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ABSTRACT

A linguistic theory reaches explanatory adequacy if it arrives at a
linguistically-appropriate grammar based on the kind of input avail-
able to children. In phonology, we assume that children can succeed
even when the input consists of surface evidence alone, with no correc-
tions or explicit paradigmatic information — that is, in learning from
distributional evidence. We take the grammar to include both a lexi-
con of underlying representations and a mapping from the lexicon to
surface forms. Moreover, this mapping should be able to express op-
tionality and opacity, among other textbook patterns. This learning
challenge has not yet been addressed in the literature. We argue that
the principle of Minimum Description Length (MDL) offers the right
kind of guidance to the learner — favoring generalizations that are
neither overly general nor overly specific — and can help the learner
overcome the learning challenge. We illustrate with an implemented
MDL learner that succeeds in learning various linguistically-relevant
patterns from small corpora.
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INTRODUCTION

As part of language acquisition, the child needs to acquire many dif-
ferent aspects of the morpho-phonology of their language. If the child
is learning English, for example, they will need to learn that in ‘cats’,
pronounced [k"zts], the aspiration of the initial [k] and the voiceless-
ness of the final [s] are no accident: in English, voiceless stops such as
[k] are always aspirated in this position (roughly, syllable-initially in a
stressed syllable), and the expression of the plural morpheme is always
the voiceless [s] after a voiceless stop such as [t]. Thus, the child will
need to learn that imaginable forms such as [kats] or [k"atz] are not
possible in the language. These pieces of knowledge come from a very
large — possibly unbounded - set of possible choices that languages
can make and that children must be able to acquire. Moreover, chil-
dren are capable of acquiring at least some linguistic knowledge of this
kind from distributional cues alone, without access to analyzed forms
or paradigms and without negative evidence. The result is a nontrivial
learning task that is challenging even in relatively simple cases such
as deterministic, surface-true phonotactics (as in the aspiration pat-
tern of English) or alternations providing useful information (such as
the voicing pattern concerning the /z/ suffix in English). The learning
challenge is even more pronounced in cases of optional phonologi-
cal processes and of opaque interactions of phonological processes. A
theory that addresses this challenge can be said to have reached ex-
planatory adequacy (Chomsky 1965). To date, no general solution to
this challenge has been provided in the literature.

In this paper, we propose a response to the learning challenge in
terms of a certain kind of simplicity metric. The simplicity metric will
follow the principle of Minimum Description Length (MDL; Rissanen
1978), which incorporates both the idea of grammar simplicity (as in
the evaluation metric of early generative phonology) and that of re-
strictiveness (or how easy it is for the grammar to capture the data).
The representational framework that we use for our discussion will be
that of rule-based phonology, which offers a particularly direct handle
on the representation of both optionality and opacity. We wish to em-
phasize, however, that our focus in this paper is the learning approach
—namely, the MDL metric — and how it guides the learner given a rep-
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resentational framework rather than the representational framework
itself. In order to illustrate how the MDL metric can guide the learner
toward appropriate hypotheses, we present several simulations that
start with a small corpus of unanalyzed surface forms — generated from
artificial grammars based on morpho-phonological patterns in various
languages — and arrive at a full grammar including a lexicon of under-
lying representations (URs), a morphological segmentation of forms
into morphemes and their attachment possibilities, and different kinds
of phonological rules (both obligatory and optional) and their ordering
(including both transparent and opaque interactions). While it might
seem that these different aspects of morpho-phonological knowledge
call for a fragmented learning approach, with specialized learners for
the different sub-tasks, we will show how the MDL evaluation metric
allows all of them to be acquired in a unified way.

We start, in Section 2, by reviewing the challenge of explana-
tory adequacy in phonology. In Section 3, we present the MDL met-
ric in the context of rule-based phonology and specify a concrete set
of representations for phonological grammars and their MDL costs.
In Section 4, we present proof-of-concept learning simulations with
optionality, rule interaction (including opacity), and interdependent
phonology and morphology. Section 5 discusses previous work on
learning in phonology and its relation to the goals of this paper. Sec-
tion 6 concludes the paper.

EXPLANATORY ADEQUACY
IN PHONOLOGY

An explanatorily adequate linguistic theory accounts for how the child
arrives at a descriptively-adequate grammar based on the primary lin-
guistic data (Chomsky 1965, pp. 25-27). The present paper focuses on
this learning challenge in phonology. In Section 3, we argue that com-
bining a suitable theory of phonological representations with the gen-
eral principle of MDL goes beyond all other proposals in the literature
in terms of approaching the goal of explanatory adequacy. Before that,
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in the present section, we briefly outline certain aspects of explana-
tory adequacy in phonology that will be important for evaluating our
claim below.

First, we follow Calamaro and Jarosz (2015) in assuming that chil-
dren can acquire significant aspects of phonological knowledge from
distributional evidence alone (that is, from surface forms alone, with-
out systematic negative evidence, direct information about underlying
representations, or other kinds of assistance). To be sure, children are
also exposed to a great deal of other information, including contextual
cues as to the meanings of words. Calamaro and Jarosz’s (2015) as-
sumption, which we adopt here, is simply that children can succeed in
phonological learning even when such additional information is not
present. Some support for this view comes from experimental work
that provides evidence for children’s ability to acquire key aspects of
morpho-phonology, including segmentation (Saffran et al. 1996), al-
lomorphy (Gerken et al. 2005), and phonological alternations (White
et al. 2008), all from distributional evidence. We note, in addition,
that non-distributional information such as morpheme meanings is
more limited in its ability to assist phonological learning than is often
assumed in the phonological learning literature. A common assump-
tion made in the literature is that semantic information can teach the
learner about the existence of phonological processes. On this com-
mon view, when the learner encounters two morphemes with differ-
ent phonological surface forms that have exactly the same meaning,
the learner knows that a phonological process is responsible for the
surface difference between them. Semantics is therefore assumed to
take the learner a long way towards learning the phonological gram-
mar. We believe that this view overestimates the utility of semantics
for the learner because it mistakenly ignores the possibility that two
morphemes with the same meaning are not related through phonolog-
ical processes: namely, it ignores the possibility of suppletion, where
two semantically identical forms are stored separately in the lexi-
con, without being derived from a common lexical entry through any
phonological process. Since nobody tells the learner when suppletion
is involved, the learner has to figure out the existence of phonolog-
ical processes itself. We assume that an explanatorily adequate the-
ory needs to account for this aspect of learning as well. However,
a more complete characterization of the evidence that children base
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their learning on, both in lab settings and during acquisition, awaits
further work.

Second, we assume that children can acquire their phonological
knowledge even in the face of nontrivial dependencies between mor-
phological segmentation and phonological processes, and we assume
that underlying representations may be abstract, in the sense of dif-
fering from surface forms even in the absence of conclusive evidence
from alternations. Moreover, we take the phonological knowledge that
children attain to involve various textbook properties such as opac-
ity and optionality. We discuss each of these aspects of phonological
knowledge and learning in turn.

Dependencies between morphological segmentation and phono-
logical processes exist in many affixes and alternations across lan-
guages. Vowel harmony in Turkish provides a particularly clear il-
lustration. Focusing on stems such as ip ‘rope’ and kiz ‘gir]’ and on the
suffixes for the genitive and the plural, the child’s input might consist
of surface forms such as ipler, kizlar, ipin, and kizin. If the child al-
ready knows that vowel harmony applies within such forms, they can
undo it and reason that ler and lar might be underlyingly identical
(and similarly for in and 1n). This, in turn can guide the child toward
the correct morphological segmentation of the forms:

‘rope’  ‘girl’

@8] Plural ip-ler kiz-lar

Genitive | ip-in  kiz-in

Similarly, if the child already knows the morphological decom-
position of these forms, they can reason about the relation of ler and
lar (and similarly for in and 1n), which can guide the child toward a
discovery of vowel harmony. However, if the child does not yet know
either about the process of vowel harmony or about the morpholog-
ical decomposition of the surface forms, they will face the challenge
of discovering both despite the bidirectional dependencies between
the two.

Abstract URs are URs that differ from their surface forms despite
insufficient evidence for the discrepancy from alternations. The extent
to which URs may be abstract was a matter of much debate in early
generative phonology. More recently, abstractness has been argued for
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by Alderete and Tesar (2002), McCarthy (2005), and Nevins and Vaux
(2007), among others (see also discussion in Krdamer 2012). Here, we
will assume, conservatively, that abstractness is possible, illustrating
with a schematic example, based on an example from Alderete and
Tesar (2002), which was in turn modeled after the interaction of stress
and epenthesis in Yimas. In this example, stress in bisyllabic words is
generally initial, but there are some words, in all of which the first
vowel is [i], where stress falls on the second syllable. The following
table, showing three possible (and different) words and one impossible
form, illustrates:

Initial vowel = i  Initial vowel = a

(2) Initial stress pikut pékut

Pen-initial stress pikat *pakt

A familiar kind of analysis would posit a pattern of initial stress, where
an unstressed initial [i] is always epenthetic:

3 /pkut/ — |pkit

— [pikdt]

According to Alderete and Tesar (2002), however, this generalization
is acquired without support from alternations.

