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In this paper, we investigate how the prediction paradigm from ma-
chine learning and Natural Language Processing (NLP) can be put to
use in computational historical linguistics. We propose word prediction
as an intermediate task, where the forms of unseen words in some tar-
get language are predicted from the forms of the corresponding words
in a source language. Word prediction allows us to develop algorithms
for phylogenetic tree reconstruction, sound correspondence identifica-
tion and cognate detection, in ways close to attested methods for lin-
guistic reconstruction. We will discuss different factors, such as data
representation and the choice of machine learning model, that have to
be taken into account when applying prediction methods in historical
linguistics. We present our own implementations and evaluate them
on different tasks in historical linguistics.

1INTRODUCTION

How are the languages of the world related and how have they
evolved? This is the central question in one of the oldest linguistic
disciplines: historical linguistics. In this paper, we aim to contribute to
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answering these questions using some of the newest methods: compu-
tational modelling, machine learning and big data.1

Our work can be seen as part of what has been called the quantita-
tive turn in historical linguistics: computational methods have been ap-
plied to automate parts of the workflow of historical linguistics (Jäger
and List 2016), which, in part, has become possible due to the in-
creased availability of digital datasets (the new Cross Linguistic Data
Formats initiative proposes new standards for a unified representation
of cross-linguistic data, Forkel et al. (2018), enabling further expan-
sion and connection of datasets in the coming years).

Such large datasets provide new possibilities, but are at the
same time too large to be processed by human experts. Research in
computational historical linguistics has therefore attempted to auto-
mate several tasks in historical linguistics. Different approaches have
been applied to cognate detection – the task to detect ancestrally re-
lated words (cognates) in different languages – (Inkpen et al. 2005;
List 2012; Rama 2016; Jäger et al. 2017; Dellert 2018), inference of
sound correspondences (Hruschka et al. 2015), protoform reconstruc-
tion (Bouchard-Côté et al. 2013) and phylogenetic tree reconstruction
(Jäger 2015; Chang et al. 2015).

These computational methods have thus opened up many new
research directions, and, arguably, provide better replicability than
manual methods because of the inherent necessity to specify formal
guidelines (Jäger 2019). In recent years, studies in computational his-
torical linguistics have drawn much attention, but also sparked much
controversy. Examples are Gray and Atkinson (2003), which charted
the age of Indo-European languages, and Bouckaert et al. (2012),
which proposed to map the Indo-European homeland to Anatolia.

1.1 The comparative method

The relation between computational methods and more traditional
methods is, however, not always straightforward, and differs in more
dimensions than just mathematical formalization. Some computa-
tional methods stay conceptually closer to the standard methodology

1This paper is based on the first author’s unpublished MSc thesis (Dekker
2018).
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English, German
and Dutch word
forms for the
concept bread

in historical linguistics: the ‘comparative method’ (Clackson 2007).
Linguists applying the comparative method typically make use of a
fixed, basic vocabulary, look at the relevant phonetic forms, and focus
on cognates (words that are ancestrally related). Based on these cog-
nates, they can then identify sound correspondences and, using reg-
ular sound correspondences as criterion for descent, reconstruct the
ancestral tree of a particular language family, distinguishing between
genetic relationships and borrowing.

Although computational methods usually also employ some form
of the comparative method, they mostly focus on what can be called
phenotypic similarity rather than genotypic similarity (Lass 1997; List
2012). Genotypic methods compare languages based on the language-
specific regular sound correspondences that can be established between
the languages. Phenotypic methods compare languages based on the
surface forms of words. When comparing words based on surface sim-
ilarity, it is more difficult to detect the ancestral relatedness of words
which underwent much phonetic change and it is more challenging to
detect borrowings. Figure 1 shows the difference between phenotypic
and genotypic methods schematically.

Genotypic methods are thus preferable to reliably determine an-
cestral relationship. However, many genotypic methods, like the suc-
cessful Bayesian MCMC methods for phylogenetic reconstruction, re-
quire cognate judgments as input. These cognate judgments have to
be performed by human experts, re-introducing human labour, and
therefore limiting the amount of data that can be processed. Alterna-
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tively, cognate judgments can be automatically inferred via cognate
detection methods that are currently developed, but this adds another
step to the reconstruction process, with its own inaccuracies.

1.2 Word prediction

An ideal computational method in historical linguistics would auto-
mate as much of the process as possible, while still staying close to
the comparative method. In this paper, we investigate the usefulness
of word prediction as an intermediate task that may allow us to arrive
at computational methods in historical linguistics. The use of word
prediction in historical linguistics was first proposed in the first au-
thor’s master’s thesis (Dekker 2018) and independently by Ciobanu
and Dinu (2018), followed by recent approaches (List 2019a; Meloni
et al. 2019; Cathcart and Wandl 2020; Cathcart and Rama 2020; Four-
rier and Sagot 2020a). Word prediction is a methodology that enables
the use of surface word forms as data (like phenotypic methods), while
still capturing the genetic signal through sound correspondences (like
genotypic methods), thus allowing for reliable reconstructions of lan-
guage relationship based on large amounts of data.

Word prediction allows us to rephrase the reconstruction of lan-
guage ancestry as a machine learning problem. A machine learning
model is trained on pairs of phonetic word forms (wc,A,wc,B) denoting
the same concept c in two languages A and B. By learning the sound
correspondences between the two languages, the model can then pre-
dict, for a concept d, the unseen word form wd,B, given a word form
wd,A. Based on the training data, the model learns sound correspon-
dences between the two languages. Therefore, the error between the
predicted word and the target word in the test set, for a given source
word, provides a distance between source word and target word which
is informed by sound correspondences. This contrasts with directly
comparing the source and target word – as phenotypic methods do –
which yields distances not informed by sound correspondences.

In the rest of this paper, we investigate what is required to suc-
cessfully apply word prediction in the area of historical linguistics.
Our main research questions are the following:
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1. What are suitable data from historical linguistics and what is a
good representation of input data, in order to be processed by a
machine learning algorithm for the word prediction task?

2. Which machine learning model can be used to perform word pre-
diction? A model should be able to learn the relationship between
consecutive phonemes (sounds) in a word, and the sound corre-
spondences between source and target word.
In the next sections, we will try to answer these questions, where

possible by evaluating multiple alternative solutions. We would like to
provide general lessons on factors enabling the use of word prediction
in historical linguistics. After these sections, we will develop our own
models, based on the answers to the questions we find, and report on
the results on different applications in historical linguistics. We end
the paper with a discussion of related work and some reflections on
the potential and the limitations of word prediction.

2DATA

Our first question is: which data, and in which representation, are suit-
able for word prediction? We will first describe which type of data is
suitable for this task, and then review different encodings to represent
the data.

