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ABSTRACT

A number of experiments have demonstrated what seems to be a bias
in human phonological learning for patterns that are simpler accord-
ing to Formal Language Theory (Finley and Badecker 2008; Lai 2015;
Avcu 2018). This paper demonstrates that a sequence-to-sequence
neural network (Sutskever et al. 2014), which has no such restriction
explicitly built into its architecture, can successfully capture this bias.
These results suggest that a bias for patterns that are simpler according
to Formal Language Theory may not need to be explicitly incorporated
into models of phonological learning.

INTRODUCTION

Formal Language Theory (FLT; Chomsky 1956) describes how complex
a pattern is in terms of the computational machinery needed to rep-
resent it. The framework was originally designed to demonstrate that
natural language syntax was more complex than the set of Regular pat-
terns (i.e., those that could be represented using finite state machines).
However, Johnson (1972) showed that all known phonological map-
pings could be considered, at most, Regular (see also Kaplan and Kay
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1994). Recent work has supported this finding, arguing that phono-
logical learning must be categorically limited to patterns that can be
characterized as Subregular (i.e., belonging to specific classes of pat-
terns that can be represented with less expressive power than that
of a finite state machine; Heinz 2010; Heinz and Idsardi 2011). One
piece of evidence for this hypothesis is a series of experimental results
that show humans being biased against learning certain patterns that
seem to be too complex according to FLT-based metrics (Finley and
Badecker 2008; Lai 2015; Finley 2017; Avcu 2018).

For example, Finley and Badecker (2008) showed that their par-
ticipants were biased against learning Majority Rule Harmony (also
known as Majority Rules; Lombardi 1999; Bakovic 2000), an unat-
tested phonological process that is more complex than the set of Reg-
ular mappings. Later experimental work went on to show that people
were also biased against learning some Subregular patterns (Lai 2015;
Avcu 2018; McMullin and Hansson 2019), providing evidence that the
phonological grammar might be limited to even simpler levels of the
FLT hierarchy, such as those that can be characterized as Strictly Lo-
cal and Tier-based Strictly Local (TSL; Heinz et al. 2011).' The former
level of complexity includes any pattern that bans a finite set of sub-
strings from occurring in a word, while the latter does so over a tier
of segments (i.e., certain segments can be ignored by the pattern).

An example of a Strictly Local pattern that commonly occurs
in natural language is the restriction banning voiceless sounds after
nasals (henceforth *NC; Pater, 1999). This pattern is Strictly Local
since it bans any word containing the finite set of strings that result
from combining all nasals with all voiceless sounds (e.g. [nt], [np],
[mt], [mp], etc.). TSL patterns are also common in phonology and are
typically called harmony (see Rose and Walker 2011 for an overview),
since many of them cause a subset of segments in a word to agree
in their value for some feature.? For example, Navajo contains a har-

LStrictly Piecewise has also been suggested as an appropriate level of com-
plexity to describe phonological patterns (Heinz 2010); however, see McMullin
(2016) and Lamont (2018, 2019a) for arguments against this.

2Long-distamce dissimilation patterns (i.e., patterns in which sounds must
disagree in their value for a feature; Bennett 2015), are rarer in natural language
but are also Tier-based Strictly Local.
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mony pattern in which all sibilants (e.g., [s] and [{]) within a word
have to agree in their value for the feature [anterior] (Sapir and Hoi-
jer 1967). This means that on the sibilant tier, the strings [sf] and
[fs] are banned, since [s] is [ +anterior] but [{] is [ —anterior]. Any
sounds that are not sibilants are irrelevant to the pattern. A word like
*[saf] would not be allowed, since its sibilant tier would exclude [a]
and only include the banned sequence *[s{]. Figure 1 shows the full
Subregular Hierarchy and where each of these two types of patterns
are located in it.

While a considerable amount of work has been done to explain
phonological typology and learning in terms of these FLT-based cri-
teria, little work has been done to computationally model the exper-
imental results that support a bias for Subregular patterns.® Here, I
will show that the biases observed in past FLT-related experiments
can emerge from the learning process of a relatively generic learner,
namely a sequence-to-sequence neural network, which has the expres-
sive power to represent both Subregular and Supraregular patterns
(Siegelmann 1999). Since the network has no explicit, FLT-related
biases built into its architecture, this provides evidence that such a

3 Note that most of the literature involving FLT and learning (e.g., Chandlee
et al. 2015; Jardine and Heinz 2016, among others) does not have an explicit
hypothesis for how such learning algorithms can be used to make predictions for
artificial language learning experiments. Instead, such work tends to focus on
whether formally defined classes of languages are learnable at all, given certain
kinds of training data.
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bias may not need to be added to theories of phonological acquisi-
tion.