Finally, the acquired phonological knowledge should capture
speakers’ intuitions not just in simple cases but also in more com-
plex patterns, of which we focus here on two: optionality and opacity.
An example of optionality is the process of liquid deletion in French,
analyzed by Dell (1981) and discussed in some detail below, which
allows a word-final liquid to optionally delete in certain environments
(as in [tabl]~[tab] for ‘table’). An example of opacity is the counter-
feeding interaction between nasal deletion and cluster simplification
in Catalan (Mascar6 1976). As the following illustrates, word-final
nasals sometimes delete in Catalan, as do post-nasal word-final stops,
but while the latter process creates an appropriate environment for
the former, cluster simplification does not lead to nasal deletion:

kuzi ~ kuzin-s ‘cousin.SG ~ cousin.PL’
kalén ~ kalént-a ‘hot.MASC ~ hot.FEM’

4
To summarize, we take the following to be requirements of any

theory that achieves explanatory adequacy in the domain of phonol-
ogy. It should allow for learning from distributional evidence alone. It
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should support the joint learning of morphological segmentation and
phonological processes and the learning of abstract URs. And it should
handle complex patterns such as optionality and opacity. To be sure,
this is just a starting point; we certainly do not wish to suggest that
these requirements are all there is to learning in phonology. However,
we do believe that it is a meaningful starting point that is relevant
for the evaluation of any theory that aims at explanatory adequacy in
phonology.

In Sections 3 and 4 below we show that the MDL principle, when
coupled with a suitable representational framework (for concreteness,
we will use rule-based phonology), favors hypotheses that seem appro-
priate with respect to the different aspects of the learning challenge
considered here. This makes MDL a promising candidate for the child’s
learning criterion. In Section 5 we argue that other approaches in the
literature on learning in phonology have yet to address central aspects
of the learning challenge.

THE PRESENT WORK

The current section presents the assumptions behind our learning
model. One general assumption that we make is that the child chooses
between competing grammars using some kind of evaluation metric.
We start, in Section 3.1, by considering two evaluation metrics from
the literature — the evaluation metric of the Sound Pattern of English
(SPE; Chomsky and Halle 1968, p. 334), which aims for grammar
economy, and the subset principle, which aims for restrictiveness — in
the context of acquiring a single optional phonological rule. We will
see that in order to acquire the relevant rule, the child cannot follow
grammar economy alone or restrictiveness alone but must instead bal-
ance between the two. This balancing of economy and restrictiveness
is the essence of the MDL evaluation metric, and while we motivate it
here using one simple rule, the very same metric will serve as a good
guide for learning whole (though at present artificial) phonological
grammars, including the lexicon, the morphological segmentation of
forms into stems and affixes, a variety of phonological rules, and both
transparent and opaque rule interactions. In order to use the MDL
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evaluation metric as a part of an actual phonological learner, we need
to adopt explicit representations for phonological grammars. We do
this in Section 3.2, where we present the concrete representations
we assume and the costs they induce in terms of MDL. Section 3.3
presents a search procedure that will allow us to turn the MDL metric
into a full learner, and while our focus in this paper is the MDL metric
rather than the full learner, it is through reporting simulations with
the learner that we will be able to best illustrate the kind of guidance
provided by MDL (in Section 4).

The MDL criterion

French has an optional process of liquid-deletion word-finally follow-
ing an obstruent (Dell, 1981). The French-learning child, then, might
be exposed to surface forms such as [tabl] and [tab] for ‘table’ and
[katr] and [kat] for ‘four’ (but only [gar] and not *[ga] for ‘train sta-
tion’, since its liquid does not appear in the right environment for
deletion). Suppose that the child uses a simplicity metric such as the
one in SPE, which optimizes grammar economy. Restricting our at-
tention here and below to grammars that are licensed by Universal
Grammar (UG) and using |G| to notate the length of a grammar G, we
can state this metric as follows: !

5) SPE EVALUATION METRIC: If G and G’ can both generate the
data D, and if |G| < |G’|, prefer G to G’

To see how we can use (5), we need to be precise about how || is
measured. Anticipating our discussion below, it will be convenient to
think of grammars as sitting in computer memory according to a given
encoding scheme — a scheme that is provided by UG — with |G| being
the number of bits taken up by G. In Section 3.2 we will present the
details of one specific encoding scheme and show how |G| is measured
within it. For now, however, we will set aside such details as we build
toward the MDL criterion.

I Here and below the grammar G will be taken to be not just the phonological
rules and their ordering but also the lexicon. Thus, by saying that a grammar G
generates the data D, we mean that every string in D can be derived as a licit
surface form from some UR in the lexicon and the ordered phonological rules.
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Early on, the child will store a separate UR for each surface form
of the alternating pairs: both /tabl/ and /tab/ for ‘table’; both /katr/
and /kat/ for ‘four’; both /arbr/ and /arb/ for ‘tree’; and so on (along
with a single /gar/ for ‘train station’). After seeing a few additional
alternating pairs of this kind, however, (5) will lead the child to con-
clude that for each such pair there is just one UR - /tabl/ for ‘table’,
/katr/ for ‘four’, /arbr/ for ‘tree’, and so on — and that an optional
phonological rule such as the following applies (where L stands for
liquid):2

(6) L — 0 (optional)

The rule in (6) adds complexity to the grammar, but this complex-
ity is more than offset by the savings obtained by the elimination of
all the L-less forms from the lexicon. Consequently, the overall size of
the grammar is shorter using (6), and (5) will favor the new grammar.

As mentioned above, however, the actual process of L-deletion in
French is somewhat more specific than (6) suggests: L may be deleted,
but only in certain contexts. A more appropriate rule is the following,
in which L-deletion is restricted to word-final environments following
an obstruent:

(7) L — @ /[—son]__# (optional)

And unfortunately, as pointed out by Dell (1981), a child using (5)
will fail to acquire the appropriate context for the application of the
rule. That is, the child will prefer (6) to the more appropriate (7).
This is so since (a) both a grammar G using the unrestricted (6) and a
grammar G’ using the restricted (7) can generate the data; and (b) G is
shorter than G’ (since specifying the context in (7) adds to the gram-
mar’s length). By the SPE evaluation metric in (5), the child will prefer
G to G’, which is the wrong result. For example, a child using G will

2 An even simpler grammar is one in which the lexicon includes just one,
empty UR and in which any segment can be inserted by an optional rule. Such a
grammar would be an extreme example of a very simple but wildly overgener-
ating grammar, and we could have used it instead of (6) to illustrate the perils
of minimizing |G| alone in our discussion below. In the interest of keeping the
presentation focused on deletion processes, however, we set this grammar aside
and start from (6).
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erroneously rule in L-deleted forms such as *[ga] for /gar/.®> More-
over, the child will never recover from this error: since the child sees
only positive evidence, they will never be forced to leave the simpler
but overly inclusive G.

The problem is quite general, as discussed by Braine (1971) and
Baker (1979), and goes well beyond phonology: a child guided solely
by a preference for grammar economy, as in the SPE evaluation met-
ric in (5), will fail to learn the contexts for optional rules. Just as in
the example of optional L-deletion, a grammar G in which an optional
rule R has no context will generally be both simpler and more inclu-
sive than a minimal variant G’ in which the optional rule does have
a context. If G’ is the correct grammar, both grammars will be able
to generate the input data: G’ since it is the correct grammar, and G
since its language — that is, the set of all licit forms according to the
lexicon and rules of G — is a superset of the language of G’. By (5),
then, the child will incorrectly prefer the simpler G to G’ and - since
the child will not receive negative evidence — will never recover from
this error.

One solution to this predicament — the one advocated by Dell
(1981) and adopted in much later work — is to change the evalua-
tion metric from one that favors simple grammars to one that favors
restrictive ones, where restrictiveness is captured in terms of subset-
hood: G is more restrictive than G’ if its language is a subset of the lan-
guage of G’.* This solution, also known as the subset principle (Berwick

31n fact, as mentioned in footnote 2, a preference for grammar economy will
lead the learner to even more extreme solutions if left unchecked. In particular,
consider a grammar (as in footnote 2) that has an optional epenthesis rule for
each segment that appears in the data and a lexicon that consists only of the
empty string. Such a grammar can generate the data and is extremely short to
state. Unless it is blocked by some other principle, this grammar will be preferred
by (5) to both G and G'.

4Other ways of cashing out the informal idea of restrictiveness have been pro-
posed in the literature. Within Optimality Theory (Prince and Smolensky 1993),
for example, restrictiveness is often interpreted as subsethood not of the lan-
guages of the original grammars G and G’ but rather of the languages of variants
of G and G’ in which the lexicon is replaced with the set £x of all possible strings
over the alphabet ¥ in which the lexicon is written (see Smolensky 1996). The
MDL metric, which we will present and argue for below, implements restrictive-
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1985; Wexler and Manzini 1987; Hale and Reiss 2003, 2008), directs
the learner to never choose a grammar for a superset language when
a grammar for a proper subset is compatible with the data:®

(8 SUBSET EVALUATION METRIC: If G and G’ can both generate
the data D, and if the language of G is a proper subset of the
language of G’, prefer G to G’

A child following (8) will always choose from among the gram-
mars sanctioned by UG and whose language is compatible with the
data a grammar whose language is minimal in terms of subsethood.
Such a child will therefore avoid the overgeneralization problem. In
the case of optional L-deletion in French, the grammar with the un-
restricted (6) generates a language that is a strict superset of the one
with the restricted (7), and both grammars generate the data D; con-
sequently, the unrestricted (6) will be rejected and the restricted (6)
chosen, which is the correct result.

While choosing correctly between (6) and (7), the subset princi-
ple gives rise to a problem of undergeneralization — the mirror im-
age of the overgeneralization problem of the SPE simplicity metric —
and does not offer a general solution for learning. To see the problem
in the case of French L-deletion, consider the situation of a learner
who has heard a surface form such as [sabl] but, accidentally, has not
yet heard its L-elided variant [sab] (both for the UR /sabl/ ‘sand’). If
the learner has heard sufficiently many other pairs differing only in
whether they have a final liquid, we would expect them to adopt (7),
even if for /sabl/ only one member of the pair has been observed so
far. That is, we would like the learner to generalize beyond the data
in this case. But if the learner follows the subset principle, this will
not be possible: with (7), the language will include also the L-deleted
form [sab], which makes the language a strict superset of the language
of a grammar that does not generate [sab]. One example of such an

ness in yet another way, by comparing how easy it is to specify the actual input
data using G and G’: if the data can be more easily specified using G than using
G’, then G is the more restrictive grammar of the two.

