maximum number n, the outcome is partial reduplica-
tion. When there is no bound, the outcome is total reduplication.

Partial reduplication can be modeled with 1-way FSTs (Roark and
Sproat 2007; Chandlee and Heinz 2012). However, as we explain in
more detail in Section 4.3, these machines are understood as memoriz-
ing all finitely-many possible forms of the partial reduplicant. Conse-
quently, the transducers suffer from an explosion of states and become
unwieldy. For example, in a language with a medium-sized phonemic
inventory of 22 consonants and 5 vowels, partial reduplication with a
CVCV template would require at least 22+22×5+22×5×22= 2552
states to memorize the first C (22 states), the first V (22 × 5 states),
and the second C (22 × 5 × 22 states). 1-way FSTs likewise arguably

[183]

Hossep Dolatian, Jeffrey Heinz

do not match the intensional description of reduplication as a copying
process because the FSTs simply memorize all possible reduplicants in
the language (Roark and Sproat 2007, 54). This is discussed in detail
in Section 4.3.

On the other hand, total reduplication cannot be modeled at all
with 1-way FSTs (Culy 1985). This inability is due to the fact that
the output language of total reduplication is not a regular language.
Rather, the copying process of total reduplication can create output
languages that are identical to the non-context-free Lww = {ww|w ∈ Σ*}
(Hopcroft and Ullman 1969). Thus the copying function w 7→ ww
(sometimes called the squaring function) is beyond the expressivity
of 1-way FSTs. In fact, virtually all attested morphological processes
can be described with 1-way finite-state acceptors and transducers,
except for total reduplication (Langendoen 1981; Gazdar and Pullum
1985; Roark and Sproat 2007). In response to this problem, compu-
tational morphologists have often resorted to using either finite-state
approximations (Section 2.2) or non-finite-state tools (Section 2.3).

2.2 Finite-state approximations

The literature on finite-state morphology contains many finite-state
approximations to reduplication (Walther 2000; Beesley and Kart-
tunen 2003; Cohen-Sygal and Wintner 2006; Hulden and Bischoff
2009). Roark and Sproat (2007, 57) and Cohen-Sygal and Wintner
(2006, 52) provide reviews. In general, finite-state approximations are
designed to lessen the burden for the developer in designing redupli-
cation rules. They introduce new operations or tools over 1-way FSTs
but they do not increase their expressivity. In other words, they are
designed to improve on practical utility but they don’t improve on
empirical coverage or intensional description.

Here we briefly review the two main sets of approaches with
details following. One set of approaches checks for identity between
the two copies (Cohen-Sygal and Wintner 2006; Hulden and Bischoff
2009). Another set of approaches essentially ‘postpones’ reduplication
to a run-time task (Walther 2000; Beesley and Karttunen 2000, 2003).
Both try to reduce state complexity either by making a trade-off with
time complexity, by implementing reduplication with a unique 1-way
transducer for each morpheme in the finite lexicon, or both.

[184]

Reduplication with 2-way FSTs

Cohen-Sygal and Wintner (2006) augment 1-way FSAs with
finitely many registers (FSRA). These registers keep track of a bounded
number of segments previously seen in the input. In order to model
the total reduplication of a given word like buku → buku∼buku (1b),
the FSRA has at least as many registers as segments in the base buku:
four. The registers check that the string buku∼buku can be broken
down into identical copies. Similarly, Hulden and Bischoff (2009) de-
sign the EQ function within the foma system (Hulden 2009b) which
checks if a string is divided into two identical copies.

As for run-time procedures, these systems are designed on an in-
put by input basis. Given some input word, they create a reduplication
FST for it on the fly. Given an input buku, the compile-replace operation
(Beesley and Karttunen 2000, 2003) creates an intermediate represen-
tation {buku}^2 via a 1-way FST. This intermediate representation is
then interpreted as a regular expression in run-time, i.e. it is compiled.
By compiling this regular expression, the word bukubuku is outputted.

Within the framework of One-Level Phonology (Bird and Elli-
son 1994), Walther (2000) models reduplication by representing a
potentially-reduplicated morpheme like buku as an FSA with augmen-
tations on the types of transition arcs: content, repeat, and skip arcs.
These transition arcs turn a linear string buku into a multi-linear struc-
ture where the read head can ‘move’ around the string. This enriched
representation is then intersected with a reduplication FSA that is de-
signed to ‘move’ around this enriched representation and generate
buku∼buku.4 Ideally, these operations should be applied in run-time.
Otherwise, if these operations are applied to the entire lexicon and
stored as a single FST, they then suffer from the state explosion that
they were designed to avoid.

As for total reduplication, all four of the above modifications are
approximations. This is because they impose various restrictions which
contradict the linguistic generalization that total reduplication is inde-
pendent of string length. Most notably, all four approximations permit
only a closed finite set of input strings to undergo total reduplication.
This restriction fundamentally alters total reduplication from a process

4Walther (2000) does not give a formal analysis. But, we think that these
augmented transition arcs are similar to 2-way FSAs and are an independently
developed implementation for Precedence-Based Phonology (Raimy 2000).

[185]

Hossep Dolatian, Jeffrey Heinz

which in principle applies to infinitely many words to a process which
applies to only finitely many. Such approximations thus fall short of
capturing how total reduplication is used as a productive process in
natural language.

As for partial reduplication, all of the above four approaches have
the same expressivity and are able to capture the linguistic generaliza-
tion that partial reduplication is independent of string length. How-
ever, although they are designed to avoid state explosion by onemeans
or another, they can still be said to memorize the partial reduplicant
as opposed to copying it (see Section 4.3). In this way they do not
intensionally capture the linguistic generalization of copying.

2.3 Extending formal power

Because of the difficulty in modeling reduplication with finite-state
machinery, various augmentations and expansions of context-free
grammars have been proposed to handle Lww and reduplication.
An early augmentation is Reduplication Context-Free Grammars
(Manaster-Ramer 1986; Savitch 1989) designed to handle context-free
languages and reduplication by using queues instead of stacks. A more
recent augmentation is Multiple-Context Free Grammars (MCFGs)
which can model Lww (Seki et al. 1991, 1993). MCFGs have been
used to model reduplication (Albro 2000, 2005). As an extension of
MCFGs, Parallel MCFGs have been used to model reduplication and
syntactic copying (Kobele 2006; Clark and Yoshinaka 2012, 2014;
Clark 2017).5 Crysmann (2017) explores the use of HPSG to model
total reduplication.

These technologies have had considerably less attention within
mainstream computational morphology than finite-state approxima-
tions. One shortcoming of these approaches is that they model formal
languages, not transformations. They accept well-formed reduplicated
words ww, but they do not generate a reduplicated word ww given
some input w. Thus, they do not model the squaring function w 7→ ww.

5Kobele (2006) shows that syntactic copying can generate languages of the
form a2n , i.e., exponential copying. This isn’t attested in morphological copying.
Note the string a2n is generated as the yield language of a tree transduction over
a derivation tree.

[186]

Reduplication with 2-way FSTs

2.4Computational distinctions
between total and partial reduplication

The previous sections showed that more expressive mechanisms are
needed to model reduplication. Conceptually, the use of more power-
ful computational formalisms implies that reduplication is ‘different’
from the rest of morpho-phonology which can bemodeled using 1-way
FSTs (Roark and Sproat 2007, 60). This is especially the case for to-
tal reduplication which cannot be exactly modeled with 1-way FSTs,
whereas partial reduplication can. This difference has caused debates
over whether both types of reduplication should be computed with the
same formalism or not. However, this debate is inconclusive.

On one hand, Chandlee (2017) suggests that the inadequacy of
1-way FSTs for total reduplication is evidence for total reduplication
being ontologically different from partial reduplication. There is some
empirical support for this argument. Prosodically, total reduplication
resembles more ‘syntactic’ processes like compounding more often
than partial reduplication (Downing 2006). The two copies in total
reduplication can be stressed separately or have separate tonal con-
tours (Downing 2003).

On the other hand, partial and total reduplication are closely re-
lated processes. Typologically, if a language has partial reduplication,
then it almost always has total reduplication too (Rubino 2013). Di-
achronically, both types of reduplication are typically related to each
other, but not always (Hurch and Mattes 2009). And in linguistic the-
ory, both are modeled with the same tools (Steriade 1988; Raimy
2000; Inkelas and Zoll 2005; McCarthy et al. 2012).

Psycholinguistic work could shed more light on the issue of total
reduplication vis a vis partial reduplication. Sadly, there is little to
no work on the psycholinguistic processing of reduplication. To our
knowledge, existing work focuses on partial reduplication, not total
reduplication (Ohala et al. 1986; Waksler 1999).

Learnability is another factor which could tease apart these pro-
cesses. It is an open question whether both partial and total redupli-
cation can be learned in the same way with the same mechanism. In
terms of stringsets, the formal language of totally reduplicated words
ww can be learned with distributional methods for MCFGs (Clark and
Yoshinaka 2012, 2014, 2016). There is also a substantial body of work

[187]

Hossep Dolatian, Jeffrey Heinz

in cognitive science and connectionism on how to learn reduplicated
words (Marcus et al. 1999; Berent et al. 2014, 2016, 2017; Andan et al.
2018; Alhama 2017; Alhama and Zuidema 2019). Here, the task is
learning words which have repeated substrings (ABB or ABA) where
A and B are syllables.

In contrast, there is little to no work on learning reduplication
as a function (w → ww), whether in machine learning or grammati-
cal inference. To our knowledge, the only algorithm designed specif-
ically for learning reduplication is Nevins (2004) in the principles-
and-parameters tradition. There is some recent work on using neural
networks to learn copying (Gu et al. 2016; Prickett et al. 2018; Wilson
2019; Nelson et al. 2020). We speculate that one reason for the dearth
of learning results is due to the challenges outlined above for finding
natural computational models for reduplication.

2.5 Summary and consequences

All in all, current finite-state treatments of reduplication have issues
regarding their empirical coverage (total reduplication’s productiv-
ity), practical utility (state space explosion), and intensional descrip-
tions (copying vs. remembering). The present study uses a compu-
tational formalism which does not suffer from these three problems:
two-way finite-state transducers (2-way FSTs).

3 2-WAY FINITE-STATE TRANSDUCERS:
DEFINITION AND APPLICATION

TO REDUPLICATION

1-way FSTs read the input once from left to right. Most applications
use non-deterministic 1-way FSTs (Roark and Sproat 2007), though
deterministic 1-way FSTs are largely sufficient (Chandlee 2017). (For
all inputs, deterministic FSTs have at most one path through the trans-
ducer, whereas non-deterministic ones may have more than one path.)
2-way FSTs can move back and forth on the input (Rabin and Scott
1959; Hopcroft and Ullman 1969). This ability makes them more ex-
pressive than 1-way FSTs (Savitch 1982; Engelfriet and Hoogeboom
2001).

[188]

Reduplication with 2-way FSTs

It is useful to imagine a 2-way FST as a machine operating on an
input tape and writing to an output tape. The symbols on the input
tape are drawn from an alphabet Σ and the symbols written to the
output tape are drawn from an alphabet Γ . For an input string w =
σ1 . . .σn, the initial configuration is that the FST is in some internal
state q0, its read head on σ1, and its write head at the beginning of
an empty output tape. After the FST reads the symbol under the read
head, three things occur:
• The internal state of the FST may change.
• The FST writes some string, possibly empty, to the output tape.
• The read head moves in one of three ways: moves to the left (−1),
moves to the right (+1), or stays (0).

This process repeats until the read head “falls off” one of the edges of
the input tape. If for some input string w, the FST falls off the right
edge of the input tape when the FST is in an accepting state after
writing u on the output tape, we say the FST transduces, transforms,
or maps, w to u. If for some input string w, the FST falls off the left
edge, falls off the right edge while in a non-accepting state, or never
falls off either edge, then the FST is undefined at w. The write head
cannot move back along the output tape. It can only advance as strings
are written.

We formalize the definition and behavior of 2-way FSTs in Sec-
tion 3.1. They are illustrated for reduplication in Section 3.2. We then
describe their generative capacity and computational complexity (Sec-
tion 3.3).

3.1Preliminaries and formal definition

Given a finite alphabet Σ, the set of all possible strings of finite length
built from Σ is Σ∗. The empty string is represented by λ. The length
of a string w is |w|, so |λ| = 0. For the given strings w1, w2, their con-
catenation is w1w2. Below is a formalization of deterministic 2-way
FSTs based on Filiot and Reynier (2016) and Shallit (2008). We adopt
the convention that inputs to a 2-way D-FST are flanked with the
start (⋊) and end (⋉) boundaries. This larger alphabet is denoted
by Σ⋉.

[189]

Hossep Dolatian, Jeffrey Heinz

(2) Definition: A 2-way D-FST is a six-tuple (Q,Σ⋉, Γ , q0, F,δ)
where:
• Q is a finite set of states,
• Σ⋉ = Σ∪ {⋊,⋉} is the input alphabet,
• Γ is the output alphabet,
• q0 ∈Q is the initial state,
• F ⊆Q is the set of final states,
• δ : Q×Σ→Q× Γ ∗× D is the transition function where the
direction D = {−1,0,+1}.

A configuration of a 2-way D-FST T is an element of Σ∗⋉QΣ∗⋉ × Γ ∗.
The meaning of the configuration (wqx , u) is that the input to T is wx
and the machine is currently in state q with the read head on the first
symbol of x (or has fallen off the right edge of the input tape if x = λ)
and that u is currently written on the output tape.

If the current configuration is (wqax , u) and δ(q, a) = (r, v,0)
then the next configuration is (wrax , uv), in which case we write
(wqax , u) → (wrax , uv). If the current configuration is (wqax , u) and
δ(q, a) = (r, v,+1) then the next configuration is (war x , uv). In this
case, we write (wqax , u) → (war x , uv). If the current configuration
is (waqx , u) and δ(q, a) = (r, v,−1) then the next configuration is
(wrax , uv). We write (waqx , u)→ (wrax , uv). Observe that since δ is
a function, there is at most one next configuration.

The transitive closure of → is denoted with →+. Thus, if c →+ c′
then there exists a finite sequence of configurations c1, c2 . . . cn with
n> 1 such that c = c1→ c2→ . . .→ cn = c′.
Next we define the function fT that a 2-way D-FST Tcomputes.

For each string w ∈ Σ∗, fT (w) = u ∈ Γ ∗ provided there exists q f ∈ F
such that (q0 ⋊ w⋉,λ) →+ (⋊w ⋉ q f , u). If fT (w) = u then u is unique
because the sequence of configurations is determined deterministi-
cally.

If the configurations of a 2-way D-FST T halt the computation of
T on some input w, then we say T is undefined on w. If the configura-
tion is (qax , u) and δ(q, a) = (r,−1, v) then the derivation crashes and
the transduction fT (ax) is undefined. Likewise, if the configuration is
(wq, u) and q 6∈ F then the transducer crashes and the transduction fT

is undefined on input w. Another way that fT may be undefined for
some input is if the input causes the transducer to go into an infinite

[190]

Reduplication with 2-way FSTs

loop.6 This occurs for input wx ∈ Σ∗⋉ whenever there exist q ∈ Q and
u, v ∈ Γ ∗ such that (q0wx ,λ)→+ (wqx , u)→+ (wqx , uv).

3.2Illustration of two-way transducers for reduplication

Having established what 2-way D-FSTs are, this section illustrates how
they can be used to model reduplication. We provide two examples:
total reduplication and partial initial-CVC reduplication. Both exam-
ples use deterministic 2-way FSTs.

Some useful terms are ‘passes’ and ‘rewinds’. A pass (rewind) is
when a 2-way D-FST moves left-to-right (right-to-left) from some po-
sition to another over the input.

Total reduplication is cross-linguistically the most common redu-
plicative process (Rubino 2005), and it is used in an estimated 85% of
the world’s languages (Rubino 2013). We illustrate it with data from
Indonesian where total reduplication marks plurality (Cohn 1989).
(3) a. buku → buku∼buku ‘book’ → ‘books’

b. wanita → wanita∼wanita ‘woman’ → ‘women’
c. hak → hak∼hak ‘right’ → ‘rights’
d. kəra → kəra∼kəra ‘donkey’ → ‘donkeys’

Figure 1 shows a 2-way D-FST that captures total reduplication.
The boundary symbol ∼ is a symbol in the output alphabet Γ , and is
not necessary. We include it only for illustration. The 2-way D-FST in
Figure 1 operates as follows:
1. First pass: It reads the input tape from left to right and outputs
the first copy.

2. Rewind: When it reaches the end boundary ⋉, it ‘rewinds’ or goes
back to the start of the input tape by moving left until the start
boundary ⋊ is reached.

3. Second pass: It reads the input tape once more from left to right
and outputs the second copy.

6 In practice, infinite loops are not a problem. It can be checked whether an
input leads the 2-way D-FST into an infinite loop during run-time, in which case
the computation can be halted.

[191]

Hossep Dolatian, Jeffrey Heinz

q0start q1 q2 q3 q f
(⋊,λ,+1)

(Σ,Σ,+1)

(⋉,λ,−1)

(Σ,λ,−1)

(⋊,∼,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Figure 1: 2-way D-FST for total reduplication

The transition arcs are interpreted as follows. The symbol Σ is
a variable representation of any alphabet symbol except for {⋊,⋉}.
The arrow from q1 to itself (Σ,Σ,+1) means this 2-way D-FST reads a
symbol from Σ, writes that same symbol, and advances the read head
one step to the right on the input tape.

