
Neural heuristics for scaling
constructional language processing

Paul Van Eecke1,2, Jens Nevens1, and Katrien Beuls3
1 Vrije Universiteit Brussel

2 KU Leuven
3 Université de Namur

ABSTRACT

Keywords:
neuro-symbolic
AI, neural
heuristics,
language
processing,
computational
construction
grammar

Constructionist approaches to language make use of form-meaning
pairings, called constructions, to capture all linguistic knowledge
that is necessary for comprehending and producing natural language
expressions. Language processing consists then in combining the con-
structions of a grammar in such a way that they solve a given language
comprehension or production problem. Finding such an adequate se-
quence of constructions constitutes a search problem that is combi-
natorial in nature and becomes intractable as grammars increase in
size. In this paper, we introduce a neural methodology for learning
heuristics that substantially optimise the search processes involved in
constructional language processing. We validate the methodology in
a case study for the CLEVR benchmark dataset. We show that our
novel methodology outperforms state-of-the-art techniques in terms
of size of the search space and time of computation, most markedly
in the production direction. The results reported on in this paper have
the potential to overcome the major efficiency obstacle that hinders
current efforts in learning large-scale construction grammars, thereby
contributing to the development of scalable constructional language
processing systems.

Journal of Language Modelling Vol 10, No 2 (2022), pp. 287–314

Van Eecke et al.

1 INTRODUCTION

Constructionist approaches to language (Goldberg 2003) analyse all
linguistic knowledge that is necessary for language comprehension
and production in terms of constructions. A construction is defined as
a conventionalised pairing between a linguistic form and its meaning
(Goldberg 1995; Kay and Fillmore 1999). There exists no restriction
in the nature of the form and the meaning that a construction can
capture (Fillmore 1988, p. 36). The form pole of a construction can
include morphemes and word forms, as well as larger patterns that
range from idiomatic expressions (e.g. “Break a leg!”), over partially
instantiated structures (e.g. “X takes Y for granted”), to fully abstract
schemata (e.g. the ditransitive “X VERB Y Z” as instantiated in “Simon
sent his parents a postcard”). The meaning pole of a construction can
contain any semantic or pragmatic information that is associated with
a particular form, including lexical and phrasal meaning, the assign-
ment of semantic roles, and the composition of logical structures.

According to the constructionist paradigm, the different construc-
tions that constitute a construction grammar can freely combine in
order to collaboratively map between a natural language utterance
and a representation of its meaning (Goldberg 2006, p. 22). Due to
the unrestricted nature of a construction grammar, the non-locality
of constructions, and the fact that the application of a construction
does not necessarily correspond to a tree-building operation (van Trijp
2016), constructional language processing cannot straightforwardly
be implemented in a faithful way using common techniques such as
chart parsing and chart generation (see e.g. Pereira and Warren 1983;
Shieber 1988; Kay 1996). Instead, current systems implement the pro-
cess of finding a sequence of constructions that perform an adequate
mapping between a linguistic expression and a representation of its
meaning as a search process (Bleys et al. 2011; Van Eecke and Beuls
2017). This search process is combinatorial in nature and becomes in-
tractable as grammars increase in size. The intractability of construc-
tion grammars is a consequential problem as it constitutes a major ob-
stacle that hinders ongoing research in learning large-scale construc-
tion grammars. It thereby limits their usability in both usage-based
linguistics research and language technology applications.

[288]

Scaling constructional language processing

Previous approaches to overcoming this intractability problem
have either only been partially effective, as in the case of priming net-
works (Wellens and De Beule 2010; Wellens 2011), or have imposed
a global order on constructions, which goes against the constructional
idea of “allowing constructions to combine freely as long as there are no
conflicts” (Goldberg 2006, p. 22), as in the case of construction sets
(Beuls 2011).

In this paper, we introduce a novel methodology for learning
heuristics that substantially optimise the search processes involved
in constructional language processing. The heuristics are based on
sequence-to-sequence models that are trained to estimate at any point
in processing the probability that the application of a particular con-
struction will lead to a solution. We evaluate the methodology on
the CLEVR benchmark dataset (Johnson et al. 2017) and show that
it outperforms state-of-the-art approaches, both in terms of size of the
search space and time of computation.

The remainder of this paper is structured as follows. Section 2 pre-
cisely defines the search problem involved in constructional language
processing, discusses state-of-the-art approaches, and introduces the
dataset and grammar that we will use. Section 3 presents our neural
methodology for learning heuristics, which constitutes the main con-
tribution of the paper. Section 4 describes the setup of our experiments
and presents the evaluation results. Finally, the method and results are
discussed in Section 5. An interactive web demonstration accompany-
ing this paper can be consulted at https://emergent-languages.
org/demos/neural-heuristics. The web demonstration provides
examples of the methodology introduced in this paper in full detail.

2PROBLEM DEFINITION

We first define constructional language processing as a state-space
search problem, which is a class of problems that has a long history
in the field of artificial intelligence (Newell and Simon 1956; Nilsson
1971). For doing this, we adopt the terminology that is used in Fluid
Construction Grammar (FCG – https://www.fcg-net.org) (Steels

[289]

https://emergent-languages.org/demos/neural-heuristics
https://emergent-languages.org/demos/neural-heuristics
https://www.fcg-net.org

Van Eecke et al.

2011; van Trijp et al. 2022; Beuls and Van Eecke 2023), the lead-
ing computational construction grammar implementation. We then
discuss the merits and limitations of state-of-the-art approaches, in
particular the use of priming networks and the use of construction
sets. Finally, we introduce the CLEVR dataset, which will be used as
a benchmark to evaluate our methodology against the state of the art
in Section 4.

2.1 Constructional language processing

Constructional language processing is the process in which the dif-
ferent constructions of a construction grammar combine in order to
comprehend or produce natural language expressions. Comprehension
refers to the process of mapping a natural language expression to a
representation of its meaning, while production refers to the inverse
process of mapping a semantic representation to a natural language ut-
terance. Both processes are performed by the same grammar, i.e. the
same inventory of constructions. Constructional language processing,
as operationalised in the FCG framework, revolves around two basic
concepts: ‘transient structures’ and ‘constructions’.

• Transient structures A transient structure is a feature structure
that represents all that is known about a linguistic expression at a
given point during processing. Transient structures correspond to
state representations in the classical problem solving paradigm.
Before processing has started, the transient structure, which is
at that point called ‘initial transient structure’, only contains the
input to the comprehension or production process. In compre-
hension, the input consists of an utterance; while in production,
it consists of a semantic representation.

• Constructions A construction (CXN) is a feature structure that
represents a bidirectional mapping between the formal and the se-
mantic aspects of a linguistic entity. Constructions correspond to
operators in the problem solving paradigm and consist of precon-
ditions and postconditions. The preconditions can be ‘matched’
against a transient structure and if matching succeeds, the post-
conditions can be ‘merged’ into the transient structure. Matching

[290]

Scaling constructional language processing

is a first-order syntactic unification operation that checks the com-
patibility of two feature structures, whereas merging is a unifica-
tion operation that combines the information contained in two
feature structures. For a formal definition of matching and merg-
ing, see Steels and De Beule (2006) and Sierra Santibáñez (2012).

