
Evaluating syntactic proposals
using minimalist grammars

and minimum description length*

Marina Ermolaeva
Lomonosov Moscow State University

ABSTRACT

Keywords: syntax,
evaluation
measure,
minimum
description length,
minimalist
grammars,
double object
construction

Many patterns found in natural language syntax have multiple pos-
sible explanations or structural descriptions. Even within the cur-
rently dominant Minimalist framework (Chomsky 1995, 2000), it is
not uncommon to encounter multiple types of analyses for the same
phenomenon proposed in the literature. A natural question, then, is
whether one could evaluate and compare syntactic proposals from a
quantitative point of view. In this paper, we show how an evaluation
measure inspired by the minimum description length principle (Rissa-
nen 1978) can be used to compare accounts of syntactic phenomena
implemented as minimalist grammars (Stabler 1997), and how argu-
ments for and against this kind of analysis translate into quantitative
differences.

1INTRODUCTION

Even within the same framework, different proposals often seem
equally capable of capturing observed linguistic phenomena, which
creates a need for an additional criterion to choose between them.

*This paper is based on some parts of the author’s PhD thesis (Ermolaeva
2021).

Journal of Language Modelling Vol 11, No 1 (2023), pp. 67–119

Marina Ermolaeva

This idea is prominent in early generative grammar. An evaluation
procedure – a method of determining which of the two given gram-
mars is better, given a corpus of data – is discussed in Chomsky 1957.
It makes another appearance in Chomsky 1965, where an explanatory
theory of language is defined as one capable of selecting a descrip-
tively adequate grammar based on linguistic data. The components
of such a theory mirror those of an acquisition model, i.e. how a child
learns a language, and are listed below:
i. a universal phonetic theory that defines the notion “possible sen-
tence”

ii. a definition of “structural description”
iii. a definition of “generative grammar”
iv. a method for determining the structural description of a sentence,
given a grammar

v. a way of evaluating alternative proposed grammars
(Chomsky 1965, p. 31)

The last requirement (v) is described as being twofold: it calls for
a formal evaluation measure, some sort of quantitative indication of
how good a grammar is, but also demands that the class of possible
grammars be small enough so the evaluation measure can realistically
choose between them. In this framework, a precise and rich defini-
tion of “generative grammar” serves to tighten the class of grammars.
However, the theory still permits multiple grammars compatible with
the same data set; the choice of grammar is under-determined by the
language data alone. This is where the evaluation measure comes
in: the correct grammar is the highest-valued one among those that
describe the data correctly. Of course, exactly how to construct a rea-
sonable evaluation measure is a major issue by itself. Chomsky and
Halle (1968) make some specific steps in this direction (for phonolog-
ical rules), including a proposal of an evaluation procedure based on
rule length measured in symbols.

Chomsky’s later work takes the idea of restricting what counts as
a candidate grammar much further. By Chomsky 1986, the descrip-
tion of a grammar has shifted away from rule systems and is split
into two components: an innate universal system of principles and
parameters and a language-specific lexicon of items defined by their

[68]

Evaluating syntactic proposals using MGs and MDL

phonological form and semantic properties, with the former getting
most of the attention. Assuming a finite number of principles, pa-
rameters, and parameter values, the number of possible languages
(apart from the lexicon) is also finite. This move sharply reduces the
role of the evaluation measure or even dispenses with it altogether,
as long as the universal grammar can be designed to permit only
a single grammar compatible with the data.1 The most recent and
currently dominant iteration of generative grammar, the Minimal-
ist Program (Chomsky 1995, 2000), continues this trend. Much of
the system is assumed to be universal and innate, leaving no need
or place for an evaluation measure; and language-specific properties
that must be learned are largely shifted into the features of lexical
items.

To summarize, the framework of Chomsky (1965) allows for mul-
tiple descriptions of a given language, one of which is the correct
grammar, and these descriptions can be compared based on some
quantitative measure. On the other hand, another framework he pro-
posed (Chomsky 1986), as well as his later work, allow for a small
number of descriptions of a given language, or even a single one; the
correct grammar follows from the formal properties of the system and
the language data. This stance can be considered a special case of the
previous one, where the set of candidate grammars is made sufficiently
small to eliminate the need for an evaluation measure.

Even though these two approaches are often thought of as mu-
tually exclusive, they can be reconciled. Goldsmith (2011) and Katzir
(2014) argue in favor of an evaluation measure based on the principle
of minimum description length (MDL, Rissanen 1978), which takes
into account both how good a grammar is by itself and how well it fits
the data. MDL is compatible with any theory of universal grammar – as
long as the grammars permitted by it are capable of parsing, or assign-
ing structural descriptions to sentences as per (iv), and their descrip-
tion length can be compared. In line with these ideas, we combine the
learning focus of (Chomsky 1965) with the simplifying developments

1The strong learning approach of Clark 2013, 2015 can be thought of as a
formalization of this idea. For each set of strings, it requires the existence of a
unique description called the canonical grammar. A strong learning algorithm is
required to converge to this target grammar for each (formal) language.

[69]

Marina Ermolaeva

of Minimalism, applying an evaluation measure to Minimalist lexical
items.

One major issue we have to tackle right from the start is that
of formalization. Marr (1982) distinguishes between three levels of
description of complex cognitive systems, including language:
• Computational: abstract specification of what the system com-
putes;
• Algorithmic: structures representing the data and algorithms that
manipulate them;
• Implementational: concrete realization of the algorithms in the
hardware or wetware.

Johnson (2017) considers linguistic theories to be computational-
level, while Peacocke (1986) places them at a “level 1.5”, between
the computational and algorithmic level. Syntactic literature in par-
ticular tends to abstract away from algorithmic-level details such as
full specifications of lexical items involved in derivations or syntactic
features being checked by each application of a structure-building
operation. At the same time, differences between competing analyses
of the same phenomenon seem to fall closer to the algorithmic level.

For a specific example, consider the double object construction
(e.g. John gave Mary a book) in English (Figure 1). Any analysis of
a syntactic phenomenon encodes two kinds of information: relatively
theory-neutral, high-level facts that directly follow from the data, such
as relations between words based on argument structure and linear
order; and a proposed explanation of these facts – for instance, a spe-
cific configuration of lexical items constructed by structure-building
operations. Descriptively, ditransitive verbs such as give appear in ac-
tive sentences with three arguments: a subject, a direct object, and an
indirect object. This is (apparently) non-controversial. On the lower
level,2 disregarding the subject, one option is to combine the two in-
ternal arguments together and have the verb select the resulting con-
stituent as its complement (Figure 1a). The arguments are described in

2Work concerning these structures also tends to assume and try to explain a
connection between them and prepositional constructions, as in John gave a book
to Mary. This too is a nontrivial analytical choice; see Goldsmith 1980. A sketch
of comparison between grammars along this dimension is given in Appendix A.

[70]

Evaluating syntactic proposals using MGs and MDL

VP

V’

PP

P’

DP

a book

P

ε

DP

Mary

V

give

...

(a) Null P (adapted from Pesetsky 1996)

VP

V’

VP

V’

DP

a book

V’

tV

give

DP

Mary

V

...

(b) VP-shells (adapted from Larson 1988)
Figure 1: The double object construction

terms of Williams’ (1975) “small clauses” or taken to be connected by
a silent preposition-like element (Kayne 1984; Pesetsky 1996; Harley
2002; Harley and Jung 2015). The alternative is to have the verb form
a constituent with one of its internal arguments and then select the
other one (Figure 1b). This option gives rise to VP-shells (Larson 1988)
and analyses inspired by them (Kawakami 2018).

Existing treatments of the double object construction generally
fall into one of the two categories mentioned above, as there are only
so many conceivable ways to form a binary-branching structure con-
taining a verb and two arguments. That said, the abundance of recent
literature on the topic indicates that this is far from a closed issue.

Given a disagreement in the literature over a specific linguistic
puzzle, how can the competing solutions be compared in terms of
Chomsky’s evaluation procedure? In order to take on this question, one
needs to capture precisely what makes them different. This requires
formalizing syntactic proposals at the algorithmic level, expressing
them as a clearly defined set of building blocks and rules for putting
them together. This paper adopts the formalism known as minimal-
ist grammars (MGs), introduced by Stabler (1997). On the one hand,

[71]

Marina Ermolaeva

minimalist grammars were expressly designed as an implementation
of Chomsky’s Minimalist Program3 and offer a way to state analyses
of syntactic phenomena in terms familiar to a linguist: lexical items
defined by features and structure-building operations that combine
them.4 On the other hand, they are explicit in spelling out assump-
tions about syntactic units and operations, and their formal properties
– such as the complexity of string languages they generate and relation
to other grammar formalisms – are relatively well understood.

This paper is structured as follows. Section 2 discusses the MDL
principle, along with a toy example to demonstrate it in action. Sec-
tion 3 provides a semi-formal, example-driven description of mini-
malist grammars. Section 4 builds on the previous sections to outline
an encoding scheme for MGs and show how various intuitive notions
translate into MDL values. In Section 5 we move away from toy ex-
amples and look at how MDL and MGs can be used to approach the
problem of the double object construction. Finally, Section 6 offers
some higher-level discussion and indicates some directions for future
work.

2 THE MINIMUM DESCRIPTION LENGTH
PRINCIPLE

Minimum description length (Rissanen 1978) is a principle for select-
ing a model to explain a dataset, which takes into account the simplic-

3The choice of capitalization – uppercase for “Minimalist Program” and low-
ercase for “minimalist grammars” – follows the sources that introduced these
terms, Chomsky (1995) and Stabler (1997), respectively.

4Why minimalist grammars? A fully fleshed-out formalism is necessary to
compute a quantitative measure such as MDL for each proposal in a self-
contained way, independently from other candidates. That said, which formal-
ism to use is a nontrivial decision, as any choice involves a tradeoff between
conceptual simplicity and faithfulness to the original theoretical proposals. MGs
do appear to diverge from mainstream Minimalist syntax with respect to the
feature calculus, implementation of movement, locality, and other issues. How-
ever, as discussed in depth by Graf (2013, pp. 96–125), many of these apparent
points of disagreement are a matter of convenience rather than an integral part
of the formalism. We will briefly return to the problem of choosing a formalism
in Section 6.

[72]

Evaluating syntactic proposals using MGs and MDL

ity of both the model itself and the explanation of the dataset it offers.
In the MDL framework, the best grammar to describe a corpus is the
one that minimizes the sum of the following:
• the length of the grammar, measured in bits;
• the length of the description assigned by the grammar to the cor-
pus, measured in bits.
Within linguistics, MDL has been used as a method of comparing

candidate analyses of a given dataset, for example, for induction of
phonological constraints (Rasin and Katzir 2016) and ordered rules
(Rasin et al. 2018), morphological segmentation (Goldsmith 2001,
2006), and inferring syntactic categories given known morphological
patterns (Hu et al. 2005).

2.1Context-free grammars

To demonstrate this idea in action, we will use the formalism of
context-free grammars (CFGs), also called phrase-structure grammars
(Chomsky 1956). CFGs were developed for describing syntactic struc-
ture in natural language and serve as the starting point of Chomsky’s
(1965) Standard Theory. A context-free grammar is defined by speci-
fying the following components:
• N , a finite set of nonterminal symbols. By convention, S P N is the
start symbol;
• Σ, a finite set of terminal symbols disjoint from N ;
• R, a finite set of (rewrite) rules. Each member of R is a pair xα,βy

(usually written as α Ñ β), where α P N and β is a (potentially
empty) string of terminal and nonterminal symbols.
Rules are applied by replacing the nonterminal symbol on the left-

hand side with the sequence on the right-hand side. The derivation
begins with the start symbol and proceeds by applying rules until no
nonterminal symbols are left in the string.