5 As Baker (1979) notes, Braine’s (1971) alternative to the SPE evaluation
metric, while stated in procedural terms, has a similar effect to a restrictiveness
metric.
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overly restrictive grammar is one without any deletion rules and with
a lexicon that has separate URs for each of the L-variants that have
been seen in the input data. For a learner that follows the subset prin-
ciple, the only way to avoid such an overly restrictive grammar is if
it is not licensed by UG. On most theories of UG, however, a memo-
rizing and overly specific grammar is perfectly capable of being rep-
resented. Consequently, the learner will fail to choose the correct and
more permissive (7). In other words, as long as UG makes available
overly restrictive grammars, a single accidental gap is enough to pre-
vent a learner following the subset principle from making what seems
like a reasonable generalization.

We have seen that minimizing |G|, as in the SPE evaluation metric,
makes the child generalize; when left unchecked, however, it leads to
overgeneralization. Meanwhile, restrictiveness (as in the subset prin-
ciple) protects from overgeneralization, but on its own prevents useful
generalizations. It seems sensible, then, to try to balance the two prin-
ciples against each other: look for a grammar that is both reasonably
small and reasonably restrictive. This is exactly the idea behind Min-
imal Description Length (MDL; Rissanen 1978), which we will adopt
here.® To make it work, however, we need to specify how we quantify
both grammar size and restrictiveness and how the two are balanced.
The insight of MDL - building on the work of Solomonoff (1964a,b),
Kolmogorov (1965), and Chaitin (1966) - is that we can think of re-
strictiveness as another simplicity criterion and combine it naturally
with grammar economy. As above, for grammar economy we will con-
sider G as sitting in computer memory according to a given encoding
— as specified by UG — and measure |G| in terms of how many bits the
storage of G takes up. Restrictiveness, meanwhile, will be thought of
in terms of how simple it is to describe the data, D, given the gram-
mar, G. We will use the notation D : G, somewhat loosely, for the
shortest description of D given G (loosely because there might be mul-
tiple such shortest descriptions), and we will notate the length of the
shortest description of D given G as |[D : G|.” To see how |D : G|

6See also the closely related idea of Minimal Message Length of Wallace and
Boulton (1968).

7 In what follows, we will consider D to be the actual data sequence that
the learner is exposed to. Consequently, D : G will be the description of those
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is measured given a grammar G, consider again the case of optional
L-deletion. Suppose that the learner has acquired a lexicon with the
single UR /tabl/ and an optional rule such as (6) or (7). To describe an
instance of the surface form [tabl] or the surface form [tab], we need
to first specify the UR /tabl/ and then specify whether L-deletion has
applied (for [tab]) or not (for [tabl]). Specifying the UR /tabl/ involves
a choice from among the URs. In general, the greater the number of
URs from which we choose, the longer the specification of the UR we
have selected. A convenient way of specifying such choices — and one
that will allow us to directly balance the length of D : G against that of
the grammar G - is using bits. A single bit encodes one binary choice,
and as the number of bits grows, the number of choices that can be
stated grows (exponentially) with it. For example, if there are just two
possible URs, we can specify the choice using one bit. With four URs
in the lexicon, we now need about two bits to specify each choice. And
so on.® The optional L-deletion rule requires the further specification
of whether it applied or not, which can be stated as one additional bit
(perhaps 0 to specify that the rule did not apply and 1 to specify that
it did). These specifications for the different surface forms in the input
data D are accumulated to provide the complete D : G, the encoding
of the specific input data D given the grammar G.

actual input tokens given the grammar. This choice is made for concreteness
and in order to keep the presentation simple. A different possibility would be
to abstract away from individual tokens and consider only the types — that is,
the distinct surface forms — rather than the tokens. It is also possible to define
the restrictiveness factor |D : G| in terms of a combined measure of types and
tokens. We will not attempt to investigate these choices and their implications
for learning within this paper (see Goldwater et al. 2006, Endress and Hauser
2011, and Yang 2016 for relevant discussion).

8 Exactly how many bits are needed for each choice will depend on the spe-
cific grammar G, relative to which the choices are made. In Section 3.2 we show
how D : G is stated relative to the grammars presented in that section. For similar
considerations regarding the measurement of |G| and |D : G| in bits but within
constraint-based phonology see Rasin and Katzir 2016. We further note that the
number of bits used for a given choice point need not be uniform. In general, the
optimal cost of each choice x in bits will be —1g P(x) (that is, minus the loga-
rithm base two of the probability of x). A fixed number of bits per choice point
is optimal only if the probability distribution at each choice point is uniform.
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We can now see how the motivation for restricting the context for
optional L-deletion can be stated in terms of simplicity. If L-deletion
were not optional — if it always applied or if it never applied - the
final bit would have been unnecessary for the specification of the rel-
evant surface forms: selecting a UR would have fully determined the
surface form. For URs like /tabl/ and /katr/, L-deletion is optional,
and the extra bit of the appropriate rule cannot be avoided. But for
/gar/ L-deletion never applies, so paying an extra bit for each occur-
rence is an unnecessary expense. The unrestricted (6) forces us to pay
this unnecessary expense: the optional rule is applicable whenever a
UR is chosen that contains liquids (and for each occurrence of a lig-
uid within such a UR), including URs such as /gar/ that do not allow
for L-deletion, so a bit specifying whether the rule applies is always
required, leading to D : G that is longer than needed. The more restric-
tive (7), on the other hand, makes us pay the extra bit only when an
appropriate UR such as /tabl/ is chosen but not when /gar/ is chosen.
Consequently, (7) leads to a shorter D : G.

Having recast the notion of restrictiveness in terms of simplicity
(specifically, the simplicity of D : G), we can directly combine it with
simplicity of grammar: instead of minimizing |G| alone, as in the SPE
evaluation metric, we can now minimize the sum of the two quanti-
ties, |G| + |D : G|, thus balancing between the goal of a simple, general
grammar and a restrictive one.

)] MDL EVALUATION METRIC: If G and G’ can both generate the
data D, and if |G|+ |D : G| < |G’| + |D : G’|, prefer G to G’

Combining grammar economy with restrictiveness in terms of the
subset principle as stated in (8) is a nontrivial challenge. Combining
it with the reformulation of restrictiveness in terms of |D : G|, on the
other hand, is straightforward, as (9) shows. Moreover, the MDL quan-
tity |G| + |D : G| has a direct interpretation in terms of quantities that
are arguably available to the learner, as discussed in Katzir 2014 and
Rasin and Katzir 2020. Grammars are stored in memory according
to the specifications provided by UG, and |G| is therefore simply the
amount of memory required to store G using this specification. As for
|D : G|, any given grammar G considered by the learner and compat-
ible with D can presumably be used to parse D, and if this parse is
stored in memory, its storage space is |D : G|. This makes |G|+ |D : G|
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nothing more than the overall storage space used for keeping G and
its (shortest) parse of D in memory. This makes MDL a natural evalua-
tion criterion that uses only quantities that are available to the learner
with minimal stipulation beyond what is already needed to represent
grammars and use them to parse the data.®

Let us now return to the L-deletion example and see how MDL
leads to an adequate level of generalization. As discussed above, stor-
ing a single UR for pairs like [tabl]/[tab] and [katr]/[kat] will shorten
|G| sufficiently (given a large enough number of such pairs) to justify
adding an optional rule of L-deletion to G, just as with the SPE evalu-
ation metric. As for the precise form of the rule, the simultaneous con-
sideration of both |G| and |D : G|, as in (9), will mean that the more
complex rule in (7) will eventually be chosen over the unrestricted (6),
despite its increased |G|. The reason is that after sufficiently many
instances of words like [gar] have been encountered, the savings in
terms of |D : G| obtained with (7) — since no bit will need to be spent
when a UR such as /gar/ is chosen — will more than outweigh the in-
crease in |G|. Figure 1 illustrates. The MDL metric in (9) thus allows
the child to generalize but protects them from overgeneralizing.

Note that, differently from the case of restrictiveness-only (as in
the subset principle), the MDL metric has the means to generalize be-
yond the data even in the face of certain gaps in the input. Consider
again the situation of a learner who has heard the form [sabl] but has
not (yet) heard its L-deleted variant [sab]. We saw earlier how this
kind of gap in the input data will prevent a restrictiveness-only learner
from generalizing correctly. For an MDL learner (that is, a learner that
relies on the MDL metric to choose between hypotheses), the added
restrictiveness of ruling out [sab] is weighed against the added com-
plexity in stating a grammar that does that while still accounting for

2 A reviewer suggests combining |G| not with |D : G| but rather with
|L(G)|, the cardinality of the language of G. We note, however, that us-
ing |L(G)| as a proxy for restrictiveness will only be useful when the lan-
guage of the target grammar is finite, and this assumption is problematic even
within morpho-phonology due the possibility of unbounded processes of affix-
ation. And even if the languages under consideration are assumed to be fi-
nite, computing |L(G)| strikes us as significantly more challenging than using
|D : G|, a quantity that as just discussed is presumably already available to the
learner.
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11010011010011101100001011101 10 0100110101110110010011000110...
N e S N N N N

Lex=/tabl/,/tab/,/arbr/,/arb/,/gar/... Rules=(none) 4 4 4 4 4 4 4
ps DG
010110010001 10111010010100110000110101100100101 0111 1...
N e N NS N NN —