Constructional language processing consists in the sequential
application of constructions to a transient structure. Each individ-
ual construction application thereby expands the transient structure
with new information. Initially, the transient structure only contains
the input utterance or input meaning representation, and only con-
structions that match this information can apply. Through their appli-
cation, these constructions can contribute additional information to
the transient structure, which can in turn satisfy the preconditions of
other constructions. Analogous to the use of goal tests in the classi-
cal problem solving paradigm, goal tests in constructional language
processing verify whether a given transient structure qualifies as a
solution to the search problem. Typical goal tests for constructional
language processing include (i) checking whether no more construc-
tions can apply, (ii) verifying whether the input utterance or input
meaning representation has been fully processed, and (iii) checking
whether the meaning comprehended so far consists of a fully con-
nected network of predicates linked through their arguments. When
all goal tests succeed for a given transient structure, it qualifies as a
solution and the resulting meaning representation (in comprehension)
or the resulting utterance (in production) are extracted.

An illustrative example of a construction application process is
shown in Figure 1. Note that the constructions used in this example
were created for didactic purposes, and do not necessarily correspond
to insightful linguistic analyses. From left to right, the figure shows the
transient structures and constructions involved in the processing of the
utterance Sam cycles in comprehension and production. The transient
structures shown in the top-left and bottom-left corners (i.e. the green
boxes labelled with the number 1) are the initial transient structures
in comprehension and production respectively. The initial transient
structure in comprehension contains an input unit with a number of
predicates representing the utterance. The initial transient structure in
production contains an input unit with the meaning representation of

[291]

Van Eecke et al.

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

{s
tr

in
g(

?s
,
“S

am
”)

,

st

rin
g(

?c
,
“c

yc
le

s”
),

ad

ja
ce

nt
(?

s,
 ?

c)
}

fo
rm

:

tra
ns

ie
nt

 s
tru

ct
ur

e

{s
tr

in
g(

?c
,
“c

yc
le

s”
),

ad

ja
ce

nt
(?

s,
 ?

c)
}

fo
rm

:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

in
pu
t

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

{s
am

(?
x)

,
 c

yc
le

(?
y)

,
 a

ge
nt

(?
y,
 ?

x)
,

 a
sp

ec
t(

?y
,
ro

ut
in

e)
}

m
ea

ni
ng

:

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

{a
dj

ac
en

t(
?s

,
?c

)}
fo

rm
:

?c
yc
le
s-
un
it

{s
tr

in
g(

?c
,
“c

yc
le

s”
)}

{c
yc

le
(?

y)
}

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

cy
cl

es
-c

xn

?c
yc
le
s-
un
it

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

#
 {

st
rin

g(
?c

,
“c

yc
le

s”
)}

fo
rm

:

#
 {

cy
cl

e(
?y

)}
m

ea
ni

ng
:

?c
yc
le
s-
un
it

#
 {

as
pe

ct
(?

y,
 r

ou
tin

e)
}

ac
tio

n
[?

y]

m
ea

ni
ng

:
se

m
-c

la
ss

:
se

m
-a

rg
s:

?v
er
b-
un
it

sy
n-

cl
as

s:
te

ns
e:

ve
rb

pr
es

en
t

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

{c
yc

le
(?

y)
,

 a
ge

nt
(?

y,
 ?

x)
,

 a
sp

ec
t(

?y
,
ro

ut
in

e)
}

m
ea

ni
ng

:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

{a
ge

nt
(?

y,
 ?

x)
,

 a
sp

ec
t(

?y
,
ro

ut
in

e)
}

m
ea

ni
ng

:

?c
yc
le
s-
un
it

{s
tr

in
g(

?c
,
“c

yc
le

s”
)}

{c
yc

le
(?

y)
}

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

tra
ns

ie
nt

 s
tru

ct
ur

e

?c
la
us
e-
un
it

{a
dj

ac
en

t(
?s

,
?c

)}
{a

ge
nt

(?
y,
 ?

x)
}

cl
au

se
pr

op
os

iti
on

{?
cy

cl
es

-u
ni

t,
 ?

sa
m

-u
ni

t}

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
su

bu
ni

ts
:

in
pu
t

{a
sp

ec
t(

?y
,
ro

ut
in

e)
}

m
ea

ni
ng

:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

?c
yc
le
s-
un
it

{s
tr

in
g(

?c
,
“c

yc
le

s”
)}

{c
yc

le
(?

y)
}

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

?c
la
us
e-
un
it

{a
dj

ac
en

t(
?s

,
?c

)}
{a

ge
nt

(?
y,
 ?

x)
}

cl
au

se
pr

op
os

iti
on

{?
cy

cl
es

-u
ni

t,
 ?

sa
m

-u
ni

t}

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
su

bu
ni

ts
:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

?c
yc
le
s-
un
it

{s
tr

in
g(

?c
,
“c

yc
le

s”
)}

{c
yc

le
(?

y)
}

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

sa
m

-c
xn

?s
am
-u
ni
t

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

?s
am
-u
ni
t

#
 {

st
rin

g(
?s

,
“S

am
”)

}
fo

rm
:

#
 {

sa
m

(?
x)

}
m

ea
ni

ng
:

co
m

pr
eh

en
si

on

pr
od

uc
tio

n

?c
la
us
e-
un
it cl

au
se

pr
op

os
iti

on
{?

cy
cl

es
-u

ni
t,

 ?
sa

m
-u

ni
t}

sy
n-

cl
as

s:
se

m
-c

la
ss

:
su

bu
ni

ts
:

#
 {

ad
ja

ce
nt

(?
s,

 ?
c)

}
fo

rm
:

#
 {

ag
en

t(
?y

,
?x

)}
m

ea
ni

ng
:

?c
la
us
e-
un
it

?s
am
-u
ni
t

pe
rs

on
[?

x]
se

m
-c

la
ss

:
se

m
-a

rg
s:

pr
op

er
-n

ou
n

[?
s]

sy
n-

cl
as

s:
sy

n-
ar

gs
:

?c
yc
le
s-
un
it

ac
tio

n
[?

y]
se

m
-c

la
ss

:
se

m
-a

rg
s:

ve
rb

[?
c]

sy
n-

cl
as

s:
sy

n-
ar

gs
:

{s
tr

in
g(

?c
,
“c

yc
le

s”
)}

{c
yc

le
(?

y)
,

 a
sp

ec
t(

?y
,
ro

ut
in

e)
}

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

?c
la
us
e-
un
it

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
su

bu
ni

ts
:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

?c
yc
le
s-
un
it

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

in
tra

ns
iti

ve
-c

xn

{a
dj

ac
en

t(
?s

,
?c

)}
{a

ge
nt

(?
y,
 ?

x)
}

cl
au

se
pr

op
os

iti
on

{?
cy

cl
es

-u
ni

t,
 ?

sa
m

-u
ni

t}

{s
tr

in
g(

?c
,
“c

yc
le

s”
)}

{c
yc

le
(?

y)
,

 a
sp

ec
t(

?y
,
ro

ut
in

e)
}

ve
rb

ac
tio

n
pr

es
en

t
[?

c]
[?

y]

tra
ns

ie
nt

 s
tru

ct
ur

e

in
pu
t

?c
la
us
e-
un
it

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
su

bu
ni

ts
:

?s
am
-u
ni
t

{s
tr

in
g(

?s
,
“S

am
”)

}
{s

am
(?

x)
}

pr
op

er
-n

ou
n

pe
rs

on
[?

s]
[?

x]

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
sy

n-
ar

gs
:

se
m

-a
rg

s:

?c
yc
le
s-
un
it

fo
rm

:
m

ea
ni

ng
:

sy
n-

cl
as

s:
se

m
-c

la
ss

:
te

ns
e:

sy
n-

ar
gs

:
se

m
-a

rg
s:

{a
dj

ac
en

t(
?s

,
?c

)}
{a

ge
nt

(?
y,
 ?

x)
}

cl
au

se
pr

op
os

iti
on

{?
cy

cl
es

-u
ni

t,
 ?

sa
m

-u
ni

t}

ro
ut

in
e-

as
pe

ct
-c

xn

1

2

3
4

1

1
2

3

4

1

2

3

4

5 5

Fig
ur
e1

:S
ch
em

ati
cr

ep
res

en
tat

ion
of

ho
w
diff

ere
nt

co
ns
tru

cti
on

sc
om

bin
ei
no

rd
er

to
co
mp

reh
en
da

nd
pr
od

uc
ea

na
tu
ral

lan
gu
ag
e

ex
pr
ess

ion
.H

ere
,fo

ur
co
ns
tru

cti
on

sc
oll

ab
or
ati

ve
ly

pr
oc
ess

th
eu

tte
ran

ce
Sa
m

cy
cle

si
nc

om
pr
eh
en
sio

n(
top

,le
ft-
to-

rig
ht
)a

nd
pr
od

uc
tio

n(
bo
tto

m,
lef

t-t
o-r

igh
t).