2.1Datasets

Data frommany linguistic levels can be used to study language change,
including lexical, phonetic, morphological and syntactic data. Using
word forms (in orthographic or phonetic representation) seems suit-
able for the prediction task. There are many training examples (words)
available per language and the prediction algorithm can generalize
over the relations between phonemes. Word forms also have a lower
probability of being borrowed or being similar by chance than syn-
tactic data (Greenhill et al. 2017). The benefit of phonetic word forms
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over orthographic forms is that phonetic forms stay closer to the ac-
tual use of language by speakers. Word forms in orthographic repre-
sentation depend on conventions: the same sound can be described by
different letters in different languages.

Ciobanu and Dinu (2018) evaluate their model on three different
datasets of orthographic forms for multiple Romance languages (Span-
ish, Italian, Portuguese, French, Romanian, Latin). In all datasets, the
word forms have been grouped into cognate sets: this is needed be-
cause the model takes pairs of cognate words as input. The datasets
are taken from Bouchard-Côté et al. (2007) (585 cognate sets), Rein-
heimer Ripeanu (2001) (1102 cognate sets) and Ciobanu and Dinu
(2014) (3218 cognate sets). Meloni et al. (2019) use the Romance cog-
nate dataset from Ciobanu and Dinu (2014) as a basis and augment
it with word forms from Wiktionary, arriving at a total of 8799 cog-
nate sets. The authors perform experiments on both orthographic and
phonetic word forms. The phonetic word forms are acquired by run-
ning a computational transcription library on the orthographic word
forms. Cathcart and Wandl (2020) base their dataset on an etymolog-
ical dictionary by Derksen (2007), and extract Slavic proto-words and
their accompanying (cognate) contemporary words in 13 Slavic lan-
guages, yielding a dataset of 11400 forms. Fourrier and Sagot (2020a)
use phonetic cognate data from Latin, Spanish and Italian, originating
from an etymological database (Fourrier and Sagot 2020b). Fourrier
(2020) applies the same workflow, but uses data from Polish, Czech,
Lithuanian and Italian.

In our own experiments, we use the NorthEuraLex dataset (Dellert
et al. 2019),2 which consists of phonetic word forms for 1016 concepts
in 107 languages in Northern Eurasia. The languages in the dataset be-
long to many language families (among others Uralic, Indo-European,
Turkic and Mongolic), so the number of cognate sets has to be cal-
culated per language family. The size of the dataset is therefore not
directly comparable to the size of datasets in Ciobanu and Dinu (2018)
and Meloni et al. (2019). We use a larger dataset than generally used
in historical linguistics. Usually, only basic vocabulary (e.g. kinship
terms, body parts) is taken into account because this vocabulary is

2Available for download from http://northeuralex.org/. We used the
0.9 release. As of the 0.9.2 release, the dataset contains 30 more languages.
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least prone to borrowing (Campbell 2013, p. 352). However, machine
learning algorithms need a large number of examples to train on and
a meaningful number of examples to evaluate the algorithm. We hope
that increasing the performance of the algorithm by using enough
training examples compensates for the possible performance decrease
caused by borrowing. We use a version of the dataset which is format-
ted in the ASJPcode alphabet (Brown et al. 2008). ASJPcode consists of
41 sound classes, considerably less than the number of IPA phonemes,
reducing the complexity of the prediction problem. For clarity, in this
paper, we converted all ASJP forms to IPA using the pyclts library
(Anderson et al. 2018).3 As ASJP characters represent broader classes
of phonetic features than IPA phonemes, the shown IPA phonemes
may differ from the original phonemes used in the words.

There can be multiple word forms for a concept in one language.
Per language pair, we create word pairs by taking the Cartesian prod-
uct of all alternative word forms for one concept in both languages.
No word pairs are created across concepts. For example, if there are
2 alternative word forms for a concept in language A, and 3 alterna-
tive forms for that concept in language B, this yields a total of 6 word
pairs. We then split the dataset into a training set (80%), development
set (10%) and test set (10%). The training and test set should be sep-
arated, so the model predicts on different data than it learned from.
The development set is used to tune model parameters (see Section 4).

2.2Data representation

To enable a machine learning algorithm to process the phonetic data,
every phoneme has to be encoded as a numerical vector. We will
consider three types of encoding: one-hot, phonetic and embedding
encoding.

Ciobanu and Dinu (2018) do not describe their encoding of the
data. They do however perform a number of pre-processing steps.
First, the word forms of a word pair are aligned using Needleman-
Wunsch alignment (Needleman and Wunsch 1970). Subsequently,
characters in the output word which remain the same as in the input
words, are represented by a special character.

3https://github.com/cldf-clts/pyclts
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2.2.1 One-hot

In one-hot encoding, every phoneme is represented by a vector of length
ncharacters, with a 1 at the position which corresponds to the current
character, and 0 at all other positions. No qualitative information
about the phoneme is stored. Cathcart andWandl (2020) encode every
phoneme of an input word using one-hot encoding, but extends this
with a learned embedding per language. Table 1 gives an example of
a one-hot feature matrix.

Table 1:
Example of feature matrix for one-hot
encoding, for an alphabet consisting
of four phonemes. Every phoneme is
represented by one feature that is
turned on, that feature is unique

for that phoneme

IPA
p 1 0 0 0
b 0 1 0 0
f 0 0 1 0
v 0 0 0 1

2.2.2 Phonetic

In phonetic encoding, a phoneme is encoded as a vector of its phonetic
features (e.g. back, bilabial, voiced), enabling the model to general-
ize observed sound changes across different phonemes. Rama (2016),
using a neural network approach to cognate detection, shows that a
phonetic representation yields better performance than one-hot en-
coding for some datasets. In our model, we use the phonetic feature
matrix for ASJP tokens from Brown et al. (2008), formatted as a bi-
nary feature matrix by Rama (2016). As mentioned, in this paper, we
use IPA to denote the ASJP tokens. Table 2 shows an example of a
phonetic feature matrix.

Table 2:
Example of feature matrix for

phonetic encoding: every phoneme
can have multiple features turned on

IPA Voiced Labial Denta Alveolar · · ·
p 0 1 0 0 · · ·
b 1 1 0 0 · · ·
f 0 1 1 0 · · ·
v 1 1 1 0 · · ·
m 1 1 0 0 · · ·
θ 1 0 1 0 · · ·
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2.2.3Embedding

A third type of encoding that we will consider is the embedding encod-
ing, where a linguistic item is encoded using the distribution of items
appearing in its context. Most well known are word embeddings, which
have successfully been applied in many NLP tasks (e.g., Mikolov et al.
2013; Pennington et al. 2014). The assumption is that “you shall know
a word by the company it keeps” (Firth 1957). If two words have a
similar embedding vector, they usually appear in the same context
and can thus relatively easily be interchanged. But the idea of using
embeddings that reflect the context of a linguistic item can also be ap-
plied analyzing smaller units than the word level. For instance, it has
also succesfully been applied in NLP by introducing character-based
language models (Kim et al. 2016).

