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ABSTRACT

This paper studies the inflectional complexity of nouns, verbs and ad-
jectives in 137 datasets, across 71 languages. I follow Ackerman and
Malouf (2013) in distinguishing between E(numerative) complexity
and I(ntegrative) complexity. The first one encompasses aspects of in-
flection, like the number of principal parts, paradigm size, and num-
ber of exponents, while the second one captures the implicative re-
lations between paradigm cells (how difficult it is to predict one cell
of a paradigm knowing a different cell). I provide a formalism and
computational implementation to estimate both I- and E-complexity
expressed through Word and Paradigm morphology (Blevins 2006,
2016), which is flexible and powerful enough for typological re-
search. The results show that, as suggested by Ackerman and Malouf
(2013), I-complexity is relatively low across the languages in the sam-
ple, with only two clear exceptions (Navajo and Yaitepec-Chatino).
The results also show that E-complexity can vary considerably cross-
linguistically. Finally, I show there is a clear correlation between I- and
E-complexity.

Journal of Language Modelling Vol 12, No 2 (2024), pp. 415-475

Keywords:
inflectional
complexity,
typology,
analogy, Word
and Paradigm
morphology



Matias Guzmdn Naranjo

INTRODUCTION

The study of morphological complexity has a long history in linguistics
and typology (see for example Greenberg 1960, for an early approach),
and has seen a renewed interest in recent years (Ackerman and Mal-
ouf 2013; Cotterell et al. 2019; Bentz et al. 2022). However, there is
very little unity or agreement regarding how we should measure in-
flectional complexity, and whether the proposed metrics are cross-
linguistically comparable (Igartua and Santazilia 2018; Gutierrez-
Vasques and Mijangos 2019; Bentz et al. 2022, 2016; Arkadiev and
Gardani 2020, among many others). Igartua and Santazilia (2018,
p. 439) for example, define morphological complexity as “the extent
to which formal differences in inflectional paradigms are semantically
or phonologically unmotivated” (i.e. the amount of allomorphy in a
morphological system). In contrast, Sinneméki and Di Garbo (2018,
p- 8), following Bickel and Nichols (2007) and Bickel and Nichols
(2013), define the inflectional complexity of a verb as: “the number of
morphological categories expressed per word in a maximally inflected
verb form.”

One key development in the study of inflectional complexity came
from Ackerman and Malouf (2013), who propose a distinction be-
tween two fundamentally different types of inflectional complexity:
Enumerative (E) complexity and Integrative (I) complexity. The first is
the complexity in morphosyntactic distinctions and the way languages
encode them (be it exponents, morphs, morphemes, etc.), while the
second one is the difficulty a paradigm poses to speakers in terms of
implicative relations. Ackerman and Malouf (2013, 429) provide the
following definitions:

The I-complexity of an inflectional system reflects the dif-
ficulty that a paradigmatic system poses for language users
(rather than lexicographers) in information-theoretic terms.
(Ackerman and Malouf 2013, p. 429)

I-complexity measures how predictable the realisation of a lexeme
is, given knowledge about one (or more) cells of its paradigm. This
type of complexity measures implicational relations in a paradigm,
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and it is not directly dependent on paradigm shape (what the ac-
tual realisations are, or how many cells a paradigm has). In contrast,
E-complexity is defined as:

E-complexity [is given by] the number of exponents, inflec-
tional classes, and principal parts (Ackerman and Malouf
2013, p. 429)

E-complexity has received considerable attention in the literature
(Stump and Finkel 2013; Bentz et al. 2022; Finkel and Stump 2007;
Baerman et al. 2015; Dressler 2011), from several different perspec-
tives, including inflection class systems, paradigm size, principal parts
and number of morphs or morphemes. Some of this work, however,
faces some practical and theoretical challenges (see Section 2).

At the same time, while there are multiple computational propos-
als for capturing I-complexity (Bonami and Beniamine 2016; Cotterell
et al. 2019; Guzméan Naranjo 2020; Ackerman and Malouf 2013; Marzi
et al. 2019), most studies have looked at a relatively small samples
(< 100 datasets) and the emphasis has not been on cross-linguistic
comparison (although see Cotterell et al. 2019). This means that we
still do not have a good picture of how I-complexity varies across lan-
guages and systems. For example, one still open question is how verb,
noun and adjective paradigms compare cross-linguistically for the sake
of consistency in terms of I-complexity.

The objectives of this paper are twofold: First and foremost, it
presents a medium-scale typological study of morphological com-
plexity from a Word and Paradigm perspective (Blevins 2006, 2016;
Matthews 1972). And second, it presents a new technique for mea-
suring morphological complexity and provides an efficient computa-
tional implementation of it. I argue that it is both feasible and de-
sirable to work from a W&P perspective when doing cross-linguistic
comparisons of inflectional systems. I also show that some fundamen-
tal problems in morphological typology can be completely bypassed
when approached from a W&P perspective.

The paper is structured as follows: Section 2 gives a brief overview
of the main ideas and approaches to morphological complexity, as well
as word and paradigm morphology. Section 3 describes the datasets
and the methods used in the paper. Section 4 presents the results, and
Section 5 concludes.
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BACKGROUND

This section presents a very brief overview of the main ideas of
and trends in the morphological complexity literature from two dif-
ferent perspectives. It also discusses some key differences between
morpheme-based and W&P approaches to morphology and argues that
beyond theoretical considerations, there are practical reasons why the
latter is preferable for doing cross-linguistic studies of the complexity
of morphological inflection.

Due to the vast amount of research on the topic of morphological
complexity (see for example Baerman et al. 2015, 2017; Miestamo et al.
2008; Bentz et al. 2022, for some overviews and recent takes), a full
account of these topics is not feasible within the scope of this article,
and I will concentrate on some of the more important works on the
topic. Similarly, covering the whole debate between different types of
morphological theories is not feasible, and I will only discuss some of
the more concrete and practical issues.

Integrative-complexity

The initial work on I-complexity was approached using information
theory, and it focused on measuring the conditional entropy between
the cells of the paradigm of a lexeme, often using hand-extracted ex-
ponents for each cell (Ackerman and Malouf 2013; Bonami and Be-
niamine 2016; Blevins 2013; Palancar 2021; Parker and Sims 2020,
among many others). More recent papers estimate the conditional en-
tropy of a system using LSTMs! (Cotterell et al. 2019; Court et al. 2022)
instead of directly calculating it based on extracted exponents.

I will illustrate I-complexity with two simple toy examples in Ta-
bles 1 and 2.2 Both examples have three inflection classes with two

LLSTMs are a type of neural network that performs sequence to sequence
predictions. In this context, they are trained to predict fully inflected forms from
other fully inflected forms (plus lexeme information). The entropy of the system
is calculated on the network itself.

2The elements in each cell are meant to be the suffix (markers) which express
the cell content. These are just examples, and the actual cell realisations could
be achieved by suffixes, infixes, tones, etc.
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and three cells, but the exponent structure is completely different. The
system of Table 1, Language 1, only has two markers, -i and -o, while
the system in Table 2, Language 2, contains 9 different markers: -i, -e,
-a, -u, -o, -@, -ik, -ek, -ce. Language 2 has a higher E-complexity both
in terms of the number of exponents and paradigm size, however, the
situation is reversed for I-complexity.

Celll Cell 2 Table 1:
class A i 4 I-complexity Language 1
class B -0 -i
class C -0 -0

Celll Cell2 Cell3 Table 2:
class A - e a I-complexity Language 2
class B -u -0 -9
class C -ik -ek -

Following Ackerman and Malouf (2013), we can measure the I-
complexity of each system using conditional entropy. The entropy of
a cell X, H(X), in a paradigm can be calculated as:

1)  HX)= —Zp(xi)logz(p(xi))

Where p(x;) can be calculated from the frequency of the expo-
nents for a cell across inflection classes, and where, i ranges over con-
trastive exponents found in a cell. However, for illustration purposes,
this example assumes that all inflection classes have the same num-
ber of lexemes, meaning we can let i range over inflection classes.
For Language 1, the frequency of -i for Cell 1 is 1, and the frequency
for -0 is 2, meaning p(-i) = 1/3 and p(-0) = 2/3, which gives us
H(Cell 1) = 1/3log,(1/3) +2/3log,(2/3) = 0.92. This is a measure
of how much information is required to capture Cell 1 for Language 1.

The conditional entropy of a cell X given knowledge of cell Y,
H(X|Y), can be calculated as:

(2  HX|Y)=H(X,Y)—H(X)
3 =ZZP(Xi,J’j)Ing(P(XiD’j))
iJ
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For Language 1, the conditional entropy H(Cell 1|Cell 2 = -i) =
1, and H(Cell 1|Cell 2 = -0) = 0. Then, the average conditional en-
tropy H(Cell 1|Cell 2) = 2/3 (since -i appears in two inflection classes,
while -0 appears in 1). Knowing that for a lexeme Cell 2 has the re-
alisation -o provides complete information about what its realisation
in Cell 1 must be, namely -o. In contrast, knowing that the exponent
for Cell 2 is -i does not provide information about the realisation of
Cell 1 because a lexeme with -i for Cell 2, can either -i or -0 in Cell 1.
Because Language 1 has a symmetric structure, H(Cell 2|Cell 1) is also
2/3, meaning that the average pairwise® conditional entropy is 2/3.
The results for Language 2 are very different. In this case, every cell
provides complete information about every other cell in the paradigm
of a lexeme, which means that for all pairwise conditional entropy cal-
culations the results are 0, and the average conditional entropy of Lan-
guage 2 is 0. This very simplified example illustrates the fact that the
average E-complexity of a language (measured in terms of paradigm
size or the number of markers) is not necessarily correlated with its
I-complexity.

While using conditional entropy is still a relatively popular
method to estimate I-complexity, an alternative approach is based
on the accuracy of classification, instead of conditional entropy
(Guzman Naranjo 2020; Bonami and Pellegrini 2022). Instead of mea-
suring the amount of information a cell provides about another cell,
one can train a classifier* on the content of one cell of a lexeme to
predict the realisation of another cell for that lexeme.