The paper is structured as follows: Section 2 introduces the neu-
ral network model that I will be using, Section 3 focuses on simulat-
ing experimental results regarding Majority Rule Harmony (Lombardi
1999; Bakovic 1999; Finley and Badecker 2008), Section 4 focuses on
doing the same for experiments that involve First-Last Assimilation
(Lai 2015; Avcu 2018), and Section 5 concludes.

2 MODELLING PHONOLOGICAL LEARNING
WITH NEURAL NETWORKS

Neural networks have been used to model linguistic patterns since
at least Rumelhart and McClelland (1986) and were quickly applied
to the domain of phonology by Touretzky (1989) and Touretzky and
Wheeler (1990). Hare (1990) first used recurrent neural networks
(Jordan 1986; Elman 1990) to capture Hungarian vowel harmony,
demonstrating that this architecture could be particularly useful for
learning phonological mappings. Recurrent neural networks treat a
stimulus as being made up of multiple timesteps, each of which the
model processes separately. At each timestep, the model has con-
nections that lead to the output layer and to the next step in time.
These connections that feed into future timesteps are called recur-
rent and give the model a kind of memory as it walks through the
full stimulus. This is illustrated in Figure 2 for Hungarian vowel har-

mony.
Figure 2: .
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The use of such simple recurrent networks was later expanded
to model other phonological phenomena, such as voicing assimila-
tion (Gasser and Lee 1992) and phonotactic learning biases (Doucette
2017). However, these simple networks have been critiqued for their
inability to generalise in a human-like way (Gasser 1993; Marcus et al.
1999) and for being too myopic (Alderete and Tupper 2018), since
they have no ability to look ahead in their input sequence. There are
a number of other reasons to suspect that simple recurrent networks
would not be able to handle the full wealth of phonological phenom-
ena — for example, their dependency on input and output lengths being
equal (Sutskever et al. 2014).

Most of these issues are solved by the neural network architecture
used in this paper, sequence-to-sequence networks (henceforth Seq2Seq;
Sutskever et al. 2014). Seq2Seq networks were originally designed for
machine translation and are meant to handle the fact that different
languages often use different numbers of words to express the same
idea. For example, a sentence like “No, I am your father” could be
translated to Spanish as “No, soy tu padre,” which has one less word.
Seq2Seq networks deal with this by processing sequences in the in-
put with a recurrent network called the encoder which is connected
to a separate network, called the decoder, via its hidden layer con-
nections. This processed data is then unpacked by the decoder into
an output sequence whose length is independent of the length of the
input.

This design also makes Seq2Seq networks well suited for mod-
elling morphological and phonological patterns (e.g., Kirov and Cot-
terell 2018; Prickett et al. 2018; Prickett 2019), since these often in-
volve mapping between forms of different lengths. For the simulations
presented in this paper, words are represented as sequences of sounds,
where sounds are vectors of real-numbered features that range from
0 to 1. In the input, which represents the underlying form, standard
phonological features are used (like [voice] or [back]), with 0 and 1
corresponding to [ —] and [ + ], respectively. In the output, which rep-
resents the surface representation, the network has a binary classifier
for each feature that gives the model’s estimated probability for how
likely that feature is to have a positive value, given the underlying
representation (UR) in its input. This is illustrated in Figure 3 using
the same Hungarian example as above, with the feature vectors in the
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Figure 3: - .
An example of how Hungarian vowel harmony 1: C. ﬂ . E
might be handled by a Seq2Seq network.
The IPA symbols shown at the top and bottom
of the figure represent the model’s output and
input, respectively, and stand in for vectors
of real-numbered feature values. Black squares
are Gated Recurrent Units and black arrows
are sets of connections. The grey arrow shows
the encoder’s hidden layer activations
being passed to the decoder
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input and the most probable sets of feature values in the output being
represented using IPA symbols.

The network presented here also uses Gated Recurrent Units (GRU;
Cho et al. 2014) which were designed to solve another issue with
simple recurrent networks: vanishing gradients (Bengio et al. 1994),
which can prohibit a network from learning long-distance dependen-
cies. While none of the patterns I investigate have dependencies that
are long enough to be affected by this phenomenon, GRU units are rel-
atively standard in the Seq2Seq literature and I leave it to future work
to see whether they are necessary for capturing the results presented
here. Similarly, in all of my simulations, the network’s weights were
optimized using Adam (Kingma and Ba 2015), a standard algorithm
for training neural networks, but one that is likely not necessary to
produce the results that I observed. The loss function used for opti-
mization was the sum of binary cross entropy over all of the binary
feature classifiers in the output and weight updates were made after
seeing each word in training (i.e. batch sizes were equal to 1, some-
times called online learning in the phonological literature).