For a specific example, consider a CFG with N “ tS, DP, VP, D,
N, AUX, VGu, Σ “ tthis,boy, laughs, is, laughingu, and R as given in Fig-
ure 2a. CFGs are often represented simply as a list of rewrite rules,
since N and Σ are recoverable from R. The phrase-structure tree, or

[73]

Marina Ermolaeva

Figure 2:
A toy

context-free
grammar

S Ñ DP VP

DP Ñ D N

D Ñ this
N Ñ boy
VP Ñ laughs
VP Ñ AUX VG

AUX Ñ is
VG Ñ laughing
(a) Rules

S

VP

VG

laughing

AUX

is

DP

N

boy

D

this
(b) Parse tree of this boy is laughing

parse tree, associated with the derivation of the string this boy is laugh-
ing, is shown in Figure 2b. In a phrase-structure tree for a context-free
derivation, each internal node corresponds to the left-hand side of a
rule, and its children to symbols on the rule’s right-hand side.

Context-free grammars have been shown by Shieber (1985) to be
insufficiently powerful to describe patterns found in natural language
syntax. Nevertheless, they have useful connections to other grammar
formalisms that will be discussed in Subsection 3.3.

2.2 Encoding FGs

Now let us consider a corpus of three strings over Σ “ tthis, boy, girl,
laughs, jumps, andu:

this boy laughs;
this girl jumps;
this boy jumps and this girl laughs.

The three CFGs in Figure 3 all generate these strings but assign
different phrase-structure trees to them (Figure 4). The first one (Fig-
ure 3a) is too permissive and overgenerates by producing every non-
empty string inΣ˚, including those that are not grammatical sentences
in English, such as *laughs jumps girl and this this. In linguistic terms,
Figure 3a assigns the same syntactic category to every word without
regard to their distribution. The second grammar (Figure 3b) is too
constraining and overfits the corpus: it generates the three sentences

[74]

Evaluating syntactic proposals using MGs and MDL

S Ñ X S

S Ñ X

X Ñ this
X Ñ boy
X Ñ girl
X Ñ laughs
X Ñ jumps
X Ñ and

(a) Overgenerating

S Ñ S1 CONJ S2

S Ñ S3

S Ñ S4

S1 Ñ DP1 VP2

S2 Ñ DP2 VP1

S3 Ñ DP1 VP1

S4 Ñ DP2 VP2

DP1 Ñ D N1

DP2 Ñ D N2

D Ñ this
N1 Ñ boy
N2 Ñ girl
VP1 Ñ laughs
VP2 Ñ jumps

CONJ Ñ and
(b) Overfitting

S Ñ S CONJ S

S Ñ DP VP

DP Ñ D N

D Ñ this
N Ñ boy
N Ñ girl
VP Ñ laughs
VP Ñ jumps

CONJ Ñ and
(c) Balanced

Figure 3:
Three
context-free
grammars

S

S

S

X

laughs

X

boy

X

this

(a) Overgenerating

S

S3

VP1

laughs

DP1

N1

boy

D

this
(b) Overfitting

S

VP

laughs

DP

N

boy

D

this
(c) Balanced

Figure 4:
Phrase-structure
trees for this boy
laughs

[75]

Marina Ermolaeva

above and nothing else. Finally, Figure 3c strikes a balance by mak-
ing a number of correct generalizations – for instance, that boy and
girl have the same distribution and should be generated by the same
nonterminal symbol. This grammar generates every sentence in the
corpus, but also an infinite set of grammatical sentences absent from
the corpus such as this boy laughs and this girl jumps and this girl laughs.

We will now adopt a straightforward encoding scheme and nota-
tion after Katzir (2014) and Rasin and Katzir (2019) to see how this
intuition translates into MDL values. The first step is to convert each
nonterminal in N and each terminal in Σ, along with an additional de-
limiter symbol, #, into a binary string. Then the number of bits needed
to represent each symbol is :

P

log2p|N | ` |Σ| ` 1q
T

,

where r s indicates rounding up to the nearest integer. For simplicity,
this encoding scheme assigns binary strings of equal length to all sym-
bols; see Section 6 for discussion of alternatives. It takes four bits to
encode a symbol in Figure 3a or 3c, while the symbols of 3b require
five bits each (Figure 5).

We can now use these binary representations to encode each
grammar. Since context-free rewrite rules follow a very specific for-
mat (one nonterminal symbol on the left-hand side, a sequence of
terminal and nonterminal symbols on the right-hand side), a gram-
mar can be unambiguously represented by concatenating all symbols
in each rule and concatenating all rules together, separated by delim-
iters, as shown in Figure 6.

This step converts a grammar into a single binary string. Formal-
izing, the length of this string equals

ÿ

xα,βyPR

`

|α| ` |β | ` 1
˘

ˆ
P

log2p|N | ` |Σ| ` 1q
T

and represents the size of the entire grammar in bits.

2.3 Encoding corpora

Our next step is to encode the data, which is done by using phrase-
structure trees of sentences in the corpus. We start at the root (labeled
with the start symbol, S) and traverse the tree in preorder – i.e. read
the current node, then recursively traverse its children in the same

[76]

Evaluating syntactic proposals using MGs and MDL

0000

S 0001

X 0010

this 0011

boy 0100

girl 0101

laughs 0110

jumps 0111

and 1000

(a) Overgenerating

00000

S 00001

S1 00010

S2 00011

S3 00100

S4 00101

DP1 00110

DP2 00111

D 01000

N1 01001

N2 01010

VP1 01011

VP2 01100

CONJ 01101

this 01110

boy 01111

girl 10000

laughs 10001

jumps 10010

and 10011

(b) Overfitting

0000

S 0001

DP 0010

D 0011

N 0100

VP 0101

CONJ 0110

this 0111

boy 1000

girl 1001

laughs 1010

jumps 1011

and 1100

(c) Balanced

Figure 5:
Encoding tables
for symbols

S
loomoon

0001

Ñ X
loomoon

0010

S
loomoon

0001

#
loomoon

0000

S
loomoon

0001

Ñ X
loomoon

0010

#
loomoon

0000

X
loomoon

0001

Ñ this
loomoon

0011

#
loomoon

0000

...

Figure 6: Encoding of the overgenerating grammar (Figure 3a)

way, from left to right. At each internal node, the number of possible
choices equals the number of different rules whose left-hand side cor-
responds to the node’s label. Formally, given the left-hand side α, the
cost of encoding a rule in bits is: P

log2p|tβ : xα,βy P Ru|q
T.

Using the overfitting grammar (Figure 3b) as an example, the cost
of using the rule S Ñ S3 given the left-hand side S is rlog2 3s “ 2 bits,
because there are 3 different rules whose left-hand side is S. If there is

[77]

Marina Ermolaeva

S Ñ X S 0

S Ñ X 1

X Ñ this 000

X Ñ boy 001

X Ñ girl 010

X Ñ laughs 011

X Ñ jumps 100

X Ñ and 101

(a) Overgenerating

S Ñ S1 CONJ S2 00

S Ñ S3 01

S Ñ S4 10

S1 Ñ DP1 VP2 ε

S2 Ñ DP2 VP1 ε

S3 Ñ DP1 VP1 ε

S4 Ñ DP2 VP2 ε

DP1 Ñ D N1 ε

DP2 Ñ D N2 ε

D Ñ this ε

N1 Ñ boy ε

N2 Ñ girl ε

VP1 Ñ laughs ε

VP2 Ñ jumps ε

CONJ Ñ and ε

(b) Overfitting

S Ñ S CONJ S 0

S Ñ DP VP 1

DP Ñ D N ε

D Ñ this ε

N Ñ boy 0

N Ñ girl 1

VP Ñ laughs 0

VP Ñ jumps 1

CONJ Ñ and ε

(c) Balanced
Figure 7: Encoding tables for rules

Table 1:
Encoding costs
for Figure 3a–3c

(bits)

Grammar Corpus MDL
Overgenerating (Figure 3a) 100 52 152
Overfitting (Figure 3b) 265 6 271
Balanced (Figure 3c) 124 13 137

only one possible right-hand side, as with the rule S3 Ñ DP1 VP1, the
cost is 0 bits because there is no choice to make, and the corresponding
encoding is ε, the empty string.

In this way, we can now give binary string representations to all
rules, as shown in Figure 7. To encode a tree, we concatenate all rule
encodings in the order in which the nodes are traversed (Figure 8).

This explicit encoding scheme highlights the differences in how
each grammar describes the data. Overall costs for the three gram-
mars and data are given in Table 1. The overgenerating grammar (Fig-
ure 3a) is very short but requires a lengthy encoding of the corpus.

[78]

Evaluating syntactic proposals using MGs and MDL

S Ñ X S
looomooon

0

X Ñ this
looomooon

000

S Ñ X S
looomooon

0

X Ñ boy
looomooon

001

S Ñ X
loomoon

1

X Ñ laughs
looooomooooon

011

(a) Overgenerating

S Ñ S3
loomoon

01

S3 Ñ DP1 VP1
looooooomooooooon

ε

DP1 Ñ D N1
looooomooooon

ε

D Ñ this
looomooon

ε

N1 Ñ boy
loooomoooon

ε

VP1 Ñ laughs
looooooomooooooon

ε

(b) Overfitting

S Ñ DP VP
looooomooooon

1

DP Ñ D N
loooomoooon

ε

D Ñ this
looomooon

ε

N Ñ boy
looomooon

0

VP Ñ laughs
loooooomoooooon

0

(c) Balanced

Figure 8:
Encoding of
this boy laughs

The overfitting grammar (Figure 3b) makes describing the corpus ex-
tremely easy at the cost of a long encoding of the grammar itself.

The sum of the grammar and corpus encoding favors the balanced
grammar (Figure 3c) – which aligns with a linguistic intuition of which
of the three grammars is best.5

3MINIMALIST GRAMMARS

3.1Lexical items, Merge, and Move

Minimalist grammars (MGs, Stabler 1997) provide a formal imple-
mentation of Minimalist syntax (Chomsky 1995, 2000), which is used
throughout the paper. In order to keep the paper fully self-contained,
this section introduces the MG formalism and provides examples of
derivations.

5 An editor has pointed out that the following “extremely overfitting” gram-
mar would outperform the balanced grammar given the corpus discussed above:

S Ñ this boy laughs
S Ñ this girl jumps
S Ñ this boy jumps and this girl laughs

This grammar introduces no nonterminal symbols other than S, which works well
for the three-sentence corpus. However, we can easily construct an example over

[79]

Marina Ermolaeva

An MG specifies a finite set of lexical items and encodes their
selectional properties in the form of syntactic features. A feature of the
form x corresponds to a syntactic category, whereas =x, =>x, and x=
are selecting features which indicate that an expression is looking to
merge (on the right, on the right with head movement, or on the left,
respectively6) with something of that category. Similarly, -x indicates

the same Σ that would make better use of additional nonterminals and show
extreme overfitting underperform on a slightly larger dataset.
Let us add to the original corpus a sentence containing n ` 1 clauses (for

some n) of the form: this boy laughs and this girl jumps ... and this girl jumps
looooooooooooooooooooooooomooooooooooooooooooooooooon

n times

. On

the grammar side, the overgenerating and balanced grammar can already gen-
erate it. The overfitting grammar needs to add two new rules: S Ñ S5 and
S5 Ñ S3 CONJ S4 ... CONJ S4

looooooooooomooooooooooon

n times

. The extremely overfitting grammar needs one

rule, S Ñ this boy laughs and this girl jumps ... and this girl jumps
looooooooooooooooooooooooomooooooooooooooooooooooooon

n times

, costing three

bits per symbol to encode. On the corpus side, the overgenerating grammar
would pay one bit per word in the sentence to choose between S Ñ S X and
S Ñ X and three bits per word to pick the terminal. For the balanced gram-
mar, the additional cost is n instances of S Ñ S CONJ S, n ` 1 instances of
S Ñ DP VP, and two more bits per clause to pick the noun and the verb. Both
the overfitting and the extremely overfitting grammar would see a flat 2-bit in-
crease.