As an example of classification, if we are dealing with nominal
inflection, we can train a classifier to predict the accusative singular
from the nominative singular. The accuracy obtained by that classifier
(under cross-validation) is then a measure of the I-complexity of the
paradigm. If a classifier has a perfect accuracy of 1 predicting the

3 See Bonami and Beniamine (2016) for a method to calculate the conditional
entropy taking multiple cells into account.

4Here classifier is understood as any system which takes some word form
as an input and assigns it to a class. The method used could be a rule-based
system, logistic regression, neural network, etc. For the purposes of modelling
inflection, we usually train classifiers on the phonology and semantics of the
forms in question, and predict the inflection class from this information.
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inflection class of all lexemes in a language, then we can say that there
is effectively no I-complexity to that inflection class. The important
point is that, just as with conditional entropy, the I-complexity of a
system is mostly independent of the number of inflection classes or
exponents in an inflectional system. If there is enough information for
the classifier to have perfect accuracy, then the I-complexity of the
system will be 0.

Using the previous example, the accuracy for Language 2 will be 1
for all cell pairs, because every cell provides complete information
about every other cell in the paradigm of a lexeme, which means that
the complexity of Language 2 is also 0. For Language 1, the accuracy
of predicting (i.e the number of correct predictions over total number
of items) Cell 1 from Cell 2 (and the other way around) is 2/3 (because
on average we will be able to correctly predict the realisation 2 out
of 3 times). This means that the average complexity of Language 1
is ~ 0.67.

One advantage of using a predictive technique instead of estimat-
ing conditional entropy using LSTMs is that we can easily make use of
classifiers that work well even on very small datasets. LSTMs, due to
the way they are trained, can struggle with small datasets. Cotterell
etal. (2019, 336), for example, restrict their study to languages with at
least 700 lexemes, because the specific model requires relatively large
datasets to achieve acceptable accuracies. As we will see in the results
section, these much simpler models perform well on much smaller
datasets.

Enumerative complexity

The initial definition of E-complexity covered the number of principal
parts, exponents, and inflection classes. In this section, I will discuss
some of the studies that have looked at these, and a few other aspects
of E-complexity.

Principal parts
Principal parts are defined as the cells in the paradigm of a lexeme
which a speaker needs to know in order to be able to deduce all other

cells (Finkel and Stump 2007). For example, it is often proposed that
the Latin verb system has 4 principal parts, which a speaker would
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need to know in order to be able to produce all other inflected forms
of the verb, these are the first person singular present indicative ac-
tive, active present infinitive, first person singular perfect indicative
active, and the passive perfect participle (or future participle) (Bennett
1918). While this is, in principle, a relatively straightforward way of
quantifying the complexity of an inflectional system determining the
number of principal parts is not straightforward, and will vary depend-
ing on the approach one takes to how principal parts should behave
within and across paradigms (Finkel and Stump 2007). In this paper,
I will not directly consider counting principal parts, but I will come
back to the question during the discussion of the results.

Inflection classes

Measuring inflectional complexity in terms of the number of inflec-
tion classes is, in theory, straightforward: one simply counts how
many inflection classes there are in a system. Although the idea of
inflection classes might seem intuitive, the task of counting inflection
classes is particularly difficult. Some early work on complexity ap-
proached the problem from this perspective (Carstairs 1983; Carstairs-
McCarthy 1994), but is has loss favour during the past decade (Sims
and Parker 2016). One of the reasons is the move towards questions
of I-complexity, but another is that counting inflection classes is any-
thing but simple. For example, Parker and Sims (2020) show how
non-trivial it is to count inflection classes for Russian, a very well
studied language. A similar conclusion is reached by Beniamine and
Guzman Naranjo (2021), who show that if taken at a surface level, it
is difficult to determine the number of inflection classes a language
can have (cf. Beniamine Forthcoming).

There are several reasons why counting inflection classes is par-
ticularly difficult, but it mainly boils down to the fact that identifying
whether two lexemes belong to the same inflection class or not is not
easy to operationalize. As a simple example, consider irregular verbs,
or partially irregular verbs, or defective verbs. Whatever decision one
makes regarding the inflection class they belong to or not, will affect
the number of inflection classes.®

5See Section 2.3 for some further discussions on the challenges of cross-
linguistic morphological analysis.
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Inflection markers, morphs and morphemes,
and paradigm size

The first approach to examining the complexity in the exponents of
an inflectional system comes from Greenberg’s work on inflectional
complexity (Greenberg 1960). Greenberg proposes a method based on
indices of synthesis, agglutination, compounding, derivation, gross-
inflection index, prefixation, suffixation, isolation, pure inflection in-
dex, and concord. These indices are calculated as the ratio of two for-
mal elements, given their frequencies in a text.® For example, the gross
inflection index is the ratio of words to inflectional morphemes in a
language corpus (Greenberg 1960, 186). A language in which this ra-
tio is 1 will have one inflectional morpheme per word and thus a very
low inflectional complexity, while languages with high inflectional
complexity will have ratios much lower than 1. Typological work on
different aspects of E-complexity is abundant, I will focus on a few
recent examples.

While ideas similar to the inflectional index have remained
present in more recent work on inflectional complexity (see be-
low), several recent studies have focused on the number of mor-
phosyntactic distinctions marked through inflection (Lupyan and
Dale 2010; Bentz and Winter 2013; Cotterell et al. 2019). These
studies tend to use typological datasets like the World Atlas of Lan-
guage Structures (Dryer and Haspelmath 2013) or similar databases.
A well-known example is Lupyan and Dale (2010), who use hand-
annotated features in WALS like degree of syncretism, the number
of morphosyntactic categories expressed by the verb, presence of
noun/verb agreement, presence of inflectional evidentiality, pres-
ence of inflectional negation, among others, as measures of mor-
phological complexity. The idea is that if a language makes more
morphosyntactic distinctions in a paradigm, then it is more com-
plex than a language that makes fewer morphosyntactic distinc-
tions in the same paradigm. A similar approach is also taken by
Bentz and Winter (2013) in a more recent study. Effectively, these

6Greenberg uses rather short texts of 100 words, which, as he admits, leads
to only very preliminary results.
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studies use paradigm size as a measure of morphological com-
plexity.”

A different set of metrics based on corpora (Gutierrez-Vasques and
Mijangos 2018; Oh and Pellegrino 2022) try to estimate exponent com-
plexity indirectly. Perhaps the simplest is the type-token ratio (TTR)
(Juola 1998, 2008; Kettunen 2014). The idea behind the TTR is that
if there is a 1-to-1 relation between word types and word tokens,®
then this means that there is a very high degree of inflection in the
language, and thus the language has very high morphological com-
plexity. A TTR closer to 0 indicates lower morphological complexity.
In practice, TTR values range between 0.05 and 0.2 or 0.6 (Kettunen
2014).°

Other corpus metrics

Another proposed method for measuring morphological complexity
is to calculate the perplexity!® of sublexical units (Gutierrez-Vasques
and Mijangos 2018). In a segmented word, one can calculate the con-
ditional entropy or perplexity of the units within a single word. Low
conditional entropy means higher predictability, and thus lower mor-
phological complexity. This method relies on morphological segmen-
tations. Gutierrez-Vasques and Mijangos (2018) rely on automatic seg-
mentation produced by Morfessor (Smit et al. 2014). Other corpus-
based metrics include word entropy!! (Bentz and Alikaniotis 2016),
which measures the amount of information carried by a word based

7 Arguably, some of the features considered in these approaches, like degree
of syncretism, is not directly about paradigm size, but rather paradigm structure.
However, most other metrics are proxies for paradigm size.

8 Notice this never happens due to Zipfian effects.

9 The difference lies in whether one normalises the corpus size or not. Because
corpus size can have a sizeable impact on TTR, some authors have suggested
taking the moving average of the TTR across a fixed sub-corpus length (Covington
and McFall 2008, 2010). Doing this ensures that when comparing the complexity
in two different sized corpora, the TTR is measured on sub-corpora of roughly
the same size.

10 perplexity can be related to entropy as: P = 27, where H is the entropy.

11 These entropy metrics measure the distribution of words in a corpus and are
not to be confused with other entropy measures like those of Ackerman and Mal-
ouf (2013), which measure the distribution of inflectional patterns in a lexicon.
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on its probability distribution in a corpus; the relative entropy of word
structure (Koplenig et al. 2017), which is based on a compression algo-
rithm; and word alignment measure (Bentz et al. 2016), which assumes
that for languages with morphologically complex words, those will be
translated into several independent words in morphologically simpler
languages. 12

Although corpus-based metrics have the advantage of not requir-
ing human decisions, they also have a clear downside: they cannot
distinguish inflection from derivation and other morphological pro-
cesses. All current methods based on corpora conflate morphologi-
cal complexity arising from derivation and morphological complex-
ity which arises from inflection. Moreover, in most implementations,
these methods do not separate the complexity of different subsystems
within a language. It is possible for a language to have a very high
inflectional complexity in the nominal domain, but a very low in-
flectional complexity in the verbal domain, or the other way around.
While this could be explored with tagged corpora, I am not aware of
studies which do this.

Complexity correlations and trade-offs

Despite the proliferation of complexity metrics, Bentz et al. (2016)
argue that most metrics proposed in typology, either based on cor-
pora or hand annotations, are highly correlated with each other. To
do this, the authors propose a method to estimate an aggregated met-
ric of inflectional complexity based on WALS features. The process
is as follows. First, the authors identify 28 features that they argue
to be indicative of the morphological complexity of a language (e.g.
number of genders, number of cases, presence of morphological tense
marking, etc.). Then, they normalise the values for each feature to be
between 0 and 1 in order to make them comparable. Finally, the au-
thors take the mean value of all 28 features for each language. The
authors then estimate the correlations of this complexity index with
estimates for several corpus-based complexity indices estimated from
Bible translations. The fact that Bentz et al. (2016) find a relatively

12gee also Oh and Pellegrino (2022) for a comparison and evaluation of dif-
ferent corpus-based metrics of morphological complexity.
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high correlation between all these metrics is taken by the authors as
an indication that they indeed capture the same phenomenon.
Finally, another question that has received some attention regard-
ing complexity is whether there are trade-offs between the local com-
plexity of different domains (morphology and syntax). Several studies
have found trade-offs between different types of complexity (Koplenig
etal. 2017; Oh and Pellegrino 2022; Bentz et al. 2022). Some work that
has looked at E- and I-complexity has proposed that there are trade-
offs between the two (Gutierrez-Vasques and Mijangos 2019; Cotterell
et al. 2019). Gutierrez-Vasques and Mijangos (2019) use the metrics
proposed by Bentz et al. (2016) for measuring E-complexity, which
are based on aggregating 28 morphological features found in WALS.
Cotterell et al. (2019) use a simpler metric based on the number of
cells in a paradigm.!® Generally, these studies have found some sort
of trade-off between their definition of E-complexity and I-complexity.