Table 1 shows an example derivation for buku→ buku∼buku using
the 2-way D-FST in Figure 1. The derivation shows the step-by-step
configurations for the computation. The tuples in Table 1 consist of

Table 1: Derivation of /buku/ → [buku∼buku]

Outputting the first copy

1. (q0⋊buku⋉, λ, N/A) 2. (⋊q1buku⋉, λ, q0
⋊:λ−−→
+1

q1)
3. (⋊bq1uku⋉, b, q1

Σ:Σ−−→
+1

q1) 4. (⋊buq1ku⋉, bu, q1
Σ:Σ−−→
+1

q1)

5. (⋊bukq1u⋉, buk, q1
Σ:Σ−−→
+1

q1) 6. (⋊bukuq1⋉, buku, q1
Σ:Σ−−→
+1

q1)

Going back to the start of the tape

7. (⋊bukq2u⋉, buku, q1
⋉:λ−−→−1 q2) 8. (⋊buq2ku⋉, buku, q2

Σ:λ−−→−1 q2)

9. (⋊bq2uku⋉, buku, q2
Σ:λ−−→−1 q2) 10. (⋊q2buku⋉, buku, q2

Σ:λ−−→−1 q2)

11. (q2⋊buku⋉, buku, q2
Σ:λ−−→−1 q2)

Outputting the second copy

12. (⋊q3buku⋉, buku∼, q2
⋊:∼−−→
+1

q3) 13. (⋊bq3uku⋉, buku∼b, q3
Σ:Σ−−→
+1

q3)

14. (⋊buq3ku⋉, buku∼bu, q3
Σ:Σ−−→
+1

q3) 15. (⋊bukq3u⋉, buku∼buk, q3
Σ:Σ−−→
+1

q3)

16. (⋊bukuq3⋉, buku∼buku, q3
Σ:Σ−−→
+1

q3) 17. (⋊buku⋉q f , buku∼buku, q3
⋉:⋉−−→
+1

q f)

[192]

Reduplication with 2-way FSTs

three parts. The first two represent the configuration and the third
part shows the transition exercised to reach this configuration from the
previous one. The underlined input symbol is what the FST will read
next. In the first tuple, there is no transition used (N/A). Transitions
in the other tuples are given in the form shown below.

input state input symbol:output string−−−−−−−−−−−−−−−−−→
direction

output state

Partial reduplication processes are also very common. A common
example is initial-CVC reduplication as in Agta (Moravcsik 1978, 311).
(4) a. takki → tak∼takki ‘leg’ → ‘legs’

b. uffu → uf∼uffu ‘thigh’ → ‘thighs’
The 2-way D-FST in Figure 2 expresses partial initial-CVC redu-

plication. An example derivation of takki→ tak∼takki using our 2-way
D-FST is provided in Table 2. For illustrative purposes, we assume that
the function is undefined for V-initial inputs.

q0start q1 q2 q3

q4 q5 q f

(⋊,λ,+1) (C,C,+1) (V,V,+1)

(C,C,−1)

(Σ,Σ,−1)

(⋊,∼,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Figure 2:
2-way D-FST
for initial-CVC
reduplication

3.3Generative capacity and computational complexity

With respect to acceptors, 1-way and 2-way finite-state acceptors are
equivalent in expressive power. Both define the regular languages
(Hopcroft and Ullman 1969; Shallit 2008). However, with respect to
transducers, 1-way FSTs are strictly less expressive than 2-way D-FSTs
(Savitch 1982; Aho et al. 1969; Filiot and Reynier 2016). For a 1-way

[193]

Hossep Dolatian, Jeffrey Heinz

Table 2: Derivation of /takki/ → [tak∼takki]

Outputting reduplicant Outputting the base
1. (q0⋊takki⋉, λ, N/A) 8. (⋊q5takki⋉, tak∼, q4

⋊:∼−−→
+1

q5)
2. (⋊q1takki⋉, λ , q0

⋊:λ−−→
+1

q1) 9. (⋊tq5akki⋉, tak∼t, q5
Σ:Σ−−→
+1

q5)

3. (⋊tq2akki⋉, t, q1
C:C−−→
+1

q2) 10. (⋊taq5kki⋉, tak∼ta, q5
Σ:Σ−−→
+1

q5)
4. (⋊taq3kki⋉, ta, q2

V:V−−→
+1

q3) 11. (⋊takq5ki⋉, tak∼tak, q5
Σ:Σ−−→
+1

q5)
5. (⋊tq4akki⋉, tak, q3

C:C−−→−1 q4) 12. (⋊takkq5i⋉, tak∼takk, q5
Σ:Σ−−→
+1

q5)

Going back to the start of the tape 13. (⋊takkiq5⋉, tak∼takki, q5
Σ:Σ−−→
+1

q5)

6. (⋊q4takki⋉, tak, q4
Σ:λ−−→−1 q4) 14. (⋊takki⋉q f , tak∼takki, q5

⋉:λ−−→
+1

q f)
7. (q4⋊takki⋉, tak, q4

Σ:λ−−→−1 q4)

FST, both the input language and the output language must be regu-
lar languages. Therefore a 1-way FST cannot have its output language
be the non-regular copy language Lww = {ww|w ∈ Σ∗}. In contrast,
the output language of a 2-way D-FST can be a non-regular language
such as Lww.

Figure 3 shows the hierarchy of FSTs, adapted from Filiot and
Reynier (2016, p.8). Different FSTs have different generative capacity,
based on whether the FST is deterministic (D-FST), non-deterministic
(N-FST), 1-way, 2-way, and/or functional (f-FST).

Figure 3:
Hierarchy
of FSTs

2-way N-FST (=Regular Relations)

1-way N-FST (=Rational Relations) 2-way D-FST (=Regular Functions)

1-way fN-FST (=Rational Functions)

1-way D-FST (=Sequential Functions)

[194]

Reduplication with 2-way FSTs

2-way D-FSTs are equivalent in expressivity to string transduc-
tions that are defined in Monadic Second Order logic (Engelfriet and
Hoogeboom 2001) and to streaming string transducers (Alur 2010).7
2-way D-FSTs are less powerful than Turing machines because they
cannot move back and forth on the output tape. They are closed un-
der composition (Chytil and Jákl 1977) and some important classes
are closed under inverse (Courcelle and Engelfriet 2012, 526).

Because of the difference in expressivity between 1-way and
2-way D-FSTs, it makes sense to give different names to the classes
of functions that they compute. We follow Filiot and Reynier (2016)
who identify the class of functions describable with 1-way deter-
ministic FSTs as ‘sequential functions’, with 1-way functional non-
deterministic FSTs as ‘rational functions’, and with 2-way determinis-
tic FSTs as ‘regular functions’. The non-deterministic counterparts for
1-way and 2-way D-FSTs are respectively the ‘rational relations’ and
‘regular relations’.

1-way D-FSTs run in time linear to the length of the input string.
As for 2-way D-FSTs, one useful metric for measuring their complexity
is in terms of the number of times the 2-way D-FST passes through the
input (Baschenis et al. 2016). In the case of the reduplication examples
in Section 3.2, the 2-way D-FSTs used only two passes through the
input, one for each copy. Thus, the run time for those 2-way D-FSTs is
at most 2n·mwhere n is the number of passes and m is the length of the
input. Since n here is fixed at 2, the run time is still linear in the size
of the input string. To our knowledge existing applications of regular
functions have been efficient (Alur and Černý 2011; Alur et al. 2014).

4CONTRASTING 2-WAY D-FSTS
WITH 1-WAY FSTS

Having illustrated how 2-way D-FSTs can model reduplication, here
we contrast 2-way FSTs with 1-way FSTs on three criteria: empirical
coverage, practical utility, and intensional description.

7A streaming-string transducer (SST) is a 1-way FST that uses finitely many
registers of unbounded size. These registers allow the SST to keep track of previ-
ous information on the input tape, thus simulating 2-way D-FSTs.

[195]

Hossep Dolatian, Jeffrey Heinz

4.1 Empirical coverage of the typology and productivity

In terms of empirical coverage, 2-way D-FSTs can effectively model
virtually the entire typology of reduplication as described byMoravcsik
(1978), Hurch (2005), Inkelas and Zoll (2005), Rubino (2005), and
Samuels (2010). We review part of this typology in Section 6. This
stands in stark contrast to 1-way FSTs discussed in Section 2. We say
virtually because there are two cases in the literature which require
further discussion. These are discussed in Section 6.6.2.

4.2 Practical utility and the RedTyp database

To showcase the empirical coverage of 2-way D-FSTs and their practi-
cal utility, we have constructed the RedTyp database (Dolatian and
Heinz 2019a).8 It contains entries for 138 reduplicative processes
from 91 languages. These were gleaned from various surveys (Rubino
2005; Inkelas and Downing 2015a). 50 of these processes were from
Moravcsik (1978), an early survey which is representative of the cross-
linguistically most common reduplicative patterns.

RedTyp contains 57 distinct 2-way D-FSTs that model the 138
processes. Each 2-way D-FST was designed manually, implemented
in Python, and checked for correctness. On average, these 2-way D-
FSTs had 8.8 states. This shows that 2-way D-FSTs are concise and
convenient computational descriptions and models for reduplicative
morphology. This is in contrast to 1-way FSTs which suffer from an
explosion of states when modeling partial reduplication.9

To our knowledge, the only other database on reduplication is
the Graz Database on Reduplication (Hurch 2005 ff.). However, Red-
Typ differs from the Graz Database because the latter does not in-
clude computational representations or implementations of its entries.

8 It can be found on the first author’s GitHub page https://github.com/
jhdeov/RedTyp.

9The largest 2-way D-FST in RedTyp is for verbal reduplication in Kinande
(Downing 2000) with 29 states. This pattern depends on the size of the root and
the number and type of suffixes and prefixes around it. In contrast, we estimate
a deterministic 1-way D-FST would require over 1,000 states for this pattern of
partial reduplication.

[196]

https://github.com/jhdeov/RedTyp
https://github.com/jhdeov/RedTyp

Reduplication with 2-way FSTs

A comparison between the two databases is provided in Dolatian and
Heinz (2019a).

RedTyp offers a useful corpus of reduplicative patterns for re-
search. For example as described in Section 6, we have used this
database to identify subclasses of 2-way D-FSTs for classifying the ty-
pology of reduplication. This corpus could be used to test for other
universal computational properties of reduplication. Since it contains
2-way D-FSTs, it can also be used to generate reduplicated forms. Such
data sets can be used to test morphological learning algorithms.

One shortcoming is that RedTyp under-represents cases of opacity
in reduplication because our main source, Moravcsik (1978), did not
list opaque cases. As discussed further in Sections 6.4.3–6.5, opacity
can be said to occur when phonological processes exceptionally ap-
ply either across both copies or across neither copy because of a drive
to maintain identity between the two copies (McCarthy and Prince
1995). Only 5% of RedTyp displays opacity. Furthermore, RedTyp
focuses on morphological copying, not syntactic copying (cf. Kobele
2006).

4.3Linguistic motivation with origin semantics

Importantly, using 2-way D-FSTs for reduplication is linguistically mo-
tivated and matches the intensional descriptions behind the linguistic
generalizations on reduplication.

2-way D-FSTs do not approximate reduplication like 1-way FSTs
do. 2-way D-FSTs do not copy by remembering strings of segments
(see Section 2). Instead they actively and literally copy.

This contrast between copying and remembering can be formal-
ized with the notion of the origin semantics of a transduction (Bo-
jańczyk 2014).10 Given a string-to-string function, the origin seman-
tics of a function is the origin information of each symbol on in the
output string. This is the position im of the read head on the input
tape when the transducer had outputted on. To illustrate, consider a
partial string-to-string function fab which maps ab to itself:

f (x) = {(ab, ab)}
10For an application of origin semantics to MCFGs and potentially to machine

translation, see Nederhof and Vogler (2019).

[197]

Hossep Dolatian, Jeffrey Heinz

1-way FST q0start q1 q2
a:λ b:ab q0start q1 q2

a:a b:b

Origin information a b

a b

a b

a b
Figure 4: Pair of 1-way FSTs for the function fab and the origin information cre-
ated by them for the mapping ab→ ab

As shown in the top row of Figure 4, this function can be mod-
eled with at least two different 1-way FSTs which differ in when they
output the output symbols a, b. In the bottom row of Figure 4, we
visualize the origin information created by the two FSTs for the map-
ping (ab, ab) as graphs called origin graphs (Bojańczyk et al. 2017).
The FSTs model the same function and are equivalent in their general
semantics of what they output; however, they are not equivalent in
their origin semantics because they use different origin information for
their outputs.

This notion of origin semantics can be used to contrast how 1-way
FSTs and 2-way FSTs model reduplication. Consider the toy example
of initial-CV reduplication with a small alphabetΣ= {p,a,t}. This func-
tion can be modeled by either a 1-way or 2-way FST as in Figure 5.
The two transducers in Figures 5 are equivalent in their general se-
mantics because they can output the same string. For example, given
the input pat, both FSTs will output pa∼pat. However, the two FSTs
differ in their origin semantics for the mapping pat → pa∼pat. Setting
aside boundary symbols ⋊,⋉,∼, the 1-way FST associates the second
pa string of the output with the vowel a of the input as in the bot-
tom middle column of Figure 5. This is because the second pa was
outputted when the 1-way FST was reading the a in the input. In
contrast, the 2-way FST associates each segment in the output with
an identical segment in the input as in the bottom right column of
Figure 5.

The origin information created by the 2-way FST matches theo-
retical treatments of how the reduplicant’s segments are individually
associated with identical segments in the input (Marantz 1982; Inke-

[198]

Reduplication with 2-way FSTs

1-way FST 2-way FST

FSTs q0start q1 q2

q3 q4 q f

⋊:⋊ t:t

p:p a:a∼ta
a:a∼pa

Σ : Σ

⋉:⋉

q0start q1 q2

q3 q4 q f

(⋊,λ,+1) (C,C,+1)

(V,V,-1)

(Σ,Σ,−1)

(⋊,∼,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Origin information p a t

p a p a t

p a t

p a p a t

Figure 5: 1-way and 2-way FSTs for initial-CV reduplication and the origin infor-
mation created by them for the mapping pat → pa∼pat
las and Zoll 2005).11 In contrast, the origin information created by
the 1-way FST does not match linguistic intuitions of reduplication
because non-identical segments are associated. This difference in the
origin semantics of the 1-way FST and 2-way FST formalizes their be-
havior: the 1-way FST simply remembers what strings of segments to
output twice (Roark and Sproat 2007, 54), while the 2-way FST ac-
tively copies.

5LINGUISTIC MOTIVATIONS
FOR SUBCLASSES OF TRANSDUCERS

Having shown the utility of 2-way D-FSTs for reduplication, the next
two sections show that reduplication does not require the full power

11 In Base-Reduplicant correspondence theory or BRCT (McCarthy and Prince
1995), what matters for reduplication is not the relationship or correspondence
between the input and output segments, but between the two copies in the out-
put. Origin semantics might be able to formalize the intuition behind BRCT with
finite-state technology, e.g. output symbols with the same origin are in corre-
spondence. The only computational implementation of BRCT to our knowledge
(Albro 2000, 2005) uses MCFGs to do so. Note however that the empirical valid-
ity of BRCT is questionable (Inkelas and Zoll 2005; McCarthy et al. 2012).

[199]

Hossep Dolatian, Jeffrey Heinz

of 2-way D-FSTs but falls within certain subclasses. This means that
reduplication has a demarcable generative capacity or complexity. In
this section, we discuss the subclasses of 1-way FSTs that have been
proposed to model segmental phonology (Section 5.1), specifically the
Output-Strictly Local (OSL) functions and Sequential (Seq) functions.
In Section 5.2, we discuss subclasses of 2-way FSTs and design new
subclasses based on the concatenation of OSL and Seq functions. We
explain the intuition behind using concatenation-based subclasses for
reduplication (Section 5.3). The next Section 6 goes over the typology
of reduplication and shows how it fits into these subclasses.

5.1 Computational typology of phonology
and 1-way transducers

It is known that 1-way finite-state machines can model all attested
phonological processes (Johnson 1972; Kaplan and Kay 1994; Mohri
1997). However, phonological processes do not require the full power
of 1-way finite-state machines (Heinz 2007; Chandlee 2014). Subclass
hierarchies have been discovered for 1-way FSAs (McNaughton and
Papert 1971; Rogers and Pullum 2011; Heinz and Idsardi 2013) and
1-way FSTs (Garcia et al. 1990; Gainor et al. 2012; Heinz and Lai 2013;
Chandlee et al. 2014). Some of these subclasses have been argued
to characterize different types of phonological well-formedness con-
ditions and transformations (Heinz 2018; Chandlee and Heinz 2018;
Chandlee et al. 2018). We give a brief and informal overview.

A common intuition in linguistic theory is that phonological pro-
cesses are local or subject to adjacency constraints (Odden 1994). For
example, a common phonological process is post-nasal voicing (5a)
whereby voiceless stops are voiced after nasals. This process is local
in the sense that the trigger for voicing (the nasal) is within a finite
bound from the target of voicing (the stop). The symbols N, T, D repre-
sent nasals, voiceless stops, and voiced stops. Another local process is
nasal spread whereby a vowel becomes nasalized after a nasal or nasal-
ized vowel (5b). Nasal spread is iterative in that when a nasal triggers
nasalization on a subsequent vowel, the newly nasalized vowel can
then nasalize its subsequent vowel (5b-iii). The symbols V,Ṽ represent
vowels and nasalized vowels.

[200]

Reduplication with 2-way FSTs

(5) a. Post-nasal voicing
[+stop, −voice] → [+voice]/[+nasal] __ or T → D/N_
i. /ata/ → [ata]
ii. /anta/ → [anda]

b. Nasal spread
[+vowel] → [+nasal]/[+nasal] __ or V → Ṽ/{N,Ṽ}_
i. /atapa/ → [atapa]
ii. /anapa/ → [anãpa]
iii. /anaapa/ → [anããpa]

Both processes are intuitively local. This intuition corresponds
to Strict Locality in formal language theory (McNaughton and Papert
1971; Vaysse 1986; Rogers and Pullum 2011; Chandlee 2014). Formal
definitions can be found in Chandlee et al. (2014, 2015). Informally,
given an input string w, a function is Input-Strictly Local for a natural
number k (k-ISL) if generating the output correspondent of some in-
put symbol wi relies on information about the current input symbol wi

and the k − 1 most recently seen input symbols. Post-nasal voicing is
a 2-ISL function and it is computed by the 1-way FST in Figure 6. The
symbol ? marks any other segment which isn’t in an existing transition
arc (Beesley and Karttunen 2003). The state labels are interpreted as
keeping track of the last seen input symbol. The state labeled as N is
where the post-nasal consonant is generated as voiced. The state label
is interpreted as saying that a nasal was recently seen.

Output-Strictly Local functions for a number k (k-OSL) are anal-
ogously understood. A function is k-OSL if generating the output
correspondent of wi relies on information about the current input
symbol wi and the k − 1 most recently seen output symbols. An
OSL function is L-OSL (R-OSL) if we read the input from the left
(right), and write the output from the left (right). Nasal spread
is a 2-L-OSL function and is computed by the 1-way FST in Fig-
ure 6. The state labels are interpreted as keeping track of the last
recently generated output symbol. The state labeled as N,Ṽ is where
a nasalized vowel is generated; the state label is interpreted as say-
ing that the most recently outputted symbol was a nasal or nasalized
vowel.

