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This paper proposes a formal model of regular languages enriched
with unbounded copying. We augment finite-state machinery with the
ability to recognize copied strings by adding an unbounded memory
buffer with a restricted form of first-in-first-out storage. The newly
introduced computational device, finite-state buffered machines (FS-
BMs), characterizes the class of regular languages and languages de-
rived from them through a primitive copying operation. We name this
language class regular copying languages (RCLs). We prove a pumping
lemma and examine the closure properties of this language class. As
suggested by previous literature (Gazdar and Pullum 1985, p.278),
regular copying languages should approach the correct characteriza-
tion of natural language word sets.

1INTRODUCTION

The aim of this paper is to introduce a formal model of possible natu-
ral language word forms which is restrictive enough to rule out many
unattested patterns, but still expressive enough to allow for redupli-
cation. Among the well-known existing classes of formal languages,
there is a tension between these two goals. The overwhelming major-
ity of attested phonological patterns fall within the finite-state class
(Kaplan and Kay 1994), and perhaps within even more restrictive
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subclasses (Heinz 2007). Reduplication is the striking exception to
this generalization. But at present, if we look for alternatives to the
finite-state characterization which are powerful enough to express
reduplication, we only find classes of formal languages which addi-
tionally allow a wide variety of unattested patterns – for example,
nesting/mirror-image patterns, or arbitrary cross-serial dependency
patterns significantly more general than reduplication itself. This gives
us no way to retain the finite-state characterization’s (apparently cor-
rect) prediction that mirror-image patterns and so on will be unat-
tested, while avoiding the (apparently incorrect) prediction that redu-
plication will be unattested.

Jäger and Rogers (2012) review other cases where natural lan-
guage generalizations do not appear to correspond neatly to degrees
of complexity as defined by the formalisms of the classical Chomsky
Hierarchy, and the “refinements” of the hierarchy that these findings
have prompted. In the case of natural language syntax, for example, it
is widely accepted that context-free grammars are insufficiently ex-
pressive (Huybregts 1984; Shieber 1985; Culy 1985); but the next
level up on the classical hierarchy, context-sensitive grammars, are
far too expressive to be a plausible characterization of possible natural
languages. This situation prompted the development of many mildly
context-sensitive formalisms (Joshi 1985; Kallmeyer 2010), whose gen-
erative capacity sits in between the context-free and context-sensitive
levels. Another “mismatch” has been observed in phonology, where
even the lowest level of the classical hierarchy, the finite-state lan-
guages, has been argued to be insufficiently restrictive. To address
this, a number of researchers have developed sub-regular formalisms
(e.g., Heinz et al. 2011; Chandlee 2014; Heinz 2018).

In this paper, the situation we are addressing is slightly less
straightforward than the two mismatches just mentioned. The devel-
opment of sub-regular formalisms was a response to a perception that
all the levels of the classical hierarchy were too powerful. The mildly
context-sensitive formalisms address the fact that, with regard to syn-
tax, each of the classical levels is either too weak (finite-state, context-
free) or too powerful (context-sensitive, recursively enumerable). The
situation we address in this paper, in contrast, is one where the clas-
sical context-free class is both too powerful in some ways (since it
allows mirror-image patterns) and too restrictive in other ways (since
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it disallows reduplication). We, therefore, seek a formalism that cuts
across the levels of the classical hierarchy, rather than one which adds
a level that sits within the existing hierarchical relationships.

We introduce finite-state buffered machines (FSBMs) as a step to-
wards solving this problem. The idea is to preserve as much as possible
of the restrictiveness of the finite-state class and add just what is neces-
sary to generate copying patterns. FSBMs include unbounded memory
in the form of a first-in-first-out buffer, but the use of this memory is
restricted in two important ways. First, this memory buffer uses the
alphabet of surface symbols, rather than a separate alphabet like the
stack alphabet of a pushdown automaton (PDA). Second, the allow-
able ways of interacting with this memory buffer are closely tied to
the surface string being generated: the only storage operation adds a
copy of the current surface symbol to the memory buffer, and the only
retrieval operation empties the entire memory buffer and adds its con-
tents to the generated string. For example, in computing a string of the
form urrv, an FSBM will proceed through three phases corresponding
to the sub-strings u, r and v, much like a standard finite-state ma-
chine generating the string urv. But throughout the middle phase, a
copy of each surface symbol of r will be stored in the FSBM’s memory
buffer, and at the transition from this middle phase to the third phase
the buffer will be emptied and its contents appended to the computed
string; thus ur has r appended to it, before the machine proceeds to
compute the v portion in the third phase.

In Section 2 we discuss the computational challenge posed by
reduplication in more detail, and outline the ways our approach dif-
fers from a number of other attempts to enrich otherwise restrictive
formalisms with copying mechanisms. We present FSBMs in full in
Section 3, give a pumping lemma in Section 4, and explore the math-
ematical properties of the generated class of languages in Section 5.
Section 6 discusses some remaining issues, including various kinds of
non-canonical reduplication, and a formal distinction between what
we will call symbol-oriented generative mechanisms (such as string-
copying) and the better-known mechanisms underlying the classical
Chomsky Hierarchy. Section 7 concludes the paper.
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2 BACKGROUND

Section 2.1 outlines the important empirical properties of reduplica-
tion that make it a poor fit to the classical Chomsky Hierarchy; in
particular, we aim to show that an appropriate characterization of
possible natural language word forms should include the pattern ww,
for unboundedly many strings w, but not wwR, where wR is the re-
verse of w. Section 2.2 reviews various modifications to classical au-
tomata, like our proposal, that incorporate some form of unbounded
queue-like memory. In Section 2.3 we discuss other modifications to
finite-state automata that were motivated by reduplication, but do not
accommodate the crucial property of unboundedness.

2.1 The puzzle of reduplication

2.1.1 Reduplication in natural languages

Reduplication, creating identity within word forms, is common cross-
linguistically. Table 1 provides illustrative examples. Dyirbal exhibits
total reduplication, with the plural form of a nominal comprised of two
perfect copies of the full singular stem; whereas partial reduplication
is exemplified in Agta, where plural forms only copy the first CVC
sequence of the corresponding singular forms (Healey 1960; Marantz
Table 1: Total reduplication:Dyirbal plurals (top); partial reduplication:Agta plu-
rals (bottom)

Total reduplication: Dyirbal plurals (Dixon 1972, p. 242; Inkelas 2008, p. 352)
Singular Gloss Plural Gloss
midi ‘little, small’ midi-midi ‘lots of little ones’
gulgiói ‘prettily painted men’ gulgiói-gulgiói ‘lots of prettily painted men’

Partial reduplication: Agta plurals (Healey 1960, p.7)
Singular Gloss Plural Gloss
labáng ‘patch’ lab-labáng ‘patches’
takki ‘leg’ tak-takki ‘legs’
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1982).1 In the sample reported by Rubino (2013) and further surveyed
in Dolatian and Heinz (2020), 313 out of 368 natural languages exhibit
productive reduplication, of which 35 languages have total reduplica-
tion but not partial reduplication. Moravcsik (1978, p. 328) hypothe-
sized that all languages with attested partial reduplication would also
use total reduplication.

By comparison, context-free palindrome patterns are rare in
phonology and morphology (Marantz 1982) and appear to be confined
to language games (Bagemihl 1989; Gil 1996), whose phonological
status is unclear. Figure 1 illustrates the important difference between
Dyirbal total reduplication (midi-midi) and the logically-possible but
unattested palindrome pattern (midi-idim).
m i d i m i d i

m i d i i d i m

Figure 1:
Crossing dependencies in Dyirbal total
reduplication midi-midi (top) versus nesting
dependencies in unattested string reversal
midi-idim (bottom)

From the perspective of a computational analysis, it will be im-
portant to establish that (at least some) reduplication constructions are
unbounded, in the sense that they are usefully modeled by string-sets
of the form {ww | w ∈ S} for some infinite set S. A partial reduplica-
tion construction, such as the Agta case above where an initial CVC
sequence is copied, is obviously not unbounded in this sense, since
– assuming a finite alphabet – there are only finitely-many CVC se-
quences (Chandlee and Heinz 2012).2 But as observed by Clark and
Yoshinaka (2014) and Chandlee (2017), even amongst total redupli-
cation constructions we must take care to distinguish between unre-
stricted, productive total reduplication (which is unbounded in the

1For clarity, we adopt a simplistic analysis here. When the bases start with
a vowel, Agta copies the first VC sequence, as in uffu ‘thigh’ and uf-uffu ‘thighs’.
Thus, a more complete generalization is that Agta copies a (C)VC sequence.

2 In principle, a reduplication operation which copied, for example, half of
the relevant stem, would be a case of unbounded copying in this sense that would
likely nonetheless be described as partial reduplication. But the attested cases of
partial reduplication appear to all involve templates that do not depend on the
length of the base (see the most frequent attested shapes in Moravcsik 1978;
Rubino 2005; Dolatian and Heinz 2020), like the Agta examples above.
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Table 2:
Reduplication

and
bounded/un-

bounded copying

Restricted to lexemes Not restricted to lexemes
(not productive) (productive)

Partial Reduplication bounded bounded
Total Reduplication bounded unbounded

relevant sense) and total reduplication on a finite set of bases. For ex-
ample, it is important to establish that midi-midi is not simply part of a
collection {ww | w ∈ S} where S is some finite memorized set (e.g. the
set of all lexemes of a particular category); in such a case, the resulting
set of reduplicated forms would itself be finite, and therefore within
most familiar language classes. Table 2 illustrates the relationship be-
tween productivity, the partial/total distinction, and unboundedness.

A famous case of reduplication that is unbounded in the relevant
sense is the Bambara ‘Noun o Noun’ construction (Culy 1985). For
example, the stem wulu dog can be copied to form wulu o wulu
whichever dog. The important point about productivity comes from
the interaction of this reduplication with the agentive la construction,
illustrated in (1) (Culy 1985, pp. 346–347).
(1) a. wulu

dog
+ nyini
search for

+ la = wulunyinina

“one who searches for dogs”, i.e., “dog searcher”
b. wulu
dog

+ filè
watch

+ la = wulufilèla

“one who watches dogs”, i.e., “dog watcher”
This agentive construction itself is recursive, in the sense that it can
build on its own outputs, as illustrated in (2); and the outputs of the
agentive construction, including the recursively-formed ones, can be
used in the ‘Noun o Noun’ reduplicative construction, as illustrated
in (3).
(2) a. wulunyinina

dog searcher
+ nyini
search for

+ la = wulunyininanyinina

“one who searches for dog searchers”
b. wulunyinina
dog searcher

+ filè
watch

+ la = wulunyininafilèla

“one who watches dog searchers”
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(3) a. wulunyinina
dog searcher
(1a)

o wulunyinina
dog searcher
(1a)

“whichever dog searcher”
b. wulufilèla
dog watcher
(1b)

o wulufilèla
dog watcher
(1b)

“whichever dog watcher”
c. wulunyininanyinina
(2a)

o wulunyininanyinina
(2a)

“whichever one who searches for dog searchers”
d. wulunyininafilèla
(2b)

o wulunyininafilèla
(2b)

“whichever one who watches dog searchers”
The set of all outputs of this reduplication process can therefore nat-
urally be thought of as taking the form {ww | w ∈ S}, where S is the
infinite set of nouns, including outputs of the agentive construction.

Further evidence that reduplication is productive in this sense
comes from its applicability to borrowed words: Yuko (2001, p. 68)
cites the totally-reduplicated plurals teknik-teknik ‘techniques’ and
teknologi-teknologi ‘technologies’ attested in Malay, for example. Sim-
ilarly, the code-switching data from Tagalog in (4) (Waksler 1999),
shows the English word swimming being (partially) reduplicated.
(4) Saan

where
si
DET

Jason?
Jason

Nag-SWI-SWIMMING
PRESENT-REDUP-SWIMMING

siya.
he

‘Where is Jason? He’s swimming.’
In addition, in a few experiments that, either directly or indi-

rectly, study the learnability of surface identity-based patterns, copy-
ing appears to be salient and easy to learn. The famous study by Mar-
cus et al. (1999) shows that infants can detect and habituate to dif-
ferent identity-based patterns: ABA vs. ABB and AAB vs. ABB, where
A and B are CV syllables. Crucially, the particular syllables used at test
time were distinct from any seen during training.

Evidence that reduplication/copying (ww) patterns have an im-
portantly different status than reversal (wwR) patterns – converging
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with the typological absence of reversal patterns noted above – comes
from one recent artificial grammar learning study (AGL) (Moreton
et al. 2021). In this experiment, adult learners were trained to iden-
tify either a reduplication or a syllable reversal pattern. Participants
were also asked to explicitly state the rule they had learned (if they
could). Participants in the reduplication group showed final above-
chance performance whether they could state the rule or not. How-
ever, in the syllable-reversal condition, only participants who could
also correctly state the rule showed final above-chance performance;
this suggests that learning the reversal pattern relied on some degree
of explicit/conscious reasoning that the copying pattern did not. In
further support of this distinction, correct syllable-reversal responses
showed longer reaction times than correct copying responses. In a sec-
ond variant of this experiment, the training phase was replaced with
explicit instruction on the rule to apply; participants in the reduplica-
tion group still showed shorter reaction times. These results suggest
that, to the extent that reversal patterns can be learned or applied at
all, this is achieved more by conscious application of a rule rather than
unconscious linguistic knowledge, in contrast to reduplication.

