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We derive well-understood and well-studied subregular classes of for-
mal languages purely from the computational perspective of algorith-
mic learning problems. We parameterise the learning problem along
dimensions of representation and inference strategy. Of special inter-
est are those classes of languages whose learning algorithms are neces-
sarily not prohibitively expensive in space and time, since learners are
often exposed to adverse conditions and sparse data. Learned natural
language patterns are expected to be most like the patterns in these
classes, an expectation supported by previous typological and linguis-
tic research in phonology. A second result is that the learning algo-
rithms presented here are completely agnostic to choice of linguistic
representation. In the case of the subregular classes, the results fall out
from traditional model-theoretic treatments of words and strings. The
same learning algorithms, however, can be applied to model-theoretic
treatments of other linguistic representations such as syntactic trees
or autosegmental graphs, which opens a useful direction for future
research.
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1 INTRODUCTION

This paper presents an analysis supporting the view that the computa-
tional simplicity of learning mechanisms has considerable impact on
the types of patterns found in natural languages.

First, we derive well-understood and well-studied subregular
classes of formal languages purely from the computational perspective
of algorithmic learning problems. We present a family of four learn-
ing algorithms, generalizing the String Extension learners in Heinz
(2010b). We show that these algorithms, over different data struc-
tures, naturally structure the subregular Hierarchy of language classes
purely by difficulty of learning. We show that the simplest classes of
languages in these hierarchies are precisely the ones whose learning
algorithms use the least computational resources, in particular space
complexity. In fact, these are the only ones that are not prohibitively
expensive to learn. A reasonable prediction is that learned natural
language patterns would be most similar to patterns in the simplest of
these classes, and this expectation is supported by previous typological
and linguistic research in the domain of phonology.

The second result is that we introduce linear-time learning algo-
rithms for some subregular classes, a further restriction of the typology
beyond space-efficiency. As we explain, these algorithms are helpful
in certain cases and not so helpful in others, depending on the extent
to which the target patterns interact with other constraints. At issue
is that a set of data points which may be helpful in identifying one
constraint do not occur because they also happen to violate another.
A virtue of this analysis is that we can identify precisely the situations
where the linear-time learning algorithms can be applied.

Our third result is that the learning algorithms presented here
are completely agnostic to choice of linguistic representation. These
learning algorithms essentially parameterise the learning problem
in two ways: the structural knowledge salient to the learner (the
representation), and the way the learner collects and combines this
structural information to derive sets of acceptable and unacceptable
linguistic structures. In the case of the subregular classes of formal
languages, the results emerge from traditional model-theoretic treat-
ments of words and strings on the representational side and how the
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combinatorics of the grammars relate to kinds of logical languages on
the other side.

Since the algorithms are agnostic to the representations, the same
learning algorithms can be applied to model-theoretic treatments of
other linguistic representations such as syntactic tree structures or au-
tosegmental graphs. Of course, the real-life learning problem is com-
plicated by the fact that language learners do not have direct access
to linguistic structures like trees. Nonetheless the generality of these
learning algorithms means the real-life learning problems may be re-
duced to these algorithms coupled with appropriate parsing mecha-
nisms.

1.1Priors in language learning

Language acquisition succeeds despite sparse, underdetermined, Zipf-
distributed input, compounded by a lack of invariance in the signal –
the so-called poverty of stimulus (Yang 2013). This holds across all
domains of language, from phonological to syntactic induction.

It is uncontroversial that some bias or innate component restricts
a learner’s hypothesis space regardless of its strategy to solve this in-
duction problem, often referred to as Universal Grammar (Nowak et al.
2002). The question is its nature. How is it rich, and how is it poor?

Data-driven statistical learning does not change this basic calcu-
lus. One reason is that children often learn language in ways that defy
adult distributions (Legate and Yang 2002). Another is that induc-
tion from a data distribution without a prior may only recapitulate
the training data (Fodor and Pylyshyn 1988; Mitchell 1982, 2017),
and cannot generalize. Without a lens in which linguistic experience
is viewed, even the input distribution cannot be recovered, simply be-
cause distributions are based on the structure of their parameters (Lap-
pin and Shieber 2007). Consequently, the nontrivial open question
central to learnability research in linguistics instead concerns the char-
acteristics of this additional prior knowledge or bias such that learn-
ers generalize from limited experience (Rawski and Heinz 2019). This
point is not specific to language. Any cognitive theory requires care-
fully constructed computational restrictions on the hypothesis space in
order to be tractable and analytically verifiable (van Rooij and Baggio
2021).
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1.2 Regular and subregular patterns

Recent typological and experimental work highlights the Regular re-
gion of languages as a sufficient structural bound on computational ex-
pressivity for phonological andmorphological grammars. This Regular
characterization has been extended to syntactic distributions when the
data structure characterizing the computational trace is formulated as
a tree rather than strings, which enforce syntactic membership in the
Mildly Context-Sensitive class of languages (Kobele 2011; Graf 2011).
However, the Regular class is not learnable under various learning
scenarios including identification in the limit from positive data, and
the Probably Approximately Correct (PAC) framework (Gold 1967;
Valiant 1984; de la Higuera 2010). Additionally, the range of distri-
butions present in phonology and morphology that sit in the Regular
region do not require the full complexity of Regular power (Heinz
2018; Chandlee 2017).

For these reasons, phonological constraints are hypothesised to
inhabit structured subclasses of the Regular languages, lumped under
the term subregular (Heinz 2010a, 2018). Various connections be-
tween logic, formal languages and automata defining these classes
have been explored in great detail. These characterizations build
on two classical results in formal language theory: Büchi’s monadic
second-order characterization of the Regular languages (1960), and
the first-order characterization by McNaughton and Papert (1971) of
the Star-Free languages, which are also characterized by aperiodic de-
terministic finite-state automata (Schützenberger 1965). Refinements
of these results from logical, automata-theoretic, and algebraic view-
points have defined the Local and Piecewise hierarchies (Rogers et al.
2012). Linguistically, these refinements have garnered interest since
the morphological and phonological typology correlates with these
refinements, favouring the weakest subclasses in the subregular hier-
archy. Experimental work also favours this characterization (Finley
2008; Lai 2015; McMullin and Hansson 2019). Our learning algo-
rithms can be applied to model-theoretic treatments of other linguis-
tic representations such as syntactic trees or autosegmental graphs,
which opens a useful direction for future research.
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1.3Outline

This paper proceeds as follows. Section 2 defines a general model-
theoretic treatment of linguistic representations, and analyzes several
types of linguistic structures based on different model signatures. Sec-
tion 3 defines a typology of online learning algorithms and derives the
subregular language classes, hierarchically organised by space com-
plexity. Section 4 characterizes this space of algorithms according to
time complexity, and picks out of the least space-intensive subregular
classes those that can be learned in linear time. Section 5 characterizes
interactions of constraints defined in and between these classes. Sec-
tion 6 discusses model signatures for other linguistic representations.
Section 7 describes related work. Section 8 concludes with future di-
rections.