[201]

Hossep Dolatian, Jeffrey Heinz

Figure 6:
1-way FSTs
for post-nasal
voicing and
nasal spread

1-way FST for post-nasal voicing 1-way FST for nasal spread

¬Nstart N
N:N

?:? N:N

T:D, ?:?
¬N,Ṽstart N,ṼN:N

?:? N:N,V:Ṽ

ISL and OSL functions are part of a larger hierarchy of func-
tions which are computed by 1-way FSTs. They are shown in Fig-
ure 7. The Sequential functions correspond to 1-way deterministic
FSTs (1-way D-FST), while rational functions correspond to 1-way
functional non-deterministic FSTs (1-way fN-FST) from Figure 3. WD
stands for Weakly Deterministic functions which can compute some
patterns in vowel harmony (Heinz and Lai 2013) and tone (Jardine
2016).

Figure 7:
Hierarchy

of 1-way FSTs
Rational

WD

R-SeqL-Seq

ISL R-OSLL-OSL

An example of an L-OSL function that will prove useful to model
reduplication is truncation, such as nickname formation in English.
This truncation process will output the first (C)VC of the input but
delete everything after.12
(6) English truncation

a. dʒɛfɹi → dʒɛf ‘Jeffrey’ → ‘Jeff’
b. deɪvɪd → deɪv ‘David’ → ‘Dave’
c. ælən → æl ‘Alan’ → ‘Al’

English nickname formation is a 3-L-OSL function because it re-
quires a window of size three in the output tape. The window keeps

12We have simplified the analysis by not considering cases of complex onsets
in the input, e.g. stivɪn → stiv (‘Steven’ → ‘Steve’).

[202]

Reduplication with 2-way FSTs

track of the last 2 symbols on the output tape and the current input
symbol. The 3-OSL 1-way FST function in Figure 8 outputs up until the
first VC of the input; it then stops outputting anything after that.13

q0start λ C CV VC q f
⋊:λ C:C V:V C:C

Σ : λ

⋉:λ

V:V

Figure 8: OSL 1-way FST for English nickname formation

A significant proportion of segmental phonology can be mod-
eled with ISL and OSL functions (Chandlee 2014; Chandlee and Heinz
2018; Chandlee et al. 2018). Long-distance processes in phonology
are however neither ISL or nor OSL. For example, Kikongo nasal har-
mony (7) requires the higher subclass of Sequential functions (Gainor
et al. 2012). In Kikongo, alveolar stops like d or l surface as n if a nasal
precedes them anywhere in the input. There can be any number of
vowels and consonants intervening between the triggering nasal and
the target alveolar (7c). This long-distance information means that
the 1-way FST must keep track of whether a nasal consonant was seen
anywhere in the input stem before it will output the alveolar.
(7) Kikongo nasal harmony

a. /sakid-ila/ → [sakid-ila] ‘to congratulate for’
b. /mant-ila/ → [mant-ina] ‘to climb for’
c. /tunik-idi/ → [tunik-ini] ‘we ground’

The above pattern cannot be modeled by an ISL or OSL function
but requires a Sequential 1-way FST as in Figure 9. A Seq 1-way FST is
a deterministic 1-way FST that will read the input in only one direction
(here left-to-right) and can use any information that it had found in
the input string when processing the next input symbol.

To summarize, different types of phonological processes are com-
puted by different subclasses of rational functions and with different
subclasses of 1-way FSTs. The relatively low complexity of this sub-
classes has opened doors to understanding the cognitive limitations
and learnability of phonological processes (Heinz 2018). In the next

13See Chandlee (2017) on why this function is necessarily OSL and not ISL.

[203]

Hossep Dolatian, Jeffrey Heinz

Figure 9:
Sequential 1-way FST

for Kikongo nasal harmony
q0start q1 q2 q f

⋊:λ

Σ : Σ

N:N

l:n,d:n,Σ : Σ

⋉:λ

⋉:λ

section, we show that extending OSL and Sequential functions into
2-way FSTs opens similar doors for the typology of reduplication.

5.2 Subclasses of 2-way finite-state transducers

Unlike for 1-way FSTs, there is much less work on subclasses for 2-way
FSTs. Some intuitive subclasses have been proposed in the literature.
The typology of reduplication inspired us to devise additional sub-
classes. All of these subclasses, shown in Figure 10, restrict:
1. where the 2-way FST can rewind in the input,
2. what it can output while it is rewinding, and
3. what information can be transferred across multiple passes, i.e.,
if a later pass depends on an earlier pass.
At the top of the hierarchy are 2-way D-FSTs which correspond

to regular functions. In regards to the first restriction, a 2-way FST is
a sweeping transducer if the read head can change direction only at

Figure 10:
Hierarchy of subclasses

for 2-way FSTs

2-way D-FST

Sweeping 2-way D-FST

Rotating 2-way D-FST

Sequential 1-way D-FST

OSL 1-way D-FST

C-Seq 2-way D-FST

C-OSL 2-way D-FST

[204]

Reduplication with 2-way FSTs

the ends of the input (Baschenis et al. 2015, 2016, 2018). A sweeping
transducer is a generalization of similarly defined sweeping automata
(sweeping 2-way FSAs) (Sipser 1980). For example, the 2-way FST
for total reduplication in Figure 1 is a sweeping transducer. The only
time the FST moves right-to-left is going from the end boundary ⋉ to
the start boundary ⋊. In contrast, the 2-way FST for initial-CVC partial
reduplication in Figure 2 is not a sweeping transducer. It rewinds from
the third input segment C to the beginning ⋊. However, the partial
reduplication function computed by this 2-way FST can be computed
by a sweeping transducer, which we show in the next section.

2-way D-FSTs are more expressive than deterministic sweeping
2-way D-FSTs. Consider the function u1#u2#. . .#un 7→ un...u2u1 where
the input is a sequence of strings ui separated by the special symbol #.
The output is formed by reversing these strings and deleting the #’s.
This function can be computed by a deterministic 2-way D-FST but not
by a sweeping transducer. See Baschenis et al. (2016) for discussion.

In regards to the second restriction, a sweeping transducer is a
rotating transducer if it does not output anything while it’s moving
right-to-left (Baschenis et al. 2017). The 2-way FST for total redu-
plication is a rotating transducer because it outputted nothing while
moving right-to-left. Sweeping transducers are more expressive than
rotating transducers. A sweeping transducer can compute the mirror
function w→ wwr , but a rotating transducer cannot.

As for the third restriction, we develop a set of concatenated-
based subclasses of functions.
(8) Subclasses of Regular Functions

a. C-Seq function: A Concatenated-Sequential function f is
the concatenation of n Sequential functions si, e.g. f (x) =
s1(x) · s2(x) · . . . · sn(x). f is C-L-Seq (C-R-Seq) if the com-
ponent Seq functions read the input left-to-right (right-to-
left).14

14 In terms of function combinatorics for regular string transformations (Alur
et al. 2014; Dave et al. 2018), the class of C-Seq functions involves the use of a
‘sum combinator’⊗ that concatenates the output of two or more Seq functions:
f (x) = s1(x)
⊗

s2(x)
⊗

. . . sn(x) where si is a Seq function. This is similar to the
use of product automata. See Alur et al. (2014) for details.

[205]

Hossep Dolatian, Jeffrey Heinz

b. C-OSL function: A Concatenated-OSL function f is the
concatenation of n Output-Strictly Local functions oi, e.g.
f (x) = o1(x) · o2(x) · . . . · on(x). f is C-L-OSL (C-R-OSL) if
the component OSL functions read the input left-to-right
(right-to-left).

Rotating transducers are more expressive than C-Seq transducers,
which are more expressive than C-OSL transducers. Examples witness-
ing these separations are drawn from the typology of reduplication in
Section 6. C-Seq functions are more expressive than sequential func-
tions (= 1-way D-FSTs) which are more expressive than OSL func-
tions. A set of definitions is provided below for easier reference.
(9) Subclasses of 2-way D-FSTs

a. Sweeping 2-way FST: A 2-way FST which can change di-
rection only at the ends of the input

b. Rotating 2-way FST: A sweeping 2-way FST which out-
puts nothing while moving right-to-left

c. C-Seq 2-way FST: A rotating 2-way FST that computes a
Concatenated Sequential function

d. C-OSL 2-way FST: A rotating 2-way FST that computes a
Concatenated Output-Strictly Local function

We have found that virtually the entire typology of reduplication
can be modeled with deterministic rotating 2-way FSTs. Further, the
bulk of the typology can be modeled with C-OSL functions. A few
minor cases require C-Seq functions; these mostly involve infixal or
internal reduplication. A smaller set of cases require the full power
of rotating transducers; though these cases are not clear-cut. Before
going through the typology in detail in Section 6, we illustrate the
insight behind C-OSL functions and how they compute reduplicative
processes.

5.3 Illustrating C-OSL

Intuitively, a C-OSL function is a function that takes as input the string
x , gives x to nmany separate 1-way FSTs which are OSL, and concate-
nates their output. To illustrate the insight behind C-OSL functions,

[206]

Reduplication with 2-way FSTs

takki

tak ∼ takki

Tr(x) ID(x)

Figure 11:
Initial-CVC reduplication
as a concatenation of functions

consider initial-CVC partial reduplication from Agta again (Moravcsik
1978, 311) from (1a) repeated in (10a).

(10) a. takki → tak∼takki ‘leg’ → ‘legs’
b. takki → takki∼takki

As an input-to-output function, reduplication may be viewed
as submitting the same input to two separate functions in paral-
lel and concatenating their output as in Figure 11. The first func-
tion, here labeled Tr(x), truncates the input to the first CVC while
the second function, ID(x), is the identity function. The outputs of
these two functions, tak and takki, are concatenated to form the
reduplicated output: tak∼takki. In (10b), we explicitly show how
initial-CVC reduplication can be seen as truncating the first copy:
takki → takki∼takki where truncated material is shown in strike-
through.

The truncation function Tr(x) is a 3-L-OSL function because it
outputs a truncation of the input to just the first CVC. This is similar
to English nickname formation from Section 5.1. The identity func-
tion ID(x) is both 1-L-OSL and 1-R-OSL. Thus both Tr(x) and ID(x)
are L-OSL and hence their concatenation is C-OSL. Figure 12 illus-
trates a 2-way D-FST for initial-CVC reduplication which is formu-
lated as a concatenation of these two OSL functions. Contrast this
model of initial-CVC reduplication (shown in Figure 12) with the non-
rotating 2-way D-FST shown in Figure 2. (It is the the additional state
CV1 and its transition arcs in Figure 12 which make this D-FST rota-
ting.)

To summarize this section, understanding reduplicative processes
as C-OSL and C-Seq functions is intuitive. This analysis echoes Steri-
ade (1988)’s treatment of partial reduplication as total reduplication
followed by truncation and Inkelas and Zoll (2005)’s treatment of total
reduplication as morphological doubling.

[207]

Hossep Dolatian, Jeffrey Heinz

q0start λ1 C1 CV1 CVC1

rewind λ2
q f

(⋊,λ,+1) (C,C,+1) (V,V,+1) (C,C,+1)

(Σ,λ,+1)

(⋉,λ,−1)

(Σ,λ,−1) (⋊,λ,+1)

(Σ,Σ,+1)

(⋉,λ,+1)

Figure 12: C-OSL 2-way D-FST for initial-CVC partial reduplication

6 COMPUTATIONAL TYPOLOGY
OF REDUPLICATION

This section provides a detailed, comprehensive review of the RedTyp
typology and classifies RedTyp’s reduplicative processes according to
the computational classification introduced in the last section. The
main finding is that most processes are C-OSL (Section 6.2) and most
of the ones that are not are C-Seq (Section 6.3). There are few (and
questionable) cases where reduplication needs the full power of 2-way
D-FSTs (Section 6.4). We give an overview in Section 6.5.

Note that all partial reduplicative processes can be computed by
1-way FSTs. However, in order to get the linguistically-motivated ori-
gin semantics right (Section 4.3), we need the additional power of
2-way FSTs. Thus in this section, when we discuss how partial redu-
plicative cases fit into the subclasses of 2-way FSTs, we mean in terms
of them generating the right origin semantics.

6.1 Preliminaries to the typology

Although reduplication is cross-linguistically ubiquitous, there is a
wide cross-linguistic variation in a) what substring or subsequence
gets repeated, b) where the copied substring or subsequence is placed

[208]

Reduplication with 2-way FSTs

in the output, and c) whether and how phonological processes interact
with copying. This section provides a brief but representative typol-
ogy of reduplication compiled from various surveys (Moravcsik 1978;
Rubino 2005; Inkelas and Downing 2015a).

We emphasize that our reported typology is descriptive and not
theoretical. Various theoretical frameworks have been developed to
account for the range of variation on reduplication (Marantz 1982;
McCarthy and Prince 1995; Spaelti 1997; Raimy 2000; Inkelas and
Zoll 2005; Frampton 2009; Samuels 2010; McCarthy et al. 2012;
Saba Kirchner 2010, 2013). The reader is referred to elsewhere for
theoretical overviews (Raimy 2011; Urbanczyk 2007, 2011; Inkelas
and Downing 2015a,b).

We define the following descriptive terms which will be useful in
categorizing different reduplicative processes:

(11) Terminology for categorizing the typology:
• reduplicant: the substring in the output which was cre-
ated via copying

• base: the substring in the output which was not created
via copying

• target: the substring in the input which will be copied or
duplicated

• anchor point: the position in the input where the target
starts or ends

• source: the morphological or phonological constituent in
the input which contains the target

The output-based terms base and reduplicant are common in the
literature on reduplication (McCarthy and Prince 1995) though their
definition is problematic (Shaw 2005; Haugen 2009). Anchor points
have been proposed for reduplication (Fitzpatrick 2006; Raimy 2009)
and other non-concatenative processes (Yu 2007; Samuels 2010). We
introduce the input-based terms source and target in order to better
fully describe reduplication as an input-to-output function. This sec-
tion goes through the typology of reduplication, organized in terms
of how they vary in the source, target, and/or reduplicant. These
variations align with what type of 2-way FST is needed to com-
pute them.

[209]

Hossep Dolatian, Jeffrey Heinz

6.2 Most reduplication is C-OSL

Most reduplicative processes are C-OSL. We go through common and
some uncommon reduplicative processes and show they are C-OSL.
For a function to be C-OSL, the two copies must be independent of each
other, and the two passes over the input must likewise be independent
of each other. Informally, some criteria for a C-OSL function are that
each of the component functions:
1. reference only a finite and bounded number of the most recently
generated output symbols, meaning that each of the functions,

2. do not depend on any long-distance information in the input,
3. do not use any finite lookahead or finite lookback on the input,
4. do not rely on deleted material, and
5. do not rely on any information from the other function.

6.2.1 Total and word-initial partial reduplication

Total reduplication and word-initial partial reduplication are C-L-OSL,
which means they are the concatenation of two L-OSL functions.

Consider total reduplication first.
(12) a. Total reduplication

Indonesian (Cohn 1989)
buku → buku∼buku ‘book’ → ‘books’

b. Initial-CVC reduplication
Agta (Moravcsik 1978, 311)
takki → tak∼takki ‘leg’ → ‘legs’

For total reduplication, the two OSL functions are identity ID(x).
(Total reduplication is also C-R-OSL.)

For partial reduplication, there is limited variety in the shape of
the copied material, the reduplicant. Some languages have a partial
reduplicative process that copies the first C or consonant of the word
(13a), first CV or consonant-vowel sequence (CV) of the word (13b),
first CVC sequence (13c), or first CV(C)CV sequence (13d). In gen-
eral, the copied material has to fit into some template of a particu-
lar size.

[210]

Reduplication with 2-way FSTs

(13) Common prefixal partial reduplicative patterns
a. Initial-C reduplication

Shilh (Moravcsik 1978, 308)
ɡen → ɡ∼ɡen ‘to sleep’ → ‘to be sleeping’

b. Initial-CV reduplication
Sundanese (Moravcsik 1978, 319)
ɡuyon → ɡu∼ɡuyon ‘to jest’ → ‘to jest repeatedly’

c. Initial-CVC reduplication
Panganisan (Rubino 2005, 11)
baley → bal∼baley ‘town’ → ‘towns’

d. Initial-CV(C)CV reduplication
Dyirbal (McCarthy et al. 2012, 187)
a. baniɲu → bani∼baniɲu ‘come’
b. balɡan → balɡa∼balɡan ‘laugh’

As for the partial reduplication functions in (13), they are all C-L-
OSL just like initial-CVC reduplication from Section 5.3. They involve
the concatenation of a truncation Tr(x) and identity function ID(x).
The truncation function varies in terms of how much word-initial ma-
terial is faithfully outputted.

Table 3 illustrates these examples where the truncated material
is shown in strike-through. The outputs of the two component OSL
function are separated by ∼ for illustration.
Table 3: C-OSL treatment for total and initial partial reduplication

Total Initial-C Initial-CV Initial-CVC Initial-CV(C)CV
(12a) (13a) (13b) (13c) (13d)

Input x buku ɡen ɡuyon baley balɡan
Components ID(x) · ID(x) Tr(x) · ID(x) Tr(x) · ID(x) Tr(x) · ID(x) Tr(x) · ID(x)
Output buku∼buku ɡen∼ɡen ɡuyon∼ɡuyon baley∼baley balɡan∼balɡan
Subclass C-L-OSL C-L-OSL C-L-OSL C-L-OSL C-L-OSL

C-R-OSL

6.2.2Variation in the number and placement of copies

The typology is larger than the above examples. Some languages cre-
ate three copies of the input (triplication) instead of just two (14a).