Grammar cost increase Corpus cost increase
Overgenerating 0 p3 ` 4nq ` 3 ˆ p3 ` 4nq

Balanced 0 n ` pn ` 1q ` 2 ˆ pn ` 1q

Overfitting 5 ˆ 3 ` 5 ˆ p3 ` 2nq 2
Extremely overfitting 3 ˆ p5 ` 4nq 2

It is easy to see that the balanced approach and even the overfitting one
outperform extreme overfitting at higher values of n. While not very natu-
ral (as the number of distinct words is limited to keep it simple), this exam-
ple shows how the initial investment of setting up syntactic structure (as ad-
ditional nonterminal symbols and rules) takes more than a toy corpus to pay
off.

6The choice to distinguish between left and right selection puts linear order
under lexical control. One alternative, commonly adopted in the literature on
MGs, is to have the first dependent of a head merge on the right, and all sub-
sequent dependents on the left – a version of the Linear Correspondence Axiom
(Kayne 1994).

[80]

Evaluating syntactic proposals using MGs and MDL

the requirement to move, and +x and *x mean that the expression
attracts a sub-expression with that feature into its specifier position
(overtly or covertly).

In order to define an MG, one has to specify the following:
• Base, a finite set of syntactic categories. The set Syn of syntactic
features is defined as the union of Base and the following sets:

Sel “t=x : x P Baseu Y pright selectorsq
t=>x : x P Baseu Y pmorphological selectorsq
tx= : x P Baseu pleft selectorsq

Lic “t+x : x P Baseu Y povert licensorsq
t*x : x P Baseu pcovert licensorsq

Lee “t-x : x P Baseu plicenseesq

Each syntactic feature is then characterized by its name (drawn
from Base) and type (category, right/morphological/left selec-
tor, overt/covert licensor, or licensee). Selectors and licensors
together are called attractors, and categories and licensees are
called attractees;
• Σ, a finite alphabet of phonological segments;
• Lex, a lexicon, or finite set of lexical items. Each lexical item (LI)
is a pair xs,δy (written as s :: δ), where s P Σ˚ is a (phonological)
string component and δ P Syn˚ is a list of syntactic features, or
feature bundle. In cases that are not ambigous, we will sometimes
refer to specific lexical items by their string components.
MGs are commonly defined by simply stating a lexicon, which

also implicitly fixes a set of categories and an alphabet of segments.
Because of this, and for the sake of convenience, we will use the terms
“grammar” and “lexicon” interchangeably when referring to MGs. An
example grammar of five lexical items is given in Figure 9.7

Syntactic expressions generated by an MG are binary trees whose
terminal nodes are labeled with LIs (which themselves are referred to

7In this example, all complements are merged on the right. The subject DP
then moves to the position to the left of the finite verb.

[81]

Marina Ermolaeva

Figure 9:
A toy MG

this :: =n d -k
boy :: n
is :: =g +k t

laugh :: =d v
-ing :: =>v g
-s :: =>v +k t

as atomic expressions). The first feature of each LI is syntactically ac-
tive, i.e. accessible to structure building operations. These operations,
merge and move, consume matching attractors and attractees to gen-
erate complex expressions from Lex.

Following Stabler (2001), head movement is implemented as a
subtype of merge, driven by features of the form =>x , which we will
call morphological selectors. This version of head movement is defined
in terms of head-complement relations, which means that this type
is restricted to the first feature in the bundle. This addition allows
minimalist lexica to reflect structure within complex words.8 We will
refer to lexical items bearing these selector features as affixes and write
their string components starting with a hyphen, following a common
notational convention.

The set of expressions Exp is defined as the closure of Lex under
merge and move.

8Regarding the issue of complex words, multiple options have been explored
in the literature. Head movement creates a chain of heads that is pronounced in
the highest head position. Lowering or affix hopping, on the other hand, allows
an affix to attach to the head of its complement, with the whole word being pro-
nounced in the lower position. Unification of head movement and lowering is
one of the defining features of Brody’s (2000) Mirror Theory. In a similar vein,
Arregi and Pietraszko (2018) propose a generalized account of head movement
and lowering as high and low spellouts of a single syntactic operation, unified
head movement. Stabler (2001) incorporates both head movement and lowering
into MGs as subtypes of selector features. Brody’s framework was adapted into
minimalist grammars by Kobele (2002), and was proven not to affect the weak
generative capacity of the formalism. Arregi and Pietraszko’s (2018) proposal is
similarly implemented by Kobele (to appear). In this paper, we consider all com-
plex words to be formed by head movement. This decision is explicitly treated
as a simplifying assumption.

[82]

Evaluating syntactic proposals using MGs and MDL

• merge : pExpˆ Expq Ñ Exp is a binary function that targets selec-
tors and categories and combines two syntactic expressions into
a new one. The dependent is merged on the left if the selector is
of the form x=, and on the right if it is of the form =x:

s
x=γ

`

t
xδ

ñ

ą

t
δ

s
γ

s
=xγ

`

t
xδ

ñ

ă

s
γ

t
δ

• merge with head movement is triggered by selectors of the form
=>x. It proceeds as right merge and concatenates the string com-
ponent of the head of the complement with that of the resulting
expression:9

s
=>xγ

`

t
xδ

ñ

ă

ts
γ

t
δ

• move : Exp ˆ Exp is a relation that matches a licensor with a
licensee within the same expression. Overt licensors (+x) cause
the moving subtree to become a (left) sister of the head, leaving
behind an empty node without a string component or syntactic
features. Covertmove (*x) leaves the string component behind:10

9We indicate a moved string t as t. This is a notational convenience; formally,
the empty node contains ε, the empty string.

10This version of covert movement, which displaces syntactic features but
leaves the string component in its base position, is in line with Stabler 1997.
It fixes the position of a sub-expression once it has been covertly moved, render-
ing its string component inaccessible to future instances of (overt)move. Though

[83]

Marina Ermolaeva

s
+xγ

t
-xδ

ñ

ą

t
δ

s
γ

t

s
*xγ

t
-xδ

ñ

ą

t
δ

s
γ

t

While there are many ways to limit the number of features which
may be syntactically active at any given time, a simple one with desir-
able computational properties stipulates that only one feature of each
name may be the first feature of any feature bundle in an expression.
In particular, this means that the number of movable subtrees in any
expression is limited by the size of Base. This restriction is known as
the Shortest Move Constraint, or SMC. With the SMC in place, move
becomes a function.

A single lexical item (atomic expression) is considered its own
head. For complex structures formed by merge or move, the expres-
sion with the attractor becomes the head of the new expression; and
the one with the attractee becomes its dependent. We label the parent
node with ă if the head is on the left or ą if the head is on the right.
The dependent introduced by the first attractor of an LI is its comple-
ment, and all subsequent dependents are specifiers. Matched features
are checked, or deleted, making the next feature in the bundle accessi-
ble for syntactic operations. Checked features are no longer visible to
syntax. We will sometimes keep them in representations for clarity, in
which case they will be marked as x .

An expression with no unchecked features except for some cat-
egory x on its head is called a complete expression of that category.

restricted, this implementation has been used in previous work on MGs (see e.g.
Torr and Stabler 2016) and is sufficient for our purposes.

[84]

Evaluating syntactic proposals using MGs and MDL

We will be primarily concerned with complete expressions of cate-
gory t (for Tense) or c (for Complementizer) and their string yields
(sentences).

The lexicon in Figure 9 generates, among others, the five expres-
sions in Figure 10. In Figure 10a,merge applies to this and boy, whose

ă

boy
n

this
=n d -k

(a) merge(this, boy)

ă

ă

boy
n

this
=n d -k

laugh
=d v

(b) merge(laugh, 10a)

ă

ă

ă

boy
n

this
=n d -k

laugh
=d v

laugh-ing
=>v g

(c) merge(-ing, 10b)

ă

ă

ă

ă

boy
n

this
=n d -k

laugh
=d v

laugh-ing
=>v g

is
=g +k t

(d) merge(is, 10c)

ą

ă

ă

ă

this boylaugh
=d v

laugh-ing
=>v g

is
=g +k t

ă

boy
n

this
=n d -k

(e) move(10d)

Figure 10:
Derivation of this
boy is laugh-ing
using Figure 9

[85]

Marina Ermolaeva

feature bundles start with thematching features =n and n, respectively.
Both =n and n are deleted. In Figure 10b,merge once again targets two
expressions: laughing’s feature bundle starts with =d, and Figure 10a
has d as its first feature. Next, we merge in -ing. Its selector feature,
=>v, triggers head movement, concatenating laugh and -ing together
(Figure 10c). Another merge step (Figure 10d) checks the =g and g
features, combining is with Figure 10c. In Figure 10e, the matching
features are +k on is and -k on this. The DP ismoved into the specifier
position of is, which becomes the head of the new expression. This is
a complete expression of category t, whose string yield is this boy is
laugh-ing.

3.2 Grammar graphs

When it comes to visualizing an entire grammar, the default option is
to list all lexical items, as in Figure 9. As mentioned before, such a list
contains all information required to define an MG. However, it does
not provide a good overview of expressions generated by the gram-
mar in question. While it works for very small toy examples, larger
grammars with dozens or hundreds of LIs can become difficult to read
quickly. A convenient alternative for showing the head-complement
relations within a set of lexical items is a directed multigraph whose
vertices correspond to category features, and edges to lexical items.
To better understand, consider Figure 11 which illustrates this repre-
sentation using the same data as Figure 9.

Figure 11:
Head-complement relations

within Figure 9 t g v d nthislaugh-ingis

-s

This graph does not reflect all relations in the lexicon, since it ig-
nores any move relations as well as any specifiers formed by merge.
Lexical items without any selectors (such as boy :: n) don’t contribute
an edge to the graph. Instead, it focuses on a subset of relations which
are relevant for morphologically complex words. Each path from n to
t indicates a possible sequence of LIs along the clausal spine. Multi-
ple paths between vertices indicate that there is more than one option
available at that point in the derivation. For instance, there is an edge

[86]

Evaluating syntactic proposals using MGs and MDL

connecting v and t, as well as an alternative path between these cat-
egories. This reflects the fact that an expression of category v can be
selected either by -s :: =>v +k t or by -ing :: =>v g, in the latter case
producing a valid complement for is :: =g +k t.

3.3Relation to CFGs

By definition, the two structure-building operations of MGs – merge
and move – can only target subtrees whose heads bear an unchecked
syntactic feature. Therefore, much of the derived structure is syntac-
tically inert: once all features of a lexical item have been deleted, its
position in the structure is fixed. The only elements that matter for syn-
tax are those still capable of rearranging with respect to each other –
namely, the head of the entire expression (via head movement) and
any movers, or subtrees headed by lexical items with an unchecked
licensee feature. With the SMC in place, the number of such subtrees
in any given expression is finite, limited by the number of distinct li-
censee features in the grammar. Thus, a derived tree can be flattened
into a much more compact structure containing all information rel-
evant for merge and move – a sequence of strings annotated with
unchecked features.

This insight gives rise to the so-called chain notation for MGs (Sta-
bler 2001; Stabler and Keenan 2003). In short, each expression sans
movers is represented as an initial chain – a triple of strings corre-
sponding to the head and material to its left and right, annotated with
features of the head. Movers within the tree are represented by sepa-
rate non-initial chains, the number of which cannot be greater than the
size of Base (see Figure 12).
pleft, head, rightq : features
looooooooooooooooooomooooooooooooooooooon

Initial chain
, mover1 : licensees, mover2 : licensees, ...

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Non-initial chains
Figure 12: Schematic representation of a chain-based expression

Lexical items consist of only an initial chain, and their first and
last components are empty strings, as shown in Figure 13.

The structure-building operations are redefined in terms of string
tuples. Informally, the outcome of merge depends on whether the de-
pendent has reached its final position in the structure or is going to

[87]

Marina Ermolaeva

Figure 13:
Chain-based counterpart of Figure 9 xε, this,εy :: =n d -k

xε,boy,εy :: n
xε, is,εy :: =g +k t

xε, laugh,εy :: =d v
xε, -ing,εy :: =>v g

xε, -s,εy :: =>v +k t

move later in the derivation. In the former case, its initial chain is
concatenated together and attached to the leftmost (for leftmerge) or
rightmost (for right merge) component of the initial chain. In the lat-
ter case, the dependent forms a non-initial chain ready to be targeted
by move. Similarly, move comes in multiple varieties depending on
whether the moving subtree has reached its surface position. A com-
plete expression of category x consists of just an initial chain annotated
with only the feature x.