2MODEL THEORIES

This section will introduce the structural representations that the
learning algorithms will work over. We will first discuss a general
notion of structural information, and use it to derive a notion of sub-
structures. In contrast to previous approaches, this will allow us to
describe several distinct representations of words in a uniform way.
Structural information is defined relationally in terms of model the-
ory. Finite model theory provides a unified ontology and a vocabulary
for representing many kinds of objects, by considering them as rela-
tional structures (see Libkin 2004 for a thorough introduction). This
allows flexible but precise definitions of the structural information in
an object, by explicitly defining its parts and the relations between
them. This makes model-theoretic representations a powerful tool for
analyzing the information characterizing a certain structure. This ap-
plication of model theory is nothing new. It has been applied to syntax
by Johnson (1988), King (1989), and Rogers (1998), to phonology by
Potts and Pullum (2002), Rogers et al. (2012), and Strother-Garcia
(2019), and to tonal systems and autosegmental representations by
Jardine (2017a), Jardine et al. (2021), and Oakden (2020).
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The discussion of this section is organized around different no-
tions of order: successor, precedence, and relativized successor. The
successor and precedence orders give rise to the Local and Piecewise
branches of the subregular hierarchy, and the relativized successor
gives rise to the Tier-Based Local branch. We assume some familiar-
ity with these classes. Because this presentation focuses on deriving
these subregular classes from a model-theoretic and learning perspec-
tive, we postpone most references to these classes and related work to
Section 7.

A relational structure in general is a set of domain elements, D,
which is augmented with a set of relations of arbitrary arity, Ri ⊆ Dni .
The relations provide information about the domain elements. The
model signatureM = 〈D; Ri〉 collects these parts and defines the nature
of the structure in terms of the information in the model. Let w be a
string over some alphabet Σ. Then a model for a word w is a structure:

M Ri
Σ (w) :=

Dw; Ri,σw

�
σ∈Σ

where Dw is isomorphic to an initial segment 〈1, . . . , |w|〉 of the non-
zero natural numbers and represents the positions in w, and each σw

is a unary relation that holds for all and only those positions at which
σ occurs. Note that it is assumed that the set {σw}σ∈Σ is a partition of
Dw.1 Without loss of generality, consider an alphabet Σ = {s, ʃ,á,à},
which represent two types of sibilants and a vowel with either low or
high tone. Strings are combinations of these symbols at certain events,
like the word ‘sásàʃá’.

The remaining Ri are the other salient relations, which are used to
define order in a particular structure. One model signature for strings,
called the precedence model, is given as

M<(w) = 〈Dw;<w, sw, ʃw,áw,àw〉.
This model says that for every symbolσ in alphabetΣ, there is a unary
relation Rσ inR that can be thought of as a labelling relation for that
symbol. For our set Σ = {s, ʃ,á,à}, R includes the unary relations Rs,

1One can convert a model in which multiple unary relations may apply to a
given domain element into a partitioned normal form by simply replacing these
unary relations with their powerset.
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Rʃ, Rà, and Rá. It also defines a binary relation (x < y), the general
precedence relation on the domain D. A visual of the word model for
‘sásàʃá’ under this signature is given in Figure 1.

s á s à ʃ á

〈D;<, s, ʃ,á,à〉

á à á

Figure 1:
The general precedence model of
‘sásàʃá’, along with the 3-factor ‘áàá’.
Each edge defined by the relation is
pictured, while the thick solid edges
designate those that form the window
from which this 3-factor is derived

The general precedence relation describes a notion of structural
information purely in terms of whether a node precedes another one.
While the information that, say, the last element in a string comes af-
ter the first is immediately accessible from the model, this distinction
collapses the notions of immediate and general structural adjacency.
Building on this precedence relation we can derive different types of
relational structure. These refine the model of a word to describe im-
mediate, relativized, or multiply-relativized adjacency.

Perhaps we would like to consider only immediately adjacent ele-
ments. Rather than a general precedence relation <, we may consider
an immediate precedence, or successor, relation Ã. The standard suc-
cessor relation is the transitive reduction of the precedence relation
and is first-order definable from the latter as follows:

x Ã y := x < y ∧ (∀z)[x < z ⇒ y ≤ z].
This relation gives a different word model, where elements are ar-
ranged according to immediate adjacency, commonly called the suc-
cessor model. The signature for this model is given as

MÃ(w) = 〈Dw;Ãw, sw, ʃw,áw,àw〉.
A visual of the successor word model for the word ‘sásàʃá’ is given in
Figure 2.
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Figure 2:
The immediate successor model

of ‘sásàʃá’, along with its 3-factor ‘ásà’
s á s à ʃ á

〈D;Ã, s, ʃ,á,à〉

á s à

The general precedence relation can alternatively be refined to
discuss a form of immediate adjacency relativized to certain unary re-
lations in the signature. In particular, we can form relations between
subsets of the alphabet, commonly called a tier-alphabet. For example,
we may want to discuss the relations between only the sibilant ele-
ments present in a word, to the exclusion of all others. Similarly to
how the successor relation is derived, we can restrict the precedence
relation to the intended tier-alphabet τ and first-order define a similar
tier-successor relation Ãτ:

x Ãτ y := τ(x)∧τ(y) ∧ x < y ∧ �∀z
���
τ(z) ∧ x < z
� ⇒ y ≤ z
�
.

Figure 3 depicts the relationships among these ordering relations.
Figure 3:

Relationships between the general
precedence relation and others

first-order definable from it

< <τ

Ã Ãτ

reduce

restrict

reduce

relativize

Adjusting the model signature appropriately, shown below, we
get a tier-based notion of structure, shown visually in Figure 4.

MÃ{s,ʃ}(w) = 〈Dw;Ã{s,ʃ}w , sw, ʃw,áw,àw〉.

Because the unary relations partition the domain elements, we
can create a tier-adjacency relation for each element of the powerset of
these relations. This merely amounts to adding tier-adjacency relations
to the model signature to create a multi-tier signature. A model of the
multi-tier relations is shown in Figure 5.

MÃ{s,ʃ},Ã{à,á}
(w) = 〈Dw;Ã{s,ʃ}w ,Ã{à,á}

w , sw, ʃw,áw,àw〉.
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s á s à ʃ á

〈D;Ã{s,ʃ}, s, ʃ,á,à〉

s s ʃ

Figure 4:
The tier-successor model of ‘sásàʃá’
relativized over the set τ= {s, ʃ},
along with its only 3-factor ‘sʃs’

s á s à ʃ á

〈D;Ã{s,ʃ},Ã{à,á}, s, ʃ,à,á〉

s s ʃ á à á

Figure 5:
The multi-tier-successor model
of ‘sásàʃá’ relativized over the sets
{s, ʃ} and {à,á}, along with its only
two 3-factors, ‘sʃs’ and ‘áàá’

These four model signatures are by no means the only relational
word models that may be considered. However, for the purposes of
this paper we restrict ourselves to these signatures. Additionally, the
definability of these signatures from other signatures leads to a general
ability to define a notion of substructure, which we cover below.

2.1Windows and factors

Now that we have a general model-theoretic notion of structure, we
would like a way to define certain parts of each structure, each of
which is a structure in itself defined by the signature. Here, we gen-
eralize the method of Lambert and Rogers (2020) in defining these
restrictions on models.