In computational historical linguistics, Rama and List (2019) used
skip-grams, which capture the context of a phoneme, to perform fast
cognate detection. Meloni et al. (2019) use an embedding layer in their
neural network, which learns an embedding vector of size 100 for
every phoneme, from the data. The embedding consists of a language-
specific and a language-dependent part. Cathcart and Wandl (2020)
use one-hot encoding for phonemes of the input word, and concatenate
this with a trained embedding per language.

Similarly, we propose to encode a phoneme as a vector of the
phonemes occurring in its context. The same interchangeability of
word embeddings is assumed: if two phoneme vectors are similar, they
appear in a similar context. This corresponds to language-specific rules
in phonotactics (the study of the combination of phonemes), which
specify that a certain class of phonemes (e.g. approximant) can follow
a certain other class (e.g. voiceless fricative). It can be expected that
embeddings of phonemes inside a certain class are more likely to be
similar to each other than to phonemes in other classes. In some re-
spects, the embedding encoding learns the same feature matrix as the
phonetic encoding, but inferred from the data, and with more emphasis
on language-specific phonotactics.

In our experiments, we also use embedding coding, but do not ap-
ply high-dimensional learned embeddings as do Meloni et al. (2019).
Instead, we want to put more emphasis on the direct neighbours
of a phoneme, as most phonotactic rules describe these relations.

[ 303 ]



Peter Dekker, Willem Zuidema

Table 3:
Example of feature matrix
for embedding encoding:

every phoneme is represented
by an array of floating point values,
which correspond to the probabilities

that other phonemes occur
before or after this phoneme.
The values in a row sum to 1

IPA START i LEFT S LEFT p RIGHT · · ·
ə 0.004 0.003 0.001 0.002 · · ·
a 0.024 0.000 0.000 0.003 · · ·
ɐ 0.050 0.002 0.000 0.012 · · ·
b 0.388 0.000 0.000 0.004 · · ·
p 0.152 0.039 0.000 0.000 · · ·

We create language-specific embedding encodings from the whole
NorthEuraLex corpus. For every phoneme, the preceding and follow-
ing phonemes, for all occurrences of the phoneme in the corpus, are
counted. Position is taken into account, i.e., an /a/ appearing before a
certain phoneme is counted separately from an /a/ appearing after a
certain phoneme. Start and end tokens, for phonemes at the start and
end of a word, are also counted. After collecting the counts, the values
are normalized per row, so all the features for a phoneme sum to 1.
Table 3 shows an example of an embedding feature matrix.

2.2.4 Visualization of embedding

Following Meloni et al. (2019), to analyze what representation of the
phonetic space the embedding encoding learns, we performed hier-
archical clustering on embeddings. We computed pairwise euclidean
distances between phonemes for the embedding matrix learned from
the Dutch portion of the NorthEuraLex dataset and for the phonetic
feature matrix from Brown et al. (2008). Hierarchical clustering was
performed on the distance matrices using neighbour joining (Saitou
and Nei 1987). Figure 2 shows the results.

The figure shows that the embedding method groups most vow-
els together, but also adds some consonants to this group, and places
the vowel /ə/ in another group. When looking at the groupings in the
embedding encoding, it seems the embedding encoding mainly rep-
resents phonemes by their place of articulation rather than by their
manner of articulation. /p/ and /m/ are grouped together, both bil-
abial, but one is a stop or fricative, the other a nasal. /l/ and /r/ are
grouped, which are both (apico-)alveolar, but one is an approximant,
the other a trill. Groupings on manner, like the stops /t/ and /d/ in
the phonetic encoding, are less visible in the embedding encoding.
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phoneme embedding
for Dutch and the phonetic
feature matrix from Brown
et al. (2008)
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Looking at the data, it becomes visible why close phonemes like
/d/ and /t/ have more remote embeddings. /d/ occurs in 206 word
forms, /t/ in 402 word forms. The position in the words of the two
phonemes is quite different. The most frequent position for /d/ (30%)
is the first position, in words like: /dɤ̞ktər/ “doctor”, /dɐk/ “roof”
and /dek̞ə/ “blanket”. For /t/, the most frequent position is the 4th
position (34%), in words like: /ɐfstɐnt/ “distance”, /lef̞tait/ “age” and
/hɤ̞xtə/ “height”. This different position of the phonemes in word
forms in the corpus can lead to representations in embedding encoding
which are not close to each other.

2.2.5 Evaluation of input encodings

With the simple one-hot encoding, the time-tested phonetic fea-
ture encoding and the novel embedding encoding, we now have three
different ways to represent linguistic items. How well suited are each
of these encoding styles for the task of word prediction? We evaluate
the three input encodings in combination with two machine learning
models (that will be introduced in Section 3): the encoder-decoder
and the structured perceptron. Table 4 shows the average word pre-
diction distance over two language families, for the different param-
eter settings, on the test set. Although the differences in word predic-
tion distance are small, the embedding encoding tends to work best in
most test cases. For the Germanic language family, one-hot encoding
works slightly better than embedding encoding, but the difference is
minimal.

Table 4:
Evaluation of different data

encodings, on two models, by word
prediction distance (edit distance
between prediction and target)
for two language families: Slavic
and Germanic. The distance is
the mean of the distance of all

language pairs in the family. Lower
distance means better prediction

Method Language family

Model Input
encoding Slavic Germanic

Enc-dec One-hot 0.5582 0.5721
Enc-dec Phonetic 0.5767 0.5853
Enc-dec Embedding 0.5579 0.5710

Struct perc One-hot 0.3436 0.4374

Struct perc Phonetic 0.3465 0.4497
Struct perc Embedding 0.3423 0.4375
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3MACHINE LEARNING MODEL

Our second question is: which machine learning models are suitable
to perform the task of word prediction? We need a model that can
convert sequential input (the source word) to sequential output (the
target word). We would like to apply an algorithm that can model the
sequential dependencies between consecutive phonemes in a word.
We evaluate two of these sequence models, which are both prototyp-
ical for a larger class of models: a simple structured perceptron (prob-
abilistic sequence model) and a more complex RNN encoder-decoder
(deep neural network). Furthermore, we will introduce two baseline
models, to compare performance.

3.1Structured perceptron

We will look at the structured perceptron (Collins 2002; Daume and
Marcu 2006), an example of a probabilistic sequence model, which
among others has been applied to part-of-speech tagging. The struc-
tured perceptron is an extension of a perceptron (one-layer neural net-
work) (Rosenblatt 1958) for performing sequential tasks. In this paper,
we will evaluate this as one of the models to predict words between
languages.

The structured perceptron algorithm is run for I iterations. At
every iteration, all N data points are processed. For every input se-
quence (word, in this case) x, a sequence ŷ is predicted, based on the
current model parameters www:

ŷ= argmaxu∈YwwwTϕ(x,u)(1)

By the argmax, the feature function ϕ has to be evaluated for all
possible output sequences u ∈ Y; the value which gives the highest
output is used as prediction ŷ. This argmax is computationally expen-
sive, but the Viterbi algorithm (Viterbi 1967) can be run to efficiently
estimate the best value ŷ.