The derivation of this boy is laugh-ing, shown before in Figure 10,
is repeated in Figure 14, with each derivation step given as a derived
tree and in chain notation side by side. In Figure 14a, this and boy are
merged, and the string component of the latter is concatenated into
the third component of the initial chain. Next, laugh ismergedwith the
resulting structure (Figure 14b). Since the dependent still carries a li-
censee feature (-k), it forms a non-initial chain this boy annotated with
-k. The next two steps continue building up the initial chain, leaving
the single non-initial chain unaffected. Finally, Figure 14e moves this
boy into the first component of the initial chain, arriving at a complete
expression of category t.

Because chain notation is so compact, all intermediate steps in
a derivation can be visualized as a single derivation tree by labeling
each internal node with the chain-based expression corresponding to
the step in question, as shown in Figure 15. Each internal node cor-
responds to a step in the derivation, an instance of merge or move,
and the order of its children reflects their role in that step: the head
precedes its dependent regardless of their relative order in the derived
structure.

Derivation trees don’t reflect displacement of leaves caused by
move in the way derived trees do. For any MG, its derivation trees are

[88]

Evaluating syntactic proposals using MGs and MDL

ă

boy
n

this
=n d -k

xε, this,boyy : d -k

(a) merge(this, boy)
ă

ă

boy
n

this
=n d -k

laugh
=d v xε, laugh,εy : v, this boy : -k

(b) merge(laugh, 14a)
ă

ă

ă

boy
n

this
=n d -k

laugh
=d v

laugh-ing
=>v g

xε, laugh-ing,εy : g, this boy : -k

(c) merge(-ing, 14b)
ă

ă

ă

ă

boy
n

this
=n d -k

laugh
=d v

laugh-ing
=>v g

is
=g +k t

xε, is, laugh-ingy : +k t, this boy : -k

(d) merge(is, 14c)
ą

ă

ă

ă

this boylaugh
=d v

laugh-ing
=>v g

is
=g +k t

ă

boy
n

this
=n d -k xthis boy, is, laugh-ingy : t

(e) move(14d)
Figure 14: Derivation steps of this boy is laugh-ing as chain-based expressions

[89]

Marina Ermolaeva

move
xthis boy, is, laugh-ingy : t

merge
xε, is, laugh-ingy : +k t, this boy : -k

merge
xε, laugh-ing,εy : g, this boy : -k

merge
xε, laugh,εy : v, this boy : -k

merge
xε, this,boyy : d -k

xε,boy,εy :: nxε, this,εy :: =n d -k

xε, laugh,εy :: =d v

xε, -ing,εy :: =>v g

xε, is,εy :: =g +k t

Figure 15: Chain-based derivation tree of this boy is laugh-ing

parse trees of a CFG; a clear presentation of this result is given in (Hale
and Stabler 2005). Intuitively, constructing this CFG can be thought of
as pre-computing all possible derivation steps that can be performed
by the MG. The central concept here is that of a feature configuration,
which is obtained from a chain-based expression by omitting string
components;11 the SMC guarantees that the number of such config-
urations is finite. The set of feature configurations is obtained as the
closure of the lexicon undermerge andmove. Informally, the conver-
sion process is as follows:
• Each feature configuration (written in round brackets) becomes a
nonterminal symbol;
• For each feature configuration formed by merge or move, there
is a rule rewriting it as the operation’s argument or arguments;
• For each LI, there is a rule rewriting its feature configuration as
its string component;

11For covert movement, feature configurations should also indicate the non-
initial chains whose string components have been left behind.

[90]

Evaluating syntactic proposals using MGs and MDL

• An additional rule rewrites the start symbol S as ptq or pcq.12

Derivation is then viewed as proceeding in the top-down manner
of CFGs (starting with t and rewriting until lexical items in the leaves
are reached), rather than the bottom-up manner characteristic of MGs.
The CFG obtained from Figure 9 is shown in Figure 16.

S Ñ ptq

ptq Ñ p+k t, -kq

p+k t, -kq Ñ p=g +k tq pg, -kq

p+k t, -kq Ñ p=>v +k tq pv, -kq

pg, -kq Ñ p=>v gq pv, -kq

pv, -kq Ñ p=d vq pd -kq

pd -kq Ñ p=n d -kq pnq

p=n d -kq Ñ this
pnq Ñ boy

p=g +k tq Ñ is
p=d vq Ñ laugh

p=>v gq Ñ -ing
p=>v +k tq Ñ -s

Figure 16:
CFG counterpart
of Figure 9

4ENCODING MINIMALIST GRAMMARS

With these definitions in place, we will now discuss how the approach
of Section 2 can be adapted to implement an MDL-based metric for
MGs. Consider the following four sentences:

Mary laughs;
Mary laughed;

Mary jumps;
Mary jumped.

12The method given in Hale and Stabler 2005 is itself an adaptation of
Michaelis 1998, which shows how to convert an MG into an equivalent multiple
context-free grammar (MCFG) generating the same language of sentences – yields
of derived trees. MCFGs are a generalization of CFGs which operates on tuples in-
stead of strings. Converting an MG into an equivalent MCFG is similar to the CFG
construction, with a few differences. First, terminal rules rewrite feature bundles
as triples of strings, corresponding to initial chains. Second, each non-terminal
rule comes with a map describing how components of the argument tuples are
rearranged and/or concatenated, in a way closely following chain-based merge
and move.

[91]

Marina Ermolaeva

There are multiple (in fact, infinitely many) ways to construct a
minimalist grammar accounting for this small corpus. Three of them
are given in Figure 17.

Figure 17:
Three minimalist

grammars

Mary :: d -k
laughs :: =d +k t

laughed :: =d +k t
jumps :: =d +k t

jumped :: =d +k t
(a) Atomic verbs

Mary :: d -k
laugh :: =d v
jump :: =d v

-s :: =>v +k t
-ed :: =>v +k t
(b) Complex verbs

Mary :: x -k
laugh :: =x x
jump :: =x x

-s :: =>x +k t
-ed :: =>x +k t
(c) Overgenerating

The first two grammars, Figure 17a and 17b, generate the four
sentences above and no others. While they are are weakly equivalent,
i.e. generate exactly the same set of strings, the structures they as-
sign to these strings are different. In linguistic terms, the former treats
each sentence as a single tP headed by an unsegmented verb. The lat-
ter reanalyzes each finite verb form as a complex head formed by head
movement. The lexical verb directly selects its argument and forms a
vP, while the affix takes the vP as its complement and is responsible
for the movement of the subject into its specifier position (Figure 18b).
The third grammar, Figure 17c, is also capable of generating inflected
verbs in two derivation steps (Figure 18c). However, it conflates the
category feature of lexical verbs with that of DPs, producing ungram-
matical strings like *Mary-ed and *Mary laugh-s pjumpq` (Figure 19).

To further help visualize the differences between these grammars,
their graph representations are given in Figure 20.

ą

ă

Marylaughs
=d +k t

Mary
d -k

(a) Atomic verbs

ą

ă

ă

Marylaugh
=d v

laugh-s
=>v +k t

Mary
d -k

(b) Complex verbs

ą

ă

ă

Marylaugh
=x x

laugh-s
=>x +k t

Mary
x -k

(c) Overgenerating
Figure 18: Structural differences

[92]

Evaluating syntactic proposals using MGs and MDL

ą

ă

MaryMary-ed
=>x +k t

Mary
x -k

(a)

ą

ă

ą

laugh
=x x

ă

Maryjump
=x x

laugh-s
=>x +k t

Mary
x -k

(b)

Figure 19:
Overgeneration
by Figure 17c

t d

laughs
laughed
jumps
jumped

(a) Atomic verbs

t v d
laugh

jump

-ed

-s

(b) Complex verbs

t x

laugh

jump

-ed

-s

(c) Overgenerating

Figure 20:
Graph
representations
of the grammars
in Figure 17

For instance, laughed in the atomic-verb grammar corresponds to
one of the edges from d to t in Figure 20a. Its counterpart in the gram-
mar with complex verbs is a bimorphemic word, which translates into
a pair of adjacent edges: laugh from d to v and -ed from v to t (Fig-
ure 20b). In the overgenerating grammar, lexical verbs correspond to
loops (Figure 20c).

Intuitively, complex verbs are an improvement over atomic verbs.
By recognizing internal structure within verbs, it captures the sim-
ilarities within verbal paradigms (laughs, laughed vs. jumps, jumped)
and across paradigms (laughs, jumps vs. laughed, jumped). On the other
hand, atomic verbs miss all these generalizations. For each new ver-
bal paradigm encountered in the corpus (e.g. walks, walked), we would
need to add two new lexical items to Figure 17a, but only one to Fig-
ure 17b. Finally, Figure 17c is a subpar choice: it shares the desirable
generalizations of Figure 17b but also conflates a crucial distinction
between two syntactic categories, leading to overgeneration.

What quantitative data can be used to back up this intuition? We
can define an encoding scheme for MGs closely mirroring the one for
context-free rules from Section 2. Since we are interested in the length

[93]

Marina Ermolaeva

of the encoding rather than the binary string itself (Grünwald 2007),
we no longer round up to the nearest integer. Let Types “ tcategory,
right selector, left selector, morphological selector, overt licensor, covert
licensor, licenseeu denote the set of syntactic feature types, and let Σ be
the set of English letters. For simplicity, as with context-free rules, we
treat each LI as a sequence of symbols from the same encoding table.
Then the size of a minimalist lexicon Lex over a set of categories Base
is given by

ÿ

s::δ P Lex

`

|s| ` 2 ˆ |δ| ` 1
˘

loooooooooooooooomoooooooooooooooon

total number of symbols

ˆ log2p|Σ| ` |Types| ` |Base| ` 1q

loooooooooooooooooooomoooooooooooooooooooon

cost of encoding per symbol

.

Assuming that both Σ and Types are fixed (with |Types| “ 7 and
|Σ| “ 26, without distinguishing between uppercase and lowercase
letters), this is a function of the number of LIs and the following three
metrics:
• |Base|, the number of unique category features in Lex;
• ř

syn “
ř

s::δ P Lex
`

|δ|
˘, the total count of syntactic features in Lex;

• ř

phon “
ř

s::δ P Lex
`

|s|
˘, the total length of all string components

in Lex.
Regardless of the specific encoding scheme,13 all three values

above contribute to the size difference between grammars. Table 2
summarizes the differences between the grammars with respect to in-
dividual metrics, as well as grammar size.

Table 2:
Grammar metrics |Base| ř

syn
ř

phon Grammar (bits)
Atomic verbs (Figure 17a) 3 14 28 317.78
Complex verbs (Figure 17b) 4 12 16 236.16
Overgenerating (Figure 17c) 3 12 16 234.43

All three grammars have the same number of lexical items. How-
ever, splitting verbs into roots and affixes in Figure 17b comes at the

13The solution used here serves to keep the example straightforward. The
choice of an encoding scheme is a meaningful decision that can lead to different
grammars being optimal for the same corpus; see also discussion in Section 6.

[94]

Evaluating syntactic proposals using MGs and MDL

cost of an extra category feature. This pays off by eliminating redun-
dant strings, which almost halves ř

phon. Moreover, four instances of
+k are collapsed into two, yielding a small reduction of ř

syn. The dif-
ferences would be much more noticeable with larger datasets, espe-
cially with respect to open-class words, since adding a new verb to
Figure 17a would have a higher cost (in both syntactic features and
string components) compared to Figure 17b.