In order to pick out the subparts of a word model, we first pick
out sets of elements that will define the substructure. Given a homo-
geneous relation R of arity a, the set

W R
a (m) :=
¦�〈 i

x i,
i+1
x i+1〉 : 1≤ i < a

	
: 〈x1, . . . , xa〉 ∈ Rm

©
is the set of a-windows over R in the context of the model m. These are
merely directed acyclic graphs (represented by their edge sets alone)
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constructed from the relations in R, such that each instance of a given
domain element in the tuple is represented by a distinct node in the
window, rather than merging all instances into a single node. Con-
cretely, if 1 were a domain element and 〈1,1〉 an element of the re-
lation, the corresponding 2-window would have two distinct nodes,
both labelled by an index and the domain element 1: 〈11,

2
1〉. The set of

windows of length greater than a is defined inductively by

W R
k+1(m) :=
¦

A∪ 〈 ja−1xa−1,
k+1
xa 〉 : A∈W R

k (m) and 〈x1, . . . , xa〉 ∈ R

and { j1, . . . , ja−1} ⊆ {1, . . . , k}
and {〈 jix i,

ji+1x i+1〉 : 1≤ i < a− 1} ⊆ A

and (∃y,ℓ)[〈 ja−1xa−1,
ℓ
y〉 ∈ A or 〈 ℓy ,

ja−1xa−1〉 ∈ A]

and
�∀ ja ∈ {1, . . . , k}��〈 ja−1xa−1,

jaxa〉 6∈ A
�©
.

This means that for each k-window, we find a linear subgraph (a path)
that maps to the initial a − 1 domain elements of one of the a-tuples
that comprise R and add an edge from the final node of this path to a
newly constructed node representing the final domain element from
that tuple. The conditions are arranged in such a way that each iter-
ation actually adds a new step to the path rather than simply repeat-
ing an older step, while still allowing cycles to be taken arbitrarily
many times. Each of these larger windows can then be thought of
as a graph of positions that are formed from a set of overlapping a-
windows, which in turn are merely representations of tuples in the
relation R. However, we may also wish to discuss a window which is
of shorter length than the arity of the relation that defines it. To do
so, we simply state that any connected subgraph of a window is itself
a window.

For a given window x of a word model m, we define the factor at
x (written ¹xºm) as the restriction of m to the domain elements that
occur in x . This lets us define the set of all k-factors of m as follows:

F R
k (m) :=
�¹xºm : x ∈W R

k (m)
	
.

Note that a window is distinct from a factor in that the former is a
graph of positions while the latter describes a word model whose do-
main consists of only a certain set of positions.
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As example, consider the tier successor model of the word ‘sásàʃá’
as above. Consider a 3-window x which contains all and only the do-
main elements {1,3, 5}. Here, the restriction of the word model that
defines this 3-factor is

¹xºm = m � x =

{1, 3,5}; {〈1,3〉, 〈3,5〉}, {1,3}, {5},∅,∅

�
.

Similar examples can be seen above in Figures 1–5. Various par-
allels emerge. The precedence word model contains a strict superset
of the factors of every other word model we have considered. The
tier-based and multi-tier-based word models have ‘sʃs’ as a 3-factor,
but the immediate successor model does not. On the other hand, ‘ásà’
is a 3-factor of only the precedence and immediate successor models.
Only the precedence and multi-tier successor models have both ‘sʃs’
and ‘áàá’ (a sequence of High-Low-High tone vowels) as 3-factors.

2.2Anchored word models

The word models considered up to this point do not encode domain
boundaries explicitly. However, many prior treatments, including that
of Lambert and Rogers (2020), explicitly assume such boundaries. One
approach that has not been explicitly considered in this prior work is
a model whose string yield is biinfinite. Here, left and right boundary
symbols (labelled o and n, respectively) exist in the model and both
participate in and are self-related under any ordering relations. This
approach naturally captures words shorter than k symbols in its con-
cept of a k-factor, without having to consider a union of smaller factor
widths. The successor model for ‘sásàʃá’ is shown along with each of
its 3-factors in Figure 6.

The learning algorithms that we consider in this work are not
bound to any particular model signature. Thus, we may consider the
standard word models as shown in, for example, Figure 1, or we might
consider these anchored word models.

This section has shown concretely how relational structures pro-
vide a uniform language for describing the structural information in
representations of words. In this way, the differences between distinct
subregular classes are isolated according to the relevant structural in-
formation. Also, the models considered in this section are just some
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Figure 6:
The anchored word model
under successor for ‘sásàʃá’

along with each of its
3-factors. Note that every

factor that includes
a boundary symbol has an
infinite yield. Those factors

shorter than 3 symbols
are formed from windows

of length 3 that repeat
the boundary symbols

o s á s à ʃ á n

o

o s

o s á
s á s

á s à
s à ʃ

à ʃ á
ʃ á n

á n

n

of many models. The contents of each model signature clarify pre-
cisely what structural information the learner has immediate access
to when making inferences during learning, described by the notion
of a k-factor, and which it must computationally infer. For example,
the non-local information that is immediately present in the prece-
dence model requires more work in the successor model, its transitive
reduct. These properties are encoded into the grammars being learned,
and directly carve out the properties of classes of languages that result
from a particular learning algorithm inferring such structures.

3 SPACE COMPLEXITY AND THE
SUBREGULAR GRID

This section will introduce and examine four learning algorithms—
algorithms I, II, III, and IV—where stringsets are learned in the limit
from arbitrary positive data. Indeed, we will only be considering sub-
classes of a style of learning algorithm presented by Heinz (2010b, ex-
panded upon by Heinz et al. 2012). We show that of these subclasses,
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some require substantially more space than others to properly account
for the distinctions that must be made in the course of learning, and we
argue that this alone would cause linguistic typology to tend toward
the simpler, less space-intensive classes.

First we briefly discuss some background from learning theory.
Generally, our presentation follows the style of Gold (1967). While is-
sues with this theoretical framework have been pointed out (Johnson
2004; Clark and Lappin 2011), these criticisms stem from misunder-
standings (see Heinz 2016, and references therein). Gold’s framework
is the basis for much influential work on learning formal languages
(Jain et al. 1999; Nowak et al. 2002; Niyogi 2006; de la Higuera 2010;
Clark and Lappin 2011).

More importantly, however, the algorithms we present here are
largely independent of the particular learning framework that we use
to evaluate their behaviour. They can be studied with respect to the
various identifiability-in-the-limit paradigms of Gold, but they can
also be studied with respect to other paradigms (Mohri et al. 2012). For
example, all of the algorithms presented here are not only identifiable
in the limit from positive data in polynomial time, they are also PAC-
learnable.2 While the assumptions of PAC learning, including the use
of negative evidence and approximate identification, seem to make
the learning problem easier, in fact the conclusions show the learn-
ing problem is harder. For example, the finite languages, learnable
in the limit from positive data, are not PAC learnable. Interestingly,
not all PAC-learning algorithms even require negative evidence. The
standard textbook examples of rectangles (Kearns and Vazirani 1994)
and rays (Anthony and Biggs 1992) only use positive data just like our
algorithms here. Despite these differences, both frameworks focus the
learning problem on generalization which has led some researchers to
provide a unified analysis of these different frameworks (Niyogi 2006).
Nonetheless, irrespective of the framework, we demostrate that the
space complexity requirements are severe for algorithms III and IV,
but not for algorithms I and II.

