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The Grammar Matrix project is a meta-grammar engineering frame-
work expressed in Head-driven Phrase Structure Grammar (HPSG) and
Minimal Recursion Semantics (MRS). It automates grammar imple-
mentation and is thus a tool and a resource for linguistic hypothesis
testing at scale. In this paper, we summarize how the Grammar Matrix
grew in the last decade and describe how new additions to the system
have made it possible to study interactions between analyses, both
monolingually and cross-linguistically, at new levels of complexity.

1INTRODUCTION

From its beginnings in 2001, the Grammar Matrix project (Bender et al.
2002, 2010, among others)1 has investigated how grammar engineer-

1Olga Zamaraeva contributed the constituent questions and the clausal com-
plements libraries to the Grammar Matrix framework and led the writing of this
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ing can support research into cross-linguistic variation and similarity.
Key to this approach has been the potential of computational imple-
mentation to handle complexity, in both data and analyses. In this
paper we take stock of work on and with the Grammar Matrix since
2010, explore how that potential has been leveraged and envision fu-
ture directions.

The Grammar Matrix is a meta-grammar engineering framework
expressed in the Head-driven Phrase Structure Grammar formalism
(HPSG; Pollard and Sag 1994), specifically in one particular restricted
version of it (Copestake 2002a). Grammar engineering is a discipline
and a methodology concerned with a particular empirical approach to
modelled linguistic knowledge (Bierwisch 1963; Zwicky et al. 1965;
Müller 1999; Butt et al. 1999; Bender 2008; Müller 2015): namely,
grammar modelling and testing. Modelling grammar in this context
means coming up with sets of grammar entities (in this case: types,
rules and lexical entries) and implementing them as a computer pro-
gram which can accept or reject strings by attempting (and either suc-
ceeding or failing) to find a syntactic structure that can correspond to
the input string. Testing (analogous to “competence profiling” as de-
fined by Oepen (2002, page 89)) means deploying this grammar pro-
gram (usually along with a separate parser program) on a list of sen-
tences and then assessing whether or not the grammar indeed correctly
parsed all grammatical sentences and rejected all the ungrammatical
ones – an alternative to doing the testing with pen and paper, per-
forming computations in one’s head. Correctly here means that each
structure assigned by the grammar to any grammatical string is in
fact a correct linguistic representation of it. For the purposes of the

paper. Emily M. Bender is the initial developer and the long-time lead of the
Grammar Matrix project, and the principal investigator of the National Science
Foundation grants for both the Grammar Matrix and AGGREGATION projects.
The rest of the authors are in alphabetical order. Chris Curtis contributed the
valence change library to the project; Guy Emerson is the author of append-lists
and computation types; Antske Fokkens is the author of CLIMB and contributed
to the word order library; Michael W. Goodman contributed to the morphotactics
library and to the regression test system; Kristen Howell contributed the clausal
modifiers and the nominalized clauses libraries and contributed to the AGGRE-
GATION project. T. J. Trimble added the support for adjectives and copulas and
made other contributions to the lexicon component of the Grammar Matrix.
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Grammar Matrix, this last assessment is done with respect not to the
syntactic tree but to the resulting sentence semantics that is directly
paired with the syntactic structure. In our case, the semantics is en-
coded in the Minimal Recursion Semantics formalism (MRS; Copes-
take et al. 2005). In terms of practical set up, the Grammar Matrix
allows the linguist-user to enter a typological, lexical, and morpho-
logical description of a grammar via a web-based questionnaire, and
obtain a grammar fragment implemented in HPSG automatically. This,
in turn, allows this linguist to test the set of hypotheses that the gram-
mar encodes against the data stored in text files, in a computer-aided
fashion.

We see the Grammar Matrix as a flexible framework for building
up, over time and in a data-driven fashion, a set of analyses which are
demonstrably useful for describing the repertoire of grammatical vari-
ation in the world’s languages. Our conviction is rooted in three prop-
erties of the framework: (i) the Grammar Matrix design is informed by
typological literature (while relying on established HPSG concepts);
(ii) the development methodology prioritizes cross-linguistic applica-
bility of the analyses and as such leaves flexibility to define HPSG
features motivated by the data; (iii) for any new analyses proposed
for inclusion in the Grammar Matrix, there is a system in place which
allows one to automatically test the new analyses in integration with
the existing ones (Bender et al. 2007). Long term, this builds and ex-
tends a system of analyses for which there is a demonstrated area of
applicability – which also grows over time.

The paper is structured as follows. In Section 2, we describe the
syntactic formalism which the Grammar Matrix uses and the grammar
engineering philosophy which it follows. Section 3 gives a summary
of the additions to the Grammar Matrix since 2010 and describes the
development methodologies, including a detailed description of how
the analyses which are part of the Grammar Matrix are being tested
as a holistic system. In Section 4, we discuss several specific examples
of how the Grammar Matrix helps identify tensions between different
analyses, while Section 5 gives examples of the analyses which have
proven particularly robust over the years. The paper concludes with
the discussion of how the Grammar Matrix serves as infrastructure to
support other research projects (Section 6) and a look ahead to future
directions (Section 7).
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2 BACKGROUND

This section is intended to give the reader basic background on HPSG
(Section 2.1) and grammar engineering (Section 2.2), and on the
particular version of the HPSG formalism that the Grammar Matrix
project uses (Section 2.3). Section 2.3 also describes several major
grammar engineering projects and initiatives, some using HPSG and
some using other formalisms.

2.1 HPSG

Head-driven Phrase Structure Grammar (Pollard and Sag 1994) is a
syntactic framework characterized by a sign-based approach to gram-
mar,2 the use of formally precise constraint-based formalisms (Car-
penter 2005), and an emphasis (shared with Construction Grammar
(Fillmore et al. 1988) and especially Sign-Based Construction Gram-
mar (Sag et al. 2012)) on modelling both the broad generalizations at
play in a given language and the rich details of lexical and construc-
tional idiosyncrasy in a single, coherent grammar. Multiple inheri-
tance hierarchies serve as the central device to capture generaliza-
tions in HPSG. Like any grammatical framework, HPSG encompasses
a variety of related theoretical proposals and also has multiple com-
peting formalisms (for some discussion, see Richter 2021). Despite this
variety, the formalisms used in HPSG are relatively stable over time,
making possible the development of software which implements those
formalisms and can be used for sustained grammar development (for
further discussion, see Bender and Emerson 2021).

HPSG formalisms are based on constraint unification. In con-
straint unification, variables may be constrained to have a particular
value or to be equal to the value of another variable. In order for any
two types to unify, there must be a single (unique) type in the hierar-
chy which represents their combination (Copestake 2002b, page 42).
Ultimately, an HPSG parser checks whether, given a tokenized sen-
tence string and a set of types and lexical entries that represent the

2See e.g. Pollard and Sag 1987, page 2 for a summary of de Saussure’s (1916)
theory of language signs.
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Figure 1: An HPSG derivation visualized as a tree

grammar, it can find a feature structure such that each token corre-
sponds to some lexical entry and together they form some syntactic
structure in which all the constraints dictated by the grammar unify.

As a simplified example, consider a tree of feature structures in
Figure 1 representing an HPSG parse for the English [eng] (Indo-
European) sentence (1).3 The feature structures in the tree are visu-

3This tree is a simplified version of a tree produced by a grammar of English
that was output by the Grammar Matrix. In particular, we only show the features
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alized as attribute-value matrices (AVMs). This tree includes only se-
lected feature-value pairs and substructure sharing tags ( 0 etc.), to
illustrate the particular role of each node in the tree that we would
like to emphasize here for purposes of exposition.

(1) The cat sleeps. [eng]

Consider the tree in Figure 1 bottom-up, along with related ex-
amples (2) and (3) located on page 55. Suppose that the termi-
nal nodes in the tree (corresponding to the lexemes the, cat, and
sleep) are provided by some lexicon. The lexical entries in that lex-
icon are instances of lexical types and specify, among other things,
the syntactic category of each word (such as noun or verb) and
what arguments they require, if any. For example, the intransitive
verb sleep requires exactly zero complements and one subject el-
ement; furthermore, it requires an NP subject. The noun cat has
a PNG feature which in turn has PER and NUM features appropri-
ate for it, the values of which in this particular lexical entry are
specified to be PER 3 at the lexical entry level, NUM underspeci-
fied to just number in the lexical type to which the lexical entry be-
longs (2), and further specified to NUM sg after a lexical rule (3) ap-
plies. The SYNSEM feature in the lexical rule (3) is the “mother” of
the unary rule; the DTR feature is the “daughter”.4 Note that while
the NUM value is identified between the mother and the daughter
in the lexical rule, a lexical entry like (2) can unify with the daugh-
ter of (3) because its own value is underspecified. In the fully spec-
ified tree in Figure 1, the NUM has already been identified with
the mother’s NUM in the lexical rule (same with the SUBJ identity
between the verb’s lexical entry node and the verb’s lexical rule
node).

HEAD, SPR (specifier), SUBJ (subject), COMPS (complements), and PNG (person,
number, gender), with only NUM and PER within the last of these (whereas in
reality, there is also GEN). The tree and the explanation are adapted from Zama-
raeva 2021a, page 33.

4This lexical rule does not have an overt grammatical marking (these are
sometimes called “zero-marking” rules); a lexical rule for plural marking would
add the affix s to the orthography.
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All types in the grammar are part of the type hierarchy, with subtypes
inheriting all constraints of their supertypes. Each type is specified to
have features appropriate for it, and each subtype of a type may set the
values for those features (which in turn are constrained to be specific
types). HPSG uses the type hierarchy to define feature appropriate-
ness, to constrain which feature structures can unify with each other,
and to capture generalizations. In that final function, the type hierar-
chy supports compactness and elegance and thus maintainability and
scalability of grammars.

HPSG theory is characterized by rich lexical types and relatively
schematic phrase structure rules. The properties of any given node in
a tree are established by combining constraints from lexical entries
and rules, including constraints which propagate information through
the tree. When information is identified between different parts of fea-
ture structure or tree, this is called structure sharing. One example is
the Head Feature Principle (Pollard and Sag 1994, page 31), which
stipulates that the value of the feature HEAD (including all feature-
value pairs inside HEAD) in a phrase licensed by a headed rule must
be shared between the mother and the head daughter. Accordingly,
for a phrase structure rule, the grammarian must indicate if it is a
headed rule and, if so, which daughter is the head daughter. In Fig-
ure 1, the HEAD category is propagated because the Head Feature
Principle is implemented in the grammar. Other information is prop-
agated because the particular phrase structure or lexical rules are de-
fined specifically to do that; for example, the head-specifier rule iden-
tifies the non-head daughter with the sole element on the SPR list of
the head daughter in Figure 1, and so on.

Structure sharing means some parts of the structure are the same.
Any feature structure can also be visualized as a graph (see Pollard and
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Sag 1994, pages 16–17), and indeed graph data structures provide a
convenient and frequently used implementation of feature structures.
In such cases, identity tags in the AVM notation correspond to reen-
trancies in the graph, meaning the arcs will converge in the exact same
place. In other words, in Figure 1 the subject of the head daughter and
the entire non-head daughter are not only similar (identical); they are
literally the same structure.

The notion of structure-sharing is closely related to the notion of
constraint unification generally, and to unification failure, which is the
mechanism which leads to HPSG grammars rejecting ungrammatical
input, or in other words not generating ungrammatical strings. Sup-
pose the same HPSG grammar that licenses sentence (1) by assigning
it the structure in Figure 1 is given the string (4) as input instead.

(4) *The cats sleeps.

In order for the grammar to license the plural orthography cats,
the instance of the lexical entry for cat had to go through a lexical rule
which specifies its value as pl. This means that if the grammar attempts
to use the head-subject rule to license (4), there will be a unification
failure between the verb’s expected subject’s PNG value and the one
specified for the noun phrase, as illustrated in Figure 2.

Finally, one other thing about the HPSG formalism that is impor-
tant for understanding this paper is the notion of list, seen in Figure
1 as the value type for SPR, SUBJ, and COMPS (specifier, subject, and
complement lists; the list notation being the angle brackets 〈 〉). List
is a type in the type hierarchy, just like everything else. Lists are con-
venient for modelling different parts of grammar, most notably the
notion of children of a node in the tree, and also arguments (e.g. of
a verb).

2.2 Grammar engineering

Grammar engineering is the implementation of formal precision gram-
mars as computer programs such that parsing and generation can be
done automatically. Precision grammars are machine-readable mod-
els of language which encode notions of grammaticality and linguis-
tic knowledge. The concept of precision grammar engineering arises
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Figure 2: Unification failures (red) visualized as an impossible derivation tree.
The asterisk (*) in the top node signifies that this node is impossible given the
constraints
naturally from the idea that modelling grammar is akin to writing
a computer program that accepts or rejects strings. An important
characteristic of a grammar engineering system is rigor: it actually
implements the grammar-program idea on the computer, preclud-
ing human mistakes that are due to e.g. human operational memory
constraints or inconsistency of attention. It was suggested at least as
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early as in Bierwisch 1963 that, without computational aid, the task
of tracking how exactly multiple complex analyses interact with each
other (and therefore how exactly even a small change in an analysis
affects the grammar) becomes virtually impossible.5

One of the biggest benefits of grammar engineering projects like
the Grammar Matrix, the focus of this paper, is that they allow us to
empirically test syntactic theories by creating explicit models of them
on a computer and then deploying those models on test suites of data
from human languages. Engineered grammars make it much harder
for grammarians to fool themselves into thinking that the grammar (a
set of syntactic analyses) covers something it actually does not cover.
The computer will definitively show which strings from the test set
are parsed and which are not, and the grammarians will then be left
with the task of investigating any failures. Conversely, at any point
the grammarians can be confident in stating that the grammar covers
a specific set of strings, namely the ones in the test suites which the
grammar actually parsed. A complete system of analyses covering the
entire set of human languages remains a very distant goal, and the field
proceeds towards it in steps, carefully documenting issues along the
way. This can thus be seen as a practical implementation of the Mon-
tagovian method of fragments (Montague 1974; Partee 1979; Gazdar
et al. 1985).