[211]

Hossep Dolatian, Jeffrey Heinz

Some reduplicative processes are suffixal; they specify that the loca-
tion of the target be a word-final substring (14b) instead of word-
initial substring (13d). Some reduplicative process are wrong-sided
by making the target and the reduplicant not adjacent in the output,
i.e., copying the final CVC and placing it at the beginning of the output
(14c vs. 13c). There are likewise cases where both the base and the
reduplicant are shortened or truncated in the output, e.g., truncating
both copies to CV (14d).
(14) Variation in number and reduplicant placement

a. Total triplication
Mokilese (Moravcsik 1978, 301)
roar → roar∼roar∼roar
‘give a shudder’ → ‘continue to shudder’

b. Final-CVCV reduplication
Siriono (Moravcsik 1978, 308)
erasi → erasi∼rasi
‘he is sick’ → ‘he continues being sick’

c. Initial-CVC reduplication and opposite-edge or wrong-
sided placement
Koryat (Riggle 2004, 3)
qanɡa → qanɡa∼qan ‘fire’ → ‘fire (ABS)’

d. Abbreviated reduplication (Kager-Hamilton Problem)
Guarijio (Caballero 2006)15
toni → to∼to ‘to boil’ → ‘to start boiling’
muhiba → mu∼mu ‘to throw’ → ‘to start throwing’

All these processes are still C-OSL, however. They differ in the
number and order of concatenated functions, the direction in which
the input is read, and whether all or none of the functions are iden-
tity. Their computation is visualized in Table 4. Triplication is C-L-OSL
and C-R-OSL; it involves concatenating three identity functions. Suf-
fixal reduplication like final-CVCV reduplication is C-R-OSL because

15Such reduplication is often argued to be unattested and is called the Kager-
Hamilton Problem (Idsardi and Raimy 2008). See Caballero (2006) for discussion
on what prosodic and morphological factors condition this rare type of redupli-
cation.

[212]

Reduplication with 2-way FSTs

Table 4: C-OSL treatment for less common reduplication patterns

Triplication Final-CVCV Wrong-sided Abbreviated
(14a) (14b) (14c) (14d)

Input x roar erasi qanɡa toni
Components ID(x) · ID(x) · ID(x) ID(x) · Tr(x) ID(x) · Tr(x) Tr(x) · Tr(x)
Output roar∼roar∼roar erasi∼erasi qanɡa∼qanɡa toni∼toni
Subclass C-L-OSL C-R-OSL C-L-OSL C-L-OSL

C-R-OSL

it is the concatenation of an identity function and an R-OSL trunca-
tion function. The truncation function reads the input right-to-left and
deletes everything to the left of the final CVCV. Wrong-sided initial-
CVC reduplication is C-L-OSL. It differs from initial-CVC reduplication
by ordering identity before truncation. Abbreviated reduplication is
C-L-OSL. Unlike initial-CV copying, it is composed of two L-OSL trun-
cation functions instead of just one.

6.2.3Copying a morphological subconstituent

In the above examples, the source was the entire input. But unlike
concatenative morphology, reduplication is often sensitive to word-
internal morphological constituents, contra Bracket Erasure (Kiparsky
1982). In these cases, the semantic function of reduplication builds
on the meaning of the entire input while the location of the redupli-
cant is word-internal (cf. Aronoff 1988). For example, some languages
have reduplication target a morphological subconstituent within the
input as the source, such as a root/stem (15a, 15b) or affix (15c),
and whether for total reduplication (15a, 15c) or partial reduplica-
tion (15b). The source and reduplicant are usually adjacent; though
there are some cases where the two copies are non-adjacent in the
output, e.g., Madurese copies the root-final CVC and places it at the
beginning of the output (15d).
(15) Copying from a morphological subconstituent

a. Total reduplication of the stem
KiHehe (Aronoff 1988, 8)
ku-haata → ku-haata∼haata
‘to ferment’ → ‘to start fermenting’

[213]

Hossep Dolatian, Jeffrey Heinz

Table 5: C-OSL treatment for copying morphological subconstituents

KiHehe Bikol Hungarian Madurese
(15a) (15b) (15c) (15d)

Input x ku{rhaata}r na{rmurak}r p{el}pmeɡy pa{r jalan}ran
Components L(x) · R(x) L(x) · R(x) L(x) · R(x) L(x) · R(x)
Output ku{rhaata}r ∼ na{rmurak}r ∼ {pel}pmeɡy ∼ pa{r jalan}r an ∼

ku {rhaata}r na {rmurak}r {pel}pmeɡy pa{r jalan}ran
Subclass C-L-OSL C-L-OSL C-L-OSL C-R-OSL

C-R-OSL C-R-OSL

b. Initial CV reduplication of the stem
Bikol (Mattes 2007, 84)
na-murak → na-mu∼murak
‘to flower’ → ‘decorating with flowers’

c. Total reduplication of an affix (prefix)
Hungarian (Inkelas and Downing 2015a, 505)
a. el-meɡy → el∼el-meɡy
‘he goes there’ → ‘he occasionally goes there’
b. bele-nez → bele∼bele-nez
‘he looks into it’ → ‘he occasionally looks into it’

d. Root-final CVC reduplication and word-initial place-
ment
Madurese (Brown 2017, 964)
pa-jalan-an → lan∼pa-jalan-an
‘pedestrian’ → ‘pedestrians’

More cases of reduplication targeting a morphological subcon-
stituent are well-attested (Shaw 2005; Inkelas and Zoll 2005; Hau-
gen 2009; Hyman 2009; Inkelas 2014). The above cases are C-OSL if
the relevant morphological boundaries are present in the input. Their
computation is visualized in Table 5. Each process uses two functions
L(x),R(x) which generate the two copies, reference the morphological
boundaries, and they crucially output these boundaries.

For total copying in KiHehe and Hungarian, the function is C-L-
OSL and C-R-OSL. For total stem copying in KiHehe, the first function
L(x) outputs everything up until the root right-boundary ‘}r ’. The sec-

[214]

Reduplication with 2-way FSTs

ond function R(x) outputs nothing until it sees the root left-boundary
‘{r ’; it outputs this and everything after it. Both functions are both
L-OSL and R-OSL, thus KiHehe is C-L-OSL and C-R-OSL. Prefix copy-
ing in Hungarian is similarly defined but for the prefix boundaries ‘{p’
and ‘}p’. Partial stem copying in Bikol is only C-L-OSL. The function
L(x) outputs everything up until it outputs the string ‘{r CV ’; it deletes
everything after that. The function R(x) outputs nothing up until it
sees the root left-boundary ‘{r ’; it outputs this and everything after it.
Non-local copying in Madurese is C-R-OSL. The function L(x) reads
the input right-to-left; it outputs nothing until it sees the root right-
boundary ‘}r ’; it outputs this and the first CVC that it sees. After that,
it deletes everything. The function R(x) is the identity function.

Even though some have argued against the use of morpheme
boundaries in morpho-phonological representations (Anderson 1992;
Stump 2001), morphological boundaries must be part of the input for a
finite-state systems like ours (e.g. Karttunen 1983; Koskenniemi 1984;
Roark and Sproat 2007).16 Consider partial stem copying in Bikol:
na{rmurak}r → na{rmu{rmurak}r . Without the root boundaries, we
could not distinguish the prefixed input na{rmurak}r from a hypo-
thetical mono-morphemic input namurak. Without some way to en-
code the relevant morphological constituents in the input, we simply
cannot define this reduplication function with any type of 1-way or
2-way FSTs. The use of such boundaries in finite-state morphology is
standard practice.

6.2.4Copying a prosodic subconstituent

Besides morphological subconstituents, the source can also be a met-
rical or prosodic subconstituent such as the stressed syllable (16a),
the first syllable (16b), or the first foot (16c). The source can also

16 It should be noted though that HPSG-based approaches to computational
morphology (Bonami and Crysmann 2013, 2016; Crysmann and Bonami 2016)
do not need morpheme boundaries as symbols in their alphabet. One reason is
because they can essentially directly capture hidden morphological structure or
constituency. Another strategy is to temporally apply reduplication to the sub-
constituent and then later add the other affixes, e.g., haata→ haata∼haata→ ku-
haata∼haata. This a common strategy in handling morphology-semantics brack-
eting paradoxes (cf. Stump 1995, 2001).

[215]

Hossep Dolatian, Jeffrey Heinz

be a morphophonological constituent, e.g. a prosodic stem (16d). In
Chumash, the prosodic stem (underlined) consists of all the segments
in the morphological stem alongside any prefixal consonants that are
syllabified with the morphological stem.
(16) Copying from a metrical or prosodic subconstituent

a. CV-reduplication of the stressed syllable
Chamorro (Inkelas and Downing 2015a, 507)
hu.ɡán.do → hu.ɡá∼ɡan.do ‘play’ → ‘playing’

b. Total reduplication of the initial syllable
Hiaki (Haugen 2009)
vu.sa → vu∼vu.sa ‘awaken’
vam.se → vam∼vam.se ‘hurry’

c. Total reduplication of the initial foot
Yidiny (Marantz 1982, 453)
(ɡindal)ba → ɡindal∼ɡindalba ‘lizard sp.’→ ‘lizards’

d. Initial-CVC reduplication of the prosodic stem
Chumash (Downing 1998, 101)
s+tʃeq → s-tʃeq∼tʃeq ‘it is very torn’
s+ikuk → s+ik∼s-ikuk ‘he is chopping’

If the relevant prosodic boundaries are in the input, the compu-
tation is C-OSL. The computation proceeds the same as for copying
a morphological constituent. Table 6 shows this with syllable bound-
aries (s)s, foot boundaries (f) f , stressed syllable boundaries (S)S, and
prosodic stem boundaries (PS)PS.17

Given an unsyllabified input, these prosodic boundaries can be
generated via a 1-way FST (Hulden 2006; Yu 2017) which can be ISL
because it uses finite lookahead on the input (see also Strother-Garcia
2018, 2019).

However, if the input to reduplication lacks boundaries, then
reduplication is C-Seq because we need finite lookahead to know if
some consonant is part of the relevant prosodic constituent. Consider

17The second function R(x) in stressed syllable CV-copying must change
stressed á to unstressed a. Stressed syllable copying is also C-R-OSL if the first
function L(x) is R-OSL and outputs the right-boundary)S . Generating the prosodic
stem in Chumash requires reference to morphological boundaries too.

[216]

Reduplication with 2-way FSTs

Table 6: C-OSL treatment for copying prosodic subconstituents

Chamorro (16a) Hiaki (16b) Yidiny (16c) Chumash (16d)
Input x huɡándo vusa vamse ɡindalba s+ikuk
Syllabify x hu(Sɡán)Sdo (svu)s(ssa)s (svam)s(sse)s (f ɡindal) f ba (PSs+ikuk)PS

Components L(x) · R(x) L(x) · R(x) L(x) · R(x) L(x) · R(x) L(x) · R(x)
Output hu(Sɡá)Sndo ∼ (svu)s (ssa)s ∼ (svam)s (sse)s ∼ (f ɡindal) f ba ∼ (PSsik uk)PS ∼

hu(Sɡan)Sdo (svu)s(ssa)s (svam)s(sse)s (f ɡindal) f ba (PSsikuk)PS

Subclass C-L-OSL C-L-OSL C-L-OSL C-L-OSL C-L-OSL
C-R-OSL

initial syllable copying in Hiaki vusa → vu∼vusa. In the first function
L(x), the consonant s is not generated because it is part of the next
syllable. We know because it precedes a vowel. In contrast for vamse
→ vam∼vamse, the consonant m is copied because it precedes a conso-
nant. The use of such information from finite lookahead on the input
cannot be computed by an OSL function.

This section presented cases in RedTyp which are C-OSL. They
comprise the bulk of reduplicative typology. Of the 138 reduplicative
processes in RedTyp (Section 4.2), 121 (87%) were C-OSL.

6.3Some reduplication is C-Seq

This section goes through some types of reduplication which are not
C-OSL but are instead C-Seq. Informally, a reduplicative function is
C-Seq if its component functions do not rely on any information from
the other function or its output. A component function can use finite
lookback, finite lookahead, or even long-distance information in the
input.

6.3.1Internal reduplication and gray areas between C-OSL or C-Seq

One problematic area for C-OSL are internal reduplication functions
which seem infixal (Broselow and McCarthy 1983; Gafos 1998; Spaelti
1997). Some of these are C-OSL, some are not. These functions are
C-OSL if the truncation functions can uniquely determine what seg-
ments to delete based on only what was outputted.

[217]

Hossep Dolatian, Jeffrey Heinz

In the previous sections, the reduplication’s target can be thought
of as a contiguous substring that is determined by scanning either the
left or right edge of the source. In those cases, the target was at the
edge of the source and the reduplicant was placed at the left or right
edge of the base. However, there are cases of internal or infixal redu-
plication where the target is a substring inside the source such that the
substring is not strictly adjacent to the source’s edges (17a, 17b) and
the reduplicant is placed inside the base in the output (17c). In (17c),
the word-initial C is copied and placed after the first vowel.
(17) Internal reduplication cases which are arguably not C-OSL

a. Leftmost-VCC* reduplication
Mangarayi (Raimy 2000, 135)
ɡabuji → ɡ-ab∼abuji ‘old person’ → ‘old persons’

b. Rightmost-CV reduplication
Chamorro (Inkelas and Zoll 2005, 107)
nalaŋ → nala∼laŋ ‘hungry’ → ‘very hungry’

c. Initial-C reduplication and internal placement
Quileute (Broselow and McCarthy 1983, 44)
tSiko → tSi∼tko ‘he failed sp.’ → ‘he failed (freq.)’

Table 7 visualizes these processes. A traditional analysis is that
the reduplicant is infixal (Broselow and McCarthy 1983) where <>
marks infixation, e.g., Mangarayi ɡabuji → ɡab<ab>buji. However,
their treatment as C-OSL is somewhat counter-intuitive because a
C-OSL function models these processes as concatenating two trunca-
tion functions: ɡabuji∼ɡabuji. The first function L(x) outputs the first
C*VC* substring and deletes everything after that. The second func-
tion R(x) deletes all word-initial strings of consonants C*; once it sees
a vowel V, it outputs it and everything after it.

6.3.2 Internal or non-contiguous reduplication which is C-Seq

The main reason why Mangarayi and the other functions in Table 7
are C-OSL is because the target and deleted materials do not have the
same shape. Knowing what to delete or generate doesn’t need any fi-
nite lookahead or lookback over the input, just over the output. How-
ever, other cases of internal and non-contiguous reduplication do re-
quire such finite lookback/lookahead over the input. This makes them

[218]

Reduplication with 2-way FSTs

Case Mangarayi (17a) Chamorro (17b) Quileute (17c)
Input x ɡabuji nalaŋ tSiko
Output ɡababuji nalalaŋ tSitko
Infixal treatment ɡab<ab>uji nala<la>ŋ tSi<t>ko
C-OSL treatment ɡabuji∼ɡabuji nalaŋ∼nalaŋ tSiko∼tiko
Subclass C-L-OSL C-R-OSL C-L-OSL

Table 7:
Infixal vs. C-OSL
treatment of
internal
reduplication

C-Seq. In (18a), the penultimate syllable is reduplicated. In (18b), the
word-initial CV is copied and placed before the final C. In most of
these cases, the target is a contiguous substring in the input. In some
cases, the target is not contiguous (18c). In (18c), the input’s first CV
and final C are copied and placed together at the beginning of the
output.
(18) Internal reduplication which are C-Seq

a. Penultimate syllable reduplication
Samoan (Moravcsik 1978, 301,310)
a.lo.fa → a.lo∼.lo.fa ‘he loves’ → ‘they love’
ta.o.to → to.o∼o.to ‘he lies’ → ‘they lie’

b. Initial-CV reduplication and internal placement
Creek (Riggle 2004, 3)
fayatk+iː → fayat∼fa-k+iː ‘crooked’→ ‘crooked (pl.’)

c. Double-sided reduplication
Nisgha (Urbanczyk 2007, 474)18
lúːt’uxw → lúxw∼lút’uxw ‘to value’→ ‘to value (pl.)’

These C-Seq processes are visualized in Table 8. Consider penulti-
mate syllable copying in Samoan with two truncation functions a.lo.fa
→ a.lo.fa∼a.lo.fa. If the input is read left-to-right, the first function
must output everything up until the penultimate syllable: a.lo.fa. This
is not OSL because knowledge about whether some syllable is penul-
timate or not requires finite lookahead on the input. If the input
is instead read right-to-left, the first truncation function is still not
OSL. The function would delete the last vowel and the last conso-
nant; but once it sees the penultimate vowel, the function cannot

18We set aside issues in predicting the quality of the vowel (Shaw 2005).

[219]

Hossep Dolatian, Jeffrey Heinz

Table 8:
Non-C-OSL
patterns of
internal or

non-contiguous
reduplication

Case Samoan (16a) Creek (18b) Nisgha (18c)
Input x a.lo.fa fayatk lúːt’uxw

Components L(x) · R(x) L(x) · R(x) L(x) · R(x)
Infixal treatment a.lo<lo>fa fayat<fa>k lúxw∼lút’uxw

C-Seq treatment a.lo.fa∼a.lo.fa fayatk∼fayatk lút’uxw∼lút’uxw

Subclass C-Seq C-Seq C-Seq

determine if this vowel is penultimate or not based on only what it
has outputted. The function would need lookback access to the in-
put. In both left-to-right and right-to-left cases, the truncation func-
tions are Seq. The other processes in Table 8 are not C-OSL for similar
reasons.

Although penultimate syllable copying is not C-OSL, Samoan has
penultimate stress (Zuraw et al. 2014). Stressed syllable copying is
C-OSL. This is an argument for reanalyzing Samoan as instead copy-
ing the stressed syllable. This relates to Nelson’s (2003, 117) hypoth-
esis that any references to the penultimate position in reduplication
must be prosodic. Note that for Creek and Nisgha, the component func-
tions are Seq; however they do not generate the right origin semantics
because of unbounded word-internal deletion. The first function for
Nisgha deletes everything except for the first CV and last C lut’uxw. If
read left-to-right, in order to generate the final C, we need to move to
the next symbol and check if it is ⋉; thus the final C is generated as an
output correspondent for the end-boundary ⋉. If read left-to-right, in
order to generate the initial CV, we move on to the preceding symbol
and check if it is ⋊; thus the first CV are generated as output corre-
spondents to the start-boundary ⋊. This is because Seq functions are
deterministic. In contrast, the right origin semantics would be gen-
erated if the component functions were non-deterministic or if the
function was computed by a full 2-way FST.19

19To exactly capture the right origin semantics, it is a possible that a subclass
of Streaming-string transducers (1-way FSTs with registers) (Alur and Černý 2011;
Alur and Deshmukh 2011) are a suitable alternative for modeling infixal redupli-
cation. Discovering subclasses of SSTs and their relations to subclasses of 2-way
D-FSTs is a worthwhile open question.