Word and Paradigm morphology for typology

Although intuitive, approaches based on morpheme or morph segmen-
tations face a challenge: segmenting words is difficult and depends on
theory and tradition. '* The key idea here is that it is not always easy to
compare segmentations across languages, and even within languages,
linguists face what is called the segmentation problem (Spencer 2012),
i.e. how to segment words into sublexical units like stems, morphs or
morphemes. That is, it is not just that segmenting words into mor-
phemes is difficult, but it can be a problem without a determined solu-
tion. Things can be even more complex if one considers that some the-
ories propose zero morphemes, or very complex and abstract morph
sequences. In order to compare the complexity of two languages based
on metrics that rely on morph or morpheme segmentations, the prin-
ciples behind the segmentation decisions need to be consistent for all
languages, and application needs to be independent of linguistic tradi-

13Recall most E-complexity metrics are correlated with, and a proxy for
paradigm size.
14 For the opposite view the reader can look at Manova et al. 2020.
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tions associated with the languages in question. ' As far as I am aware,
there are no clear formalisation for how this should be resolved for ty-
pological comparison. 16

In several of the approaches to E-complexity mentioned in the pre-
vious section, segmentation of words into morphs or morphemes plays
a crucial role (e.g. mean number of morphemes per word). However,
segmentation-based approaches to morphology from a cross-linguistic
perspective have issues which are not easy to overcome. The first issue
worth discussing is that of the definition, delimitation and identifica-
tion of morph and morpheme boundaries. This is a problem without a
simple solution. This has been noted before with regards to morpho-
logical complexity. Greenberg (1960, p. 188) notes that:

Basic to the synthetic index as well as most of the others is
the possibility of segmenting any utterance in a language into
a definite number of meaningful sequences which cannot be
subject to further division. Such a unit is called a morph.
There are clearly divisions which are completely justified
and which every analyst would make. For example, everyone
would divide English eating into eat-ing and say that there
were two units. There are other divisions which are just as
clearly unjustified. For example, the analysis of chair into ch-,
“wooden object,” and -air, “something to sit on,” would be
universally rejected. There is, however, an intermediate area
of uncertainty in which opinions differ. Should, for example,
English deceive be analyzed into de- and -ceive. (Greenberg
1960, p. 188)

This relates to the segmentation problem (Spencer 2012). The im-
plication of this is that trying to do automatic, or even semi-automatic
morpheme identification on large datasets is not feasible.!” More

15 By this I mean how linguists analyse sublexical units like phonemes, tones,
or discontinuous stems (i.e. roots in Semitic), zero morphemes, so-called subtrac-
tive morphology, etc.

16 Though see below for a computer-aided approach, as well as Sagot and
Walther 2011 and Walther and Sagot 2011 for some early approaches in this
direction.

17 While tools like Morfessor can, under some circumstances, do a decent
job of approximating human judgements in morpheme segmentation, these are
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importantly, segmentation done by linguists is not necessarily objec-
tive and will be influenced by different theoretical perspectives, and
linguistic traditions (see Bonami and Beniamine 2021 for a discussion
on stem segmentation). For example, while it is common to view stems
in Semitic languages as discontinuous triconsonantal roots, it is not
common to take a similar approach for European languages, instead
preferring ideas like stem mutation.

The consequence of these issues for linguistic typology is that
cross-linguistic comparison is heavily dependent on the individual de-
cisions made by the individual linguists writing the grammars. Mor-
phological analysis and segmentation is usually taken as a given, and it
is not possible to be certain that the guiding principles for morpheme
segmentation are consistent across languages.

Although there are some attempts at computational formalisa-
tions of morpheme-based approaches (Rathi et al. 2022), I am not
aware of large-scale validations of these for the purpose of studying
inflectional morphology cross-linguistically.

The alternative approach is to take whole, fully inflected words
and their relations in a paradigm as a starting point of linguistic com-
parison. If we define a systematic approach to finding relations be-
tween fully inflected words (see the next section), then we can be sure
that all languages in our sample are analysed using the exact same
principles. If we focus on fully inflected words, the issues related to
segmentation and morph(eme) boundaries disappear.

Perhaps the main counterargument one can leverage against W&P
morphology is that one needs to provide a solid, cross-linguistically
valid, definition of what a word is. It has been argued that such a task
is impossible (Haspelmath 2011), and Greenberg himself points out
the issues with defining word units (Greenberg 1960). While it is true
that identifying words can be challenging, it must be noted that this
is also a necessary step in all morpheme-based approaches to inflec-
tional complexity I am aware of. In order to estimate metrics related
to paradigm size, one first needs to decide which elements belong to a
paradigm and which elements do not. This requires at least a definition
of words. If one wants to count whether negation is expressed through

nowhere near good enough for the task at hand, and the quality of the output
greatly varies with the type of input provided.
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inflection or not, one needs to distinguish between what constitutes
one or two words. If one wants to calculate the number of morphemes
to words ratio one needs to delimit words. And so on. Even the corpus-
based metrics discussed in the previous section require orthographic
word segmentation to work.

The difficulty of delimiting words, and having a systematic, cross-
linguistically valid definition of what a word is, is not an argument in
favour of morpheme-based approaches to inflectional complexity, nor
is it an argument against W&P approaches. My solution in this paper
is the same as with many typological studies: I trust the grammars (or
in this case the datasets). Even if different languages require different
criteria for defining and delimiting words, I will assume that the au-
thors of the resources I use (see next section) applied the correct and
relevant criteria consistently for each language in question. '8

MATERIALS AND METHODS

Datasets

For this study,'® I mostly rely on Unimorph data which was avail-
able in January 2021 (Kirov et al. 2018).2° Additionally, I include the
following datasets:

18 The only technique that I am aware of, which can completely ignore the
issue of words is based on compression algorithms (Moscoso del Prado 2011;
Ehret 2021). This type of complexity is also known as Kolmogorov Complexity.
These calculate the compression rate of a corpus for a given language (how much
a compression algorithm can compress a corpus), and compare that result with
the compression rate of either another language, or a modified (e.g. lemmatized)
version of the same corpus. For reasons of space, I will not discuss this approach
here.

1911 datasets and code can be found at https://doi.org/10.5281/
zenodo.11147171.

207 am aware that Unimorph has included some additional datasets since then,
but our approach is computationally too intensive for us to keep adding lan-
guages indefinitely. With my dataset, it took me around 6 months to process all
paradigms.
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+ Russian nouns (Guzmén Naranjo 2020)

» Kasem nouns (Guzmén Naranjo 2019a)

« Latvian nouns (Beniamine and Guzmén Naranjo 2021)
» Hungarian nouns (Beniamine and Guzman Naranjo 2021)
» French verbs (Bonami et al. 2014)

 Arabic nouns (Beniamine 2018)

« Portuguese verbs (Beniamine et al. 2021)

+ English verbs (CELEX, Baayen et al. 1996)

+ Latin nouns (Pellegrini and Passarotti 2018)

+ Latin verbs (Pellegrini and Passarotti 2018)

+ Navajo verbs (Beniamine 2018)

* Yaitepec verbs (Feist and Palancar 2015)

- Zenzotepec verbs (Feist and Palancar 2015)

In total, this makes for 137 datasets across 71 languages for nouns,
adjectives, and verbs. The size of these datasets vary considerably,
from some languages having a few hundred lexemes, to others con-
taining over 40,000 lexemes. To be able to better compare results, I
created random subsamples of 200, 500, 1000, 2000, and 5000 lex-
emes for each dataset (when available). Although I am aware of some
issues with the Unimorph datasets,?! I only performed minimal hand
corrections. These datasets are structured in long format with three
main columns: lexeme, cell, inflected form. Table 3 shows an exam-
ple of this structure for the Spanish verb cantar ‘sing’. All datasets are
in orthographic form, except for those listed above, which were con-
verted to a phonemic representation. No other information is required
or provided in these datasets.

A final note about the data is that I included all cells listed in uni-
morph, including elements separated by spaces. These can be inflected
forms with pronouns/clitics (like in Romance), single words made up
of two elements but which inflect like a single lexme (like high school),
or periphrasis. About 25% of the datasets contain at least one form that

21 The Hungarian and Latvian dataset are effectively hand-corrected unimorph
datasets, for which Beniamine and Guzmén Naranjo (2021) remove multiple mis-
takes present in the original data. Similarly, the Arabic nouns dataset was hand-
corrected by Beniamine (2018).
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Lexeme Cell Inflected form Table 3:
cantar l.sg.pres.ind  canto

cantar 2.sg.pres.ind  cantas

cantar 3.sg.pres.ind  canta

fits this description. For most purposes periphrastic forms behave al-
most exactly as non periphrastic ones and do not have an impact on
the analysis. While it would be possible to exclude all forms contain-
ing spaces, leaving them in for the analysis ensures that we are not
arbitrarily reducing the complexity of any of the systems in question.

Methods

In order to estimate the complexity of a morphological system we
need a formal model of that system, and from this formal model, we
can then estimate the I- and E-complexity of the system. Word-based
models of morphology can be divided into two main camps: symbolic
and non-symbolic. Under non-symbolic models there are approaches
like LSTMs (Cotterell et al. 2019; Malouf 2017; Elsner et al. 2022;
Cardillo et al. 2018) or linear discriminative learning (Baayen et al.
2019a,b). Non-symbolic models do not require any type of explicit
morphological structures, and can predict one cell in the paradigm
of a lexeme from another cell or from a meaning without any sort
of symbolic manipulating of the strings (see also Elsner et al. 2019,
for a recent overview). In these types of approaches there are no ex-
plicit representations of sublexical units above the grapheme level,
instead, they treat words as sequences of individual letters and the
cell in the paradigm they realise. LSTMs are trained to predict se-
quences from sequences. In the case of morphological inflection, they
can predict one inflected form from another directly or from its lex-
eme meaning and cell in the paradigm (depending on the setup).?2 In
non-symbolic approaches, there are no explicit representations of pro-
portions in the style Xa < Xb. Despite their impressive performance,

225ee for example Cotterell et al. 2019 or Malouf 2017 for more in-detail
descriptions of how LSTMs work for morphological reinflection tasks.
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non-symbolic models are not appropriate to our objectives for two
main reasons. First, existing implementations are too slow to be ap-
plicable to large datasets with many languages, or even to languages
with many cells. Second, while it is possible to use these systems to
estimate I-complexity, I am unaware of any method for estimating E-
complexity from the models themselves. Studies that have used LSTMs
to explore morphological complexity (Cotterell et al. 2019; Marzi et al.
2019; Marzi 2020) have explicitly relied on traditional metrics like the
number of paradigm cells.