Do
tte

da
rro

ws
rep

res
en
tm

atc
hin

gr
ela

tio
ns

an
ds

oli
da

rro
ws

rep
res

en
tm

erg
ing

rel
ati

on
s.
Ne

w
un

its
ad
de
dd

ur
ing

th
em

erg
ing

ph
as
ea

re
hig

hli
gh
ted

us
ing

da
sh
ed

bo
xe
s.
Sy
mb

ols
pr
ec
ed
ed

by
aq

ue
sti
on

ma
rk

de
no

te
log

ic
va
ria

ble
s

[292]

Scaling constructional language processing

the utterance in predicate notation. The middle-left box in the figure
represents the SAM-CXN, which matches both initial transient struc-
tures. Conventionally, the preconditions and postconditions of a con-
struction are separated by a left-pointing arrow. The preconditions are
written on the right-hand side of the arrow, while the postconditions
are specified on its left-hand side. As constructions support language
processing in both the comprehension and production direction, they
contain two sets of preconditions on their right-hand side. The precon-
ditions that are active in comprehension are always specified under
a dashed line and the preconditions that are active in production are
specified above it. The preconditions of one direction become postcon-
ditions in the opposite direction, and are as such treated in the same
way as the information specified on the left-hand side. In this case,
the construction matches the string Sam in comprehension and adds
the meaning predicate above the dashed line along with the semantic
and syntactic features specified on the left-hand side. The resulting
transient structure (labelled with the number 2) is shown just right
of the initial transient structure. In production, an analogous process
takes place. Here, the construction matches a meaning predicate that
is present in the initial transient structure, and contributes a string
predicate along with the same semantic and syntactic features as in
comprehension.

Next, the CYCLES-CXN applies in the same way to the transient
structure that was just created, adding new information related to the
string cycles in comprehension and to the predicate cycle(?y) in pro-
duction. After that, the INTRANSITIVE-CXN (labelled with the num-
ber 3) can apply, as its preconditions are now satisfied by information
from the input unit, in combination with information that was con-
tributed by the SAM-CXN and the CYCLES-CXN. The INTRANSITIVE-
CXN maps between the adjacency of a proper noun and a verb, and
the agentive relation between the person and action they represent. Fi-
nally, the ROUTINE-ASPECT-CXN (labelled with the number 4) maps
between an action verb in the present tense and a meaning predicate
denoting that the aspectual structure of the action corresponds to a
routine.

From the final transient structure, shown in the top-right and
bottom-right corners of the figure and labelled with the number 5,
the result of the construction application process can be extracted.

[293]

Van Eecke et al.

In comprehension, this is the combination of all ‘meaning’ features in
the transient structure, while in production, it is the combination of all
‘form’ features. Note that the construction application process is en-
tirely bidirectional. The output in comprehension is equal to the input
in production and vice versa. Moreover, the exact same set of con-
structions has been applied, in this case even in the same sequential
order.

This illustrative example shows how constructions can collabora-
tively map between an utterance and a representation of its meaning,
both in the comprehension and the production direction, with exam-
ples of constructions that can apply based on the input only (SAM-
CXN and CYCLES-CXN), constructions that build hierarchical struc-
tures (INTRANSITIVE-CXN) and constructions that only contribute
non-hierarchical information (ROUTINE-ASPECT-CXN). What the ex-
ample doesn’t show is how a constructional language processing en-
gine can determine that it is exactly this combination of constructions
that needs to apply. Construction grammars that exceed the size of
these toy examples are immediately faced with constructions that are
in competition with each other, and in particular with sequences of
constructions that can apply but do not ultimately lead to a solution.
This challenge, which is central to the problem solving paradigm, can
be solved by backtracking to earlier transient structures in case of fail-
ure and possibly, in the worst case, exploring the entire search space,
i.e. trying out all possible combinations of construction applications. It
is this process of construction application and backtracking that makes
constructional language processing intractable for larger grammars.

As can be seen in the figure, the constructions that constitute con-
struction grammars differ in many aspects from the rules that consti-
tute traditional formal grammars. First of all, constructions do not nec-
essarily correspond to tree-building operations, as exemplified by the
ROUTINE-ASPECT-CXN and discussed in van Trijp (2016). Construc-
tions are also non-local, in the sense that they can match information
that is present anywhere in the transient structure. As a consequence,
constructional language processing cannot straightforwardly be opti-
mised using well-known techniques for efficiently processing formal
grammars, such as chart parsing and chart generation (see e.g. Pereira
and Warren 1983; Shieber 1988; Kay 1996).

[294]

Scaling constructional language processing

2.2State-of-the-art approaches

In the computational construction grammar literature, a number of
techniques for reducing the search space created by all possible con-
struction applications have been proposed. A straightforward optimi-
sation that is almost always used consists in checking whether a new
transient structure is different from all other transient structures that
already occur in the search tree. If this is not the case, the duplicate
transient structure can immediately be pruned away. A second com-
mon optimisation consists in hashing constructions that match string
predicates or meaning predicates in the input unit, which reduces the
search problem to abstract constructions only.

When it comes to the choice of the baseline search strategy, a
depth-first search algorithm with backtracking is often chosen. For
constructional language processing, depth-first search generally out-
performs breadth-first search for two reasons. First, solutions are typ-
ically found deep in the search tree (after many constructions have
been applied) and there is no inherent preference for shorter solutions,
like for example in the case of planning problems. Second, there often
exist many correct orders in which constructions can apply, which can
lead to a high branching factor and an abundance of duplicate tran-
sient structures, some of which can only be detected deep in the search
tree.

Two more advanced approaches that go beyond the depth-first
search with backtracking, duplicate detection and hashing baseline
have been proposed in the literature: ‘construction sets’ and ‘priming
networks’.

• Construction sets This approach consists in subdividing the con-
struction inventory into (possibly overlapping) sets of construc-
tions. Two global orders of construction sets are specified, one
for comprehension and one for production. The basic idea is that
constructions of a later set are not applied before constructions
of an earlier set have at least been matched against the transient
structure (Beuls 2011). The use of construction sets can drastically
decrease the size of the search space, but comes with a number
of important drawbacks. Construction sets are inherently in dis-
agreement with the constructionist idea that constructions can

[295]

Van Eecke et al.

freely combine as long as there are no conflicts, which is crucial
for supporting open-ended and creative language use (Van Eecke
and Beuls 2018; Goldberg 2006, p. 22). Also, the global ordering
of construction sets and the allocation of constructions to partic-
ular sets is difficult to learn, as it presupposes that the general
architecture of a grammar is known beforehand. Finally, scaling
grammars that make use of construction sets is even difficult in
the case of hand-crafted grammars, as the grammar engineer then
does not only need to encode the necessary linguistic knowledge,
but also needs to determine the order in which constructions need
to be scheduled for matching.