A significant aspect of this AGL study is that the stimuli used were
auditory, “purely phonological”, “meaningless” strings (Moreton et al.
2021, p. 9), chunks of which are identical. We take this to indicate that
cognitively representable reduplication or reduplication-like patterns
need not be realizations of meaning-changing operations: identity be-
tween sub-strings can contribute to the phonotactic well-formedness
of a surface form, in ways that can be separated from any morpholog-
ical paradigms in which that surface form appears. This aligns with
the general tendency that Zuraw (2002) called aggressive reduplica-
tion: human phonological grammar is sensitive to output forms with
self-similar subparts, regardless of morphosyntactic or semantic cues.
Such sensitivity is formalized as the constraint REDUP which requires
string-to-string correspondence by coupling sub-strings together.3

3Direct evidence supporting aggressive reduplication comes from pseudo-
reduplication. A pseudo-reduplicated word has one portion identical to another
portion. But the decomposed form cannot stand alone and thus does not bear
proper morphosyntactic or semantic information. Zuraw (2002) studied the
transparency of phonological rule application within pseudo-reduplicated words
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2.1.2Inadequacy of familiar language classes

Having established that the formal pattern ww, for unboundedly many
strings w, is a reasonable model for reduplication, we can ask where
this falls on the hierarchy of familiar language classes. The original
Chomsky Hierarchy, shown in solid lines in Figure 2, classifies the ww
pattern as properly context-sensitive; it is also included in the more re-
cent mildly context-sensitive subclass (MCS; Joshi 1985; Stabler 2004),
shown with a dashed line. This creates a puzzle with two parts.

The first part of the puzzle comes from the fact that reduplica-
tion is a counter-example to the otherwise overwhelming generaliza-
tion that attested phonological and morphological patterns are reg-
ular. Aside from reduplication, it is very natural to hypothesize that
the set of possible natural language word forms is regular (or even
sub-regular). This is why the distinction above between bounded and
unbounded copying is crucial: one way to save the regular hypothesis
would be to demonstrate that reduplication is bounded, which would
place it in the class of finite languages which is properly included in
all of the classes shown in Figure 2. For example, Figure 3 shows a
finite state automaton that successfully recognizes {ww | w ∈ S} with
a finite S = {aaa, aba, aab, abb, baa, bba, bab, bbb}. The finiteness
makes it possible to essentially just memorize the desired list of surface
forms.4

The second part of the puzzle comes from considering the classes
in Figure 2 that do include ww. The most restrictive of these is the

in Tagalog loan words. For example, stem-final mid vowels in Tagalog usually
raise to high vowels when suffixed, as in [kalos] grain leveller but [kalus-in] to use
a grain leveller on. However, within English and Spanish loans, mid vowel raising
is less frequently applied when a preceding mid vowel is present: /todo+in/ to
include all has /todo/ realized as [todo] but not [todu]. The hypothesized mo-
tivation is that speakers preserve sub-string similarity between /to/ and /do/.
A recent MEG study on visual inputs (Wray et al. 2022) further supports the
reduplication-like representation for those pseudo-reduplicated words that fail
to undergo a process due to similarity preservation.

4Of course one might also dispute whether Figure 3, with its explosion in the
number of states (Roark and Sproat 2007; Dolatian and Heinz 2020), represents
a linguistically adequate model of even a bounded copying construction. The
distinction between arguing that Figure 3 is linguistically inadequate and arguing
that copying is unbounded is subtle (Savitch 1993).
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Figure 2:
Familiar language classes

regular
ai b j

context sensitive

recursively enumerable

mildly context sensitivecontext-free

wwR

w2n

a ib ja ib j

ww
ai b jc id j

Figure 3:
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machine
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mildly context-sensitive class. This is not a good fit with natural lan-
guage word forms because it also includes the wwR pattern, which
is unattested as discussed above; more generally, it includes nesting
patterns as well as crossing patterns (recall Figure 1). But the prob-
lem is slightly more subtle than the simple distinction between nest-
ing and crossing suggests: the MCS class includes very general cross-
ing patterns such as ai b jc id j , but reduplication represents a special
case where the cross-serially dependent elements are identical sym-
bols. MCS grammars are motivated by natural language syntax, where
the more general kind of crossing patterns appear to be necessary5 –

5And nesting patterns are at least as common as crossing patterns.
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Linear/regular Nested Cross-serial
Morphology 3 7 3

and Phonology restricted to symbol identity
Syntax 3 3 3

Figure 4:
Attested types
of dependencies
in different
language
modules

the influential paper by Shieber (1985) on Swiss German appeals to
exactly the aforementioned example ai b jc id j – but for the purposes
of morphophonology, there is reason to distinguish crossing patterns
that involve surface symbol identity (e.g. ww and ai b jai b j) from those
that do not. This situation is summarized in Figure 4. We return to the
distinction between formalisms where symbol identity plays a role and
those where it does not in Section 6.3.

2.2Language classes motivated by reduplication
and queue automata

In response to essentially the puzzle introduced above, Gazdar and
Pullum (1985, p.287) made the remark that

We do not know whether there exists an independent charac-
terization of the class of languages that includes the regular
sets and languages derivable from them through reduplica-
tion, or what the time complexity of that class might be, but
it currently looks as if this class might be relevant to the char-
acterization of NL [natural language] word-sets.
One such proposal is offered by Manaster-Ramer (1986, p.87),

who introduces the idea – closely related to that underlying our own
proposal below – as follows:6

Rather than grudgingly clambering up the Chomsky Hierar-
chy towards Context-sensitive Grammars, we should consider

6Taken literally, this quotation seems to lead in the direction of unrestricted
queue automata which are known to be equivalent to Turing machines. What
Manaster-Ramer actually proposes is significantly more restricted. Also, see
Kutrib et al. (2018) for a more complete review of the history of queue au-
tomata and investigations on restricted versions that computer scientists have
conducted.
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going back down to Regular Grammars and striking out in
a different direction. The simplest alternative proposal is a
class of grammars which intuitively have the same relation
to queues that CFGs have to stacks.

The Context-free Queue Grammars (CFQGs) that Manaster-Ramer pro-
poses enriches the rules of a regular grammar (specifically in the form
of right-linear rewrite rules) with the additional capacity to either
(i) write a terminal symbol to a separate queue-based memory, or
(ii) clear the queue and append its current contents to the output
string. This is implemented in the form of a rewrite-rule system that ef-
fectively maintains two strings: rather than simply uX as in a standard
right-linear grammar, uX v at an intermediate stage of a derivation rep-
resents having generated u as the output string which will grow on its
right via rewrites of the nonterminal X , with v as the current queue
contents.

There are significant similarities between CFQGs and the FSBM
formalism that we introduce in this paper. Manaster-Ramer illustrates
CFQGs via an example that generates {ww | w ∈ {a, b}∗}, and conjec-
tures that they cannot generate the corresponding mirror-image (wwR)
language, but there is no careful exploration of the formalism’s capac-
ity or limitations. Also, it is clear that CFQGs can generate more gen-
eral crossing patterns such as ai b jc id j along with reduplication-like
patterns, so FSBMs are more restricted in at least this (linguistically
well-motivated) respect.
Along similar lines to Manaster-Ramer’s proposal, Savitch (1989)

introduced Reduplication PDAs (RPDAs), which are pushdown au-
tomata (PDAs) augmented with the ability to match reduplicated
strings by using a portion of the stack as a queue. RPDAs are more
powerful than CFQGs, since the language class they define properly in-
cludes context-free languages, so they do not exclude nesting/mirror-
image patterns. This aligns with the fact that the motivations Savitch
discusses mainly involve crossing patterns found in syntax rather than
identity-based reduplication which is our focus here. But the techni-
cal formulation of RPDAs has much in common with that of FSBMs
below.

Finally, Memory Automata (MFAs; Schmid 2016; Freydenberger
and Schmid 2019) introduce a kind of automata that is particularly
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similar to FSBMs. MFAs augment classical FSAs with a finite number
of memory cells; each memory cell can store an unboundedly long
sub-string of input, which can be matched against future input when
it is recalled. The full class of MFAs can generate languages such as
{ai | i is not prime} (Câmpeanu et al. 2003, p.1013) and {a4i | i ≥ 1}
(Freydenberger and Schmid 2019, p.21), and is therefore much too
powerful to be suitable as a model for natural languages.7 But these
unusually complex languages all rely on either interactions between
distinct memory cells, or the ability to recall a particular string from
a memory cell more than once. The FSBM formalism that we in-
troduce corresponds closely to a restricted version of MFAs where
there is only one memory cell, and its contents are erased when re-
called.

To summarize: our goal is to identify a formalism whose class
of languages aligns with Gazdar and Pullum’s motivating quotation
above; RPDAs do not match this description because they extend up-
wards from the context-free languages, rather than the regular lan-
guages; CFQGs and MFAs do adopt the regular languages as the start-
ing point, but extend too far and therefore overshoot the mark in dif-
ferent ways.

This paper introduces FSBMs as a way of examining what mini-
mal changes can be brought to regular languages to include string-sets
with two copies of the same sub-strings, while excluding some typolog-
ically unattested context-free patterns, such as reversals, and crossing
dependencies other than reduplication. We name the resulting class
of languages regular copying languages (RCLs). The intended relation
of this language class to other existing language classes is shown in
Figure 5.

7MFAs were introduced to provide an automaton-based characteriza-
tion of the languages generated by regular expressions extended with
back-references (Câmpeanu et al. 2002; Câmpeanu et al. 2003; Carle and
Narendran 2009). There are some differences between the various defini-
tions of these extended regular expressions in the literature; see Freyden-
berger and Schmid (2019, pp. 36–37) for discussion. We would like to
thank an anonymous reviewer for pointing out the relevant research on
extended regular expressions, which in turn led us to the literature on
MFAs.

[ 13 ]



Yang Wang, Tim Hunter

Figure 5:
The class of regular copying languages

(oval shape) in the classical Chomsky Hierarchy

regular
ai b j

context sensitive
mildly context sensitivecontext-free

wwR

a ib ja ib j

ww
ai b jc id j

w2n

2.3 Other computational models motivated by reduplication

Now we review other computational models motivated by reduplica-
tion, which can be categorized into two groups: those that limit at-
tention to bounded copying (Section 2.3.1) and those that consider
transductions/mappings (Section 2.3.2).

2.3.1 Compact representations of bounded copying

The first line of work aims to improve upon the inelegant memoriza-
tion strategy exemplified in Figure 3, while retaining the limitation
to bounded copying. For example, Cohen-Sygal and Wintner (2006)
introduce finite-state registered automata (FSRAs), which augment stan-
dard FSAs with finitely many memory registers. This allows for a more
space-efficient representation of copying patterns, without the dupli-
cating paths of Figure 3, by storing the symbols to be matched in
registers rather than in the machine’s central state. But because the
registers themselves provide only a finite amount of additional mem-
ory, FSRAs do not extend upon the generative capacity of standard
FSAs, and therefore do not accommodate productive total reduplica-
tion (i.e. unbounded copying).

An analogous proposal is the compile-replace algorithm (Beesley
and Karttunen 2000). This run-time technique first maps a lexi-
cal item to a regular expression representation for either morpho-
logical generation or analysis. Then the desired output is obtained
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by re-evaluating the output regular expression. Similarly, Walther
(2000) added different types of transitions to represent the lexi-
con: repeat (for copying), skip (for truncation) and self-loops (for
infixation). Then, intersecting these enriched lexical items with an
FSA encoding language-specific reduplication rules would derive
the surface strings. Last but not least, Hulden (2009) introduced
an EQ function, a filter on a finite-state transduction which ex-
cludes input-output pairs where the output string does not meet a
sub-string identity condition. In principle, this idea allows for an
unbounded-copying output language such as {ww | w ∈ {a,b}∗} to
be specified, but in practice, Hulden’s implementation restricts at-
tention to cases where the equal sub-strings are bounded in length
(p.125).

2.3.22-way Deterministic Finite-state Transducers

A finite-state device that computes unbounded copying elegantly and
adequately is the 2-way deterministic finite-state transducer (2-way D-
FST) (Dolatian and Heinz 2018a,b, 2019, 2020), which differs from a
conventional (1-way) FST in being able to move back and forth on the
input.8 2-way D-FSTs have been proven to describe string transduc-
tions that are MSO-definable (Monadic Second-Order logic; Engelfriet
and Hoogeboom 1999) and are equivalent to streaming string trans-
ducers (Alur and Černý 2010). In these formalisms, reduplication is
modeled as a string-to-string mapping (w 7→ ww). To avoid the mirror
image function (w 7→ wwR), Dolatian and Heinz (2020) further stud-
ied sub-classes of 2-way D-FSTs which cannot output anything during
right-to-left passes over the input (cf. rotating transducers: Baschenis
et al. 2017).

The issue addressed in Dolatian and Heinz (2020) is distinct
from, but related to, the main concern of this paper: these transducers
model reduplication as a function mapping underlying forms to sur-
face forms (w 7→ ww), while this paper aims to characterize only the
identical-substrings requirement on the corresponding surface forms
(ww). There are at least two reasons to address the string-set problem

82-way FSTs are still more restricted than Turing machines since they cannot
move back and forth on the output tape, only the input tape.
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itself rather than considering only mappings between underlying and
surface forms.

The first reason is a practical/strategic one, related to the prob-
lem of morphological analysis (rather than generation): the question
of what kinds of transducers can implement the ww 7→ w mapping
required for morphological analysis remains open, since 2-way D-
FSTs (unlike standard 1-way FSTs) are not readily invertible as a class
(Dolatian and Heinz 2020, p.235). Althoughwe do not directly address
the morphological analysis problem here, recognizing the redupli-
cated ww strings is plausibly an important first step: applying the map-
ping ww 7→ w to some string x requires at least recognizing whether x
belongs to the ww string set.

The second reason stems from a full consideration of the lin-
guistic facts surrounding reduplication: there is evidence support-
ing meaning-free, non-morphologically-generated reduplication-like
structures, as mentioned in the discussion of aggressive reduplication
above. This suggests that the phonological grammar involves a phono-
tactic constraint requiring sub-string identity, and the natural formal
model for such a constraint is an automaton that generates/accepts
the strings satisfying it. A constraint of this sort could play a role in
mappings relating underlying forms to surface forms, so we may be
missing a generalization if we only model those mappings directly.