The grammar engineering landscape includes multiple projects
carried out in various formalisms. The Grammar Matrix is expressed
in one particular version of HPSG developed by the DEep Linguis-
tic Processing with Hpsg INitiative (DELPH-IN, Section 2.3). In ad-
dition to DELPH-IN projects, there are other implementations based
on the ideas of HPSG, including PAGE (later DISCO) (Uszkoreit et al.
1994), ALE (Penn 2000) and its successor TRALE (Meurers et al. 2002;
Penn 2004; Müller 2007), LIGHT (Ciortuz 2002; Ciortuz and Saveluc
2012), Alpino (Bouma et al. 2001b; van Noord 2006, focussing on
Dutch), and Enju (Miyao and Tsujii 2008, focussing on probabilis-
tic disambiguation). A grammar engineering project similar in some
ways to the Grammar Matrix, called CoreGram (Müller 2015), uses

5See Fokkens 2014, page 13 for a discussion of Bierwisch 1963 in English
and Müller 2015, page 34 for similar discussion and for excerpts translated from
German into English.
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TRALE’s version of HPSG. In Lexical Functional Grammar (LFG; Ka-
plan and Bresnan 1982), ParGram (Butt and King 2002) is an analo-
gous project. In Minimalism, there is implementation work associated
with the strongly lexicalized version of the formalism introduced by
Stabler (1997), e.g. Graf and Kostyszyn 2021 and Torr 2018. Can-
dito (1999) proposes a metagrammar for creating French and Italian
grammars using the Lexicalized Tree-Adjoining Grammar (LTAG) for-
malism (Joshi and Schabes 1997). This approach was further devel-
oped into the eXtensible MetaGrammar (Crabbé et al. 2013, XMG).
Clément and Kinyon (2003) propose a metagrammar for generating
LFG grammars, inspired by Candito’s work. Ranta (2011) implements
complex syntactic structures in the multilingual Grammatical Frame-
work Resource Grammar Library. This resource supports the develop-
ment of grammars for natural language processing (NLP) applications
that consist of simple rules that inherit the more complex foundations
of the Resource Grammar Library. OpenCCG (Baldridge et al. 2007)
provides a grammar engineering framework for Combinatory Catego-
rial Grammar (Steedman 2000).6

2.3DELPH-IN consortium and formalism

DELPH-IN7 is an international consortium of researchers interested in
developing implemented grammars with HPSG and MRS and deploy-
ing them in the context of practical applications. DELPH-IN produces
software support for grammar engineering, grammars, and applica-
tions built on grammars, all of which are open source. The software
support includes grammar development environments (of which the
most widely used is the LKB (Copestake 2002b)), parsing and/or gen-
eration engines (the LKB, as well as PET (Callmeier 2000), agree
(Slayden 2012), and ACE (Crysmann and Packard 2012)), treebanking

6Perhaps the strongest current influence of grammar engineering on the rest
of the field of NLP is through treebanks. Treebanks are collections of syntactically
annotated corpora on which machine learning systems can train. All treebanks
were initially either produced by manual annotation, with annotators relying
on a linguistic formalism, or using an engineered grammar and manual parse
selection.

7http://www.delph-in.net, https://github.com/delph-in/
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platforms (Oepen et al. 2004; Packard 2015),8 grammar coverage and
efficiency profiling facilities (Oepen 2002), Python libraries for a wide
variety of data manipulation tasks (Goodman 2019), and the Grammar
Matrix meta-grammar engineering toolkit (Bender et al. 2002, 2010)
which is the focus of this paper.

By far the largest DELPH-IN grammar is the English Resource
Grammar (ERG; Flickinger 2000, 2011), but DELPH-IN work has been
multilingual from the consortium’s inception in 2002, and the original
motivation of the Grammar Matrix was to support the development
of grammars for many languages which are interoperable with the
same grammar development and application software (Bender et al.
2002). Applications developed with DELPH-IN grammatical resources
include machine translation (e.g. Oepen et al. 2007; Bond et al. 2011),
computer-assisted language learning (Flickinger and Yu 2013; Suppes
et al. 2014; Morgado da Costa et al. 2016, 2020), and summarization
(Fang et al. 2016). For further discussion of applications, see Bender
and Emerson 2021, Section 4.2.

Important to the success of the DELPH-IN international consor-
tium is the coordination at the level of formalisms. The particular
variant of the typed-feature structure formalism used in DELPH-IN
(Copestake 2002a) is dubbed the DELPH-IN Joint Reference Formal-
ism (DELPH-IN JRF) and builds on Type Description Language (TDL;
Krieger and Schäfer 1994) as its predecessor. A key design decision in
the DELPH-IN JRF is to keep the formalism simple by disallowing e.g.
set-valued and disjunctive features as well as relational constraints.9
These restrictions ensure that unification in any grammar will yield a
unique well-formed feature structure (if it exists) (Copestake 2002a,
page 230), reducing parsing and generation to well-formed unifica-
tion and allowing for efficient algorithms leading to faster processing
times.10

8 In the context of precision grammars, treebanking refers to manually se-
lecting and storing the linguistically correct tree(s) from the “forest” of all trees
provided for a sentence by the grammar and the parser.

9Relational means the value of a feature may be constrained to be the result
of an operation over some other features’ values.

10For example, eliminating feature value disjunctions in favour of explicit en-
coding via underspecified types preserves generality (Flickinger 2000, pages 18–
24) while allowing unification methods to be optimized to simplify feature
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2.4Summary

This section described the research and engineering landscape in
which the Grammar Matrix exists and is being developed. The Gram-
mar Matrix uses the HPSG theory of syntax (Pollard and Sag 1994;
Müller et al. 2021) with a deliberately restricted version of the formal-
ism (Copestake 2002a) and Minimal Recursion Semantics for semantic
representations (Copestake et al. 2005). Generally, Grammar Matrix
developers subscribe to the grammar engineering philosophy based
on the Montagovian method of fragments (Montague 1974) and are
accumulating a complex cross-linguistic system of grammatical anal-
yses while maintaining empirical rigor.

3THE GRAMMAR MATRIX: TWO DECADES
OF CONTINUOUS DEVELOPMENT

AND RESEARCH

The Grammar Matrix (Bender et al. 2002, 2010)11 is a DELPH-IN-
based meta-grammar engineering framework that includes a web-
based questionnaire,12 a core HPSG grammar, and a grammar cus-
tomization system programmed in Python.13 A user fills out a ques-
tionnaire with typological, lexical, and morphological information
about a language, and, based on the particular combination of their
choices, the system applies the customization logic to output a gram-
mar fragment which includes the core as well as additional, custom
types, custom lexical entries, and custom rules. This grammar can be
used to parse and generate sentences from the language described
through the questionnaire. One of the main goals of the Grammar
Matrix project is rigor in grammatical hypothesis testing; the system
makes more explicit the relationship between a grammar description,

structure subsumption and equality checks (Malouf et al. 2002, pages 114–
122).

11https://github.com/delph-in/matrix#readme
12http://www.delph-in.net/matrix/customize/matrix.cgi
13https://www.python.org/
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or hypothesis, and the actual data from the language for which the
description is intended.

The Grammar Matrix has been in active development for two
decades; the original version, documented in Bender et al. 2002, was
developed in late 2001. In that work, Bender et al. selected portions of
the ERG (Flickinger 2000) which they believed would be useful cross-
linguistically and put them together in the first version of the Gram-
mar Matrix. The idea was that for a new grammar, this core distilled
from the ERG could be included as a foundation, eliminating the need
to write the grammar from scratch. Later, it was observed that some
portions of the core lexical types and phrase structure rules could be
customized to accommodate various typological profiles. This led to
future iterations of the Grammar Matrix project which include the cus-
tomization system (Bender and Flickinger 2005; Drellishak and Ben-
der 2005; Drellishak 2009; Bender et al. 2010), which has been used as
a starting point for a number of grammars (described in Section 6.3).
The main purpose of the customization system is to automate the map-
ping between a language’s typological profile and a particular set of
lexical and phrasal HPSG types which serves this typological profile.
As such, the Grammar Matrix is a research framework which aims
to combine typological breadth with formal-syntactic depth (Bender
et al. 2010). The relationship between the core and the customization
system is such that it can be refined over time, as support for more
and more syntactic phenomena is added for more and more typo-
logical profiles. For example, once newly considered data makes it
obvious that something in the Grammar Matrix core retains any Indo-
European (or specifically English) biases, the constraints representing
those biases can be removed from the core and added instead to the
customization system.14 Conversely, features and types can be added
to the core when a general analysis is developed that is alternative to
the one in the ERG.15

14For example, Trimble (2014, pages 60–67) moved all copula types and most
adjective types to the customization system to account for languages without
copulas and various adjectival phenomena – primarily switching and constrained
argument agreement – that required significant reworking of the ERG’s analysis.

15For example, Zamaraeva (2021a, pages 168–169) added to the core a fea-
ture named WH, which is a generalized version of a feature found in the Zhong
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Linguistic hypothesis testing has been one of the main goals of
the Grammar Matrix project since day one, but the range and the com-
plexity of the hypotheses which can be tested depend directly on the
syntactic and typological coverage of the system, which at first was
modest. Bender et al. (2010) marked a significant milestone of the
Grammar Matrix project, with support added for multiple phenomena
and a wide range of typological profiles. Since then, another decade
of contributions to the system have taken place (Section 3.1). After a
brief overview of how the system can be used to generate a grammar
(Section 3.2), we discuss the formal (Section 3.3) and methodological
(Section 3.4) innovations that have expanded the capabilities of the
system since 2010.

3.1Grammar Matrix libraries added since 2010

Table 1 lists all the Grammar Matrix libraries that are currently
available via the web questionnaire. Twelve new libraries have been
added since 2010, increasing the system’s scope and the complexity of
interactions which can be studied. In particular, the libraries for com-
plex clauses (Howell and Zamaraeva 2018; Zamaraeva et al. 2019b)
enable the Grammar Matrix-derived grammars to parse recursive sen-
tences, meaning much larger test suites can be used for development
and evaluation (see Section 3.4.1). The library for information struc-
ture (Song 2014) brought in the important potential to associate in-
formation structural meanings with a range of syntactic phenomena
used to mark information structure in the world’s languages. This, in
turn, opened up the possibility of modelling aspects of interrogatives
in terms of information structure (Zamaraeva 2021a). The revamped
morphotactics library (Goodman 2013) and lexicon and morphology
extensions for adjectives and copulas (Trimble 2014) in combination
with the new libraries for adnominal possession (Nielsen 2018; Nielsen
and Bender 2018), evidentials (Haeger 2017), valence change (Curtis
2018a,b), and nominalization (Howell et al. 2018) allow us to model

grammar of Chinese (Fan 2018), to accommodate cross-linguistic patterns of
question word fronting. For the discussion, see Zamaraeva 2021a, page 188, foot-
note 61.
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grammars which account for a fairly wide range of data from descrip-
tive sources on languages with very different typological profiles, as
discussed in Section 3.4.2 and illustrated in Figure 10.

3.2How to use the libraries: an example

To illustrate how a user would use the Grammar Matrix customiza-
tion system to model a particular phenomenon, we show an exam-
ple of how one could fill out the questionnaire for constituent ques-
tions (Zamaraeva 2021a) in Paresi-Haliti [pab] (Arawakan). As we
will describe in Section 3.4.1, the process of library development and
evaluation involves using the customization system to generate gram-
mars and then using those grammars to parse sentences from test
suites. In this case, we describe how Zamaraeva (2021a) created a
customized grammar for Paresi-Haliti based on the examples and de-
scription in Brandão 2014. Later in Section 4.1, we present a case
study related to the evaluation of the constituent questions library on
this language.

Based on the description in Brandão 2014, the subpage for con-
stituent questions may look as in Figure 3. For example, Figure 3
reflects the hypotheses that Paresi-Haliti fronts one question phrase
obligatorily and that the question words may be overtly marked with
focus. The reader can see in Figure 3 that the Constituent Questions
subpage of the Grammar Matrix web questionnaire references two
other subpages, namely Information Structure and Lexicon. Given the
specifications shown in Figure 3, at least one question word must be
specified on the Lexicon subpage, as shown in Figure 4. Likewise,
on the Information Structure subpage (Song 2014), an affix or a clitic
which can attach to question words (as well as other words) must be
added. In this case, a contrastive focus marker is specified as in Figure
5. In combination with other grammar specifications made through
these and other subpages of the Grammar Matrix web questionnaire,
it is possible to obtain an implemented grammar of Paresi-Haliti. We
can then test its behaviour with respect to a test suite of grammatical
and ungrammatical examples, as discussed further in Section 4.1.

The web questionnaire is capable of producing human-readable
grammar specifications that can be saved and re-uploaded later or
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Figure 3: The Grammar Matrix web questionnaire, Constituent Questions sub-
page, filled out for Paresi-Haliti [pab]

hand edited, and also acts as the intermediary to the customization
system. As an example, the portion of the text specification corre-
sponding to Figures 3 and 5 can be seen in Figure 6.

Based on specifications such as those shown in Figure 6, the cus-
tomization system applies logic that outputs a customized grammar
including the core types as well as language-specific types, rules and
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Figure 4:
A portion of the
Lexicon subpage
of the Grammar
Matrix web
questionnaire,
filled out
for Paresi-Haliti
[pab]

Figure 5:
A portion of
the Information
Structure
subpage of the
Grammar Matrix
web
questionnaire,
filled out
for Paresi-Haliti
[pab]

lexical entries. For example, specifying an information structure clitic
as in Figure 5 will result in the types shown in Figures 7–8 being added
to the grammar. These types, in turn, rely on supertypes such as no-
rels-hcons-lex-item and one-icons-lex-item in Figure 7 which are defined
in the Grammar Matrix’s core grammar.

The grammar code in Figures 7–8 represents HPSG feature struc-
tures in a machine readable form, specifically in TDL, which is com-
patible with the DELPH-IN JRF. Assuming the grammar files contain
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Figure 6:
Text specification output

by the Grammar Matrix questionnaire

section=wh-q
front-matrix=single
matrix-front-opt=single-oblig
pied-pip=on
oblig-pied-pip-noun=on
focus-marking=on
wh-q-inter-verbs=on

section=info-str
c-focus-pos=clause-initial
c-focus-marker2_type=modifier
c-focus-marker2_pos=after
c-focus-marker2_cat=nouns, verbs
c-focus-marker2_orth==ala

infostr-marking-mod-lex := no-rels-hcons-lex-item &
one-icons-lex-item &

[ SYNSEM [ NON-LOCAL non-local-none,
LOCAL [ CONT.ICONS.LIST < #icons &

[ IARG2 #target ] >,
CAT [ VAL [ SUBJ < >,

COMPS < >,
SPR < >,
SPEC < > ],

HEAD adv &
[ MOD < [ LIGHT luk,

LOCAL [ CONT.HOOK [ INDEX #target,
ICONS-KEY #icons ],

CAT [ MKG [ FC na-or--,
TP na-or-- ],

WH.BOOL bool ] ] ] > ] ] ] ] ].

Figure 7: Grammar code output by the customization system

contrast-focus-marking-mod-lex := infostr-marking-mod-lex &
[ SYNSEM.LOCAL.CAT [ MKG fc,

HEAD.MOD < [ L-PERIPH luk,
LOCAL [ CAT.HEAD +nv,

CONT.HOOK.ICONS-KEY contrast-focus ] ] >,
POSTHEAD + ] ].