• Priming networks Priming networks are inspired by the psy-
chological phenomenon whereby current behaviour is noncon-
sciously influenced by exposure to past experiences (see e.g.
Schacter and Buckner 1998). In the case of computational con-
struction grammar, this approach argues that the application of
a construction can prime the application of another construction.
In this way, frequent co-occurrences of constructions can be cap-
tured in the form of a priming network (Wellens and De Beule
2010; Wellens 2011). Priming links can be learned in a usage-
based fashion by extracting the frequency of co-occurrences of
constructions from successful branches of the search trees gener-
ated during past construction application processes. These links
can then be used to guide the search process by always expanding
the transient structure created by the construction that was most
strongly primed. The priming links are based either on the order
of the constructions themselves or on dependencies between a
construction’s preconditions and the postconditions of other con-
structions by which they were satisfied. Two priming networks
are learned for a construction inventory, one for use in compre-
hension and the other for use in production. The main advantage
of priming networks is that they can be learned in a straightfor-
ward way. However, an important disadvantage is that if only
local priming links are taken into account, priming is only par-
tially effective, and if longer-distance links are taken into account,
the networks are often not efficacious as they suffer from sparsity
problems.

[296]

Scaling constructional language processing

Another solution that has been proposed in the literature is to pro-
cess construction grammars using existing systems for implementing
generative grammar formalisms (Müller 2017). A major disadvantage
of this approach is that this is only possible for generative grammar
formalisms that include constructional properties (e.g. constructional
HPSG and SBCG). These formalisms are inherently limited to local con-
structions that correspond to tree-building operations (van Trijp 2016;
van Trijp et al. 2022). As a consequence, this approach does not satisfy
the methodological needs of the construction grammar community at
large.

2.3The CLEVR dataset and grammar

We use the CLEVR dataset (Johnson et al. 2017) and CLEVR con-
struction grammar (Nevens et al. 2019) to benchmark the effect of
the heuristics that we propose in this paper. This choice is motivated
by three main reasons. First of all, with its nearly 1,000,000 utter-
ances, the CLEVR dataset is sufficiently large to train even the most
data-intensive heuristics. Second, there exists a computational con-
struction grammar that, given infinite computation time, covers the
entire dataset, in both the comprehension and production direction
(Nevens et al. 2019). This means that this grammar achieves 100%
accuracy on the tasks of mapping from utterances to their meaning
representation and vice versa. This allows us to evaluate the effect of
the proposed heuristics in isolation. Finally, the grammar gives rise to
a search space that can only be processed efficiently using powerful
heuristics.

The utterances in the CLEVR dataset are synthetically generated
English questions about images of scenes depicting different config-
urations of geometrical figures. Each question is annotated with a
semantic representation that captures the logical meaning that under-
lies it. The question-annotation pairs embrace various aspects of rea-
soning, including attribute identification (There is a large cube; what is
its color?), counting (How many green spheres are there?), comparison
(Are there an equal number of large cubes and small things?), spatial rela-
tionships (What size is the cylinder that is right of the yellow shiny thing

[297]

Van Eecke et al.

that is left of the cube?) and logical operations (How many objects are ei-
ther red cubes or yellow cylinders?). The average length of the questions
is 18.4 words with a maximum length of 42 words.

The CLEVR grammar consists of 170 constructions, of which
55 are morphological and lexical constructions. Apart from these, the
grammar also contains 115 grammatical constructions that capture
phenomena including referential expressions, spatial relations, coor-
dination and subordination structures, and a wide range of interrog-
ative structures. On average, 25 constructions should be applied in
order to successfully comprehend or produce an utterance from the
dataset. This means that the average solution is found at depth 25 in
the search tree.

The size of the search space for an average sentence amounts thus
in theory to 17025 construction applications. In practice, most of these
construction applications are not possible given the dependencies be-
tween the preconditions and postconditions of the constructions. Still,
when using the baseline depth-first strategy with backtracking, dupli-
cate detection and hashing, the search tree in comprehension includes
on average more than 3.5 times the number of construction appli-
cations than were needed to find a solution. While this might still
be manageable to a certain extent, this number grows to more than
29 in production. In practice, this means that many solutions cannot
be found in a reasonable amount of time without the use of suitable
heuristics.

We make use of the same splits as the original dataset, with the
training, validation and test sets consisting of 699,989 utterances,
149,991 utterances and 149,988 utterances respectively.

3 METHODOLOGY

We will now introduce our novel methodology for learning heuristics
that substantially optimise the search processes involved in construc-
tional language processing. These heuristics take the form of neural
networks that are trained to estimate at any point in processing the
probability that the application of a particular construction will lead to
a solution. Our approach is inspired by recent successes obtained using

[298]

Scaling constructional language processing

neural heuristics in other domains that typically employ the problem
solving paradigm, in particular games (Mnih et al. 2015; Silver et al.
2016) and planning (Takahashi et al. 2019; Wang et al. 2019; Ferber
et al. 2020).

3.1General architecture

We design neural heuristics that can be used to assign after each con-
struction application a score to the resulting transient structure. This
score, called ‘heuristic value’, reflects how close a transient structure
is to a solution. It can then be used to decide on the order in which
transient structures are expanded, with the goal of minimizing the av-
erage number of construction applications that is needed to reach a
solution. Intuitively, this score is influenced by both the input utter-
ance (in comprehension) or meaning representation (in production)
and the sequence of constructions that have been applied so far in the
same branch of the search tree.

For each direction of processing, this intuitive idea is opera-
tionalised using two recurrent neural networks (RNNs) that are organ-
ised in an encoder-decoder constellation. Before processing starts, the
encoder RNN encodes the input utterance or meaning representation
into a context vector. During processing, the decoder RNN is called
for each transient structure, just before its expansion. The input to
the decoder RNN is the sequence of names of constructions that have
been applied so far in that branch of the search tree, along with the
output of the encoder RNN (context vector) and its hidden states. The
output of the decoder RNN is at each decoding timestep a probability
distribution over all constructions in the construction inventory. The
constructions are then applied and the heuristic values of the result-
ing transient structures are computed as the sum of the heuristic value
of their parent transient structure and the probability score returned
by the decoder RNN. The heuristic values of the transient structures
are used in combination with a beam search algorithm. This process
is graphically depicted in Figure 2, where the beam size is set to three
for clarity reasons.

The choice for an RNN-based encoder-decoder architecture is mo-
tivated by two main reasons. First of all, the problem of mapping

[299]

Van Eecke et al.

{f:.7, a:.1, …
}

[cxn
b , cxn

d]

[cxnb]

input utterance /
 meaning representation

encoder RNN

transient structure
t0 - hv: 1.0

decoder RNN
transient structure

t2 - hv: 1.07
transient structure

t1 - hv: 1.76
transient structure

t3 - hv: 1.04

cxna (0.07)cxnb (0.76) cxnc (0.04)

transient structure
t4 - hv: 1.86

transient structure
t5 - hv: 2.56

transient structure
t6 - hv: 1.78

cxna (0.1)cxnd (0.8) cxnc (0.02)

[]

{b:.7
6, a:

.07,
c:.04

, …}

{d:.8, a:.1, c:.02, …}

Figure 2: Schematic representation of the integration of the neural heuristics in
constructional language processing. Before a node in the search tree is expanded,
the encoder-decoder model is queried, and a probability distribution over all
constructions of the construction inventory is returned. The heuristic values are
then calculated and used by a beam search algorithm, in this case with the beam
size set to three. ‘Hv’ stands for ‘heuristic value’

an input utterance or meaning representation to a sequence of con-
structions can be naturally framed as a sequence-to-sequence prob-
lem. RNN-based architectures are typically good at handling this class
of problems (Sutskever et al. 2014), although also CNN-based (Gehring
et al. 2017) and transformer-based (Vaswani et al. 2017) architectures
have more recently been successfully applied to the same class of prob-
lems. Second, and most importantly, the sequential nature of the RNN-
based architecture allows us to query the decoder RNN while already
providing a partial sequence of predictions. This is necessary for inte-
grating the neural architecture as a heuristic in the construction ap-
plication process, while being able to keep the benefits of the exist-
ing search and backtracking facilities. Indeed, the neural networks
are used to make the search process created by the grammar more
efficient, unlike their use in end-to-end neural semantic parsers, where

[300]

Scaling constructional language processing

they perform the actual mapping from utterances to their semantic
representation (see e.g. Jia and Liang 2016; Konstas et al. 2017; van
Noord et al. 2018; Yu and Gildea 2022).