[220]

Reduplication with 2-way FSTs

6.4Grey areas between C-Seq and rotating transducers

The above cases with infixation showed that capturing the right ori-
gin semantics might require classes which are more expressive than
C-OSL and C-Seq. In this section, we go through more cases. Some are
ambiguously C-Seq depending on the analysis; others must use rotat-
ing or even unrestricted 2-way D-FSTs in order to capture the right
origin semantics.

6.4.1Reduplication with syllable-count

Reduplication that is sensitive to syllables may involve iteration (19a)
or minimality requirements on what is reduplicated (19b). Both exam-
ples are from Mandarin for different reduplicative processes. In (19a),
reduplication is iterative because each syllable undergoes total redu-
plication: an input of the form A.B has A.A.B.B as the output. In (19b),
a word undergoes total reduplication if it is monosyllabic, otherwise
the morpheme meei is added.
(19) Reduplication and syllable number

a. Iterative reduplication of syllables
Mandarin (Moravcsik 1978, 314)
huanɡ.janɡ → huanɡ∼huanɡ-janɡ∼janɡ
‘flustered’ → ‘flustered (vivid form)’

b. Minimality in reduplication
Mandarin (Moravcsik 1978, 305-6).
janɡ → janɡ∼janɡ ‘sheet’ → ‘every sheet’
jia.luen → meei-jia.luen ‘gallon’ → ‘every gallon’

Iterative copying (19a) is C-OSL if the number of iterations
(=number of syllables) is bounded. The individual syllables must also
be uniquely identifiable in the input. For Mandarin, the function is
made up of four concatenated OSL truncation functions. The first two
functions output everything up until the medial syllable boundary ‘.’
while the latter two delete everything up until the ‘.’ boundary.
(20) Mandaring iterative reduplication as C-OSL:

L1(x) · L2(x) · R1(x) · R2(x)
huanɡ.janɡ∼huanɡ.janɡ∼huanɡ.janɡ∼huanɡ.janɡ.

[221]

Hossep Dolatian, Jeffrey Heinz

We are unaware of any examples showing reduplicative processes
which iterate over inputs that have at least three syllables. So while
Mandarin provides examples of A → A∼A and A.B → A.A∼B.B, we
have no examples of *A.B.C → A.A∼B.B∼C.C. We likewise have not
seen cases of trisyllabic iterative copying in other languages. This
is computationally significant. If Mandarin allowed iterative copy-
ing over trisyllabic words, then generating the right origin semantics
would need as many passes over the input as there are syllables in the
input. The function would either need the full power of a 2-way D-FST
in order to generate the right origin semantics, otherwise we could use
a 1-way FST that has the linguistically-unmotivated origin semantics.

As for minimality requirements (19b), this cannot be computed
by a C-Seq transducer with the right origin semantics. In order to redu-
plicate a monosyllabic input: jang → jang∼jang, we use two concate-
nated identity functions. But to block reduplication in a bisyllabic in-
put jia.luen → meei-jia.luen, we need to check that the input does not
contain any medial syllable boundaries. The first function would need
to use to finite lookahead before choosing to output the first segment
j or the prefix meei. As with the infixation cases in Section 6.3.2, a
C-Seq 2-way FST can do so but it then generates the wrong origin
semantics because it associates the output segment j with the input
syllable boundary ‘.’. Generating the right origin semantics needs a
rotating 2-way D-FST that involves three passes. The first pass reads
the input and checks if it is monosyllabic or not. If yes, the second
and third passes apply the identity function: janɡ∼janɡ. If no, the sec-
ond pass outputs the prefix and the base meei-jia.luen; there is no third
pass.

6.4.2 Phonological changes to the reduplicant

The previous section illustrated how C-Seq 2-way FSTs are distinct
from rotating 2-way FSTs. In the latter, a pass can transfer informa-
tion (e.g., is the input monosyllabic) to a later pass. Similar information
transfer is required in certain cases where phonological processes in-
teract with reduplication. We first go over cases where we arguably
do not need such information transfer.

Reduplicative patterns do not only involve copying. In addition to
copying segments, a reduplicative process may involve a host of other

[222]

Reduplication with 2-way FSTs

phonological transformations (Steriade 1988; Raimy 2011). When
reduplication interacts with phonological transformations, the com-
plexity may change. Some of these phonological changes affect only
the reduplicant (21), including prosodic modifications to the redupli-
cant (21a), simplifications of the reduplicant (21b), or creating non-
identity across the two copies (21c).20

(21) Phonological modifications within the reduplicant
a. Vowel lengthening in the reduplicant

Papago (Moravcsik 1978, 308,317)
bana → baa∼bana ‘coyote’ → ‘coyotes’

b. Complex onset reduction in the reduplicant
Tagalog (Rubino 2005, 18)
maɡ-trabaho → maɡ-ta∼trabaho ‘work’→ ‘will work’

c. Pre-specified segment(s) in the reduplicant
Turkish (Moravcsik 1978, 323)
kitap → kitap∼mitap
‘book’ → ‘books and the like’

In (21a), the initial-CV is copied; the reduplicant’s vowel is length-
ened. In (21b), the stem’s initial-CV is copied. If the stem starts with
a complex onset, then the complex onset is reduced to CV. In (21c),
the input undergoes total copying; the second copy starts with /m-/
which replaces any word-initial onset.

These phonological modifications can be understood in terms of
function composition as a formal analog to phonological rule ordering
(Steriade 1988). This is shown in Table 9. Consider Papago lengthen-
ing. This is computed by a C-OSL function which is the concatenation
of modified truncation functionM(Tr(x)) and identity ID(x). The func-
tion M(Tr(x)) is the composition of a truncation function Tr(x) that
deletes the string bana to ba inside a modification function M(x) that
lengthens word-initial ba to baa. Both truncation and modification are

20These simplifications are often called TETU (or the emergence of the un-
marked) effects (McCarthy and Prince 1994, 1995). Cases of echo-reduplication
like (21c) are highly common and found even in Indo-European languages such
as English book-schmook (Nevins and Vaux 2003). It is often sensitive to phrasal
or syntactic factors (Fitzpatrick-Cole 1994; Lidz 2001).

[223]

Hossep Dolatian, Jeffrey Heinz

L-OSL, their composition is L-OSL, and the concatenation with ID(x) is
C-L-OSL. Complex onset reduction in Tagalog and echo reduplication
in Turkish are likewise C-L-OSL and consist of the concatenation of a
composed L-OSL function with some other L-OSL function.

However, this does not mean that all hypothetical cases of
reduplicant modifications are C-OSL. Such processes can be C-Seq
or higher if the composition of a truncation or identity func-
tion with the modification function is Seq or higher. For exam-
ple, if complex onset reduction in the reduplicant deleted the
first consonant: mag-trabaho → mag-ra∼trabaha, this process would
be C-Seq and not C-OSL. In the first copy, the truncation func-
tion would generate maɡ{r trabaho, while the modification func-
tion would generate mag{r tra. Deleting only the root-initial con-
sonant t if it precedes a consonant is not OSL because we need
finite lookahead on the input. Interestingly, this type of cluster re-
duction is argued to be unattested in reduplication (Zukoff 2017,
25). This may either be an accidental gap or evidence that redu-
plication modification must be C-OSL. To our knowledge, there is
no typological survey of attested reduplicant modifications to set-
tle this.

6.4.3 Phonological changes to or across both copies

Phonological changes may likewise affect both copies or apply across
the boundary between the copies (22). Some involve a phonological
process which is productive in the language (22a), others involve a
phonological process which is not found anywhere else in the language
outside of reduplication (22b). The former set of cases are often called
Table 9: C-OSL treatment for phonological changes to the reduplicant

Papago (21a) Tagalog (21b) Turkish (21c)
Input x bana maɡ{r trabaho}r kitap
Components M(Tr(x)) · ID(x) M(Tr(x)) · R(x) ID(x) · M(ID(x))
Innermost function ba na maɡ{r tra baho}r kitap
Composition baa maɡ{r t r a mitap
Concatenation baa ∼ bana maɡ-ta ∼ maɡ {r trabaho}r kitap∼mitap
Subclass C-L-OSL C-L-OSL C-L-OSL

[224]

Reduplication with 2-way FSTs

normal application of phonological rules, while the latter are juncture
effects which are morpheme-specific phonological processes.

(22) Phonological modifications across the two copies
a. Normal application of nasal substitution

Balangao (McCarthy and Prince 1995, 85)
i. /maN+taɡtaɡ/ → [ma+naɡtaɡ] ‘running’
ii. /maN-RED+taɡtaɡ/ → [ma+naɡta∼taɡtaɡ], ‘running

*[ma+naɡta∼naɡtaɡ] everywhere’
b. Phonology across the boundary (juncture effects)

Dakota (Inkelas and Zoll 2005, 101)
i. /skokpá → o-skókpa∼kpa ‘to be scooped out’
ii. /čap/ → čap∼čap-a ‘trot’
iii. /žat/ → žaɡ∼žat-a ‘curved’

In (22a), the prefix maN- can trigger reduplication of the
root/stem. Nasal substitution combines the prefix’s nasal with an ad-
jacent voiceless consonant into a single nasal that has the place of
articulation of the consonant. Nasal substitution applies only to the
segment next to the prefix, regardless of whether that consonant is
part of the reduplicant or not. In (22b), the final syllable of the root
is copied and placed at the left edge of the input. If there are two
coronals across the reduplicative boundary (b), then the first coronal
becomes dorsal. The final /a/ is epenthesized.

We likewise find phonological processes or rules interacting dif-
ferently in the context of reduplication. For example inMadurese, there
is a phonological process of nasal spread in which nasality is spread
from nasals onto sequences of glides and vowels (23a). Reduplication
copies the final CVC and places it at the beginning of the output (23b).
If a vowel in the base is nasalized by a nasal, its nasality will transfer to
the reduplicant as well. Because the reduplicant does not contain any
nasals to trigger nasal spread, nasal spread in the reduplicant is treated
as an over-application of the phonological process of nasal spread.

(23) Over-application of nasal spread
Madurese (McCarthy and Prince 1995, 30; Cohn 1993, 358)
a. /neyat/ → [nẽỹãt] ‘intention
b. [ỹãt∼nẽỹãt] ‘intentions’

[225]

Hossep Dolatian, Jeffrey Heinz

Traditionally, these cases can be thought as a composition of a
morphological rule of reduplication (C-OSL) and a phonological rule
(that is independently ISL, OSL, or Sequential) (Raimy 2000; Inkelas
and Zoll 2005). If the morphological rule precedes the phonological
rule, then we have normal application. If the morphological rule out-
puts reduplicant boundaries and precedes the phonological rule, then
we have juncture effects. And, if the phonological rule precedes the
morphological rule then we have over-application. Table 10 visualizes
these three types of interactions as rule or function composition.

Table 10: Order of compositions for different reduplication-phonology interac-
tions

Normal application Juncture effect Over-application
Language Balangao (22a) Dakota (22b) Madurese (23)
Input x maN{r taɡtaɡ}r žat neyat
Order of composition 1. Copy 1. Copy 1. Modify

2. Modify 2. Modify 2. Copy
Components M(L(x)) · R(x) M(L(x)) · R(x) L(M(x)) · R(M(x))
Innermost functions maN{r taɡtaɡ}r ∼ maŋ {r taɡtaɡ}r žat ∼ žata nẽỹãt
Outer function maN{rŋaɡtaɡ}r ∼ {r taɡtaɡ}r žaɡ ∼ žata nẽỹãt∼nẽỹãt

Computationally, we can treat all these cases as composition of a
C-OSL/C-Seq function for reduplication with an OSL/Seq function for
phonology in either order. We conjecture C-OSL/C-Seq functions are
not closed under composition, but we do not prove it. This means that
composition may create a rotating 2-way FST.

Whether a case of normal application, juncture effect, or overap-
plication is C-OSL, C-Seq, or higher depends on the complexity of the
individual functions. In fact, the above three examples can be done
with a C-Seq transducer. To illustrate, consider over-application in
Madurese. Nasal spread is an L-OSL function M(x). Reduplication is
the concatenation of an R-OSL truncation function L(x) and an L/R-
OSL identity function R(x). To generate overapplication, reduplica-
tion is instead the concatenation of two modified functions L(M(x))
· R(M(x)). The first function is the composition of truncation over
nasal spread. The composition of these two OSL rules of different di-
rections is L-Seq because nasalization relies on deleted information

[226]

Reduplication with 2-way FSTs

from the input.21 The second function is the composition of identity
over nasal spread; this is L-OSL. Together, Madurese overapplication
is C-L-Seq.

It is an open question if there are cases of normal application,
juncture effects, and over-application which cannot be treated with a
C-Seq formalization but require an unrestricted rotating 2-way FST.
Solving this requires an in-depth knowledge of both the morphology
and phonology of any such example (Inkelas and Zoll 2005).

Under-application and Back-copying In contrast to the over-appli-
cation of phonological processes in reduplication, we likewise find
cases of under-application. For example in Akan, velar consonants be-
come palatalized before nonlow front vowels: /k,ɡ/→ [tɕ, dʝ]/ __ /i,e/
as in (24a). Akan likewise has a process of initial-CV reduplication
where the reduplicant V is a pre-specified non-low front vowel /ɪ/
(24b).22 However if the reduplicant C is a velar, it will not be palatal-
ized before the reduplicant’s non-low front vowel /ɪ/ (24c). Thus the
rule under-applies. The velar will only palatalize if both copies of the
velar in the reduplicant and base are preceded by a non-low front
vowel (24d).
(24) Under-application of palatalization in reduplication

Akan (McCarthy and Prince 1995, 83-93)
(Schachter and Fromkin 1968, 89))
a. /ke/ → [tɕe] ‘divide’
b. /si/ → [si∼siʔ] ‘stand’
c. /kaʔ/ → [kɪ∼kaʔ],*[tɕɪ∼kaʔ] ‘bite’
d. /ɡe/ → [dʝɪ∼dʝe] ‘receive’

Cases of apparent under-application or over-application in redu-
plication are termed opacity effects (cf. the transparency of normal ap-
plication (22a)). They are often understood as being caused by a need
to maintain identity between the two copies that reduplication cre-

21As with infixal reduplication (Section 6.3.2), the C-Seq transducer needs
finite look-ahead into the end boundary ⋉ and this makes it not have the exact
origin semantics that we want.

22The reduplicant V in Akan gets its front/back features from vowel harmony.
For illustration, we represent it simply as /ɪ/.

[227]

Hossep Dolatian, Jeffrey Heinz

ated (Wilbur 1973; McCarthy and Prince 1995). Amore drastic version
of identity is back-copying whereby the reduplicant undergoes some
phonological rule, and then the effects of this rule are transferred onto
the base. It is reported that in Malay, nasality spreads from a nasal con-
sonant onto a sequence of vowels. Nasality can spread over glides and
/h/. Plurality is marked by total reduplication. If nasal spread applies
across the two copies, nasality will transfer onto both copies.

(25) Back-copying of nasal spread
Malay (McCarthy and Prince 1995, 85)
/hamə/ → [hãmə∼̃hãmə]̃,*[hamə∼̃hãmə]̃ ‘germ’ → ‘germs’

These opacity effects are controversial both theoretically and em-
pirically (Inkelas and Zoll 2005; Samuels 2010; Kiparsky 2010; Mc-
Carthy et al. 2012). Many cases of under-application have been re-
analyzed as either unproductive (McCarthy et al. 2012) or due to
morpheme-specific rules (Inkelas and Zoll 2005).23 In fact, Akan
palatalization (24) is the classical case study on under-application
but it is likely a synchronically unproductive and fossilized rule (Sil-
verman 2002; Adomako 2018). Empirically, there have been little
if any convincing cases of back-copying (Bruening 1997) and some
are arguably due to morphological factors outside of reduplication
(McLaughlin 2005). The Malay data itself has not been successively
reproduced (Kiparsky 2010).

Because under-application and back-copying have weak empiri-
cal backing, there is a limited attested typology of these processes. It
is thus unclear whether we can make any computational generaliza-
tions about them. But putting aside these empirical problems, Akan
under-application can be modeled with a C-Seq function which uses
finite lookahead on the input. It is the concatenation of a modified
truncation function and a modified identity function. The first func-
tion truncates the input C1V2Σ

∗ to C1i and applies palatalization if V2

is /i,e/. The second function applies palatalization to the input.
Malay back-copying is not C-Seq. This is because nasalization re-

quires unbounded lookahead on the input. The function requires an

23An exception is Tonkawa (Gouskova 2007) which is arguably a bona fide
case of under-application.

[228]

Reduplication with 2-way FSTs

unrestricted rotating transducer with three passes over the input.24 In
the first pass, we output nothing but we check if the input ends in a
N(V+G)* sequence where G stands for glides and /h/: hamə. If yes,
the second pass applies nasal spread starting from the first segment:
hamə∼hã̃mə.̃ The third pass does the same: hamə∼hã̃mə∼̃hã̃mə.̃

6.5Overview of the typology summary

To summarize, we cataloged a wide variety of attested reduplicative
patterns. All of it can be computed with deterministic 2-way FSTs.
Most common and uncommon types of reduplication can be com-
puted with the subclass of C-OSL functions, including total redupli-
cation (12a), common partial reduplication patterns (13), triplication
(14a), suffixal reduplication (14b), non-local reduplication (14c), and
abbreviated reduplication (14d). Subconstituent reduplication is like-
wise C-OSL if the relevant morphological (15) or prosodic boundaries
(16) are present in the input. In fact, of the 138 reduplicative processes
in RedTyp (§5.2), 121 (87%) are C-OSL.25

We analyzed the typology in terms of generating the right ori-
gin semantics. To do so, some less common types of reduplication are
C-Seq or higher. This is largely because of the need for finite lookahead
on the input. Some but not all types of infixal or non-contiguous redu-
plication are C-OSL (Section 6.3.1) and some are C-Seq (Section 6.3.2).
In the latter case, generating the right origin semantics can require full
2-way FSTs because of the need for finite lookahead. Some cases like
iterative reduplication (19a) are C-OSL if the input is at most bisyl-
labic; otherwise generating the right origin semantics needs an unre-
stricted 2-way D-FST. Minimality requirements (19b) likewise require

24Malay back-copying can likewise be treated as the composition of a C-OSL
function for triplication hamə∼hamə∼hamə, followed by an OSL function for nasal
spread hamə∼̃hãmə∼̃hãmə,̃ followed by an OSL function that deletes everything
before the first ∼ boundary hãmə∼̃hãmə.̃ This analysis is inspired by Reiss and
Simpson (2009).