Figure 8: Grammar code output by the customization system
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enough code to constitute a functional grammar, they can be directly
used with DELPH-IN parsers/generators such as the LKB or ACE (see
Section 2.3).16 Thus, by adding a new Grammar Matrix library for
a particular syntactic phenomenon, we enable the user to obtain a
machine-readable HPSG grammar capable of parsing and generating
sentences featuring this phenomenon by simply filling out a web ques-
tionnaire and without the need to write the grammar by hand (see
Section 6.2–6.3).

3.3Formal innovations

Once a user has created a grammar with the Grammar Matrix, they
can continue developing it by adding or revising analyses to cover
more phenomena. At this point, they must engage directly with the
DELPH-IN JRF. As mentioned in Section 2.3, this formalism is deliber-
ately restricted (Copestake 2002a). This means some constraints that
are used in theoretical HPSG cannot be directly expressed using the
DELPH-IN JRF. In particular, the formalism does not support relational
constraints, where an operation on a specific feature value influences
the value of another feature. Examples of such relations are applying
logical-OR to feature values, list append (used for semantic composi-
tion and the handling of non-local features, among other things), and
the shuffle operator (used in some analyses of variable word order).17

Emerson (2017, 2019, 2021, and forthcoming) has shown that,
without changing the formalism, relational constraints can be mim-
icked using “computation types” and “wrapper types”. These compu-
tation types can be used to trigger operations such as logical-OR, and
recursive type constraints can result in several lists being appended.18

16The Grammar Matrix customization system includes a validation compo-
nent tasked with ensuring that the grammar specification is both complete and
consistent enough to produce a functioning grammar. When the validation com-
ponent detects that this is not the case, it signals this information to the user
through warnings and errors on the questionnaire web pages.

17For details on non-local features in HPSG see Pollard and Sag 1994 and
Ginzburg and Sag 2000; for DELPH-IN list implementation of list-valued features,
see Copestake 2002a.

18See also Aguila-Multner and Crysmann 2018 for the discussion of applica-
tion of append-lists in the context of feature resolution in coordination.
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A full explanation of the workings of computation types lies beyond
the scope of this paper. The main point we wish to make here is that
they can ease grammar development. We illustrate this by comparing
the classic DELPH-IN implementation of append operations, through
difference lists (for an exposition, see Copestake 2002b, Section 4.3),
to the new append-list type.

Examples (5)–(7) illustrate how difference lists (diff-lists) may be
used to represent appending operations.19 Example (5) provides the
basic type definition of a diff-list specifying that it consists of two lists.
Example (6) shows the definition of a diff-list 〈!a,b !〉. Note that the
value of LAST is identical to the REST of the list starting with b. As
such, LAST corresponds to the end of the list.

(5)
diff-listLIST list

LAST list

 (6)


diff-list

LIST


nonempty-list
FIRST a

REST

nonempty-listFIRST b
REST 1 list




LAST 1


In difference lists, the end of one list can be identified with the

beginning of another list. The example below illustrates how this can
be used to create the diff-list on the left by appending the two lists
following it.

(7)
diff-listLIST 1

LAST 3


diff-listLIST 1

LAST 2


diff-listLIST 2

LAST 3


Using diff-lists for such operations requires carefully keeping track

of the components of the list. The “end” of a difference list is actually
an underspecified list, and for that reason, difference list appends are

19These examples correspond to examples (14)–(16) in Zamaraeva and Emer-
son 2020, pages 162–163. More details and examples can also be found in Za-
maraeva 2021a, pages 42–43.
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notoriously easy to break when introducing new types to the grammar,
leading to such problems as overgeneration, spurious ambiguity, and
semantic representations with missing predications. Also, it is difficult
to count elements on a difference list.20 In practice, wrongly defined
difference lists are a well-known source of errors in the grammar.21

The append-list type, illustrated in Example (8) has a feature
APPEND, which allows for simple and elegant syntax,22 thereby mak-
ing grammars easier to develop and maintain. Example (9) illustrates
what appending two lists looks like when using append-list. For a more
detailed exposition of how the append-list type works, see Zamaraeva
and Emerson 2020.23

(8)

append-list
LIST 0 list

APPEND
�
list-of-list-wrappers-with-append
RESULT 0

�


(9)
append-list

APPEND
¬

1 , 2
¶ 1

append-list
LIST
¬
a , b
¶ 2

append-list
LIST
¬
c
¶

Implementing the append-list type in the Grammar Matrix allowed
for faster development of analyses which relied heavily on manipu-
lating non-local lists, such as the ones developed for the constituent
questions library (Zamaraeva 2021a).

3.4Methodological innovations

This section describes several important methodological principles
characteristic of the Grammar Matrix development (Section 3.4.1)
and what innovations took place in the recent years with respect to

20See Zamaraeva and Emerson 2020 for details.
21We base this claim on our experience as grammar engineers and our expe-

rience of teaching grammar engineering to others.
22 In the sense of programming language syntax, not a branch of linguistics.
23Examples (8) and (9) correspond to examples (17) and (18) in Zamaraeva

and Emerson 2020, page 164.

[ 71 ]



Olga Zamaraeva et al.

those principles. The first innovation is that we extended the prac-
tice of testing analyses for generalizability against held-out languages
to using held-out language families (Section 3.4.2). The second im-
portant development is the evolution of “regression testing” (Sec-
tion 3.4.3), which ensures an explicit area of applicability for the large
and complex system of grammatical hypotheses. The third is CLIMB
(Section 3.4.4), which is a methodology that allows one to track, af-
ter a starter grammar was created (e.g. with the Grammar Matrix),
how one analysis influences subsequent decisions, and what the al-
ternatives could have been. Finally, the last innovation is the “Spring
cleaning” algorithm (Section 3.4.5), which allows the identification of
portions of the grammar that are in fact unused.24

3.4.1 Data-driven Grammar Matrix development

The overall methodology for Grammar Matrix development was first
summarized in Bender et al. 2010. The development is driven by typo-
logy and data: it starts from aggregating typological descriptions and
exemplar sentences for the phenomenon for which support is being
added; data is used as a guide throughout the development of analyses;
finally evaluation is performed using previously unseen (“held-out”)
languages, usually from held-out language families.

Grammar Matrix libraries are developed in a data-driven manner,
using a set of illustrative “development” languages and correspond-
ing test sets. When adding support for a syntactic phenomenon, a
Grammar Matrix developer typically first compiles test suites from sev-
eral languages consisting of exemplar grammatical and ungrammati-
cal sentences illustrating the syntactic phenomenon being modelled.25

24Both CLIMB and Spring cleaning methods can be applied to any DELPH-IN
grammar but both were developed in the context of Grammar Matrix develop-
ment (Fokkens 2014).
25 In the context of Grammar Matrix library development and in cases when

exemplar sentences from a descriptive grammar contain phenomena which are
not being modelled and are not already present in the Grammar Matrix, the
developer may have to simplify/modify the sentences, e.g. remove a greet-
ing, discourse particle, or even a relative clause (as relative clauses are not
currently supported by the Grammar Matrix customization system). In such
cases, it is ideal to get judgments on the resulting modified sentences from an
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Many of these test suites come from natural languages which the
developer encountered in their typological literature review. Others
are constructed using artificial languages, or “pseudo-languages”, to
ensure the testing of typological combinations not illustrated with spe-
cific examples in the typological literature.

To illustrate the data-driven development process in more detail,
we will use an example that includes both a test suite from an ac-
tual language and a test suite made of artificial data representing a
hypothesized language type (pseudo-language). It helps to (i) connect
the methodology to software engineering practices and (ii) give the
reader additional background for the case study presented later in
Section 4.3. The process described below is exactly the same for real
language data.

The process of library development starts from reading a descrip-
tive source and compiling a test suite of examples, grammatical and
ungrammatical, illustrative of the phenomenon for which the library
is being added. For example, if the descriptive grammar states that the
language has separate morphological paradigms for verbs in declara-
tive (10a) and interrogative sentences (10b–c), the test suite will in-
clude examples of each.

(10) a. oǯa-va
track-ACC

iche-ǯee-v
see-FUT-1SG

‘I will see the tracks.’ [neg] (Khasanova and Pevnov 2002;
cited by Hölzl 2018, page 295)

b. ii-ǰə-m=i?
enter-FUT.Q-1SG.Q=Q
‘Shall I come in?’ [neg] (Khasanova and Pevnov 2002; cited
by Hölzl 2018, page 295)

c. eeva
what

iche-ǯa-m?
see-FUT.Q-1SG.Q

‘What will I see?’ [neg] (Khasanova and Pevnov 2002; cited
by Hölzl 2018, page 295)

L1 speaker; unfortunately that is not always possible to do. The methodology
assumes that any modifications to the original sentences are carefully docu-
mented.
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Examples (10a–c) come from Negidal [neg] (Tungusik). It uses the
same paradigm for polar and constituent questions (e.g. -m in (10b–c)).
This language represents one typological profile; another includes lan-
guages which use three distinct paradigms: one for declaratives, an-
other for polar questions, and yet another for constituent questions.
One such language is Makah [myh] (Wakashan). During the develop-
ment of the constituent questions library, this typological profile was
included as a formal experiment; Zamaraeva (2021a) was not aware
that Makah has this feature but had hypothesized that such languages
may exist and constructed illustrative artificial data (11a–i).

(11) a. noun tverb-PQ noun?
b. who iverb-WHQ?
c. who tverb-WHQ what?
d. who tverb-WHQ noun?
e. noun tverb-WHQ what?
f. *noun tverb-WHQ noun?
g. *who tverb-PQ what?
h. *who tverb-PQ noun?
i. *noun tverb-PQ what?

At this point, the library developer has the test suite like the one
above (11a–i), illustrating the fact that the language uses three sepa-
rate morphological paradigms, and the appropriately filled out ques-
tionnaire which, assuming the questionnaire-customization system in-
terface was already implemented, generates textual grammar specifi-
cation like in Figure 9.26

Given a (complete) specification containing the sections relevant
to the separate morphological marking in polar and constituent ques-
tions, the goal is for the customization system to output a grammar
which behaves correctly with respect to the data in (11a–i), namely
one that maps the grammatical strings (11a–e) to their correct linguis-
tic representations and rejects the ungrammatical strings (11f–i).

26Only the morphology section of the specification is shown.
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section=morphology
verb-pc1_name=mood
verb-pc1_obligatory=on
verb-pc1_order=suffix
verb-pc1_inputs=verb
verb-pc1_lrt1_name=polar
verb-pc1_lrt1_feat1_name=question
verb-pc1_lrt1_feat1_value=polar
verb-pc1_lrt1_feat1_head=verb
verb-pc1_lrt1_lri1_inflecting=yes
verb-pc1_lrt1_lri1_orth=-PQ
verb-pc1_lrt2_feat1_name=question
verb-pc1_lrt2_feat1_value=wh
verb-pc1_lrt2_feat1_head=verb
verb-pc1_lrt2_lri1_inflecting=yes
verb-pc1_lrt2_lri1_orth=-WHQ

verb-pc1_lrt3_name=ind
verb-pc1_lrt3_feat1_name=question
verb-pc1_lrt3_feat1_value=no
verb-pc1_lrt3_feat1_head=verb
verb-pc1_lrt3_lri1_inflecting=no

Figure 9:
Lexical rules specification output
by the Grammar Matrix questionnaire

At this point, the Grammar Matrix library developer has a clear
map of what the finished library should cover, in terms of accepting
and rejecting strings. This is the starting point of so-called test-driven
development in software engineering (Beck 2003)27 where first the
tests are written and then the code is added to the program until all
tests pass.

Building the library entails (i) deciding on target semantic repre-
sentations, (ii) developing the implemented HPSG analyses that will
produce those representations, (iii) developing the customization logic
that will output the correct grammar components given a specifica-
tion, and (iv) writing the questionnaire portions to elicit the speci-
fication. Grammar Matrix developers typically proceed by creating
starter grammars through the customization system with enough other
specifications to cover all other phenomena in the test suites and then
using those grammars as test beds to work out analyses of specific vari-
ants of the phenomenon targeted by the library under development.
Once those analyses are developed, and the semantic representations

27Beck (2003) is often credited for “rediscovering” the concept of test-driven
development, as he popularized the term and the practice. The concept probably
long predates his book, though we could find no other canonical citation.
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they produce hand-verified, they can be generalized and added to the
customization logic.

In the case of Grammar Matrix data-driven development, first we
have the data (the test suite), and then we develop an analysis and add
logic to the customization system until the system starts outputting a
grammar which behaves correctly with respect to this data. It is an ite-
rative process. For example, given only the specification in Figure 9
but no code designed to add something to the grammar based on this
specification, the output grammar will not include the lexical rules
for morphological marking and therefore will not cover sentences like
(11a–i); its coverage over the test suite will be 0%.28 The developer
can then add the programmatic logic to the system such that, upon
encountering a specification like the one in Figure 9, appropriate lex-
ical rules, such as the one in (12), are added to the grammar. This is
a type which is part of the analysis of distinct morphological marking
in polar and constituent questions discussed in Section 4.3.

(12)

polar-lex-rule

SYNSEM|LOCAL|CAT|VAL

SUBJ
D�

NON-LOCAL|QUE|LIST 〈 〉�E
COMPS non-wh-list




Even in cases where there is already literature or other grammars
containing similar types, developing analyses with the level of rigor
and detail that the Grammar Matrix requires is often non-trivial. When
building on the theoretical literature, the analyses may be sketched
in too general a way, and may assume operations not available in the
DELPH-IN JRF. When building on analyses already developed in other
DELPH-IN grammars, the types are likely to be overly specific to an-
other language. In many cases, especially characteristic of non-Indo-
European typology, the analysis will simply not be found anywhere
and will need to be developed from scratch. It is therefore expected
that the process of developing a Grammar Matrix library involves
many debugging cycles. The developer can then load the imperfect
grammar into the software such as the LKB and perform interactive

28The coverage can be computed automatically using tools such as [incr
tsdb()] (Oepen and Flickinger 1998).
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debugging. The LKB will show any errors that occur when loading the
grammar, unification failures that prevent a sentence from parsing,
every possible parse tree for each sentence allowing the developer to
identify the cause of any spurious parses, and the semantic represen-
tation for each parse tree allowing the developer to inspect the cor-
rectness of each parse. The developer can then refine the analysis to
ensure that grammatical sentences in the test suite are parsed correctly
and ungrammatical sentences are not parsed.