Our neural encoder-decoder architecture is based on the neural
machine translation architecture proposed by Bahdanau et al. (2015).
It consists of an encoder with bidirectional single-layer gated recur-
rent units (GRUs), a decoder with single-layer GRUs and an attention
mechanism that attends over the encoder’s hidden states at every de-
coder time step. The attention mechanism ensures that the decoder
does not need to rely on a single high-dimensional representation of
the entire input sequence (the context vector). Instead, the decoder
has access to all encoder hidden states and learns to use a subset of
these hidden states. Intuitively, the decoder chooses at every timestep
to pay attention to specific parts of the input utterance or meaning
representation.

The basic idea underlying our methodology is somewhat reminis-
cent of the use of recurrent neural networks for guiding dependency
parsing (Kiperwasser and Goldberg 2016; Dozat and Manning 2017,
2018). In this line of research, RNNs are also used to predict sequences
of actions (e.g. transitions) based on utterances and previous actions.
The main difference resides in the correspondence between the length
of the input and the length of the predictions. In the case of depen-
dency parsing, an action needs to predicted for each input word. In
the case of constructional language processing, however, the number
of constructions that needs to be predicted is not tied to the length of
the input utterance or meaning representation. Indeed, multiple words
or meaning predicates (even organised in non-contiguous patterns)
can be covered by the application of a single construction, and single
words or meaning predicates can give rise to the application of mul-
tiple constructions (see e.g. the ROUTINE-ASPECT-CXN in Figure 1).
In order to accommodate for this asymmetry between the length of
the input pattern and the length of the output pattern, we have opted
for two RNNs in an encoder-decoder constellation instead of directly
using an RNN for prediction. This allows us to effectively decouple the
length of both sequences.

[301]

Van Eecke et al.

3.2 Training

Training the neural encoder-decoder architecture requires a dataset
of input utterances (in comprehension) or meaning representations
(in production), paired with, for each utterance or meaning represen-
tation, a sequence of names of constructions of which the applica-
tion would lead to a solution. Annotating the original CLEVR dataset,
which contains utterances along with a representation of their mean-
ing, in this format is a non-trivial task, as we face at this moment
the very search problem that we are aiming to optimise. We therefore
adopted a spiral approach. For both comprehension and production,
we started processing the data from CLEVR’s training and validation
splits using the depth-first search strategy with backtracking, dupli-
cate detection and hashing, setting a time limit of 400 seconds. We
collected the sequences of construction names for all input utterances
or meaning representations that were successfully processed within
this time frame. Then, we trained a first version of the sequence-to-
sequence heuristic and used it to process more utterances using the
same time limit. After three iterations, the entire dataset could be suc-
cessfully annotated.

The encoder-decoder architecture requires that input utterances
or meaning representations are represented as sequences. For utter-
ances, this is naturally done by using sequences of tokens. For mean-
ing representations, this is somewhat more complicated as they come
in the form of networks of predicates that share variables. We there-
fore transformed the predicate networks into sequences notated in re-
verse Polish notation. In this notation, predicate names follow their
arguments. Since the arity of each predicate is known, the notation is
unambiguous without the need for variables and their equalities to be
explicitly represented.

We trained the encoder-decoder models for 100,000 time steps
with a batch size of 64, using the Adam optimisation algorithm with a
learning rate of 5e-4 and weight decay of 1e-6. We used cross-entropy
as the loss function and used a teacher forcing ratio of 1. We included
a dropout layer after the embedding layer in both the encoder and
the decoder. We ran a hyperparameter optimisation process for the
embedding size (100, 200, 300), the hidden layer size (64, 128, 256,
512) and the dropout probability (0.0, 0.1, 0.2, 0.5). We found that

[302]

Scaling constructional language processing

best performance was achieved using the model with an embedding
size of 100 in comprehension and 300 in production, a hidden layer
size of 512 in comprehension and 256 in production and a dropout
probability of 0.2 in comprehension and 0.1 in production. Note that
for efficiency reasons, the hyperparameters were optimised based on
the gold standard annotation of the dataset, and not based on their
performance as a heuristic in FCG.

4EXPERIMENTS

In order to benchmark the efficiency of our methodology and com-
pare it against the state of the art, we conducted two experiments that
evaluate the use of the proposed neural heuristics in constructional
language processing. The first experiment is concerned with the com-
prehension direction, while the second experiment is concerned with
the production direction.

4.1Experimental setup

Both experiments consist in processing the test split of the CLEVR
dataset using three different search strategies. The first strategy makes
use of FCG’s standard search algorithm, namely depth-first search with
backtracking, duplicate detection and hashing. The second strategy
makes use of priming networks as proposed by Wellens and De Beule
(2010). The third strategy evaluates the encoder-decoder methodol-
ogy that we introduced above, with an unrestricted beam size.

The strategies are evaluated in terms of the size of the search
space and the time that is required to reach a solution. The size of the
search space is defined as the total number of transient structures that
were created during processing, divided by the number of transient
structures in the branch of the solution. The optimal size of the search
space is thus equal to one, indicating that a solution was found without
any backtracking taking place. The time of computation is measured
in seconds, spanning from the creation of the initial transient structure

[303]

Van Eecke et al.

until the resulting meaning representation (in comprehension) or ut-
terance (in production) has been extracted from the solution transient
structure. In general, the size of the search space is the most accu-
rate measure for gauging the performance of a search strategy, but it
does not take into account the computational overhead caused by the
heuristic itself. The computation time metric includes both factors, but
should be interpreted with extreme caution, as it is also influenced by
external factors.

For the purposes of this paper, we have chosen to focus on the
fundamental issue of reducing the search space, and have not in-
cluded any other time-related optimisations. Such optimisations could
include the implementation of a more efficient protocol for communi-
cation between the FCG engine and the neural networks, deploying the
neural networks on GPUs, or not using the neural heuristics for utter-
ances under a maximum number of words. The reason that we include
the computation time metric is to show that even without these op-
timisations, a reduction in the search space already corresponds to a
reduction in processing time.

If no solution was found within 400 seconds, the search process
was halted and the result was logged as ‘no solution found’.

The evaluation was carried out using computing nodes with
2×20-core Intel Xeon Gold 6148 (Skylake) CPUs and 16GB of RAM.