3 FINITE-STATE BUFFERED MACHINES

The aim of proposing a new computing device is to add reduplica-
tion to FSAs and thereby gain a better understanding of the required
computational operations. The new formalism is finite-state buffered
machines (FSBMs), a summary of which is provided in Section 3.1. For
ease of exposition, we introduce the new formalism by first presenting
the general case of FSBMs in Section 3.2, along with illustrative exam-
ples. A clearer understanding of the formalisms’ capacity for copying
comes from identifying a subset of FSBMs that we call complete-path
FSBMs, in Section 3.3; we show that the languages recognized by FS-
BMs are precisely the languages recognized by complete-path FSBMs
in Section 3.4.
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3.1FSBM in a nutshell

FSBMs are two-taped automata with finite-state core control.9 One
tape stores the input, as in normal FSAs; the other serves as an un-
bounded memory buffer, storing reduplicants temporarily for future
string matching. An FSBM can be thought of as an extension to the FS-
RAs discussed above (Cohen-Sygal and Wintner 2006) but equipped
with unbounded memory. FSBMs with a bounded buffer would be as
expressive as FSRAs, and therefore also standard FSAs.

The interaction of the queue-like buffer with the input is restricted
in two important ways. First, the buffer stores symbols from the same
alphabet as the input, unlike the stack in a PDA, for example. Second,
once one symbol is removed from the buffer, everything else must
also be emptied from the buffer before symbols can next be added to
it. These restrictions together ensure the machine will not generate
string reversals or other non-reduplicative non-regular patterns.

Unlike a standard FSA, an FSBM works with two possible modes:
in normal (N) mode, M reads symbols and transits between states,
functioning as a normal FSA; and in buffering (B) mode, besides con-
suming symbols from the input and taking transitions among states,
M adds a copy of just-read symbols to the queue-like buffer. At a spe-
cific point, M exits buffering (B) mode, matching the stored string in
the buffer against (a portion of) the remaining input. Provided this
match succeeds, it switches back to normal (N) mode for another
round of computation. Figure 6 provides a schematic diagram showing
how the mode of an FSBM alternates when it determines the equality
of sub-strings and how the buffer interacts with the input.

As presented here, FSBMs can only compute local reduplication
with two adjacent, completely identical copies. They cannot han-
dle non-local reduplication, multiple reduplication, or non-identical
copies. We believe the current machinery can serve as the foundation
for proposing different variants, and we discuss some potential modi-
fications along these lines in Section 6.1.

Having introduced the important intuitions, we now turn to the
formal definition of FSBMs.

9The presented model here is a modified version of the proposal of Wang
(2021a) and Wang (2021b).
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Figure 6:
Mode changes and input-buffer interaction

of an FSBM M on …abbabb…. The machine
switches to B mode to temporarily store symbols
in the queue-like buffer, and then at the point
indicated by the arrow it compares the buffer
contents against the remaining input. If the two

strings match, the buffer is emptied, the
matched input sub-string is consumed and the

machine switches to N mode

. . . a b b a b b . . . Input

ModeN B B B N…
Bufferε a ab abb ε

Finite control

Requires string matching

3.2 Preliminaries and Definitions

For any finite alphabet Σ of symbols, we use Σ∗ to denote the set of
all finite strings over Σ. For a string w, |w| denotes its length. ε is the
null string and thus |ε| = 0. We denote string union by ‘+’, and de-
note string concatenation by simple juxtaposition, assuming implicit
conversion between symbols and length-one strings where necessary.
If u= vw, then v\u= w; otherwise, v\u is undefined.
DEFINITION 1 A Finite-State Buffered Machine is a 7-tuple

〈Σ,Q, I , F, G, H,δ〉where
• Σ: a finite set of symbols
• Q: a finite set of states
• I ⊆Q: initial states
• F ⊆Q: final states
• G ⊆Q: states where the machine must enter buffering mode
• H ⊆Q− G: states requiring string matching
• δ: Q× (Σ∪ {ε})×Q: transition relation
The specification of the two sets of special states, G and H, serves

to control what portions of a string are copied. To avoid intricacies, G
and H are defined to be disjoint. The special case where G = H = ;
corresponds to a standard FSA.
DEFINITION 2 A configuration of an FSBM is a four-tuple (u, q, v, t) ∈
Σ∗ ×Q×Σ∗ × {N,B}, where u is the input string; q is the current state; v
is the string in the buffer; and t is the machine’s current mode.
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DEFINITION 3 Given an FSBM M = (Σ,Q, I , F, G, H,δ), the relation
`M on configurations is the smallest relation such that, for any u, v, w ∈
Σ∗:
• For every transition (q1, x , q2) ∈ δ
(xu, q1, ε, N) `M (u, q2, ε, N) if q1 /∈ G and q2 /∈ H `N
(xu, q1, v, B) `M (u, q2, vx , B) if q1 /∈ H and q2 /∈ G `B
• For every q ∈ G
(u, q, ε, N) `M (u, q, ε, B) `N→B
• For every q ∈ H
(vw, q, v, B) `M (w, q, ε, N) `B→N

Thus, `M= `N∪`B∪`N→B∪`B→N. When D1 `M D2, we say D1 yields D2.
As is standard, `∗ denotes the reflexive and transitive closure of

`, while `+ is the corresponding irreflexive closure.
DEFINITION 4 A run of M on w is a sequence of configurations
D0, D1, D2 . . . Dm such that
• ∃q0 ∈ I , D0 = (w, q0,ε,N)
• ∃q f ∈ F , Dm = (ε, q f ,ε,N)
• ∀0≤ i < m, Di `M Di+1

DEFINITION 5 The language recognized by M = 〈Σ,Q, I , F, G, H,δ〉,
denoted by L(M), is the set of all strings w ∈ Σ∗ such that there is a run
of M on w. That is, L(M) = {w ∈ Σ∗ | (w, q0,ε,N) `∗M (ε, q f ,ε,N), q0 ∈
I , q f ∈ F}.
Notice that we do not impose any notion of determinism on the

transitions of an FSBM. We return to some discussion of this point in
Section 6.2.

Now, we give examples of FSBMs. In all illustrations, G states are
drawn with diamonds and H states are drawn with squares.

3.2.1Examples: Total reduplication

Figure 7 offers an FSBM M1 for Lww, with arbitrary strings over the
alphabet Σ = {a, b} as potential bases. The initial state q1 is also a G
state, and the only H state is q3. The machine stores a copy of string
computed in between q1 and q3 in the buffer and requires stringmatch-
ing at q3. Since the states where the machine enters (q1 ∈ G) and
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Figure 7:
M1 with G = {q1}
and H = {q3}.

L(M1) = {ww |w ∈ {a, b}∗}
q1Start q2 q3 Acceptε

a

b

ε

Table 3:
M1 in Figure 7
accepts abbabb

Used arc ` types Configuration
or state (input, state, buffer, mode)

1. N/A (abbabb, q1, ε, N)
2. q1 ∈ G `N→B (abbabb, q1, ε, B)
3. (q1, ε, q2) `B (abbabb, q2, ε, B)
4. (q2, a, q2) `B (bbabb, q2, a, B)
5. (q2, b, q2) `B (babb, q2, ab, B)
6. (q2, b, q2) `B (abb, q2, abb, B)
7. (q2, ε, q3) `B (abb, q3, abb, B)
8. q3 ∈ H `B→N (ε, q3, ε, N)

Accept

Figure 8:
One example FSBM and the
corresponding FSA for the

base language
q1Start q2 q3 q4 Accepta

a

b

b

ε

(a) An FSBM M2 with G = {q1} and H = {q4}; L(M2) ={ai b jai b j | i, j ≥ 1}

q′1Start q′2 q′3 Accepta

a

b

b

(b) An FSA M0; L(M0)= {ai b j | i, j ≥ 1}

leaves (q3 ∈ H) buffering mode are also the initial and final states
respectively, this machine will recognize simple total reduplication.
Table 3 gives a complete run of M1 on the string abbabb. As in Step 8,
the string abb in the remaining input is consumed in one step.

For the rest of the illustration, we focus on the FSBM M2 in
Figure 8a. M2 in Figure 8a recognizes the non-context-free language{ai b jai b j|i, j ≥ 1}. This language can be viewed as total reduplica-
tion added to the regular language {ai b j|i, j ≥ 1} (recognized by the
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FSA M0 in Figure 8b). q1 is an initial state and more importantly a
G state, forcing M2 to enter B at the beginning of any run. Then M2

in B mode always keeps a copy of consumed symbols until it proceeds
to q4, which is an H state and therefore requires M2 to stop buffer-
ing and check for string identity to empty the buffer. Then, M2 with
a blank buffer can switch to N mode. It eventually ends at q4, a legal
final state. Table 4 shows one possible sequence of configurations of
M2 on ababb; this string is rejected because there is no way to reach a
valid ending configuration.

Used arc ` types Configuration
or state (input, state, buffer, mode)

1. N/A (ababb, q1, ε, N)
2. q1 ∈ G `N→B (ababb, q1, ε, B)
3. (q1, a, q2) `B (babb, q2, a, B)
4. (q2, b, q3) `B (abb, q3, ab, B)
5. (q3, ε, q4) `B (abb, q4, ab, B)
6. q4 ∈ H `B→N (b, q4, ε, N)

Reject

Table 4:
M2 in Figure 8a
rejects ababb

3.2.2Examples: Partial reduplication

Assuming Σ = {b, t, k, ng, l, i, a}, the FSBM M3 in Figure 9 serves as a
simple model of Agta CVC reduplicated plurals, as illustrated earlier
in Table 1. Given the initial state q1 is in G, M3 has to enter B mode
before it takes any transitions. In B mode, M3 transits to a plain state
q2, consuming a consonant from the input and keeping it in the buffer.
Similarly, M3 transits to a plain state q3 and then to q4. When M3

first reaches q4, the buffer would contain a CVC sequence; q4, an H
state, requires M3 to match this CVC sequence in the buffer with the

q1Start q2 q3 q4 q5 Acceptb, t, k, ng, l i, a b, t, k, ng, l ε

Σ

Figure 9: An FSBM M3 for Agta CVC-reduplicated plurals: G = {q1} and H ={q4}
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Table 5:
M3 in Figure 9 accepts taktakki

Used arc ` types Configuration
1. N/A (taktakki, q1, ε, N)
2. q1 ∈ G `N→B (taktakki, q1, ε, B)
3. (q1, t, q2) `B (aktakki, q2, t, B)
4. (q2, a, q3) `B (ktakki, q3, ta, B)
5. (q3, k, q4) `B (takki, q4, tak, B)
6. q4 ∈ H `B→N (ki, q4, ε, N)
7. (q4, ε, q5) `N (ki, q5, ε, N)
8. (q5, k, q5) `N (i, q5, ε, N)
9. (q5, i, q5) `N (ε, q5, ε, N)

Accept

Table 6:
M3 in Figure 9 rejects tiktakki

Used arc ` types Configuration
1. N/A (tiktakki, q1, ε, N)
2. q1 ∈ G `N→B (tiktakki, q1, ε, B)
3. (q1, t, q2) `B (iktakki, q2, t, B)
4. (q2, i, q3) `B (ktakki, q3, ti, B)
5. (q3, k, q4) `B (takki, q4, tik, B)

q4 ∈ H: checks for string identity and rejects

remaining input. Then, M3 with a blank buffer can switch to N mode
at q4. It transitions to q5 to process the rest of the input via the normal
loops on q5. A successful run should end at q5, the only final state.
Table 5 gives a complete run of M3 on the string taktakki. Table 6
illustrates a case where the crucial step of returning from B mode to
N mode is not possible, because of the non-matching sub-strings in
tiktakki; this string is rejected by M3.

3.3 The copying mechanism and complete-path FSBMs

The copying mechanism is realized by four essential components: 1)
the unboundedmemory buffer, which has queue-like storage; 2) added
modalities; 3) added specifications of states requiring the machine to
buffer symbols into memory, namely states in G; 4) added specifica-
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tions of states requiring the machine to empty the buffer by matching
sub-strings, namely states in H.

As shown in the definitions of configuration changes and the ex-
amples in Section 3.2, the machine must end in N mode to accept
an input. There are two possible scenarios for a run to meet this re-
quirement: either never entering B mode or undergoing full cycles of
N→ B→ N mode changes. Correspondingly, the resulting languages
reflect either no copying (functioning as plain FSAs) or full copying.

In any specific run, it is the states that inform a machine M of its
modality. The first time M reaches a G state, it has to enter B mode and
keeps buffering when it transits between plain states. The first time
when it reaches an H state, M is supposed to match strings. Hence,
it is clear that to go through full cycles of mode changes, once M
reaches a G state and switches to B mode, it has to encounter some H
state later. Then the buffer has to be emptied for N mode at the point
when a H state transits to a plain state. A template for those machines
performing full copying can be seen in Figure 10.

IStart G H F Accept

Mode record N B N N… … …
Figure 10: The template for the implementation of the copying in FSBMs. Key
components: G state, H states, and strict ordering between G and H. Dotted lines
represent a sequence of transitions

To allow us to reason about only the useful arrangements of G
and H states, we impose an ordering requirement on G and H states
in a machine. We define the completeness restriction on a path in Defini-
tion 7. We then identify those FSBMs in which all paths are complete
as complete-path FSBMs. The machine M1 in Figure 7, M2 in Figure 8a
and M3 in Figure 9 are all complete-path FSBMs.

DEFINITION 6 A path from one state p1 to another state pn in an
FSBM M is a sequence of states p1, p2, p3, . . . pn such that for each i ∈
{1, . . . , n− 1}, there is a transition (pi, x , pi+1) ∈ δM .

DEFINITION 7 A path in an FSBM M is complete if it is in the denota-
tion of the regular expression (P∗GP∗H)∗P∗, where P represents any state
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in Q − (G ∪ H). A complete-path FSBM is an FSBM in which any path
p1 . . . pn with p1 ∈ I and pn ∈ F is complete.
DEFINITION 8 A path is said to be a copying path if it is complete and
there is at least one G state (or at least one H state).