In contrast, symbolic models use explicit representations of the
relations between cells. A symbolic model must be comprised of two
independent elements: (1) a system of proportions that express the re-
lations between cells, and (2) a method for assigning a lexeme to the
correct proportion. Here, (2) is essentially what has been called the
classification problem (Guzmén Naranjo 2020), that is, how to deter-
mine the inflection class of an inflected form based on its phonol-
ogy and semantics. There are multiple proposals for solving (1)23
and (2).2* In this paper I present a new solution for (1), and, for
performance reasons, take a very simple approach to (2). These are
described in Section 3.2.1 and 3.2.2, respectively.

Analogical proportions

At the core of symbolic W&P approaches to inflection are the ana-
logical proportions between fully inflected forms. Traditionally, these
have been expressed informally as Xa*=Xo (sometimes written as
Xa::Xo, or some variant thereof), where variables are expressed with
upper case letters like X or Y, and segments with lower case letters.
This proportion expresses the formal relation between two cells in the
paradigm of a lexeme. This example would cover alternations like the
following: ata::ato (X=at), para::paro (X =par), etc. However, this no-
tation is not well formalised in the sense that it does not readily work

23Gee for example Lepage 1998; Stroppa and Yvon 2005; Federici et al
1995a,b; Carstairs 1998, 1990; Albright and Hayes 1999; Albright et al. 2001;
Beniamine 2017; Lindsay-Smith et al. 2024.

24 Among others Bybee and Slobin 1982; Guzmdan Naranjo 2019a; Albright
and Hayes 1999; Albright et al. 2001; Arndt-Lappe 2011, 2014; Eddington 2000;
Matthews 2005, 2010, 2013; Skousen 1989; Skousen et al. 2002; Skousen 1992.

[ 432 ]



The typology of inflectional complexity

in a computational implementation. The reason is that it is not precise
enough to disambiguate cases where there is more than one variable.
For example, the alternation XaY < XYo is ambiguous for a (toy exam-
ple) form like badan because it is compatible with either badan::badno
(X=bad, Y=n) and badan::bdano (X=Db, Y=dan). The reason is that
there are no restrictions on how many segments each variable can
match, and there is no way of specifying which of the two -a- seg-
ments should be matched by the infix.

Computationally implemented formalisms of proportional analo-
gies go back several decades and have taken the form of automata
(Lepage 1998, 2004; Stroppa and Yvon 2005; Federici et al. 1995a,b;
Federici and Pirrelli 1997), string unification (Carstairs 1998, 1990),
and more recently context rich alternation patterns (Albright and
Hayes 1999; Albright et al. 2001; Beniamine 2017), and typed-feature
structures (Guzman Naranjo 2019a). Of these, the only formalisation
which would be useful for us given the current state of development
and tools for automatic induction is that of Beniamine (2017). The
idea of context-rich alternation proportions is that they express al-
ternations in the same spirit of the X-notation, but they are stricter,
and less flexible, thus producing unambiguous proportions. The gen-
eral form is X =Y/Z, meaning that X alternates with Y in the con-
text of Z. For the previous example, the contextual pattern could be
written as a_ = _o / bad_ _, where the underscores can match single
segments, and which would only allow for the match badan::badno.
While the context-rich pattern approach is certainly an improvement
over previous formalisms, it lacks some expressive power and it can-
not easily capture more abstract patterns. For example, because this
technique does not have anything like named variables, it is not pos-
sible to express alternations that rely on reordering (e.g. metathesis)
or repeating segments (e.g. reduplication, lengthening). In the formal-
ism by Beniamine (2017), it is not possible to express that a matched
segment has to be repeated, or changed to a different position in
a string.

In this paper, I propose a modification of context-rich propotions.
One key insight of the approach by Beniamine (2017) is that alterna-
tions are bounded by one of the edges of the word. While his proposed
formalism usually needs to specify a lot of concrete (in terms of spe-
cific segments) contextual information, most of the time, all that is
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actually needed to avoid ambiguities is to know where from either
the right or the left the alternation is taking place. For example, if we
have the three pairs: badan::badno, tar::tro and kariaban::kariabno it
becomes clear that the alternation targets the vowel between the last
two consonants, and that everything before it stays constant.?® It is
not actually necessary to specify which consonants are at play, just
their positions. Doing so carries an important advantage, namely that
we can write more abstract patterns involving any two consonants.

It is important to note here that one of the reasons for using con-
textual information for Beniamine (2017) is that the context helps dis-
ambiguate inflection classes, for example, the context might indicate
that the alternation between /a/ and /o/ for some cell pair only hap-
pens if the preceding consonant is /n/. This is not important for the
present technique because I approach classification as a separate prob-
lem which can be solved on its own.

In order to be able to express patterns like metathesis and redu-
plication, I will rely on named variables. It is important to capture
these types of patterns because otherwise the system will need many
more individual proportions. For example, in a metathesis situation
where the last two segments undergo metathesis: Xab = Xba, if the
system cannot capture this pattern abstractly, we would need specific
proportions for every combination of segments that appears across all
forms. The same applies to reduplication but see below. The basic no-
tation has the following form:

@D)] [<X1,2> a <X2,2> = <X1,2> 0 <X2,2>]

Where variables, expressed in angled brackets, are tuples off unique
identifiers (X1, X2, X3, ...) and a matching potential, i.e., the number
of segments they must match. The matching potential, when expressed
with a number, means that the variable must match exactly that many
segments. Non-variables are expressed simply as lowercase letters, and
= separates the two parts of the proportion.

To express that some variables can match arbitrarily many seg-
ments, we allow for one named variable in the proportion to use ‘+’
(as in a regular expression) indicating that it can match 1 or more

25 One could, of course, characterise this example in terms of syllables, but in
this paper I will work exclusively on surface strings due to constraints my data.
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segments. However, in order to constrain proportions to specific rela-
tive positions within inflected words, proportions need to follow two
constraints: (i) in any given pattern, all variables must explicitly state
their matching potential (i.e. how many segments they must match),
and (ii) only one variable can match arbitrarily many segments. The
example in (2) shows what this looks like:

(2) [<X1,+>a <X2,2> = <X1,+> 0 <X2,2>]

The main reason for the restriction on the number of variables which
can have + as matching potential is computational. If a propor-
tions contains more than 1 variable with a +, then the proportion
can become ambiguous, just like proportions of the form XaY=XYo
are ambiguous in some cases, like in the case of badan::badno and
badan::bdano. Recall this pattern is ambiguous because it is not clear
which a should be matched. Fundamentally, any pattern of the form
[<X1, + > <X2,+ >...] will be ambiguous because given a 3 segment
string <abc>, there is no way to know whether X1 should match 1
or 2 segments, and both matches X1 = <a> and X1 = <ab> will be
valid. Restricting + to apply to maximally one variable removes the
potential for ambiguity. This should be emphasised: the main motiva-
tion for this constraint is purely computational: to remove potentially
ambiguous proportions. Ambiguous proportions lead to mis-inflection,
and would defeat the purpose of the system. From a theoretical per-
spective, this restriction seems to match our expectations for most in-
flectional systems. Languages in the dataset do not allow for infixation
operations in free positions within words, which is what XaY states.
To my knowledge, operations are either constrained to an edge (or
distance to it), or apply across the whole word systematically (e.g.
harmony).

A potential type of counter example would be a language in which
morphological alternations are constrained by lexically-specified pho-
nological or prosodic cues, which can occur anywhere within the
word, and which are independent of word boundaries. For exam-
ple, a language in which stressed syllables undergo an alternation as:
‘pokolo::’pakolo, po’kolo::po’kalo, poko’lo::poko’la, would require pat-
terns with two variables with + as matching potential. In such a case,
the proportions would not be ambiguous because the cue would only
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allow one match.2® A second type of potential exception are languages
which have been described as having free morph order like Chintang
(Bickel et al. 2007) and Mari (Luutonen 1997, as cited by Bonami
and Crysmann 2013). So far, it remains unclear how these languages
should be handled from a W&P perspective. As far as I can tell, none
of the languages in my sample require these type of proportions with
multiple variables with + matching potential.

Throughout this paper I will refer to these proportions as local in-
flection classes, and contrast it with global inflection classes. While two
lexemes can share local inflection classes for some set of cell pairs,
they do not have to share the same global inflection class. I favour the
term local inflection class over something more traditional like cell real-
isation, because these proportions are meaningless for individual cells,
and only really express the relation between two cells. It is important
to note that a pattern like that in (2) fully determines the relation be-
tween the two cells in question (here Cell 1 and Cell 2). If we know
the realisation of Cell 1 for some lexeme L, we can unambiguously
deduce Cell 2, and the other way around, provided that we know the
local inflection class for Cell 1 — Cell 2 in L. If we know one cell of the
paradigm of a lexeme, we can deduce all other forms in its paradigm if
we know all its local inflection classes (i.e. all proportions to all other
cells). Effectively, being able to infer the whole paradigm of a lexeme
boils down to the classification problem (i.e. how to determine the
inflection class of an inflected form based on its phonology).

At some points in this text, I will use ‘.” as shorthand for any seg-
ment or number of segements: [ <X1,+ > = <X1,+ > .], in cases
referring to abstract proportions and not concrete analogies. Unlike
context-rich proportions, these proportions do not need to contain con-
textual information. For example, (3) is a proportion which includes
contextual information of where a change happens. In this example,
‘c’ acts as context because it is part of the non-contrastive material (i.e.
is present in both cells in the same position), and could be subsumed
by the variable.

26 Notice this is not the case when stress is not free to wander across the whole
word, but is fixed to some position from an edge, like Spanish; or cases in which
stress triggers phonological alternations without morphological contrast like in
Russian.
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3 [<X1,+>ca <X2,2> = <X1,+>co0 <X2,2>]

Proportions like (3) are unnecessary since the more general pattern
(2) already matches this same alternations, and even more cases.
This formalism allows for the following inflectional proportions:

. suffixes [<X1,+ > = <X1,+>.],[<X],+ > .= <X1,+ > ],
[<X1,+> .= <X1,+>]

« prefixes [<X1,+ > =. <X1,+ >], [. <X1,+>=. <Xl,+>]
* circumfixes [<X1,+ > =. <X1,+ > .]