4.2 Experimental results: comprehension

The results of the comprehension experiment are presented in Table 1
and visualised through violin plots in Figure 3. The table provides the
mean values, standard deviation and maximum values of the search
space size and the computation time for the depth-first, priming and
neural strategies. The plots show the probabilistic density of the search
space size (Figure 3a) and computation time (Figure 3b) for the three
strategies. When it comes to the size of the search space, the results
show that the neural strategy greatly outperforms the depth-first and
priming strategies. More density mass is situated close to a search
space size of one, which is the theoretical minimum. The average size
of the search space is 1.16 in the case of the neural strategy, 3.21
in the case of the priming strategy and 3.69 in the case of the depth-
first strategy. Importantly, the performance gain obtained through the

[304]

Scaling constructional language processing

Table 1: Performance of the different strategies in the comprehension direction

Search space size Computation time (s) # Timed out
mean sd max mean sd max > 400 s

Depth-first 3.69 7.09 174.26 0.84 4.42 141.28 0
Priming 3.21 5.98 161.09 0.72 3.73 158.48 0
Neural 1.16 0.19 15.84 0.91 0.80 49.48 0

0 25 50 75 100 125 150 175
Size of the Search Space

depth first

priming

neural

(a) Search space size per strategy

0 20 40 60 80 100 120 140 160
Computation Time (s)

depth first

priming

neural

(b) Computation time per strategy
Figure 3: Visualisation of the results of the comprehension experiment

neural strategy also extends to sentences that otherwise require a large
search space. The largest search space required by the neural strategy
is 15.82, while the depth-first and priming strategies require search
space sizes of up to 174.26 and 161.09, respectively. The results ob-
tained through the computation time metric are in line with those
obtained through the search space size metric. Even the most difficult
sentences take less than 50 seconds using the neural strategy, whereas
they take more than 140 seconds using the depth-first and priming
strategies. In sum, we can conclude from the comprehension exper-
iment that the neural strategy outperforms the state of the art both
in terms of size of the search space and in terms of time of computa-
tion. Importantly, the greatest reduction in search space and time of
computation is achieved for the most difficult sentences.

4.3Experimental results: production

The results of the production experiment are presented in Table 2
and visualised through violin plots in Figure 4. Figure 4a shows the

[305]

Van Eecke et al.

Table 2: Performance of the different strategies in the production direction

Search space size Computation time (s) # Timed out
mean sd max mean sd max (> 400 s)

Depth-first 29.08 90.40 1149.74 8.84 37.57 400.00 1325
Priming 20.81 67.78 938.25 6.40 29.38 400.00 475
Neural 6.35 16.85 173.90 3.64 12.32 360.25 0

0 200 400 600 800 1000 1200
Size of the Search Space

depth first

priming

neural

(a) Search space size per strategy

0 50 100 150 200 250 300 350 400
Computation Time (s)

depth first

priming

neural

(b) Computation time per strategy
Figure 4: Visualisation of the results of the production experiment

average size of the search space for each strategy. We can immediately
observe that the search problem in production is considerably more
difficult than the search problem in comprehension, and that the per-
formance gain that is obtained through the neural strategy is even
larger. In the case of the neural strategy, the density mass is concen-
trated around a lower mean value (6.35) than in the case of the prim-
ing (20.81) and depth-first (29.08) strategies. The maximum value is
reduced from 1149.74 (depth-first) and 938.25 (priming) to 173.90
(neural). When it comes to computation time (Figure 4b), the re-
sults are analogous. The average processing time is reduced from 8.84
(depth-first) and 6.40 (priming) seconds to 3.64 seconds (neural). The
maximum processing time that was needed amounts to 360.25 seconds
for the neural strategy. For the other two strategies, not all sentences
could be produced within the maximum time frame of 400 seconds.

An analysis of the utterances for which the neural strategy could
not reduce the search space to under 5 reveals an interesting limita-
tion of the methodology that we have introduced. The decoder RNN
takes as input a sequence of constructions that have so far been applied

[306]

Scaling constructional language processing

during the application process and returns as output a probability dis-
tribution over all constructions in the construction inventory. In other
terms, it makes predictions about which constructions should be ap-
plied at which moment in time. However, it does not make any pre-
dictions about the way in which the constructions should apply, in
particular to which units in the transient structure. As a consequence,
only the ambiguity that arises from multiple applicable constructions
(i.e. multiple transient structures resulting from the application of dif-
ferent constructions) can be solved, not the ambiguity that arises from
multiple ways in which a single construction can apply (i.e. multiple
transient structures resulting from the application of a single construc-
tion). While this ambiguity is far less substantial than the ambiguity
that stems from multiple applicable constructions, it explains why the
search space is not consistently reduced to around 1 even if every pre-
diction by the neural network is optimal.

In sum, we can conclude that the production experiment con-
firms the results obtained in the comprehension experiment. The neu-
ral strategy outperforms the state of the art both in terms of size of the
search space and in terms of time of computation, especially when it
comes to processing the most difficult sentences of the dataset.

5DISCUSSION AND CONCLUSIONS

Constructionist approaches to language, as originally laid out by,
among others, Fillmore (1988), Goldberg (1995), Kay and Fillmore
(1999) and Croft and Cruse (2004), consider form-meaning mappings,
called constructions, to be the basic unit of linguistic analysis. Apart
from the fact that they constitute form-meaning mappings, construc-
tions are subject to very few restrictions. First of all, constructions
do not necessarily correspond to tree-building operations (van Trijp
2016). Second, constructions are non-local in the sense that they can
access all information that is known during processing. Third, con-
structions can involve units of arbitrary size, both on the form and the
meaning side. Finally, constructions are not restricted to continuous
constituents and are not even required to include word order con-
straints. As a consequence, constructional language processing cannot

[307]

Van Eecke et al.

straightforwardly be implemented in a faithful way using common
grammar processing techniques, such as chart parsing and generation
(see e.g. Pereira and Warren 1983; Shieber 1988; Kay 1996). Instead,
faithful computational construction grammar implementations imple-
ment constructional language processing as a state-space search prob-
lem (Bleys et al. 2011; Van Eecke and Beuls 2017).

In order to reliably scale to large problems, state-space search
methods rely on heuristics that can estimate the likelihood that a
given state will lead to a solution. While certain optimisations have
in the past been applied to the case of computational construction
grammar, including construction sets (Beuls 2011) and priming net-
works (Wellens and De Beule 2010; Wellens 2011), a lack of general
and powerful heuristics remained a major obstacle to ongoing con-
struction grammar research, in particular to research on representing,
processing and learning large-scale construction grammars.

The neural methodology that we have presented in this paper
introduces a general and effective way to learn heuristics that sub-
stantially optimise the search processes involved in constructional lan-
guage processing. Analogous to recent successes in many subfields of
artificial intelligence, including game playing (Mnih et al. 2015; Silver
et al. 2016) and planning (Takahashi et al. 2019; Wang et al. 2019; Fer-
ber et al. 2020), the methodology combines the predictive strengths of
neural networks with the expressive representations, sound logic oper-
ations and backtracking abilities of traditional search and unification
methods.

An integration of the proposed method in the Fluid Construc-
tion Grammar system (Steels 2011; van Trijp et al. 2022; Beuls and
Van Eecke 2023) and an evaluation of the method using the CLEVR
benchmark dataset (Johnson et al. 2017) and the CLEVR construction
grammar (Nevens et al. 2019) show that the neural heuristics indeed
outperform the state-of-the-art priming strategy and can substantially
reduce the search space and processing time in both the comprehen-
sion and the production direction, especially in the case of utterances
that otherwise gave rise to a large search space.

We posit that this general methodology for learning neural heuris-
tics that optimise the search processes involved in constructional lan-
guage processing constitutes a promising contribution towards the
scaling of constructionist approaches to language. It thereby has both

[308]

Scaling constructional language processing

theoretical and practical implications. On the theoretical side, scal-
able processing models will allow construction grammarians to go be-
yond the study of constructions in isolation, and model the intricate
interactions that take place between constructions as part of a larger
grammar. On the practical side, the scaling of constructional language
processing paves the way for achieving breakthroughs in ongoing re-
search on learning large-scale construction grammars (Nevens et al.
2022; Doumen et al. 2023), which has in turn major implications on
research in usage-based linguistics (Diessel 2015), models of language
acquisition (Tomasello 2003) and the use of construction grammar in
language technology applications (Willaert et al. 2020, 2021; Beuls
et al. 2021; Verheyen et al. 2022).