It is also easy to see how a complexity measure based solely on
grammar encoding would fail to penalize overgeneration. It would in-
correctly favor Figure 17c over Figure 17b, given that it achieves the
same reduction of ř

phon and
ř

syn without increasing |Base|. Similar to
the results observed with CFGs, the MDL component expected to rule
out the overgenerating grammar is the corpus size given the grammar.
In order to calculate it, for each MG we construct a CFG generating its
derivation trees, as we did in Subsection 3.3, and then reuse the en-
coding scheme from Section 2. The CFGs are given in Figure 21. Parse
trees for Mary laughs as well as Figure 21c’s ungrammatical structures
are shown in Figure 22 and Figure 23 respectively .

The cost of encoding the corpus given Figure 21a is straightfor-
ward to calculate: there is only one choice with four options to be
made in the derivation, namely rewriting p=d +k t) as laughs, laughed,
jumps, or jumped. In Figure 21b this corresponds to two binary choices:
rewriting p=d v) as laugh or jump, and p=>x +k t) as -s or -ed. Both
cost 2 bits per sentence. The third grammar (Figure 21c), however,
has two options for rewriting p+k t, -k) and two ways to expand
px, -k). These are the choices that make possible the ungrammatical
strings in Figure 23, but they also drive up the cost of encoding each
grammatical sentence to 4 bits. This is summarized in Table 3.

Grammar Corpus MDL
Atomic verbs (Figure 17a) 317.78 8 325.78
Complex verbs (Figure 17b) 236.16 8 244.16
Overgenerating (Figure 17c) 234.43 16 250.43

Table 3:
Encoding costs (bits)

Once we take the length of corpus encoding into account, the
overgenerating grammar is outperformed by the intuitively superior
grammar with complex verbs.

[95]

Marina Ermolaeva

S Ñ ptq

ptq Ñ p+k t, -kq

p+k t, -kq Ñ p=d +k tq pd -kq

pd -kq Ñ Mary
p=d +k tq Ñ laughs
p=d +k tq Ñ laughed
p=d +k tq Ñ jumps
p=d +k tq Ñ jumped

(a) Atomic verbs

S Ñ ptq

ptq Ñ p+k t, -kq

p+k t, -kq Ñ p=>v +k tq pv, -kq

pv, -kq Ñ p=d vq pd -kq

pd -kq Ñ Mary
p=d vq Ñ laugh
p=d vq Ñ jump

p=>v +k tq Ñ -s
p=>v +k tq Ñ -ed

(b) Complex verbs

S Ñ ptq

ptq Ñ p+k t, -kq

p+k t, -kq Ñ p=>x +k tq px, -kq

p+k t, -kq Ñ p=>x +k tq px -kq

px, -kq Ñ p=x xq px -kq

px, -kq Ñ p=x xq px, -kq

px -kq Ñ Mary
p=x xq Ñ laugh
p=x xq Ñ jump

p=>x +k tq Ñ -s
p=>x +k tq Ñ -ed

(c) Overgenerating
Figure 21: CFG counterparts of Figure 17

[96]

Evaluating syntactic proposals using MGs and MDL

S

pt)

p+k t, -k)

pd -k)

Mary

p=d +k t)

laughs
(a) Atomic verbs

S

pt)

p+k t, -k)

pv, -k)

pd -k)

Mary

p=d v)

laugh

p=>v +k t)

-s

(b) Complex verbs

S

pt)

p+k t, -k)

px, -k)

px -k)

Mary

p=x x)

laugh

p=>x +k t)

-s

(c) Overgenerating
Figure 22: CFG parse trees: structural differences

S

pt)

p+k t, -k)

px -k)

Mary

p=>x +k t)

-ed
(a)

S

pt)

p+k t, -k)

px, -k)

px, -k)

px -k)

Mary

p=x x)

jump

p=x x)

laugh

p=>x +k t)

-s

(b)
Figure 23: CFG parse trees: overgeneration by Figure 21c

[97]

Marina Ermolaeva

5 DOUBLE OBJECT CONSTRUCTION
REVISITED

We will now take a step up from toy examples towards more inter-
esting applications of the technique introduced above and re-examine
the double object construction in the light of MDL. As pointed out in
Section 1, there are two groups of approaches to sentences like John
gave Mary a book: those which postulate a small clause complement of
give, and those which maintain that the double object construction is
monoclausal. Enumerating and analyzing all known arguments from
both sides in a comprehensive way falls outside the scope of this pa-
per. Instead, this section serves as proof of concept. In what follows,
we convert a small sample of these arguments into the MG formalism
and examine how the predictions of each analysis translate into higher
or lower MDL values.

Let us focus on two facts regarding the English double object con-
struction coming from two different sources. The first one is Harley
and Jung (2015), who point out multiple parallels between double
object structures with give and sentences with have. These are used
to motivate an analysis where both have and give contain a possessive
small clause headed by the abstract silent element PHAVE. One of these
parallels is an animacy restriction. Both possessors in have-clauses (1a,
1c) and Goal arguments in give-clauses (1b, 1d) are required to be an-
imate, as long as the possession is alienable.
(1) a. John has a book.

b. Brenda gave John a book.
c. #The car has a flyer.
d. #The advertiser gave the car a flyer.

(Harley and Jung 2015, p. 704)
The second source is Kawakami (2018), who argues against the

small-clause analysis, citing a number of discrepancies between the
properties of known small clause constructions (e.g. John considers
Mary angry) and those of give-clauses. One of the arguments supporting
this stance comes from wh-movement and ambiguity. For sentences
with consider (2a), both the matrix clause and the small clause can be

[98]

Evaluating syntactic proposals using MGs and MDL

modified by why, yielding two different interpretations. On the other
hand, the double object construction behaves as monoclausal, allow-
ing only one reading where why modifies the matrix clause (2b).
(2) a. Why did John consider Mary angry at Bill?

READING: asking the reason of considering
asking the reason of being angry

b. Why did John give Mary a book?
READING: asking the reason of giving

#asking the reason of having
(Kawakami 2018, pp. 220–221)

Which of these two arguments is stronger with respect to encod-
ing costs? We start by translating each of them into an MG. Assuming
a consensus on all issues other than the double object construction,
the two grammars should share most of their LIs. Since this example
involves wh-movement, we consider complete expressions of category
c rather than t. The shared lexical items are given in Figure 24a, and
the additional LIs for have and give in the monoclausal and SC account
are presented in Figure 24b and Figure 24c respectively.14 In accor-
dance with the simplifying assumptions stated in Section 3, we ignore
non-concatenative morphology and assume a separate set of morpho-
logical rules which realize have-s as has and do-s as does.

14These grammars rely on using multiple lexical items with ε as the string
component. Such empty LIs have been widely used in MGs since their conception
in Stabler 1997 and can be thought of as a method of compressing the grammar.
Consider, for instance, ε :: =da +k d -k, which allows any DP of category da to
become a d, but not vice versa. The same restriction can be enforced without an
empty LI by having two versions of each of its possible complements (John ::
da -k, Mary :: da -k, John :: d -k, and Mary :: d -k), at the cost of introducing
some redundancy into the lexicon.
More generally, empty LIs are how MGs express subcategorization require-

ments that are based on a hierarchy of projections rather than exact category
matches. One alternative to this approach is an explicit hierarchy encoded as a
partial order over selectors (Fowlie 2013) – although the cost of such an addi-
tion to the formalism would also need to be taking into account when calculating
MDL. That said, certain empty LIs correspond to empty heads introduced in the-
oretical literature and are therefore necessary to formalize them faithfully. For
example, ε :: =d +k da= sc represents the empty element PHAVE central to the
analysis of Harley and Jung (2015).

[99]

Marina Ermolaeva

John :: da -k
Mary :: da -k

the car :: d -k
a flyer :: d -k

ε :: =da +k d -k

consider :: =sc V
-ε :: =>V +k d= v
-ε :: =>v x
do :: =x do
-ε :: =>x do
-s :: =>do +k t

angry :: a
ε :: =a d= sc

why :: w -wh
ε :: =sc w= sc
-ε :: =>t +wh c
ε :: =t c

(a) Shared lexical items

ε :: =d +k da= sc
have :: =sc v
give :: =d +k d= V
(b) Monoclausal give

ε :: =d +k da= sc
have :: =sc v
give :: =sc V
(c) Uniform SC give

ε :: =d +k da= scposs

-ε :: =>scposs sc
have :: =scposs v
give :: =scposs V
(d) Refined SC give

Figure 24: MG implementations of the double object construction

The simple solution in Figure 24c views all small clauses as hav-
ing the same syntactic category, sc. This validates Kawakami’s (2018)
objections to the small clause analysis based on multiple differences
between small clauses selected by consider and arguments of give. How-
ever, Harley and Jung (2015, p. 718) point out a way to reconcile the
two groups of phenomena, suggesting a typology of small clauses. Un-
der this view, small clauses embedded under consider (unlike those
under give) include an additional projection, which explains different
properties. Translating this idea into MGs yields the set of LIs given
in Figure 24d. Possessive small clauses (scposs) are selected by both
have and give, and may merge with an empty LI to form expressions
of category sc, which are selected by consider.
The animacy restriction is implemented by giving animate DPs a

category feature distinct from d, da. An animate DP can freely become
a normal DP by merging with ε :: =da +k d -k, but the opposite is
not possible. In other words, da occurs in all contexts that allow d,
and also in some contexts where d is prohibited. The restriction on
modification by why is added by only allowing why to merge with
small clauses – expressions of category sc. This is done via two LIs:
why :: w -wh and ε :: =sc w= sc. This fragment allows why to modify

[100]

Evaluating syntactic proposals using MGs and MDL

small clauses but not matrix clauses, since only the former are relevant
for the example.15

Note that all three grammars are associated with some overgen-
eration. First, there is no restriction requiring do-support in interrog-
ative contexts, which gives rise to examples like *why consider-s John
Mary angry. In addition, all grammars except refined SC treat all small
clauses as uniform, producing strings like *John have-s angry (and, in
the case of the uniform small clause analysis, *John give-s Mary an-
gry). As we have seen before, overgeneration does not affect grammar
encoding, but will contribute to a higher cost of encoding some gram-
matical sentences.

Consider the head-complement graphs in Figure 25. The mono-
clausal give (Figure 25a) selects its arguments directly, whereas the
uniform SC give (Figure 25b) takes as its complement the same small
clause as have and shares its restriction on animacy. On the other
hand, the loop at the sc vertex represents the position modifiable
by why. The monoclausal give bypasses the category sc, unlike have;
the latter, but not the former, is compatible with why. However, the
uniform SC have merges with expressions of category sc, incorrectly
allowing modification by why. Finally, the refined SC analysis (Fig-
ure 25c) gets around both problems by distinguishing between sc
and scposs.

As a further illustration, some derived tree examples are given in
Figure 26.

Grammar encoding costs (Table 4) reflect generalizations made
by each grammar, as well as the number of category distinctions it
makes. Both monoclausal and uniform SC approaches require 13 dis-
tinct categories; however, the latter has a lower cost as it reuses the
abstract element heading a small clause, ε :: =d +k da= sc, to provide
arguments to both have and give. Refined SCs require an extra cate-
gory, scposs, as well as an additional lexical item, -ε :: =scposs sc, so
this grammar ends up having the highest encoding cost.

15For the sake of completeness, it would be easy to add modification of
matrix clauses by introducing one more empty lexical item: -ε :: =>v w= v.
Then the grammar would generate different structures corresponding to differ-
ent readings of consider-clauses: why rdo-s John consider rMary angrys whys vs.
why rdo-s John consider rMary angry whyss (cf. item 2a).