A final aspect of the model’s architecture worth noting is atten-
tion (Bahdanau et al. 2015). This gives the model’s decoder additional
access to information from the input sequence by allowing it to see
the decoder’s hidden-state activations. Attention has been shown to
encourage human-like generalization in Seq2Seq networks (Nelson
et al. 2020). Some pilot simulations without attention suggested that
it helped the model generalisese better in the simulations presented
here.
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MAJORITY RULE HARMONY

Background

Majority Rule Harmony is a pattern predicted by some constraint-
based theories of assimilation in which the number of segments in a
word’s underlying representation (UR) with a particular feature value
determines what the value of that feature will be throughout the sur-
face representation (SR) of the word (Lombardi 1999; Bakovic 1999).
For example, if a UR has two [—anterior] segments and only one
[ +anterior] segment (e.g. /safaf/), then the surface representation
of the word would assimilate all of the sounds to be [ —anterior] (e.g.
[fafaf]). Conversely, if a UR has two [+ anterior] sounds and only a
single [ —anterior] one (e.g. /sasaf/), the surface form would instead
assimilate all of the sibilants to be [+ anterior] (e.g. [sasas]). Since
Majority Rule requires a potentially unbounded amount of memory
(i.e. enough memory to keep track of the quantities for each fea-
ture value), it cannot be represented with a finite state transducer
and is more complex than the set of Regular functions (Heinz and Lai
2013).*

Finley and Badecker (2008) tested whether humans were biased
against Majority Rule. They did this by training participants on a
language that was ambiguous between Majority Rule Harmony and
a more standard, attested harmony pattern (henceforth Attested Har-
mony), in which the value of the relevant feature in the SR was deter-
mined by the value of that feature in either the leftmost or rightmost
segment of the UR (see Rose and Walker 2011, for more on the kinds of
harmony patterns that are common in natural language). Directional
harmony mappings like this are Subregular, since determining how a
vowel will surface only depends on local information in the input and

#Since TSL only defines a set of languages (i.e. phonotactic restrictions on
SRs) and not a set of functions (i.e. UR—SR mappings), standard harmony pat-
terns (when represented as transformations) are Qutput Tier-based Strictly Local
(Burness and McMullin 2019), a subset of Regular functions. See Lamont (2019b)
for more on this distinction between mappings and phonotactics and its relevance
to complexity in phonology.
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output (Chandlee 2014; Chandlee et al. 2014, 2015; Graf and Mayer
2018; Burness and McMullin 2019).

Participants in the experiment were exposed to stimuli meant to
represent underlying forms like /kupoki/, with both [+ back] and
[—back] vowels present in a single word. Crucially, the minority
vowel (/i/ in this case, since it is [ —back] while /o/ and /u/ are both
[ +back]) always occurred on the same side of the word in training. Af-
ter being given each “underlying” form, participants would then be ex-
posed to a stimulus representing the “surface” form it mapped to (e.g.,
[kupoku] for the example above). The mapping /kupoki/—[kupoku]
could then be analysed by the participants in two ways: either At-
tested Harmony, where the [back] value of the final vowel changed
because the leftmost vowel in the word was [ + back], or Majority Rule
Harmony, where the word-final /i/ changed because the majority of
vowels in the underlying form were [+ back].

After being exposed to a number of these ambiguous mappings,
participants were asked to choose between mappings that were un-
ambiguous between Majority Rule and Attested Harmony.® For ex-
ample, they might be given /kupeki/ and need to choose between
mapping it to [kupoku] (the Attested Harmony candidate) or [kipeki]
(the Majority Rule candidate). If participants chose between the op-
tions at chance, it would suggest that they had no preference for
either pattern. However, if they chose one significantly more often
than the other, it would suggest that they were biased toward learn-
ing that pattern. Finley and Badecker (2008) found that their par-
ticipants were significantly more likely to generalise in a way that
adhered to Attested Harmony. That is, when choosing to either ap-
ply an Attested Harmony or Majority Rule mapping to items that
were unambiguous between the two patterns, participants only ap-
plied the latter in approximately 20% of trials. This suggests that in
the face of ambiguous training, the participants learned the Attested
Harmony pattern — which Finley and Badecker (2008) interpreted as

5 Thanks to a reviewer for pointing out that these forms are only unambiguous
as to which of the two patterns of interest they adhere to. A number of other
analyses could be used to account for both sets of words, such as a bidirectional
harmony process for the Majority Rule items (where the value of [back] spreads
outward from the middle vowel).
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evidence of a bias against learning Supraregular patterns like Majority
Rule.

Simulations 3.2

To see whether the behaviour observed by Finley and Badecker (2008)
is mirrored by a Seq2Seq network, I simulated their experiment using
the architecture described in Section 2. The model was exposed to
the same types of training data that Finley and Badecker (2008) gave
their participants, which was ambiguous between Majority Rule and
Attested Harmony. Since only the vowels were relevant to the patterns
in this experiment, all consonants were removed. Other than this dif-
ference, the model was exposed to the same underlying and surface
forms that the experiment participants were given. These are shown
in Table 1 and the features used in all the simulations presented in
this subsection are shown in Table 2.