25Although the cross-linguistic typology on reduplication is overwhelmingly
C-OSL, our numbers from RedTyp do not mean that we estimate that 13% of the
cross-linguistic typology of reduplicative processes is not C-OSL. RedTyp likely
under-represents cases of opacity. Such cases can be non-C-OSL.

[229]

Hossep Dolatian, Jeffrey Heinz

full 2-way D-FSTs. When reduplication interacts with phonological
processes, the computation can range anywhere from C-OSL to full
2-way D-FSTs depending on the individual phonological process and
the order of function composition. We suspect the finite lookahead in
these cases may be resolved with more sophisticated representations
and logical transductions (Dolatian 2020).

This concludes the section on how various subclasses of 2-way
D-FSTs map to certain divisions in the reduplicative typology. The
above cases are representative of common and uncommon reduplica-
tive processes. There are other subtle variations for reduplication in
natural language, such as cases of allomorphy (Spaelti 1997), or multi-
ple reduplicants (Urbanczyk 1999, 2001; Fitzpatrick and Nevins 2004;
Fitzpatrick 2006), among others. We will not discuss these cases be-
cause a full typology is beyond the scope of this paper. However, vir-
tually all attested reduplicative processes can be modeled with 2-way
FSTs. Fitting the entire attested typology into the right subclasses is a
fruitful research direction. The next section looks at cases where 2-way
D-FSTs arguably over-generate or under-generate the typology, even
with these well-defined subclasses.

6.6 Issues in over- and under-generation

Here, we address the questions whether and how 2-way D-FSTs under-
and over-generate reduplicative processes.

6.6.1 Over-generation with 2-way D-FSTs

One way to interpret the contribution we have made is that we are
advocating the following hypothesis:

(26) 2-wayHypothesis: Reduplication is anything that can be com-
puted with 2-way D-FSTs.

This is not, in fact, a position we advocate. We think this hypothe-
sis is false because it overgenerates in ways we consider linguistically
bizarre. For example, 2-way D-FSTs can map words to their reverse
(w 7→ wr) and to a copy of itself and its mirror image (w 7→ wwr). None

[230]

Reduplication with 2-way FSTs

of these transformations are attested morphologically. Some overgen-
eration can be avoided by hypothesizing stronger computational prop-
erties; that is, focusing on subclasses of 2-way D-FSTs which cannot
generate the above unattested patterns.

This leads to another hypothesis.
(27) C-OSL Hypothesis: Reduplication is anything that can be com-

puted with C-OSL 2-way D-FSTs.
The C-OSL hypothesis is well supported because it covers the bulk of
reduplicative typology as shown in Section 6. Rarer reduplicative pat-
terns require more powerful subclasses of 2-way D-FSTs.

Even this hypothesis can be said to suffer from overgeneration.
For example, while this excludes the reversal and mirror image pro-
cesses above, it permits total reduplication of a word up to some large
natural number n (w 7→ wn), or partial reduplication up to some natu-
ral number n of segments.

Nonetheless, not all issues in overgeneration can be reduced to
computation or computability. Some are certainly due to external fac-
tors.26 To illustrate, total reduplication in most spoken languages cre-
ates at most two copies. The creation of three copies (= triplication)
is relatively rare in spoken languages, e.g. Thao (Blust 2001). In sign
languages, we find the reverse situation: creating two copies is rare
but triplication is common, e.g. ASL (Wilbur 2005). The difference
between sign and spoken reduplication is more likely due to modality
and not to the computation.27

6.6.2Under-generation with 2-way D-FSTs

Non-computational factors can also help us understand apparent cases
of under-generation. There are two cases we discuss here: abstract
morphemic copying and reduplication with haplology. Both of these

26Like Potts and Pullum (2002, 375), “we are extremely sceptical of the idea
that formalisms exist that correspond exactly to what linguists wish to say.”

27A similar point can be made for the role of pivot or anchor points in redupli-
cation. Cross-linguistically, most reduplicative processes target specific positions
in the word which are perceptually or psycho-linguistically more salient (Samuels
2010; Raimy 2009; Idsardi and Raimy 2008), e.g. the first syllable and not the
third syllable. The choice of these pivots is likely functional, not computational.

[231]

Hossep Dolatian, Jeffrey Heinz

can be explained as involving interactions between reduplication and
other linguistic modules (the lexicon) or processes (filters).

Undergeneration of abstract morphemic copying Abstract morphemic
copying is when the input to the copying mechanism is not a string
of phonological segments but a more abstract morphological entity,
i.e. a morpheme or morpho-syntactic feature bundle (Inkelas and Zoll
2005). This is in contrast to examples reviewed earlier, where the
source of reduplication was a string of segments which may contain
morpheme boundaries. Such a case occurs in Sye in Table 11.

In Sye, a stem may have multiple suppletive allomorphs used in
different morphological contexts. For example, the abstract morphemepFALL in Table 11a has two allomorphs amol and omol, such that amol
is used after future morpheme and certain other tense morphemes
while omol is used elsewhere. As for reduplication, total reduplication
is used to mark intensification (Table 11b). When total reduplication
applies in a context that requires using one of the allomorphs, we have
an allomorph mismatch between the two copies (Table 11c).

Table 11:
Abstract

morphemic
copying in Sye

Morphemes a. /pFALL/ b. /pFALL+RED/ c. /FUT-pFALL-RED/
Output omol omol∼omol cw-amol∼omol

*cw-omol∼omol
*cw-amol∼amol

Gloss ‘fall’ ‘fall all over’ ‘they will fall all over’

Inkelas and Zoll (2005) analyze Sye as involving morphological
copying. The copies are not in phonological correspondence because
they are different allomorphs of the samemorpheme. What was copied
was an abstract morpheme pFALL. Its two copies were later spelled-
out as two different allomorphs. Inkelas and Zoll’s (2005) analysis for
Sye is controversial (Frampton 2009); but there are a few other lan-
guages which show that the reduplicant is copying an abstract mor-
phological entity (Inkelas and Downing 2015a,b; Hyman et al. 2009).

Cases of morphological copying for suppletive roots can be mod-
eled with a 2-way D-FST that copies an abstract pre-spelled-out mor-
phological entity, e.g. a root morphemepFALL or a root index (Harley
2014) which can be represented as a finite string of symbols. This is
followed by a 1-way FST that models spell-out such that it is equipped

[232]

Reduplication with 2-way FSTs

with knowledge over what all the finite pairs of morphemes and their
suppletive allomorphs are. Wemake the safe assumption that the num-
ber of morphemes in a language that show suppletion is finite.28

Undergeneration of reduplication with haplology Another case of po-
tential under-generation is when reduplication is affected by anti-
homophony constraints or haplology, i.e. when reduplication is
blocked because it would create a sequence of identical syllables or
feet that is dis-preferred by speakers (Yip 1995; Nevins 2012).

For example in Kanuri (Moravcsik 1978, 313), total reduplication
is used to form glossonyms (28b). However reduplication is blocked
if it creates sequence of identical syllables/feet (28b).

(28) Reduplication and haplology in Kanuri
a. kanəmbu ‘Kanembu tribe’
kanəmbu∼kanəmbu ‘language of the Kanembu tribe’

b. karekare ‘Karekare tribe’
*karekare∼karekare ‘language of the Karekare tribe’

A 2-way D-FST can encode this requirement that the input must
not itself be a sequence of identical syllables or feet. However that
would require the 2-way D-FST to know what all the finitely possible
sequences of syllables and feet are in the language.

Two alternatives to this solution are possible. One is using a copy-
and-filter mechanism (Golston 1995). The 2-way D-FST would han-
dle the copying. The output of the copying process would be fed to
a phonological system which would filter out any homophonous se-
quences of syllables or feet. The other alternative is to argue that the
Kanuri input stems which contain a repeated sequence of symbols
/karekare/ are underlyingly already reduplicated via lexical redupli-
cation /kare+RED/. Such arguments have been brought up for super-
ficially similar haplology effects in Manam (Buckley 1997). From this
approach, there is then no haplology problem for 2-way D-FSTs.

In sum, although virtually the entire typology of reduplication
can be modeled with 2-way D-FSTs, there are complications if one

28An FST which handles spell-out would resemble the lexical transducer used
in the xfst finite-state package (Beesley and Karttunen 2003).

[233]

Hossep Dolatian, Jeffrey Heinz

wishes to model the full interface of reduplicative morphology with
other systems. However, as a reviewer point outs, it may not be desir-
able, from a linguistic perspective at least, to model the interfaces in
this way. It is disputable whether complications occurring at the in-
terface of morphology with syntax or phonology should be addressed
within an FST that is intended to account for the computational com-
plexity of the morphology itself. On the other side of the coin, some
conceptual problems arise with over-generation of 2-way D-FSTs be-
cause of the power that they require to handle copying in the first
place.

7 CONCLUSION

The present study has taken a step in formalizing the wide typol-
ogy of reduplicative processes in formal-language theoretic terms. We
showed that 2-way D-FSTs, which are are an understudied type of
finite-state transducer, can easily model reduplication because they
can reread their input multiple times in multiple directions. Computa-
tionally, this means that recognizing whether strings belong to the copy
language {ww | w ∈ Σ∗} (so for any w ∈ Σ∗ determining whether there
is a v ∈ Σ∗ such that w = vv) is a harder problem than the one that
takes any w ∈ Σ∗ as input and returns ww as output (copying). Redupli-
cation studied as recognition is computationally more complex than
reduplication studied as copying.

In addition to modeling reduplicative morphology as copying, 2-
way D-FSTs do not suffer from state explosion nor do they assume
finite bounds on the input, unlike 1-way FSTs. In terms of strong gen-
erative capacity, 2-way FSTs actively copy segments instead of mem-
orizing segments. A diagnostic for copying vs. remembering is the ori-
gin semantics of the function. This article also presented the RedTyp
database, which provides concrete examples of 2-way DFSTs modeling
a range of cross-linguistic reduplicative morphemes.

Furthermore, we showed that the typology of reduplication can
be modeled with subclasses of 2-way FSTs that are essentially defined
as concatenations of simple subclasses of 1-way FSTs. Thus, our work

[234]

Reduplication with 2-way FSTs

showed the role of computational subclasses in carving out the gen-
erative capacity of morphological processes, whether reduplicative or
not. To give more context, most morphological processes can be com-
puted by 1-way finite state automata and transducers (Koskenniemi
1983; Beesley and Karttunen 2003). In fact, substantially less expres-
sive subregular classes are capable of computing most of these mor-
phological processes (Aksënova et al. 2016; Chandlee 2017). So far,
these subclasses have been identified based on considerations of lo-
cality (ISL, OSL) and determinism (Seq, sequentiality). At first, redu-
plication looks like an outlier in that it requires the more expressive
generative capacity of 2-way transducers. However, even within this
larger class of 2-way FSTs, we argued that reduplication only needs
certain subclasses which are also based on the same considerations of
locality (C-OSL) and sequentiality (C-Seq). These subclasses reinforce
the role of locality and determinism as general constraints in linguistic
processes (cf. Heinz 2018).

Having showcased the utility of 2-way D-FSTs for modeling redu-
plication, we conclude with three avenues of future research.

First, we have approached reduplication from the perspective of
morphological generation. Given an input buku, a 2-way D-FST can
generate the output buku∼buku easily. On the other hand, it is an open
question as to how to do morphological analysis with 2-way FSTs to
get the inverse relation of buku∼buku→ buku. As a class, deterministic
2-way FSTs are not invertible. We are currently developing algorithms
for inverting the subclasses (C-OSL, C-Seq) that we have set up.

A second area of research is the integration of 2-way FSTs into nat-
ural language processing. This obviously has many aspects. A first step
may be the integration of 2-way FSTs into existing platforms such as
xfst (Beesley and Karttunen 2003), open-fst (Allauzen et al. 2007),
foma (Hulden 2009b), and pynini (Gorman 2016).29

A third promising area of research is developing learning models
based on the computational models that we proposed here. One ap-
proach builds on Chandlee et al.’s 2015 learning results of OSL func-

29 In fact, the team behind Thrax (Tai et al. 2011) have recently been explor-
ing the use of multi-pushdown transducers (MPDT) to generate reduplication
(Richard Sproat, p.c.). An open question is comparing the generative capacity of
MPDTs and 2-way FSTs.

[235]

Hossep Dolatian, Jeffrey Heinz

tions (Dolatian and Heinz 2018a). Another approach probes the learn-
ability of reduplicative patterns with neural networks (Nelson et al.
2020).

REFERENCES

Kwasi ADOMAKO (2018), Velar palatalization in Akan: A reconsideration,
Journal of West African Languages, 45(2).
Alfred V. AHO, John E. HOPCROFT, and Jeffrey D. ULLMAN (1969), A general
theory of translation, Mathematical Systems Theory, 3(3):193–221.
Alëna AKSËNOVA, Thomas GRAF, and Sedigheh MORADI (2016),
Morphotactics as tier-based strictly local dependencies, in Proceedings of the
14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, pp. 121–130.
Daniel M. ALBRO (2000), Taking Primitive Optimality Theory beyond the finite
state, in Jason EISNER, Lauri KARTTUNEN, and Alain THÉRIAULT, editors,
Finite-State Phonology: Proceedings of the 5th Workshop of SIGPHON, pp. 57–67,
Luxembourg, http:
//aclanthology.coli.uni-saarland.de/pdf/W/W00/W00-1806.pdf.
Daniel M. ALBRO (2005), Studies in Computational Optimality Theory, with
Special Reference to the Phonological System of Malagasy, Ph.D. thesis, University
of California, Los Angeles.
Raquel G. ALHAMA (2017), Computational Modelling of Artificial Language
Learning: Retention, Recognition & Recurrence, Ph.D. thesis, Universiteit van
Amsterdam.
Raquel G. ALHAMA and Willem ZUIDEMA (2019), A review of computational
models of basic rule learning: The neural-symbolic debate and beyond,
Psychonomic Bulletin & Review, 26(4):1–21.
Cyril ALLAUZEN, Michael RILEY, Johan SCHALKWYK, Wojciech SKUT, and
Mehryar MOHRI (2007), OpenFst: A general and efficient weighted finite-state
transducer library, in Jan HOLUB and Jan ŽĎÁREK, editors, Implementation and
Application of Automata, pp. 11–23, Springer, Berlin, Heidelberg.
Rajeev ALUR (2010), Expressiveness of streaming string transducers, in
Proceedings of the 30th Annual Conference on Foundations of Software Technology
and Theoretical Computer Science,, volume 8, p. 1–12,
doi:10.4230/LIPIcs.FSTTCS.2010.1.

[236]

http://aclanthology.coli.uni-saarland.de/pdf/W/W00/W00-1806.pdf
http://aclanthology.coli.uni-saarland.de/pdf/W/W00/W00-1806.pdf

Reduplication with 2-way FSTs

Rajeev ALUR and Jyotirmoy V. DESHMUKH (2011), Nondeterministic
streaming string transducers, in Luca ACETO, Monika HENZINGER, and Jiří
SGALL, editors, Automata, Languages and Programming, pp. 1–20, Springer,
Berlin, Heidelberg, ISBN 978-3-642-22012-8.
Rajeev ALUR, Adam FREILICH, and Mukund RAGHOTHAMAN (2014), Regular
combinators for string transformations, in Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
Vienna, Austria, CSL-LICS ’14, pp. 9:1–9:10, Association for Computing
Machinery, New York, NY, USA, ISBN 978-1-4503-2886-9,
doi:10.1145/2603088.2603151.
Rajeev ALUR and Pavol ČERNÝ (2011), Streaming transducers for algorithmic
verification of single-pass list-processing programs, in Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Austin, Texas, USA, POPL ’11, pp. 599–610, Association for
Computing Machinery, New York, NY, USA, ISBN 978-1-4503-0490-0,
doi:10.1145/1926385.1926454.
Qatherine ANDAN, Outi BAT-EL, Diane BRENTARI, and Iris BERENT (2018),
ANCHORING is amodal: Evidence from a signed language, Cognition,
180:279–283.
Stephen R. ANDERSON (1992), A-morphous morphology, volume 62 of Cambridge
Studies in Linguistics, Cambridge University Press, Cambridge.
Mark ARONOFF (1988), Head operations and strata in reduplication: A linear
treatment, in Geert BOOIJ and Jaap VAN MARLE, editors, Yearbook of
Morphology, volume 1, pp. 1–15, Foris, Dordrecht.
Félix BASCHENIS, Olivier GAUWIN, Anca MUSCHOLL, and Gabriele PUPPIS
(2015), One-way definability of sweeping transducers, in 35th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’15), Bangalore, India,
https://hal.archives-ouvertes.fr/hal-01219509.
Félix BASCHENIS, Olivier GAUWIN, Anca MUSCHOLL, and Gabriele PUPPIS
(2016), Minimizing resources of sweeping and streaming string transducers, in
Ioannis CHATZIGIANNAKIS, Michael MITZENMACHER, Yuval RABANI, and
Davide SANGIORGI, editors, 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 114:1–114:14, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany, ISBN
978-3-95977-013-2, ISSN 1868-8969, doi:10.4230/LIPIcs.ICALP.2016.114.
Félix BASCHENIS, Olivier GAUWIN, Anca MUSCHOLL, and Gabriele PUPPIS
(2017), Untwisting two-way transducers in elementary time, in 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,

[237]

https://hal.archives-ouvertes.fr/hal-01219509

Hossep Dolatian, Jeffrey Heinz

Iceland, June 20-23, 2017, pp. 1–12, ISBN 978-1-5090-3018-7,
doi:10.1109/LICS.2017.8005138.
Félix BASCHENIS, Olivier GAUWIN, Anca MUSCHOLL, and Gabriele PUPPIS
(2018), One-way definability of two-way word transducers, Logical Methods in
Computer Science, 14.
Kenneth BEESLEY and Lauri KARTTUNEN (2000), Finite-state
non-concatenative morphotactics, in Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics, Hong Kong, ACL ’00, pp. 191–198,
Association for Computational Linguistics, Stroudsburg, PA, USA,
doi:10.3115/1075218.1075243.
Kenneth BEESLEY and Lauri KARTTUNEN (2003), Finite-State Morphology: Xerox
Tools and Techniques, CSLI Publications, Stanford, CA.
Iris BERENT, Outi BAT-EL, Diane BRENTARI, Amanda DUPUIS, and Vered
VAKNIN-NUSBAUM (2016), The double identity of linguistic doubling,
Proceedings of the National Academy of Sciences, 113(48):13702–13707.
Iris BERENT, Outi BAT-EL, and Vered VAKNIN-NUSBAUM (2017), The double
identity of doubling: Evidence for the phonology-morphology split, Cognition,
161:117–128.
Iris BERENT, Amanda DUPUIS, and Diane BRENTARI (2014), Phonological
reduplication in sign language: Rules rule, Frontiers in Psychology, 5:560.
Steven BIRD and T. Mark ELLISON (1994), One-level phonology:
Autosegmental representations and rules as finite automata, Computational
Linguistics, 20(1):55–90.
Robert A. BLUST (2001), Thao triplication, Oceanic Linguistics, 40(2):324–335.
Mikołaj BOJAŃCZYK (2014), Transducers with origin information, in Javier
ESPARZA, Pierre FRAIGNIAUD, Thore HUSFELDT, and Elias KOUTSOUPIAS,
editors, Automata, Languages, and Programming, pp. 26–37, Springer, Berlin,
Heidelberg.
Mikołaj BOJAŃCZYK, Laure DAVIAUD, Bruno GUILLON, and Vincent PENELLE
(2017), Which classes of origin graphs are generated by transducers, in Ioannis
CHATZIGIANNAKIS, Piotr INDYK, Fabian KUHN, and Anca MUSCHOLL, editors,
44th International Colloquium on Automata, Languages, and Programming (ICALP
2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs),
pp. 114:1–114:13, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, ISBN 978-3-95977-041-5, ISSN 1868-8969,
doi:10.4230/LIPIcs.ICALP.2017.114.
Olivier BONAMI and Berthold CRYSMANN (2013), Morphotactics in an
information-based model of realisational morphology, in Stefan MÜLLER,
editor, Proceedings of HPSG 2013, pp. 27–47, CSLI Publications, Stanford, CA.