If the predicted sequence ŷ is different from the target sequence y′,
the weights are updated using the difference between the feature func-
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tion applied to the target and the feature function applied to the pre-
dicted value:

www← www+ϕ(x,y′)−ϕ(x, ŷ)(2)

After I iterations, the weights www of the last iteration are returned.
In practice, the averaged structured perceptron is used, which outputs
an average of the weights over all updates.

We use the implementation from the seqlearn library.4 In the
experiments, the structured perceptron algorithm is run for 100 iter-
ations of parameter training.

Ciobanu and Dinu (2018) use a Conditional Random Field (Laf-
ferty et al. 2001), a structured prediction technique related to the
structured perceptron. With this model, predictions between different
Romance languages and Latin are made. These pairwise predictions
are then ensembled, to arrive at a protoform for Latin.

3.2 RNN encoder-decoder

Deep neural networks have shown recent success in multiple tasks
in NLP, like machine translation, using different model architec-
tures, such as the encoder-decoder (Sutskever et al. 2014; Cho et al.
2014), attention-based models (Bahdanau et al. 2014) and transform-
ers (Vaswani et al. 2017; Devlin et al. 2019). Meloni et al. (2019) use an
encoder-decoder structure, but add an attention layer, which allows
for focusing on segments of the input word that are useful for predict-
ing the target word. The authors would like to predict a Latin word
form from a number of contemporary Romance languages. In order to
do this, the encoder accepts multiple inputs, one for every language.
Fourrier and Sagot (2020a) use a multiway encoder-decoder with at-
tention. In this architecture, there is one model for all language pairs,
with a separate encoder per source language and a separate decoder
per target language. Cathcart and Wandl (2020) apply an encoder-
decoder with a specific type of attention, 0th order hard monotonic
attention (Wu and Cotterell 2019). The task is to predict contempo-
rary word forms from proto-Slavic word forms. This is done using one

4https://github.com/larsmans/seqlearn
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Figure 3:
Structure of our RNN
encoder-decoder model

encoder-decoder model for all languages, where every input word is
paired with a language-specific embedding. The language-specific em-
bedding is a straight-through embedding (Bengio et al. 2013; Cour-
bariaux et al. 2016), which has a discrete representaton at predic-
tion time, but also a continuous representation to calculate loss. This
enables the interpretation of the neural network as a latent variable
model.

In this paper, we consider a relatively simple model, a recurrent
neural network (RNN) in encoder-decoder structure, as representant
for the class of deep neural networks. A RNN takes a sequence as input
and produces a sequence. RNNs are good at handling sequential infor-
mation because the output of a recurrent node depends on both the
input at the current time step (the phoneme at the current position)
and on the values of the previous recurrent node, carrying a represen-
tation of previous phonemes in the word. An encoder-decoder model
consists of two RNNs, see Figure 3. This architecture enables the use
of different source and target lengths and outputs a phoneme based
on the whole input string.

In our approach, we use a vanilla RNN encoder-decoder, with-
out attention. We evaluated different architectures and parameter
settings in preliminary experiments, and picked the best performing
(Section 4.1). As recurrent network nodes, we use Gated Recurrent
Units (GRU) (Cho et al. 2014), which are capable of capturing long-
distance dependencies. The GRU is an adaptation of the Long Short
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Term Memory (LSTM) unit (Hochreiter and Schmidhuber 1997). Both
the encoder and decoder consist of 400 hidden units. The output from
the last time step of the encoder is used, a fixed-size (independent of
input length) vector. We apply a bidirectional encoder architecture,
running a forward-direction and a backward-direction encoder on the
input, and combining the output using a dense layer, to reduce it to the
dimensionality of the output of a single encoder. The fixed-size vector,
which contains information of the forward and backward pass, is then
fed to the decoder at every time step.

Because we use one-hot output encoding, predicting a phoneme
corresponds to single-label classification: only one element of the vec-
tor can be 1. Therefore, the output layer of the network is a softmax
layer, which outputs a probability distribution over the possible one-
hot positions, corresponding to phonemes. The network outputs are
compared to the target values using a categorical cross-entropy loss
function, which is known to work together well with softmax output.
We add an L2 regularization term to the loss function, which penalizes
large weight values, to prevent overfitting on the training data.

To give an impression of the degrees of freedom the network has
when learning correspondences, we give an estimation of the number
of weights in the network. The weights consist of the weights in the
encoders, the decoder, the dense encoder concatenation layer and the
dense output layer. The number of weights is dependent on the num-
ber of features in the encoding chosen for the input and target lan-
guage, and on the maximum length of words in the languages. For the
language pair Dutch-German, with embedding input encoding, there
is a total of 2.4 million weights.

The weights of the network are initialized using Xavier initializa-
tion (Glorot and Bengio 2010). With the right initialization, the net-
work can be trained faster because the incoming data fits better to
the activation functions of the layers. We apply dropout, the random
disabling of network nodes to prevent overfitting to training data; the
dropout factor is 0.1. Data is supplied in batches, the default batch
size is 10. The applied optimization algorithm is Adagrad (Duchi et al.
2011): this is an algorithm to update the weights with the gradient of
the loss, using an adaptive learning rate. The initial learning rate is
0.01. The threshold for gradient clipping is set to 100. In the exper-
iments, the default number of training epochs, the number of times
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the training set is run through, is 15. The network was implemented
using the Lasagne neural network library (Dieleman et al. 2015).

3.3Baseline models

The prediction results are compared to two baselines, for which the
distance between target and baseline is calculated. The first baseline
is the trivial source prediction baseline, predicting exactly the source
word.

The second baseline is based on Pointwise Mutual Information
(PMI) (Church and Hanks 1990; Wieling et al. 2009; Jäger 2014; Jäger
et al. 2017). PMI similarity between words gives high similarity to
words with phonemes that are often aligned to each other in the lan-
guages. In general, PMI gives higher similarity to words which are cog-
nate, which are predictable through regular sound correspondences
(Jäger and Sofroniev 2016). Following the approach in Jäger et al.
(2017), PMI scores between phonemes are calculated by aligning all
words for a language pair in the training set with each other, using
Needleman-Wunsch alignment (NW) (Needleman and Wunsch 1970).
We perform 50 iterations of NW alignment. At every NW iteration,
the weights that determine the match between phonemes, are deter-
mined by the PMI scores of the previous iteration. At prediction time,
the alignment of the last training iteration is used. For every source
phoneme, the target phoneme with the highest probability of being
aligned to the source phoneme is predicted. The internal table of PMI
scores is essentially a table of sound correspondences the model learns.