To summarize, data-driven development first lays out the gram-
matical territory to cover in a set of test suites, and then extends the
grammar customization system to cover that territory. As the analysis
is developed and refined, the grammar engineer moves back and forth
between increasing the system’s ability to handle grammatical sen-
tences (coverage) and working to minimize both spurious ambiguity
(extraneous extra parses of grammatical sentences) and overgenera-
tion (parses of ungrammatical sentences).29 After the development is
finished, as far as can be tested with the initial test suite, the library
is evaluated as described in Section 3.4.2.

3.4.2Evaluation with languages from held-out language families

After a library’s development is concluded, the developer performs
evaluation on held-out languages from held-out language families.
This means each evaluation language must come from a different lan-
guage family than other evaluation languages, and furthermore, from
a family not represented in the languages used in the library’s develop-
ment (Zamaraeva 2021a, page 103).30 The goal is to assess how well
the Grammar Matrix analyses generalize with respect to a randomly
selected set of languages, specifically languages which may have dif-
ferent properties compared to the languages that were driving the de-
velopment. This is meant to approximate what will happen when users
approach the Grammar Matrix to model additional languages.

29 In practice, lack of coverage, some spurious ambiguity, and some overgen-
eration may be unavoidable due to development time constraints, in which case
the specific cases are documented and left for future work.
30While at this stage we avoid including language families that we worked

with directly in library development, we do not necessarily exclude families just
because they were included in or informed the typological surveys we build on.
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The process of evaluation is very similar to the one described
above in Section 3.4.1, starting with descriptive sources and the com-
pilation of a test suite, then filling out the questionnaire, obtaining a
grammar from the customization system, and deploying it on the test
suite. However, at the evaluation stage no modifications are made to
the system and the coverage, the overgeneration, and the spurious am-
biguity are expected to not be perfect and are reported as measures of
the quality of the newly added library.31

The practice of using held-out languages (but not necessarily com-
ing from unseen language families) goes back to at least Saleem 2010.
Starting with Haeger 2017, only unseen language families are used as
part of the methodology. Ultimately, all the test suites (both devel-
opment and evaluation) are preserved along with the corresponding
language specifications and expected “gold” semantic representations
for each sentence in the test suite. These sets of files constitute the con-
tent of the regression testing system to ensure continued functioning
of existing analyses (Section 3.4.3).

3.4.3 Automatic testing of all existing analyses

A crucial part of Grammar Matrix development methodology is the
automatic testing of all analyses currently implemented in the sys-
tem with respect to stored test suites containing data from different
languages, both actual languages and abstract pseudo-languages (re-
gression testing; Bender et al. 2007). Regression testing is what en-
sures that the combination of analyses that constitute the Grammar
Matrix have at least a known, explicit area of applicability. Most im-
portantly, regression testing makes it possible to see precisely whether
and how any new analysis affects the previous system of analyses with
respect to the previously established area of applicability. In other
words, regression testing of the Grammar Matrix allows us to extend
the computationally assisted method of fragments (Montague 1974;
Partee 1979; Gazdar et al. 1985) to a cross-linguistic arena.

The term regression testing comes from software engineering
where it describes tests that check functional behaviour of a sys-
tem over time; i.e. each modification to the system can be tested on

31Any issues discovered during the evaluation stage are documented such that
they can be addressed later.
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previously used inputs for which the expected (“gold”) output was
recorded. If the system behaves differently after a modification, this
is a “regression”, assuming there is no mistake in the stored gold out-
puts. Regressions need to be addressed, either by fixing the system
such that the behaviour is back to what was expected or by updating
the expected “gold”, if the new output is in fact correct or closer to
correct. The practice of regression testing for monolingual grammar
development is elaborated in Oepen and Flickinger 1998, Oepen 2002,
and Oepen et al. 2002, among others.

In the context of the Grammar Matrix, regression tests are sets of
grammar specifications (valid inputs to the customization system), in-
put language strings from languages corresponding to the descriptions
(with grammatical and ungrammatical items), and finally the corre-
sponding “gold” semantic structures (one or more correct structures
for each grammatical sentence and no structures for ungrammatical
ones). For example, the test suite discussed above in (11a–i) along
with the corresponding grammar specification and the set of correct
MRS representations for all the grammatical sentences in the test suite
will constitute a regression test after the development of this portion
of the system is completed. Running a Grammar Matrix regression test
involves invoking a system which automatically feeds a grammar spec-
ification to the customization system to obtain a grammar fragment,
uses the grammar to process the input language strings, and compares
the output to the stored “gold” results. If there is any difference be-
tween the expected output and the actual output, the test is flagged
and the developer can investigate what causes the difference.

The regression testing system was in place by 2010 with 130 test
suites; in the past decade it has had significant extensions, compris-
ing 527 test suites at time of publication. Re-engineering of the sys-
tem using modern software engineering methods32 resulted in a much
faster, more robust system. This is crucial in the context of the greatly
increased number of tests, as otherwise the time to run all the tests

32The regression testing system was re-engineered twice in the decade, once
by Sanghoun Song to use the faster parser ACE (Crysmann and Packard 2012)
instead of the LKB parser (Copestake 2002b), and once by Michael W. Goodman
to use the PyDelphin libraries and multiprocessing, both times with input from
other DELPH-IN contributors.
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often (such as for each small modification) would have become pro-
hibitive. Another key change in Grammar Matrix regression testing
practice, supported by the more robust regression testing facilities, is
the move to include not only artificial (“pseudo-language”) tests in the
regression testing suite, but also tests depicting natural languages used
in library development (“illustrative languages”) and testing (“held-
out languages”).33

The current regression testing system counts 527 test suites, of
which 75 are from 60 unique natural languages representing 40 lan-
guage families. Figure 10 shows these 60 languages on the world map.
Table 2 summarizes how many languages represent each family.34

The Grammar Matrix regression testing system represents a cru-
cial methodological principle of the project, namely that the analy-
ses can be rigorously tested together, thus allowing Grammar Matrix
developers to state confidently that the set of HPSG analyses imple-
mented in the customization system definitely accounts at least for
the data stored in the system. Over the years, the system has grown to
cover 40 language families from all over the globe. The data compiled
from descriptive resources for 60 languages that the Matrix regression
testing system currently contains can be reused for research purposes
by anyone who is interested in typologically diverse data on any of
the syntactic phenomena represented in the Grammar Matrix.35

33Thus, while all of the libraries were tested on natural languages as well
as pseudo-languages, there are some natural languages described in the Gram-
mar Matrix literature which never made their way into the regression test suite
set.
34Language family and ISO 639-3 codes are given as in WALS (Dryer and

Haspelmath 2013) or, if not found there, as in Glottolog (Hammarström et al.
2021), except in cases where we learned that the name listed in those resources
contained a slur. The second column in the table is the number of unique lan-
guages represented per family, e.g. there are two unique Afro-Asiatic, Niger-
Congo, etc., languages represented in the system. The third column shows the
total number of test profiles. This last number includes any repetitions, e.g.
Japanese is represented in the system by 3 test profiles which may contain differ-
ent sentences and target different syntactic phenomena. That is why the number
in column 3 is not necessarily obtained by multiplying the number in column 2
by the number of items in the corresponding cell in column 1.
35The median size of the test suites is 17 sentences. The largest test suite is for

Umatilla Sahaptin [uma] (Penutian) (Drellishak 2009) and it contains over 6000
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Table 2:
Language

families
represented

in the regression
testing system

Language family (ISO 639-3 codes) N
languages

N
test suites

Indo-European (deu, eng, fra, frr, grc, hin, rus) 7 13
Austronesian (dru, fij, jav, mri, tgl) 5 6
Sino-Tibetan (cmn, cng, lbj, raw) 4 4
Afro-Asiatic (afb, heb), Algic (aaq-pen, crk),
Altaic (kaz, tur), Austro-Asiatic (pac, blr),
Eastern Sudanic (luo, laj),
Inuit-Yupik-Unangan (esu, kal),
Niger-Congo (yor, zul),
Pama-Nyungan (dbl, wgg), Penutian (uma, yak) 2 19
Arawakan (pab), Barbacoan (kwi),
Basque (eus), Caddoan (wic), Central Sudanic (mhi),
Hokan (peb), Japanese (jpn), Kartvelian (kat),
Macro-Ge (apn), Mande (bxl), Mirndi (amb),
Mongolic-Khitan (mon), Mosetenan (cas),
Na-Dene (apw), Nakh-Daghestanian (ddo),
Otomanguean (zpt), Panoan (shp), Siouan (lkt),
Solomons East Papuan (lvk),
Trans-New Guinea (for), Uralic (fin), Urarina (ura),
Wakashan (myh), Washo (was), Yukaghir (yux) 1 33

3.4.4 CLIMB

One motivation for implementing precision grammars is that natural
languages are complex, consisting of many phenomena that interact.
The analyses for these phenomena also interact, which makes it prac-
tically impossible to verify whether a newly proposed analysis inter-
acts correctly with existing analyses without the aid of a computer
(see also Section 4). Implementing grammars provides the means to
test this through systematically adding test sets that represent covered

sentences; it was partially computer generated based on the examples found in
a descriptive grammar. The largest test suite fully vetted by an L1 speaker is for
Russian [rus] (Indo-European) and it contains 273 sentences (Zamaraeva 2021a).
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phenomena and applying regression tests as described in Section 3.4.3.
Regression testing is also used in the development of individual gram-
mars, as grammar engineers create and continuously update test data,
and test the grammar on the full set of test data after each change.

In this way, grammar engineering can contribute to more sys-
tematic syntactic research. A challenge that remains, however, is that
regression tests only allow grammar engineers to look back. There are
often multiple ways in which a phenomenon can be analyzed and the
decision for a specific analysis can only be tested on those phenomena
that have already been analyzed and not on those that are not cov-
ered yet.36 It is inevitable that decisions are sometimes made based
on inconclusive evidence. The order in which phenomena are consid-
ered can thus have a major impact on the resulting grammar (Fokkens
2011; Fokkens 2014, page 69).

The CLIMB37 method (Fokkens et al. 2012) aims to address this
challenge by extending the idea of grammar customization from pro-
viding a mere kick-start to a general methodology of grammar devel-
opment. The basic idea behind CLIMB is that, in case of inconclu-
sive evidence, alternative analyses are implemented in a metagram-
mar which can generate grammars with either of the solutions. The
grammar developer can maintain the alternative analyses and keep
on testing their interactions with analyses for other phenomena until
sufficient evidence is found. CLIMB uses the Grammar Matrix cus-
tomization software to continue the development of individual gram-
mars after the kick-start from the general customization system has
taken place. It is thus per se not a method for developing new libraries
for the Grammar Matrix customization system itself. It can however
also be used when developing new customization libraries. In fact,
the method was first developed to compare alternative analyses for
V2-word order across languages (Fokkens 2011). In practical terms,
CLIMB consists of programmatic scripts which work with the Gram-
mar Matrix files.

There are currently three versions of CLIMB for DELPH-IN gram-
mars described in detail in Fokkens 2014, Chapters 3–4. In its origi-

36Naturally, linguists are not fully unaware of phenomena that are not covered
yet and can take them into account to some extent.

37Comparative Libraries of Implementations with Matrix Basis (CLIMB).
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nal form, CLIMB continues to use the Grammar Matrix customization
system for grammar engineering. The grammar developer includes all
analyses in the original customization system (possibly cleared of com-
ponents that are not relevant for the language in question). The de-
velopment cycle consists of (i) generating one or multiple versions of
the grammar using the customization system; (ii) adding and testing
a new analysis in one or more grammars; (iii) adding these analy-
ses to the customization system; (iv) generating and testing grammars
with all alternative analyses for previously covered phenomena; and
(v) adapting the analysis for proper interaction with alternative anal-
yses if applicable and testing again. The advantage of using this ver-
sion of CLIMB is that it offers the full flexibility of the customization
system.

A disadvantage is that it involves moving back and forth between
declarative coding for grammar engineering and procedural coding
in the customization system. Moreover, in practice, the full flexibil-
ity of the customization system is not likely to be exploited. Notably
the morphotactics library offers countless options which are not likely
to be considered as alternative options for which more evidence is
needed. A second version, called declarative CLIMB, offers an alterna-
tive way of using CLIMB without writing procedural code. The gram-
mar engineer can define alternative analyses and the accompanying
modifications that are needed to make them work with the rest of the
grammar with an indication of the analysis they belong to. The Gram-
mar Matrix customization code is used behind the scenes to create
well-formed grammars from a set of selected analyses.

The third version of CLIMB is an adaptation of declarative CLIMB
meant to support research on large-scale grammars developed in the
traditional way. Declarative CLIMB consists of a shared core and col-
lection of (alternative) analyses from which grammars can be gener-
ated. In this third version, CLIMB provides a set of changes that can
be applied to a working grammar. The grammar developer can define
additions, replacements and components to be removed to adjust the
grammar. The customization code is used to generate an adapted
grammar based on the original grammar and the changes. The code
can also generate the set of changes needed to replace the new alter-
native analysis with the original analysis. The developer can thus pro-
pose an alternative analysis, add new analyses to the grammar with
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this alternative and generate a version of the grammar with these new
analyses and the original analysis.

In the scenario above, CLIMB is used to test alternative hypotheses
during (part of) the trajectory of grammar development for a specific
language. The method can also be used for flexible parallel grammar
development. For a specific language, CLIMB could support versions of
the grammar that exhibit (slightly) different behaviour. This could be
versions that are adapted for a specific domain (e.g. one that captures
structures typically used on social media, one more aimed at news-
paper text), that aim to be more robust rather than precise, or that
are designed for a specific application. Fokkens (2014, Section 6.4)
illustrates for instance how CLIMB can be used to include alternative
rules to spot specific errors of second language learners, as also seen
in e.g. Flickinger and Yu 2013, Morgado da Costa et al. 2016, and
Morgado da Costa et al. 2020.

Another natural way of using CLIMB is for multilingual grammar
development. In this case, grammar developers truly continue in the
spirit of the Grammar Matrix customization system. When a new anal-
ysis is developed for one language, code generation can be integrated
in grammars of other typologically related languages. The idea of aim-
ing for full typological coverage is abandoned, which allows for more
depth. In addition to parallel grammar development, this can result in
a significantly larger jump start for a new grammar of an additional re-
lated language. For instance, Fokkens (2014, Section 6.2.5) illustrates
the increase in coverage of phenomena captured when developing a
grammar for Northern Frisian from gCLIMB (a metagrammar for Ger-
man that also contains variations for Dutch) compared to developing it
from the Grammar Matrix customization system alone. In addition to
gCLIMB, CLIMB has been used to create a prototype for a Slavic meta-
grammar that can generate a basic grammar for Russian (Fokkens and
Avgustinova 2013).