It is important to note that, while we present only four algorithms
here that are sufficient to learn the well-understood subregular classes

2This is because when the parameters k (and t) are fixed, the defined class
has a finite VC dimension (since the class has finite cardinality) (Vapnik 1995).
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under consideration, these are not the only possible algorithms. Others
do exist and may well meet the criteria for these learning frameworks.
The complexity results here are general, applying to any algorithm
that can learn the classes, simply because they are based on the kinds
of distinctions that must be made.

First, we describe the general learning setup. Let L be a set of
strings drawn from Σ∗ and let Lý represent L with an adjoined ele-
ment ý. An online learner is a function φ : G × Lý→G , where G is
some kind of grammar representation, a mechanism by which one can
decide whether a given string is in L. In other words, an online learner
begins with some guess as to what the grammar might be and updates
this guess for each input word. Let L : G →P (Σ∗) be the function
that maps a grammar to its extensions, the set of strings it represents.
Two grammars G1 and G2 are equivalent (G1 ≡ G2) iff they are exten-
sionally equal, that is, L (G1) =L (G2).

A text for L is a function t : N→ Lý, a sequence of strings drawn
from L or pauses in which data does not appear. Following traditional
mathematical notation for sequences, we use tn to represent t(n). If
∅ represents an initial guess at what the grammar might be, then the
recursively-defined sequence

an(t) :=

¨
∅ if n= 0

φ(an−1, tn) otherwise.
represents the learning trajectory over a given text. Then given a text
t for a language L, we say that a learning algorithm φ converges on t
iff there is some i ∈ N such that for all j > i it holds that a j(t)≡ ai(t).
If for every possible text t over L it is the case that φ converges on t
andL �limn→∞ an(t)

�
= L, then we sayφ converges on L. As a second

lift, if for every stringset L in a class L it is the case that φ converges
on L, then we say φ converges on L.

3.1 String extension learning

Heinz (2010b, expanded by Heinz et al. 2012) defined string extension
learning, a general notion of learning from gathered substructures.
Originally treated only as a batch learner, the online definition is triv-
ial to derive. Given a function f :M →S that extracts informational
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content from a word model, where S represents some notion of struc-
tural content, along with a combinator ⊕: G ×S →G that somehow
informs the grammar of these structures, we define

φ(G, w) :=

¨
G if w= ý
G ⊕ f
�M (w)� otherwise.

In a simple case, G and S will be the same type, and ⊕ will simply
be set union, but this is not a necessary requirement.

Although the present discussion has been contextualized in the
presence of a complete text, the algorithms can only ever operate on a
finite sample. No infinite complete presentation is ever needed or even
available. The analysis with complete texts guarantees that no matter
the order of the input there is always some finite point in time, some
finite sample, at which point every piece of informational content that
could occur has occured, and the algorithm will converge exactly to
the target grammar (Heinz et al. 2012). For samples that do not meet
this criterion, the smallest stringset in the target class that is consistent
with the data will be learned instead of the target stringset itself (Heinz
et al. 2012).

The space required by any string extension learning algorithm is
bounded below by the output grammar size. This is dependent on the
type of information that the grammar must retain. For the subsequent
discussion, no additional space is necessary, so all that is relevant is
the size of the grammar representation. Generally the worst case is
when the target language is Σ∗ and every factor, set, or multiset will
need to be observed and stored.

3.1.1Learning with factors

This simple case is exemplified by a learner that makes distinctions
only between permitted and nonpermitted factors. This learner is pa-
rameterised by a factor width k. We have G = S = P (Σk) and
G ⊕ S = G ∪ S. The information extraction function is

f (m) :=Fk(m).

Upon convergence, a word w is accepted iff all of its factors occur in G
as shown in Figure 7.
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Figure 7:
Grammars returned by Algorithm II accept
all and only those strings w whose factors

are all in G

factors of Σ∗

G

factors of w

Since the grammar only needs to maintain a single merged set
of attested factors, the space complexity for this class of learner is
O (|Σ|k). This will be referred to as Algorithm II. A variant, which will
be Algorithm I, will be discussed in Section 3.1.4.

3.1.2 Learning with sets

The primary difference between learning with factors and learning
with sets thereof is the grammar augmentation combinator. Rather
than set union, G⊕S = G ∪S, we have set insertion, G⊕S = G ∪{S}.
This of course means that G and S are no longer equal, with G being
the powerset P (S ), adding a layer of structure. Upon convergence, a
word w is accepted iff its set of factors is an element of G as shown in
Figure 8. Since a given grammar is in this case a set of sets of factors,
with this larger grammar the space complexity is O (2|Σ|k). These set-
based classes can make more distinctions than the purely factor-based
classes, but this power comes at a cost. This is Algorithm III.

Figure 8:
Grammars returned by Algorithm III accept

all and only those strings w whose set of factors
is an element of G

powerset of factors of Σ∗

G

set of factors in w

3.1.3 Learning with multisets

A set is simply a structure that contains for each possible element
a Boolean value describing whether or not that element is included.
Given the natural isomorphism between the Booleans and the subset of
N consisting of 0 and 1, one might consider a natural expansion of this
structure which denotes number of occurrences saturating not at 1 but
at some arbitrary value t. (In other words, t is the largest number one
can count to.) We can learn classes in which well-formedness is charac-
terized by the saturating multisets of factors in a word as follows. With
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S =P (Σk ×Nt) andG =P (S ), we can maintain from the set-based
learner the augmentation combinator where G⊕S = G∪{S}. However,
the function that extracts informational content must be modified to
include the t-counts associated with a given factor as follows

f (m) := H¹xºm : x ∈Wk(m)It .

The notation H. . .It represents a multiset that saturates at a count of
t. Note that this parallels the window-based definition of factors in a
model, except that a saturating multiset is formed rather than merely a
set. Upon convergence, a word w is accepted iff its saturating multiset
of factors is an element of G as shown in Figure 9. The space complex-
ity here is much like that of Algorithm III, except that the base of the
exponent is changed to correspond with the number of values each
factor may be associated with: O �(t + 1)|Σ|k

�
. This is Algorithm IV.

Using this algorithm with t = 1 is equivalent in every way to Algo-
rithm III, so in fact there are only three algorithms under discussion.
That said, we will retain this separation for the current discussion.

saturating multisets of factors over Σ∗

G

saturating multiset of factors in w

Figure 9:
Grammars returned by Algorithm IV
accept all and only those strings w
whose saturating multiset of factors
is an element of G

3.1.4Learning with factors, revisited

A variant of Algorithm II ignores all input words longer than k sym-
bols. The only difference then is the information extraction function

f (m) :=

¨
m if |m| ≤ k

∅ otherwise.

Upon convergence, a word w is accepted iff it contains a factor that
also occur in G as shown in Figure 10. This is Algorithm I. Notably, us-
ing the anchored word models with this algorithm produces only finite
languages. In contrast to the other algorithms, translating such models
into unanchored ones provides an increase in expressive power.
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Figure 10:
Grammars returned by Algorithm I accept

all and only those strings w
whose sets of factors are not disjoint with G

factors of Σ∗

G

factors of w

3.1.5 Illustration

Considering a standard unanchored word model, with the algorithmic
parameters k and t both set to 2, Table 1 represents the outputs of
these four learning algorithms after seeing the single word ‘aaaab’.
Notably, this word is not short enough to inform Algorithm I of any-
thing. Also, despite the fact that ‘aa’ occurs as a substring three distinct
times, Algorithm IV saturates at a count of 2 under these assumed pa-
rameters.