- metathesis [<X1,+ > <X2,1> <X3,1> = <X1,+> <X3,1>
<X2,1>17%

- fixed suprasegmentals (e.g. tones marked with numbers):
[<X1,+>12= <X1,+> 3 1] or [<X],+ > <X2,1> =
<X1,+><X2,1>"]

+ reduplication [ <X1,+ > <X2,1> <X2,1>=<X1,+ > <X2,1>]

+ any combinations of the previous proportions

Except for reduplication, I implemented automatic induction
techniques for these proportions (including any and all combinations
between suffixes, prefixes, infixes, fixed suprasegmentals and metathe-
sis). That is, the computational implementation can automatically in-
duce proportions required to capture an inflectional system. This in-
duction technique tries to find the most economical, and the fewest
proportions that can express the relations between all pairs of cells
in a dataset.?® While expressing reduplication in this formalism is
straightforward, induction is not. For this paper, I do not implement
the induction of reduplication, mostly because it is not very common

27 Something to point out regarding metathesis is with the current formalism
each pattern has a fixed length, and different length metathesis would require
different patterns. For example, carabo:caraob and carator:caraort would require
two different patterns.

28 For reasons of space I do not discuss the techniques in detail here, but these
are provided by the packages analogyr (https://gitlab.com/mguzmann89/
analogyR) and paradigma (https://gitlab.com/mguzmann89/paradigma).
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in in the inflectional systems of my dataset®® and it is too costly for
the induction phase.

This formalization is not without drawbacks. I cannot currently
capture patterns that require feature structure representations, like
more complex supra-segmental structures or voicing alternations, but
extending the system to be able to capture these is straightforward.
There is nothing special about feature structure representations, and
they could be integrated into the formalism without any changes to
how proportions are expressed.3° There are two reasons for why I will
work with segments in this paper. The main one is that the datasets
do not have feature structure representations, and trying to induce
phonological representations from orthography is prone to mistakes,
without any guarantees that the resulting representation is any bet-
ter than the orthographic representation. The second reason is that
inference of complex feature alternations like downstep or harmony
patterns, is much too complex to be viable for this study.

Similarly, this system cannot represent abstractions which are
present in some languages, like reference to morphological struc-
ture (German vorspringen-vor-ge-sprungen (‘jump forward’), where
the <ge> occurs between a separable prefix and main verb), or the
already mentioned harmony, and voicing alternations. While it would
be preferable to have a system which can capture all abstractions of
the inflectional system of any and all languages, this is not the aim of
this paper. For this paper, we need a system that is capable of produc-
ing an inflected cell given another inflected cell in the paradigm of a
lexeme. The present formalism is in fact capable of doing this exactly
in all cases, even if some of the induced proportions are clumsy or too
specific from a human perspective.

29 Arguably, reduplication is the most frequent form of morphology since it is
present in languages without affixation. However, it does not play a significant
role in our data.

30 The simplest approach would be to allow vectors of phonological features
instead of or in addition to the individual segements, this would allow feature
structure alternations, for example, given a phonological representation of seg-
ments with 2 features (e.g. high and back, etc.), one could express: [ <X1,+ > 11
<X1,1>1 = <X1,+ > 10 <X1,1>0]. But other alternatives are possible, like
including syllable structure with onsets, nucleus and codas, etc.
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Additionally, while patterns like harmony are not directly cap-
tured by the system, it is unclear that we need to. For example, in Hun-
garian, stating that there is an abstract marker -Vk for first singular,
and the -V- harmonises with the stem: ldt-Idtok (‘see’) vs. szeret-szeretek
(‘love’), has the same effect as stating that there are two different
markers -ek and -ok, with inflection class restrictions. Since capturing
the correct classification of such cases is completely straightforward,
it is not evident that modelling systems like Hungarian without a spe-
cific harmony mechanism should produce different results in terms of
estimating the complexity of the system.

I will not discuss induction in detail in this paper, but the follow-
ing gives a short overview of how induction works. For every dataset:

1. Extract all cell pairs

2. For each cell pair Cell_1:Cell 2, calculate the analogical propor-
tions Cell_1 — Cell_2 and the proportion Cell_2 — Cell_1 (i.e. the
relations as above)

3. Since for each pair of forms there often are several alternative
valid proportions: 3!

« calculate all ‘best’ proportions

- after calculating all proportions for all items in Cell_1::Cell_2,
rank them by frequency

« for each form pair keep the most frequent proportion which
can apply to it

The result is a system of proportions that fully captures the pair-
wise relations in the paradigm.

The final issue is how to measure the E-complexity of a paradigm
using this system. I will use fragmentation as a metric of the rel-
ative complexity of a pattern. The fragmentation of a pattern is
simply the number of positions with contrastive material between
the left and right-hand sides of the proportion, i.e. the number
of non-variables. For example, if a pattern like [<X1,+> <=

31 Strictly speaking there is not need to choose between the many different
proportions, since all induced proportions work correctly for the specific lexeme.
This filter is useful for the classification step.
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<X1,+ > .] (e.g. sing:sings) has a fragmentation of 1, while a pat-
tern like [<X1,+ > .=. <X1,+ > .] (e.g. lachen:gelacht ‘laugh’
inf::participle) has a fragmentation of 3. This metric is indepen-
dent of the length and complexity of the actual markers, and their
position. Prefixes, infixes and suffix contribute 1 to the the total
fragmentation of a pattern. There is a relation between a tradi-
tional morph count approach and fragmentation in many situations.
In the simplest relation between two cells, syncretism, the frag-
mentation of the pattern will be 0. If the relation between both
cells is that of exclusively affixes or prefixes, then the fragmenta-
tion will be 2. A fragmentation of more than 2 means that there
are discontinuous inflectional markers, or a prefix-suffix combina-
tion, 32

There are several advantages to this technique for measuring
E-complexity. First, it completely sidesteps the issue of segmentation.
This approach does not need to find morphemes, morphs, stems or any
other theoretically motivated sub-lexical unit other than the contrasts
between two inflected forms. As a consequence, there is no need to
find any sort of optimal multiple alignment of a paradigm, all that is
needed are optimal pairwise alignments between cells.

The second advantage is that this method works with relatively
small datasets of a few dozen inflected lexemes, at least compared to
the types of datasets needed when working with automated morpheme
segmentation software, or corpus-based methods. In this approach,
we only need paradigms of the lexemes we are interested in, there is
no need for large corpora, as is the case with other tools.3 While in
this paper I have tried to include inflectional paradigms as complete
as possible, fragmentation could be calculated for just two cells. So
even if one has only very sparse, and incomplete information on some

32 This metric is inspired by Bonami and Beniamine (2021), however, in their
paper, the definition of the fragmentation of the stem would be equivalent to the
number of variables in our proportions, while in this paper I count the number
of non-variables in the proportions. In practice, there is very little difference
taking one or the other, and additional E-complexity metrics could be developed
following similar principles.

33 While tools like Morfessor can be used on similarly small datasets, they will
produce better results if trained on larger datasets.
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inflectional system, it should be possible to use fragmentation as a
measure of its E-complexity.

There are two final caveats regarding fragmentation. The first is
that it should be understood as an upper limit of E-complexity. Because
the induction method is not perfect, because the data lacks feature
structure represnetation, and because the formalism cannot deal with
all types of inflectional patterns found in the languages in question,
many of the resulting proportions are more complex than theoretically
required. The effect is that the measured fragmentation can be higher
than the real fragmentation of the language.

The second one is that fragmentation, and the way it is imple-
mented, assumes that all segment alignments matter, even those that
might not correspond to traditionally identified inflectional markers.
As an example under the current system, the alternation between the
Spanish first person singular and third person singular form in any as-
pect tense combination will contain an infix: canto::cantamos produce
s[<X1l,+> <X2,1> = <X1,+ > am <X2,1> s] because the o is
not contrastive material. While there might be arguments against this
type of full alignment,3* there two in favor. First, it is unclear from
a Word and Paradigm perspective why one should allow some but
not all segments to align, especially from a crosslinguistic perspec-
tive. Second, implementing an algorithm and computational system
to produce alignments which match linguistic intuition is remarkably
difficult.

Analogical classification

As mentioned in Section 2, I take a classification-based approach to
measure [-complexity. Instead of measuring the entropy of the system,
we try to predict the local inflection class of each lexeme based on its
phonological properties.®> Complexity of the system is then measured
in terms of accuracy. That is, if we can successfully predict all local

34 Notice that this is not a unique effect of making pairwise comparison. The
same type of alignment would arise in a multiple alignment.

35 There is good evidence that other factors like semantics can also play a role
in helping predict the inflection class of a lexeme. However, there is no semantic
information for most datasets in our sample. For this reason, I will only focus on
phonology.
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inflection classes of all lexemes in a morphological system, then the
accuracy is 1 and the complexity 0. If we can predict none of the
proportions the accuracy is 0 and the complexity is 1.

There are many approaches to analogical classification that have
been proposed in the literature, including Skousen’s Analogical Mod-
elling framework (Skousen 1989; Skousen et al. 2002; Skousen 1992;
Arndt-Lappe 2011, 2014), TiMBL (Daelemans and Van den Bosch
2005; Daelemans et al. 1998), Neutral Networks (Guzman Naranjo
2019a; Matthews 2005, 2010, 2013), Boosting Trees (Guzman Naranjo
and Bonami 2021; Bonami and Pellegrini 2022), and Minimal Gen-
eralization Learner (Albright and Hayes 1999; Albright et al. 2001),
among others. While most of these techniques would likely perform
very well on our data (see below for a comparison), they are too slow
in most contexts and do not scale very well.3® Additionally, some au-
thors who have pioneered the use of methods like LSTMs (Cotterell
et al. 2019) suggests very small datasets (< 500 lexemes) might not
be adequate for some of these techniques. Since we are predicting all
cells in a paradigm from all other cells pairwise, we need a method
that can be trained and cross-validated in as little time as possible, but
at the same time is as accurate as possible.%”

Here, for reasons of computational efficiency and conceptual sim-
plicity, I will use a k-Nearest Neighbours (k-NN) algorithm based on
an edge-weighted Levenshtein distance. The k-NN assigns the local in-
flection class of a word form based on its phonological similarity to its
nearest 5 neighbours. 3®

36 Here ‘too slow’ should be understood as too slow for most researchers’ re-
sources. Of course, with unlimited computing power and enough state of the art
GPUs, one could fit as many neural network models as needed within some rea-
sonable time limit. However, most researchers (including the author) working
on these issue have finite and limited computing power.