ACKNOWLEDGEMENTS

We would like to thank the three anonymous JLM reviewers for their
rigorous yet constructive examination of our paper. The research re-
ported on in this paper was financed by the Research Foundation Flan-
ders (FWO) through a postdoctoral grant awarded to Paul Van Eecke
(75929) and the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement number 951846 (Meaning
and Understanding in Human-centric AI – https://www.muhai.org).

CONFLICT OF INTEREST STATEMENT

On behalf of all authors, the corresponding author states that there is
no conflict of interest.

REFERENCES

Dzmitry BAHDANAU, Kyunghyun CHO, and Yoshua BENGIO (2015), Neural
machine translation by jointly learning to align and translate, in International
Conference on Learning Representations (ICLR 2015), pp. 1–15.
Katrien BEULS (2011), Construction sets and unmarked forms: A case study for
Hungarian verbal agreement, in Luc STEELS, editor, Design Patterns in Fluid
Construction Grammar, pp. 237–264, John Benjamins, Amsterdam, Netherlands.

[309]

https://www.muhai.org

Van Eecke et al.

Katrien BEULS and Paul VAN EECKE (2023), Fluid Construction Grammar: State
of the art and future outlook, in Proceedings of the First International Workshop on
Construction Grammars and NLP (CxGs+NLP, GURT/SyntaxFest 2023), pp.
41–50, Association for Computational Linguistics, Washington, D.C., USA.
Katrien BEULS, Paul VAN EECKE, and Vanja Sophie CANGALOVIC (2021), A
computational construction grammar approach to semantic frame extraction,
Linguistics Vanguard, 7(1):20180015.
Joris BLEYS, Kevin STADLER, and Joachim DE BEULE (2011), Search in
linguistic processing, in Luc STEELS, editor, Design Patterns in Fluid Construction
Grammar, pp. 149–179, John Benjamins, Amsterdam, Netherlands.
William CROFT and D. Alan CRUSE (2004), Cognitive linguistics, Cambridge
University Press, Cambridge, United Kingdom.
Holger DIESSEL (2015), Usage-based construction grammar, in Ewa
DĄBROWSKA and Dagmar DIVJAK, editors, Handbook of Cognitive Linguistics,
pp. 295–321, Mouton de Gruyter, Berlin, Germany.
Jonas DOUMEN, Katrien BEULS, and Paul VAN EECKE (2023), Modelling
language acquisition through syntactico-semantic pattern finding, in Findings of
the Association for Computational Linguistics: EACL 2023, forthcoming.
Timothy DOZAT and Christopher D. MANNING (2017), Deep biaffine attention
for neural dependency parsing, in 5th International Conference on Learning
Representations, ICLR 2017, pp. 1–8.
Timothy DOZAT and Christopher D. MANNING (2018), Simpler but more
accurate semantic dependency parsing, in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
484–490, Association for Computational Linguistics, Melbourne, Australia,
doi:10.18653/v1/P18-2077.
Patrick FERBER, Malte HELMERT, and Jörg HOFFMANN (2020), Neural
network heuristics for classical planning: A study of hyperparameter space, in
24th European Conference on Artificial Intelligence, pp. 2346–2353.
Charles J. FILLMORE (1988), The mechanisms of “construction grammar”, in
Annual Meeting of the Berkeley Linguistics Society, volume 14, pp. 35–55.
Jonas GEHRING, Michael AULI, David GRANGIER, Denis YARATS, and Yann N.
DAUPHIN (2017), Convolutional sequence to sequence learning, in Proceedings
of the 34th International Conference on Machine Learning, pp. 1243–1252.
Adele E. GOLDBERG (1995), Constructions: A construction grammar approach to
argument structure, University of Chicago Press, Chicago, IL, USA.
Adele E. GOLDBERG (2003), Constructions: A new theoretical approach to
language, Trends in Cognitive Sciences, 7(5):219–224.
Adele E. GOLDBERG (2006), Constructions at work: The nature of generalization in
language, Oxford University Press, Oxford, United Kingdom.

[310]

Scaling constructional language processing

Robin JIA and Percy LIANG (2016), Data recombination for neural semantic
parsing, in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 12–22, Association for
Computational Linguistics, Berlin, Germany, doi:10.18653/v1/P16-1002.
Justin JOHNSON, Bharath HARIHARAN, Laurens VAN DER MAATEN, Li FEI-FEI,
C. LAWRENCE ZITNICK, and Ross GIRSHICK (2017), CLEVR: A diagnostic
dataset for compositional language and elementary visual reasoning, in
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2901–2910, IEEE Computer Society, Los Alamitos, CA,
USA.
Martin KAY (1996), Chart generation, in 34th Annual Meeting of the Association
for Computational Linguistics, pp. 200–204, Association for Computational
Linguistics.
Paul KAY and Charles FILLMORE (1999), Grammatical constructions and
linguistic generalizations: The what’s x doing y? construction, Language,
75(1):1–33.
Eliyahu KIPERWASSER and Yoa GOLDBERG (2016), Simple and accurate
dependency parsing using bidirectional LSTM feature representations,
Transactions of the Association for Computational Linguistics, 4:313–327,
doi:10.1162/tacl_a_00101, https://aclanthology.org/Q16-1023.
Ioannis KONSTAS, Srinivasan IYER, Mark YATSKAR, Yejin CHOI, and Luke
ZETTLEMOYER (2017), Neural AMR: Sequence-to-sequence models for parsing
and generation, in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 146–157, Association for
Computational Linguistics, Vancouver, Canada, doi:10.18653/v1/P17-1014.
Volodymyr MNIH, Koray KAVUKCUOGLU, David SILVER, Andrei A. RUSU, Joel
VENESS, Marc G. BELLEMARE, Alex GRAVES, Martin RIEDMILLER, Andreas K.
FIDJELAND, Georg OSTROVSKI, et al. (2015), Human-level control through
deep reinforcement learning, Nature, 518(7540):529–533.
Stefan MÜLLER (2017), Head-Driven Phrase Structure Grammar, Sign-Based
Construction Grammar, and Fluid Construction Grammar: Commonalities and
differences, Constructions and Frames, 9(1):139–173.
Jens NEVENS, Jonas DOUMEN, Paul VAN EECKE, and Katrien BEULS (2022),
Language acquisition through intention reading and pattern finding, in
Proceedings of the 29th International Conference on Computational Linguistics, pp.
15–25, International Committee on Computational Linguistics, Gyeongju,
Republic of Korea, https://aclanthology.org/2022.coling-1.2.
Jens NEVENS, Paul VAN EECKE, and Katrien BEULS (2019), Computational
construction grammar for visual question answering, Linguistics Vanguard,
5(1):20180070.

[311]

https://aclanthology.org/Q16-1023
https://aclanthology.org/2022.coling-1.2

Van Eecke et al.