3.4 The sufficiency of complete-path FSBMs

Now, we show that the languages recognized by FSBMs are precisely
the languages recognized by complete-path FSBMs; this will allow us
to restrict attention to complete-path FSBMs when studying the formal
properties of these machines below.
PROPOSITION 1 For any FSBM M , there exists a complete-path M ′
with L(M) = L(M ′).
Incomplete paths contribute nothing to the language generated by
an FSBM, so showing this equivalence requires showing that, for any
FSBM M1, we can construct a new FSBM M2 such that every path from
an initial state to an accepting state in M2 corresponds to some com-
plete path from an initial state to an accepting state in M1. The idea
is that M2 is a complete-path FSBM that keeps only those paths from
M1 that are indeed complete. The non-obvious cases of this construc-
tion involve scenarios where some plain state in M1 might be reached
either in normal (N) mode or in buffering (B) mode, depending on the
path by which that plain state is reached. In Figure 11a, for example,
this is the case for states 2, 4 and 6: intuitively, a path from state 2
back to itself might contain a G state (3) or an H state (5), or both or
neither. To construct an equivalent complete-path FSBM M2, we split
each plain state q into two distinct states qN and qB. Transitions from
a G state to q and transitions from q to an H state (i.e. transitions that
only make sense in buffering mode) are carried over in M2 for qB but
not for qN. Similarly, transitions from an H state to q and transitions
from q to a G state are carried over in M2 for qN but not for qB. And
the status of q as an initial and/or accepting state is carried over for
qN but not for qB. Figure 11b shows the resulting complete-path FSBM
for this example. In addition to keeping track of the mode in which
states 2, 4 and 6 are visited, notice that this construction also prevents
state 7 from occurring in any path from an initial state to an accepting
state, since 8B is not an accepting state and 8N is unreachable.
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1Start 2

Accept 3

4

5

6

7

8 Accept

(a) M1

1NStart 2N

Accept 3 4B

4N 6N

6B

2B

5

7

8B

8N Accept

(b) M2

Figure 11: Construction of a complete-path FSBM M2 that is equivalent to M1

4PUMPING LEMMA

We define the Regular Copying Languages (RCLs) to be the set of all
languages accepted by some (complete-path) FSBM. To be able to
prove that some languages are not RCLs, we present a pumping lemma
in this section. The idea is that if an FSBM produces a string urrv
via a copying run, and r is sufficiently long, then some subpart of
r will be pumpable in the manner of the familiar pumping lemma
for regular languages; that is, r can be broken into x1 x2 x3 such that
ux1 x i

2 x3 x1 x i
2 x3w is also accepted.10

THEOREM 1 If L is a regular copying language, there is a positive
integer k such that for every string w ∈ L with |w| ≥ 4k, one of the
following two conditions holds:
1. w can be rewritten as w= x yz with

10This idea is largely inspired by Savitch (1989, p.256), who proposes a pump-
ing lemma for context-free languages augmented with copying.
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(a) |y| ≥ 1

(b) |x y | ≤ k

(c) ∀i ≥ 0, x y iz ∈ L
2. w can be rewritten as w= ux1 x2 x3 x1 x2 x3v such that

(a) |x2| ≥ 1

(b) |x1 x2| ≤ k

(c) ∀i ≥ 0, ux1 x i
2 x3 x1 x i

2 x3v ∈ L
PROOF SinceL is a regular copying language, there is a complete-
path FSBM M that recognizes L . Let k be the number of states in M .
For an arbitrary string w ∈ L with |w| ≥ 4k, there is at least one path
through M that generates w. Let p be the shortest such path (or if there
are ties, choose arbitrarily). Note that p does not contain any ε-loops;
if it did, its length would not be minimal among all candidate paths.

Suppose first that p is not a copying path. The length of p is at
least |w|+1, and so since |w| ≥ 4k > k, some state must occur twice in
p, in fact in the first k+ 1 elements of p. As in the standard pumping
lemma for regular languages, this means that w can be rewritten as
x yz, with |x y | ≤ k, in such a way that M can also generate x y iz by
repeating the loop, and y 6= ε since p contains no ε-loops. So in this
case, w satisfies Condition 1.

If p = p0p1 . . . pn is a copying path, then the run that generates
w = urrv must have the form (urrv, p0,ε,N) `∗M (r rv, pi,ε,N) `M

(r rv, pi,ε,B) `∗M (rv, p j, r,B) `M (v, p j,ε,N) `∗M (ε, pn,ε,N) with p0 ∈
I , pi ∈ G, p j ∈ H and pn ∈ F . Since |w| ≥ 4k, at least one of |u|, |r|, |v|
is greater than or equal to k.
• If |r| ≥ k, then |pi . . . p j| ≥ |r|+1≥ k+1, so at least one state must
appear twice in the first k + 1 elements of the sequence pi . . . p j ,
i.e. there are ℓ and ℓ′ such that i ≤ ℓ < ℓ′ ≤ j and pℓ = pℓ′ ,
with ℓ′ − i < k. Then it must be possible to rewrite r as x1 x2 x3,
with |x1 x2| ≤ k, such that repeating the subpath pℓ . . . pℓ′ results
in pumping x2, and so any string of the form x1 x i

2 x3 can be con-
sumed from the input and stored in the buffer in the course of
moving from pi ∈ G to p j ∈ H, i.e. (x1 x i

2 x3 x1 x i
2 x3v, pi,ε,B) `∗M

(x1 x i
2 x3v, p j, x1 x i

2 x3,B) `M (v, p j,ε,N).M will therefore generate
all strings of the form ux1 x i

2 x3 x1 x i
2 x3v, satisfying Condition 2.
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• If |u| ≥ k, then |p0 . . . pi| ≥ |u| + 1 ≥ k + 1, so at least one state
must appear twice in the sequence p0 . . . pi , i.e. there are ℓ and ℓ′
such that 0 ≤ ℓ < ℓ′ ≤ i and pℓ = pℓ′ , with ℓ′ < k. There are two
cases to consider:
– Suppose that M is in buffering mode throughout the part of
the run from pℓ to pℓ′ . Therefore pℓ = pℓ′ is a plain state.
Then it must be possible to rewrite u as u′x1 x2 x3 x1 x2 x3v′,
such that repeating the subpath pℓ . . . pℓ′ results in pumping
x2. And since the repeated state must occur in the first k+ 1
elements of p, |u′x1 x2| ≤ k and therefore |x1 x2| ≤ k. M will
therefore generate all strings of the form

u′x1 x i
2 x3 x1 x i

2 x3v′r rv,

satisfying Condition 2.
– Otherwise, it must be possible to rewrite u as x1 x2 x3 such
that repeating this loop pumps x2; since M is a complete-path
FSBM, repeating the loop cannot create incomplete paths.
And since the repeated state must occur in the first k+1 ele-
ments of p, |x1 x2| ≤ k. M will therefore generate all strings
of the form x1 x i

2 x3r rv, satisfying Condition 1.
• If |v| ≥ k, an analogous argument shows that either Condition 1
or Condition 2 is satisfied. □

THEOREM 2 Linv = {(a+ b)ic j(a+ b)ic j | i, j ≥ 0} is not an RCL.
PROOF Suppose Linv is an RCL. Let w = akck+1 bkck+1 ∈ Linv ,
where k is the pumping length from Theorem 1. Given |w| > 4k, one
of the conditions from Theorem 1 must hold.
1. Assume condition 1 holds. That is w = x yz such that (i) |y| ≥ 1,
(ii) |x y | ≤ k and (iii) ∀i ≥ 0, x y iz ∈ L. Given |x y| ≤ k,
y must only contain as. Therefore x y yz must have the form
ak+|y |ck+1 bkck+1, so x y yz /∈ Linv , a contradiction.

2. Assume condition 2 holds. Then, w = ux1 x2 x3 x1 x2 x3v such that
(i) |x2| > 1, (ii) |x1 x2| ≤ k and (iii) ∀i ≥ 0, ux1 x i

2 x3 x1 x i
2 x3v ∈

Linv . The string x1 x2 cannot contain the sub-string ac, because
x1 x2 occurs twice in w but ac does not; similarly, x1 x2 cannot
contain cb or bc. There remain three possible ways of choosing
x1 x2 with |x1 x2| ≤ k, each incurring a contradiction.
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(a) If x1 x2 contains only as, then x3 must also contain only as be-
cause it occurs in between the two occurrences of x1 x2 in w.
Therefore ux1 x2

2 x3 x1 x2
2 x3v must have the form aℓck+1 bkck+1

with ℓ > k, and is therefore not in Linv ; a contradiction.
(b) Similarly, if x1 x2 contains only bs, then ux1 x2

2 x3 x1 x2
2 x3v

must have the form akck+1 bℓck+1 with ℓ > k, and is there-
fore not in Linv ; a contradiction.

(c) Finally, suppose x1 x2 contains only cs. If x3 did not contain
only cs, then it would need to cover the sub-string bk since
it appears in between the two occurrences of x1 x2 in w; but
if x3 covered the sub-string bk then this sub-string would oc-
cur twice in w, which it does not. So x3 must also contain
only cs. Therefore ux1 x2

2 x3 x1 x2
2 x3v must have the form ei-

ther akcℓbkck+1 or akck+1 bkcℓ, with ℓ > k+1; a contradiction.
□

EXAMPLE 1 Some Non-RCL languages
1. LSwissGerman = {ai b jc id j | i, j ≥ 0}
2. L = {an bn |n≥ 0}
3. L = {wwR |w ∈ Σ∗}
4. L = {www |w ∈ Σ∗}
5. L = {w(2n) | n≥ 0}
To see that {w(2n) | n≥ 0} is not an RCL, notice that the pumping

lemma above requires that a constant-sized increase in the length of a
string in the language can produce another string also in the language,
but w(2

n) does not have this constant growth property (Joshi 1985).

5 CLOSURE PROPERTIES

The class of regular copying languages is closed under the following
operations: intersection with a finite-state language (Section 5.1),
some regular operations (union, concatenation, Kleene star; Sec-
tion 5.2), and homomorphism (Section 5.3). But it is not closed under
intersection, nor complementation (Section 5.4). More interestingly,
it is not closed under inverse homomorphism (Section 5.5). In this
section, we present proofs of these results.
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5.1Closure under intersection with regular languages

In this subsection, we write 0 for the zero matrix and I for the iden-
tity matrix, with the size of these matrices determined implicitly by
context.

For any FSA M = 〈Q,Σ, I , F,δ〉 and any symbol x ∈ Σ, AM
x ∈{0,1}|Q|×|Q| is the square matrix with rows and columns indexed by Q,

whose (q1, q2) entry is 1 if (q1, x , q2) ∈ δ and is 0 otherwise. We will
sometimes just write Ax where the FSA is clear from the context. We
define AM

ε = I, and for any non-empty string w = x1 . . . xn we define
AM

w = AM
x1

. . .AM
xn
. Then it follows that the (q1, q2) entry of the matrix

AM
w is 1 if there is a path from q1 to q2 generating w, and is 0 otherwise.
We will assume, when we write any AM

w in what follows, that the
FSA M is supplemented with sink states as necessary to ensure that,
for every q1 ∈ Q and every x ∈ Σ, there is at least one q2 ∈ Q such
that (q1, x , q2) ∈ δ. This ensures that, for any w ∈ Σ∗, there is at least
one 1 on each row of AM

w , and therefore AM
w 6= 0.

We first define the relevant construction, then show below that it
generates the desired intersection language. Without loss of general-
ity, we assume that the FSA being intersected with the FSBM is ε-free.
DEFINITION 9 Given an FSBM M1 = 〈Q1,Σ, I1, F1, G1, H1,δ1〉, and
an FSA M2 = 〈Q2,Σ, I2, F2,δ2〉, we define M1 ∩ M2 to be the FSBM
〈Q,Σ, I , F, G, H,δ〉, where
• Q =Q1 ×Q2 × {0,1}|Q2|×|Q2|
• I = I1 × I2 × {0}
• F = F1 × F2 × {0}
• G = G1 ×Q2 × {AM2

ε }
• H = H1 ×Q2 × {0}
• δ = δN ∪δB ∪δN→B ∪δB→N, where
(a) ((q1, q′1,0), x , (q2, q′2,0)) ∈ δN iff (q1, x , q2) ∈ δ1 with q1 /∈ G1

and q2 /∈ H1, and either
– (q′1, x , q′2) ∈ δ2, or
– x = ε and q′1 = q′2.

(b) ((q1, q′1,0),ε, (q1, q′1,AM2
ε )) ∈ δN→B iff q1 ∈ G1

(c) ((q1, q′1,A), x , (q2, q′2,AAM2
x )) ∈ δB iff A 6= 0 and (q1, x , q2) ∈

δ1 with q1 /∈ H1 and q2 /∈ G1, and either
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– (q′1, x , q′2) ∈ δ2, or
– x = ε and q′1 = q′2.