37 To give a simple example, the dataset for Latin verbs contains 254 cells in
total. This means 64,262 models (from every cell to every other possible cell), and
that times 10 to account for cross-validation gives 642,620. Assuming 1 minute
to train each model (which is rather optimistic for a Neural Network or Boosting
Tree), it would take over a year to capture verbal inflection in Latin.

381 arrived at this number as a good choice for N through some previous
testing. While it is possible that some systems would be better captured with a
different choice for N, trying to optimize each dataset would take too long.
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a s a ¢ Table 4:
0 1 2 3 4 Levenshtein distance between casa and basa
a 1 0 1 2 3
s 2 1 0 1 2
a 3 2 1 0 1
b 4 3 2 1 1

The traditional Levenshtein distance (Levenshtein 1966) calcu-
lates the minimum number of operations of insertion, deletion, and
substitution needed to convert a string s into a different string t. Ta-
ble 4 shows the calculation for the strings casa and basa.° In this case,
the number of operations necessary to transform casa into basa is one,
namely a substitution of ¢ for b.%° Table 4 shows all possible ways
of turning casa into basa using insertions, deletions and substitutions.
An operation is represented as a movement on the matrix. Horizontal
movement represents deletion, vertical movement representes inser-
tion, and diagonal movement represents either no operation (when
there is no change) or substitution. Each operation has a cost, and the
values are the accumulated cost. The smallest number of operations is
given on the bottom right corner.

While the Levenshtein distance captures the differences between
two strings, it ignores where in the strings these differences take place.
However, if we want to emphasise that differences at some edges are
more important than differences in the middle of the word, then we
need an edge-sensitive metric. We use an edge-sensitive metric instead
of a symmetric one for two reasons. First, an edge-sensitive metric
will give greater weight to what would traditionally be the segments
belonging to either suffixes or prefixes, which have been shown to play
a greater role in class assignment than segments that belong to what
would be analysed as the stem (Guzmén Naranjo 2020). Second, there
is ample research showing that the edges of a word play a greater role
in class assignment than the inner segments (Guzman Naranjo 2019b;
Arndt-Lappe 2011; Albright et al. 2001).

39Here I present the reversed strings. This is for clarity in the following ex-
amples below.

401t is possible to assign different costs to each operation, but I use a cost of
1 for each for illustration purposes.
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) Table 5 ind a S a c
Edge V\./elghted Levenshtein ind 0 1 9 3 4
distance between casa
and basa 0 0 1 1.5 1.83 2.08
a 1 1 0 0.5 0.83 1.08
S 2 1.5 1 0 0.33 0.58
a 3 1.83 083 033 0 0.25
b 4 2.08 1.08 0.58 0.25 0.25

Building an edge-weighted version of the Levenshtein distance
is straightforward: we divide the cost of the operation by its relative
position to the edge of the word (column ind in Table 5). For example,
for the previous pair of casa and basa, there is one difference in the
fourth position from the right edge of the word, meaning that the
distance is 0.25. Table 5 shows the corresponding table of operations
with accumulated cost. The row and column labelled ‘ind’ show the
position of the segment in question from the relevant edge of the word.
Notice it is possible to calculate either a right-edge weighted, left-
edge weighted, or right-left-edge weighted Levenshtein distance; for
the latter we simply average both left-edge and right-edge weighted
distances. *!

While most previous approaches to classification have used some
form of segmentation into stems and affixes, we can use fully inflected
forms as the basis for prediction. The target predictions are the local
inflection classes (i.e. the proportions induced as described in the pre-
vious section). A simple example will illustrate this. Table 6 shows two
cells of the paradigm of 4 Spanish verbs across two inflection classes.

The first step is to build the proportions (already given in the
table). These are the local inflection classes we want to predict.

Since we want to measure the I-complexity of the system, we try
to predict one cell from the other. Suppose we start with the prediction

4L The reader might find this approach to measuring the distance between
words unintuitive. The choice for this metric in this paper was purely practical,
and based on initial experiments on a smaller, different datasets, in which it
outperformed other Levenshtein-based metrics. It is of course possible that there
might be other, better metrics for individual languages, but we were unable to
find a better metric that worked consistently better cross-linguistically. See below
for some tests.
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Gloss 1.SG.PRES.IND  2.SG.PRES.IND Proportion

touch toco tocas <X1l,+ >0 = <X1,+ >as
eat como comes <X1l,+ >0 = <X1,+ >es
sweep barro barres <X1,+ >0 = <Xl,+ >es
drink tomo tomas <X1l,+ >0 = <Xl1,+ >as

from 2.SG.PRES.IND to 1.SG.PRES.IND. The first step is to calculate a
distance matrix based on the modified Levenshtein distance discussed
before, this is shown in Table 7. For each form, I have highlighted the
nearest neighbour.*? In this case, the nearest neighbour of comes is
not barres but tomas. If we were to do the assignment solely based on
this information, we would classify comes to the wrong class, namely
<X1,+>0 = <X1,+>as. However, we can do a filtering step, and re-
move proportions which are incompatible with the forms we are try-
ing to classify. This step simply means narrowing the search space to
those proportions which are real candidates for each lexeme in ques-
tion. In this case, <X1,+>0 = <X1,+>as is incompatible with comes
and thus we would correctly classify it as <X1,+>0 = <X1,+>es, and
the system would produce a perfect accuracy of 1.43

tocas comes barres tomas

tocas 0 1.3 1.45 0.33
comes 1.03 0 0.95 0.7
barres 1.45 0.95 0 1.45
tomas 0.33 0.7 1.45 0

There is one thing worth mentioning. In the previous example,
we used a right-hand-side weighted distance because we know Span-
ish is a suffixing language, and we know that the right-hand side of
verbs is more important than the left-hand side for inflection class as-
signments. However, for most systems, we cannot know beforehand
which of these three produces the best results for any given cell pair.

42 Since we only have 4 items in this example it makes no sense to use 5 nearest
neighbours, but the same logic would apply if we consider more neighbours.

43 This example is too simple because the filtering is enough to get a perfect
accuracy, but it helps illustrate the whole process.
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For this reason, for each cell pair, we try all three (right-hand-side,
left-hand-side, and average of both) and keep the best one (in terms
of accuracy). **

After having calculated the accuracy of all cell pairs in both di-
rections, we take the average accuracy of the paradigm as the I-com-
plexity of the paradigm.

Before discussing the results, I present a brief illustration on how
edge-weighted Levenshtein distances compare to regular Levenshtein
distances in a classification task, and we also compare these to a
more general classifier, namely Boosting Trees with XGBoost (Chen
and Guestrin 2016). For this comparison I picked 5 language datasets,
with two cells for each dataset. The datasets in question are: Hungar-
ian nouns, Latvian nouns, Yaitepec-Chatino verbs, Arabic verbs and
Navajo verbs. I chose these datasets somewhat randomly, trying to
maximise variety in terms of language families and paradigm struc-
ture. For each dataset, I first computed the proportions to go from
one cell to the other as described in Section 3.2.1. I then performed
the k-NN classification method described in this section using four
different distance metrics: Levenshtein Distance (LD), right-hand-side
edge-weighted LD (RHS), left-hand-side edge-weighted LD (LHS), and
left-right-hand-side edge-weighted LD (LRHS). For all datasets, I com-
puted the accuracy of predicting the inflection class of the pair from
each cell.

Additionally, I trained a Boosting Tree classifier using XGBoost.
Boosting Trees are a machine learning classification technique which
consists of sequentially fitting small classification trees, and aggre-
gating their predictions. Boosting Trees are similar in principle to
Random Forest, with the difference that Random Forest fits multiple
small classification trees randomly, while Boosting Trees work by se-
quentially fitting trees which target the errors in the previous tree. In
practice, Boosting Trees have been successfully used in several clas-
sification tasks (Bonami and Pellegrini 2022; Guzman Naranjo and

44 A single language could use different similarities for different cell pairs. For
example, if a cell pair analogy Cell 1 = Cell 2is [ <X1,+> .= . <X1,+>]
then doing Cell 1 — Cell 2 might work better with right hand side similarity
(because it has a suffix) while doing Cell 2 — Cell 1 might work better with left
hand size similarity because it has a prefix.
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Bonami 2021; Bonami et al. 2023), and they can perform extremely
well. T used slightly different meta-parameters for each dataset, but
the basic setup is that when predicting Cell 2 from Cell 1, I take the
5 to 7 final (or initial)*® segments of Cell 1, and use them as predic-
tors in the model. For each dataset, I optimised the meta-parameters
with grid-search until the model achieved the best accuracy possible.
In all cases, with k-NN and Boosting Trees, I performed 10-fold cross-
validation.

Table 8 shows a comparison of these models. First, there are the
results of k-NN using a simple Levenshtein distance and k = 5. Second,
the results of k-NN with an edge-weighted Levenshtein distance and
k =5, the table shows results for the right-hand-side edge (RHS), left-
hand-side edge (LHS), and left- and right-hand-side (LRHS) distances.
Finally, it shows the results of a Boosting Tree algorithm trained on
the N final (or initial) segments of the source inflected form, and the
results of TiMBL fitted to the whole word.

The results show two key points. First, the accuracy of the edge-
weighted Levenshtein distance models are systematically higher than
the accuracies of the regular Levenshtein distance models, even if
only by a small amount in some cases. The implication is that edge-
weighting distances produce either equivalent, or better results in
these five languages, and cell pairs which were chosen for their di-
verse structures. In some cases, like Hungarian and Latvian, the dif-
ference between regular LD and edge-weighted LD can be as dramatic
as 11 percentage points. This performance difference is enough to jus-
tify preferring edge-weighted LD for our purpose. Second, and equally
as important, the Boosting Tree classifier can outperform the distance-
based k-NN classifiers most of the time, *® and in some cases, by a very
large margin, like in Yaitepec-Chatino or Navajo. This is perhaps not

451 experimented with both sides, and chose the one which produced the best
performance

46 The cases in which it does not, it reaches a very comparable accuracy. It
is unclear why XGBoost sometimes struggles to outperform the k-NN classifiers,
but here two factors are likely at play. First, machine learning techniques like
XGBoost work better with larger datasets, and some of our datasets in this ex-
periment are not very large (fewer than 1000 lexemes). Second, while I did my
best to optimise the hyper-parameters of the models, it is possible that a different
parametrization could produce in better results.
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surprising, as Boosting Trees can pick up much more complex patterns
in the data. The implication is that the results I present in this paper
are a complexity baseline, and that it is likely that with more time and
computational resources one could fit models which result in higher
accuracy and lower complexity that the ones I present here.