Lex=/tabl/,/arbr/,/gar/,...  Rules=L—0 3+1 3+1+1 3+1+1 3+1 3+1 3 3+1+1

~~

~
G D:G

010110010001 1001101110110 01001100111 011 010 110 O11...
| S i i i s g

Lex=/tabl/,/arbr/,/gar/,... Rules=L—Q /[—son] __# 3+1 3 3+1 3 3 3 3
G D:G

Figure 1: Schematic illustration of three hypotheses. (The order of URs in the
lexicon and of tokens in D : G are unrelated.) Introducing a naive lexicon (top), in
which [tabl] and [tab] have distinct URs results in a complex grammar. Capturing
optional L-deletion with (6) allows the grammar to be simplified (middle): the
complexity of the rule is outweighed by the savings of eliminating unnecessary
URs. Moreover, since there are now fewer URs than with the naive lexicon, each
UR can be specified more succinctly. However, an additional bit is needed for
specifying the actual surface form of each occurrence of L in a UR (for each
surface token of that UR). Finally, restricting the context of L-deletion, using (7),
allows us to limit the extra bit to just those URs that require it (bottom): /tabl/
but not /gar/

both [tabl] and [tab]. In the present case, a grammar that rules out
[sab] will be quite complex: it might dispense with L-deletion and re-
sort to memorizing each observed surface form using a separate UR;
or it might state a highly involved rule (or system of rules) that license
L-deletion in those forms where both variants of a pair has been ob-
served. Either way, the result will be a complex grammar that does not
justify the minimal savings obtained by not having to specify whether
L-deletion has applied for the single occasion when the UR /sabl/ was
chosen. (This is very different from the case of [gar], where prevent-
ing inappropriate L-deletion involved only a slight increase in gram-
mar size, and where there were sufficiently many relevant instances
of L in non-deleting environments to justify the added complexity.)
Consequently, the accidental gap arising from seeing an occurrence of
[sabl] without an instance of [sab] will not prevent the MDL learner
from keeping the rule of L-deletion in (9), thus generalizing beyond
the data, which seems to be the correct result.
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Suppose now that the learner sees not just one instance of [sabl]
but rather many instances, still without any instance of [sab]. In this
case, the absence of [sab] will start looking less like an accident of the
specific data sequence seen so far and more like a systematic fact of
French that needs to be captured. The MDL learner allows us to make
this intuition precise: with sufficiently many occurrences of [sabl], the
extra bit that is needed to state for each occurrence that /sabl/ does
not undergo optional L-deletion results in an increase to |D : G| that
is big enough to justify blocking L-deletion for this UR. How exactly
L-deletion is blocked will depend on the representations available to
the learner. For example, if these representations offer a general way
to mark exceptions to rules, the learner might choose to mark /sabl/
as an exception to L-deletion. If such a method is not available, the
learner might choose to block L-deletion in a more ad hoc way. For
example, the learner might decide to add a special segment at the end
of the UR (e.g., storing the relevant UR as /sablx/), thus preventing the
L under consideration from appearing in the right context for deletion,
along with a rule that deletes that special segment and is ordered after
L-deletion.

Before proceeding, we note that in the discussion above we as-
sumed that the input to the learner is a sequence of surface forms of
words in isolation. If further information is available to the learner,
such as the order of words in sentences or representations of scenes in
which words are uttered, the decision of the learner regarding which
forms to collapse using phonological rules can change. For example, a
learner considering a small portion of the English lexicon containing
‘spare’, ‘pear’, ‘spit’, ‘pit’, ‘stick’, ‘tick’, and similar pairs might mistak-
enly collapse these pairs with the aid of an optional rule of [s]-deletion
before [p] word-initially. By considering not just words in isolation
but also the linguistic and extra-linguistic contexts in which they ap-
pear, however, an MDL learner will be justified in moving to a more
complex grammar that does not collapse the relevant pairs but rather
represents them using distinct URs in the lexicon.

The balancing of economy and restrictiveness has made MDL
— and the closely related Bayesian approach to learning — helpful
across a range of grammar induction tasks, in works such as Horning
(1969), Berwick (1982), Ellison (1994), Rissanen and Ristad (1994),
Stolcke (1994), Griinwald (1996), de Marcken (1996), Brent (1999),
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and Clark (2001), among others. 1° Recently, Rasin and Katzir (2016)
have used MDL to show how phonological grammars can be acquired
distributionally within constraint-based phonology, and Rasin and
Katzir (2018, 2020) have discussed the acquisition of abstract URs
using MDL. The present work extends this approach, using rule-based
phonology as a concrete representational framework. In particular,
we will show how the same MDL metric that supported the correct
generalization in the case of the optional rule of L-deletion in French,
as discussed above, will support the acquisition of whole phonological
grammars, including the lexicon, the segmentation of forms into stems
and affixes, a variety of phonological rules, and both transparent and
opaque rule interactions. The simulations illustrating the use of MDL
for the acquisition of phonological grammars — at present, using small
corpora generated from artificial grammars — will be presented in
Section 4. Before that, in the remainder of the present section, we
describe the phonological representations that we assume, in order to
make explicit their contribution to the MDL score, and we describe the
search procedure we use to traverse the space of possible grammars.

Representations

As is standard, we assume that segments in phonological rules are
represented not atomically but as feature bundles. ! For convenience,
each simulation below works with a feature table that makes distinc-
tions that are relevant to the phenomenon at hand, but we remain
agnostic here as to whether learners start with a large innate table or
acquire language-specific tables at an earlier stage. To illustrate, the
feature table in Table 1 will be used for those simulations that are
based on English.

1OMDL and Bayesian grammar induction are almost equivalent. There are
some differences, such as MDL’s use of the shortest encoding of D given G, which
corresponds to the maximal probability of a parse of D given G, while Bayesian
learning marginalizes over all parses. As far as we can tell, however, such differ-
ences are irrelevant to the examples discussed here, and we will treat MDL and
Bayesian inference as essentially the same for the purposes of this paper.

Hip principle, the same holds also for the lexicon, though in the implemen-
tation reported here, the representation of segments in the lexicon does not ex-
plicitly use feature bundles.
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Table 1: Feature table

cons voice cont coronal low high back son lateral labial strident
d + + + — — - - — — — —
t + - + - - - - - - - -
z + + + + — - - - — - +
s + - + + — - - — — — +
g + + - — — - - — — — —
k |+ - - - - - = - - -
b + + - - - - - - - + -
p + - - - — - - - — + —
m + + - — — - - + — + —
n + + + — — - - + — — —
r + + + + - - - + - - -
1 + + + + - - - + + - -
a - + + + + - + + - - —
o — + + + — - + + — — —
e — + + + — - - + — — —
i - + + + - + - + - - -
u — + + + - + + + - - —
Phonological rules 3.2.1

Feature bundles based on feature tables such as the one in Table 1 are

used to state the phonological rules. The general form of rules is as

follows, where A, B are feature bundles or @; X, Y are (possibly empty)

sequences of feature bundles; and optional? is a boolean variable spec-

ifying whether the rule is obligatory or optional (Figure 2).
A > B |/ X Y  (optional?) Figure 2:

;c:s/ cha\:g/e lefE);;xt_rig}rc;:text Rule format

The following, for example, is an optional phonological rule of
vowel harmony that fronts a vowel before another front vowel when
the two are separated by arbitrarily many consonants, stated in text-
book notation in (10a) and in string notation (more convenient for the
purposes of the conversion to bits below, and using various delimiters,
marked with # with certain subscripts and discussed shortly) in (10b).
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(10) Vowel harmony rule
a. Textbook notation

I:—cons] - [—back] /_|:+cons:|* [:;Z:ﬂ (optional)

b. String notation
—cons# . —back# . # . +cons*#,—cons# ; —back# .. 1#

As discussed informally in Section 3.1 above, determining both
|G| and |D : G| for purposes of MDL is done in bits, where each bit
represents a single binary choice. In the simple representations that
we use in this paper, all possible outcomes at any particular choice
point (whether binary or otherwise) are treated as equally easy to en-
code. For purposes of presentation, we will first discuss a particularly
simple representation in which at any given choice point, the different
outcomes are not just equally easy on average to encode but actually
have fixed, equal length codes. This will allow us to discuss the vari-
ous encodings in terms of fixed conversion tables in which if there are
n possible outcomes, each will be assigned a code whose length in bits
is [lgn] (that is, the logarithm base two of n, rounded up to the clos-
est integer). In our actual simulations, presented in Section 4, we will
deviate from the encoding presented below by allowing non-integral
code lengths, taking lgn rather than [lgn] as the code length for an
n-ary choice point.!2

Within the simplified representational framework just described,
determining the length in bits of a single phonological rule for the
purposes of MDL is done by using a conversion table that states the
codes for the possible elements within phonological rules. An example
of a possible conversion table appears in Table 2.

12 The reason for this change is that the encoding used in the current section,
using [lgn], is highly sensitive to changes in which the number of outcomes at
a given choice point crosses a power of 2 (which is where [lgn] changes). By
taking 1g n instead of [1gn], this unhelpful sensitivity to powers of 2 is avoided.
On the other hand, using conversion tables with fixed code lengths, correspond-
ing to [Ign], allows us to keep the presentation considerably simpler than if we
had to discuss Ign in terms of code lengths. We therefore keep the presentation-
ally simpler [lgn] for the current section and the more robust Ign for the actual
simulations.
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Symbol Code Symbol Code

#¢ (feature) 0000 cons 0110

#, (bundle) 0001 voice 0111

#,. (rule component) 0010 velar 1000

+ 0011 back 1001
- 0100
0101

Using the conversion table in Table 2, we can encode the phono-
logical rule of vowel harmony (in (10) above) by converting each el-
ement in the string representation in (10b) into bits according to Ta-
ble 2 and concatenating the codes. To ensure unique readability, we
use delimiters to mark the end of the description of features within a
feature bundle (# £)s feature bundles within the left and right contexts
of a rule (#}), and the rule’s components (#,.; in terms of the notation
in Figure 2, an occurrence of #,. occurs after each of A, B, X, Y, and
optional?). The following is the result, and its length is 73 bits:

(11) Vowel harmony rule (bit representation):

0100011000100100100100100010001101100101 0001
N N e e e N N e N~

- cons #, — bak #. #. + coms ok  #,

010001100000010010010010_1 0010
N N N
- cons  #, —  back #, 1 #re

A phonological rule system is a sequence of phonological rules.
Since the encoding described above allows us to determine from the
bit representation where each rule ends, we can specify a phonological
rule system by concatenating the encodings of the individual rules
while maintaining unique readability with no further delimiters. The
ordering of the rules is the order in which they are specified, from left
to right. At the end of the entire rule system another #,, is added.