3.4Evaluation of machine learning models

Table 5 shows the results for the two machine learning models, and
two baseline models, evaluated on the test set. It can be observed
that the structured perceptron, in spite of its simpler structure, per-
forms better than the encoder-decoder. For the Germanic language
family, the structured perceptron also performs better than the PMI-
based baseline model. For the Slavic language model, the PMI-based
baseline works better. This difference may be explained by the fact

[ 311 ]



Peter Dekker, Willem Zuidema

Table 5:
Evaluation of machine learning
models and baseline models,

with one-hot input data, evaluated
on word prediction distance

(edit distance between prediction
and target) for different test

conditions, for two language families:
Slavic and Germanic. The distance is

the mean of the distance of all
language pairs in the family. Lower
distance means better prediction

Method Language family

Model Slavic Germanic

Encoder-decoder 0.5582 0.5721
Structured perceptron 0.3436 0.4374

Source prediction baseline 0.3714 0.4933
PMI-based baseline 0.3249 0.4520

that the Slavic languages in the dataset are more closely related and
therefore easier for the baseline model to predict correctly, as smaller
changes have to be made to the source words.

4 IMPLEMENTATION DETAILS

Having discussed the different choices for dataset, data representation
and machine learning model for word prediction, we will discuss how
useful word prediction is in algorithms for computational historical
linguistics. We will first, however, briefly describe some of the imple-
mentation details needed to get the word predictionmodels to produce
optimal results.

4.1 Parameter optimization

In preliminary experiments, we tested the different models with a
range of different parameters and evaluated on a development set.
The parameter settings with the highest performance on the develop-
ment set, were then used for the experiments reported in this paper, in
the previous two sections. For the experiments on data encoding and
machine learning models in the two previous sections, we used the
test set because we regard these as model evaluation, not as parame-
ter tuning. For the experiments in the next sections, on applications,
we also use the test set.
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4.2Training

Training is performed on the full training set per language pair, which
consists of both cognate and non-cognate words. It would be easier
for the model to learn sound correspondences if it would only receive
cognate training examples. However, we want to develop a model that
can be applied to problems where no cognate judgments are available.

4.3Data preparation

For the structured perceptron, the input and output word must have
the same length, but the lengths of words in a language pair may dif-
fer. For this model, the input and output word are matched in terms
of length, by padding the shortest word at the end with dummy sym-
bols (.). For the encoder-decoder, all words in a language must have
the same fixed length, to fit the fixed shape of the layers, but the input
language may have a different fixed length than the output language.
To prepare the data for this model, maximum lengths per language
are calculated, and words are padded with dummy symbols (.) at the
end to match the maximum length.

For the target data for the encoder-decoder model, one-hot en-
coding is used regardless of the input encoding. This means that target
words are encoded in one-hot encoding and the algorithm will output
predictions in one-hot encoding. One-hot output encoding facilitates
convenient decoding of the predictions. Other output encodings did
not show good results in preliminary experiments. As a target for the
structured perceptron model, unencoded data is supplied, since this is
a format suitable for the used implementation of the algorithm.

The training data is standardized in order to fit it better to the ac-
tivation functions of the neural network nodes. For the training data,
the mean and standard deviation per feature are calculated over the
whole training set for this language pair. The mean is subtracted from
the data and the resulting value is divided by the standard deviation.
After standardization, per feature, the standardized training data has
a mean of 0 and a standard deviation of 1. The test data is standard-
ized using the mean and standard deviation of the training data. This
transfer of knowledge can be regarded as being part of the training
procedure.
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4.4 Quantitative evaluation of word prediction

We evaluate the models by comparing the predictions and targets on
the test section of the dataset. We only evaluate on cognate pairs
of words. If words are not genetically related, the algorithm will
not be able to predict this word via regular sound correspondences.
Cognate judgments from the IELex dataset are used.5 For words
in NorthEuraLex for which no IELex cognate judgments are avail-
able, LexStat (List 2012) automatic cognate judgments are generated
(threshold 0.6).

Languages which are not closely related do not share many cog-
nates. Because we only evaluate on cognate words, the test set for
those language pairs will become too small. To alleviate this prob-
lem, we evaluate only on groups of more closely related languages. In
these groups, every language in the group shares at least n cognates
with all other languages. We determine these groups, by generating a
graph of all languages where two languages are connected if and only
if the number of shared cognates exceeds the threshold n. Then, we
determine the maximal cliques in this graph: groups of nodes where
all nodes are connected to each other and it is not possible to add
another node that is connected to all existing nodes. These maximal
cliques correspond to our definition of language groups which share n
cognates. The largest cliques were the Slavic (Czech, Bulgarian, Rus-
sian, Belarusian, Ukrainian, Polish, Slovak, Slovenian, Croatian) and
Germanic (Swedish, Icelandic, English, Dutch, German, Danish, Nor-
wegian) subfamilies, which we use for our experiments. The distance
metric used between target and prediction is normalized edit distance:
Levenshtein distance (Levenshtein 1966) (or: edit distance) divided by
the length of the longest sequence. An average of this distance met-
ric, over all words in the test set, is used as the distance between two
languages.

We use the prediction distances for two purposes: to determine
the distance of languages to each other and to determine the general
accuracy of a model. If a certain model has a lower prediction distance

5An intersection, which applied the IELex cognate judgments to the
NorthEuraLex dataset, was supplied by Gerhard Jäger.
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over all language pairs than another model, we consider it to be more
accurate.

4.5Qualitative evaluation of word prediction

Using the best parameters determined in the preceding sections, it is
worth looking at some qualitative examples of the predictions the al-
gorithms make. Table 6 shows the output of the word prediction algo-

Input Target Prediction Distance
starktə ʃtarkə ʃtarkən 0.14
krais kɢɤ̞its kɢɐiʃ 0.40
brɑr bɢɑdɐ bɢɑr 0.40
mɤ̞rxə mɤ̞rgən mɤ̞rgə 0.17
sɐmə tsɑzɐmən ʃɐmə 0.57
varxɐn fargeə̞n fargən 0.14
klimə klatɐn klimə 0.67
bindəl bindəl bəndəl 0.17
linkər liŋkɐ liŋkən 0.33
wɤ̞nə vɤ̞nən vɑn 0.60
sxəlt ʃɑlt ʃɢəlt 0.40
brɐndə bɢanən bɢɐndə 0.50
ski ski ʃən 1.00
zikzain kɢɐŋkzɐin ziʃzɐin 0.56
drɐin dɢeə̞n dɢɐin 0.40
rex̞ə ɢeg̞ən ɢeg̞ə 0.20
sidərə tsitɐn ʃidəɢə 0.83
halft halftə halft 0.17
ɤ̞varwinə zigən ɑfarviən 0.75
fer̞təx firtsiʃ fartsən 0.50
tek̞ə tsɐiʃən tseə̞n 0.50
nɐkt nɐkt nɐit 0.25
hɤ̞ŋer̞ix hɑŋɢiʃ hɑŋeɢ̞iʃ 0.14
wraivə ɢɐibən vɢɐibə 0.33
zɤ̞ndə zində zɤ̞ndə 0.20
zixvarzɐmələ ziʃfarzɐməln ziʃfarzɐmələ 0.08
hɤ̞ŋər hɑŋɐ hɑŋən 0.40
zɤ̞mər zɤ̞mɐ zɤ̞mən 0.40
hɐrt harts hɐrt 0.50
bədrixə bətɢigən bədɢigə 0.25

Table 6:
Word prediction output
for a structured perceptron
(embedding encoding)
on language pair Dutch-German.
Prediction is the German word
predicted by the model when Input
is given as Dutch input. The edit
distance between the prediction
and the target German word,
which is not seen by the model,
is calculated. Lower distance
is better performance
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rithm for a structured perceptron model on the language pair Dutch-
German. For every word, a prediction distance is calculated. This dis-
tance per word will be used for cognate detection in Subsection 5.3.
From these word distances, a mean distance per language pair is cal-
culated. This will be used for the application of phylogenetic tree re-
construction in Subsection 5.1. When again taking the mean of the
scores of all language pairs in a family, one could get a score which
represents the performance of a model on a language family. These
distances were used in the previous sections to evaluate different pa-
rameter settings.