3.4.5Spring cleaning

One of the questions that arises when using a resource that supports
grammar development for typologically diverse languages, such as the
Grammar Matrix, is how much of the generic core and provided jump-
start implementations end up being used. Though it is straightforward
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to automatically check which type definitions have been modified, it
is less trivial to find out which type definitions are actually active in
a grammar and which are never invoked. When grammar develop-
ers implement analyses that take a different approach than the gram-
mar core, for instance, they do not necessarily remove the correspond-
ing components from the core. Likewise, obsolete type definitions are
not necessarily removed when analyses are adapted or replaced. The
spring cleaning algorithm (Fokkens et al. 2011) can be used to identify
which components of the grammar actually influence the grammar’s
behaviour. The algorithm was developed with the specific purpose of
identifying components of the Grammar Matrix that are an active part
of (larger) grammars and relies on the code from the customization
system to process DELPH-IN JRF.

A DELPH-IN grammar defines a hierarchy of typed feature struc-
tures. Each type inherits all constraints from its supertypes. A grammar
furthermore defines instances: lexical items or rules defined through
the type hierarchy. The parser and the generator start with instances:
the parser forms syntactico-semantic representations of words based
on its lexicon and lexical rules and then combines them using grammar
rules. Conversely, the generator generates surface strings using the
lexicon and lexical rules and combining them using grammar rules.
This means any type that defines (part of) an instance impacts the
grammar. These types are referred to as instantiated types. Combining
components is done through unification. Types that influence whether
instantiated types can unify therefore also impact the grammar. Con-
versely, types which are neither instantiated nor influence unification
of instantiated types have no effect on the grammar.

The spring cleaning algorithm starts from the instance defini-
tions. It then goes through the grammar and tags all types that are
a supertype of an instance and marks them as instantiated types. It
then extracts the feature values from all instantiated type definitions
and marks the type definitions of these values and their supertypes as
relevant types as well. In the next step, the algorithm checks whether
the remaining types (that are not instantiated types nor types that are
part of the definition of an instantiated type) enable unification of any
relevant type. Any type that influences unification of relevant types is
also marked as relevant. Remaining types are flagged as redundant.
The algorithm was applied to four Grammar Matrix grammars repre-
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senting three languages (two grammars with alternative word order
analyses for Wambaya, one for Mandarin Chinese, and one for Bulgar-
ian). The outcome showed that even relatively small grammars con-
tained noise and that identifying superfluous types can help identify
errors in the grammar (Fokkens et al. 2011). Occasional spring clean-
ings of grammars are therefore recommended.

3.5Summary

This section summarized how the support for syntactic phenomena in
the Grammar Matrix has grown since 2010 and covered the most im-
portant formal and methodological innovations adopted in this con-
text. We listed all current Grammar Matrix libraries (and will later
illustrate interactions among some of these). We presented in detail
the testing system that currently covers 60 languages from 40 lan-
guage families and allows for automatic testing of any modification
in any of the analyses with respect to data from this wide typological
range. In addition, this section summarized some formal innovations
particularly relevant to how the system implements non-local depen-
dencies (further discussed in Section 4.3) and described algorithms
which allow the grammar engineer to track how analyses in a DELPH-
IN grammar influence each other and how to determine whether some
parts of the grammar remain unused – which are important for future
improvements of the Grammar Matrix project and the grammars it
gives rise to.

4MAKING TENSIONS BETWEEN
ANALYSES EXPLICIT

Grammar engineering allows a grammarian to identify unexpected
interactions between analyses which might otherwise be overlooked
due to the overall complexity of the grammar. Furthermore, in the
case of the Grammar Matrix, this is done with respect to the entire
cross-linguistic system that the framework provides. In this section, we
present several examples of tensions between syntactic analyses which
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were made explicit in the context of the Grammar Matrix’s develop-
ment and testing. We start in Section 4.1 with a case study illustrating
the range of problems in the analyses that we are now able to discover
and document. The important thing to note here is that documenting
such a range of issues only became possible with the recent additions
to the Grammar Matrix libraries (Section 3.1), because these issues
all have to do with interactions among analyses of phenomena such as
clausal complementation and modification, nominalization, adnomi-
nal possession, information structure, constituent questions, and long-
distance dependencies. We then present a particularly intricate for-
mal issue having to do with non-local dependencies and coordination
which would probably be impossible to detect without a computa-
tional framework but has bearing on very common, seemingly simple
sentences (Section 4.2). Finally, in Section 4.3, we discuss tensions
that inform decisions of what belongs in the core grammar vs. the li-
braries, again revealed in the process of evaluating a new library on a
held-out language.

4.1 Two word order hypotheses in Paresi-Haliti: A case study

In the context of her work on the constituent questions library for
the Grammar Matrix, Zamaraeva (2021a, Section 8.5.9) considers
two alternative analyses for basic word order in Paresi-Haliti [pab]
(Arawakan) based on a descriptive grammar of the language (Brandão
2014). Brandão 2014 features a number of long, complex examples,
which is good material for testing the interaction between Grammar
Matrix libraries. However, according to Zamaraeva (2021a, page 342),
many examples are not yet fully glossed and some phenomena are
not yet fully described or understood (as is normal for an underdocu-
mented language). In particular, the word order is said to be mostly
V-final (the most common order being SOV), yet personal pronouns
can occur after the verb, and indeed if they are taken into account,
then, according to another source, da Silva 2013 (cited by Brandão
(2014, page 318)), the most frequent word orders in the language are
SVO and OSV. All orders in fact occur with some frequency, according
to Brandão (2014, page 319). The exact nature of the interaction of
information structure with word order is not fully worked out, though
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there is a section on focus and topic and many examples are glossed
for information structure marking (13).

(13) aliyakere=ta=la
how=EMPH=FOC

hatyohare
this

‘How is this?’ (Brandão 2014, page 335)

Due to multiple possible hypotheses for what the basic word order
is, this part of the grammatical description of Paresi-Haliti is thus an
excellent candidate for computationally assisted hypothesis testing,
for example using the Grammar Matrix.

To that end, Zamaraeva (2021a, Section 8.5.9) presents two gram-
mars of Paresi-Haliti, both produced automatically by the Grammar
Matrix. The grammars represent two sets of hypotheses, one associ-
ated with SOV word order (with some of the other orders accounted
for by information structure) and another with free word order (re-
flecting the fact that all orders are possible). The analyses are evalu-
ated with respect to a Paresi-Haliti test suite containing grammatical
and ungrammatical sentences. The test suite consists of 67 items, 64
of them grammatical. Out of those 64, 45 are directly from Brandão
2014 while 19 have modifications or were constructed by Zamaraeva
(2021a) based on the information from Brandão 2014. Of the 3 un-
grammatical examples, 2 are constructed by Zamaraeva (2021a) and
1 is from Brandão 2014. Table 3 presents the evaluation numbers ob-
tained by running the LKB parser (Copestake 2002b) over the test
suite.38

While it can be relatively easy to achieve close-to-perfect numbers
on a (small) test suite that is driving grammar development, the Paresi-
Haliti results from Zamaraeva 2021a, Section 8.5.9 (Table 3) represent
the evaluation of the Grammar Matrix system on a held-out language
family after the development process was frozen, and so relatively low

38Raw coverage refers to grammatical sentences for which a grammar can
produce any reading at all; validated coverage is for sentences which get a parse
with correct semantics; overgeneration is for ungrammatical sentences which
nonetheless are accepted by the grammar; and finally ambiguity is the average
number of readings per sentence. High overgeneration and ambiguity indicate
problems with the grammar, as does low coverage; high raw coverage is not
necessarily good unless validated coverage is also high.
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Table 3:
Two word order

hypotheses
for Paresi-Haliti

Hypothesis Raw coverage
(%)

Validated
coverage (%)

Overgeneration
(%) Ambiguity

SOV 40/64 (62.5) 25/64 (39.0) 2/3 (66.7) 43.95
free 53/64 (82.8) 36/64 (56.0) 2/3 (66.7) 36.17

validated coverage, high overgeneration, and high ambiguity can all
be expected. However, after evaluation results are reported, we can
still have a good look into which exact problems led to the missing
coverage as well as to overgeneration and any spurious ambiguity.
For this we use automated DELPH-IN tools, particularly [incr tsdb()]
(Oepen and Flickinger 1998) and treebanking tools.

A close examination of the two grammars with respect to the
Paresi-Haliti test suite revealed the following issues in the Grammar
Matrix system. First of all, we found out that the information structure
library was overconstraining SOV grammars such that complements
could never be extracted out of VP.39 Removing that constraint did
not lead to any regressions in any of the 527 regression tests, so that
problem can easily be fixed at the level of the entire Grammar Matrix
system. Note that it took a complex test suite featuring both infor-
mation structure marking and constituent questions in combination
with the SOV word order to discover this problem; without testing the
interaction, the problem went unnoticed for years.

Second, the large ambiguity in both grammars was caused in par-
ticular by an interaction between the adnominal possession and the
constituent questions libraries in which unwanted underspecification
led to spurious phrase structure rule application. The adnominal pos-
session library (Nielsen 2018) provides lexical rules for constructions
in which possession is marked morphologically (on the possessor, the
possessum, or both). At the time this library was developed, only a
few analyses within the information structure library exercised non-
local features, and (without specific tests for this interaction) it was
not apparent that the lexical rules were leaving the non-local features
underspecified. A grammar with both adnominal possession lexical
rules and an analysis involving, say, head-filler rules for constituent

39More specifically, subject-head phrase was constrained to have an empty
SLASH list.
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questions will produce (nonsensical) “readings” where a filler-gap rule
applies to a structure in which there is no gap (or strictly speaking,
where the information about whether or not there is a gap was lost).

More sources of spurious ambiguity were discovered thanks to
these two grammars. They include interactions between the analy-
ses of constituent questions, information structure, and clausal mod-
ifiers and nominalization libraries. For example, we discovered that
the customization system was not properly customizing our base anal-
ysis of the question pronoun for grammars that also had nominalizers.
This led to nominalization lexical rules applying to question pronouns
(while they should only apply to verbs) and ultimately to spurious
parses. The same need for a nominalization-blocking constraint was
found in the filler-gap rule added by the information structure library
to grammars which have clausal modifiers and nominalizers.

Fixing the issues that we found in the Paresi-Haliti grammar dra-
matically reduced ambiguity in both grammars while also raising the
validated coverage of the SOV grammar over the test suite from 39%
to 50% percent and of the free word order from 56 to 65%, as pre-
sented in Table 4. Future work is required for a meaningful compari-
son of the two different word order hypotheses, though we can observe
that the gain in validated coverage is bigger for the SOV grammar.40

Hypothesis Raw coverage
(%)

Validated
coverage (%)

Overgeneration
(%) Ambiguity

SOV 41/64 (64.1) 36/64 (56.2) 2/3 (66.7) 4.02
free 51/64 (79.7) 42/64 (65.6) 2/3 (66.7) 3.98

Table 4:
Improved
grammars
for Paresi-Haliti

4.2Long-distance dependencies

In this section, we discuss a complex interaction between analyses of
coordination, adjuncts, and gapped complements. Each analysis has

40The higher validated coverage of the free word order grammar does not ne-
cessarily mean it is a better hypothesis since the SOV grammar can be developed
further such that more orders are covered by the information structure library.
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a strong motivation, and they are all relevant for long-distance de-
pendencies. In particular, they all manipulate non-local lists such as
SLASH. Taking all the analyses together, non-local lists become over-
constrained, incorrectly predicting ungrammaticality for many gram-
matical sentences. Without computationally implemented grammars,
this interaction would almost certainly have gone unnoticed.41

Since the early days of HPSG, long-distance dependencies have
been analyzed using non-local sets or lists such as SLASH (for a his-
torical overview, see Flickinger et al. 2021). The Non-local Feature
Principle (Pollard and Sag 1994) states that the value of a non-local
feature on the mother is the concatenation of the values on the daugh-
ters.

An alternative approach, advocated by Bouma et al. (2001a), in-
stead passes (or “threads”) the SLASH values of non-head daughters
through the head daughter’s SLASH value. This analysis is particularly
attractive for modelling lexical items that take gapped complements
(see examples in (15)), as it allows each lexical entry to specify how
its SLASH list relates to the SLASH lists of its complements, as in (14).

(14)

lexical threading type

SYNSEM


NON-LOCAL|SLASH|APPEND 〈 1 , 2 〉

LOCAL|CAT|VAL

SUBJ
D�

NON-LOCAL|SLASH 1
�E

COMPS
D�

NON-LOCAL|SLASH 2
�E




In the majority of cases, the SLASH list of the head is simply the

concatenation of the SLASH lists of its arguments, as shown in (14). In
cases like eager and easy, one element is first removed from the com-
plement’s SLASH list. This analysis is known as non-local amalgama-
tion (Bouma et al. 2001a; Ginzburg and Sag 2000) or lexical threading.

(15) a. Kim is eager to please.
b. Kim is easy to please.

41Specifically, this particular issue was discovered when using the Grammar
Matrix in a graduate-level grammar engineering course; see also Section 6.2.
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A lexical threading analysis is implemented in the English Re-
source Grammar (ERG) and was inherited by the Grammar Matrix in
its initial construction, using lexical amalgamation of non-local fea-
tures from arguments and phrasal amalgamation for head-modifier
combinations. While integrated into the broad coverage monolin-
gual grammar (ERG), this system was not thoroughly tested in the
cross-linguistic Grammar Matrix context until the information struc-
ture (Song 2014) and especially the constituent question (Zamaraeva
2021b) libraries were added. On either analysis, the handling of non-
local features requires a notion of append (e.g. the SLASH list of the
mother is the append of the daughters’). Recall that relational con-
straints like append are not part of the DELPH-IN variant of the HPSG
formalism. The Grammar Matrix initially implemented these appends
with difference lists, like the ERG. However, in order to better handle
SLASH lists with more than one element as well as for general better
maintainability, the Grammar Matrix has moved to using append lists
(Zamaraeva and Emerson 2020; see also Section 3.3). We thus had
a system which implemented partially lexical and partially phrasal
amalgamation of non-local features using append lists, combined with
standard HPSG analyses of complementation and modification.

The Grammar Matrix also provides analyses of coordination (Drel-
lishak and Bender 2005), and the interaction between this analysis and
the handling of non-local features revealed complexities. To make sure
that only compatible phrases can be coordinated, an attractive analysis
is to identify large parts of the feature structures for the conjuncts (see
Abeillé and Chaves 2021 for a recent review of approaches to coordi-
nation in HPSG). However, if these feature structures contain compu-
tation types (see Section 3.3), we are identifying not only the outputs
of the computation, but the inputs as well. Implementing amalgama-
tion (lexical or phrasal) of non-local features with computation types
means that a verb phrase’s SLASH contains not only a list, but also the
history of append operations. If we identify not only the lists, but also
the computation histories, then we have a much stronger constraint
on compatibility for coordination.