Table 1:
Encountering the single word ‘aaaab’ with each learner Algorithm Resulting Grammar

I ∅
II {aa,ab}
III
�{aa,ab}	

IV
�{〈aa, 2〉, 〈ab, 1〉}	

3.2 The grid

These learning algorithms are model-agnostic. As long as there exists
some way to extract windows or factors (i.e., substructures) from a
model, the algorithms will work with that. When allowed to range
over selected model signatures, the classes learned by each algorithm
are shown in Figure 11. Each of the cells of the grid represent a partic-
ular class of languages. For example, the strictly local class contains
languages for which no word may contain any of a finite set of local
factors.

For clarity, we restrict our discussion of the fifteen classes present
in the subregular Grid to the Appendix. There, we provide a brief de-
scription of the class, as well as a sample of attested linguistic patterns
that it accounts for, as well as an interpretable implementation of the
grammar for each of those patterns.
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Certain
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Figure 11: The subregular classes. Learning difficulty increases along the verti-
cal axis. The horizontal axis is categorical, describing the type of substructure.
The dotted line indicates the predicted region of phonological typology

Note that Algorithm I learns only strong classes (those in which
domain boundaries, i.e. anchors, are unreferenced), while the others
do not have this restriction. In the Piecewise case, where themodel sig-
nature contains the general precedence relation (<), the strong classes
are equivalent to the general classes and this distinction is irrelevant.

We note that the amount of space required to store the grammar
is fairly large for any of these algorithms. But Algorithms III and IV
require exponentially more space than I and II. These space require-
ments are shown in Figure 12, where it is apparent that even on a
binary alphabet, the smallest possible nontrivial alphabet, the Locally
5-Testable class of languages, for example, requires more storage space
than there are synapses in an average human being (Azevedo et al.
2009; Herculano-Houzel and Lent 2005). With the larger alphabet
sizes commonly encountered in natural language the restrictions be-
come even tighter. The interested reader could as an exercise consider
how this graph would change if the size of the alphabet were around
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5 10 15

10100.2

10100.4

10100.6

10100.8

10101.0

10101.2

Factor Width

Space Requirements for Learning
Factors
Sets
Saturating Multisets, t = 2
Saturating Multisets, t = 3
Synapses in a Human

Figure 12: While gathering factors requires space exponential in terms of factor
width, the requirements are doubly exponential for any of the larger structures
we might employ. Here the space requirements are shown for just a binary al-
phabet
30 or 40, the average phoneme count in languages of the world. How-
ever, it should be noted that attempting to plot this graph for an alpha-
bet of size 10 exceeded the numerical range of our plotting software.

Due to the enormous space requirements in terms of alphabet size
of the higher-numbered algorithms, it seems in general unfeasible to
learn patterns that lie strictly in their corresponding classes. That is,
purely from learnability considerations alone, we would expect the
typology of patterns in natural language to lie primarily within the
region spanned by Algorithms I and II. This region is highlighted in
Figure 11 by a dotted line. Further, we would expect any attested pat-
terns to require relatively small values for the factor width parameter
k, since that is the exponent of these singly and doubly exponential
space complexities. This constraint on the learning algorithms is again
agnostic to the representation, showing that the way the learner col-
lects and stores the data matters.

The multiple-tier-based classes also require significant space, but
in a different way. The classes of Algorithms III and IV admit expo-
nentially more distinctions than Algorithms I and II, and thus require
exponentially more space. The multiple-tier-based classes in contrast
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require many grammars of the same type: one per subset of Σ. This
scales the space requirements by a multiplicative factor of 2|Σ|. This
difference, while less pronounced, is still significant and will be taken
into account later.

To briefly sum up, this section presented a suite of online learning
algorithms that extract structural information based on the particular
representations it is given. The combination of a particular algorithm
and a model-theoretic signature define a range of classes of languages
that can be learned. One model signature may be used by any of the
learning algorithms, and any of the algorithms may use any of the
signatures. In this way, we have organized the space of possible gen-
eralizations the typology can inhabit, which ultimately amounts to
possible restrictions on the capacity of the learner. This provides a
unifying perspective on previously studied subregular classes. Another
contribution of this section is the introduction of Algorithm I, which
naturally leads to “Complement” classes of the “Strict” ones.

However, there is a strong divergence between the space require-
ments of the two algorithms that make distinctions based solely on
the presence of individual factors and those two algorithms that make
distinctions based on sets or multisets of factors. For a feasible learner,
then, it is advantageous to disprefer learning strategies that rely on an
ability to make as many distinctions as these two more complex al-
gorithms allow. Drawing a boundary for the language classes learned
by the two simpler algorithms, we significantly reduce the possible
typology available to the learner. Can there be any other restrictions?
This is the topic of the next section.

4COMPLEXITY IN TIME

The Strictly Local (SL) class (McNaughton and Papert 1971) is learned
by gathering the factors of simple adjacency. Under such a model,
there exists at most a single window of size k at any given point. Thus
for each index in the word, we can simply insert the contents of this
single window into the grammar. Including the time it takes to insert a
factor into a set, the class is learnable in O (nk log|Σ|) time for input of
size n, and since Σ and k are assumed constant this amounts to linear
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time. As discussed, this Algorithm II learner also uses constant space
that is but singly exponential in the width of the factors.

For the Tier-Based Strictly Local (TSL) class (Heinz et al. 2011,
see also Lambert and Rogers 2020), if the tier alphabet τ is known,
then this approach applies directly to the projection of the word to
τ. But generally we assume that τ is not known, and one might ini-
tially assume that a learner might need to construct grammars for all
possibilities, which would result in increased resource requirements,
be that in terms of time, space, or both. Per Jardine and McMullin
(2017), maintaining the factors of width bounded above by k + 1 is
sufficient to determine the value of τ. But their approach seems to
require a batch approach, first deciding the value of the τ parameter
and then processing the (projections of) the input as for the Strictly
Local class. But it turns out that, due to (inverse-)projection closure
and the fact that in the Gold framework we assume a complete text,
we can guarantee that any substring whose projection will appear on
the tier will itself appear as a substring in some word. Since we still
need to determine the value of τ, we do still require the factors of
width bounded above by k+ 1, but nothing more. The exact learning
algorithm used for SLk+1 will produce a grammar for TSLk, and only
the interpretation of the result is changed (Lambert 2021). These same
properties hold true for the relativized variants of the Locally Testable
(LT) (McNaughton and Papert 1971) and Locally Threshold Testable
(LTT) (Beauquier and Pin 1989) classes as well, where the correspond-
ing adjacency-based learners suffice to learn the relativized-adjancy
classes (Lambert 2021).

The Strictly Piecewise (SP) class (Rogers et al. 2010, see also
Haines 1969) is similar in that, one might expect a time complexity on
the order of O (nk) to find all of the subsequences of each word. Heinz
and Rogers (2013) show that in fact a factored approach can use sim-
ply O (n|Σ|k), but we can reduce this even further by taking advantage
of this same property. Given a complete text, every attested subse-
quence will eventually occur as a substring due to the SP stringsets’
closure under deletion. Again then, the same learning algorithm used
for SLk will produce a grammar for SPk as well, where the difference
lies only in interpretation.