5 APPLICATIONS

After we looked at appropriate data and a machine learning model
for word prediction, it is now time to discuss a number of applica-
tions of word prediction in historical linguistics: phylogenetic tree re-
construction, sound correspondence identification and cognate detection.
The applications use the outcomes of word prediction as a basis. After
describing each application, we will evaluate the results.

5.1 Phylogenetic tree reconstruction

We regard the prediction score between language pairs as a measure
of ancestral relatedness and use these scores to reconstruct a phyloge-
netic tree (see Section 6.3 for a further discussion). We perform hierar-
chical clustering on the matrix of edit distances for all language pairs,
using the UPGMA (Sokal and Michener 1958) and neighbour joining
(Saitou and Nei 1987) algorithms, implemented in the LingPy library
(List et al. 2019). The generated trees are then compared to reference
trees from Glottolog (Hammarström et al. 2020), based on current in-
sights in historical linguistics. Evaluation is performed using General-
ized Quartet Distance (Pompei et al. 2011), a generalization of Quartet
Distance (Bryant et al. 2000) to non-binary trees. We apply the algo-
rithm as implemented in the QDist software package (Mailund and
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Method Clustering

Model UPGMA Neighbour
joining

Struct perc
(embedding enc)

0.047619 0.047619

Source prediction
baseline

0.269841 0.047619

PMI-based
baseline

0.047619 0.047619

Table 7:
Generalized Quartet distance between trees
of the Slavic language family, inferred
from word prediction results using
the structured perceptron model,
and the Glottolog reference tree. Lower is better:
a generated tree equal to the reference tree
will have a theoretical distance of 0. In this case,
the lower bound is 0.047619 because
the generated binary trees will never precisely
match the multiple-branching reference tree

Pedersen 2004). Trees were visualized using the ete3 library (Huerta-
Cepas et al. 2016).

This is the first approach to infer phylogenetic trees from pre-
diction distance. Cathcart and Wandl (2020) infer phylogenetic trees,
based on the language-specific embedding vectors, which are paired
with the input and trained with the model. Distances between embed-
ding vectors are calculated using cosine distance, and the resulting
distance matrix is clustered using neighbour joining.

Table 7 shows the generalized Quartet distance between the gen-
erated trees, for different conditions, and a Glottolog reference tree.
In the table, one could see that the structured perceptron model con-
sistently creates valid trees. The baseline models, especially the PMI
model, also create valid trees. The performance differences between
models are smaller than the differences for the word prediction task.
This is not very surprising, given that phylogenetic tree reconstruc-
tion is an easier task than word prediction: there are fewer possible
branchings in a tree, than possible combinations of phonemes in a
word. Even a model with lower performance on word prediction can
generate a relatively good tree.

Figure 4 graphically shows the trees inferred from word predic-
tion using the structured perceptron. The Glottolog reference tree is
added for comparison. The perceptron tree receives the lowest possible
distance to the reference tree of 0.047619: the generated binary trees
will never precisely match the multiple-branching reference tree. This
is also the reason why no generated tree reaches the Quartet distance
of 0 in Table 7.
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Figure 4:
Phylogenetic
trees for the

Slavic language
family, using
structured
perceptron

prediction, and
the Glottolog
reference tree.
Quartet distance
between trees:

0.047619

	Belarusian
	Ukrainian
	Russian

	Slovenian
	Croatian

	Bulgarian
	Polish
	Czech

	Slovak

(a) Structured perceptron,
embedding encoding,
NJ clustering

	Belarusian
	Russian
	Ukrainian

	Croatian
	Slovenian

	Bulgarian
	Czech
	Slovak

	Polish

(b) Glottolog

5.2 Sound correspondence identification

To be able to make predictions, the word prediction model has to
learn the probabilities of phonemes changing into other phonemes,
given a certain context. We would like to extract these correspon-
dences from the model. It is challenging to identify specific neural net-
work nodes that fire when a certain sound correspondence is applied.
Instead, we estimate the internal sound correspondences that the net-
work learned, by looking at the output: the substitutions made between
the source word and the prediction. Pairs of source and predictions
words are aligned using the Needleman-Wunsch algorithm. Then, the
pairs of substituted phonemes between these source-prediction align-
ments can be counted. These can be compared to the counts of sub-
stituted phonemes between source and target. In other prediction ap-
proaches, sound correspondences are not directly determined. Instead
of listing sound correspondences, Meloni et al. (2019) and Cathcart
and Wandl (2020) make an analysis of the errors that the algorithm
makes per phonological phenomenon, evaluated on both real and syn-
thetic data.

We identified sound correspondences between Dutch and Ger-
man, two closely related Germanic languages. Source-prediction sub-
stitutions were extracted using a structured perceptron model, run for
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Substitution
Source-
prediction
frequency

Source-
target
frequency

r ɢ 37 32
s ʃ 27 18
x g 23 17
v f 16 11
a ɐ 16 14
w v 11 10
– n 10 55
t ts 9 7
ɤ̞ ɑ 8 5
r n 6 1
p f 6 4
e̞ a 5 4
x ʃ 5 8
ə – 4 5
a ə 4 1
a i 3 0
i ə 3 1
n – 3 0
t – 3 3
v b 3 2

Table 8:
Substitutions between aligned source-prediction
pairs and substitutions between aligned
source-target pairs for Dutch-German word
prediction, using a structured perceptron model
and embedding encoding. The list is ordered
on frequency of source-prediction substitutions,
the 20 most frequent entries are shown

the default 100 iterations (Section 3.1). Table 8 shows the most fre-
quent sound substitutions for source-prediction and source-target. It
can be observed that the most frequent substitutions between source
and prediction are also frequent between source and target. This im-
plies that the model learned meaningful sound correspondences.

5.3Cognate detection

Cognate detection is the detection of word forms in different languages
(usually per concept), which derive from the same ancestral word.
In order to perform cognate detection based on word prediction, we
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cluster words for the same concept in different languages based on the
prediction distances per word.