[101]

Marina Ermolaeva

c t do x v V sc d da

a

do

-ε
-s -ε -ε

-ε

ε

-ε
-ε

-ε-εconsider

have give

(a) Monoclausal

c t do x v V sc d da

a

do

-ε
-s -ε -ε

-ε

ε

-ε
-ε

-ε-εconsider

have

give

(b) Uniform SC

c t do x v V sc scposs d da

a

do

-ε
-s -ε -ε

-ε

ε

-ε
-ε

-ε-ε-εconsider

have

give

(c) Refined SC
Figure 25: Head-complement graphs of MGs in Figure 24; LIs not shared by all
grammars are highlighted with double frames

Table 4:
Grammar

metrics for the
double-object
construction

|Base| ř

syn
ř

phon Grammar (bits)
Monoclausal 13 51 50 955.39
Uniform SC 13 49 50 933.17
Refined SC 14 51 50 966.20

[102]

Evaluating syntactic proposals using MGs and MDL

ă

ą

ă

ă

ă

ă

ą

ă

ą

ą

ă

a flyergive
=d +k d= V

a flyer
d -k

Mary

-ε
=>V +k d= v

ą

ă

Maryε
=da +k d -k

Mary
da -k

John

-ε
=>v x

-ε
=>x do

give-s
=>do +k t

ą

ă

Johnε
=da +k d -k

John
da -k

ε
=t c

(a) Monoclausal
ă

ą

ă

ă

ă

ą

ą

ă

ă

ą

ą

ă

a flyerε
=d +k da= sc

a flyer
d -k

Mary

give
=sc V

-ε
=>V +k d= v

Mary
da -k

John

-ε
=>v x

-ε
=>x do

give-s
=>do +k t

ą

ă

Johnε
=da +k d -k

John
da -k

ε
=t c

(b) Uniform SC
Figure 26: Derived trees for John give-s Mary a flyer

[103]

Marina Ermolaeva

Table 5:
Sentence

encoding costs
for the

double-object
construction

(bits)

Monoclausal Uniform SC Refined SC
John give-s Mary a
flyer

6 log2 2 ` 3 log2 3
« 10.75

7 log2 2 ` 2 log2 3
« 10.17

6 log2 2 ` 2 log2 3
« 9.17

Mary have-s a flyer 5 log2 2 ` log2 3
« 6.58

5 log2 2 ` log2 3
« 6.58

4 log2 2 ` log2 3
« 5.58

John consider-s
Mary angry

7 log2 2 ` 2 log2 3
« 10.17

7 log2 2 ` 2 log2 3
« 10.17

7 log2 2 ` 2 log2 3
« 10.17

why do-s John con-
sider Mary angry

6 log2 2 ` 2 log2 3
« 9.17

7 log2 2 ` 2 log2 3
« 10.17

5 log2 2 ` 2 log2 3
« 8.17

In order to see how individual analysis choices contribute to cor-
pus encoding, consider the costs of four different sentences shown in
Table 5. Note that these four sentences are not meant to represent the
entire corpus (and we do not calculate the final corpus cost or MDL
value for this case study), but rather to illustrate how various data
points contribute to the differences between our grammars with re-
spect to corpus cost. Partial CFGs are given in Figure 27; for space rea-
sons, it only includes rules with non-zero cost, i.e. those which share
the left-hand side with at least one other rule.

As expected, the monoclausal approach pays a higher cost to en-
code examples with give, because of its lack of animacy restrictions,
whereas the uniform SC grammar overpays for grammatical sentences
involving modification by why. The third option, refined SCs, does not
overpay in either case. In addition, it pays a lower cost to encodeMary
has a flyer, because of its distinction between small clause types. This
corresponds to the fact that this grammar, unlike the other two, does
not generate strings like *John has angry.

For a closer look at individual rules’ contribution to these values,
let us examine detailed costs of encoding a double object construc-
tion, provided in Table 6. All three grammars must pay the cost of
picking a flyer as the object. The monoclausal approach, which lacks
animacy restrictions, pays the extra cost of picking an animate Goal,
in the form of an additional use of pd -kq Ñ p+k d -k, -kq. Next,
all three grammars use a rule to select the right complement type for
the verb. However, since the uniform SC grammar assigns the same
feature bundle to give and consider, it has to pay an additional bit to
use p=sc Vq Ñ give and pick the former. Refined SCs pay for each

[104]

Evaluating syntactic proposals using MGs and MDL

pd -kq Ñ the car
pd -kq Ñ a flyer
pd -kq Ñ p+k d -k, -kq

pda -kq Ñ John
pda -kq Ñ Mary

psc, -kq Ñ pd= scq pd -kq

pv, -kq Ñ pd= vq pd -kq

pdo, -kq Ñ p=x doq px, -kq

pdo, -kq Ñ p=>x doq px, -kq

pcq Ñ p=t cq ptq

pcq Ñ p+wh c, -whq

pdo, -wh, -kq Ñ p=x doq px, -wh, -kq

pdo, -wh, -kq Ñ p=>x doq px, -wh, -kq

(a) Shared rules

psc, -kq Ñ pda= scq pda, -kq

pV, -kq Ñ p=sc Vq psc, -kq

pV, -kq Ñ pd= Vq pd -kq

pv, -kq Ñ p=sc vq psc, -kq

pdo, -k, -whq Ñ p=x doq px, -k, -whq

pdo, -k, -whq Ñ p=>x doq px, -k, -whq

pt, -whq Ñ p+k t, -k, -whq

pt, -whq Ñ p+k t, -wh, -kq

(b) Monoclausal

p=sc Vq Ñ give
p=sc Vq Ñ consider

psc, -kq Ñ pda= scq pda, -kq

pv, -kq Ñ p=sc vq psc, -kq

pdo, -k, -whq Ñ p=x doq px, -k, -whq

pdo, -k, -whq Ñ p=>x doq px, -k, -whq

pt, -whq Ñ p+k t, -k -whq

pt, -whq Ñ p+k t, -wh -kq

(c) Uniform SC

psc, -kq Ñ p=>scposs scq pscposs, -kq

pV, -kq Ñ p=sc Vq psc, -kq

pV, -kq Ñ p=scposs Vq pscposs, -kq

pv, -kq Ñ p=scposs vq pscposs, -kq

(d) Refined SC

Figure 27: Nonzero-cost CFG rules for Figure 24

[105]

Marina Ermolaeva

Table 6:
Nonzero-cost
rules deriving

John give-s Mary
a flyer and their

costs (bits)

Rule Cost Total

Shared rules

pcq Ñ p=t cq ptq log2 2

« 6.58

pv, -kq Ñ pd= vq pd -kq log2 2

pdo, -kq Ñ p=x doq px, -kq log2 2

pda -kq Ñ John log2 2

pda -kq Ñ Mary log2 2

pd -kq Ñ a flyer log2 3

Monoclausal pd -kq Ñ p+k d -k, -kq 2 log2 3
« 4.17

pV, -kq Ñ pd= Vq pd -kq log2 2

Uniform SC
pd -kq Ñ p+k d -k, -kq log2 3

« 3.58psc, -kq Ñ pda= scq pda, -kq log2 2

p=sc Vq Ñ give log2 2

Refined SC pd -kq Ñ p+k d -k, -kq log2 3
« 2.58

pV, -kq Ñ p=scposs Vq log2 2

distinction only once, resulting in the lowest cost of encoding the sen-
tence. Thus, the cost of this more complex grammar is offset by the
lower cost of encoding the data.

Essentially, what the two positions exemplified by Harley and
Jung 2015 and Kawakami 2018 disagree on is exactly what proper-
ties have shares with give. MGs can represent these shared properties
as syntactic features within LIs which are reused in multiple construc-
tions. The technique outlined here offers a way to examine and directly
compare insights frommultiple literature sources while accounting for
possible overgeneration.

6 DISCUSSION AND FUTURE WORK

We have investigated the possibility of comparing syntactic analyses
on quantitative grounds. Even within the same framework, such as
Chomsky’s (1995, 2000) Minimalist Program, there is enough room
for alternative accounts of the same observed language data. We have
shown how specific proposals stated as minimalist grammars (Stabler

[106]

Evaluating syntactic proposals using MGs and MDL

1997) can be compared with the help of an evaluation measure in-
spired by minimum description length (Rissanen 1978), and how dif-
ferent predictions made by these proposals translate into quantifiable
differences.

Examples throughout the paper have demonstrated how, overall,
correct generalizations lead to smaller grammars, while overgenera-
tion increases the corpus cost. The case study of the double-object
costruction presented here is a proof of concept demonstrating how
MDL can offer a quantitative perspective on various issues that are a
matter of debate, or simply a topic of interest, for syntacticians. A few
potential examples are listed below.

Hierarchy of adjectives vs. unordered adjuncts: One could ask
whether complex cartography-style structures are “worth it” for a
given set of data. For instance, Bayırlı (2018) argues that Turkish
adjectives obey the adjective hierarchy of Cinque (1994) and Cinque
(2010), whereas Grashchenkov and Isaeva (2023) suggest a lack of
strict ordering of adjectives having used a corpus of Turkish and other
Turkic data in their study. From the MDL perspective, choosing to
implement a hierarchy of adjectives (through empty LIs or as a Fowlie
(2013)-style extension to standard MGs) would carry the cost of en-
coding it. Conversely, allowing adjectives in any order may lead the
grammar to overgenerate, increasing the cost of encoding adjective
orderings that are attested in the corpus.

Acategorial roots: The idea of roots being category-neutral and
having to merge with a categorizing head is a general assumption in
Distributed Morphology (Marantz 1997; Embick and Marantz 2008).
An MG implementation of this strategy would have root LIs carrying
a single category feature and categorizing heads as LIs selecting ex-
pressions of that category, as opposed to having multiple lexical items
with the same root. Quantitatively, we can expect this to be beneficial
for the grammar cost, as long as the number of roots is large enough
to justify the cost of the extra features needed to merge the roots and
categorizing heads.

There-insertion in English: Ermolaeva and Kobele (2022) use an
MG-like formalism to compare various analyses of expletive-there con-
structions in English, describing their differences in terms of syntactic
dependencies; MDL could translate these differences into quantitative
terms. The high-origin account, where there merges directly into the

[107]

Marina Ermolaeva

specifier of TP (Chomsky 2000), requires fewer LIs and syntactic fea-
tures to encode than one where theremerges low and moves to its sur-
face position (Deal 2009; Alexiadou and Schäfer 2011) or starts out
in a constituent with its associate (Basilico 1997; Sabel 2000). At the
same time, it would have trouble expressing any restrictions on lexical
verbs (There arrived a man in the station vs. There laughed a man in the
hallway; see Deal 2009), leading to overgeneration and consequences
to the corpus cost.

All of that said, there is plenty of room for refinement. MDL can
disagree with a linguistic intuition on what constitutes a simpler ex-
planation of the data, if some aspect of the analysis is not taken into
account by the encoding scheme, or cannot be expressed by the cho-
sen formalism, or requires an overhead cost that does not pay off in
the case of the chosen corpus. Let us briefly discuss each of these vari-
ables in turn.

Encoding schemes: The method of encoding MGs defined in Sec-
tion 4, where each LI is considered a sequence of symbols from the
same encoding table, is straightforward but naive. A few of the pos-
sible modifications include switching from the fixed-length code pre-
sented here to a variable-length code, with shorter binary sequences
for more frequent symbols (Lee 2001); rethinking how elements of
LIs are parsed into symbols to be encoded (for instance, it may be
useful to combine the type and category of syntactic features into a
single symbol); encoding each string component and/or feature bun-
dle only once and using pointers to refer to them (Xanthos et al. 2006)
to incentivize (i.e. lower the cost of) reusing elements that have al-
ready been introduced. Some proposals in the linguistics literature are
motivated by patterns that could only be translated into cost reduc-
tion under a sophisticated encoding scheme; see Appendix A for an
example.

Formalism-related choices: The version of minimalist grammars
defined in Section 3 is a relatively simple but detailed one for the sake
of conceptual clarity. Treating a lexical item as a string of phonolog-
ical segments (approximated by orthography) followed by syntactic
features is explicitly a simplification, as is using head movement as
the sole operation for building complex words; but a more sophisti-
cated formalism could be used to bring the results closer to those of
theoretical syntax.