(d) ((q1, q′1,A),ε, (q1, q′2,0)) ∈ δB→N iff q1 ∈ H1 and A 6= 0 and
the (q′1, q′2) entry of A is 1

Notice that |Q| = |Q1| × |Q2| × 2|Q1|×|Q2| is finite, since Q1 and Q2

are both finite.
The central challenge in setting up an FSBM to simulate the com-

bination of an FSBM M1 and an FSA M2 is handling the effect on M2 of`B→N transitions in M1, where a string of arbitrary length is emptied
from the buffer. Obviously the buffered string itself cannot be stored in
the simulating FSBM’s finite state. But, following an idea from Savitch
(1989), any buffered string w determines a finite transition relation
on the states of M2, and it suffices to record this relation, which we
encode in the form of the matrix AM2

w .
The following lemma establishes the invariants that underpin the

proof that this construction recognizes L(M1)∩ L(M2).
LEMMA 1 Suppose a non-empty sequence of configurations D1 . . . Dm

is the initial portion of a successful run (of any string) on an intersection
FSBM M = M1 ∩ M2, with each Di = (ui, (qi, q′i ,Ai), vi, t i). Then one of
the following is true:
(i) t i = N and Ai = 0
(ii) t i = N and (qi, q′i ,Ai) ∈ (G1 ×Q2 × {AM2

ε }) = G
(iii) t i = B and Ai = AM2

vi

(iv) t i = B and (qi, q′i ,Ai) ∈ (H1 ×Q2 × {0}) = H

PROOF By induction on the length m of the sequence. If m = 1,
then tm = N and (qm, q′m,Am) ∈ I = I1 × I2 × {0}, so Am = 0, satisfy-
ing (i). Now we consider a sequence D1 . . . DmDm+1 where we assume
that the requirement holds of Dm. Since Dm `M1∩M2

Dm+1, there are
four cases to consider.
• Suppose Dm `N Dm+1. Then tm = tm+1 = N, (qm, q′m,Am) /∈ G,
and (qm+1, q′m+1,Am+1) /∈ H. The inductive hypothesis therefore
implies that Am = 0. Now there are four subcases, depending on
the critical element of δ that licenses Dm `N Dm+1.
– If the critical transition is in δN, then immediately Am+1 = 0,
satisfying (i).
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– If the critical transition is in δN→B, then qm+1 ∈ G1 and
Am+1 = AM2

ε , satisfying (ii).
– The critical transition cannot be in δB, since Am = 0.
– The critical transition cannot be in δB→N, since (qm+1, q′m+1,
Am+1) /∈ H which implies that either qm+1 /∈ H1 or Am+1 6= 0.

• Suppose Dm `N→B Dm+1. Then tm = N, tm+1 = B, vm = vm+1 = ε,
and (qm, q′m,Am) = (qm+1, q′m+1,Am+1) ∈ G = G1 × Q2 × {AM2

ε }.
Therefore Am+1 = AM2

ε = AM2
vm+1
, satisfying (iii).

• Suppose Dm `B Dm+1. Then tm = tm+1 = B, (qm, q′m,Am) /∈ H,
(qm+1, q′m+1,Am+1) /∈ G, and vm+1 = vm x for some x ∈ Σ ∪ {ε}.
The inductive hypothesis therefore implies that Am = AM2

vm
. Now

there are four subcases, depending on the critical element of δ
that licenses Dm `B Dm+1.
– The critical transition cannot be in δN, since Am = AM2

vm
6= 0.

– The critical transition cannot be in δN→B, since (qm+1, q′m+1,
Am+1) /∈ G which implies that either qm+1 /∈ G1 or Am+1 6=
AM2
ε .

– If the critical transition is in δB, then Am+1 = AmA
M2
x =

AM2
vm
AM2

x = AM2
vm x = AM2

vm+1
, satisfying (iii).

– If the critical transition is in δB→N, then qm+1 ∈ H1 and
Am+1 = 0, satisfying (iv).

• Suppose Dm `B→N Dm+1. Then tm = B, tm+1 = N, vm+1 = ε, and
(qm, q′m,Am) = (qm+1, q′m+1,Am+1) ∈ H = H1×Q2×{0}. Therefore
Am+1 = 0, satisfying (i). □

This lemma establishes that the matrix component of the con-
structed machine’s state tracks the information necessary to determine
the appropriate jump to make through M2 when a string is emptied
from the buffer: in a δB→N transition from (q1, q′1,A) to (q1, q′2,0), the
base FSBM M1 is in state q1 ∈ H1 and therefore leaves buffering mode,
and the matrix A determines the appropriate states q′2 for M2 to jump
to. The rest of the proof that L(M1∩M2) = L(M1)∩ L(M2) is standard,
but is provided in Appendix A.

An example demonstrating how the intersection works can be
found in Figure 12. The FSBM in Figure 12a computes the language
that shows initial CC∗V-copying. The FSA in Figure 12b, adapted from
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Heinz (2007, p.38), encodes Navajo sibilant harmony (Sapir and Hoi-
jer 1967) on [anterior] features by banning *s…S and *S…s sequences.

1Start 2 3 4 AcceptC, s, S V

C, s, S

V

C, V, s, S

(a) A complete-path FSBM M1 recognizing initial
CC∗V-identity. G = {1}, H = {3}

λStart

s Accept

S Accept

C, V
C, V, s

s

S

C, V, S

(b) An FSA M2 enforcing sibilant
harmony. C indicates any non-
sibilant consonant.

(1, λ, 0)Start (1, λ, I)

(2, s, As)

(2, λ, Aε)

(2, S, A
S
)

(3, λ, Aε)

(3, s, As)

(3, S, A
S
)

(3, λ, 0)

(3, s, 0)

(3, S, 0)

(4, s, 0) Accept

(4, S, 0) Accept

(4, λ, 0)ε C

s

S

V

s

S

V

V

ε

ε

ε

V

V

V

s

S

C, s

C, S

C, V, s

C, V, S

C, V

C

(c) The intersection FSBM M1 ∩M2, ignoring states from which no accepting state is reachable. Aε is
the M2 transition matrix for any string without any s or S (equal to I); As is the transition matrix for
all strings with at least one s and no S; and A

S
is the transition matrix for all strings with at least one S

and no s

Figure 12: An example intersection construction
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The intersection FSBM is shown in Figure 12c, which recognizes the
language of strings obeying both restrictions.

That FSBM-recognizable languages are closed under intersection
with regular languages is an important step in clarifying the potential
role of FSBMs for phonological theory. The overwhelming majority of
phonotactic constraints that are not concerned with sub-string iden-
tity are regular (Heinz 2018), and so any such constraint can be com-
bined with an FSBM-enforcable identity constraint to yield another
FSBM-recognizable language. In fact, since the regular languages are
closed under intersection, FSBMs can also express the intersection of
any collection of normal phonotactic constraints with any single FSBM-
enforcable substring-identity constraint.

An important issue that we leave open for future work is devel-
oping an algorithm for intersecting an FSA with an FSBM that assigns
weights to strings expressing degrees of well-formedness. This kind of
intersection algorithm has been used to implement the notion of com-
petition between candidates from Optimality Theory (Smolensky and
Prince 1993), where violable constraints are expressed by weighted
FSAs (Ellison 1994; Eisner 1997; Albro 1998; Riggle 2004a). Such
an intersection algorithm for weighted FSBMs would allow for FSBM-
defined reduplication constraints to be incorporated into implemented
OT grammars. In other words, the point from the preceding paragraph
might generalize beyond the special case of binary constraints which
combine via simple intersection.

5.2Closed under regular operations

Noticeably, given complete-path FSBMs are finite-state machines with
a copying mechanism, most of the proof ideas in this subsection are
similar to the standard proofs for FSAs, which can be found in Hopcroft
and Ullman (1979) and Sipser (2013).
THEOREM 3 If L1, L2 are two FSBM-recognizable languages, then L1∪
L2, L1 ◦ L2 and L∗1 are also FSBM-recognizable languages.
PROOF Assume there are complete-path FSBMs
M1 = 〈Σ,Q1, I1, F1, G1, H1,δ1〉 and M2 = 〈Σ,Q2, I2, F2, G2, H2,δ2〉
such that L(M1) = L1 and L(M2) = L2, then …
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Union One can construct a new FSBM M that accepts an input
w if either M1 or M2 accepts w. M = 〈Σ,Q, I , F, G, H,δ〉 such that
• Q =Q1 ∪Q2 ∪ {q0}
• I = {q0}
• F = F1 ∪ F2

• G = G1 ∪ G2

• H = H1 ∪ H2

• δ = δ1 ∪δ2 ∪ {(q0,ε, q′) |q′ ∈ (I1 ∪ I2)}
As illustrated in Figure 13, the construction of M keeps M1 and

M2 unchanged, but adds a new state q0. q0 is the only initial state,
branching into those previous initial states in M1 and M2 with ε-arcs.
q0 is a non-G, non-H plain state, so the constructed automaton is a
complete-path FSBM.

Figure 13:
The construction used

in the union of two FSBMs
q0Start

M1
... ...ε

ε

Accept

Accept

M2
... ...

ε

ε
Accept

Accept

Concatenation There is a complete-path FSBM M that can
recognize L1 ◦ L2 by the normal concatenation of two automata. The
new machine M = 〈Σ,Q, I , F, G, H,δ〉 satisfies L(M) = L1 ◦ L2.
• Q = Q1 ∪Q2 ∪ {q0}
• I = {q0}
• F = F2

• G = G1 ∪ G2

• H = H1 ∪ H2

• δ = δ1 ∪δ2 ∪ {(p f ,ε, qi) | p f ∈ F1, qi ∈ I2} ∪ {(q0,ε, pi) | pi ∈ I1}
As illustrated in Figure 14, the new machine adds a new plain

state q0 and makes it the only initial state, branching into those previ-
ous initial states in M1ε-arcs. q0 is not in H, nor in G. All final states
in M2 are the only final states in M . M also adds ε-arcs from all old
final states in M1 to all initial states in M2.
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q0Start M1
... ...

ε

ε
M2

... ...
Accept

Accept

ε

ε
ε

ε

Figure 14:
The construction
used in the
concatenation of
two FSBMs

For this construction to work, it is important that we assume that
M1 and M2 are complete-path FSBMs. Incomplete paths in two ar-
bitrary machines might create a complete copying path, thus over-
generating under the construction of concatenation mentioned here.
For example, as illustrated in Figure 15, imagine one path in M1 only
has G states but no H states, and another path in M2 contains only
H states. They both recognize the empty language L; = ;. Therefore,
the concatenation of these two languages should also be L;. The as-
sumption that M1 and M2 are complete-path FSBMs ensures that the
construction has this result.

I1Start G F1 Accept

(a) An incomplete path without H states; the language along this path ;

I2Start H F2 Accept

(b) An incomplete path without G states; the language along this path is ;

I1Start G F1 I2 H F2 Acceptε

(c) Concatenation of two incomplete paths might lead to a copying path
and result in a non-empty language

Figure 15:
Problems arise
in the
concatenation
of two
incomplete
paths. Dotted
lines represent
a sequence
of transitions

Kleene Star (L1)∗ is a complete-path FSBM-recognizable lan-
guage. The new machine M = 〈Σ,Q, I , F, G, H,δ〉 satisfies L(M) =
(L1)∗.
• Q =Q1 ∪ {q0}
• I = {q0}
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• F = F ∪ {q0}
• G = G1

• H = H1

• δ = δ1 ∪ {(p f ,ε, qi) | p f ∈ F1, qi ∈ I1} ∪ {(q0,ε, qi) |qi ∈ I1}
As illustrated in Figure 16, M is similar to M1 with a new initial state
q0. q0 is also a final state, branching into old initial states in M1. In
this way, M accepts the empty string ε. q0 is never a G state nor an H
state. Moreover, to make sure M can jump back to an initial state after
it hits a final state, ε transitions from any final state to any old initial
states are added. Since all paths in M1 are complete, concatenations
of these paths do not overgenerate. □

Figure 16:
The construction used
in the star operation

q0Start M1
... ...

ε

ε

ε

ε

ε

ε

Accept

Accept

Accept

5.3 Closed under homomorphism

THEOREM 4 The class of languages recognized by FSBMs is closed
under homomorphisms.
PROOF That complete-path FSBM languages are closed under ho-
momorphism can be proved by constructing a new machine Mh based
on the base machine M , such that L(Mh) = h(L(M)). The construc-
tion goes as follows. Relabel each transition that emits x in M with
the string h(x), and add states to split the transitions so that there is
only one symbol or ε on each arc in Mh. States added for this pur-
pose are not included in G or H. All paths in Mh are complete since
the construction does not affect the arrangements G and H states in
paths. □

This construction is illustrated in Figure 17. The FSBM M uses
the alphabet Σ = {σH ,σL,σV }, and recognizes the finite language{σLσHσLσH ,σLσVσLσV }. The constructed machine Mh recognizes
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q1Start q2 q3 AcceptσL

σH

σV

(a) L(M) = {σLσHσLσH ,σLσVσLσV }

q1Start q2 q3 AcceptCV
CVC

V

(b) h(σL) = CV, h(σV ) = V, h(σH) = CV C . The intermediate
step when the arcs are relabeled with mapped strings

q1Start q′1 q2

q′2 q′′2

q3 AcceptC V

V

C
V

C

(c) States q′1, q′2, q′′2 are added to split the arcs. L(Mh) =
{CV V CV V, CV CV CCV CV C}

Figure 17:
Constructions used for the
homomorphic language

the image of this finite language under the homomorphism h : Σ∗ →
{C , V}∗ defined by h(σL) = CV , h(σV ) = V , and h(σH) = CV C .

The fact that FSBMs are closed under homomorphism allows the-
orists to perform analyses at convenient levels of abstraction.

5.4Not closed under intersection and complementation

THEOREM 5 The class of languages recognized by FSBMs is not closed
under intersection, and thus not closed under complementation.
PROOF L1 = {wwx |w, x ∈ a∗b} and L2 = {xww |w, x ∈ a∗b} are
FSBM-recognizable languages. However, L1 ∩ L2 = {www |w ∈ a∗b}
is not an FSBM-recognizable language. Given FSBM is closed under
union but is not closed under intersection, by De Morgan’s law, FSBM
is not closed under complementation. □

5.5Not closed under inverse homomorphism

It is evident that the class of languages recognized by complete-path
FSBMs is closed under one-to-one alphabetic inverse homomorphism.
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One can directly relabel every mapped symbol in an FSBM to construct
a new FSBM. But it is not closed under general inverse alphabetic
homomorphisms and thus inverse homomorphism. Therefore, RCLs
are not a trio.

Consider the complete-path FSBM-recognizable language L =
{ai b jai b j | i, j ≥ 1} (see Figure 8a), and an alphabetic homomor-
phism h : {0,1, 2}∗ → {a, b}∗ such that h(0) = a, h(1) = a and
h(2) = b. Then, the inverse homomorphic image of L is h−1(L) =
{(0+ 1)i2 j(0+ 1)i2 j | i, j ≥ 1}, which is not an RCL by Theorem 2.