First, word prediction is performed for all language pairs which
we want to evaluate. In the normal word prediction workflow (Sec-
tion 4.4), predictions are made only on word pairs which are deemed
cognates by existing judgments. When performing cognate detection,
the whole point is to make these judgments, so we perform word pre-
diction on the full test set: cognates and non-cognates. We take into
account concepts for which word forms occur in all languages; this
vastly reduces the number of concepts. For every concept, we create a
distance matrix between the word forms in all languages, based on the
prediction distance per word. Next, we run a flat clustering algorithm
on this distance matrix. Applied clustering algorithms are flat UPGMA
(Sokal and Michener 1958), link clustering (Ahn et al. 2010) and MCL
(van Dongen 2000), implemented in the LingPy library. Preliminary
experiments on the development set show that a threshold of θ = 0.7
gives best results for MCL and link clustering, and θ = 0.8 gives best
results for flat UPGMA.

Conceptually, the performed cognate detection operation is the
same as the phylogenetic tree reconstruction operation, but now we
cluster per word, instead of per language, and we perform a flat clus-
tering instead of an hierarchical clustering.

For evaluation, we use cognate judgments from IElex (Dunn
2012). Evaluation is performed using the B-Cubed F measure (Bagga
and Baldwin 1998; Amigó et al. 2009), implemented in the bcubed
library.6 We perform cognate detection for the Slavic and Germanic
language families, by clustering words based on word prediction dis-
tances. We evaluate performance for the structured perceptron model,
compared to the source prediction baseline. During cognate detection,
contrary to the default setting, prediction is performed on both cog-
nates and non-cognates. We apply three clustering algorithms: MCL
(θ = 0.7), Link clustering (θ = 0.7) and Flat UPGMA (θ = 0.8).

Table 9 shows B-Cubed F scores for cognate detection on the
Slavic and Germanic language families. For the Germanic language
family, the structured perceptron, using MCL clustering, performs
best. For the Slavic language family, the source prediction baseline

6https://github.com/hhromic/python-bcubed
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Model Cluster
algorithm

Language family

Slavic Germanic
Structured perceptron
(one-hot)

MCL 0.877458 0.932077

Structured perceptron
(one-hot)

LC 0.915680 0.905044

Structured perceptron
(one-hot)

fUPGMA 0.919739 0.889788

Source prediction MCL 0.920806 0.851781
Source prediction LC 0.926061 0.875475
Source prediction fUPGMA 0.929840 0.878705

Table 9:
B-Cubed F scores
for cognate detection
on the Slavic (27 concepts)
and Germanic
(29 concepts)
language families.
MCL=MCL clustering
(θ = 0.7), LC=Link
Clustering (θ = 0.7),
fUPGMA=Flat UPGMA
(θ = 0.8). Higher F score
means better
correspondence between
computed and real
clustering

model slightly outperforms the structured perceptron. It must be noted
that the sample of shared concepts in a language family is small: this
makes results less stable.

6DISCUSSION

6.1Contribution

In this paper, we evaluated under which conditions the machine learn-
ing paradigm, successful in many computing tasks, can be useful in his-
torical linguistics. We proposed the task of word prediction: by training
a machine learning model on pairs of words in two languages, it learns
the sound correspondences between the two languages and should be
able to predict unseen words. We regard this as a method that stays
close to the central aspects of the traditional comparative method in
historical linguistics and is therefore a good candidate for reliable re-
construction of language ancestry. Multiple factors which could lead
to an effective use of prediction methods in historical linguistics were
evaluated: the choice of machine learning model and encoding of the
input data. We evaluated existing models of word prediction (Ciobanu
and Dinu 2018; Meloni et al. 2019; Cathcart and Wandl 2020; Fourrier
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and Sagot 2020a) and came up with our own model, which enables
applications on several tasks in historical linguistics. In this paper, we
have proposed new approaches for phylogenetic tree reconstruction
and cognate detection, based on word prediction error. We evaluated
two sequential neural network models, a RNN encoder-decoder and
a structured perceptron. To find an appropriate data representation,
we evaluated embedding encoding, inspired by word embeddings in
natural language processing, and compared its performance to exist-
ing one-hot and phonetic encodings. Our results suggest that a simple
structured perceptron performs better than a RNN encoder-decoder,
and embedding encoding performs slightly better than existing en-
codings on the prediction task. It should also be noted that one of our
baselines, the PMI-based prediction model, performs relatively well,
probably because this simple method does have an internal represen-
tation of sound correspondences. More research is needed to find the
exact model architectures, parameter settings and data encodings to
obtain optimal performance in the word prediction tasks. Note that
the goal of our current paper is merely exploratory: we explore the
conditions under which the prediction paradigm can be used in his-
torical linguistics, and what possible applications of prediction could
be in historical linguistics.

6.2 Related work

We will now discuss two types of related work. Firstly, we will look
at other approaches in computational historical linguistics which try
to capture a genotypic relationship. Secondly, we will look at other
approaches which use the concept of word prediction, in multiple con-
texts.

6.2.1 Genotypic methods in computational historical linguistics

Many approaches in computational historical linguistics try to capture
a genetic signal, by staying close to one or more steps of the compar-
ative method, where sound correspondences are a central notion. Hr-
uschka et al. (2015) create a phylogeny of languages using Bayesian
MCMC, while at the same time giving a probabilistic description of
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regular sound correspondences. By explicitly modelling the sound cor-
respondences, this approach stays close to one of the main principles
of the comparative method. Bouchard-Côté et al. (2013) directly com-
pare phonetic strings of words, in order to reconstruct the protoforms
of words and perform cognate detection. Probabilistic string trans-
ducers model the sound changes, taking into account context. A tree
is postulated, and in an iterative process, candidate protoforms are
generated. Parameters are estimated using Expectation Maximization.
Sound correspondences and protoforms, central notions in the com-
parative method, are explicitly modelled.

In cognate detection, some approaches depart from comparing
phonetic forms, but then follow a genotypic path, by extracting sound
correspondences. List (2012) places phonetic strings of words into
sound classes. Then, a matrix of language-pair dependent scores for
sound correspondences is extracted. Based on this matrix, distances
are assigned to cognate candidates. Finally, they are clustered into
cognate classes. The matrix that is internally kept, is essentially a ma-
trix of sound correspondences.

Different approaches are applied to follow the comparative
method in phylogenetic tree reconstruction. Jäger (2015) applies a
distance-based clustering algorithm for tree reconstruction. String
similarities between alignments of words are directly used as distances
between the languages. Although direct string comparison looks like
a phenotypic step in this method, common ancestry is captured by
explicitly removing words which show chance resemblances and bor-
rowings, using a statistical test (Cronbach’s alpha). Jäger (2018) in-
troduces soundclass-concept characters to encode word forms as input
for character-based phylogenetic models. In this approach, a word
is represented by the presence or absence of (classes of) phonemes,
leading to a representation of sound changes.

6.2.2Word prediction

Approaches similar to word prediction have been applied before in the
natural language processing community, but with differences in im-
plementation and goal to our approach. An early example is Mulloni
(2007), who used Support Vector Machine classifiers to predict words,
with the goal of improving bilingual terminology lists and machine
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translation algorithms. Beinborn et al. (2013) and Ciobanu (2016) per-
form word prediction, using methods from statistical machine transla-
tion, to assess the learnability of words for second language learners.