For example, consider coordinated intransitive and transitive
clauses, as illustrated in (16a). The SLASH list of an intransitive verb
like sleep is precisely the SLASH list of its subject. However, the SLASH
list of a transitive VP like eat bananas appends the subject’s SLASH

[ 93 ]



Olga Zamaraeva et al.

list with the empty SLASH list of bananas. Appending an empty list
results in the original list. However, the feature structure associated
with a computation type includes all intermediate steps in the compu-
tation. With a different number of empty lists being appended, there
is a different feature structure.

(16) a. Monkeys sleep and eat bananas.
b. Monkeys sleep soundly and eat bananas.

If we only had a small finite set of valence frames to consider,
we could carefully define the append operations, so that the compu-
tation histories are compatible for coordination. However, adjuncts
pose a problem here, as illustrated in example (16b), because recur-
sive adjunction creates an unbounded set of possible computation his-
tories.

We can see that the analyses of coordination and non-local depen-
dencies are not fully compatible: combining them, the grammar would
fail to parse grammatical sentences like (16a–b). We must therefore re-
vise our system of hypotheses. The current approach in the Grammar
Matrix involves two changes. First, we only identify the contents of
computation types, without their computation histories. This is illus-
trated in (17), where the SLASH|LIST values are identified, but not
the SLASH values. This is sufficient to resolve the problem noted here.
In addition, we have dropped the lexical amalgamation of non-local
features (although see Section 4.3). This was done in response to this
investigation as well as others where the lexical amalgamation ap-
proach has made it very difficult to reason about analyses.

(17) 
coord-phrase
SYNSEM|NON-LOCAL|SLASH|LIST 1

LCOORD-DTR|SYNSEM|NON-LOCAL|SLASH|LIST 1

RCOORD-DTR|SYNSEM|NON-LOCAL|SLASH|LIST 1


This example illustrates how the Grammar Matrix methodology

allows for discovery and resolution of conflicts between analyses and
how considerations of maintainability (preferring analyses which are
expected to be robust to changes elsewhere in the grammars) also
impact analytical decisions.
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4.3Morphological marking of interrogatives

The study of morphological marking of interrogatives by Zamaraeva
(2021a, Section 6.8) in the context of developing a Grammar Matrix
library for constituent questions turned up a tension between mor-
phology and syntax in DELPH-IN HPSG.42 For the full details of this
study, we refer the reader to Zamaraeva 2021b and Zamaraeva 2021a,
Section 6.8; here we give a brief summary and contextualize the issue
with respect to the Grammar Matrix development.43

The tension lies between the analysis of long-distance dependen-
cies (see also Section 4.2) and the analysis required for a particu-
lar kind of morphological marking of questions found in e.g. Makah
[myh] (Wakashan) which maintains two separate verbal inflection
paradigms for polar (18a) and for constituent (18b–c) questions (in
addition to the indicative paradigm).

(18) a. duduˈk=’aƛ=qaːk=s
sing=TEMP=POLAR=1SG
‘Am I singing?’ [myh] (Davidson 2002, page 100)

b. ʔačaq=qaːɬ
who=CONTENT.3SG

duduˈk
sing

‘Who is singing?’ [myh] (Davidson 2002, page 285)
c. baqiq=qaːɬ

what=CONTENT.3SG
tiˈ
DEM

‘What is this?’ [myh] (Davidson 2002, page 285)

In a sense, this particular tension is related to the one presented in
Section 4.2: while the syntax of coordination as modelled in the Gram-
mar Matrix made using the non-local amalgamation principle less at-
tractive, the example of Makah points in the opposite direction and
suggests that lexical amalgamation of non-local features can still be

42The tension lies not in the implementation of the lexical rules but rather in
the treatment of non-local features involved in interrogative constructions.
43The data and the AVM examples in this section are taken directly from

Zamaraeva 2021b. We refer the reader to that work for a complete exposition of
the issue summarized here.
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very useful in the Grammar Matrix. Specifically, Zamaraeva (2021b)
offers two alternative analyses for data such as in (18a–c) and shows
that the one that uses lexical amalgamation of non-local features is
a lot simpler than the one she developed without lexical amalgama-
tion.44

In particular, the analysis which assumes non-local amalgamation
relies on a straightforward distinction between two lexical rule types,
one for polar and one for constituent questions (19).45

(19) a.
polar-lex-ruleSYNSEM|SF ques

DTR|SYNSEM|NON-LOCAL|QUE|LIST 〈 〉


b.
wh-lex-ruleSYNSEM|SF ques

DTR|SYNSEM|NON-LOCAL|QUE|LIST cons


The QUE list constraint in (19a) means that an affix which is an

instance of this lexical rule type cannot apply to something that has
a question word as an argument (e.g. subject or complement). Con-
versely, a word produced with (19b) must have at least one question
word as an argument. This works because, under the lexical thread-
ing assumption, lexical heads (e.g. verbs) will all be subtypes of a
supertype like (14) and will therefore inherit the constraints stated in
(14); their own non-local lists, including the QUE lists, will be implic-
itly constrained to be a concatenation of their arguments’ QUE lists.46

44Zamaraeva was motivated to develop that version for the Grammar Ma-
trix after lexical amalgamation was removed, in light of the issue discussed in
Section 4.2.
45Both types are subtypes of a more general lexical rule supertype which in

turn is part of the lexical rule hierarchy. The lexical rule hierarchy implements
the various ways in which affixes can contribute to the form and/or meaning of a
word. Here, only the constraints specific to the subtypes for polar and constituent
question lexical rules are shown. The feature name SF stands for sentential force;
the possible values for this feature include question and proposition. The type
cons stands for non-empty list.
46The type shown in (14) focuses on SLASH list but the constraint is exactly

the same for all NON-LOCAL lists including QUE.
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Any question word will have a non-empty QUE list by definition, and
thus the head’s list will be non-empty also. It is particularly important
that for a type to be a subtype of (14) obviates the need to constrain
subjects and complements of this type separately as to whether they
are question words; it is sufficient to say that the head’s QUE list is not
empty.

Without the non-local amalgamation assumption, however, heads
will not inherit the constraints stated in (14), and it becomes neces-
sary to explicitly constrain the valence lists of heads as to whether they
contain question words or not. This necessitates a more complex hier-
archy of interrogative lexical rules (shown in (20)) with separate sub-
types for cases when a head has a question word as a subject (shown
in (20b)) and cases when it has a question word as an object (shown in
(20c)), in addition to the subtype for polar questions (shown in (20a)).

(20) a.

polar-lex-rule

SYNSEM|LOCAL|CAT|VAL

SUBJ
D�

NON-LOCAL|QUE|LIST 〈 〉�E
COMPS non-wh-list




b.
wh-subj-lex-rule

SYNSEM|LOCAL|CAT|VAL|SUBJ
D�

NON-LOCAL|QUE|LIST cons
�E

c.

wh-obj-lex-rule

SYNSEM|LOCAL|CAT|VAL

SUBJ non-wh-list
COMPS
D�

NON-LOCAL|QUE|LIST cons
�E


Furthermore, Zamaraeva (2021b) shows that, even with this more
complex hierarchy, an additional type is needed to constrain some
valence lists either to be empty or to not include any question words
(21). This is needed in order to avoid spurious ambiguity in cases
where there is more than one question word in the sentence. Without
these additional constraints, either lexical rule can apply to license the
sole affix needed on the verb. Lacking sufficient data from Makah but
based on the description in Davidson 2002, Zamaraeva (2021b) shows
how this works on one pseudo-language example (11c), presented here
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as (22), where a tree which would otherwise be licensed using (20c)
is ruled out, leaving only (20b) as the possibility.

(21)

non-wh-cons

FIRST
�
synsem
NON-LOCAL|QUE|LIST 〈 〉

�
REST non-wh-list


(22) S

S

1 NP

who

VP

*Vwh-obj-lex-rule�
DTR|SYNSEM|LOCAL|CAT|VAL|SUBJ non-wh-list

�
V�

SYNSEM|LOCAL|CAT|VAL|SUBJ〈 1 〉�
tverb

NP

what

Zamaraeva’s observation points towards the need for further ex-
ploration of how much the Grammar Matrix core should cover versus
how much should be offloaded to the customization system, or in other
words, which parts of the grammatical system we expect to be in every
grammar (see also Section 3.4.5). For example, lexical amalgamation
of non-local features could be brought back into the Grammar Matrix
but not at the level of the core; instead, it would be provided by the
customization system only for languages which seem to require it.

Our observation here is that this tension would be hard to notice
without the Grammar Matrix which provides the tools to speed up
grammar development (e.g. specifying a system of lexical rules, build-
ing here in particular on the robustness of the morphotactics library
discussed in Section 5) and at the same time embraces a methodology
which requires us to examine such a wide range of typological profiles
simultaneously and in such formal detail.
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4.4Summary

In this section, we presented several examples of how the Grammar
Matrix allowed us to discover tensions between different analyses
which could have gone unnoticed had we attempted to track all the
interactions between all the analyses manually without the means of
computer programs for generating grammars and then parsing sen-
tences with those grammars. This ability to computationally verify
analyses is what supports the explicitness and empiricism of a gram-
mar engineering approach to linguistic hypothesis testing. Identifying
the tensions such as described above efficiently guides future work.
Work-in-progress analyses such as the ones described here are thus
seen as concrete building blocks which ultimately serve to build a ro-
bust system of analyses with an explicit area of applicability.

5ACCUMULATING EVIDENCE
FOR ANALYSES’ ROBUSTNESS

Fully implemented systems of syntactico-semantic analyses which are
deployed in interaction with each other on test suites from diverse
languages not only allow us to detect problems in analyses but also to
accumulate, over time, a certain confidence that some analyses in fact
work well. If a set of hypotheses continues to account for more and
more data from more and more languages over time, it is reassuring
in terms of the quality of those hypotheses.

In this section, we present some examples of robustness that have
been observed in the Grammar Matrix. Section 5.1 gives an example of
how a syntactic phenomenon’s analysis can be built directly upon an
existing analysis of another part of the grammar; Section 5.2 discusses
how the system allows for easy reuse of the existing lexical types to
introduce new ones; and finally Section 5.3 shows several analyses
which relied heavily on the Grammar Matrix’s morphotactics library.
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5.1 Predicative adjectives in polar questions

An interaction between the polar questions library and the adjectives
library is illustrative of how the Grammar Matrix’s analyses, rooted in
typological analyses, are robust to unseen interactions between libra-
ries that occur as grammars grow in size.

The Grammar Matrix customization system has supported the
subject-auxiliary inversion strategy for forming polar questions found
in English (e.g. Is the dog barking?) since Bender and Flickinger
2005. Poulson’s (2011) work on tense/aspect marking and Fokkens’s
(2010) work on word order further developed the support for auxil-
iaries. However, the Grammar Matrix did not directly support cop-
ulas until Trimble (2014) added them in the context of the adjec-
tives library, as some languages require copulas with predicative
adjectives.

Though Trimble’s work was done without reference to polar ques-
tions in particular, the customization system was able to produce
grammars with subject-auxiliary inversion and copulas supporting
predicative adjectives with the interaction of these libraries correctly
supporting subject-copula inversion with minimal spurious ambiguity
that was simple to eliminate. See the examples in (23).

(23) a. copula, inverted: Is the dog old? [eng]
b. copula, not inverted: The dog is old. [eng]
c. auxiliary, inverted: Is the dog barking? [eng]
d. auxiliary, not inverted: The dog is barking. [eng]

The copula type introduced by Trimble (2014) was initially un-
derspecified for the feature controlling inversion (INV) and subse-
quently the inversion phrase structure rule (labelled in (24) as int (in-
terrogative)) was spuriously licensed in non-inverted copula phrases,
such as The dog is old. See both the valid and spurious parses in the
simplified schematic set of examples (24). Because the copula is under-
specified for INV, even though int-phrase bears the constraint [INV +]
the spurious parse in (24b) is produced.
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(24) a. valid analysis
subj-head-phrase

head-spec-phrase

the singular-lex-rule

dog

head-comp

�
INV bool
�

is
old

b. invalid analysis; spurious application of int-phrase rule

int-phrase�
INV+
�

subj-head-phrase

head-spec-phrase

the singular-lex-rule

dog

head-comp-phrase

�
INV bool
�

is
old

c. valid copula inversion analysis

int-phrase�
INV+
�

head-comp-phrase

head-comp-phrase

inv-lr�
INV+
�
�
INV−�

is

head-spec-phrase

the singular-lex-rule

dog

old

Grammars that licensed the spurious analysis in (24b) were only
produced when both polar inversion and copulas were included in the
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specification, a scenario not tested during the development of the po-
lar question library, auxiliary support, or copula support. Once the
connection between auxiliary inversion and copulas became appar-
ent, it was a simple matter to include copulas in the list of types to
which the existing customization logic for the polar question library
was adding the [INV −] constraint. The resulting customization pro-
cess was confirmed to work correctly for languages with inversion; it
licensed inverted and non-inverted questions and did not produce the
spurious ambiguity in the non-inverted questions.

This sort of analysis of the interaction between libraries with min-
imal effort demonstrates the robustness of both libraries and their un-
derlying analyses based on the typological and syntactic literature as
well as the grammar customization process.

5.2 Reusing and extending the lexical type hierarchy

The original Grammar Matrix of Bender et al. (2002) provided a hierar-
chy of lexical types, which early users of the Grammar Matrix extended
by hand, by either creating lexical entries directly instantiating these
types or by creating subtypes and then instantiating them. Drellishak
(2009) developed the original web questionnaire and customization
logic for the lexicon, which exposed a subset of the core grammar’s
lexical types through the questionnaire and allowed users to define
lexical types in an easier and more abstracted way.

Since then, for over a decade, the lexicon’s underlying structure
as well as the web interface for adding lexical types and lexical en-
tries have served the development of many new libraries, for the
most part requiring only minor extensions. Most extensions have in-
volved merely adding new subtypes (and exposing them via the web
interface). From the point of view of HPSG, such developments con-
firm the generality of the original types. This is not to say that there
haven’t also been revisions to underlying types, reflecting the abil-
ity of the project to refine its analyses over time in a data-driven
fashion.

HPSG is a lexicalist theory, which means it assumes a large
number of lexical types in any grammar. Over the years, the core
lexicon structure (consisting of basic supertypes such as lex-item
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with a hierarchy of subtypes for different kinds of semantic com-
position and different valence frames) was successfully extended to
support more parts of speech (Trimble 2014; Song 2014; Nielsen
2018).

In addition to refining and extending the lexical type hierarchy
in the core grammar, the various libraries have also provided a range
of types, accessible via customization at need, which apply in some
but not all languages. These include such items as the paired adverbs
used in Mandarin [cmn] (Sino-Tibetan) and other languages to ex-
press clausal connectives like ‘because’, with one adverb in each clause
(Howell and Zamaraeva 2018) and copulas in languages that use them
with adjectival predicates (Trimble 2014, Section 4.2).