Given this ability to learn the SP, SL, and TSL classes in linear
time and in space only singly exponential in factor width, we can mod-
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ify Figure 11 to indicate the boundary between the classes that are
learnable within these resource bounds and those that are not. This
boundary is indicated by a thick line in Figure 13, which also uses
dashed lines to indicate where one algorithm may be used for multi-
ple distinct classes. As discussed in Section 3.2, the multiple-tier-based
classes do not fit within this low-resource region because, in general,
exponentially many grammars must be learned.

Locally
Threshold
Testable

Tier-Based
Locally

Threshold
Testable

Multi-Tier
Locally

Threshold
TestablePiecewise

Testable
Locally
Testable

Tier-Based
Locally
Testable

Multi-Tier
Locally
Testable

Strictly
Piecewise

Strictly
Local

Tier-Based
Strictly
Local

Multi-Tier
Strictly
Local

Complement
Strictly

Piecewise
Complement

Strictly
Local

Complement
Tier-Based
Strictly
Local

Complement
Multi-Tier
Strictly
Local

< Ã Ãτ {Ãτ}

(IV)
Saturating
Multisets
of Factors

(III)
Sets of
Factors

(II)
All

Factors

(I)
Certain
Factors

Star-Free
Regular

Figure 13: Dashed lines indicate that the classes on either side can be learned
by exactly the same algorithm. The thick solid line denotes the barrier between
linear-time O (|Σ|k)-space learning and more resource-intensive learning

Considering only the SP class of stringsets, there are at least three
online learning algorithms of various complexities:

• Gather all factors under general precedence of each word.
– O (nkk log|Σ|) time
– O (|Σ|k) space
– Learns an SP least upper bound (lub) of the source text.
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• Use factored learning as per Heinz and Rogers (2013).
– O (n|Σ|k) time
– O (|Σ|k) space
– Learns an SP lub of the source text.

• Gather all adjacency factors of each word.
– O (nk log|Σ|) time
– O (|Σ|k) space
– Only works if every permitted subsequence eventually occurs
adjacently, which holds for SP targets.

One caveat is that these optimizations of the learning algorithms
for the SP and TSL classes rely on certain properties of the input
stringset. The nonoptimized variants are guaranteed to learn a small-
est in-class superset of the input stringset, a property which is lost in
this optimization. For example, a long distance sibilant harmony con-
straint (Heinz 2010a) will not be learned by the optimized SP learner
if the text is drawn from a language that exemplifies both this con-
straint and a CV syllable structure, even though it would be learned by
the nonoptimized variant. Other examples of this type may be found
in the Appendix. This prompts a question regarding the learnability
consequences of constraint interaction.

5 LEARNING INTERACTIONS

Most natural languages are describable not by a single subregular
class but by an interaction of constraints from multiple such classes.
The interaction of constraints from different classes might influence
the learnability of each constraint individually, in which case time or
space tradeoffs might be necessary.

For example, we might consider the default-to-opposite stress pat-
tern of Chuvash (Krueger 1961), where primary stress falls on the
rightmost heavy syllable if there is one, or on the initial syllable other-
wise. One way of describing this invokes the conjunction of two con-
straints from two different classes, namely an SP constraint detailing
a lack of:
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• a heavy syllable anywhere after a stressed syllable,
• a stressed light syllable after any other syllable, or
• two stressed syllables in the same word,

and a coSP constraint that states that every word contains some
stressed syllable.

The requirement that some stress must occur does not affect
which substrings may appear in a word, and so the SP constraint may
be learned by any of the three algorithms that have been discussed
for that class so far, including the optimized substring-based learner.
Further, the precedence restrictions do not prevent seeing the two
words (light and heavy stressed monosyllables) required to learn the
stress requirement. In other words, these constraints interact in such
a way that learning is not hindered. This is not always the case.

Consider now the sibilant harmony of Samala (Applegate 1972),
in which as ‘s’ and an ‘ʃ’ may not appear in the same word. Since this
constraint acts on the segment level rather than the syllable level, we
might assume that it is isolated from any kind of stress constraint. But
other segment-level constraints will certainly have the possibility of
interaction. For example, imposing a CV syllable pattern restricts the
substrings that may occur, in such a way that using an SL learner to
infer the SP constraints is not a possibility. This means that one has to
decide among the other possible SP learning algorithms, where time
or space tradeoffs must be made.

In contrast, a tone plateauing constraint like that which occurs
in Luganda (Hyman and Katamba 1993) is SP3, which means that it
could be learned directly alongside this sibilant harmony constraint
without fear of interaction effects. Note that the word ‘sásàʃá’ that has
been our running example violates both the harmony constraint and
the tone plateauing constraint.

Given our space-based learnability considerations, we would as-
sume that Algorithms III or IV are not practically learnable and would
likely be unattested. In other words, we would expect linguistic typol-
ogy to inhabit only the lower regions of the hierarchy, or at least be bi-
ased heavily toward this region. Rogers and Lambert (2019b) provide
strong evidence that this is in fact the case when it comes to stress pat-
terns. Their exhaustive analysis of the more than one hundred stress
patterns in the StressTyp2 database (Goedemans et al. 2015) showed
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that each of these can be described as the interaction of constraints
that can be learned by Algorithms I and II.

6 MODEL-THEORETIC REPRESENTATIONS
OF NONLINEAR STRUCTURES

This model-theoretic formulation provides a distinct advantage when
applied to various linguistic objects. It allows one to characterize the
content of a particular linguistic representation, and in so doing, im-
mediately guarantee that there are learning algorithms which can
describe various constraints over those representations. This is im-
portant, because work describing nonlinear structures in syntax and
phonology has proceeded in an ad-hoc way, by first defining con-
straints, and working backwards to the representations, often without
any learning algorithms at all, or ones relativized to a particular struc-
ture.

The previous sections used various model signatures that charac-
terized information based on a string data structure. This is because
the subregular classes that were the central motivation for this paper
are defined over strings, or model signatures based on strings, in the
work of Büchi, Thomas, and others. The constructions considered to
this point are not restricted to simple string models. Without mod-
ification, the algorithms may be applied to any relational model at
all. They in fact apply to any structure that can be characterized as a
graph. In this sense, strings are a special case, but the distinctions that
each of the four learning algorithms pick out carry over onto these
more general factors as well. In this section, we discuss some other
linguistically-motivated models that one might consider.

6.1 Autosegmental graphs

An example of a nonlinear structure where the graph perspective is
clearly relevant to linguistic research concerns autosegmental repre-
sentations in phonology. Graphs were proposed to handle a variety of
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prosodic phenomena for which the string-based perspective was in-
adequate. Phonological processes affecting domains larger than two
adjacent segments, such as tonal alternations in tonal languages, have
temporal properties that do not always map consistently onto discrete
vowel segments in a one-to-one fashion (Goldsmith 1976; Williams
1976). Goldsmith introduced a model of the phonological word where
tonal features formed an independent string from the segmental string,
called a tier. Segments on the two strings are linked via many-to-one
relations, turning the structure into a graph.