Lexicon

The lexicon contains the UR of each morpheme. Since morphemes
combine selectively and in specific orders, some information about
morpheme combinations must be encoded. We encode this informa-
tion using Hidden Markov Models (HMMs), where morphemes are
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listed in the emission table for specific states, and the possible combi-
nations are defined by state transitions. A simple example is provided

in Figure 3.
Figure 3: dog
An HMM representation kat

z
of a lexicon
qQ ql

The HMM in Figure 3 defines a lexicon with two kinds of mor-
phemes: the stems /dog/ and /kat/, and the optional suffix /z/. As
with rules, description length is not calculated directly for the stan-
dard, graphical notation of the HMM but rather for a bit-string form.
As before, we start with an intermediate string representation for the
HMM, as presented in Figure 4 (derived from the concatenation of the
string representations for the different states, as listed in Table 3; the
delimiter #; marks the end of the list of outgoing edges from a state
and #,, marks the end of each emitted word; another #,, is added at
the end of each state). Within the simplified representational frame-
work described earlier, we convert the string to a bit-string using a
conversion table, as in Table 4. As before, all choices at a given point
are uniform, with the same code length for all possible selections at
that point ([1gn] if there are n possible choices). As discussed above,
the actual simulations presented in Section 4 use lgn rather than [Ign]
as the code length.

. Tabl.e 3 State Encoding string
String representations
of HMM states do Qoq1#s7#.
q1 Ch‘lz‘lf #Sdog#wkat#w#w
q2 qzqf #SZ#W#W
Figure 4: Qod1#s#,#,q1924s #sdog#  Kat#,, #,,q.qy #s2#,#,,

String representation
of an HMM
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State Code Segment Code Table 4:_
# 000 7 0000 Conversion table for HMM
do 001 a 0001
ef) 010 k 0010
qs 011 d 0011
qs 100
Data given the grammar 3.2.3

Turning to the encoding of the data given the grammar, D : G, recall
that the generation of a surface form involves concatenating several
morphemes in a specific order and applying a sequence of phonolog-
ical rules. Given the grammar as described above, specifying a sur-
face form will therefore involve: (a) specifying the sequence of mor-
phemes (as a sequence of choices within the lexicon, repeatedly stat-
ing the code for a morpheme according to the table in the current
state followed by the code to make the transition to the next state);
and (b) specifying the code for each application of an optional rule.
Note that obligatory rules do not require any statement to make them
apply.

Given a surface form, we need to determine the best way to de-
rive it from the grammar in terms of code length. A naive approach
to this parsing task would be to try all the ways to generate a surface
form from the grammar. Even with simple grammars, however, this
approach can be unfeasible. Instead, we compile the lexicon and the
rules into a weighted finite-state transducer (FST) that allows us to ob-
tain the best derivation using dynamic programming. The compilation
of the rules relies on Kaplan and Kay (1994), and the FST is created
by combining the rules with the HMM representing the lexicon using
transducer composition.

Let us illustrate the encoding of best derivations in the case of
the form [k"ats] — actually, of the simpler [kets] — using the FSTs for
two simple grammars. First, consider the FST in Figure 5, which cor-
responds to a grammar with the lexicon in Figure 6 and no phonolog-
ical rules. Using this FST, encoding the word [k"aets]/[kaets] requires
16 bits. The initial transition from g, to g, is deterministic and costs
zero bits. After that, each of the four segments costs four bits: three
bits to specify the segment itself (since there are eight outgoing edges
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Figure 5:
Naive FST

Figure 6:
Lexicon corresponding
to the naive FST

Figure 7:
Encoding of a surface form
using the naive FST

Table 5:
. State q,
Conversion table -
for naive FST Arc Code
(—,(h) €

Ezer Rasin et al.

o=

a,o,dtgkzs

100 0 000 O 010 1 110 _1
N S N

k =91 a g¢—q¢ t @—q s x—(q3

State q; State q,
Arc Code Arc Code
(a,q2) 000 (=4q1) 0
(0,q,) 001 (-93) 1
(t.g;) 010
(dgy) 011

from q;) followed by one bit to specify the transition from g, (loop
back to q; or proceed to g3). The encoding, using the conversion table

in Table 5, is in Figure 7.13

13 Specifying [k"ats] requires handling the aspiration of the initial seg-
ment. Since the relevant rule is obligatory, the same number of bits is required
as for [keets], though the FST is slightly more complex.
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Figure 8: A more complex FST

0 O Figure 9:

T1>0s Ge—0s Encoding of a surface form using the more complex FST

Consider now the more complex FST in Figure 8, which corre-
sponds to a grammar with the lexicon in Figure 3 and the English
voicing assimilation rule. This FST corresponds to a more restrictive
grammar: differently from the simpler FST in Figure 5, the present
FST can only generate a handful of surface forms. Consequently,
the present FST offers a shorter D : G. Specifically, since specifying
[K"eets]/[keets] requires making only two choices in the FST, both
of them binary, it allows us to encode the relevant string using only
2 bits, as in Figure 9.

Search 3.3

Above we saw how encoding length, |G| + |D : G|, is derived for any
specific hypothesis G. In order to use it for learning, the learner can
search through the space of possible hypotheses provided by UG and
look for a hypothesis that minimizes encoding length. We do not wish
to make any claims about the search that the human learner might
perform: our only claim in this paper concerns the MDL evaluation
metric as a promising guide in comparing hypotheses. However, in
order to show how this metric can guide the learner not just in the
minimal comparisons discussed above but also when the learner faces
a large space of possible hypotheses, we must combine the metric with
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some search procedure. Since the hypothesis space is big — infinitely
so in principle — an exhaustive search is out of the question, and a
less naive option must be used. For concreteness, we adopt a genetic
algorithm (GA), a general strategy that supports searching through
complicated spaces that involve multiple local optima (Holland 1975).

The search starts with a random population of hypotheses that are
generated by randomly selecting a lexicon and a set of ordered rules
for each hypothesis. Individual hypotheses are selected for the next
generation based on their fitness. The fitness of a hypothesis G equals
|G|+|D: G|, the encoding length derived for it. Once a set of hypotheses
is selected for the next generation, each pair of hypotheses is crossed-
over to produce two offspring which replace their parents, and each
offspring undergoes a random mutation to either its lexicon or its rule
set. The simulation ends after a specified number of generations. The
fittest hypothesis in the last generation is reported below as the final
grammar. '

SIMULATIONS

The present section provides several simulations in which the MDL
learner described in Section 3 is faced with unanalyzed data exhibit-
ing various linguistically-relevant patterns.'®> We are not able to test
the learner on real-life corpora at this point: both the size of the rel-
evant part of the search space and the time it takes to parse each hy-
pothesis during the search grow rapidly with the size and complexity
of the corpus. Instead, we provide a proof-of-concept demonstration,
using small datasets generated by artificial grammars that incorporate
phonologically interesting dependencies. We return to this matter in
Section 6. To simulate a larger corpus, we multiply |D : G| by 10 in
the simulations reported below (the effect is similar to presenting the
learner with each word 10 times). The one exception to the multiplica-
tion of |D : G| by 10 is the simulations in Section 4.1 for which we use

14 For a detailed discussion of the search procedure see Lan (2018).
15 The code for the simulations is available at
https://github.com/taucompling/morphophonology_spe.
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different multipliers, as discussed below. Also with the exception of
Section 4.1, each simulation allowed for between 1 and 5 states in the
HMM, between 0 and 5 phonological rules, and between 0 and 2 fea-
ture bundles in both the left context and the right context of each rule.

Section 4.1 illustrates our learner’s acquisition of optionality, us-
ing a dataset based on the case of optional French L-deletion discussed
above. Section 4.2 uses a dataset based on /-z/-affixation in English
to illustrate the joint acquisition of affixation and phonological pro-
cesses. Section 4.3 extends the results of Section 4.2 by showing how
the learner can acquire two rules and their ordering in the case of
transparent rule interaction. Section 4.3 modifies the English-based
dataset to one that involves counterbleeding opacity and shows that
the MDL learner succeeds in this case as well. Section 4.5 shows that
the MDL learner succeeds on a case of counterfeeding opacity modeled
after the interaction of two processes in Catalan.

Optionality

The first dataset shows a pattern modeled after French L-deletion
(Dell, 1981) and is designed to test the learner on the problem of re-
stricted optionality. As discussed in Section 3.1, the challenge for the
learner is to strike the right balance between economy and restrictive-
ness. The learner needs to generalize beyond the data and conclude
that for each pair like [tab]—-[tabl] there is a single UR, and that a rule
of L-deletion optionally applies. But the learner must not overgen-
eralize and should restrict L-deletion to only apply after obstruents,
despite the added complexity of specifying the restricted environment
in the description of the rule.

The data presented to the learner in the present simulation con-
sisted of 91 words, including 33 collapsible pairs (since the task in
our simulations is the acquisition of a grammar from distributional
evidence alone, from the learner’s perspective the data are an unstruc-
tured sequence of surface forms: the learner does not know that surface
forms like [tab] and [tabl] are related in any way). A sample of the
data is given in (12).