To take an example of how the existing type hierarchy is reused
in more detail, consider the recently added support for question
words (Zamaraeva 2021a, Section 6.1) which includes lexical types
for question pronouns (such as who/what in English), question de-
terminers (such as the English which), location in space and time
adverbs (like the English where and when), and morphologically sim-
ple question verbs such as the Chukchi req which can be roughly
translated into English as ‘do what?’.47 Adding those lexical types
was straightforward given the existing Grammar Matrix lexicon
framework.

For example, the type for question pronouns is substantially
similar to the already existing one for personal pronouns. The con-
straints shared between the two, shown in (25), model words which
are nominal ([HEAD noun]), may not serve as modifiers ([MOD 〈 〉]),
are lexically saturated in their valence (need no dependents as
shown by the empty lists as the values of the VAL features), and
introduce two predications under the REL feature (the pronoun’s
relation and the associated quantifier). The constraints specific to
the question pronoun type are shown in (26), and are limited
to two: the specific quantifier (which_q_rel, characteristic of con-
stituent questions) and the non-empty value for QUE, used to de-
tect the presence of these words in both the in-situ and head-filler
analyses.

47Such verbs do not involve incorporation, according to Hagège (2008,
page 7).
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(25)

SYNSEM



LOCAL



CAT



HEAD
�
noun
MOD〈 〉
�

VAL


SPR 〈 〉
SPEC 〈 〉
SUBJ 〈 〉
COMPS 〈 〉





CONT



HOOK
�
LTOP 5

INDEX 4

�

RELS|LIST
*

3


arg0-relation
LBL 0

ARG0 4
�
ref-ind
�
,
�
quant-relation
RSTR 2

�+

HCONS|LIST
*�

HARG 2

LARG 0

�+
ICONS|LIST 〈 〉




LKEYS

KEYREL 3

�
LBL 5

ARG0 4

�
NON-LOCAL
�
REL|LIST 〈 〉
SLASH|LIST 〈 〉

�





(26)SYNSEM
�
LOCAL|CONT|RELS|LIST 〈 [ARG0 1 ], [ PRED which_q_rel ] 〉
NON-LOCAL|QUE|LIST 〈 1 〉

�
Similarly, the type for question determiners (not shown) only

needs to add, to the basic determiner type, a dependency between
itself and the entity for which the determiner serves as the specifier;
interrogative verbs (not shown) differ from the already existing verb
types in the semantic relations that they introduce (see Sections 6.1,
6.9 in Zamaraeva 2021a for details on all of these lexical types). In
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Section 5.3.1, we give an example of how this analysis straightfor-
wardly interacts with another part of the system, the analysis of ad-
nominal possession.

5.3Lexical rules

Significant progress has been made since 2010 on the support for syn-
tactic phenomena that can be expressed via morphological marking,
including adnominal possession, nominalization, evidentiality, infor-
mation structure, incorporated adjectives, and more (see Table 1). The
Grammar Matrix customization system prompts users to provide posi-
tion classes (groups of lexical rule types which take the same position
within a word), lexical rule types, and lexical rule instances which
may specify spelling and, in some cases, contribute to the seman-
tics.48 The resulting specifications are assembled by the customization
system into fairly complex hierarchies of types and sometimes auto-
matically inferred intermediary types for simplifying the type descrip-
tions. The Grammar Matrix’s goal in general is to partially automate
and therefore speed up grammar development, and its morphotactics
library (O’Hara 2008; Goodman 2013) showcases this feature partic-
ularly well, as directly writing grammar code for large morphological
systems manually would be especially time consuming.

Several significant grammar implementations have tested the lim-
its of the Grammar Matrix morphological systems. Borisova (2010),
Bender et al. (2014), Crowgey (2019), and the efforts discussed in
Section 6.2 have implemented small to large morphological systems
using the Grammar Matrix. Bender et al. (2012) describe a grammar
fragment modelling the lexicon and morphology of Chintang [ctn]
(Sino-Tibetan), defined entirely through the customization system,
with lexical entries imported automatically from a Toolbox file.49
This grammar fragment includes 160 lexical rules for verbs and 24
for nouns, hand-defined via the customization system based on the
analysis in Schikowski 2012. Crowgey (2019, Section 5) describes a

48Examples include lexical rules for incorporated adjectives, certain valence
changing morphology, and evidentials.
49Toolbox is a data management program designed for linguistic work by SIL

International (https://software.sil.org/toolbox/).
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grammar and morphophonological transducer of Lushootseed [lut]
(Salishan) where the grammar includes two general position classes
with seven lexical rules, two nominal position classes with four lexi-
cal rules, and nine verbal position classes with thirty-four lexical rules.
Wax (2014, Section 6.1) describes an automatically specified grammar
fragment of French [fra] with seventy position classes and twenty-one
lexical types described by 938 individual lines in the grammar speci-
fication file that the Grammar Matrix outputs.

Specifying such large morphological systems would take signifi-
cantly longer without the Grammar Matrix morphotactics library with
its web-based user interface and abstracted grammar specifications
and automatic hierarchy creation. But the morphological support in
the Grammar Matrix extends well beyond morphotactics. In this sub-
section, we briefly survey examples of libraries that build on the mor-
photactic infrastructure to provide typologically broad support for a
range of phenomena: adnominal possession, fine-grained differences
between attributive and predicative adjectives, incorporated adjec-
tives, and valence changing morphology.

5.3.1 Adnominal possession

Nielsen (2018) introduces a Grammar Matrix library for adnominal
possession. For languages where the expression of adnominal pos-
session involves affixes indicating features (e.g. person/number) of
the possessor, this library makes use of the case library (Drellishak
2009) and the morphotactics library (O’Hara 2008; Goodman 2013).
Lexical rule supertypes added to the Grammar Matrix system to sup-
port adnominal possession provide an example of how an imple-
mented grammar based on a robust analysis can make correct pre-
dictions which humans working without the aid of a computer may
overlook.

Zamaraeva (2021a, page 369) describes how, in the process of
testing the constituent questions library on a held-out language, Jalku-
nan [bxl] (Mande), she added to the grammar specification a lexical
entry for a question pronoun but was unable to specify an entry for
the corresponding possessive pronoun since in the process of devel-
opment, possessive question pronouns were left unimplemented due
to time constraints. However, it turned out that the Grammar Matrix
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system already contains everything necessary to produce the correct
analysis for the Jalkunan example in question (27), thanks to the ad-
nominal possession library having a lexical rule that can turn a per-
sonal pronoun into a possessive pronoun, and thanks to the constituent
questions library implementing question pronouns very similarly to
how personal pronouns are implemented (see also Section 5.2).

(27) māʔā-nĭ
who-INDEP

sàá=∅
house=be

nɛ=̀∅
there=Q

‘Whose house is that?’ [bxl] (Heath 2017, page 273)

The DMRS50 artifact in Figure 11 shows the correct semantics
for the sentence obtained automatically with the Grammar Matrix-
generated grammar: the questioned element is a person (which_q and
person), the person is the possessor of the house (ARG1 of the pos-
session relation is the possessum, ARG2 is the possessor), and the
house is located in some space. The importance of this example is
that it was not targeted when the grammar specification for Jalku-
nan was put together, and yet the resulting grammar provided ap-
propriate analyses. This shows that the analysis of adnominal pos-
session (Nielsen 2018) robustly generalizes to constituent questions,
even though constituent questions were not part of the Grammar Ma-
trix when the analysis for adnominal possession was developed and
tested.

poss exist_q _person_n which_q _house_n _be_v loc_nonsp _place_n exist_q

TOP

ARG1/EQ

ARG2/NEQ

RSTR/H

RSTR/H

ARG1/NEQ

ARG1/EQ

ARG2/NEQ

RSTR/H

Figure 11: DMRS for sentence (27). The structure can be read as: Which person
possesses the house there?

50DMRS (Copestake 2009) is Dependency MRS, which represents the same
information as MRS, but in a dependency graph.
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5.3.2 Lexical rules supporting adjectival syntax

Trimble (2014) introduces a Grammar Matrix library for adjectives
in attributive and predicative constructions. The customization sys-
tem’s design to provide custom types in addition to the core grammar
proved particularly useful for several adjectival phenomena, enabling
a more parsimonious analysis for most languages while accommodat-
ing several phenomena that were in conflict with the main analysis,
particularly constrained argument agreement and switching adjectives
(Stassen 2013).

Languages such as German [deu] (Indo-European) show what
Trimble (2014, pages 76–79) calls constrained argument agreement.
In these languages, a class of adjectives has one set of morphology
in the attributive construction and a different set in a predicative con-
struction. In German, agreement morphology is licensed in the attribu-
tive construction and is not licensed in the predicative construction.

(28) a. Der
DET.M.NOM.SG

große
big.M.NOM

Hund
dog

bellte.
bark.PST

‘The big dog barked.’ [deu] (adapted from Hankamer and
Lee-Schoenfeld 2005)

b. Ich
1SG

bin
COP.PRES.1SG

groß.
big

‘I am tall.’ [deu] (adapted from Landman and Morzycki
2003)

gClimb (Fokkens 2014) includes an analysis for this construc-
tion where a single position class contains both lexical rules for the
agreement morphology used in the attributive construction and a non-
inflecting lexical rule which allows the adjective to be the complement
of a copula (this rule specifies [PRD +] on the adjective). This way,
adjectives can either undergo the predicative lexical rule and be li-
censed as copula complements or undergo one of the agreement rules
and be licensed in the attributive position.

Trimble (2014, pages 74–79) finds a related behaviour of adjec-
tival morphology that Stassen (2013) calls switching in languages like
Maori [mri] (Austronesian). A single adjective class may be licensed
with different sets of syntax and morphology under different circum-
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stances, such as one set similar to nouns (see (29b)) and one to verbs
(see 29d)).

(29) a. Nominal predicate:

he
DET.INDF

kiwi
kiwi

teera
this

manu
bird

‘This bird is a kiwi.’ [mri] (Biggs 1969, page 90, Stassen
2013)

b. Noun-like adjectival predicate:

he
INDF

pai
good

te
DET.DEF

koorero
talk

‘The talk is good.’ [mri] (Biggs 1969, page 14, Stassen 2013)
c. Verbal predicate:

ka
INCEP

oma
run

te
DET.DEF

kootiro
girl

‘The girl runs.’ [mri] (Biggs 1969, page 18, Stassen 2013)
d. Verb-like adjectival predicate:

ka
INCEP

pai
good

te
DET.DEF

whare
house

nei
this

‘This house is good.’ [mri] (Biggs 1969, page 6, Stassen
2013)

The cross-linguistic analysis that is fundamental to the Grammar
Matrix leads to the juxtaposition of constrained argument agreement
in German and switching adjectives in Maori, offering the opportu-
nity for the same analysis to work in both situations. Like in Fokkens
2014, Trimble’s (2014, pages 74–79) analyses of adjectives in lan-
guages like German and Maori define adjective types without specifics
about their syntactic licensing, such as whether or not the types are
licensed as a copula complement or as a matrix predicate, and the syn-
tactic behaviour and morphology are defined through lexical rules. A
single required position class is defined with two non-inflecting lexical
rule types, one which acts as the base analysis (such as tense mark-
ing or being licensed as a copula complement) and one for the other
behaviour (such as agreement or being licensed in the attributive con-
struction).
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Given the need to support languages like German and Maori, as
well as any languages which don’t have any morphological reflection
of the syntactic distribution of adjectives, the question arises: what
should go into the cross-linguistic core grammar? Making a position
class like the one posited for German and Maori necessary for all
languages would push unwanted complexity into languages where it
is not necessary. The solution adopted is to leverage the type hier-
archy and the possibility of spreading information between cross-
linguistically shared supertypes and language-specific subtypes.

(30) ...

Grammar Matrix
Core Definitions

Language-specific
Definitions

basic-adj-lex

Scopal Adjective basic-intersective-adj-lex

Attributive
(type or rule)

Attributive
only

(type or rule)
Regular

(type or rule)

Stative predicate
(type or rule)

Predicative only
(type or rule)

Stative predicate
only

(type or rule)
Copula

complement
only

(type or rule)

In order to accommodate both constrained argument agree-
ment and switching adjectives, the customization system provides
a type hierarchy (shown in (30)) with basic adjectival type defini-
tions (HEAD type, scopal versus intersective adjectives, intersective
adjectives modify nouns, etc.) in the core grammar and more specific
types (attributive versus predicative, copula complement versus sta-
tive predicate, etc.) in the language-specific subtypes. Subsequently,
the customization system can provide additional lexical types in the
language-specific subtypes if neither constrained argument agreement
nor switching adjectives are present; and if either of these phenomena
are present, it provides lexical rules which specify the correct syn-
tactic behaviour. The source of the robustness of this approach lies
in the combination of the expressive power of the Grammar Matrix’s
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lexical rule infrastructure alongside the basic architecture of splitting
the core grammar and the language-specific subtypes to build custom
analyses based on the typological facts of the language.

5.3.3Adjectives as affixes on nouns

Yup’ik [esu] (Inuit-Yupik-Unangan), Penobscot [aaq-pen] (Algic), and
other languages have attributive adjectives that appear as affixes on
nouns (see (31a)) usually in addition to adjectives that appear as
words (see (31b)) (Miyaoka 2012, page 101, Quinn 2006, pages 28–
29). Whereas most morphology either does not add predicates or adds
grammatical predicates (such as negation), adjectives are an open
class of morpheme with one-to-one morpheme to predicate mapping.