Taking stock, these results show that one word edge is clearly
more important than the other edge for classification purposes, and
that edge-weighted Levenshtein distances outperform regular Leven-
shtein distances; and also, that more sophisticated classification tech-
niques should be able to produce better results.

RESULTS

This section presents the main results of this paper. It is divided into
three subsections. First, I discuss the results for I-complexity, then the
results of E-complexity, and finally I look at the relations between
the two. One crucial fact to keep in mind is that these results should
be interpreted as upper bounds on complexity. As I mentioned when
discussion the classification method, it is likely that more advanced
classifiers would produce lower I-complexity, but the same is true re-
garding E-complexity. A more sophisticated approach to inducing pro-
portions could be able to reduce the fragmentation of many patterns
by finding better and simpler abstractions.

I-complexity

First, let us analyse the mean I-complexity across the whole paradigm
of each language for each sample size.#’ These results are shown
in Figure 1. The accuracy value for each dataset is the mean ac-
curacy acrosss all cell pair predictions. There are several important
points worth mentioning here. First, most languages have accuracies

47 Recall that for all datasets, we created random subsamples of 200, 500,
1000, 2000, and 5000 lexemes. This allows us to better compare across all lan-
guages, for those datasets with very few lexemes.
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above 0.7 for all sample sizes, for adjectives, nouns, and verbs, and
accuracies above 0.8 for sample sizes 2000 and 5000. Even with the
very crude approach to classification taken in this paper, and even
when only looking at 200 lexemes, we find that most systems have
an accuracy above chance level. While these relatively high accura-
cies might seem unsurprising to linguists familiar with computational
work on predicting class assignment of words, these results show that
a very simple method for classification can achieve very high accu-
racies cross-linguistically, for many different types of inflectional sys-
tems, only based on phonological distances. It is important to note that
these results should be understood as upper complexity limits. More
sophisticated classification techniques like LSTMS are likely to be able
to produce much better average accuracy scores. If the model reaches
a mean accuracy of 96% for some language, this does not mean that
the remaining 4% of cell pairs are unpredictable. Rather, it means that
given the method and data we were only able to predict 96% of cell
pairs. It is very likely that either a more sophisticated method like the
ones mentioned in the background section, or more (e.g. simply more
lexemes) and better data (e.g. semantic information), would allow us
to reach a higher accuracy.

Another key point to remark on is that we are not choosing the
best principal part for these results, but rather testing all possible cells
and averaging across them. These results are averaged from the worst
predictive cells and the best predictive cells. This observation connects
to the second point, which is that inflection systems that are usually
thought of as needing multiple principal parts, like Latin or Spanish
verbs do not actually seem to need principal parts given that the mean
accuracy is so high (>0.95 for 5000 lexemes). It is likely that some
cells are very bad at predicting some other cells, but more often than
not, knowing only one cell is enough to predict a good portion of the
remaining cells as can be seen from the results.

If we were to pick the best predicting cell (akin to choosing
the principal part), then the accuracy results can go up dramati-
cally. For example, for Spanish verbs, the worst predictive cell in
the 5000 sample size is the first singular present of the indica-
tive with 0.86, while the best predictive cell is the infinitive with
0.98. Similarly, for Latin, the worst predictive cell in the 5000 sam-
ple size is FIN.IND.PRES.ACT.1.SING with a mean accuracy of 0.84,
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while the best predictive cell is FIN.IND.FUT.ACT.3.SING with a
mean predictive accuracy of 0.96. This fact further points toward
the interpretation that I-complexity seems to be rather low cross-
linguistically. Moreover, these results are an alternative way of mea-
suring complexity similar to the principal parts approach, but without
the challenges that are related to identifying principal parts already
discussed.

A third point worth noting is that there is a very large amount
of variation across languages. While some languages like Telugu (tel)
have very low complexity in their verbal paradigm, others like Zenaga
(zen) have a much larger complexity. There is also variation across
domains for the same language. For example, Irish (gle) has a high
complexity in the adjectival and nominal system, but lower complex-
ity in the verbal system. These results do not show any clear tendency
in terms of I-complexity across domains. While some languages are
equally simple in all three domains (e.g. Armenian, hye), others are
similarly complex across domains (e.g. Faroese, fao). The only clear
trend appears to be that adjectives have lower complexity for this sam-
ple (although the sample has fewer adjective paradigms than verb or
noun paradigms).

There are two clear exceptions to the high predictability result:
Navajo (nav) and Yaitepec Chatino (yai). For languages like Navajo
and Yaitepec Chatino, these results suggest that knowing just one cell
is clearly not enough, and they raise the question of how many cells we
need to know in these languages to be able to deduce the remaining
cells. I discuss Navajo in some more detail next.

In the dataset, Navajo verbs can inflect for 7 persons: 1, 2, 3,
30, 3a (fourth person), 3s (space), and 3i (indefinite);*® 3 numbers:
singular, dual and plural; and 5 TAM categories: future (FUT), imper-
fective (IPFV), iterative (ITER), optative (OPT) and perfective (PFV)
(see Young 2000, for a more complete description of Navajo verbal
inflection). Most verbs in our data have somewhere between 50 cells
and 70 cells. Tables 9 and 10 show the inflection table for three verbs:
adika’ (‘to play cards’), ndhdshne (‘to hope around’) and yish’aah (‘to
eat’).

48 This is only a small fragment of Navajo verb conjugation, because the
dataset only includes subject indices.
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Table 9: Conjugation of adika’ (‘to play cards’), ndhdshne (‘to hope around’)
and yish’aah (‘to eat’), part 1

Tense Person Number ’adiishk’ddh ndhdshne’ yish’aah
FUT 1 SG 2atite:[k’a:d nahote:(t{’ah te:f?am
FUT 1 DL Patitizk’axd nahoti:t{’ah tiraxd
FUT 1 PL tati?tizk’a:d ntahoti:tf’ah tati:?am
FUT 2 SG Patiti:k’a:d nahoti:tf’ah ti?amd
FUT 2 DL ?atito:hk’a:d nahoto:htf’ah to:h?a:d
FUT 2 PL tatizto:hk’a:l  ntahoto:htf’ah tato:h?a:t
FUT 3 SG 2atito:k’a:d nahoto:t{’ah torra:d
FUT 3 PL tati?to:k’axt ntahoto:t{’ah tato:?a:d
FUT 3a SG ?aztitork’axt naho3to:tf’ah tfitor?a:d
FUT 3a PL tatiz?to:k’ait  ntahozto:tf’ah tagto:?a:
IPFV 1 SG ?ati:fk’ath nahaftf’a:h jif2ath
IPFV 1 DL ?ati:k’a:h nahwi:tf’a:h jirrath
IPFV 1 PL ta?tiztk’azh ntahwi:tf’azh tei:?ath
IPFV 2 SG ?ati:k’ath nahétf’ath ni?a:h
IPFV 2 DL ?ato:hk’a:h nahohtf’ath woh?a:h
IPFV 2 PL ta?to:hk’a:h ntahoht{’a:h ta:h?a:h
IPFV 3 SG ?ati:k’ath nahat{’a:h jitazh
IPFV 3 PL ta?tizk’azh natahat{’a:h ta:2a:h
IPFV 3a SG ?azti:k’azh nahotfit{’a:h ffizath
IPFV 3a PL taz?titk’ath ntahotfitf’a:h tatfi?ath
ITER 1 SG n?ti:fk’ath ninihaft’ah néf?a:h
ITER 1 DL n?ti:k’ath nindhwi:t{’ah néi;?a:h
ITER 1 PL nta?ti:xk’azh ninatahwi:tf’ah  niteir?ath
ITER 2 SG n2ti:k’ach ninahétf’ah nani?a:h
ITER 2 DL n?to:hk’a:h nindhéhtf’ah nah?a:h
ITER 2 PL nta?tothk’ath  ninatahohtf’ah  rta:th?a:h
ITER 3 SG nztik’ath nindhat{’ah narah
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Tense Person Number ’adiishk’ddh  ndhdshne’ yish’aah
ITER 3 PL Ata?tizk’azh nintahat{’gh nta:?a:h
ITER 3a SG niz?2tiztk’ath nindhotfitf’ah ntfizath
ITER 3a PL itaz?tizk’ath  ninatahotfitf’'ah  Atatfi?ath
OPT 1 SG 2ato:fk’a:t nahéftf’ach wofra
OPT 1 DL 2ato:k’a:d naho:tf’ach wo:?a:d
OPT 1 PL ta?to:k’a:d ntaho:tf’a:h tao:?am
OPT 2 SG 2atodk’a:dt nahé:tf’a:h woé:réad
OPT 2 DL ?ato:hk’a:d naho:htf’azh wo:h?a:d
OPT 2 PL ta?to:hk’a:d ntaho:htf’a:h tao:h?a:d
OPT 3 SG 2ato:k’a:d nahét{’a:h worad
OPT 3 PL ta?to:k’a:d ntahétf’azh tao?a:
OPT 3a SG ?aztork’a:d nahot{6tf’a:h fforad
OPT 3a PL tag?tork’amt ntahot{6t’azh tatf6ra:d
PFV 1 SG Pati:dk’a:? nahofétf’a:? ji?a

PFV 1 DL 2ati:dk’a:? nahofi:tf’a:? jir?a
PFV 1 PL ta?ti:dk’a:? ntahofi:tf’a:? tei:?4
PFV 2 SG 2atinitk’a:? nahosinit{’a:? jini?§
PFV 2 DL 2ato:hik’a:? nahofo:t{’a:? wo:?34
PFV 2 PL ta?tothik’a:?  ntahofo:tf’a:? tao:?§
PFV 3 SG Pati:k’a:? naha3tf’a:? ji?4

PFV 3 PL ta?ti:dk’a:? ntaha3zt’a:? [EWE]
PFV 3a SG 2aztidk’a:? nahotfizt{’a:? f1:24
PFV 3a PL tazetidk’a:?  ntahotfiztf’a:? tatfi:?4

The main difficulty in Navajo seems to come from predicting
across TAM categories. Measuring the predictability within TAM
blocks (PFV cells only predicted from other PFV cells, etc.), the mean
accuracy of the system is 0.81, which is clearly much better than the
0.42 of the mean accuracy of the whole system. Looking at the best
predictors for each TAM block we get the results in Table 11. This
means that in Navajo, it is relatively easy to predict all cells of a verb
as long as you know one form for each of these blocks. Even taking the
worst predictors by TAM in Navajo, as shown in Table 12, the system
still has very high inter-predictability.
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] Table 11:
TAM  predictor accuracy

FUT  FUT.3.SG 0.947 for Navajo
IPFV  IPFV.3.SG 0.935
ITER ITER.3.SG 0.952
OPT  OPT.3.SG 0.962
PFV  PFV.3.SG 0.863
Table 12:

TAM  predictor accuracy

FUT  FUT.3LSG 0.805 for Navajo
IPFV  IPFV.1.PL 0.707
ITER ITER.1.PL 0.740
OPT  OPT.1.PL 0.731
PFV PFV.2.SG 0.645

This does not quite mean that Navajo necessarily requires five
principal parts. Table 13 shows that for FUT, IPFV, and OPT, the model
gets a relatively high accuracy from at least one cell from a different
TAM block. These results come from choosing the best predictor found
in a different TAM block. For FUT, the accuracy is lower (0.81), and
for PFV the accuracy is very low (0.403). This shows that the main
difficulty comes from predicting PFV from non-PFV cells.