(12) tab, tabl, arb, arbr, kapab, kapabl, parl, partir, final, aktif, ...
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(RULES: R, : [+liquid] — #/[—son]__(optional)
LEX:
Gfinal = 1 @ @
List of words
\ List of words = tabl, arbr, kapabl, parl, partir, final, aktif,...

Description length: |Gg,q + |D: Gangl = 29,100.4 4+ 30,153.8 = 59,254.3

Figure 10: Final grammar for the French optionality simulation. The grammar in-
cludes the restricted L-deletion rule and forms like /tabl/ without their L-deleted
counterparts (like /tab/). Here and below all scores are rounded to the first dec-
imal place

The parameters for the present simulation were different from
those for the other simulations reported in this paper (and mentioned
above). In the present simulation, the encoding length of the data
given the grammar was multiplied by 50, and the encoding length of
the HMM was multiplied by 20. The simulation also allowed only one
state in the HMM, between 0 and 2 phonological rules, and up to one
feature vector in the left context and in the right context of each rule.
We tried running the simulation also with the usual parameters, but
the search did not converge. At present, we are not sure whether this
is because the search was difficult in this case or because of something
more significant.

The learner induced the correct optional rule and converged on
the target lexicon (Figure 10). Compared to the final (correct) gram-
mar, the over-generating hypothesis has a shorter grammar but a
longer D:G, leading to an overall longer description:

(13) a. Correct Hypothesis:
* R, : [+liquid] — 0/[—son]__ (optional)
 Description length:
|G|+ |D:G| =29,100.4 + 30,153.8 = 59,254.3
b. Over-generating Hypothesis:
* R, :[+liquid] — @/ _ (optional)
+ Description length:
|G|+ |D:G| =29,092.9 + 32,853.8 = 61,946.7
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In Section 3.1 we discussed the undergeneralization problem for
restrictiveness-only learning principles like the subset principle. We
mentioned a scenario in which a learner has heard a surface form such
as [sabl] but, accidentally, has not yet heard its L-elided variant [sab].
We noted that, while we would expect the human learner to generalize
and learn L-deletion in the face of a single accidental gap, the subset
principle predicts that L-deletion would be avoided. The MDL princi-
ple, on the other hand, predicts generalization. We ran another simu-
lation of French using a variant of the corpus in (12) in which [sabl]
was added without its L-elided variant [sab]. As expected, the learner
generalized correctly and converged on the hypothesis in Figure 11
which includes the L-deletion rule and a variant of the lexicon that
also contains /sabl/.

RULES: R, : [+liquid] — 0/[—son]__(optional)
LEX:
Gﬁnal =3 » Q
List of words
\ List of words = sabl, tabl, arbr, kapabl, parl, partir, final, aktif, . . .

Description length: |Ggng| + |D : Ggng| = 29,517.5 4+ 30,610.1 = 60,127.6

Figure 11: Final grammar for a variant of the French-optionality simulation with
an occurrence of [sabl] in the data but no occurrences of [sab]. The grammar
includes the L-deletion rule which can generate the unattested [sab] as an output
of /sabl/

Joint learning of morphology and phonology 4.2

Our next simulation demonstrates the learner’s ability to perform joint
learning of morphology and a single phonological rule. Other works
in the literature that perform joint learning of this kind include Narad-
owsky and Goldwater (2009) and (in a framework of constraint-based
phonology) Rasin and Katzir (2016). After establishing this baseline,
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we will proceed, in the following sections, to the joint learning of mor-
phology and rule interaction, a task that, as discussed in Section 5, has
not been accomplished in previous work. In the present simulation, the
learner’s tasks are to decompose the unanalyzed surface forms into a
lexicon of underlying morphemes and to learn the relevant phonolog-
ical rule.

Our example is modeled after English voicing assimilation where,
as discussed in Section 1, the suffix /z/ becomes voiceless following a
voiceless consonant. The learner was presented with 250 words gener-
ated by creating all combinations of 25 verbal stems with 10 suffixes
(including the null suffix) and applying voicing assimilation.® A sam-
ple of the data is provided in (14).

stem\suffix ) -Z -ing -er
rent rent rents renting renter
14 kontrol | kontrol kontrolz kontroling kontroler
glu glu gluz gluing gluer

The simulation converged on the grammar in Figure 12, which
contains the correct rule and segmented lexicon. Given this grammar,
generating a surface form requires first choosing a stem (out of 25
stems, at a cost of 1g 25 bits), then choosing a suffix (out of 10 suffixes,
at a cost of 1g10 bits), which makes a total of 1g25 +1g10 ~ 7.96
bits for encoding each surface form. For comparison, consider the
minimally-different alternative hypothesis in (15) that fails to learn
the voicing-assimilation rule and stores both -z and -s as suffixes with-
out collapsing them into a single UR. The hypothesis in (15) has a
slightly smaller |G|: it stores an additional suffix in the lexicon (-s) but
saves some space by omitting the rule. On the other hand, (15) over-
generates. Any stem can be suffixed by either -z or -s regardless of
the voicing of its final consonant. Thus, for example, both [rents] and
[rentz] can be generated from the stem /rent/. This over-generation

16 When attached to verbs, as in our simulation, the suffix /z/ marks the 3rd
person singular in present tense. Since at present we do not model part-of-speech
categories, our presentation of voicing assimilation will not distinguish this suffix
from the nominal plural marker /z/.
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RULES: R; :[+strident] — [—voice]/[—voice]
LEX:
Gﬁnal = {
List of suffixes
List of stems
List of stems = rent, klaimb, glu, komit, straik, drim, kontrol, ...
\ List of suffixes = €, z,ing, er, al, abl, ment, i,...

Description length: |Ggng| + |D : Gpngl = 837.1 4+ 19,914.5 = 20,751.6

Figure 12: Final grammar for the joint learning simulation. The grammar includes
the voicing assimilation rule and a segmented lexicon with the UR /-z/ from
which both surface [-z] and [-s] can be derived

translates into a larger |D : G|: with the additional suffix, encoding any
surface form given (15) now requires choosing a suffix out of 11 suf-
fixes, so the total cost per surface form is 1g25+1g 11 ~ 8.1 bits. Com-
pared to the target hypothesis in Figure 12, the added cost of encoding
each surface form given (15) is small (~ 0.14 bits), but it accumulates
over the entire corpus and ends up outweighing the slight advantage
that (15) has in terms of |G|. Overall, then, the target hypothesis in
Figure 12 wins due to a smaller combined |G|+ |D: G|.

(15) Over-generating Hypothesis:
+ Rules: §

+ List of suffixes = z,s,...

 Description length: |G| + |D : G| = 804.4 + 20,258.2 =
21,062.6

In the simplified setting we have considered here, the corpus in-
cludes all combinations of 25 stems and 10 suffixes (a total of 250
words). This means, for example, that a hypothesis that simply mem-
orizes the data (without performing any segmentation or learning any
rules) would be as successful as the target hypothesis in terms of tight-
ness of fit to the data, as both hypotheses generate precisely the same
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set of forms. In terms of |D: G|, encoding each surface form given the
memorizing hypothesis would require choosing one out of 250 words
in the lexicon at a cost of 1g 250 bits. Since 1g250 = 1g 25 +1g 10, this
cost is identical to the cost given the target hypothesis. Despite the tie
in the value for |D : G|, the target hypothesis wins due to its strictly
smaller |G|. In a more realistic setting, the corpus will typically con-
tain gaps, which would give the memorizing hypothesis an advantage
in terms of |D : G|. For example, if five stem + suffix combinations
(e.g., [kontrol-er]) are missing from the corpus, encoding a surface
form given the memorizing hypothesis would cost 1g245 bits, com-
pared to an unchanged cost of 1g 250 for the target hypothesis (which
can generate the five unattested combinations). As the data D grows,
this wastefulness of the target hypothesis in terms of |D : G| would
accumulate and at some point outweigh the savings in the lexicon ob-
tained by segmenting D. To estimate the effect of an increase in D,
we created a variant of the data in (14) by omitting five words chosen
at random, and we calculated different values for |G| + |D : G| while
varying the multiplier for |D : G|. We found that when the multiplier
for |D: G| exceeds 1,039, the target hypothesis loses to the memoriz-
ing hypothesis in terms of the combined |G| + |D : G|. We re-ran the
simulation several times with the gapped corpus using each of the fol-
lowing multipliers for |D : G|: 10, 100, 1,000, 10,000, and 100,000.
The simulation converged on the target hypothesis in Figure 12 in all
cases. At least for the cases of the multipliers 10,000 and 100,000,
this means that the simulation converged on a sub-optimal hypothe-
sis. Since this is an accident of the search procedure, whose modeling
is not our focus in this paper (as mentioned in Section 3.3), we leave
attempts to optimize the results with larger multipliers to a separate
occasion.

Rule ordering

Rule-based phonology accounts for the interaction of phonological
processes through rule ordering. In English, as we have seen, voic-
ing assimilation devoices the suffix /-z/ when preceded by a voiceless
obstruent. Epenthesis inserts the vowel [1] between two sibilants (as
in [gleesiz] ,‘glasses’). To derive forms such as [gleesiz], where voicing
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assimilation does not apply and the suffix remains voiced, epenthe-
sis is ordered before assimilation. When epenthesis applies to the UR
/glees-z/, it bleeds assimilation by disrupting the adjacency between
the suffix and the preceding consonant, rendering assimilation inap-
plicable. The opposite ordering would have derived the incorrect form
*[gleesis], as demonstrated in (16):

(16) a. Good: epenthesis before assimilation

/gles-z/
Epenthesis glaesiz
Assimilation -
[gleesiz]
b. Bad: assimilation before epenthesis
/glees-z/
Assimilation glaess
Epenthesis gleests
*[gleesis]

Our next dataset was generated by an artificial grammar modeled
after the interaction of voicing assimilation and epenthesis in English.
The learner was presented with 250 words generated by creating the
same combinations of stems and suffixes as in the previous section
and applying epenthesis (17a) and voicing assimilation (17b), in this
order. A sample of the data is provided in (18). The learner converged
on the expected lexicon and on the two rules — epenthesis (R;) and
assimilation (R,) — and their correct ordering (Figure 13).