[238]

Reduplication with 2-way FSTs

Olivier BONAMI and Berthold CRYSMANN (2016), The role of morphology in
constraint-based lexicalist grammars, in Andrew HIPPISLEY and Gregory T.
STUMP, editors, The Cambridge Handbook of Morphology, p. 609–656,
Cambridge University Press, Cambridge.
Ellen BROSELOW and John MCCARTHY (1983), A theory of internal
reduplication, The Linguistic Review, 3(1):25–88.
Jason BROWN (2017), Non-adjacent reduplication requires spellout in parallel,
Natural Language & Linguistic Theory, 35(4):1–23.
Benjamin BRUENING (1997), Abkhaz mabkhaz: M-reduplication in Abkhaz,
weightless syllables, and base-reduplicant correspondence, in Benjamin
BRUENING, Yoonjung KANG, and Martha MCGINNIS, editors, PF: Papers at the
Interface, volume 30, MIT Working Papers in Linguistics, Cambridge, MA.
Eugene BUCKLEY (1997), Integrity and correspondence in Manam double
reduplication, in Proceedings of NELS, volume 28, pp. 59–67.
Gabriela CABALLERO (2006), “Templatic backcopying” in Guarijio abbreviated
reduplication, Morphology, 16(2):273–289.
Jane CHANDLEE (2014), Strictly local phonological processes, Ph.D. thesis,
University of Delaware, Newark, DE.
Jane CHANDLEE (2017), Computational locality in morphological maps,
Morphology, 27(4):1–43.
Jane CHANDLEE, Angeliki ATHANASOPOULOU, and Jeffrey HEINZ (2012),
Evidence for classifying metathesis patterns as subsequential, in Jaehoon CHOI,
E. Alan HOGUE, Jeffrey PUNSKE, Deniz TAT, Jessamyn SCHERTZ, and Alex
TRUEMAN, editors, The Proceedings of the 29th West Coast Conference on Formal
Linguistics, pp. 303–309, Cascillida Press, Somerville, MA.
Jane CHANDLEE, Rémi EYRAUD, and Jeffrey HEINZ (2014), Learning strictly
local subsequential functions, Transactions of the Association for Computational
Linguistics, 2:491–503, http://aclweb.org/anthology/Q14-1038.
Jane CHANDLEE, Rémi EYRAUD, and Jeffrey HEINZ (2015), Output strictly
local functions, in 14th Meeting on the Mathematics of Language, pp. 112–125.
Jane CHANDLEE and Jeffrey HEINZ (2012), Bounded copying is subsequential:
Implications for metathesis and reduplication, in Proceedings of the 12th Meeting
of the ACL Special Interest Group on Computational Morphology and Phonology,
SIGMORPHON ’12, pp. 42–51, Association for Computational Linguistics,
Montreal, Canada.
Jane CHANDLEE and Jeffrey HEINZ (2018), Strict locality and phonological
maps, Linguistic Inquiry, 49(1):23–60.
Jane CHANDLEE, Jeffrey HEINZ, and Adam JARDINE (2018), Input strictly
local opaque maps, Phonology, 35(2):171–205.

[239]

http://aclweb.org/anthology/Q14-1038

Hossep Dolatian, Jeffrey Heinz

Christian CHOFFRUT (1977), Une caractérisation des fonctions séquentielles et
des fonctions sous-séquentielles en tant que relations rationnelles, Theoretical
Computer Science, 5(3):325–337, ISSN 0304-3975,
doi:https://doi.org/10.1016/0304-3975(77)90049-4.
Michal P. CHYTIL and Vojtěch JÁKL (1977), Serial composition of 2-way
finite-state transducers and simple programs on strings, in Arto SALOMAA and
Magnus STEINBY, editors, Automata, Languages and Programming, pp. 135–147,
Springer, Berlin, Heidelberg, ISBN 978-3-540-37305-6.
Alexander CLARK (2017), Computational learning of syntax, Annual Review of
Linguistics, 3:107–123.
Alexander CLARK and Ryo YOSHINAKA (2012), Beyond semilinearity:
Distributional learning of parallel multiple context-free grammars, in
International Conference on Grammatical Inference, pp. 84–96.
Alexander CLARK and Ryo YOSHINAKA (2014), Distributional learning of
parallel multiple context-free grammars, Machine Learning, 96(1-2):5–31.
Alexander CLARK and Ryo YOSHINAKA (2016), Distributional learning of
context-free and multiple context-free grammars, in Jeffrey HEINZ and José M.
SEMPERE, editors, Topics in Grammatical Inference, pp. 143–172, Springer,
Berlin, Heidelberg.
Yael COHEN-SYGAL and Shuly WINTNER (2006), Finite-state registered
automata for non-concatenative morphology, Computational Linguistics,
32(1):49–82.
Abigail C. COHN (1989), Stress in Indonesian and bracketing paradoxes,
Natural language & linguistic theory, 7(2):167–216.
Abigail C. COHN (1993), The status of nasalized continuants, in Marie K.
HUFFMAN and Rena A. KRAKOW, editors, Nasals, Nasalization, and the Velum,
volume 5 of Phonetics and Phonology, pp. 329–367, Academic Press, Inc., San
Diego, CA.
Bruno COURCELLE and Joost ENGELFRIET (2012), Graph Structure and Monadic
Second-Order Logic, a Language Theoretic Approach, Cambridge University Press,
Cambridge.
Berthold CRYSMANN (2017), Reduplication in a computational HPSG of Hausa,
Morphology, 27(4):527–561.
Berthold CRYSMANN and Olivier BONAMI (2016), Variable morphotactics in
information-based morphology, Journal of Linguistics, 52(2):311–374.
Karel CULIK and Juhani KARHUMÄKI (1986), The equivalence of finite valued
transducers (on HDT0L languages) is decidable, Theoretical Computer Science,
47:71–84, ISSN 0304-3975,
doi:https://doi.org/10.1016/0304-3975(86)90134-9.

[240]

Reduplication with 2-way FSTs

Christopher CULY (1985), The complexity of the vocabulary of Bambara,
Linguistics and Philosophy, 8:345–351.
Vrunda DAVE, Paul GASTIN, and Shankara Narayanan KRISHNA (2018),
Regular transducer expressions for regular transformations, in Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18,
pp. 315–324, Association for Computing Machinery, New York, NY, USA, ISBN
978-1-4503-5583-4, doi:10.1145/3209108.3209182.
Hossep DOLATIAN (2020), Computational Locality of Cyclic Phonology in
Armenian, Ph.D. thesis, Stony Brook University.
Hossep DOLATIAN and Jeffrey HEINZ (2018a), Learning reduplication with
2-way finite-state transducers, in Olgierd UNOLD, Witold DYRKA, , and
Wojciech WIECZOREK, editors, Proceedings of Machine Learning Research:
International Conference on Grammatical Inference, volume 93 of Proceedings of
Machine Learning Research, pp. 67–80, Wrocław, Poland.
Hossep DOLATIAN and Jeffrey HEINZ (2018b), Modeling reduplication with
2-way finite-state transducers, in Proceedings of the 15th SIGMORPHON
Workshop on Computational Research in Phonetics, Phonology, and Morphology,
Association for Computational Linguistics, Brussells, Belgium.
Hossep DOLATIAN and Jeffrey HEINZ (2019a), RedTyp: a database of
reduplication with computational models, in Proceedings of the Society for
Computation in Linguistics, volume 2, article 3.
Hossep DOLATIAN and Jeffrey HEINZ (2019b), Reduplication with finite-state
technology, in Proceedings of the 53rd Annual Meeting of the Chicago Linguistics
Society, Chicago Linguistics Society, Chicago.
Laura J. DOWNING (1998), Prosodic misalignment and reduplication, in Geert
BOOIJ and Jaap VAN MARLE, editors, Yearbook of Morphology 1997,
pp. 83–120, Kluwer Academic Publishers, Dordrecht.
Laura J. DOWNING (2000), Morphological and prosodic constraints on Kinande
verbal reduplication, Phonology, 17(01):1–38.
Laura J. DOWNING (2003), Compounding and tonal non-transfer in Bantu
languages, Phonology, 20(1):1–42.
Laura J. DOWNING (2006), Canonical Forms in Prosodic Morphology, number 12
in Oxford studies in Theoretical Linguistics, Oxford University Press, Oxford.
Calvin C. ELGOT and Jorge E. MEZEI (1965), On relations defined by
generalized finite automata, IBM Journal of Research and development,
9(1):47–68.
Joost ENGELFRIET and Hendrik Jan HOOGEBOOM (2001), MSO definable
string transductions and two-way finite-state transducers, Transactions of the
Association for Computational Linguistics, 2(2):216–254, ISSN 1529-3785,
doi:10.1145/371316.371512.

[241]

Hossep Dolatian, Jeffrey Heinz

Emmanuel FILIOT and Pierre-Alain REYNIER (2016), Transducers, logic and
algebra for functions of finite words, ACM SIGLOG News, 3(3):4–19, ISSN
2372-3491, doi:10.1145/2984450.2984453.
Justin FITZPATRICK (2006), Sources of Multiple Reduplication in Salish and
Beyond, Studies in Salishan 7, pp. 211–240.
Justin FITZPATRICK and Andrew NEVINS (2004), Linearizing nested and
overlapping precedence in multiple reduplication, in University of Pennsylvania
Working Papers in Linguistics, pp. 75–88.
Jennifer FITZPATRICK-COLE (1994), The Prosodic Domain Hierarchy in
Reduplication, Ph.D. thesis, Stanford University, Stanford, CA.
John FRAMPTON (2009), Distributed Reduplication, MIT Press, Cambridge.
Diamandis GAFOS (1998), A-templatic reduplication, Linguistic Inquiry,
29(3):515–527.
Brian GAINOR, Regine LAI, and Jeffrey HEINZ (2012), Computational
characterizations of vowel harmony patterns and pathologies, in Jaehoon CHOI,
E. Alan HOGUE, Jeffrey PUNSKE, Deniz TAT, Jessamyn SCHERTZ, and Alex
TRUEMAN, editors, The Proceedings of the 29th West Coast Conference on Formal
Linguistics, pp. 63–71, Cascillida Press, Somerville, MA.
Pedro GARCIA, Enrique VIDAL, and José ONCINA (1990), Learning locally
testable languages in the strict sense, in Proceedings of the Workshop on
Algorithmic Learning Theory, pp. 325–338.
Gerald GAZDAR and Geoffrey K PULLUM (1985), Computationally relevant
properties of natural languages and their grammars, New generation computing,
3:273–306.
Jila GHOMESHI, Ray JACKENDOFF, Nicole ROSEN, and Kevin RUSSELL (2004),
Contrastive focus reduplication in English (the salad-salad paper), Natural
Language & Linguistic Theory, 22(2):307–357.
Chris GOLSTON (1995), Syntax outranks phonology: Evidence from Ancient
Greek, Phonology, 12(3):343–368.
Kyle GORMAN (2016), Pynini: A Python library for weighted finite-state
grammar compilation, in Proceedings of the SIGFSM Workshop on Statistical NLP
and Weighted Automata, pp. 75–80, Association for Computational Linguistics,
Berlin, Germany, doi:10.18653/v1/W16-2409,
http://www.aclweb.org/anthology/W16-2409.
Maria GOUSKOVA (2007), The reduplicative template in Tonkawa, Phonology,
24(3):367–396.
Jiatao GU, Zhengdong LU, Hang LI, and Victor O.K. LI (2016), Incorporating
copying mechanism in sequence-to-sequence learning, in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1631–1640, Association for Computational Linguistics, Berlin,
Germany.

[242]

http://www.aclweb.org/anthology/W16-2409

Reduplication with 2-way FSTs

Heidi HARLEY (2014), On the identity of roots, Theoretical linguistics,
40(3/4):225–276.
Jason D. HAUGEN (2009), What is the base for reduplication?, Linguistic
Inquiry, 40(3):505–514.
Jeffrey HEINZ (2007), The Inductive Learning of Phonotactic Patterns, Ph.D.
thesis, University of California, Los Angeles.
Jeffrey HEINZ (2018), The computational nature of phonological
generalizations, in Larry HYMAN and Frans PLANK, editors, Phonological
Typology, Phonetics and Phonology, chapter 5, pp. 126–195, Mouton de
Gruyter, Berlin.
Jeffrey HEINZ and William IDSARDI (2013), What complexity differences
reveal about domains in language, Topics in Cognitive Science, 5(1):111–131.
Jeffrey HEINZ and Regine LAI (2013), Vowel harmony and subsequentiality, in
Andras KORNAI and Marco KUHLMANN, editors, Proceedings of the 13th Meeting
on the Mathematics of Language (MoL 13), pp. 52–63, Association for
Computational Linguistics, Sofia, Bulgaria,
http://www.aclweb.org/anthology/W13-3006.
John E. HOPCROFT and Jeffrey D. ULLMAN (1969), Formal Languages and their
Relation to Automata, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA.
Mans HULDEN (2006), Finite-state syllabification, in Anssi YLI-JYRÄ, Lauri
KARTTUNEN, and Juhani KARHUMÄKI, editors, Finite-State Methods and Natural
Language Processing. FSMNLP 2005. Lecture Notes in Computer Science, volume
4002, Springer, Berlin/Heidelberg.
Mans HULDEN (2009a), Finite-State Machine Construction Methods and Algorithms
for Phonology and Morphology, Ph.D. thesis, University of Arizona, Tucson, AZ.
Mans HULDEN (2009b), Foma: a finite-state compiler and library, in Proceedings
of the Demonstrations Session at EACL 2009, pp. 29–32, Association for
Computational Linguistics, Athens, Greece,
http://www.aclweb.org/anthology/E09-2008.
Mans HULDEN and Shannon T. BISCHOFF (2009), A simple formalism for
capturing reduplication in finite-state morphology, in Jakub PISKORSKI, Bruce
WATSON, and Anssi YLI-JYRÄ, editors, Proceedings of the 2009 conference on
Finite-State Methods and Natural Language Processing: Post-proceedings of the 7th
International Workshop FSMNLP 2008, pp. 207–214, IOS Press, Amsterdam,
ISBN 978-1-58603-975-2,
http://dl.acm.org/citation.cfm?id=1564035.1564059.
Bernhard HURCH, editor (2005), Studies on Reduplication, number 28 in
Empirical Approaches to Language Typology, Walter de Gruyter, Berlin.
Bernhard HURCH (2005 ff.), Graz database on reduplication, last accessed
10-26-2017 from http://reduplication.uni-graz.at/redup/.

[243]

http://www.aclweb.org/anthology/W13-3006
http://www.aclweb.org/anthology/E09-2008
http://dl.acm.org/citation.cfm?id=1564035.1564059
http://reduplication.uni-graz.at/redup/

Hossep Dolatian, Jeffrey Heinz

Bernhard HURCH and Veronika MATTES (2009), Introduction: diachrony and
productivity of reduplication, Morphology, 19(2):107–112.
Larry M. HYMAN (2009), The natural history of verb-stem reduplication in
Bantu, Morphology, 19(2):177–206.
Larry M. HYMAN, Sharon INKELAS, and Galen SIBANDA (2009),
Morphosyntactic correspondence in Bantu reduplication, in Kristin HANSON
and Sharon INKELAS, editors, The Nature of the Word: Studies in Honor of Paul
Kiparsky, Current Studies in Linguistics, pp. 273–309, The MIT Press,
Cambridge, MA.
William IDSARDI and Eric RAIMY (2008), Reduplicative economy, in Bert
VAUX and Andrew NEVINS, editors, Rules, constraints, and phonological
phenomena, chapter 5, pp. 149–184, Oxford University Press, Oxford.
Sharon INKELAS (2014), The Interplay of Morphology and Phonology, Oxford
University Press, Oxford.
Sharon INKELAS and Laura J. DOWNING (2015a), What is reduplication?
Typology and analysis part 1/2: The typology of reduplication, Language and
Linguistics Compass, 9(12):502–515.
Sharon INKELAS and Laura J. DOWNING (2015b), What is Reduplication?
Typology and analysis Part 2/2: The analysis of reduplication, Language and
Linguistics Compass, 9(12):516–528.
Sharon INKELAS and Cheryl ZOLL (2005), Reduplication: Doubling in
Morphology, Cambridge University Press, Cambridge.
Adam JARDINE (2016), Computationally, tone is different, Phonology,
33(2):247–283.
C. Douglas JOHNSON (1972), Formal Aspects of Phonological Description,
Mouton, The Hague.
Ronald M. KAPLAN and Martin KAY (1994), Regular models of phonological
rule systems, Computational linguistics, 20(3):331–378.
Lauri KARTTUNEN (1983), KIMMO: A general morphological processor, in
Texas Linguistic Forum, volume 22, pp. 163–186.
Paul KIPARSKY (1982), Lexical morphology and phonology, in I.-S. YANG,
editor, Linguistics in the morning calm: Selected papers from SICOL-1981,
pp. 3–91, Hansin, Seoul.
Paul KIPARSKY (2010), Reduplication in stratal OT, in Linda UYECHI and
Lian Hee WEE, editors, Reality Exploration and Discovery: Pattern Interaction in
Language & Life, pp. 125–142, CSLI Press, Stanford.
Gregory Michael KOBELE (2006), Generating Copies: An Investigation into
Structural Identity in Language and Grammar, Ph.D. thesis, University of
California, Los Angeles.