All simulations consisted of 15 repetitions using this training data,
with randomly initialized weights at the start of learning, and 300 full
passes through the training data (i.e., 300 epochs). At each epoch, the

Underlying Representation  Surface Representation Tab.le. L I
Training data for Majority Rule
Joui/ [ouu] simulations
/eio/ [eie]
/uoi/ [uoul
/ieo/ [iee]
/oue/ [ouo]
/uoe/ [uoo]
/eiu/ [eii]
/iew/ [iei]
. Table 2:
[back]  [high Features for Majority Rule
i — + simulations
u + +
e — -
o + —

[ 75 1]



Brandon Prickett

Table 3: UR Attested Harmony SR~ Majority Rule SR
Test Data for Majority Rule

simulations. Model was given a UR as Joie/ [ou o] [eie]
input (shown in the leftmost column) Joei/ [00u] [eei]
and assigned probabilities to each Juie/ [uuo] liie]
output choice (shown in the center Juei/ [Wou lieil
and rightmost columns) Jiow leil [u o u]
/iuo/ [iie] [uuo]
/eou/ [e ei] [o0u]
/euo/ [eie] [ou o]

model was presented with the same kind of crucial forced choices that
Finley and Badecker (2008) gave their participants in the experiment’s
test phase (shown in Table 3).

The conditional probability that the model assigned to each
choice, given a particular UR, was calculated using the equation de-
fined in Equation 2, based on Luce (1959), where pr(UR;) — SR; is
found using Equation 1, and where f;; stands for feature j in segment
s; of the relevant SR.

@ prWR-sR) =] [[ [pr(slur)

pr(UR; — SR;)

2 r(UR; — SR,|SR, or SR,) =
@ pr(UR; 1SRy 2) pr(UR; = SR;) +pr(UR; — SRy)

Results for these forced choice estimates were averaged over stim-
ulus types and repetitions, and these averages are shown for each
epoch in Figure 4. Figure 5 gives the 50th epoch in more detail, for
results that are more visually comparable to the ones presented by
Finley and Badecker (2008).

These results show that throughout learning, the model prefers
choices that are consistent with Attested Harmony, even though it has
been trained on data that is ambiguous between the two patterns. This
difference reaches statistical significance for a range of epochs (in-
cluding the 50th epoch), meaning that the bias in humans observed
by Finley and Badecker (2008) can be captured by the model.

To further test the model’s biases in regards to Majority Rule Har-
mony, I also ran a simulation that does not correspond to Finley and
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Figure 4:
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Badecker’s (2008) experiment. Rather than using a generalization-
based design, in this simulation, multiple, unambiguous languages
were used in training. Additional data points were added to the train-
ing data in Table 1 to disambiguate the two patterns of interest. The
data for unambiguous versions of Majority Rule Harmony and Attested
Harmony are shown in Tables 4 and 5.

The model was trained on these unambiguous versions of Attested
Harmony and Majority Rule and the cross entropy and accuracy were
recorded at each epoch. Accuracy was estimated by feeding the model
each of the underlying forms in the training data, sampling from the
probabilities it produced in the output to create surface forms, and
finding the proportion of those surface forms that were perfectly pro-
duced in that epoch’s sample. The learning curves created from these
results (averaged over 15 repetitions) are shown in Figure 6.

These results show that for small portions of the learning curve,
Attested Harmony’s average accuracy is marginally higher than
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Table 4:

Training data for the unambiguous
Majority Rule language, based on the
ambiguous data from Finley and
Badecker (2008). Bolded cells show
which data are unambiguous

Table 5:

Training data for the unambiguous
Attested Harmony language, based on
the ambiguous data from Finley

and Badecker (2008). Bolded cells
show which data are unambiguous
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Underlying Representation

Surface Representation

/oui/
/eio/
/uoi/
/ieo/
/oue/
/uoe/
/eiu/
/ieuw/
/oie/
/oei/
/uie/
/uei/
/iou/
/iuo/
/eou/
/euo/

[ouu]
[eie]
[uou]
[iee]
[ou o]
[uo o]
[eii]
[iei]
[eie]
[e ei]
[iie]
[iei]
[uoul
[uuo]
[0 0 u]
[ouo]

Underlying Representation

Surface Representation

/oui/
/eio/
/uoi/
/ieo/
/oue/
/uoe/
/eiu/
/ieuw/
/oie/
/oei/
/uie/
/uei/
/iou/
/iuo/
/eou/
/euo/