Even though RCLs are not closed under inverse homomorphisms,
analyzing exactly why this is not the case highlights something that
distinguishes the languages of FSBMs from many other well-known
language classes. The pivotal point comes from the one-to-many map-
ping. At first glance, one might try to apply the conventional con-
struction for showing closure under inverse homomorphism of FSAs,
i.e. build a new machine M ′, which reads any symbol x in the new
alphabet and simulates M on h(x), as shown in Figure 18.

Figure 18:
The conventional construction

of the inverse homomorphic image
undergenerates

p1Start p2 p3 p4 AcceptC V C

(a) L(M) = {CV V C}

p1Start p2 p3 p4 Acceptt
i

a
t

(b) h : {a, i, t} → {C , V}∗ with h(a) = V , h(i) = V
and h(t) = C . L(M ′) = {taat, t ii t} but h−1(L) =
{taat, t ii t, tai t, t iat}
.

But this construction fails to generate the full language h−1(L(M)):
the constructed machine M ′ still imposes an identity requirement, and
therefore fails to accept strings such as tait where the two occurrences
of V are mapped by h−1 to distinct symbols. The application of an
inverse homomorphism – unlike the application of a homomorphism
– can disrupt sub-string identity relationships that the construction of
a new FSBM will necessarily maintain.
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5.6An equivalent extension of regular expressions

The standard class of regular languages can be defined either via FSAs
or via regular expressions. FSBMs constitute a minimal enrichment of
FSAs that allow for copying. Here we present a corresponding way to
enrich regular expressions that leads to the same class of languages as
FSBMs. This provides an alternative characterization of the RCL class
in terms of language-theoretic closure properties.
DEFINITION 10 Let Σ be an alphabet. The regular copying expressions
(RCEs) over Σ and the languages they denote are defined as follows.
• ; is an RCE and L (;) = ;
• ε is an RCE and L (ε) = {ε}
• ∀a ∈ Σ, a is an RCE and L (a) = {a}
• If R1 and R2 are RCEs, then R1 + R2, R1R2, and R∗1 are RCEs, and
L (R1 + R2) = L (R1) ∪L (R2), L (R1R2) = {uv | u ∈ L (R1), v ∈
L (R2)}, and L (R∗1) = (L (R1))∗.
• (new copying operator) If R1 is a regular expression, RC

1 is an RCE
and L (RC

1 ) = {ww |w ∈ L (R1)}
RCEs introduce two modifications to regular expressions. First, a ·C ex-
pression operator for the copying-derived language is added. Then, the
closure under other regular operations is extended to all RCEs. There-
fore, languages denoted by regular copying expressions are closed un-
der concatenation, union and Kleene star. Second, the copying oper-
ation is only granted access to regular expressions, namely to regular
sets formed without the use of copying. In other words, the languages
denoted by RCEs are not closed under copying, thus restricting the
denoted languages by excluding w2n .

Given Σ∗ is a regular language, an RCE for the simplest copying
language Lww = {ww |w ∈ Σ∗} with Σ = {a, b} would be ((a + b)∗)C .
Assume Σ = {C , V}, a naive RCE describing Agta plurals after CVC-
reduplication without considering the rest of the syllable structures
could be (CV C)C(V + C)∗. This denotes a regular language, unlike
((a+ b)∗)C . Note, ((CV C)C(V +C)∗)C is not a regular copying expres-
sion, because the copying operator cannot apply to the expressions
containing copying.
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As noted in footnote 7, there are a number of definitions of ex-
tended regular expressions in the literature that incorporate some form
of back-references (e.g. Câmpeanu et al. 2002; Câmpeanu et al. 2003;
Carle and Narendran 2009), and these motivated the development of
Memory Automata (MFAs; Schmid 2016; Freydenberger and Schmid
2019). Just as FSBMs can be seen as a restricted special case of MFAs,
RCEs correspond to a special case of extended regular expressions:
essentially, an RCE of the form RC is equivalent to (R)\1, where the
back-reference necessarily immediately follows the captured group.

For further details of the equivalence of RCEs and FSBMs, see
Appendix B.

6 DISCUSSION
AND FURTHER IMPLICATIONS

6.1 Typology of reduplication

Here, we briefly consider some more complicated kinds of redupli-
cation that are beyond the capacity of FSBMs as formulated in the
present paper. We sketch some possible ways in which FSBMs might
provide a starting point for future work that aims for a proper treat-
ment of the full range of natural language reduplication phenomena.

Non-local Reduplication Non-local reduplication is the case when
the surface phonological strings have non-adjacent copies, incurring
non-local correspondence among symbols.11 A more comprehensive
typology and linguistic analysis on non-local reduplication can be
found in Riggle (2004b). Examples from Creek are shown in Table 7.

11Bambara ‘Noun o Noun’ illustrates a particularly simple kind of non-local
reduplication where the intervening string is always the fixed string ‘o’. This could
be relatively easily handled by specifying a fixed string to each H state, to be
inserted between the two copies when the buffer is emptied. The examples dis-
cussed in the main text are when the intervening elements are variable, different
from the Bambara-like examples in important ways.

[ 40 ]



On regular copying languages

Non-local reduplication
Creek plural
Gloss Singular Plural
‘precious’ a-cá:k-i: a-ca:cak-í:
‘clean’ hasátk-i: hasathak-í:
‘soft’ lowáck-i: lowaclok-í:

Table 7:
Creek plural; CV-copying placed
before the final consonant of the root
(Booker 1979; Riggle 2004b)

Marantz (1982) described the adjacency between the reduplicant
and the base as a general typological trend. There were proposals
(e.g. Nelson 2005) arguing that Marantz’s generalization is inviolable:
the counter-examples could be analyzed either as non-reduplicative
copying, or as results of interactions between adjacent reduplica-
tion and independently-motivated deletions. Riggle (2004b) used the
Creek words in Table 7 to argue for true non-local correspondence
relations.

FSBMs’ current limitation to local reduplication comes from the
requirement that B-mode computation has to be directly followed by
the buffer-emptying process, and a filled buffer is not allowed in N
mode. A possible modification to allow non-local reduplication would
be to allow the buffer to be filled in N mode and encode such a pos-
sibility in another kind of special states, say J , which stops the ma-
chine from buffering, with the buffer only being matched against input
and emptied when an H state is encountered. The transitions lead-
ing from a G state to a J state would consume symbols in the in-
put tape and buffer symbols in the queue-like buffer. Then, if there is
no adjacent H following the end of buffering, the machine can use
plain transitions to plain states for only input symbols. The buffer
with symbols in it should be kept unchanged. Ultimately, the ma-
chine has to encounter some H states to empty the buffer to ac-
cept the string, since no final configuration allows symbols on the
buffer.

Such a modification might not affect much of the proof ideas
of the theorems constructed so far. Regarding the pumping lemma,
Condition 2 can be modified by including a sub-string of interven-
ing segments in between two copies. That is, w ∈ L with |w| >
5k can be rewritten as w = ux1 x2 x3yx1 x2 x3v such that ∀i ∈
N, ux1 x i

2 x3yx1 x i
2 x3v ∈ L. It is worth pointing out that if the general-
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ization in Creek is productive, the sub-string of intervening segments
between copies could be unboundedly long.

Multiple Reduplication Here, multiple reduplication refers to the
cases when two or more different reduplicative patterns appear in one
word. One string can have multiple sub-strings identical to each other.
Examples from Nlaka’pamux (previously known as Thompson), a Sal-
ish language, are listed in Table 8. See Zimmermann (2019) for a com-
plete typological survey and classification.

Table 8:
Multiple reduplication in Nlaka’pamux Multiple reduplication

Nlaka’pamux (Broselow 1983, p.329)
Gloss Strings
calico sil
DIM-calico sí-sil’
DIST-calico sil-síl
DIST-DIM-calico sil-sí-sil’

While the computational nature of multiple reduplication in natu-
ral language phonology and morphology remains an open question,12
FSBMs could be relatively easily modified to include multiple copies
of the same base form ({wn |w ∈ Σ∗, n ∈ N}), where n might be tied
to the number of copying operations in a language. Given a natural
number n, an appropriate modification of FSBMs might allow for the
buffered symbols to not be emptied until they have been matched n
times against the input.

However, FSBMs cannot be easily modified to recognize the lan-
guage {w2n |w ∈ Σ∗, n ∈ N}, where ww strings are themselves copied
(i.e. {w, ww, wwww, . . . }, excluding www).

It is worth carefully distinguishing between the sense of copy-
ing instantiated by ww and wn on the one hand, and the sense in-
stantiated by w2n on the other. The former sense highlights the fact
that certain portions of a string are identical to certain other portions,

12For recent phonological analyses, see Zimmermann (2021a) and Zimmer-
mann (2021b). For a more detailed discussion on the string-to-string function
version of this problem, see Rawski et al. (2023).
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whereas the latter is a natural interpretation of the idea that there is
a copying operation that can apply to its own outputs. The kind of re-
cursive copying exhibited by w2n means that this language does not
have the constant growth property that Joshi (1985) identified as a
criterion for mild context-sensitivity. Excluding this recursive copying
from phonology seems relatively well-justified, on the grounds that
triplication is attested (Zimmermann 2019; Rawski et al. 2023). But
the situation may be different for syntax, where Kobele (2006), for
example, has argued for recursive copying of the w2n sort on the basis
of Yoruba relativized predicates. See also Clark and Yoshinaka (2014)
on the relationship between parallel multiple context-free grammars
(PMCFGs) and multiple context-free grammars (MCFGs); and Stabler
(2004) on the comparison between what he calls generating grammars
and copying grammars.

Reduplication with non-identical copies In natural languages, non-
identical copies are prevalent. There are cases where other phonolog-
ical processes apply to the base or the reduplicant to create nonidenti-
cal copies, such as onset cluster simplification in Tagalog partial redu-
plication (Zuraw 1996), e.g. ‘X is working’ [nag-ta-tRabahoh], mapped
from [tRabahoh]. Another type of non-identical copies involves a fixed,
memorized segment/sub-string (Alderete et al. 1999). Examples are
given in Mongolian, illustrated in Table 9, where whole stems are
copied to create forms with the meaning ‘X and such things’. How-
ever, the initial consonant is always rewritten as [m].13

Non-identical copies
Mongolian Noun Reduplication (Svantesson et al. 2005, p. 60)
Gloss Root X and such things
‘gown’ teeÐ teeÐ-meeÐ
‘bread’ thaÐx thaÐx-maÐx
‘eye’ nut nut-mut

Table 9:
Non-identical copies
in Mongolian

13When the stem form starts with [m], it is always rewritten to [c]. For ex-
ample, the reduplicated form of [maÐ] cattle is [maÐ-caÐ]
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One way to modify FSBMs to accommodate non-identical copies
would be to allow the machine to either store or empty not exactly
the same input symbols, but the image of the inputs symbols under
some alphabetic mapping, or finite-state transduction, f . For example,
to account for the fixed consonant in Mongolian, we can introduce
a finite state transduction fC1→m that rewrites the first consonant to
[m]. To empty the buffer, instead of checking the identity relation, it
determines whether fC1→m(x) = y where x is in the buffer and y is a
prefix of the remaining input.

If no restrictions at all are imposed on the transduction, then the
modified automata would recognize the context-free {an bn |n ∈ N}
with f (a) = b in a manner that (unlike a context-free grammar) as-
sociates the first a with the first b and so on, though still excluding
string reversals. Moreover, the resulting language set would also in-
clude {ai b jc id j | i, j ≥ 1} with f (a) = c, f (b) = d. It could be fruitful
for further studies to examine possible restrictions on the transduction.

6.2 A note (and a conjecture) regarding determinism

A natural question to consider is whether the non-determinism that
we have allowed in FSBMs is essential.14 A proper treatment of this
issue turns out to be more subtle than it might initially appear, but we
offer some initial observations here.

The FSBM in Figure 19 is non-deterministic in the sense that the
string aa might lead the machine either to q2 or to q3. This famil-
iar kind of non-determinism brings no additional expressive power in
the case of standard FSAs, where the subset construction can be used
to determinize any FSA. But this method for determinization cannot
be straightforwardly applied to FSBMs, because of the distinguished
status of G and H states. Applying the construction to the FSBM in
Figure 19 would yield a new state corresponding to {q2, q3}, and then
the question arises of whether this new state should be an H state (like
q3) or not (like q2). Neither answer is sufficient: in the new machine,
the string aa will deterministically lead to the state {q2, q3}, but the
prefix aa may or may not be the entire string that needs to be buffered
and copied.

14Thanks to two reviewers for drawing our attention to this.
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Stated slightly more generally, the subset construction can elim-
inate non-determinism between states (state-nondeterminism), but in
FSBMs there is also the possibility of nondeterminism between modes
(mode-nondeterminism). The state-nondeterminism indicated in (5)
could be eliminated, in a sense, by applying the subset construction to
yield a new machine M ′ with transitions as in (6).
(5) a. (aa . . . , q1,N,ε) `∗M (. . . , q2,B, aa)

b. (aa . . . , q1,N,ε) `∗M (. . . , q3,B, aa)

(6) (aa . . . , {q1},N,ε) `∗M ′ (. . . , {q2, q3},B, aa)

But the two configurations reached in (5) differ in whether M will stop
buffering after this prefix aa, and we suspect that there is no way to
eliminate this kind of nondeterminism between modes. To bring out
this important additional distinction, consider the transition sequences
in (7) for the longer prefix aaaa.
(7) a. (aaaa . . . , q1,N,ε) `∗M (aa . . . , q2,B, aa)

`∗M (. . . , q2,B, aaaa)
b. (aaaa . . . , q1,N,ε) `∗M (aa . . . , q3,B, aa) `M (. . . , q3,N,ε)

This indicates that there is something distinctive about the kind of non-
determinism in Figure 19, which lies not in the fact that the prefix aa
might lead to either state q2 or state q3, but rather the fact that the pre-
fix aaaa might lead to either state q2 in mode B, or state q3 in mode N.