(31) a. qayar-pa-ngqer-tuq
kayak-big-have-IND.3SG
‘He has a big kayak.’ [esu] (Miyaoka 2012, page 136)

b. nutaraq
new.thing.ABS.SG

angyaq
boat.ABS.SG

ang’-uq
big-IND.3SG

‘The new boat is big.’ [esu] (Miyaoka 2012, page 466)

While implementing adjectival lexemes in the Grammar Matrix
required reworking of the lexical hierarchy to support adjectives cross-
grammatically (Trimble 2014, pages 76–79), the analysis of incorpo-
rated adjectives introduced by Trimble (2014, page 79) required nei-
ther changes to the core grammar nor the development of new kinds
of questionnaire logic. Rather, it was possible to build it by combining
already existing functionality. The existing lexical rule infrastructure
(O’Hara 2008; Goodman 2013), both in terms of the core grammar and
the customization system, was able to handle this added functionality
with no extensions required. Existing functionality in the user inter-
face for specifying predicates on lexical items was used to allow spec-
ifying predicates for adjectives as affixes on nouns; and existing cus-
tomization logic and core grammar functionality resulted in grammar
fragments that correctly captured the facts of the language (Trimble
2014, pages 128–129).
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5.3.4 Valence change

Curtis (2018a) describes an implementation of valence-changing mor-
phological operations, including passives, causatives, benefactives,
and applicatives found in many language families. These analyses
were built upon the existing foundation of argument structure in the
Grammar Matrix, primarily the separation of syntactic roles in valence
lists and semantic roles in argument slots. Starting from the broad
typological groupings of valence-changing morphology as described
in Haspelmath and Müller-Bardey 2001, pages 4–14, the implemen-
tation focused on decomposing the analyses of these operations into
fine-grained atomic rule components. For example, in Zulu the bene-
factive and motive affixes are homonymous and differ only in the se-
mantic predicate contributed and noun class constraint on the added
object (Buell 2005):

(32) a. Benefactive:

Ngilahlela
Ngi-lahl-el-a
1S.SBJ-dispose.of-APPL-FV

uThandi
u-Thandi
1-1.Thandi

udoti
u-doti
1-1.trash

‘I’m taking out the trash for Thandi.’ [zul] (Buell 2005,
page 189)

b. Motive:

Ngilahlela
Ngi-lahl-el-a
1S.SBJ-dispose.of-APPL-FV

imali
i-mali
9-9.money

udoti
u-doti
1-1.trash

‘I’m taking out the trash for money.’ [zul] (Buell 2005,
page 189)

The library generates distinct, atomic lexical rule components for
these operations, for example specifying only the PRED value of the
added predicates as in (33a) and (33b). These are then assembled by
the customization system – along with the common applicative rule
(33c) and added argument rule (33d), which together add the new
syntactic argument and connect it to the new semantic predicate – into
lexical rule hierarchies that lexical rule instances then inherit from
directly.
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(33) a.
benefactive-pred-lex-rule

C-CONT |RELS |LIST
D�

PRED benefactive_rel
�E

b.
motive-pred-lex-rule

C-CONT |RELS |LIST
D�

PRED motive_rel
�E

c.


basic-applicative-lex-rule

C-CONT

RELS |LIST
*�

event-relation
ARG1 1

�+
HCONS |LIST 〈 〉


DTR |SYNSEM |LOCAL |CONT |HOOK | INDEX 1


d.

added-arg3of3-lex-rule

SYNSEM |LOCAL |CAT |VAL |COMPS
*

2 ,

LOCAL

CAT |VAL
�
SPR 〈 〉
COMPS 〈 〉
�

CONT |HOOK | INDEX 1



+

C-CONT |RELS
D�

ARG2 1
�E

DTR |SYNSEM |LOCAL |CAT |VAL |COMPS 〈 2 〉


Similar decompositions into blocks were implemented for object-

removing, subject-adding, and subject-removing operations, support-
ing implementation of e.g. (respectively) deobjective, causative, and
passive morphology. These phenomena were added to the Grammar
Matrix customization system without any additional theoretical ad-
ditions or machinery: valence-changing operations are specified on
position classes and lexical rule types using the existing morphotac-
tics library, and the rule components operate on valence lists, se-
mantic predicates, case marking, and scopal arguments using the
existing Grammar Matrix mechanisms. Using these existing mech-
anisms and stored analyses to create new abstractions at interme-
diate levels of detail enables grammar engineers to more directly
model the commonalities and variations in how valence change is ex-
pressed.
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5.4 Summary

The Grammar Matrix represents a large and complex system of HPSG
analyses accounting for data in a wide typological range. Crucially, by
rigorously testing said analyses against data from many languages over
the years, the project has demonstrated the robustness of the analyses
that it houses, particularly of the implementation of the lexical types
and the lexical rule types generally and the analyses of specific phe-
nomena relying on those types. In this section, we talked about how it
was possible to elegantly extend the system to include various types of
adjectives, question pronouns, and valence-changing morphology, to
name just several of the phenomena that were successfully added over
the years. Crucially, the analyses for all these phenomena demonstra-
bly work together as a system, even in cases when the system engineers
did not deliberately consider some of the possible interactions.

6 DISCOVERING COMPLEXITY
THROUGH USE

Where the data driven methodology described in Section 3.4.1 and
the attention to interacting phenomena such as described in Section 4
and Section 5 rigorously test the robustness of the Grammar Matrix’s
analyses, the use of the Grammar Matrix outside its own development
offers the opportunity to vet these analyses and corresponding imple-
mentations at scale. External grammars have the potential to extend
the vetting of the Grammar Matrix’s analyses and reveal further un-
foreseen interactions, by incorporating more phenomena and larger
and more complex lexical and morphological systems. Three exam-
ples of such use of the Grammar Matrix are: (i) the AGGREGATION
project (Bender et al. 2014; Zamaraeva et al. 2019a; Howell 2020;
Howell and Bender 2022, among others), which uses the Grammar
Matrix to generate grammars automatically on the basis of linguistic
corpora; (ii) an annually offered graduate-level grammar engineering
course at University of Washington, in which students use the Gram-
mar Matrix as a starting point and build out the grammars by hand;
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and (iii) the broader use of the Grammar Matrix by the research com-
munity to develop larger DELPH-IN grammars for linguistic analysis.
The sizes of these grammars and their associated test suites, compared
with typical Grammar Matrix development grammars, allow the test-
ing of analyses for more interacting phenomena at once. Furthermore,
both AGGREGATION and the grammar engineering course place a fo-
cus on under-documented languages; and in doing so, provide fur-
ther evaluation of the Grammar Matrix’s analyses in terms of cross-
linguistic generalizability.

6.1The AGGREGATION project

The configurable nature of the Grammar Matrix’s grammar specifica-
tions makes this toolkit particularly well-suited to support grammar
inference. Grammar inference (Bender et al. 2014; Zamaraeva et al.
2019a) is the practice of automatically generating grammars from par-
tially annotated text and some external source of linguistic knowledge
(Howell 2020, page 6; Howell and Bender 2022, page 2).51 The AG-
GREGATION Project leverages two sources of linguistic knowledge –
interlinear glossed text (IGT) and the Grammar Matrix customization
system – to automatically create machine-readable grammars by in-
ferring grammar specifications for the latter from the former.

Unlike grammars created by linguists using the Grammar Matrix
customization system directly, grammars inferred by the AGGREGA-
TION Project’s morphological inference system (MOM; Wax 2014; Za-
maraeva 2016; Zamaraeva et al. 2017) and syntactic inference system
(BASIL; Howell 2020; Howell and Bender 2022) are brought to scale
much more quickly. The rapid scaling offered by automatic inference
allows for a degree of complexity that is much more difficult to reach
when defining a grammar by hand.

In particular, the MOM morphological inference system infers lex-
ical entries and morphological rules for each form attested in the cor-
pus of IGT data. These lexical entries and rules are merged into larger

51Howell (2020) and Howell and Bender (2022) define the term grammar
inference in the context of the AGGREGATION project; while earlier work such
as Bender et al. 2014 and Zamaraeva et al. 2019a refers to grammar inference or
describes it as a practice but does not provide a definition.
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classes, resulting in grammars that account for a variety of previously
unseen strings in a language. However, as Howell (2020, pages 123–
128) and Howell and Bender (2022, pages 29–30) observe, such a
large set of morphological forms can lead to unforeseen sources of am-
biguity. Ambiguity in Howell and Bender’s grammars could be traced
back both to inference and to the Grammar Matrix and progress to-
wards reducing this ambiguity was made by Conrad (2021). The dis-
covery of these sources of ambiguity was possible because of the AG-
GREGATION project’s ability to build large-scale grammars quickly
and in turn reveal complexity in language or models of language that
would otherwise be difficult to find.

6.2 Grammar Matrix-based grammar development
in graduate-level curriculum

The Grammar Matrix has been used in a graduate-level multilingual
grammar engineering course that has been taught annually at the Uni-
versity of Washington since 2004 (see Bender 2007). In this course,
students begin by customizing grammars using descriptive resources
and the Grammar Matrix customization system; and then continue to
build those grammars beyond the customization system’s functional-
ity to achieve greater coverage over the ten week course. Since 2004,
over 125 languages have been studied in this course, including many
that are the subject of active language documentation projects. The
course has served as an important testbed for new Grammar Matrix
libraries as they are developed and as a test of the robustness of the
system. Each grammar tests at minimum the lexicon and morpholog-
ical systems; and most exercise the lexicon, morphology, agreement,
case, tense-aspect-mood, and coordination libraries. Over the years,
each of the other libraries have been tested by multiple languages in
connection with the other libraries included in that year’s curriculum.
The result has been thorough debugging of Grammar Matrix libraries
using combinations of phenomena that were not necessarily consid-
ered or tested during library development (such as what we describe
in Section 4.2).

To document the analysis that has come from this course, many
of the resulting grammar specifications, test suites, and grammar frag-
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ments are available via Language CoLLAGE (Bender 2014). In addi-
tion, some grammars from the class have resulted in publications fo-
cussed on testing specific hypotheses, such as analyzing Kolyma Yuk-
aghir [yux] (isolate) as having focus case (Zamaraeva and Bender
2014) and suggesting a previously unconsidered negation strategy in
Nanti [kox] (Arawakan) (Inman and Morrison 2014).

Since 2019, students have used grammar specifications produced
by the AGGREGATION system (Section 6.1) as input to the customiza-
tion system (as opposed to creating the specification from scratch us-
ing the Grammar Matrix’s web-based questionnaire). The incorpora-
tion of the AGGREGATION project in the grammar engineering course
enables grammars to include both the lexical and morphological com-
plexity offered by inference from corpora and consequently increases
the number of phenomena that can be covered in the course. As a
result the potential scale of these grammars increases, allowing for
even more testing as the Grammar Matrix continues to grow.

6.3Larger DELPH-IN grammars

In addition to the relatively small grammars generated by AGGREGA-
TION or developed by students, the Grammar Matrix has given rise
to a number of larger grammars and resource grammars. Mid-sized
grammars have been developed for the following languages using the
Grammar Matrix customization system as a starting point and refin-
ing and adding analyses for additional phenomena: Bulgarian [bul]
(BURGER; Osenova 2010, 2011), Dutch [nld] (gCLIMB Dutch; Fokkens
2011), Hausa [hau] (HaG; Crysmann 2012), Hebrew [heb] (HeGram;
Greshler et al. 2015), Indonesian [ind] (INDRA; Moeljadi et al. 2015),
Lushootseed [lut] (Crowgey 2019), Mandarin [cmn] and Cantonese
[yue] Chinese (ManGO; Chunlei and Flickinger 2014, Zhong; Fan et al.
2015; Fan 2018), Nuuchahnulth [nuk] (Inman 2019), Thai [tha] (Slay-
den 2011), and Wambaya [wmb] (Bender 2010). The Grammar Ma-
trix has also given rise to even larger grammars that have under-
gone long-term development, including for German [deu] (gCLIMB;
Fokkens 2011), Korean [kor] (KRG; Kim and Yang 2003; Song et al.
2010), Modern Greek [ell] (MGRG; Kordoni and Neu 2005), Norwe-
gian [nob] (NorSource; Hellan and Haugereid 2003), Portuguese [por]
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(LXGram; Costa and Branco 2010), and Spanish [spa] (SRG; Marimon
2010).

In addition to the benefits of kick-starting development, these
grammars have also benefited from standardization to Minimal Re-
cursion Semantics provided by the Grammar Matrix. DELPH-IN gram-
mars generate MRS representations for sentences which can be used
in applications which benefit from semantic representations, as well
as to create rich, consistent semantic annotations (see Bender et al.
2015, among others). The consistency of MRS representations gener-
ated by DELPH-IN grammars is useful for such applications as machine
translation (Copestake et al. 1995; Bond et al. 2011). Even some gram-
mars that did not start by using the Grammar Matrix – such as the
Japanese resource grammar (Jacy; Siegel et al. 2016) – have incor-
porated analyses from the Grammar Matrix to maintain consistency
of MRS representations with other DELPH-IN grammars. Examination
of these grammars and how they have diverged from Grammar Ma-
trix analyses during development poses an interesting area for further
work to understand how those analyses hold up at scale.

7 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a resource, a system of methodologies, and
multiple specific examples of how syntactic hypotheses can be stud-
ied rigorously in complex interactions using the HPSG formalism and
the Grammar Matrix meta-grammar engineering framework (Bender
et al. 2002, 2010). We looked back at some of the various contribu-
tions made to the Grammar Matrix project since 2010, summarizing
the range of phenomena that can currently be modelled and the typo-
logical range that the system demonstrably covers.

The first ten years of Grammar Matrix development were charac-
terized by the initial abstraction of the core grammar from the English
Resource Grammar, the innovation of the idea of libraries of anal-
yses of cross-linguistically variable phenomena and the orientation
to linguistic typology as a key source of data and analyses, and the
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development of a regression testing regime for those artifacts. Drel-
lishak’s 2009 project began with organizing imagined Grammar Ma-
trix libraries into a (software) dependency tree, leading him to focus
on core libraries that others would necessarily depend on (such as
case, agreement, and support for the lexicon).

After another decade plus of development, the Grammar Matrix
has grown in complexity, with more libraries covering more com-
plex phenomena, allowing for testing more interactions, beginning to
realize the promise of linguistic hypothesis testing at a large scale,
across languages and ranges of phenomena within those languages.
The CLIMB (e.g. Fokkens 2014) and AGGREGATION (e.g. Howell
2020) projects have pushed the boundaries on linguistic hypothesis
testing in two further directions: (i) maintaining alternative hypothe-
ses over the course of grammar development and (ii) producing work-
ing grammar fragments from the products of field linguistic research.

Where can we expect this project to go in the next decades?
There are still many linguistic phenomena to be modelled in Gram-
mar Matrix libraries, including adverbs (other than adverbial clauses
and question adverbs), noun compounds, relative clauses, a broader
range of valence types (including raising and control phenomena), as
well as phenomena which are high frequency in naturally occurring
speech collected in language documentation projects such as reported
speech, greetings, and discourse markers. There is also near-term work
to be done on interactions discovered (and not yet resolved) such as
the ones described in Section 4. The addition of computation types
to the grammar engineer’s toolkit also opens up the possibility for
streamlining some existing analyses and making the resulting gram-
mars accordingly easier to maintain. An important direction for future
work is seeing how the Grammar Matrix can be informed by its de-
scendant grammars once they are developed beyond the start that the
Grammar Matrix provided.

The Grammar Matrix has shown the value of computational im-
plementation to reproducibility in the study of grammar and the con-
comitant possibility of building directly on the results of others. As
the system grows, it also opens up further avenues for study not pre-
viously accessible, such as seeking to differentiate which aspects of
model complexity are inherent to complexity in the modelled domain
and which are consequences of formal or analytical choices.
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