[ouu]
[eie]
[uou]
[iee]
[ouo]
[uo o]
[eii]
[iei]
[ouo]
[0 0 u]
[uuo]
[uoul
[iei]
[iie]
[e eil
[eie]
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Figure 6: Learning curves for Majority Rule and Attested Harmony in the sim-
ulations using unambiguous versions of the language from Finley and Badecker
(2008). Chance performance for the plot on the right would be considerably
lower than 0.1, since the model assigns probabilities to each feature value in
each segment. Coloured regions show 95% confidence intervals

Majority Rule’s, but this difference is not a reliable one. There also
seems to be a small, statistically marginal difference between the
loss curves for the two patterns, but this effect is even less consistent
throughout learning. Assuming that the small, artificial languages
used here adequately represented each of the languages, this suggests
that if the model does have a bias for Subregular patterns in its learn-
ing from unambiguous data, the effect size of this bias is too small to
see in just 15 repetitions.

FIRST-LAST ASSIMILATION

Background

First-Last Assimilation is a hypothetical phonotactic restriction in which
the first and last segment of a word must agree in some feature value,
while the intervening sounds are ignored (Lai 2015). For example,
if the feature that needed to agree was [anterior], the word [safas]
would be allowed, but the word *[safaf] would not be. Lai (2015) ar-
gued that there are reasonable diachronic origins for such a pattern,
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since the beginning and end of a word are perceptually salient posi-
tions. She went on to argue that the absence of such a pattern in the
phonological typology could be due to its FLT-based complexity.

While First-Last Assimilation is Subregular, it belongs to the Lo-
cally Testable region, which is more complex than TSL, in terms of the
logic needed to define the crucial parts of the pattern. That is, sets
of sequences are necessary to describe words banned by First-Last As-
similation (i.e. “words with either [#s] and [[#] or [#[] and [s#] are
banned”), which is never true for TSL patterns.

Two studies have shown that people have biases against learn-
ing First-Last Assimilation. Lai (2015) trained participants on either a
standard sibilant harmony pattern (henceforth, Attested Harmony) or
First-Last Assimilation by having them listen to and then repeat words
adhering to the pattern they were assigned to. In the testing phase
of the experiment, participants were asked to judge which word was
more likely to belong to the language they were trained on in three
types of forced choice:®

i. a choice between a word that was allowed in both patterns
(e.g. [sasakas], denoted as FL/AH below) and a word that was
only allowed in First-Last Assimilation (e.g. [safakas], denoted as
FL/*AH below),

ii. a choice between a word that was allowed in both patterns and
a word that was banned by both (e.g. [sasakaf], denoted as
*FL/*AH below),

iii. a choice between a word that was only allowed in First-Last As-
similation and one that was banned by both.

Participants who learned an Attested Harmony pattern would be
expected to choose words that were allowed by both patterns when
presented with choices (i) and (ii), but should choose at random for
choice (iii). This is because choice (iii) forces participants to choose
between two words that are both banned by the Attested Harmony pat-
tern. Participants who learned a First-Last Assimilation pattern would

6While there are more than three logically possible forced choice options,
including words that were only allowed in Attested Harmony would have been
impossible. This is because all words that are allowed in Attested Harmony are
also allowed in First-Last Assimilation.
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Figure 7: Results adapted from Figures 2-4 in Lai (2015). The x-axis shows which
pattern participants were trained on. Type labels are mine, with “FL” standing
for First-Last Assimilation, “AH” for Attested Harmony, and “*” indicating an
option not being allowed in a given pattern. Note that Lai (2015) used the term
“Standard Harmony”/“SH” for the pattern I'm calling “Attested Harmony”/“AH”

be expected to choose at chance for choice (i), since both choices are
grammatical according to First-Last Assimilation. For choice (ii), they
would be expected to choose words that are allowed by both patterns,
and for choice (iii) they should choose the words that are only allowed
by First-Last Assimilation.

However, participants trained on First-Last Assimilation in Lai’s
(2015) experiment did not behave as expected. Her results (repro-
duced in Figure 7) showed that participants in both language con-
ditions behaved as if they had learned Attested Harmony.

Specifically, when presented with choices (i) and (ii), participants
in both conditions chose items that were grammatical in both lan-
guages significantly more than chance, showing that they preferred
items in which Attested Harmony was not violated. However, when
presented with choice (iii), participants performed at chance, demon-
strating that they had no preference between items that violated First-
Last Assimilation and those that did not. This shows that they failed
to learn First-Last Assimilation when trained on the pattern, and in-
stead learned the Attested Harmony pattern. These results are what
one would expect if there were a categorical restriction banning the
acquisition of phonological patterns that are more complex than TSL.