(17) Rules

a. Rule 1: [i]-epenthesis between stridents

b. Rule 2: Progressive assimilation with [—voice] spreading
to an adjacent segment

stem\suffix ] -z -ing -er
rent rent rents renting renter
(18) klaimb klaimb klaimbz klaimbing klaimber
kros kros krosiz krosing kroser
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RULES: R, :0 — [+high, —back]/[+strident] __ [+strident]

R, : [+strident] — [—voice]/[—voice]

LEX:

List of suffixes

List of stems

List of stems = rent, klaimb, glu, komit, straik, drim, kontrol, . ..

List of suffixes = €, z,ing, er, al, abl, ment, i, ...

Description length: |Ggug| + |D : Gppgl = 894.1 4+ 19,914.5 = 20,808.6

Figure 13: Final grammar for the rule-ordering simulation. The grammar includes
epenthesis and voicing assimilation, in this order, and a segmented lexicon

Counterbleeding opacity

The term opacity is used to describe rules whose effect is obscured
on the surface, often because of an interaction with another rule
(Kiparsky 1971, Bakovi¢ 2011). One type of opacity called coun-
terbleeding in the literature results when a rule R, removes the condi-
tions for the application of another rule R; which has applied earlier
in the derivation. R, is opaque since its environment of application is
missing on the surface.

Our next dataset was designed to test the learner on the problem
of counterbleeding opacity. We used two rules modeled after English
epenthesis and voicing assimilation and changed the order such that
assimilation was ordered first:

(19) Rules

a. Rule 1: Progressive assimilation with [—voice] spreading
to an adjacent segment

b. Rule 2: [i]-epenthesis between stridents

The result is that feature spreading takes place even between
segments that are separated by an epenthetic vowel on the surface.
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Examples of natural languages that reportedly show a similar interac-
tion between feature spreading and epenthesis are some varieties of
English and Armenian, as reported in Vaux (2016), and Iraqi Arabic,
as reported in Kiparsky (2000, citing Erwin, 1963).

As shown in (20), the opposite rule ordering would lead to the
wrong result. Given the correct order, epenthesis applies after assimi-
lation, rendering assimilation opaque: the first consonant of the suffix
undergoes assimilation but is preceded by the epenthetic vowel on the
surface.

(20) Voicing assimilation crucially precedes epenthesis

a. Good: assimilation before epenthesis

/glees-z/
Assimilation gleess
Epenthesis gleests
[gleesis]
b. Bad: epenthesis before assimilation
/glees-z/
Epenthesis glaesiz
Assimilation -
*[glaesiz]

For this simulation, the dataset was generated by taking the same
combinations of 25 stems and 10 suffixes as before and applying voic-
ing assimilation and epenthesis, in this order. A sample of the data is
provided in (21). The learner converged on the expected lexicon and
on the two rules — assimilation (R;) and epenthesis (R,) — and their
correct ordering (Figure 14).

stem\suffix 0 -z -ing -er
rent rent rents renting renter
(21) kontrol | kontrol kontrolz kontroling kontroler
kros kros krosis krosing kroser
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RULES: R, :[+strident] — [—voice]/[—voice]

R, : 0 — [+high,—back]/[+strident] __ [+strident]

LEX:

List of suffixes

List of stems

List of stems = rent, klaimb, glu, komit, straik, drim, kontrol, . ..

List of suffixes = €, z,ing, er, al, abl, ment, i, ...

Description length: |Ggug| + |D : Gppgl = 894.1 4+ 19,914.5 = 20,808.6

Figure 14: Final grammar for the counterbleeding opacity simulation. The gram-
mar includes voicing assimilation and epenthesis, in this order, and a segmented
lexicon

Counterfeeding opacity

The type of opacity called counterfeeding in the literature results when
a rule R, creates the conditions for the application of another rule
R, which has applied earlier in the derivation. R; is opaque since it
does not apply even though its conditions of application are met on
the surface. In Catalan (Mascaré 1976), for example (and simplify-
ing), nasals are deleted word-finally (see (22a)) and a rule of cluster
simplification deletes a stop word-finally after a nasal (see (22b)) and
creates the environment for final-nasal deletion, which does not apply
on the surface in (22b).

(22) a. kuzi ~ kuzin-s ‘cousin.SG ~ cousin.PL’
b. kolén ~ kolént-o  ‘hot.MASC ~ hot.FEM’

Our next dataset was designed to test the learner on the problem
of counterfeeding opacity. We used two rules modeled after final-nasal
deletion and cluster simplification in Catalan. We generated 65 words
by creating all combinations of 13 stems and 5 suffixes (all are actual
Catalan morphemes) and applying final-nasal deletion and cluster sim-
plification, in this order (23). A sample of the data is given in (24).
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RULES: R;:[+nasdll—0/  #
R, :[—cont] = 0/[+nasal] __ #
LEX:

Gﬁnal =3 plan a
kuzin
silen
kaiman
katalan
kalent
blank
plasa
kasa
kamp
metal
kap
mal

\
Description length: |Ggpg| + |D : Gpngl = 1093.9 4+ 14,563.1 = 15,657.1
Figure 15: Final grammar for the counterfeeding opacity simulation. The gram-

mar includes final-nasal deletion and cluster simplification (in this order) and a
segmented lexicon

(23) Rules
a. Rule 1: Delete a nasal word-finally
b. Rule 2: Delete a word-final stop following a nasal

stem\suffix 0 -s -et
24) kalent kalen kalents kalentet
kuzin kuzi kuzins  kuzinet

The learner converged on a segmented lexicon and on the two
rules — final-nasal deletion (R;) and cluster simplification (R,) — and
their correct ordering, as in Figure 15. There was one difference be-
tween the final result and the grammar used to generate the corpus.
The rule of cluster simplification induced by the learner deletes stops
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in a broader environment: after any non-continuant consonant rather
than only after nasals. Since all word-final consonant-stop clusters in
our corpus were nasal-stop clusters, multiple left contexts for clus-
ter simplification were consistent with the data, including left con-
texts that specify nasal consonants ([+nasal]), any non-continuants
([—cont]), or any consonants ([+cons]). The statements of these three
left contexts are equally simple under our current representations, so
the learner is expected to choose between them arbitrarily given this
corpus.

EXPLANATORY ADEQUACY
AND PREVIOUS WORK ON LEARNING
IN PHONOLOGY

We presented a learner that uses the MDL evaluation metric, which
minimizes |G| + |D : G|, to jointly learn morphology and phonology
within a rule-based framework. This learner is fully distributional,
working from unanalyzed surface forms alone — without access to
paradigms or negative evidence — to obtain the URs in the lexicon, the
possible morphological combinations, and the ordered phonological
rules. It acquires both allophonic rules and alternations and handles
both optionality and rule interaction, including instances of opacity.
By accomplishing all of these tasks, the learner goes beyond previous
work in terms of its ability to address the challenge of explanatory
adequacy discussed in Section 2: arriving at a descriptively-adequate
grammar based on primary linguistic data.

In this section, we review prominent proposals from past work on
learning in phonology and show that they have not gone as far in terms
of achieving explanatory adequacy. This is because previous learners
either do not work with what we take to be the primary linguistic
data (e.g., by assuming that the child is given direct information about
URs) or because they do not arrive at a full phonological grammar
(e.g., by not acquiring opacity). To make the comparison easier, we
will focus on five components of the learning challenge: learning from
distributional evidence alone, learning segmentation simultaneously
with phonology, learning opacity, learning optionality, and learning
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Table 6: Some prominent proposals from past work on learning in phonology and
their ability to address five learning challenges

theory | Ditibuional - Simianeons oy opionaty A
1) Constraint reranking b4 X ? v X
2) Reranking + Free Ride b4 X ? v b4
3) MaxEnt + OT X b 4 v ? ?
4) Dist. alt. learner v X X X b 4
5) MaxLikelihood + OT * (see discussion below)
6) Lexicon Entropy * (see discussion below)

abstract URs. Each of the learners we discuss fails on at least one of
those components, as summarized in Table 6 (and as discussed in the
rest of this section).

We first consider constraint reranking algorithms (row 1 in Ta-
ble 6), a family of learning algorithms for OT that include the pro-
posals by Tesar (1995, 2014), Tesar and Smolensky (1998), Boersma
and Hayes (2001), Prince and Tesar (2004), and much related work.
These proposals assume that URs are given to the learner in advance
or that the learner is exposed to surface forms already segmented into
morphemes, along with the information of which surface morphemes
come from the same UR. Therefore, these works do not address the
challenge of learning from distributional evidence and the challenge
of learning segmentation simultaneously with the phonology.

Another shortcoming of the constraint-reranking proposals just
mentioned is that they assume that, in the absence of direct evidence
from alternations, URs are identical to their corresponding surface
forms, Hence, they do not address the challenge of learning abstract
URs. An attempt to address this problem was made by McCarthy
(2005), who proposed to extend constraint reranking algorithms with
the Free Ride Principle, a learning principle that aims to deal with
some cases of abstract URs (row 2 in Table 6). This principle allows
using information from alternations to infer non-identical URs for
non-alternating forms. While addressing some cases of abstract-UR
learning, McCarthy’s algorithm does not offer constraint reranking
algorithms a handle on cases of abstract URs where there is no sup-
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porting evidence from alternations at all, as in Alderete and Tesar’s
(2002) stress-epenthesis example. See Rasin and Katzir 2018 for fur-
ther discussion.