The following definition makes a first attempt at pinpointing the
distinctive kind of non-determinism in Figure 19.
DEFINITION 11 An FSBM M is mode-deterministic if there do not
exist three configurations C = (w, q, m, v), C1 = (ε, q1, m1, v1) and
C2 = (ε, q2, m2, v2), such that
• C `∗M C1 and C `∗M C2,
• C1 6`∗M C2 and C2 6`∗M C1, and
• m1 6= m2.

q1Start q2 q3 Accept
a

b

a

b

a

b

Figure 19:
An FSBM illustrating nondeterminism
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Figure 20:
An FSBM illustrating
mode-determinism q1Start q2 q3 Accept

a

b

a

b

c

The FSBM in Figure 20, for example, is mode-deterministic in this
sense, whereas (7) demonstrates that the FSBM in Figure 19 is not.
We conjecture that the mode-deterministic FSBMs are properly less
powerful than the full class of FSBMs, and in particular that there is
no mode-deterministic FSBM that generates the same language as the
FSBM in Figure 19.

6.3 The role of symbol identity

A noteworthy trait of the RCL class is its non-closure under inverse
homomorphisms. This distinguishes the RCL class from many of the
familiar language classes that have played a role in the analysis of
natural languages: the regular class and the context-free class are
each closed under both homomorphisms and inverse homomorphisms,
as are prominent classes in the mildly context sensitive region, such
as the tree-adjoining languages and multiple context-free languages
(Joshi 1985; Kallmeyer 2010).

To illustrate, consider the relationship between the following two
languages:

L1 = (a+ b)ic j(a+ b)ic j

L2 = aic jaic j

We showed above that L1 is not an RCL, whereas L2 obviously is.
This sets the RCL class apart from the regular and context-free classes,
which contain neither L1 nor L2, and from the tree-adjoining and mul-
tiple context-free classes, which contain both; recall Figure 5. For all
these other formalisms, the surface differences between L1 and L2 are
essentially irrelevant. For example, a multiple context-free grammar
(MCFG; Seki et al. 1991; Kallmeyer 2010) for L1 is given in (8), and (9)
shows an illustrative derivation for the string abcaac. This grammar
uses the nonterminals P and Q to control the assembly of (discontinu-
ous) (a + b)i . . . (a + b)i and c j . . . c j portions respectively; P-portions
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can grow via the addition of X elements, and Q-portions can grow via
the addition of Y elements.
(8) S(u1v1u2v2)→ P(u1, u2) Q(v1, v2)

P(ε,ε)
P(u1v, u2w)→ P(u1, u2) X (v) X (w)
Q(ε,ε)
Q(u1v, u2w)→Q(u1, u2) Y (v) Y (w)
X (a)
X (b)
Y (c)

(9) S(abcaac)

Q(c, c)

Y (c)Y (c)Q(ε,ε)

P(ab, aa)

X (a)X (b)P(a, a)

X (a)X (a)P(ε,ε)
Notice that to generate L2 instead of L1, we would simply omit

the rule X (b) from (8). What this highlights is that for either L1 or L2,
the significant work is done by the rules that arrange the yields of the
nonterminals X and Y appropriately, and this work can be dissociated
from the rules that specify the terminal symbols that can appear as
the yields of X and Y . The nonterminals provide a grammar-internal
mechanism for doing the book-keeping necessary to enforce the ab-
stract pattern shared by L1 and L2, and the relationship between these
grammar-internal symbols and the terminal symbols that make up the
generated strings is opaque.

In an FSBM, however, the machinery that extends the formal-
ism beyond the regular languages has no analogous grammar-internal
book-keeping mechanism that can be dissociated from surface sym-
bols: the non-regular effects of an FSBM’s string-buffering mechanism
are inherently tied to the identity of certain surface symbols. This is
what underlies the crucial difference between L1 and L2 for FSBMs,
and the non-closure under inverse homomorphisms of RCLs.15

15Of course the states of an FSBM are grammar-internal symbols in the rele-
vant sense, and this is in effect what allows FSAs to be closed under both homo-
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To put a label on this distinction, we might say that FSBMs are
symbol-oriented (where by symbol we mean surface/terminal sym-
bol), in contrast to the other formalisms mentioned above. Suppose,
to make this precise, we say that a formalism (or a language class) is
symbol-oriented iff it fails to be closed under both homomorphisms
and inverse homomorphisms.

It is interesting to note that, while the symbol-oriented nature of
FSBMs sets them apart from formalisms (such as MCFGs) motivated
by the kinds of non-context-free cross-serial dependencies observed
in syntax, this property of FSBMs is shared by other formalisms that
have been argued to align well with observed phonological patterns.
Many of the sub-regular language classes discussed by Heinz (2007),
are also symbol-oriented in this sense. An easy example (Mayer and
Major 2018; De Santo and Graf 2019) comes from the Strictly 2-Local
(SL2) languages: (ab)∗ is an SL2 language, but applying the homomor-
phism h defined by h(a) = c, h(b) = c yields (cc)∗, which is not an
SL2 language. So the SL2 languages are not closed under homomor-
phisms.

The fact that the SL languages lack closure under homomor-
phisms, whereas the RCL class lacks closure under inverse homomor-
phisms, reflects the different role that symbol identity plays for the two
formalisms. The move from (ab)∗ to (cc)∗ eliminates distinctions be-
tween surface symbols, which removes information that the SL2 gram-
mar for (ab)∗ was using to ensure that the length of each generated
string was even. The move from L2 to L1, on the other hand, introduces

morphisms and inverse homomorphisms. But the point of the discussion here is
to look at the distinctive additional capacities of FSBMs, which are brought out
by considering a non-regular language such as L2.

A comparison with Savitch’s RPDAs (discussed above; Savitch 1989) is in-
formative: RPDAs, while similar in some respects to FSBMs, generate a class of
languages that is closed under both inverse homomorphism and homomorphism
(in fact, under any finite-state transduction). This difference stems from the fact
that an RPDA’s queue-like memory arises from relaxing restrictions on a stan-
dard PDA’s stack, and so the queue-like memory uses a distinct alphabet of stack
symbols rather than surface symbols. These stack symbols are grammar-internal
book-keeping devices whose relationship to surface symbols can be specified by
the grammar-writer, as in the case of MCFGs such as (8) above.
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distinctions between surface symbols which are incompatible with the
string-buffering mechanism of an FSBM.16

But the broader point we wish to draw attention to here is the dis-
tinction between (i) the context-free class and various mildly context-
sensitive classes, which are closed under both homomorphisms and in-
verse homomorphisms, and (ii) the RCL and SL classes, which are not
and therefore exhibit a degree of sensitivity to surface symbol iden-
tity. It is intriguing that the insensitivity to surface symbol identity
seems to be necessary for many important patterns found in natural
language syntax – for example, the classic cross-serial dependencies
in Swiss German (Shieber 1985) correspond to ai b jc id j , rather than
ai b jai b j – whereas many phonological patterns that have been stud-
ied computationally are compatible with symbol-oriented formalisms.
This includes both the sub-regular patterns that motivate formalisms
such as SL grammars, and the non-regular reduplication patterns that
motivate FSBMs.

A complication to this clear picture may come from copying pat-
terns in syntax, for example the Yoruba constructions discussed by
Kobele (2006), mentioned above in Section 6.1. The languages gen-
erated by parallel multiple context-free grammars (PMCFGs) are not
closed under inverse homomorphisms (Nishida and Seki 2000, p. 145,
Corollary 12), for reasons analogous to what we have seen for FSBMs,
and so this is an example of a symbol-oriented formalism that has been
argued to be appropriate for syntax. But it is clear that syntax requires
at least some non-symbol-oriented mechanisms to generate the well-
known cross-serial dependencies of the Swiss-German sort (ai b jc id j),
whereas those cross-serial dependencies that we do observe in phonol-
ogy are compatible with the more restricted, symbol-oriented notion
of cross-serial dependencies that appear in reduplication.

16For similar reasons, the languages of regular expressions extended with
back-references are also not closed under inverse homomorphism (Câmpeanu
et al. 2003).
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7 CONCLUSION

This paper has looked at the formal computational properties of un-
bounded copying on regular languages, including the simplest copying
language Lww where w can be any arbitrary string over an alphabet.
We have proposed a new computational device: finite-state buffered
machines (FSBMs), which add copying to regular languages by adding
an unbounded queue-structured memory buffer, with specified states
restricting how this memory buffer is used. As a result, we introduce
a new class of languages, which is incomparable to context-free lan-
guages, named regular copying languages (RCLs).

This class of languages extends regular languages with unbounded
copying but excludes non-reduplicative non-regular patterns. Context-
free string reversals are excluded since the buffer is queue-like, and the
mildly context-sensitive Swiss-German cross-serial dependency pat-
tern, abstracted as {ai b jc id j|i, j ≥ 1}, is also excluded, since the
buffer works on the same alphabet as the input tape and only matches
identical sub-strings.

We have also surveyed the class’s closure properties and proved a
pumping lemma. This language set is closed under union, concatena-
tion, Kleene Star, homomorphism, and intersection with regular lan-
guages. It is not closed under copying, inhibiting the recursive ap-
plication of copying and excluding non-semilinear w2n . This class is
also not closed under intersection, nor complementation. Finally, it
is not closed under inverse homomorphism, given it cannot recover
the possibility of non-identity among corresponding segments when
the mapping is many-to-one (and the inverse homomorphic image is
one-to-many); we suggested that this might reflect an important dif-
ference between the string-generating mechanisms of phonology and
syntax.

One potential direction for future research is to connect FSBMs
with the 2-way D-FSTs studied by Dolatian and Heinz (2018a,b, 2019,
2020), which successfully model unbounded copying as functions
while excluding mirror image mappings. We briefly mention two pos-
sibilities along these lines. First, it will be interesting to compare the
RCL class of languages with the image of the functions studied by
Dolatian and Heinz (2020). Second, it is natural to consider adding
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to FSBMs another tape for output strings, extending from acceptors
(as presented here) to finite-state buffered transducers (FSBTs). The
morphological analysis (ww 7→ w) problem is claimed to be difficult
for 2-way D-FSTs, since they are not invertible. Our intuition is that
FSBTs might help solve this issue: after reading the first w in input
and buffering this string in memory, the machine can write ε to the
output tape when it matches the buffered string against the contents
of the input tape. But a more detailed and rigorous study is required
in this direction.

We are currently investigating the learning and learnability of FS-
BMs and copying in sub-regular phonology. The RCL class itself can-
not be identified in the limit, since it properly contains the regular
class (Gold 1967). However, we take positive learning results from
Clark and Yoshinaka (2014) and Clark et al. (2016) on PMCFGs with
copying, and from Dolatian and Heinz (2018b) on Concatenated Out-
put Strictly Local functions for reduplication, as suggestions for future
directions towards learning results for FSBMs. In particular, one of
the most attractive properties of the sub-regular classes is their Gold-
learnability (e.g. Garcia et al. 1990; Heinz 2010; Chandlee et al. 2014;
Jardine and Heinz 2016). We hope to explore whether the learnability
property still holds once copying is added to these sub-regular classes.

Last but not least, the current class of languages excludes non-
adjacent copies, multiple reduplication and reduplication with non-
identical copies. We briefly sketched some possible modifications and
their potential effects. We hope that our proposal here provides a use-
ful framework for better understanding the formal issues raised by
these more complex reduplication phenomena, and guiding empirical
research into their typology.
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APPENDICES

A PROOF OF THEOREM 1

LEMMA 2 For any string w, if w ∈ L(M1 ∩M2), then w ∈ L(M1) and
w ∈ L(M2).
PROOF Assume

M1 = 〈Q1,Σ, I1, F1, G1, H1,δ1〉 and M2 = 〈Q2,Σ, I2, F2,δ2〉.
Let the run on M1∩M2 that generates w be D0, D1, . . . , Dm, where each
Di = (ui, (pi, qi,Ai), vi, mi). We define a sequence C0, C1, . . . , Cm of con-
figurations of M1, and a sequence B0, B1, . . . , Bm of configurations of
M2, as follows:

Ci = (ui, pi, vi, mi)

Bi =


(vi\ui, qi) if mi = B

and (pi, qi,Ai) ∈ (H1 ×Q2 × {0}) = H

(ui, qi) otherwise
For the initial configuration D0 = (w, (p0, q0,A0),ε,N), we know

that (p0, q0,A0) ∈ I , so p0 ∈ I1 and q0 ∈ I2. Therefore C0 = (w, p0,ε, n)
is a valid starting configuration for a run of w on M1, and B0 = (w, q0)
is a valid starting configuration for a run of w on M2.

For the final configuration Dm = (ε, (pm, qm,Am),ε,N), we know
that (pm, qm,Am) ∈ F , so pm ∈ F1 and qm ∈ F2. Therefore Cm =
(ε, pm,ε,N) is a valid ending configuration for a run on M1, and
Bm = (ε, qm) is a valid ending configuration for a run on M2.
To use the sequences C0, . . . , Cm and B0, . . . , Bm to establish that

w ∈ L(M1) and w ∈ L(M2), we will show that, for every i ∈ {0, . . . , m−
1}, Ci `∗M1

Ci+1 and Bi `∗M2
Bi+1.

For each i ∈ {0, . . . , m−1}, we know that Di `M1∩M2
Di+1, so there

are four cases to consider:
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• Suppose Di `N Di+1. Then Di = (xui+1, (pi, qi,Ai),ε,N) and Di+1 =
(ui+1, (pi+1, qi+1,Ai+1),ε,N), with ((pi, qi,Ai), x , (pi+1, qi+1,Ai+1))∈ δ, (pi, qi,Ai) /∈ G, and (pi+1, qi+1,Ai+1) /∈ H. Then Ci =
(xui+1, pi,ε,N), Ci+1 = (ui+1, pi,ε,N), Bi = (xui+1, qi) and
Bi+1 = (ui+1, qi+1). We want to show that Ci `∗M1

Ci+1 and that
Bi `∗M2

Bi+1.
– Suppose the critical transition is in δN. Then (pi, x , pi+1) ∈
δ1 and pi /∈ G1 and pi+1 /∈ H1, so Ci `N Ci+1. Also either
(qi, x , qi+1) ∈ δ2, or x = ε and qi = qi+1; so Bi `∗ Bi+1.