[108]

Evaluating syntactic proposals using MGs and MDL

In order to compare analyses constructed with different formal
machinery in mind (or to compare different formalisms), one would
have to consider the cost of encoding this machinery along with the
grammar and corpus. For example, compare MGs as defined in this
paper vs. a version without covert movement. The grammar cost of an
analysis using the latter formalism might be lower because of fewer
distinct symbols involved; or it might be higher due to additional lex-
ical items needed to compensate for the missing machinery. At the
same time, the two versions would also differ in howmerge andmove
are defined, the latter being cheaper to encode as it lacks the syntac-
tic operation of covert movement. Chater et al. (2015) goes even fur-
ther, proposing a higher-order version of MDL computed as the sum
of four terms representing encoding lengths of (i) a Turing machine
capable of describing Universal Grammars; (ii) a Universal Grammar
(« formalism) capable of stating specific grammars; (iii) a grammar
generating the given corpus; and (iv) the corpus as encoded by the
grammar.

Corpora: As shown in Footnote 5, extremely small datasets can
favor overfitting grammars, if the reduction in corpus cost provided
by introducing syntactic generalizations is insufficient to justify the
initial investment in the grammar. This also applies to large but repet-
itive datasets; an extreme case would be a corpus containing the same
sentence repeated an arbitrarily large number of times. Conversely,
with a very large corpus of diverse sentences (which is a better rep-
resentation of natural language as a whole) the MDL value is decided
primarily by the corpus cost. At the same time, the grammar cost still
contributes to the choice of the grammar, since many distinctions be-
tween grammars (that a linguist would consider important) have no
effect on corpus cost. Consider a set of m roots, each compatible with
any of n suffixes, for the total of m ˆ n words, all found in the same
syntactic contexts and attested in the corpus.16 A minimalist gram-
mar can encode these as whole words, with m ˆ n lexical items, or
as separate roots and suffixes, resulting in m ` n lexical items carry-
ing shorter string components. On the corpus side, the former option

16This generalizes the observation illustrated by the toy grammar in Section 4,
where m “ 2 and n “ 2; it is easy to see how this would scale with more lexical
verbs in the corpus.

[109]

Marina Ermolaeva

corresponds to a single choice out ofmˆn options, costing log2 pm ˆ nq

bits. The latter requires picking the root and the suffix separately, for
log2 pmq ` log2 pnq “ log2 pm ˆ nq bits. The corpus cost is the same for
both options, whereas the grammar cost may be significantly different.

More fundamentally, linguists put a lot of emphasis on obtain-
ing independent evidence for their proposals to justify the theoretical
cost of postulating a new structure or operation. In an informal set-
ting, this evidence would be brought in as a set of examples. With the
proposal translated into a formal grammar, reusing a lexical item in
multiple structures translates into a measurable reduction to the gram-
mar cost, while failure to capture an observed contrast would lead to
overgeneration and result in a higher corpus cost. If a consensus is
reached on the set of data we care about (the corpus), and if we fix or
take into account what shape analyses may take (the formalism) and
how they are quantified (the encoding scheme), we can keep track
of the strength of every relevant argument and counter-argument.17
The minimum description length principle works as a natural evalua-
tion measure, bringing the notion of “intuitive goodness” of syntactic
descriptions a step closer to the more easily definable notion of “quan-
titative goodness”.

ACKNOWLEDGMENTS

The author was supported by the Fellowship from Non-commercial
Foundation for the Advancement of Science and Education INTEL-
LECT.

17A reviewer has noted that there is little agreement in mainstream Minimal-
ism with respect to the corpus and formalism, and a consensus has been impos-
sible to reach so far. While this is a very valid concern, the MDL-based approach
does not create a new problem but rather highlights one already present. The lit-
erature is replete with different (sometimes incompatible) assumptions of what
grammars are allowed to look like, beliefs regarding the content of the univer-
sal grammar, and analyses developed for overlapping but non-identical datasets.
The approach outlined in this paper makes this problem explicit, defining more
precisely what needs to be settled in order to solve it.

[110]

Evaluating syntactic proposals using MGs and MDL

AAPPENDIX

The case study in Section 5 examines the distinction between the di-
transitive verb selecting its arguments directly vs. selecting a con-
stituent that is also found in other constructions and shares some
properties with them. In what follows, we sketch a comparison along
another dimension – namely, whether the double-object construction
(give Mary a book) is related to the to-dative (give a book to Mary), il-
lustrated by the original VP-shell analysis of Larson (1988) and the
refined small clauses of Harley and Jung (2015).

Larson (1988) postulates a relation between the two constructions
in question. Under his analysis, the structure of the VP containing the
internal arguments of a ditransitive verb is parallel to that of a clause,
with the Theme (a letter) corresponding to the subject and the Goal
(Mary) to the object. The double object construction is derived from
the to-dative via an operation analogous to passivization.

In order to see how this can be formalized, let us first implement
passives in MGs. We start with the lexicon from Figure 24a (repeated
in Figure 29a) and add two new LIs: -ed :: =>V pass and be :: =pass v
(adapted from Kobele 2006). Then the passive construction is derived
as shown in Figure 28. The expression of category V, with its topmost
DP Mary still carrying its -k feature, is merged with -ed :: =>V pass,
and the result with be :: =pass v. A subject is never merged in; instead,
Mary is promoted to the subject position by having its -k checked by
-s :: =>do +k t.

There are two issues preventing a faithful translation of Lar-
son’s (1988) solution into a minimalist grammar. First, the SMC re-
quires that the movement of one argument be resolved before merg-
ing in another carrying the same licensee feature. A structure such
as [[give Mary] a letter] with both DPs still carrying an unchecked
-k would violate the SMC. We can bypass this problem (in a some-
what unsatisfying way) by constructing a version of a letter with its
-k feature already checked. Second, the original analysis treats to
as an instance of Case marking, which cannot be expressed in terms
of standard MGs.18 With the exception of to-as-Case, this analysis

18This aspect of the analysis is out of reach for basic MGs but could be captured
by an extended version of the formalism. See e.g. Ermolaeva 2018 and Ermolaeva

[111]

Marina Ermolaeva

ą

ă

ă

ă

ă

ă

ă

ą

ă

angry
a

ε
=a d= sc

Mary

consider
=sc V

consider-ed
=>V pass

be
=pass v

-ε
=>v x

-ε
=>x do

be-s
=>do +k t

ą

ă

Maryε
=da +k d -k

Mary
da -k

Figure 28: Derived tree for Mary be-s consider-ed angry

John :: da -k
Mary :: da -k

the car :: d -k
a flyer :: d -k

ε :: =da +k d -k

consider :: =sc V
-ε :: =>V +k d= v
-ε :: =>v x
do :: =x do
-ε :: =>x do
-s :: =>do +k t

angry :: a
ε :: =a d= sc

why :: w -wh
ε :: =sc w= sc
-ε :: =>t +wh c
ε :: =t c

(a) Shared lexical items (=24a)

-ed :: =>V pass
be :: =pass v
(b) Shared passives

ε :: =d +k da= sc
have :: =sc v
give :: =d y
ε :: =d +k dt

-ε :: =>y +k d= V
-ε :: =>y =dt V

(c) Quasi-Larsonian give

ε :: =d +k da= scposs

-ε :: =>scposs sc
have :: =scposs v
give :: =scposs V
to :: p
ε :: =d +k p= pp

give :: =pp d= V
(d) Extended refined SC give

Figure 29: MG implementations of the double object construction and to-datives

[112]

Evaluating syntactic proposals using MGs and MDL

is recreated in Figure 29c; we will refer to this grammar as “quasi-
Larsonian” to acknowledge its limitations. There is one lexical item,
give :: =d y, shared by both constructions, which takes the Goal argu-
ment as its complement. To form a to-dative, the result then merges
with -ε :: =>y +k d= V, checking the Goal’s -k and merging in the
Theme argument. To form a double object construction, it merges in-
stead with -ε :: =>y =dt V, which selects the Theme argument with its
-k already checked, leaving the Goal’s -k to be checked later in the
derivation – similar to the object in a passive construction.

In contrast, Harley and Jung (2015) cite the approach to to-
datives proposed in Harley 2007, which treats them as separate from
the double-object construction, with the verb base-generated low in
the structure. This solution can be translated into MGs by adding a
separate version of give (which selects a prepositional phrase and a
DP), as well as a method of constructing PPs. We refer to the result,
given in Figure 29d, as “extended refined SCs”.

Both sets of LIs are compatible with the passive (Figure 29b)
and ensure the promotion of the correct argument to the subject po-
sition (Mary was given a letter vs. A letter was given to Mary). Head-
complement graphs for both grammars are given in Figure 30.

Let us first revisit the data points from Section 5 and assess their
impact on the corpus cost. The quasi-Larsonian analysis performs
largely like the monoclausal one. With respect to why-modification,
no small clause in the constructions in question means no over-
generation.19 The animacy restriction on the Goal is an argument
against the quasi-Larsonian solution, since it applies to the double

and Kobele 2022 for an MG-compatible treatment of Agree as transmission of
morphological information along syntactic dependencies. In their framework, to
could be implemented as data transmitted to the Goal when the -ε :: =>y +k d= V
checks its -k feature.

19For completeness, the addition of passives does by itself affect some sen-
tences we have not considered. The CFG for the quasi-Larsonian solution involves
the same feature configuration on the left-hand side of two rules, pv, -k, -whq Ñ

p=pass vq ppass, -k, -whq and pv, -k, -whq Ñ p=sc vq psc, -k, -whq, as it gen-
erates both why be-s Mary considered angry and why do-s Mary have a flyer (with
why modifying the small clause). This applies to the monoclausal solution as
well. The (extended) refined SC approach simply does not generate the latter of
these sentences, so the remaining rule has a zero cost.

[113]

Marina Ermolaeva

y

c t do x v V sc d da

pass a

do

-ε
-s -ε -ε

-ε

ε

-ε -ε

-ε-εconsider

have
give

-ε
-ε

-enbe

(a) Quasi-Larsonian

pp

c t do x v V sc scposs d da

pass a

to
do

-ε
-s -ε -ε

-ε

ε

-ε -ε

-ε-ε-εconsider

have

give

give

-enbe

(b) Extended refined SC
Figure 30: Head-complement graphs of MGs in Figure 29

object construction and the to-dative to a different extent (Oehrle
1976). This is not a problem for extended refined SCs. However, the
quasi-Larsonian solution relies on the LI which introduces the Goal,
give :: =d y, being the same in both constructions – which is incompat-
ible with the Goal animacy contrast between the two. While the MG
fragments presented here simplify the contrast to “no restriction” vs.
“animate only”, the same logic would apply to more nuanced distinc-
tions. In terms of corpus cost, this instance of overgeneration means
that the quasi-Larsonian analysis would overpay for each double ob-
ject construction in the corpus, same as the monoclausal analysis.

For the grammar cost, a proper comparison is impossible with-
out tweaking the formalism itself, due to the limitations discussed
above. As is, the quasi-Larsonian grammar is shorter than the extended
refined SC one (with the caveat that the former would also need to pay
the cost of encoding to). This difference is small enough to be negated
if we argue that the implementation of PPs should be shared by both
grammars (as the LIs to :: p and ε :: =d +k p= pp would be required

[114]

Evaluating syntactic proposals using MGs and MDL

for other constructions involving PPs). On the other hand, our ba-
sic encoding scheme is unable to take into account some elements of
Larson’s analysis – in particular, the parallel between passivization
and the operation deriving the double object construction from the
to-dative. This is reflected in the MG, for instance, by the similarities
between -ε :: =>V +k d= v (which checks the object’s -k and merges
in the subject to derive the active construction) and -ε :: =>y +k d= V
(which checks the Goal’s -k and merges in the Theme to derive the
to-dative). Both LIs are of the form -ε :: =>_ +k d= _, with _ standing
for the two category names that constitute their differences. A more
refined encoding scheme capable of reusing, rather than reencoding,
repeated parts of lexical items would be able to capitalize on this.