Some recent prediction approaches from NLP have the goal, like
our approach, to reconstruct language ancestry. Ciobanu and Dinu
(2018) predict from several Romance languages to Latin using Con-
ditional Random Fields, and perform preliminary experiments using
RNNs. Results for the different language pairs are then combined us-
ing an ensemble system to arrive at Latin protoforms. Ciobanu et al.
(2020) and Ciobanu and Dinu (2020) report on variations of the same
method, for prediction to modern languages. Meloni et al. (2019)
use encoder-decoder neural networks with attention to predict Latin
forms, from word lists from multiple Romance languages simultane-
ously as input. An analysis is performed of the structures the net-
work learned, by evaluating the model on synthetic input words.
Cathcart and Wandl (2020) predict words, in phonetic form, from
proto-Slavic protoforms to contemporary Slavic languages, using an
encoder-decoder with attention. The authors perform an elaborate er-
ror analysis, and use the trained embeddings of their model to re-
construct a phylogenetic tree of Slavic languages. Fourrier and Sagot
(2020a) and Fourrier (2020) predict words back and forth between
contemporary and proto-languages, and between contemporary lan-
guages, using artificial and realistic data, applying a model from sta-
tistical machine translation and a neural multiway encoder-decoder.

Although the applied methods differ, what the preceding ap-
proaches have in common is that their input consists solely of cog-
nates. In our approach, the algorithm can be trained on data which
is not labelled for cognacy, avoiding the need for manual cognate
judgments. Moreover, in our approach, prediction results serve as a
starting point for performing a number of diverse tasks in historical
linguistics, such as phylogenetic tree reconstruction and cognate de-
tection.

Recently, the prediction paradigm has gained ground in the com-
putational historical linguistics community as well. List (2019a) uses
a network analysis algorithm to predict word forms. This method is
evaluated by predicting forms for unexplored languages, which are
then attested by performing linguistic fieldwork (Bodt and List 2019,
2020).
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6.3Using prediction error as distance

Is the prediction error (normalized edit distance) between the pre-
dicted word and the target word a good measure for the distance
between languages? The intuition behind using the prediction error
as language distance is that two languages which are well-predictable
through regular sound correspondences, must be closely related. There
are however a few issues involved.

Firstly, assigning a distance of 0 for word forms which are fully
predictable using regular sound correspondences, is somewhat prob-
lematic. One could argue that languages which differ only through
regular sound correspondences should also receive a non-zero distance
because they are not identical. For the specific case of reconstructing
proto-languages, List (2019b) proposes that two reconstruction sys-
tems for a proto-language, that produce protoforms only differing by
regular correspondences, can be seen as structurally identical. The ra-
tionale behind the concept of structual identity is that reconstructions
of proto-languages are to some extent abstractions, in which arbitrary
symbols could be used in protoforms. However, contemporary lan-
guages only differing through regular sound correspondences could
not be called structurally identical, as these languages are not ab-
stractions. Ideally, a model of language ancestry would give multiple
distances: one distance based on the number of mutations made using
regular sound correspondences, and one distance based on the number
of irregular mutations made (including non-cognate words). Hruschka
et al. (2015) created a model which explicitly models the distinction
between regular and irregular sound changes, when creating a phylo-
genetic family tree. This model does not, however, rely on prediction
nor prediction distances.

Another issue is that prediction error is not a very informative dis-
tance for languages which have non-cognate word pairs for many con-
cepts. For non-cognate word pairs, the model cannot apply any learned
sound correspondences to predict the word. The word will in many
cases be completely incorrectly predicted, with a prediction error (nor-
malized edit distance) towards 1. This does not inform us about the
linguistic distance between these words. As most non-cognate word
pairs will receive an error towards 1, when averaging over all con-
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cepts for a language, this will give a measure of the proportion of
non-cognates between two languages.

The final issue that needs to be discussed is that, when using the
prediction error as language distance, the prediction error also signi-
fies the model performance. When using a better-performing model,
the distances between some or all languages may suddenly be smaller.
Ideally, one would want a metric of language distance which is in-
dependent of the performance of the underlying model. A distance
metric that discounts for model complexity could possibly draw upon
ideas from the Minimum Description Length principle (MDL) (Rissa-
nen 1978; Grunwald 2004). In the MDL framework, the best model to
describe a dataset is the simplest model that is accurately able to com-
press the data by finding regularities. This corresponds to the model
with the lowest description length. The description length is the sum
of the length it takes to describe the model (model complexity) and
the length it takes to describe the data with the help of the model (pre-
diction error). In our case, when using description length as a distance
metric, the low prediction error of a complex model will be discounted
by adding the model complexity to the distance. MDL has been used
before as a distance metric between languages to perform phyloge-
netic reconstruction (Wettig et al. 2011; Fischer et al. 2018).

All in all, prediction error is not a perfect measure for language
distance. However, it is a reasonable approximation for our purposes,
which is straightforward to obtain from a prediction model.

6.4 Historical linguistics as latent variable model

Taking a step back, the problem of inferring the phylogeny of lan-
guages from present-day language data can be viewed as a latent vari-
able model. A latent variable model is a model where latent variables
η, whose value cannot be observed, are connected to observed vari-
ables yyy. In these models, one could infer the value of a hidden variable
from a certain observed variable. As a genotypic method, word pre-
diction is one instantiation of the latent variable problem of inferring
phylogeny, although it has not been explicitly modelled as such a prob-
lem in this paper. Cathcart and Wandl (2020) (cf. earlier approaches
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Doyle et al. (2014); Murawaki (2017)), explicitly model latent vari-
ables to describe language history, by using a neural network with dis-
crete straight-through embeddings. A prediction model, where latent
variables can be identified, such as phonological processes of change,
appears to be a viable direction for the future.

7CONCLUSION

With this paper, we hope to contribute to future insights about the an-
cestry of languages. By applying computational methods in historical
linguistics, advances have been made in recent years. In this paper, we
built further upon this development and proposed a central role for the
prediction paradigm from machine learning in historical linguistics.
We showed that a simple probabilistic sequence model and embed-
ding encoding of input data can be good implementation choices. We
came up with approaches to apply the prediction paradigm to multiple
tasks in historical linguistics: phylogenetic tree reconstruction, sound
correspondence identification and cognate detection. After validating
these techniques on well-studied language families, they can be espe-
cially valuable for language families for which ample data is available,
but the exact language history remains unclear. We are looking for-
ward to future research on prediction methods in historical linguistics
that can further explore good computational models to come to new
linguistic insights.

8CODE

A user-friendly, interactive version of the code, in a Jupyter notebook,
can be downloaded from https://github.com/peterdekker/pre
diction-histling/. This code is meant for educational purposes,
results may differ slightly from those presented in this paper. For the
original code used to generate the results in this paper, see https:
//bitbucket.org/pdekker/wordprediction/.
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