Avcu (2018) ran another artificial language learning experiment
to test for a bias against First-Last Assimilation. Participants received
the same training as Lai’s (2015) study; however in testing, they were
asked to make a different kind of choice. Instead of choosing between
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two words, participants judged whether they thought each test stimu-
lus (some of which followed the pattern from training and some which
did not) belonged to the language they had just learned. This allowed
Avcu (2018) to analyse participant responses using Signal Detection
Theory (Green and Swets 1966) and provided a measure of how sensi-
tive individuals were to whether a word belonged to the language they
were assigned. The results showed that participants in both language
conditions were better than chance at performing this discrimination
task, but that those who learned Attested Harmony performed signif-
icantly better. Since Avcu’s (2018) participants were less successful
at learning First-Last Assimilation than its more standard counterpart,
these results also support the idea of a bias for patterns that are simpler
according to FLT.

Simulations

To see if an explicit, FLT-related bias is needed to capture the re-
sults that Lai (2015) and Avcu (2018) observed in human learning,
I ran a simulation using a Seq2Seq network.” The training and test-
ing data that the model received were identical to the stimuli used
by Lai (2015), except that all vowels were removed from the model’s
representations (as they were irrelevant to the patterns of interest).
Since Lai’s (2015) participants were not exposed to the underlying
forms for any of the stimuli, all training and testing data for the model
assumed that underlying forms were identical to their corresponding
surface forms (see Prince and Tesar 2004, for a similar approach to
phonotactic learning). While this data represents an identity mapping,
the fact that neural networks cannot perfectly learn such a mapping
(Tupper and Shahriari 2016) means that the model must learn alter-
native ways to optimize its objective function, such as acquiring the
phonotactic patterns present in the language (see Kurtz 2007, for a
similar approach using a different neural network architecture). The

7 Thanks to a reviewer for pointing me toward similar work in the domain of
syntax: Ravfogel et al. (2019) show that a neural network, when trained on data
that is ambiguous between an agreement pattern analogous to First-Last Assimi-
lation and a pattern that involves more local agreement, the network generalises
in a way that suggests it learned the latter.
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Surface Representation Table 6:
Training data for First-Last Assimilation language
[fskil in the simulations of Lai (2015). The input and output
[s[ks] to the model was identical for all data
[fksf]
[sk{s]
[ffkfl
[ssksl]
[fkffl
[s kss]
Surface Representation Table 7:
Training data for Attested Harmony language
[ffkiI in the simulations of Lai (2015). The input and output
[ssks] to the model was identical for all data
[fk§fl
[s kss]
[ffkf]
[ssks]
[fkfil
[s kss]
Table 8:

teri ibilant . . . .
[anterior] _ [sibilant] Features and segments used in Lai (2015) simulations

s + +
§ - +
k - —

training data for First-Last Assimilation and Attested Harmony are
shown in Tables 6 and 7, respectively. Additionally, the features used
to represent the segments in both patterns are shown in Table 8.
Simulations consisted of 15 repetitions in each language condi-
tion, with randomly initialized weights at the start of learning, and
300 passes through the full data set. At each epoch of training, the
model’s cross entropy and accuracy were measured. Accuracy was es-
timated by feeding the model each of the forms in the training data
as input, sampling from the probabilities it produced in its output to
create surface forms, and finding the proportion of those surface forms
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Figure 8: Learning curves for First-Last Assimilation and Attested Harmony in the
simulations of Lai (2015). Chance performance for the plot on the right would be
considerably lower than 0.1, since the model assigns probabilities to each feature
value in each segment. Coloured regions show 95% confidence intervals

that matched their input in that epoch’s sample. Learning curves show-
ing both of these metrics are given in Figure 8.

The curves in Figure 8 show that Attested Harmony is learned
consistently faster than First-Last Assimilation. This difference is sig-
nificant for considerable portions of learning in both the model’s loss
and accuracy. These results are most comparable to those reported by
Avcu (2018), since the model’s performance is higher than chance for
both patterns, but significantly better for Attested Harmony.

To compare the model’s learning to the results in Lai (2015), the
network was given a forced-choice task similar to the one described
in Section 3.2, with the test data given in Table 9.

Since the patterns here were phonotactic (rather than mappings),
there was no shared UR between the two choices. That is, the condi-
tional probability that the model assigned to each choice was just a
normalized probability for each of the two SRs mapping to themselves,
as shown in Equation 3.

pr(SR; — SR;)
pr(SRl i SRl) +pT(SR2 - SRz)

(3) pr(SRll.SRl or SRz) ==

The relevant conditional probabilities were averaged over stimu-
lus types and repetitions, and are shown in Figure 9 and Figure 10 for
the model that was trained on First-Last Assimilation and the model
that was trained on Attested Harmony, respectively.
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Table 9:

“FL/*AH Choice Test data for First-Last Assimilation simulations.