– Suppose the critical transition is in δN→B. Then x = ε, and
pi = pi+1 and qi = qi+1. Therefore Ci = Ci+1 and Bi = Bi+1.

– The critical transition cannot be in δB, because Lemma 1 im-
plies that Ai = 0.

– The critical transition cannot be in δB→N, because Lemma 1
implies that Ai = 0.

• Suppose Di `N→B Di+1. Then Di = (ui, (pi, qi,Ai),ε,N) and Di+1 =
(ui, (pi, qi,Ai),ε,B), with (pi, qi,Ai) ∈ G and therefore pi ∈ G1. So
Ci = (ui, pi,ε,N) and Ci+1 = (ui, pi,ε,B), and therefore Ci `N→B
Ci+1. Furthermore Bi = Bi+1 = (ui, qi), since Ai = Aε 6= 0, so
Bi `∗ Bi+1.
• Suppose Di `B Di+1. Then Di = (xui+1, (pi, qi,Ai), vi,B) and

Di+1 = (ui+1, (pi+1, qi+1,Ai+1), vi x ,B), with ((pi, qi,Ai), x
, (pi+1, qi+1,Ai+1)) ∈ δ, (pi, qi,Ai) /∈ H and (pi+1, qi+1,Ai+1) /∈ G.
So Ci = (xui+1, pi, vi,B) and Ci+1 = (ui+1, pi+1, vi x ,B), but Bi and
Bi+1 will depend on the sub-cases below. There are four sub-cases
to consider.
– The critical transition cannot be in δN, since Lemma 1 implies
that Ai = AM2

vi
6= 0.

– The critical transition cannot be in δN→B, since Lemma 1 im-
plies that Ai = AM2

vi
6= 0.

– Suppose the critical transition is in δB. Then (pi, x , pi+1) ∈ δ1

and pi /∈ H1 and pi+1 /∈ G1. Therefore Ci `B Ci+1. Now
consider Bi and Bi+1. Since (pi, qi,Ai) /∈ H we know that
Bi = (xui+1, qi). Also, we know Ai+1 = AiAx 6= 0, so
(pi+1, qi+1,Ai+1) /∈ H and Bi+1 = (ui+1, qi+1). Finally, either
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(qi, x , qi+1) ∈ δ2, or x = ε and qi = qi+1; so in either case
Bi `∗ Bi+1.

– Suppose the critical transition is in δB→N. Then x = ε and
pi = pi+1, so Ci = Ci+1. Also Ai 6= 0, so Bi = (ui+1, qi). Fur-
thermore, pi+1 ∈ H1 and Ai+1 = 0, so Bi+1 = (vi\ui+1, qi+1).
And we know that vi\ui+1 is defined, because the con-
figuration Di+1 is part of a successful run and its state
(pi+1, qi+1,Ai+1) ∈ H, so the step to Di+2 must involve match-
ing an initial portion of the string ui+1 against the buffered
string vi . Finally, we also know from the definition of δB→N
that the (qi, qi+1) entry of Ai = AM2

vi
is 1, so qi+1 ∈ δ∗2(qi, vi).

Therefore Bi = (ui+1, qi) `∗M2
(vi\ui+1, qi+1) = Bi+1.

• Suppose Di `B→N Di+1. Then Di = (vui+1, (pi, qi,Ai), v,B) and
Di+1 = (ui+1, (pi, qi,Ai),ε,N), with (pi, qi,Ai) ∈ H. Therefore
Ci = (vui+1, pi, v,B) and Ci+1 = (ui+1, pi,ε,N), and pi ∈ H1, so
Ci `B→N Ci+1. Since (pi, qi,Ai) ∈ H, Bi = (v\vui+1, qi) = (ui+1, qi).
But also Bi+1 = (ui+1, qi). So Bi = Bi+1.
Therefore C0 `∗M1

Cm, so w ∈ L(M1). Similarly, B0 `∗M2
Bm, so

w ∈ L(M2). □

LEMMA 3 For any string w, if w ∈ L(M1) and w ∈ L(M2), then w ∈
L(M1 ∩M2).
PROOF

Assume w= x1 x2 x3 . . . xn ∈ L1 and w ∈ L2, N.T.S that w ∈ LM .
∵ w ∈ L1 and w ∈ L2

∴ there exists a sequence of configurations C0, C1, C2....Cm with
• C0 = (w, p0,ε,N) with p0 ∈ I1

• Cm = (ε, pm,ε,N) with pm ∈ F1

• ∀0≤ i < m, Ci `M1
Ci+1

and there’s a function f : SUFFIX(w) → Q2 such that f (w) ∈ I2 and
f (ε) ∈ F2 and ∀x ∈ Σ, v ∈ Σ∗, ( f (x v), x , f (v)) ∈ δ2.
For each i ∈ {0, . . . , m}, we take Ci = (ui, pi, vi, mi), and define Di

to be a configuration of M1 ∩M2 as follows:

Di =

¨
(ui, (pi, f (ui),0), vi,N) if mi = N
(ui, (pi, f (ui),AM2

vi
), vi,B) if mi = B
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First, notice that D0 = (w, (p0, f (w),0),ε,N), where p0 ∈ I1 and
f (w) ∈ I2, so D0 is a valid starting configuration for a run of w on
M1 ∩ M2. Similarly, Dm = (ε, (pm, f (ε),0),ε,N), where pm ∈ F1 and
f (ε) ∈ F2, so Dm is a valid ending configuration for a run on M1 ∩
M2. To show that w ∈ L(M1 ∩ M2), we will show that for each i ∈
{0, . . . , m− 1}, Di `∗M1∩M2

Di+1, which implies that D0 `∗M1∩M2
Dm.

For each i ∈ {0, . . . , m − 1}, we know that Ci `M1
Ci+1, so there

are four cases to consider.
• Suppose Ci `N Ci+1. Then Ci = (xui+1, pi,ε,N) and Ci+1 =
(ui+1, pi+1,ε,N) where (pi, x , pi+1) ∈ δ1 and pi /∈ G1 and pi+1 /∈
H1. Therefore Di = (xui+1, (pi, f (xui+1),0),ε,N) and Di+1 =
(ui+1, (pi+1, f (ui+1),0),ε,N), with ( f (xui+1), x , f (ui+1)) ∈ δ2. So
Di `N Di+1, since (pi, f (xui+1),0) /∈ G and (pi+1, f (ui+1),0) /∈ H.
• Suppose Ci `N→B Ci+1. Then Ci = (u, p,ε,N) and Ci+1 = (u, p,ε,B),
where p ∈ G1. Therefore Di = (u, (p, f (u),0),ε,N) and Di+1 =
(u, (p, f (u),AM2

ε ),ε,B), and we need to show that Di `∗M1∩M2
Di+1.

– Since p ∈ G1, the automaton M1 ∩ M2 has a transition
((p, f (u),0),ε, (p, f (u),AM2

ε )) ∈ δN→B.
Therefore Di `N (u, (p, f (u),AM2

ε ),ε,N).
– Since p ∈ G1, we know that (p, f (u),AM2

ε ) ∈ G, and therefore
(u, (p, f (u),AM2

ε ),ε,N) `N→B (u, (p, f (u),AM2
ε ),ε,B) = Bi+1.

Therefore Di `∗M1∩M2
Di+1.

• Suppose Ci `B Ci+1. Then Ci = (xui+1, pi, vi,B) and Ci+1 =
(ui+1, pi+1, vi x ,B), with pi /∈ H1 and pi+1 /∈ G1. Therefore

Di = (xui+1, (pi, f (xui+1),A
M2
vi
), vi,B)

and
Di+1 = (ui+1, (pi+1, f (ui+1),A

M2
vi x
), vi x ,B),

with ( f (xui+1), x , f (ui+1)) ∈ δ2. Since pi /∈ H1 and pi+1 /∈
G1 and AM2

vi
6= 0, the automaton M1 ∩ M2 has a transition

((pi, f (xui+1),AM2
vi
), x , (pi+1, f (ui+1),AM2

vi
AM2

x )) ∈ δB.
• Suppose Ci `B→N Ci+1. Then Ci = (viui+1, p, vi,B) and Ci+1 =
(ui+1, p,ε,N), with p ∈ H1. Therefore

Di = (viui+1, (p, f (viui+1),A
M2
vi
), vi,B)

and
Di+1 = (ui+1, (p, f (ui+1),0),ε,N),
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with f (ui+1) ∈ δ∗2( f (viui+1), vi). We need to show that Di `∗M1∩M2

Di+1.
– Since p ∈ H1 and the ( f (viui+1), f (ui+1)) entry of the matrix
AM2

vi
must be 1, we know that the automaton M1 ∩ M2 has

a transition ((p, f (viui+1),AM2
vi
),ε, (p, f (ui+1),0)) ∈ δB→N.

Therefore Di `B (viui+1, (p, f (ui+1),0), vi,B).
– Since p ∈ H1, we know that (p, f (ui+1),0) ∈ H, and therefore

(viui+1, (p, f (ui+1),0), vi,B) `B→N
ui+1, (p, f (ui+1),0),ε,N) = Di+1.

Therefore Di `∗M1∩M2
Di+1.

Therefore D0 `∗M1∩M2
Dm, i.e.

(w, (p0, f (w),0),ε,N) `∗M1∩M2
(ε, (pm, f (ε),0),ε,N),

and so w ∈ L(M1 ∩M2). □

B EQUIVALENCE OF REGULAR-COPYING
EXPRESSIONS TO FSBMS

We show here that RCEs and FSBMs are equivalent in terms of ex-
pressivity: namely, the languages accepted by FSBMs are precisely the
languages denoted by RCEs. We prove this statement in two directions:
1) every RCE has a corresponding FSBM; 2) every language recognized
by FSBMs can be denoted by an RCE.
THEOREM 6 Let R be a regular copying expression. Then, there exists
an FSBM that recognizes L (R).
PROOF We complete our proof by induction on the number of op-
erators in R.

Base case: zero operators R must be ε, ;, a for some symbol a
in Σ. Then, standard method to construct corresponding FSAs, thus
FSBMs, meet the requirements.

Inductive step: One or more operators In induction, we assume
this theorem holds for RCEs with less than n operators with n≥ 1. Let
R have n operators. There are two cases: 1): R= RC

1 ; 2): R 6= RC
1 ;
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• Case 1: R = RC
1 . Then, we know R1 must be a regular expres-

sion and we can construct an FSA for R1. Assume there’s an
FSA M0 = 〈Q′,Σ, I ′, F ′,δ′〉 that recognizes L(R1). Let M =
〈Q,Σ, I , F,δ, G, H〉 with
– Q =Q′ ∪ {q0, q f }
– G = I = {q0}
– H = F = {q f }
– δ = δ′ ∪ {(q0,ε, q) |q ∈ I ′ } ∪ {(q,ε, q f ) |q ∈ F ′ }
As part of this construction, we add another initial state q0 and
a final state q f and use them as the only initial and final states
in the new machine. We add ε-arcs 1) from the new initial state
q0 to the previous initial states, and 2) from the previous final
states to the new final state q f . The key component is to add the
copying mechanism: G and H. Let G contain only the initial state
q0, which would put the machine to B mode before it takes any
transitions. Let H contain only the final state q f , which stops the
machine from buffering and sends it to string matching. Thus,
if w is in L(R1), ww must be in the language accepted by this
complete-path FSBM and nothing beyond. Figure 21 shows such a
construction. The proof showing L(M) = L(R) is suppressed here.

q0Start q f AcceptM0
... ...

ε

ε

ε

ε

Figure 21:
The construction used in converting
the copy expression RC

1
to a finite-state buffered machine.
L(M0) = L(R1).

• Case 2: when R 6= RC
1 for some R1, we know it has to be made

out of the three operations: for some R1 and R2, R = R1 + R2,
or R = R1R2 or R = R∗1. Because R1 and R2 have operators less
than i, from the induction hypothesis, we can construct FSBMs
for R1 and R2 respectively. Using the constructions mentioned in
the main text, we can construct the new FSBM for R. □

THEOREM 7 If a language L is recognized by an FSBM, then L could
be denoted by a RCE.
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Instead of diving into proof details, we introduce the most crucial frag-
ments to the full FSBM-to-RCE conversion: how the copying mecha-
nism in a complete-path FSBM is converted into a copy expression. We
leave out parts that use basic ideas of FSA-to-RE conversion, which can
be found in Hopcroft and Ullman (1979, pp. 33–34).

The previous discussion on the realization of the copying mech-
anism in complete-path FSBMs concluded with three aspects 1) the
specification of G states, 2) the specification of H states, and 3) the
completeness restrictionwhich imposes ordering requirements on G and
H. Thus, to start with, we want to concentrate on the areas selected
by G states and H states in a machine, as they are closely related to
the copying mechanism.

The core is to treat any G state and H state pair as an small FSA:
if the paths along the pair do not cross other special states, borrow
the FSA-to-RE conversion to get a regular expression R1, denoting the
languages possible to be stored in the buffer temporarily. Importantly,
there are only finitely many (G, H) pairs. Iterating through all possible
paths between these two states and getting a general RE R1 by union,
we use two plain states with the RCE R1 along the arc to denote the
languages from that specific G to H. Then we plug them back into the
starting FSBM.

All special states are eliminated. Thus, we get an intermediate rep-
resentation with only plain states. Similar ideas as FSA-to-RE conver-
sion could be applied again to get the final regular copying expression
for this FSBM. The described conversion of the copying mechanism in
a machine to a copy expression is depicted in Figure 22.

Figure 22:
The conversion of the

copying mechanism in an
FSBM to a corresponding

RCE. P represents the plain,
non-H, non-G states

G H1
R1

(a) Goal for the
possible (G, H) in
the first steps of
the FSBM-to-RCE
conversion

P P
(R1)C

(b) Next step after
Figure 22a
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