In practice, encoding these adjustments into a word model in-
volves adding more relational structure. Jardine (2017a,b, 2019) uses
a binary relation α(x , y) to encode the association relation between
autosegmental tiers. Augmenting the successor model signature used
throughout this paper gives a signature as

M α,Ã(w) = 〈Dw;αw,Ãw, sw, ʃw,aw,Hw,Lw〉.
Here, the domain is increased to accommodate the new autosegments,
and the successor relation holds between elements on both tiers. The
unary relations encoding vowels with tonal features have been split,
into a relation ‘a’ for vowel information, and distinct ‘H’ and ‘L’ re-
lations for tonal information. Under this signature, a word model for
the example ‘sásàʃá’ is given in Figure 14.

Our notion of a factor is exactly a notion of a subgraph. The pre-
vious section showcased how this word violates a constraint on tone
plateauing. The autosegmental model makes this information immedi-
ately accessible by encoding the ‘HLH’ structure as its own subgraph,
shown on the bottom of Figure 14. Thus, the permissibility of tone
sequences is liberated from the segmental elements that carry them.

s a s a ʃ a

H L H

〈D;α,Ã, s, ʃ,a,H,L〉

H L H

α α α

Figure 14:
The autosegmental successor model
of ‘sásàʃá’, along with its 3-factor
‘HLH’. The α relation is shown
without tips because it is symmetric
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6.2 Tree models

The model-theoretic framework also allows describing tree structures
(Rogers 1998), and opens the door to study parallels between phono-
logical and syntactic constraints (Graf 2014). Rogers (2003) describes
a model-theoretic characterization of trees of arbitrary dimensional-
ity. In this framework, we specify the domain D as a Gorn tree do-
main (Gorn 1967). This is a hereditarily prefix closed set D of node
addresses, that is to say, for every d ∈ D with d = αi, it holds that
α ∈ D, and if i 6= 0 then α(i − 1) ∈ D as well. In this view, a string
may be called a one-dimensional or unary-branching tree, since it has
one axis along which its nodes are ordered. In a standard tree, on
the other hand, the set of nodes is ordered as above by two relations,
“dominance” and “immediate right-of”. Suppose s is the mother of two
nodes t and u in some standard tree, and also assume that t precedes
u. Then we might say that s dominates the string tu.

While a Gorn tree domain as written encodes these dominance
and adjacency relations implicitly, we may explicitly write them
out model-theoretically so that a signature for a Σ-labelled two-
dimensional tree T is MÃ↓,Ã→ = 〈D;Ã↓,Ã→, Rσ〉σ∈Σ where Ã↓ is
the immediate dominance relation and Ã→ is the immediate right-of
relation (see Figure 15). Model signatures that include the transitive
closures of each of these relations have also been studied. Additionally,
the anchored word models considered above for strings lift naturally

Figure 15:
A tree model. Nodes are organised

by immediate dominance (black tip)
and immediate right-of (white tip)
relations. Labelling relations are

omitted to show Gorn addresses. All
edges are shown, with a particular
factor noted with solid thick lines
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to trees, where a root node is an anchor and each leaf is a separate
anchor, or there is a single additional node which serves as the anchor
for every leaf .

Recent work in syntax has synthesised the model-theoretic ap-
proach to trees with insights from the subregular approach to phonol-
ogy. For instance, Graf and Shafiei (2019) hypothesise that the TSL
class is sufficient to characterize syntactic constraints.

To sum up, this section has shown how the model-theoretic rep-
resentations presented in Section 2 naturally apply to other linguistic
representations.

7FURTHER READING

The subregular classes considered here have been widely studied for
decades. McNaughton and Papert (1971) introduce the Local hier-
archy, with Beauquier and Pin (1989) adding the Locally Threshold
Testable class. The Piecewise branch of the hierarchy stems from Si-
mon (1975), with the Strictly Piecewise class only being integrated
into the hierarchy in 2010 by Rogers et al.. (Languages closed under
subsequence had been discussed by Haines 1969, though not in con-
nection with other subregular classes.) The Tier-Based Strictly Local
class was introduced by Heinz et al. (2011) and extended in various
ways by De Santo and Graf (2019), Lambert and Rogers (2020), and
Lambert (2021). Recent work in syntax has synthesized the model-
theoretic perspective on trees with insights from the subregular pro-
gram (Graf and Shafiei 2019; Graf 2020, 2014)

Provided a finite-state automaton, Caron (1998, see also Caron
2000) describe algorithms that decide whether the corresponding lan-
guage is Locally or Piecewise Testable. An efficient algorithm for de-
ciding SL is described by Edlefsen et al. (2008). Algorithms that extract
SL and SP factors from a given language (and thus can also be used to
decide class membership) are due to Rogers and Lambert (2019a), and
these were extended to the TSL class by Lambert and Rogers (2020).

While this paper has so far focused on constraints, this work is
easily extended to consider mappings between structures, expressed
mathematically as Regular functions (Courcelle 1994; Courcelle and
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Engelfriet 2012; Filiot 2015; Engelfriet and Hoogeboom 2001). The
notion of strict locality has been generalized to functions and shown
to be relevant for natural language phonology and morphology (Chan-
dlee 2014, 2017). These local functions have been model-theoretically
characterized and extended to consider nonlinear structures in phonol-
ogy (Chandlee and Jardine 2019; Strother-Garcia 2019). Relativing
input representations to consider multi-arity functions allows a no-
tion of strictly local transducers expressed using multi-tape automata
(Rawski and Dolatian 2020; Dolatian and Rawski 2020). Expressed as
functions, these subregular characterizations have been extended to
consider continuous functions over vector spaces and learning algo-
rithms operating over them (Rawski 2019; Nelson et al. 2020).

There exist other learning algorithms alongside the string ex-
tension learners of Heinz (2010b) and Heinz et al. (2012). Garcia
et al. (1990) demonstrate the learnability of SL. Heinz and Rogers
(2013) provide learning algorithms for the SL and SP classes as well
as their Testable correlates. Other approaches have directly incorpo-
rated phonological features into the models (Vu et al. 2018; Chandlee
et al. 2019). Learning of TSL classes has been discussed by Jardine
and Heinz (2016) and Jardine and McMullin (2017), while online
learners for this class and the remaining single-tier-based hierarchy
were proposed by Lambert (2021).

8 CONCLUSION

This paper showed how the nature of phonological typology emerges
from simple representations and inference strategies. We discussed the
nature of these representations in model-theoretic terms, forming a
general notion of structural information (factors) that characterizes
virtually any linguistic representation, from strings, to trees, to graphs.
We also discussed a series of learning algorithms that work over any
form of these factors, and are organised into a hierarchy of space com-
plexity based on the distinctions they make with respect to structural
information. We then derived the full hierarchical range of subregu-
lar formal language classes from the product of these different repre-
sentations and inference strategies. Consideration of time complexity
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further parameterises this hierarchy, drawing equivalences and dis-
tinctions amongst the classes with respect to learning. We find that
the scope of phonological typology is strongly biased into the range
defined by the simplest learning algorithms and representations.