FL/*AH Choice

Probabilities for each form in the left column

[sk{s] [fk{s]
[fskf] [fsks] were normalized with their corresponding item
[s  k s] (s {k ] in the right column. These normalized
[[ksf] [sks (] probabilities were then used to simulate
the model’s performance

FL/AH Choice

*FL/*AH Choice

on the forced-choice task from Lai (2015)

[skss] [sks]

[f§kf] [s§ kil

[fkffl [fk{s]

[ssks] [fsks]

FL/AH Choice  FL/*AH Choice

[ffkf] [fskil

[s kss] [sk{s]

[ssks] [sfks]

[fkff] [fksfl

Type (i) Type (ii)

£21.00 yP 21.0 yp
=0.75 =0.75
S0.50 * FL/*AH = 0.50 + *FL/*AH
@ 0.95 + FL/AH @ 0.95 s FL/AH
R, 0.00 R:0:004 00 200 300

0 100 200 300

Epoch

Type (iii)

Epoch

>,
50.75

= 0.50 + *FL/*AH
2 i FL/*AH
0.25

A~

0 100 200 300

Epoch

Figure 9: Forced choice probabilities at each epoch in learning for the First-Last
Assimilation language. Coloured regions show 95% confidence intervals
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Type (i) Type (ii)
21. >
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=0.75 =
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So.25 * FL/AH 203 s+ FL/AH
& 0.00 £0.0
0 100 200 300 0 100 200 300
Epoch Epoch
Type (iii)

£1.00

=0.75

"8 0.50 + *FL/*AH

—50'25 FL/*AH

0005 100 200 300

Epoch

Figure 10: Forced choice probabilities at each epoch in learning for the Attested
Harmony Language. Coloured regions show 95% confidence intervals

These results show that the Seq2Seq model, like the human par-
ticipants in Lai (2015), behaved in a way that was consistent with
Attested Harmony, even when trained on data that unambiguously
followed the First-Last Assimilation pattern. That is, regardless of the
model’s training data, it chose at chance between words that were
banned by Attested Harmony, even when one of those words adhered
to First-Last Assimilation (with the only exception to this behaviour
being a small number of epochs in the Attested Harmony condition).
This is shown in the results for choice (iii). By itself, this only shows
that the model did not learn First-Last Assimilation. However, choices
(i) and (ii) both show that the models acquired Attested Harmony,
since words adhering to this pattern are consistently given more prob-
ability than words banned by it for most of the acquisition process.®
To show these results in a way that is more visually comparable to
the results reported in Lai (2015), the model’s estimates for the 100th

SAlthough, note that toward the end of learning, the model trained on
the attested pattern begins to choose at chance in all three of the choice
types. This could be due to the model eventually learning to faithfully map
the segments in the input in those cases. While this approximates an iden-
tity mapping for the segments that were present in the training, it would
not be a true identity mapping, since neural networks trained with algo-
rithms like Adam cannot capture identity-based functions (Tupper and Shahriari
2016).
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Figure 11: Forced choice probabilities for the 100th epoch of training in both
the First-Last Assimilation language and the Attested Harmony Language. The
dashed line shows chance and the error bars show 95% confidence intervals.
As in Figure 7, “FL” stands for First-Last Assimilation, “AH” stands for Attested
Harmony, and “*” indicates an option not being allowed in a given pattern

epoch in each language, which was a relatively representative point
in each language’s learning curve, are shown in Figure 11.

DISCUSSION

Why can the Seq2Seq network capture these biases?

In this paper, I showed that the apparent FLT-related bias observed
in past artificial language learning experiments could be modeled by
a recurrent neural network with no FLT-based restrictions built into
its architecture. But the question of why these biases exist has not
been addressed. One reason for the model’s bias against Majority Rule
Harmony could be its inability to count. Weiss et al. (2018) showed
that GRU units, like the one used in the hidden layer of the neural
network I tested, prohibit a model from acquiring the ability to count
(as opposed to simple recurrent networks and networks with LSTM
units, which were able to learn counting-based patterns). Since Ma-
jority Rule Harmony requires counting the occurrences of a particular
feature value in the input, this could explain the model’s preference
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for learning an Attested Harmony pattern in the face of ambiguous
data.