REFERENCES

Artemis ALEXIADOU and Florian SCHÄFER (2011), There-insertion: An
unaccusativity mismatch at the syntax-semantics interface, online proceedings
of West Coast Conference on Formal Linguistics 28.
Karlos ARREGI and Asia PIETRASZKO (2018), Generalized head movement, in
Patrick FARRELL, editor, Proceedings of the Linguistic Society of America,
volume 3, pp. 1–15.
David BASILICO (1997), The topic is “there”, Studia Linguistica, 51(3):278–316.
İsa Kerem BAYıRLı (2018), Does Turkish have adjective ordering restrictions?,
IULC Working Papers, 18(2):1–26.
Michael BRODY (2000), Mirror theory: Syntactic representation in perfect
syntax, Linguistic Inquiry, 31(1):29–56.
Nick CHATER, Alexander CLARK, John GOLDSMITH, and Amy PERFORS
(2015), Towards a new empiricism for linguistics, in Empiricism and Language
Learnability, pp. 58–105, Oxford University Press, Oxford, UK.
Noam CHOMSKY (1956), Three models for the description of language, IRE
Transactions on Information Theory, 2(3):113–124.
Noam CHOMSKY (1957), Syntactic structures, De Gruyter Mouton, The Hague,
Netherlands.
Noam CHOMSKY (1965), Aspects of the theory of syntax, MIT Press, Cambridge,
MA.

[115]

Marina Ermolaeva

Noam CHOMSKY (1986), Knowledge of language: Its nature, origin, and use,
Praeger, New York, NY.
Noam CHOMSKY (1995), The minimalist program, MIT Press, Cambridge, MA.
Noam CHOMSKY (2000), Minimalist Inquiries: the framework, in Roger
MARTIN, David MICHAELS, and Juan URIAGEREKA, editors, Step by Step: Essays
on Minimalist Syntax in Honor of Howard Lasnik, pp. 89–156, MIT Press,
Cambridge, MA.
Noam CHOMSKY and Morris HALLE (1968), The sound pattern of English, Harper
& Row, New York, NY.
Guglielmo CINQUE (1994), On the evidence for partial N-movement in the
Romance DP, in Guglielmo CINQUE, Jan KOSTER, Jean-Yves POLLOCK, and
Rafaella ZANUTTINI, editors, Paths towards universal grammar: Studies in Honor
of Richard S. Kayne, pp. 85–110, Georgetown University Press, Washington, DC.
Guglielmo CINQUE (2010), The syntax of adjectives: A comparative study, MIT
Press, Cambridge, MA.
Alexander CLARK (2013), Learning trees from strings: A strong learning
algorithm for some context-free grammars, Journal of Machine Learning
Research, 14:3537–3559.
Alexander CLARK (2015), Canonical context-free grammars and strong
learning: two approaches, in Marco KUHLMANN, Makoto KANAZAWA, and
Gregory M. KOBELE, editors, Proceedings of the 14th Meeting on the Mathematics
of Language (MOL 2015), pp. 99–111, Association for Computational
Linguistics, Chicago, IL.
Amy Rose DEAL (2009), The origin and content of expletives: Evidence from
“selection”, Syntax, 12(4):285–323.
Marina ERMOLAEVA (2018), Morphological agreement in minimalist
grammars, in Formal Grammar: 22nd International Conference, FG 2017,
Toulouse, France, July 22-23, 2017, Revised Selected Papers, pp. 20–36, Springer,
Berlin, Germany.
Marina ERMOLAEVA (2021), Learning syntax via decomposition, Ph.D. thesis,
University of Chicago, Chicago, IL.
Marina ERMOLAEVA and Gregory M. KOBELE (2022), Agree as information
transmission over dependencies, Syntax, 25(4):466–507.
Meaghan FOWLIE (2013), Order and optionality: Minimalist grammars with
adjunction, in Proceedings of the 13th Meeting on the Mathematics of Language
(MoL 13), pp. 12–20, Association for Computational Linguistics, Sofia, Bulgaria.
John GOLDSMITH (1980), Meaning and mechanism in grammar, Harvard
studies in syntax and semantics, 3:423–449.
John GOLDSMITH (2001), Unsupervised learning of the morphology of a
natural language, Computational Linguistics, 27(2):153–198.

[116]

Evaluating syntactic proposals using MGs and MDL

John GOLDSMITH (2006), An algorithm for the unsupervised learning of
morphology, Natural Language Engineering, 12(4):353–372.
John GOLDSMITH (2011), The evaluation metric in generative grammar,
presented at 50th Anniversary of the MIT Linguistics Department, Cambridge
MA, December 2011.
Thomas GRAF (2013), Local and transderivational constraints in syntax and
semantics, Ph.D. thesis, UCLA, Los Angeles, CA.
Pavel GRASHCHENKOV and Ulyana ISAEVA (2023), Vzaimnoe raspolozhenie
atributivnyh prilagatel’nyh po dannym tyurkskih tekstov [Adjectival ordering
on the data of Turkic texts], Uralo-altayskie issledovaniya, 48(1):22–32.
Peter D. GRÜNWALD (2007), The minimum description length principle, MIT
Press, Cambridge, MA.
John T. HALE and Edward P. STABLER (2005), Strict deterministic aspects of
minimalist grammars, in Philippe BLACHE, Edward STABLER, Joan BUSQUETS,
and Richard MOOT, editors, Logical Aspects of Computational Linguistics. LACL
2005. Lecture Notes in Computer Science, pp. 162–176, Springer, Berlin,
Germany.
Heidi HARLEY (2002), Possession and the double object construction, Linguistic
Variation Yearbook, 2(1):31–70.
Heidi HARLEY (2007), The bipartite structure of verbs cross-linguistically (or:
Why Mary can’t exhibit John her paintings), in Thaïs Cristófaro SILVA and
Heliana MELLO, editors, Conferências do V Congresso Internacional da Associação
Brasileira de Lingüística, pp. 45–84, Belo Horizonte, Brazil.
Heidi HARLEY and Hyun Kyoung JUNG (2015), In support of the PHAVE analysis
of the double object construction, Linguistic Inquiry, 46(4):703–730.
Yu HU, Irina MATVEEVA, John GOLDSMITH, and Colin SPRAGUE (2005), Using
morphology and syntax together in unsupervised learning, in Proceedings of the
Workshop on Psychocomputational Models of Human Language Acquisition, pp.
20–27, Association for Computational Linguistics, Ann Arbor, MI.
Mark JOHNSON (2017), Marr’s levels and the minimalist program, Psychonomic
Bulletin & Review, 24(1):171–174.
Roni KATZIR (2014), A cognitively plausible model for grammar induction,
Journal of Language Modelling, 2(2):213–248, doi:10.15398/jlm.v2i2.85,
https://jlm.ipipan.waw.pl/index.php/JLM/article/view/85.
Masahiro KAWAKAMI (2018), Double object constructions: Against the small
clause analysis, Journal of Humanities and Social Sciences, 45:209–226.
Richard S. KAYNE (1984), Connectedness and binary branching, Foris
Publications, Dordrecht, Netherlands.
Richard S. KAYNE (1994), The antisymmetry of syntax, MIT Press, Cambridge,
MA.

[117]

https://jlm.ipipan.waw.pl/index.php/JLM/article/view/85

Marina Ermolaeva

Gregory M. KOBELE (2002), Formalizing mirror theory, Grammars,
5(3):177–221.
Gregory M. KOBELE (2006), Generating copies: An investigation into structural
identity in language and grammar, Ph.D. thesis, UCLA, Los Angeles, CA.
Gregory M. KOBELE (to appear), Minimalist grammars and decomposition, in
Kleanthes K. GROHMANN and Evelina LEIVADA, editors, The Cambridge
Handbook of Minimalism, Cambridge University Press, Cambridge, MA.
Richard K. LARSON (1988), On the double object construction, Linguistic
Inquiry, 19(3):335–391.
Thomas C.M. LEE (2001), An introduction to coding theory and the two-part
minimum description length principle, International Statistical Review,
69(2):169–183.
David MARR (1982), Vision: A computational investigation into the human
representation and processing of visual information, Henry Holt and Co., New
York, NY.
Jens MICHAELIS (1998), Derivational minimalism is mildly context-sensitive, in
Michael MOORTGAT, editor, International Conference on Logical Aspects of
Computational Linguistics, pp. 179–198, Springer, Berlin, Germany.
Richard Thomas OEHRLE (1976), The grammatical status of the English dative
alternation, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
Christopher PEACOCKE (1986), Explanation in computational psychology:
Language, perception and level 1.5, Mind & Language, 1(2):101–123.
David Michael PESETSKY (1996), Zero syntax: Experiencers and cascades, MIT
Press, Cambridge, MA.
Ezer RASIN, Iddo BERGER, Nur LAN, and Roni KATZIR (2018), Learning
phonological optionality and opacity from distributional evidence, in Sherry
HUCKLEBRIDGE and Max NELSON, editors, Proceedings of the North East
Linguistic Society 48 (NELS 48), volume 48, pp. 269–282, Amherst, MA.
Ezer RASIN and Roni KATZIR (2016), On evaluation metrics in optimality
theory, Linguistic Inquiry, 47(2):235–282.
Ezer RASIN and Roni KATZIR (2019), Simplicity-based learning in
constraint-based and rule-based phonology, mini-course at the University of
Leipzig.
Jorma RISSANEN (1978), Modeling by shortest data description, Automatica,
14(5):465–471.
Joachim SABEL (2000), Expletives as features, in Roger BILLEREY and
Brook Danielle LILLEHAUGEN, editors, Proceedings of the 19th West Coast
Conference on Formal Linguistics, pp. 411–424, Cascadilla Press, Somerville, MA.

[118]

Evaluating syntactic proposals using MGs and MDL

Stuart M. SHIEBER (1985), Evidence against the context-freeness of natural
language, Linguistics and Philosophy, 8:333–343.
Edward P. STABLER (1997), Derivational minimalism, in Christian RETORÉ,
editor, Logical Aspects of Computational Linguistics: First International Conference,
LACL ’96 Nancy, France, September 23–25, 1996 Selected Papers, pp. 68–95,
Springer, Berlin, Germany.
Edward P. STABLER (2001), Recognizing head movement, in Proceedings of the
4th International Conference on Logical Aspects of Computational Linguistics, LACL
’01, pp. 245–260, Springer-Verlag, Berlin, Germany.
Edward P. STABLER and Edward L. KEENAN (2003), Structural similarity
within and among languages, Theoretical Computer Science, 293(2):345–363.
John TORR and Edward STABLER (2016), Coordination in minimalist
grammars: Excorporation and across the board (head) movement, in David
CHIANG and Alexander KOLLER, editors, Proceedings of the 12th International
Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+ 12), pp.
1–17, Düsseldorf, Germany.
Edwin S. WILLIAMS (1975), Small clauses in English, in John P. KIMBALL,
editor, Syntax and Semantics, volume 4, pp. 249–273, Brill, Leiden, Netherlands.
Aris XANTHOS, Yu HU, and John GOLDSMITH (2006), Exploring variant
definitions of pointer length in MDL, in Proceedings of the Eighth Meeting of the
ACL Special Interest Group on Computational Phonology and Morphology at
HLT-NAACL 2006, pp. 32–40, Association for Computational Linguistics, New
York, NY.

Marina Ermolaeva
 0000-0001-7796-7963
mail@mermolaeva.com

Lomonosov Moscow State University
Department of Theoretical and
Applied Linguistics
1-51 Leninskie Gory, Moscow, Russia

Marina Ermolaeva (2023), Evaluating syntactic proposals using minimalist
grammars and minimum description length, Journal of Language Modelling,
11(1):67–119
 https://dx.doi.org/10.15398/jlm.v11i1.334

This work is licensed under the Creative Commons Attribution 4.0 Public License.
 http://creativecommons.org/licenses/by/4.0/

[119]

https://orcid.org/0000-0001-7796-7963
mailto:mail@mermolaeva.com
https://dx.doi.org/10.15398/jlm.v11i1.334
http://creativecommons.org/licenses/by/4.0/

	Introduction
	The minimum description length principle
	Context-free grammars
	Encoding FGs
	Encoding corpora

	Minimalist grammars
	Lexical items, Merge, and Move
	Grammar graphs
	Relation to CFGs

	Encoding minimalist grammars
	Double object construction revisited
	Discussion and future work
	Appendix