Allen NEWELL and Herbert SIMON (1956), The logic theory machine – a
complex information processing system, IRE Transactions on Information Theory,
2(3):61–79.
Nils NILSSON (1971), Problem-solving methods in artificial intelligence,
McGraw-Hill Book Company, New York, NY, USA.
Fernando PEREIRA and David WARREN (1983), Parsing as deduction, in 21st
Annual Meeting of the Association for Computational Linguistics, pp. 137–144,
Association for Computational Linguistics.
Daniel L. SCHACTER and Randy L. BUCKNER (1998), Priming and the brain,
Neuron, 20(2):185–195.
Stuart M. SHIEBER (1988), A uniform architecture for parsing and generation,
in Coling Budapest 1988 Volume 2: International Conference on Computational
Linguistics, pp. 614–619, https://aclanthology.org/C88-2128.
Josefina SIERRA SANTIBÁÑEZ (2012), A logic programming approach to
parsing and production in Fluid Construction Grammar, in Luc STEELS, editor,
Computational Issues in Fluid Construction Grammar, volume 7249 of Lecture
Notes in Computer Science, pp. 239–255, Springer, Berlin, Germany.
David SILVER, Aja HUANG, Chris J. MADDISON, Arthur GUEZ, Laurent SIFRE,
George VAN DEN DRIESSCHE, Julian SCHRITTWIESER, Ioannis ANTONOGLOU,
Veda PANNEERSHELVAM, Marc LANCTOT, et al. (2016), Mastering the game of
Go with deep neural networks and tree search, Nature, 529(7587):484–489.
Luc STEELS, editor (2011), Design patterns in Fluid Construction Grammar, John
Benjamins, Amsterdam, Netherlands.
Luc STEELS and Joachim DE BEULE (2006), Unify and merge in Fluid
Construction Grammar, in International Workshop on Emergence and Evolution of
Linguistic Communication (EELC 2006), pp. 197–223, Rome, Italy.
Ilya SUTSKEVER, Oriol VINYALS, and Quoc V. LE (2014), Sequence to sequence
learning with neural networks, in Z. GHAHRAMANI, M. WELLING, C. CORTES,
N. LAWRENCE, and K.Q. WEINBERGER, editors, Advances in Neural Information
Processing Systems, volume 27, pp. 3104–3112, Curran Associates, Inc., Red
Hook, NY, USA.
Takeshi TAKAHASHI, He SUN, Dong TIAN, and Yebin WANG (2019), Learning
heuristic functions for mobile robot path planning using deep neural networks,
in Proceedings of the International Conference on Automated Planning and
Scheduling, volume 29, pp. 764–772.
Michael TOMASELLO (2003), Constructing a language: A usage-based theory of
language acquisition, Harvard University Press, Harvard, MA, USA.
Paul VAN EECKE and Katrien BEULS (2017), Meta-layer problem solving for
computational construction grammar, in The 2017 AAAI Spring Symposium
Series, pp. 258–265, AAAI Press, Palo Alto, CA, USA.

[312]

https://aclanthology.org/C88-2128

Scaling constructional language processing

Paul VAN EECKE and Katrien BEULS (2018), Exploring the creative potential of
computational construction grammar, Zeitschrift für Anglistik und Amerikanistik,
66(3):341–355.
Rik VAN NOORD, Lasha ABZIANIDZE, Antonio TORAL, and Johan BOS (2018),
Exploring neural methods for parsing discourse representation structures,
Transactions of the Association for Computational Linguistics, 6:619–633,
doi:10.1162/tacl_a_00241.
Remi VAN TRIJP (2016), Chopping down the syntax tree: What constructions
can do instead, Belgian Journal of Linguistics, 30(1):15–38.
Remi VAN TRIJP, Katrien BEULS, and Paul VAN EECKE (2022), The FCG editor:
An innovative environment for engineering computational construction
grammars, PLOS ONE, 17(6):e0269708, doi:10.1371/journal.pone.0269708.
Ashish VASWANI, Noam SHAZEER, Niki PARMAR, Jakob USZKOREIT, Llion
JONES, Aidan N. GOMEZ, Lukasz KAISER, and Illia POLOSUKHIN (2017),
Attention is all you need, in I. GUYON, U. VON LUXBURG, S. BENGIO,
H. WALLACH, R. FERGUS, S. VISHWANATHAN, and R. GARNETT, editors,
Advances in Neural Information Processing Systems, volume 30, pp. 6000–6010,
Curran Associates, Inc., Red Hook, NY, USA.
Lara VERHEYEN, Jérôme Botoko EKILA, Jens NEVENS, Paul VAN EECKE, and
Katrien BEULS (2022), Hybrid procedural semantics for visual dialogue: An
interactive web demonstration, in Workshop on semantic techniques for
narrative-based understanding: Workshop at IJCAI-ECAI 2022, pp. 48–52.
Jingyuan WANG, Ning WU, Wayne Xin ZHAO, Fanzhang PENG, and Xin LIN
(2019), Empowering A* search algorithms with neural networks for
personalized route recommendation, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 539–547.
Pieter WELLENS (2011), Organizing constructions in networks, in Luc STEELS,
editor, Design Patterns in Fluid Construction Grammar, pp. 181–201, John
Benjamins, Amsterdam, Netherlands.
Pieter WELLENS and Joachim DE BEULE (2010), Priming through
constructional dependencies: a case study in Fluid Construction Grammar, in
The Evolution of Language: Proceedings of the 8th International Conference
(EVOLANG8), pp. 344–351, World Scientific.
Tom WILLAERT, Paul VAN EECKE, Katrien BEULS, and Luc STEELS (2020),
Building social media observatories for monitoring online opinion dynamics,
Social Media + Society, 6(2), doi:10.1177/2056305119898778.
Tom WILLAERT, Paul VAN EECKE, Jeroen VAN SOEST, and Katrien BEULS
(2021), An opinion facilitator for online news media, Frontiers in Big Data,
4:1–10.

[313]

Van Eecke et al.

Chen YU and Daniel GILDEA (2022), Sequence-to-sequence AMR parsing with
ancestor information, in Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 571–577, Association
for Computational Linguistics, Dublin, Ireland,
doi:10.18653/v1/2022.acl-short.63.

Paul Van Eecke
 0000-0001-9153-9092
paul@ai.vub.ac.be

Artificial Intelligence Laboratory,
Vrije Universiteit Brussel, Pleinlaan 2,
1050 Brussels, Belgium

KU Leuven, Faculty of Arts, Research
Unit Linguistics, Blijde Inkomststraat
21, 3000 Leuven, Belgium

KU Leuven, imec research group itec,
Etienne Sabbelaan 51, 8500
Kortrijk,Belgium

Jens Nevens
 0000-0001-5413-2955
jens@ai.vub.ac.be

Artificial Intelligence Laboratory,
Vrije Universiteit Brussel, Pleinlaan 2,
1050 Brussels, Belgium

Katrien Beuls
 0000-0003-4451-4778
katrien.beuls@unamur.be

Faculté d’informatique, Université de
Namur, rue Grandgagnage 21, 5000
Namur, Belgium

Paul Van Eecke, Jens Nevens, and Katrien Beuls (2022), Neural heuristics for
scaling constructional language processing, Journal of Language Modelling,
10(2):287–314
 https://dx.doi.org/10.15398/jlm.v10i2.318

This work is licensed under the Creative Commons Attribution 4.0 Public License.
 http://creativecommons.org/licenses/by/4.0/

[314]

https://orcid.org/0000-0001-9153-9092
mailto:paul@ai.vub.ac.be
https://orcid.org/0000-0001-5413-2955
mailto:jens@ai.vub.ac.be
https://orcid.org/0000-0003-4451-4778
mailto:katrien.beuls@unamur.be
https://dx.doi.org/10.15398/jlm.v10i2.318
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Problem definition
	Constructional language processing
	State-of-the-art approaches
	The CLEVR dataset and grammar

	Methodology
	General architecture
	Training

	Experiments
	Experimental setup
	Experimental results: comprehension
	Experimental results: production

	Discussion and conclusions