Another relevant factor is the locality bias (sometimes also called
“sequentiality”; Battaglia et al. 2018) present in all recurrent network
architectures. This is a bias for patterns that involve local dependen-
cies, originating from the fact that recurrent connections have a finite
amount of memory with which to store information across time. Past
results on syntactic patterns have shown that this bias can cause RNNs
to learn a local agreement pattern when given ambiguous evidence
between that and a non-local one (Ravfogel et al. 2019). Similarly,
McCoy et al. (2020) showed that Seq2Seq neural networks similar to
the one used here were more likely to learn syntactic patterns that
depended on linear order, which typically involves more local depen-
dencies, than patterns that depended on hierarchical structure, which
typically involves longer distance dependencies. Since First-Last As-
similation also involves non-local dependencies (i.e. two arbitrarily
distant first and last segments), the network could have struggled to
keep track of the relevant feature values in its recurrent connections
when acquiring that pattern.®

Future work

This paper has shown that three experiments that found evidence sup-
porting an FLT-based bias in humans (Finley and Badecker 2008; Lai
2015; Avcu 2018) can be simulated using a Seq2Seq recurrent neu-
ral network. Future work should continue to explore the phonological
learning biases present in both humans and computational models. For
example, one phonological pattern that was not discussed here but
which the literature has discussed in detail is Sour Grapes Harmony
(Bakovic 2000; Wilson 2003). Sour Grapes is identical to Standard
Harmony, except when a segment that blocks the harmony process is

?The difference between local and non-local dependencies has been thor-
oughly explored in the statistical learning literature as well (e.g., Newport and
Aslin 2004), and simulations of such statistical learning experiments with RNNs
have been performed (see, e.g., Farkas 2008). I leave exploring the relationship
between these experiments and those that have been used to support FLT-based
biases in phonology to future work.
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present in a word. When this happens, any changes that would have
occurred up to the blocker are prevented from occurring at all. Like
First-Last Assimilation and Majority Rule, Sour Grapes is unattested in
natural language and more complex than the Tier-based Strictly Local
region of the Subregular Hierarchy (O’Hara and Smith 2019; Lamont
2019Db).

Another avenue for future work is using more realistic artificial
languages. In all of the experiments simulated here, word length was
kept constant. When testing the effects of formal complexity on human
learning, generalization to novel lengths has been shown to be crucial
in understanding human bias (Westphal-Fitch et al. 2018). Further re-
search that makes use of variable lengths in its training and testing
data could shed light on whether humans display an FLT-based bias
under these more realistic conditions.

Researchers should also explore how the predictions about human
learnability made by FLT and neural networks differ. For example, cer-
tain Context-Sensitive patterns are easier for neural networks and hu-
mans to learn than corresponding Context-Free patterns (Li et al. 2013;
Westphal-Fitch et al. 2018), despite the fact that Context-Sensitive is
more complex according to FLT. Exploring whether mismatches like
this occur in phonological patterns could shed more light on how psy-
chologically real FLT-based complexity is.

Understanding better why the neural network is able to capture
these results and what representations it learns while doing so is an-
other important next step. While the interpretability of recurrent net-
works has primarily been explored in the context of syntactic pat-
terns and language modelling (see, e.g., Alishahi et al. 2019, for a re-
view), some recent work on phonological patterns has shown promis-
ing results in this direction (Nelson et al. 2020; Smith et al. 2021)
and these techniques could likely be applied to the networks used
here.

Finally, a number of choices about the model I used were made
somewhat arbitrarily: the number of hidden states in each layer, the
use of GRU instead of a different kind of recurrent layer in the model,
the use of attention, et cetera. Changing any one of these would likely
have an effect on the model’s ability to capture the experiment re-
sults investigated in Section 3 and Section 4, and I leave exploring the
consequences of such changes to future work.
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The relationship between FLT and other complexity
metrics

The Subregular Hierarchy is not the only way of measuring complexity
that has been used in phonological research. Feature counting (Chom-
sky and Halle 1968), Minimum Description Length (Rasin and Katzir
2016), and various other methods (e.g. Moreton et al. 2017) have
been used to characterize the complexity of phonological patterns.
While these other methods are related to FLT, they are not perfectly
correlated with it. For example, a feature-counting complexity metric
would find a pattern banning all voiced sounds at the end of words
(i.e., *[ +voice]#) to be simpler than a pattern banning voiced, velar
stops in that context (i.e., *[ + voice, Dorsal]#). However, according
to FLT, these patterns would both be Strictly Local, with no differ-
ence in complexity. Exploring the relationship between FLT and these
other metrics is outside the scope of this paper; however future work
should investigate what formalizations of complexity best predict both
human behavior and linguistic typology (see, e.g., Moreton and Pater
2012).

Conclusions

Past work has explained phonological typology using an explicit, cat-
egorical restriction that prohibits the acquisition of patterns that are
too complex according to the Subregular Hierarchy. Evidence for this
hypothesis includes a series of experiments that showed humans be-
ing affected by an apparent FLT-based bias in an artificial language
learning context (Finley and Badecker 2008; Lai 2015; Avcu 2018).

The results in this paper challenge the idea that a categorical, ex-
plicit bias like this is needed to capture phonological learning, since
a Seq2Seq neural network with the expressive power to represent
Supraregular patterns was able to capture these experimental results.
While FLT can be useful for describing phonological typology, these
results suggest that an explicit FLT-based bias may not be needed in
models of phonological learning.
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