The relevance of these results for linguistic theory is clear. A
learner, faced with dramatically sparse data, favours grammar induc-
tion strategies that limit the amount of necessary distinctions between
structural forms in order to ensure that learning is possible and feasi-
ble. The requirement for learners to structure and limit their hypoth-
esis spaces plays off the distinctions learners make and the represen-
tations they make them over. The results here, as well as typological
and experimental evidence, suggest that a learner may fix a learning
algorithm and allow representational primitives to vary. From this per-
spective, the requirement of parsing from a linguistic input to a par-
ticular linguistic form is of the utmost importance. Linguistic learn-
ing can be relativized over various representations, be they strings or
graphs for phonology, or trees for syntax. In this way, natural language
typology, considered through an algorithmic lens, can be shown to
emerge from the interaction of simple learning algorithms and simple
but wide-ranging notions of representation.

9APPENDIX

This appendix offers a brief reference to the fifteen classes charac-
terized by combinations of the learning algorithms and model signa-
tures described in this text. Each class is accompanied by a sample
of attested patterns that it can account for, with those accessible to a
lower algorithm having backreferences. Each pattern is provided with
a grammar given as a plebby-style expression3 formatted in a way typ-
ical of the class.

3The Piecewise-Local Expression Builder Interpreter (plebby) is one compo-
nent of the Language Toolkit, available from https://github.com/vvulpes0/
Language-Toolkit-2, currently version 0.3.
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9.1 Expression syntax

A complete formal description of the plebby expression language is
available in the package documentation. An abridged summary fol-
lows here.

Expressions are built on factors, represented by sequences be-
tween angle brackets. For example 〈a b, c d〉 asserts the occurrence
of four positions, say 1, 2, 3, and 4, that are respectively labelled by
symbols in sets a, b, c, and d, where positions 1 and 2 are connected
by the successor relation, as are positions 3 and 4, while positions
2 and 3 are connected by the general precedence relation. If a left
(right) boundary symbol is prefixed to this notation, that means the
leftmost (rightmost) position aligns with the left (right) edge of the
word. For instance, on〈a〉 asserts that all words consist of a single po-
sition labelled by an element of the symbolset a. Assignment of names
to symbolsets is not discussed here.

More complex expressions are built from unary (⊗e) or n-ary
(⊗{e1, e2, . . . , en}) operations, where ⊗ is the operator and the vari-
ous e are expressions. The Boolean ‘and’ (∩) and ‘or’ (∪) operations
are n-ary and represent language intersection and union, respectively.
The other n-ary operation is concatenation (•). Complement (¬) and
projection ([s1, s2, . . . , sn]) are unary operations, where the projection
operation asserts that the subexpression it operates over applies after
a word has been projected to include only symbols in the union of
symbolsets s1 through sn.

9.2 Algorithm I

Words must contain at least one element of some finite set of factors.

9.2.1 Complement Strictly Piecewise

Factors are subsequences.
• Minimum word length: ∪{〈 ∗σ,

∗
σ〉}.

Two syllables. More or fewer by adding or removing ∗
σ.

• Stress obligatoriness (Hyman 2009): ∪{〈σ́〉}.
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9.2.2Complement Strictly Local

Factors are substrings.
• Minimum word length: ∪{〈 ∗σ ∗

σ〉}.
Two syllables. More or fewer by adding or removing ∗

σ.
• Stress obligatoriness: ∪{〈σ́〉}.

9.2.3Complement Tier-Based Strictly Local

Factors are substrings after projection to some subset of the alphabet.
• Anything complement strictly local.

9.2.4Complement Multi-Tier Strictly Local

All words must satisfy at least one of a set of complement tier-based
strictly local grammars.

• Anything complement tier-based strictly local.

9.3Algorithm II

No word may contain any of a finite set of factors.

9.3.1Strictly Piecewise

Factors are subsequences.
• Harmony, unblocked (Heinz 2010a): ¬∪{〈s, ʃ〉, 〈ʃ, s〉}.
Symmetric. Asymmetric if only one factor were included.

• Stress culminativity (Hyman 2009): ¬∪{〈σ́, σ́〉}.
• Tone Plateauing (Hyman and Katamba 1993): ¬∪{〈H,L, H〉}.

9.3.2Strictly Local

Factors are substrings.
• AB alternation: ¬∪{〈A A〉, 〈B B〉}.
• Cambodian stress (Lambert and Rogers 2019):
¬∪{n〈σ̄〉,on〈〉, 〈σ́ ∗

σ〉, 〈H〉, 〈 ∗L ∗
L〉.o〈 ∗L〉}.

• No light monosyllables (Lambert and Rogers 2019): ¬∪{on〈 ∗L〉}.
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9.3.3 Tier-Based Strictly Local

Factors are substrings after projection to some subset of the alphabet.
• Anything strictly local.
• Dissimilation (Heinz et al. 2011): [k, l, r]¬∪{〈l l〉, 〈r r〉}.
• Harmony (Heinz 2010a): [s, ʃ]¬∪{〈s ʃ〉, 〈ʃ s〉}.
Unblocked. Blocked if other symbols project.

• Stress culminativity: [σ́]¬∪{〈σ́ σ́〉}.
9.3.4 Multi-Tier Strictly Local

Words must satisfy each member of a set of tier-based strictly local
grammars.

• Anything tier-based strictly local.
• Bukusu harmony (Aksënova et al. 2020):
∩{[vowel]¬∪{〈hi lo〉, 〈lo hi〉}, [l, r]¬∪{〈r l〉}}.

9.4 Algorithm III

The set of factors in a word must be a member of some finite set of
factorsets.

9.4.1 Piecewise Testable

Factors are subsequences.
• Anything (complement) strictly piecewise.
• No light monosyllables: ∪{¬〈 ∗L〉, 〈 ∗σ,

∗
σ〉}.

See also strictly local, Algorithm II.

9.4.2 Locally Testable

Factors are substrings.
• Anything (complement) strictly local.
• Harmony, unblocked, symmetric: ¬∩{〈s〉, 〈ʃ〉}.
See also strictly piecewise, Algorithm II.

[ 184 ]



Simplicity in representations and learning

9.4.3Tier-Based Locally Testable

Factors are substrings after projection to some subset of the alphabet.
• Anything (complement) tier-based strictly local.
• Anything locally testable.

9.4.4Multi-Tier Locally Testable

Words must satisfy a Boolean network of tier-based locally testable
grammars.

• Anything (complement) multi-tier strictly local.
• Anything tier-based locally testable.

9.5Algorithm IV

The multiset of factors in a word must be a member of some finite
set of multisets of factors. Note that while plebby has no intrinsic
notion of multisets, concatenation can be used as in the expression
•{〈a b〉, 〈a b〉} which asserts that 〈a b〉 occurs at least twice.

9.5.1Locally Threshold Testable

Factors are substrings.
• Anything locally testable.
• Stress culminativity: ¬∪{•{〈σ́〉, 〈σ́〉}}.
See also strictly piecewise, Algorithm II.

9.5.2Tier-Based Locally Threshold Testable

Factors are substrings after projection to some subset of the alphabet.
• Anything tier-based locally testable.
• Anything locally threshold testable.
• Tone plateauing: [H, L]¬∪{•{〈H L〉, 〈H L〉},∩{〈H L〉,n〈H〉}}.
See also strictly piecewise, Algorithm II.
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9.5.3 Multi-Tier Locally Threshold Testable

Words must satisfy a Boolean network of tier-based locally threshold
testable grammars.

• Anything multi-tier locally testable.
• Anything tier-based locally threshold testable.
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