[244]

Reduplication with 2-way FSTs

Kimmo KOSKENNIEMI (1983), Two-level morphology: A general computational
model for word-form recognition and production, Ph.D. thesis, University of
Helsinki.
Kimmo KOSKENNIEMI (1984), A general computational model for word-form
recognition and production, in Proceedings of the 10th international conference on
Computational Linguistics, pp. 178–181, Association for Computational
Linguistics.
D. Terence LANGENDOEN (1981), The generative capacity of word-formation
components, Linguistic Inquiry, 12(2):320–322.
Jeffrey LIDZ (2001), Echo reduplication in Kannada and the theory of
word-formation, Linguistic review, 18(4):375–394.
Huan LUO (2017), Long-distance consonant agreement and subsequentiality,
Glossa: A journal of General Linguistics, 2(1):1–25,
doi:http://doi.org/10.5334/gjgl.42.
Alexis MANASTER-RAMER (1986), Copying in natural languages,
context-freeness, and queue grammars, in Proceedings of the 24th annual meeting
on Association for Computational Linguistics, pp. 85–89, Association for
Computational Linguistics.
Alec MARANTZ (1982), Re reduplication, Linguistic Inquiry, 13(3):435–482.
Gary F. MARCUS, Sugumaran VIJAYAN, S. Bandi RAO, and Peter M. VISHTON
(1999), Rule learning by seven-month-old infants, Science, 283(5398):77–80.
Veronika MATTES (2007), Reduplication in Bikol, Ph.D. thesis, University of
Graz, Graz, Austria.
John J. MCCARTHY, Wendell KIMPER, and Kevin MULLIN (2012),
Reduplication in Harmonic Serialism, Morphology, 22(2):173–232.
John J. MCCARTHY and Alan PRINCE (1994), The emergence of the unmarked:
Optimality in prosodic morphology, in Mercé GONZÀLEZ, editor, Proceedings of
the North East Linguistic Society 24, p. 333–79, Graduate Linguistic Student
Association, University of Massachusetts, Amherst, MA.
John J. MCCARTHY and Alan PRINCE (1995), Faithfulness and reduplicative
identity, in Jill N. BECKMAN, Laura Walsh DICKEY, and Suzanne URBANCZYK,
editors, Papers in Optimality Theory, Graduate Linguistic Student Association,
University of Massachusetts, Amherst, MA.
Fiona MCLAUGHLIN (2005), Reduplication and consonant mutation in the
Northern Atlantic languages, in Hurch (2005), pp. 111–134.
Robert MCNAUGHTON and Seymour A. PAPERT (1971), Counter-free automata,
MIT Press, Cambridge, MA.
Mehryar MOHRI (1997), Finite-state transducers in language and speech
processing, Computational Linguistics, 23(2):269–311.

[245]

Hossep Dolatian, Jeffrey Heinz

Edith MORAVCSIK (1978), Reduplicative constructions, in Joseph GREENBERG,
editor, Universals of Human Language, volume 1, pp. 297–334, Stanford
University Press, Stanford, California.
Ajit NARAYANAN and Lama HASHEM (1993), On abstract finite-state
morphology, in Proceedings of the Sixth Conference on European Chapter of the
Association for Computational Linguistics, Utrecht, The Netherlands, EACL ’93,
pp. 297–304, Association for Computational Linguistics, Stroudsburg, PA, USA,
ISBN 90-5434-014-2, doi:10.3115/976744.976779.
Mark-Jan NEDERHOF and Heiko VOGLER (2019), Regular transductions with
MCFG input syntax, in Proceedings of the 14th International Conference on
Finite-State Methods and Natural Language Processing, pp. 56–64, Association for
Computational Linguistics, Dresden, Germany,
https://www.aclweb.org/anthology/W19-3109.
Esa NELIMARKKA, Harri JÄPPINEN, and Aarno LEHTOLA (1984), Two-way
finite automata and dependency grammar: A parsing method for inflectional
free word order languages, in Proceedings of the 10th international conference on
Computational linguistics, pp. 389–392, Association for Computational
Linguistics.
Max NELSON, Hossep DOLATIAN, Jonathan RAWSKI, and Brandon PRICKETT
(2020), Probing RNN encoder-decoder generalization of subregular functions
using reduplication, in Proceedings of the Society for Computation in Linguistics,
volume 3.
Nicole Alice NELSON (2003), Asymmetric Anchoring, Ph.D. thesis, Rutgers
University, New Brunswick, NJ.
Andrew NEVINS (2004), What UG can and can’t do to help the reduplication
learner, in Aniko CSLRMAZ, Andrea GUALMINI, and Andrew NEVINS, editors,
MIT Working Papers in Linguistics 48, pp. 113–126, MIT Department of
Linguistics and Philosophy, Cambridge,MA.
Andrew NEVINS (2012), Haplological dissimilation at distinct stages of
exponence, in Jochen TROMMER, editor, The Morphology and Phonology of
Exponence, pp. 84–116, Oxford University Press, Oxford.
Andrew NEVINS and Bert VAUX (2003), Metalinguistic, shmetalinguistic: The
phonology of shmreduplication, in Proceedings from the Annual Meeting of the
Chicago Linguistic Society, volume 39, pp. 702–721, Chicago Linguistic Society,
Chicago.
David ODDEN (1994), Adjacency parameters in phonology, Language,
70(2):289–330.
John J. OHALA, Joseph Paul STEMBERGER, and Marshall LEWIS (1986),
Reduplication in Ewe: Morphological accommodation to phonological errors,
Phonology, 3:151–160.

[246]

https://www.aclweb.org/anthology/W19-3109

Reduplication with 2-way FSTs

Amanda PAYNE (2014), Dissimilation as a subsequential process, in Jyoti IYER
and Leland KUSMER, editors, NELS 44: Proceedings of the 44th Meeting of the
North East Linguistic Society, volume 2, pp. 79–90, Graduate Linguistic Student
Association, University of Massachusetts, Amherst, MA.
Amanda PAYNE (2017), All dissimilation is computationally subsequential,
Language: Phonological Analysis, 93(4):e353–e371,
doi:doi:10.1353/lan.2017.0076.
Christopher POTTS and Geoffrey K. PULLUM (2002), Model theory and the
content of OT constraints, Phonology, 19(3):361–393.
Brandon PRICKETT, Aaron TRAYLOR, and Joe PATER (2018), Seq2Seq models
with dropout can learn generalizable reduplication, in Proceedings of the
Fifteenth Workshop on Computational Research in Phonetics, Phonology, and
Morphology, pp. 93–100.
Michael O. RABIN and Dana SCOTT (1959), Finite automata and their decision
problems, IBM Journal of Research and Development, 3(2):114–125.
Eric RAIMY (2000), The Phonology and Morphology of Reduplication, Mouton de
Gruyter, Berlin.
Eric RAIMY (2009), Deriving reduplicative templates in a modular fashion, in
Eric RAIMY and Charles E. CAIRNS, editors, Contemporary views on architecture
and representations in phonology, number 48 in Current Studies in Linguistics,
pp. 383–404, MIT Press, Cambridge, MA.
Eric RAIMY (2011), Reduplication, in Marc VAN OOSTENDORP, Colin EWEN,
Elizabeth HUME, and Keren RICE, editors, The Blackwell Companion to
Phonology, volume 4, pp. 2383–2413, Wiley-Blackwell, Malden, MA.
Charles REISS and Marc SIMPSON (2009), Reduplication as projection,
unpublished manuscript, Concordia University, Montréal.
Jason RIGGLE (2004), Nonlocal reduplication, in Kier MOULTON and Matthew
WOLF, editors, Proceedings of the 34th meeting of the North Eastern Einguistics
Society, Graduate Linguistic Student Association, University of Massachusetts,
Amherst, MA.
Brian ROARK and Richard SPROAT (2007), Computational Approaches to
Morphology and Syntax, Oxford University Press, Oxford.
James ROGERS and Geoffrey PULLUM (2011), Aural pattern recognition
experiments and the subregular hierarchy, Journal of Logic, Language and
Information, 20:329–342.
Carl RUBINO (2005), Reduplication: Form, function and distribution, in Hurch
(2005), pp. 11–29.
Carl RUBINO (2013), Reduplication, Max Planck Institute for Evolutionary
Anthropology, Leipzig, http://wals.info/chapter/27.

[247]

http://wals.info/chapter/27

Hossep Dolatian, Jeffrey Heinz

Jesse SABA KIRCHNER (2010), Minimal reduplication, Ph.D. thesis, University of
California, Santa Cruz.
Jesse SABA KIRCHNER (2013), Minimal reduplication and reduplicative
exponence, Morphology, 23(2):227–243.
Bridget SAMUELS (2010), The topology of infixation and reduplication, The
Linguistic Review, 27(2):131–176.
Walter J. SAVITCH (1982), Abstract machines and grammars, Little Brown and
Company, Boston.
Walter J. SAVITCH (1989), A formal model for context-free languages
augmented with reduplication, Computational Linguistics, 15(4):250–261.
Paul SCHACHTER and Victoria FROMKIN (1968), A phonology of Akan:
Akuapem, Asante, Fante, in UCLA Working Papers in Phonetics 9, University of
California, Los Angeles, Los Angeles.
Marcel-Paul SCHÜTZENBERGER (1975), Sur certaines opérations de fermeture
dans les langages rationnels, in Symposia Mathematica, volume 15, pp. 245–253.
Hiroyuki SEKI, Takashi MATSUMURA, Mamoru FUJII, and Tadao KASAMI
(1991), On multiple context-free grammars, Theoretical Computer Science,
88(2):191–229.
Hiroyuki SEKI, Ryuichi NAKANISHI, Yuichi KAJI, Sachiko ANDO, and Tadao
KASAMI (1993), Parallel multiple context-free grammars, finite-state
translation systems, and polynomial-time recognizable subclasses of
lexical-functional grammars, in Proceedings of the 31st annual meeting on
Association for Computational Linguistics, pp. 130–139, Association for
Computational Linguistics.
Jeffrey SHALLIT (2008), A Second Course in Formal Languages and Automata
Theory, Cambridge University Press, New York, NY, USA, 1 edition, ISBN
0521865727, 9780521865722.
Patricia A. SHAW (2005), Non-adjacency in reduplication, in Hurch (2005),
pp. 161–210.
Daniel SILVERMAN (2002), Dynamic versus static phonotactic conditions in
prosodic morphology, Linguistics, 40(1):29–60.
Michael SIPSER (1980), Lower bounds on the size of sweeping automata,
Journal of Computer and System Sciences, 21(2):195–202.
Philip SPAELTI (1997), Dimensions of Variation in Multi-Pattern Reduplication,
Ph.D. thesis, University of California, Santa Cruz.
Richard William SPROAT (1992), Morphology and Computation, MIT press,
Cambridge, MA.
Donca STERIADE (1988), Reduplication and syllable transfer in Sanskrit and
elsewhere, Phonology, 5(1):73–155.

[248]

Reduplication with 2-way FSTs

Thomas STOLZ, Cornelia STROH, and Aina URDZE (2011), Total Reduplication:
The Areal Linguistics of a Potential Universal, volume 8, Walter de Gruyter, Berlin.
Kristina STROTHER-GARCIA (2018), Imdlawn Tashlhiyt Berber syllabification
is quantifier-free, in Proceedings of the Society for Computation in Linguistics,
volume 1, pp. 145–153, doi:10.7275/R5J67F4D.
Kristina STROTHER-GARCIA (2019), Using model theory in phonology: a novel
characterization of syllable structure and syllabification, Ph.D. thesis, University of
Delaware.
Gregory STUMP (1995), Two types of mismatch between morphology and
semantics, in Eric SCHILLER, Elisa STEINBERG, and Barbara NEED, editors,
Autolexical Theory: Ideas and Methods, number 85 in Trends in Linguistics:
Studies and Monographs, pp. 291–318, Mouton De Gruyter, Berlin.
Gregory STUMP (2001), Inflectional morphology: A theory of paradigm structure,
number 93 in Cambridge Studies in Linguistics, Cambridge University Press,
Cambridge.
Terry TAI, Wojciech SKUT, and Richard SPROAT (2011), Thrax: An open source
grammar compiler built on OpenFst, in IEEE Automatic Speech Recognition and
Understanding Workshop, volume 12.
Suzanne URBANCZYK (1999), Double reduplications in parallel, in René
KAGER, Harry VAN DER HULST, and Wim ZONNEVELD, editors, The
prosody-morphology interface, pp. 390–428, Cambridge University Press,
Cambridge.
Suzanne URBANCZYK (2001), Patterns of reduplication in Lushootseed, Garland,
New York.
Suzanne URBANCZYK (2007), Themes in phonology, in Paul DE LACY, editor,
The Cambridge Handbook of Phonology, pp. 473–493.
Suzanne URBANCZYK (2011), Reduplication, in Mark ARONOFF, editor, Oxford
Bibliography,
http://oxfordindex.oup.com/view/10.1093/obo/9780199772810-0036.
Odile VAYSSE (1986), Addition molle et fonctions p-locales, in Semigroup
Forum, volume 34, pp. 157–175, Springer.
Rachelle WAKSLER (1999), Cross-linguistic evidence for morphological
representation in the mental lexicon, Brain and Language, 68(1-2):68–74.
Markus WALTHER (2000), Finite-state reduplication in one-level prosodic
morphology, in Proceedings of the 1st North American chapter of the Association
for Computational Linguistics conference, NAACL 2000, pp. 296–302, Association
for Computational Linguistics, Seattle, Washington,
http://dl.acm.org/citation.cfm?id=974305.974344.
Ronnie B. WILBUR (1973), The Phonology of Reduplication, Ph.D. thesis,
University of Indiana, Bloomington, Indiana.

[249]

http://oxfordindex.oup.com/view/10.1093/obo/9780199772810-0036
http://dl.acm.org/citation.cfm?id=974305.974344

Hossep Dolatian, Jeffrey Heinz

Ronnie B WILBUR (2005), A reanalysis of reduplication in American Sign
Language, in Hurch (2005), pp. 595–623.
Colin WILSON (2019), Re (current) reduplication: Interpretable neural network
models of morphological copying, Proceedings of the Society for Computation in
Linguistics, 2(1):379–380.
Moira YIP (1995), Repetition and its avoidance: The case of Javanese, in
Keiichiro SUZUKI and Dirk ELZINGA, editors, Proceedings of the South Western
Optimality Theory workshop 1995. Arizona Phonology Conference Volume 5,
pp. 238–262, University of Arizona, Tucson, AZ.
Alan C.L. YU (2007), A Natural History of Infixation, number 15 in Oxford
Studies in Theoretical Linguistics, Oxford University Press, Oxford.
Kristine YU (2017), Advantages of constituency: Computational perspectives on
Samoan word prosody, in International Conference on Formal Grammar 2017,
p. 105–124, Spring, Berlin.
Sam ZUKOFF (2017), Indo-European Reduplication: Synchrony, Diachrony, and
Theory, Ph.D. thesis, Massachusetts Institute of Technology.
Kie ZURAW, M. Yu KRISTINE, and Robyn ORFITELLI (2014), The word-level
prosody of Samoan, Phonology, 31(2):271–327.

Hossep Dolatian
 0000-0001-5044-8434
hossep.dolatian@stonybrook.edu

Jeffrey Heinz
 0000-0002-5954-3195
jeffrey.heinz@stonybrook.edu

Department of Linguistics
Institute of Advanced Computational Science
Stony Brook University
Stony Brook, NY, US
https://you.stonybrook.edu/deovlet/

Hossep Dolatian and Jeffrey Heinz (2020), Computing and classifying
reduplication with 2-way finite-state transducers, Journal of Language Modelling,
8(1):179–250
 https://dx.doi.org/10.15398/jlm.v8i1.−1

This work is licensed under the Creative Commons Attribution 4.0 Public License.
 http://creativecommons.org/licenses/by/4.0/

[250]

https://orcid.org/0000-0001-5044-8434
mailto:hossep.dolatian@stonybrook.edu
https://orcid.org/0000-0002-5954-3195
mailto:jeffrey.heinz@stonybrook.edu
mailto:https://you.stonybrook.edu/deovlet/
https://dx.doi.org/10.15398/jlm.v8i1.−1
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Background on computation of reduplication
	Why reduplication is challenging
	Finite-state approximations
	Extending formal power
	Computational distinctions between total and partial reduplication
	Summary and consequences

	2-way finite-state transducers: definition and application to reduplication
	Preliminaries and formal definition
	Illustration of two-way transducers for reduplication
	Generative capacity and computational complexity

	Contrasting 2-way D-FSTs with 1-way FSTs
	Empirical coverage of the typology and productivity
	Practical utility and the RedTyp database
	Linguistic motivation with origin semantics

	Linguistic motivations for subclasses of transducers
	Computational typology of phonology and 1-way transducers
	Subclasses of 2-way finite-state transducers
	Illustrating C-OSL

	Computational typology of reduplication
	Preliminaries to the typology
	Most reduplication is C-OSL
	Total and word-initial partial reduplication
	 Variation in the number and placement of copies
	Copying a morphological subconstituent
	Copying a prosodic subconstituent

	Some reduplication is C-Seq
	Internal reduplication and gray areas between C-OSL or C-Seq
	Internal or non-contiguous reduplication which is C-Seq

	Grey areas between C-Seq and rotating transducers
	Reduplication with syllable-count
	Phonological changes to the reduplicant
	Phonological changes to or across both copies

	Overview of the typology summary
	Issues in over- and under-generation
	Over-generation with 2-way D-FSTs
	Under-generation with 2-way D-FSTs

	Conclusion