Another family of learners in the OT literature are the so-called
MaxEnt learners (Goldwater and Johnson 2004, Nazarov and Pater
2017, and O’Hara 2017, among others), which rely on the prin-
ciple of Maximum Entropy as an evaluation metric (row 3 in Ta-
ble 6). These learners receive morphologically-segmented surface
forms, as well as information about which surface morphemes come
from the same UR. Hence, like constraint reranking algorithms, they
do not address the challenges of learning from distributional evi-
dence alone and learning segmentation simultaneously with the pho-
nology.

Similarly to the present proposal, the distributional alternation
learner of Calamaro and Jarosz (2015) learns phonological rules —
both allophony and alternations - in a fully distributional way (row 4
in Table 6). Since their learner is closer to our goals than the previous
learners are, we discuss it here in more detail. The proposal extends
the allophonic learner of Peperkamp et al. (2006). Peperkamp et al. de-
tect maximally dissimilar contexts as hints for allophonic distribution.
For example, [&] and [&] are allophones in English, and the contexts
that they can appear in are very different: [&] can only appear before
a nasal consonant, while [&] can only appear elsewhere. Peperkamp
et al. provide a statistical score that identifies such dissimilarities in
the contexts in which two segments can appear; when two segments
have highly dissimilar contexts, they are considered to be potential
allophones.” Calamaro and Jarosz (2015) look to extend Peperkamp
et al.’s (2006) model beyond allophony, in order to account for neu-
tralization processes. The challenge, given Peperkamp et al.’s dissim-

17 This raises well-known issues with phonemics, such as the fact that,
in English, [h] and [p] are in complementary distribution but are not
phonemically related. And indeed, Peperkamp et al. encounter many false
positives (a problem that is exacerbated by the fact that their model
does not require full complementary distribution). Echoing early struc-
turalist proposals, they propose that complementarity should be combined
with requirements of phonological similarity. As discussed by Chomsky
(1964, p. 85), such requirements do not resolve the problem for phonemic
analysis.
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ilarity score, is that neutralization involves segments whose possible
contexts may have a significant overlap. Consider, for example, a lan-
guage like Dutch that has final devoicing. In such a language, [t] and
[d] might contrast everywhere except for the context  #; a global
score of contextual dissimilarity will consequently treat [t] and [d] as
quite similar and fail to relate them to one another. In order to over-
come this challenge, Calamaro and Jarosz consider contextualized dis-
tributional dissimilarity: for a given context X Y and two potential
alternants A and B, they compute a dissimilarity score for the triple
<X _ Y, A, B> by comparing the probability of the context X Y
given A and given B. These dissimilarity scores are summed for the
context and for the featural change over all pairs A and B that have
that change, thus allowing for generalization in terms of the change.
A further extension introduces generalization over contexts (subject
to two special conditions). In terms of comparison with the present
proposal, Calamaro and Jarosz’s model faces two challenges that, as
far as we can tell, are hard to address within the framework of distri-
bution comparison that they adopt. First, their model does not handle
rule orderings. This gap is particularly difficult to bridge in the case of
opaque rule interactions, where surface distributions obscure the cor-
rect context for rule application. The second challenge to Calamaro
and Jarosz’s model concerns optionality. When a rule is optional, the
distribution of A and B can be similar in all contexts, so a dissimilarity
detector will fail to identify the rule.

Other learners close to our goals include Jarosz’s (2006, 2009)
Maximum Likelihood OT learner and Riggle’s (2006) Lexicon Entropy
OT learner (rows 5 and 6 in Table 6). Both learners rely on evalua-
tion metrics rather than on a procedural approach to acquire an OT
ranking and URs. Differently from MDL, however, these evaluation
metrics do not balance economy and restrictiveness and thus lead to
overgeneralization and undergeneralization problems of the kinds dis-
cussed earlier in Section 3. These problems for Maximum Likelihood
and Lexicon Entropy have been discussed in detail in Rasin and Katzir
2016.

Of the other learners proposed in the literature, our learner is clos-
est to those proposed by Goldwater and Johnson (2004), Goldsmith
(2006), Naradowsky and Goldwater (2009), and Rasin and Katzir
(2016), all of which are fully distributional phonological learners that
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rely on the same kind of balanced evaluation metric as the present
paper. The first three learn rule-based morpho-phonology, while the
fourth learns constraint-based phonology.'® Goldwater and Johnson’s
(2004) algorithm starts with a morphological analysis based on Gold-
smith’s (2001) MDL-based learner and then searches for phonological
rules that lead to an improved grammar, where the improvement crite-
rion is Bayesian. Goldsmith’s (2006) learner follows a similar path but
uses MDL also for the task of phonological learning. Naradowsky and
Goldwater’s (2009) learner is a variant of Goldwater and Johnson’s
(2004) learner with joint learning of morphology and phonology, thus
addressing (similarly to the present learner) the interdependency of
phonology and morphology. As originally presented, all three learn-
ers can acquire rules only at morpheme boundaries and generalize
only with respect to X Y and not with respect to A and B.'° They
are also aimed at obligatory rules and do not handle rule interaction.
Rasin and Katzir (2016) propose an MDL-based learner for Optimality
Theory that can learn the URs, constraint ranking, and also the con-
straints themselves, from distributional evidence alone. That learner
has not yet been shown to acquire opacity. One way of interpret-
ing our simulations above is as showing that the limitations of all
these balanced distributional learners are not essential within this
framework and that MDL can support the acquisition of allophony,
generalizations over both the context and the change (in the case of
rule-based phonology), optionality, and opacity.

DISCUSSION

We argued that the MDL metric can adequately guide the child in
choosing between competing hypotheses while learning phonology.

18 Naradowsky and Goldwater (2009) target orthographic rules rather than
phonology, but the difference is immaterial. Other balanced learners proposed
in the literature, which are not fully distributional, include Cotterell et al. (2015)
and Ellis and O’Donnell (2017).

19 By limiting the kinds of rule that can be learned, these learners are similar to
the procedural rule-based learners of Johnson (1984), Albright and Hayes (2002,
2003), and Simpson (2010).
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We illustrated this with an implemented MDL-based learner for the
unsupervised learning of rule-based morpho-phonological grammars.
The generality of the MDL metric has allowed the learner to simul-
taneously perform morphological segmentation and acquire complete
grammars, including URs and ordered rules, and including transparent
and opaque rule interactions, as well as optional rules. By doing that,
the learner is the first learner we know of that acquires opacity and op-
tionality — basic textbook patterns that any theory of learning will have
to address — from distributional evidence alone.2? More generally, the
learner goes beyond the phonological learning literature — including
both rule-based and constraint-based learners - in its ability to address
the challenge of explanatory adequacy. Previous proposals have not
gone as far because they either rely on richer input data than children
require or do not return a full, descriptively-adequate grammar. In
particular, by learning from distributional evidence alone, the learner
differs from many proposals in the literature on phonological learn-
ing which assume that the learner is given systematic paradigmatic
information, information about URs, or even the URs themselves. The
ability of our learner to acquire opaque rule interactions and optional
rules distinguishes it from other learners that are limited to transpar-
ent process interactions or deterministic processes.

While the present work goes beyond the literature in terms of
the challenge of explanatory adequacy in phonology, the simulation
results we presented use corpora that are smaller than corpora used
by some previous learners. In this respect the present work is in line
with Chomsky’s view (Chomsky 1965, p. 26), which prioritizes the
comparison of learning theories based on their success on explanatory
adequacy rather than on their ability to apply to large datasets:

“Clearly, it would be utopian to expect to achieve explanatory ad-
equacy on a large scale in the present state of linguistics. Never-

20T be clear, the ability of the learner to acquire opacity does not necessar-
ily rely on its use of a rule-based formalism. For example, as noted by Bakovié¢
(2011), rule-based phonology does not necessarily offer a uniform improvement
over Optimality Theory in terms of its account of known opaque patterns. Since
the MDL metric is general, it could in principle support the acquisition of opaque
patterns using a variety of formalisms, as long as these formalisms are capable
of representing these patterns.
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theless, considerations of explanatory adequacy are often critical
for advancing linguistic theory. Gross coverage of a large mass of
data can often be attained by conflicting theories; for precisely
this reason it is not, in itself, an achievement of any particular
theoretical interest or importance.”

Still, an investigation of how well the MDL metric can extend
to larger, more realistic corpora remains an important task that the
present work has not addressed. A central part of this task is a study
of the optimization procedure to see where it adequately navigates
the highly complex search space and where it fails. The present work,
with its focus on the MDL metric rather than the search barely starts
to probe the behavior of the optimization procedure. We have to leave
the examination of this question to future work.

As mentioned in Section 3.1, the simple and very general MDL
metric compares hypotheses in terms of two readily available quan-
tities: the storage space required for the current grammar and the
storage space required for the current grammar’s best parse of the
grammar. It has been argued recently that this approach has cogni-
tive plausibility as a null hypothesis for language learning in humans
and that it offers a reasonable framework for the comparison of dif-
ferent representational choices in terms of predictions about learning
(see Katzir 2014, Katzir et al. 2020, and Rasin and Katzir 2020). From
an empirical perspective, Pycha et al. (2003) have provided evidence
that simplicity plays a central role in the acquisition of phonological
rules. 2! If correct, the present work is a step toward a cognitively plau-
sible learner for rule-based morpho-phonology, and its predictions can
be compared with those of MDL or Bayesian learners for other repre-
sentation choices such as Rasin and Katzir’s (2016) MDL learner for
constraint-based phonology. We leave the investigation of such pre-
dictions for future work.

21 5ee also Moreton and Pater (2012a,b) for simplicity in phonological learn-
ing (though see Moreton et al. 2017 for an argument that phonotactic and concept
learning are guided by something closer to a Maximum Entropy model rather
than by simplicity), and see Goodman et al. (2008) and Orban et al. (2008),
among others, for empirical evidence for balanced learning elsewhere in cog-
nition.
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