What the Navajo example shows is that even apparently very com-
plex systems like Navajo have only limited I-complexity in the sense
that this complexity is mostly restricted to predicting across certain
TAM features, and it is not a general property of the whole system.

A different, but equally important question is whether the number
of lexemes in a corpus impacts our estimates of I-complexity. I built a

Table 13:
predictor predicted accuracy
ITER.3S.SG  FUT.3LSG 0.816 for Navajo
OPT.31.SG IPFV.3S.5G 0.846
FUT.3S.SG  ITER.1.DL 0.710
IPFV.35.SG  OPT.30.PL 0.803
OPT.30.PL.  PFV.3.PL 0.403
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the mean accuracy from the sample size and the part of speech (verb,
noun, or adjective) and controls for language by part of speech.>° Fig-
ure 2 shows the marginal effects of sample size on the mean accu-
racy. Overall, there is an effect of sample size on mean accuracy, but
this effect is relatively small, especially for adjectives. For verbs and
nouns, the model does not show any noticeable difference between
2000 and 5000 lexemes, but the difference between 200 and 5000 is
more clear. While having larger sample sizes can lead to higher accu-
racy estimates, it is not clear that relatively small number of lexemes
produce bad estimates. Moreover, we can be confident that higher
sample sizes lead to higher mean accuracy, meaning that estimates on
small sample sizes work well as a lower bound. The consequence is
that we can study I-complexity for languages using this method even
if we only have access to relatively small datasets. This is a key result.
This method allows us to study the I-complexity in languages with

491 used Stan (Carpenter et al. 2017) with brms Biirkner (2017) for all models
in this paper.

50 The formula in question in brms is mean-accuracy ~ mo(sample_size)
* pos + (1 + mo(sample_size) | language/pos), where mo is a function
to declare monotonic effects.
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considerably smaller resources than those needed when using LSTMs
(Cotterell et al. 2019).

E-complexity

As introduced in Section 3.2.1, we measure E-complexity in terms of
the fragmentation of the proportions between cells. Figure 3 shows
the mean fragmentation by language and sample size. For the most
part, fragmentation stays relatively stable across sample sizes except
for Northern Kurdish (kmr).>!

At the same time, the mean fragmentation for most languages
is higher than 2. This result shows that inflectional pairs of the form
stem+ ending 1:stem+ ending 2 are not the most common pattern in our
sample, and it shows that it is much more common to have at least two
breaks in inflectional pairs. This is even true in European languages
which are usually analysed in segmentation-based approaches as be-
ing composed of a (mostly invariant) stem and an ending. This does
not seem to be the most common situation on average. While these
fragmentation values are dependent on the chosen formalization of
proportions, they do suggest that for studies of inflectional complexity
methods which focus on suffixes and prefixes, and ignore alternations
within inflected words, could underestimate E-complexity.

Another important implication of these results is that approaches
which follow segmentation based on linguistic traditions, and which
are not designed to be language-independent, are likely to overesti-
mate the complexity of some languages, and to underestimate the
complexity of other languages. To illustrate this point, we can look
at the fragmentation of Arabic (ara), Spanish (spa), and English (eng)
verbs. The mean fragmentation of English verbs is of approximately
2.1, for Spanish verbs in the 5000 verb sample is of approximately 3.5,
and the mean fragmentation of Arabic verbs is of about 4. However, if
one simply follows traditional descriptions of these three languages,
Arabic is often characterised as having triconsonantal stems with dif-
ferent affixing schemas, while Spanish and English are characterised

51 The large difference in fragmentation of Kurdish between the smaller and
larger datasets is due to a subset of lexemes with additional periphrastic cells.
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as being a stem +ending type of languages. Our results show that the
difference (at least in terms of E-complexity) between Arabic on the
one hand, and Spanish and English on the other, is not a categorical
one, but rather a gradient one. While Arabic is in fact more complex
than English and Spanish, Spanish is much closer to Arabic than it is
to English.

Unlike I-complexity, we do find large variation in the E-complex-
ity of different languages, anywhere between 2 and 6 mean fragmen-
tation. This, despite the fact that our method treats all types of stem
changes in the same way. The result shows that some languages make
use of substantially more discontinuous markers (i.e. markers which
happen at separate positions) than others.

As with accuracy, we are interested in exploring how sample sizes
affect our estimates of fragmentation. I fitted a log-normal model®>2
with the same predictors as for accuracy.>® The result is similar to
the others for accuracy, but the effect goes in the opposite direction
in terms of complexity, that is, the larger the sample size, the higher
the E-complexity. This can be seen in Figure 4. Smaller sample sizes

adj n \

5000 ———— 5000 ———— 5000 e ——
2000 e ——— 2000 ———— 2000 ———
[0}
N
»
2
g 1000 C——— 1000 ——— 1000 C——
8
500 ——— 500 e —— 500 —————
200 — e ——— 200 ——g—— 200 ———

21 24 27 30 200 225 250 275 250 2.75 300 325 350
fragmentation

527 used a log-normal likelihood because our mean fragmentation values can
only be positive.

53 As before: accuracy ~ mo(sample_size) % pos +
(1 + mo(sample_size) | language/ pos).
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underestimate the E-complexity of the system, but the effect is very
small. Even at only 200 lexemes, the estimates are very close to the
estimates with 5000 lexemes. The likely explanation for this effect is
that larger samples contain more unique inflection patterns, or sup-
pletive forms which increase the mean fragmentation of the system.

E- and I-complexity trade-offs

A question that has been asked multiple times in typology is the
relation between the complexity of different parts of a grammati-
cal system. With respect to morphology in particular, Cotterell et al
(2019) propose a negative correlation between E- and I-complexity.
Namely, the authors find that as I-complexity increases, E-complexity
decreases, and the other way around. Cotterell et al. (2019) use a LSTM
approach to estimate the I-complexity of 36 languages, and paradigm
size as a measure of E-complexity.>* The implication is then that there
is effectively a trade-off in terms of complexity, and thus, arguably, a
sort of upper level of complexity for any inflectional system.

First, we want to compare the I-complexity results against E-com-
plexity measured in terms of paradigm size. Figure 5 shows the mean
accuracy by language and part of speech vs the number of cells in the
relevant paradigm.>> Unlike in the case of results reported by Cot-
terell et al. (2019), there does not appear to be any type of correlation
between I-complexity and the number of cells. There are two possi-
ble reasons for this discrepancy in results. One possibility is that our
approach to measuring I-complexity just does not show the type of
correlation that Cotterell et al. (2019) found. While this is possible,
it is not possible to test this explanation without direct access to the
original dataset used in that paper.® The alternative is that there is

54 However, Cotterell et al. (2019) only count the number of different cell
realisations, rather than total number of cells listed.

55Since some paradigms have a small amount of variation in the number of
cells a lexeme allows depending on the type of lexeme, I take the maximum
possible number of cells.

56 Cotterell et al. (2019) also use UniMorph data, but it is not completely clear
which version was used, because these datasets have seen changes since the orig-
inal study was published.
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bias in the dataset used by Cotterell et al. (2019), and that a larger
dataset removes any sort of bias of their smaller dataset.

However, this type of approach assumes that the relation between
E- and I-complexity happens at the level of the whole inflectional sys-
tem. There is no apriori reason why this should be the case, however.
It is more likely that the correlation, if any, should happen at the in-
dividual pattern level. For example, it is possible that relatively sim-
ple suffixing proportion with low fragmentation like X< Xa will also
be easier to predict than more complex proportions with higher frag-
mentation like uXiY < XaYo. To test this hypothesis, I fitted a bino-
mial model predicting the accuracy of each pattern from its fragmen-
tation and controlled for language. Because there is so much data,
and so many proportions, I had to downsample the dataset.®” First,
I restrict the model to results from the datasets with 1000 lexemes.
Additionally, since verbs can have many cells (sometimes in the hun-
dreds), I took a random sample of 500 proportions per language for
the verb dataset which left us with around 10,000 proportions instead
of 100,000 (about 6000 for nouns and 1800 for adjectives). This leaves

57 The issue arises because fitting the group-level effects with a correlation
structure is very slow and difficult (i.e. the funnel geometry of the space leads to
divergences in the sampling).
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us with a smaller dataset, which should still contain enough informa-
tion to allow us to estimate any effects in the data.

Ifitted a binomial model predicting pattern accuracy from its frag-
mentation. The question boils down to: is there are relation between
the I-complexity of a pattern and it’s E-complexity? I also controlled
for the type frequency of the pattern in the cell,>® as well as language
and part of speech.>® The main coefficients for the model are shown
in Figure 6. The results show a negative effect of the proportion’s frag-
mentation on the model’s accuracy predicting it, and, as expected, a
clear positive effect of frequency on accuracy, meaning that more fre-
quent proportions are easier to predict than less frequent ones. Since
accuracy is the opposite of complexity, it means is that a higher frag-
mentation in a pattern generally leads to higher complexity. This re-
sult is effectively the opposite of a complexity trade-off. More complex
proportions in terms of E-complexity also tend to be harder to predict,
while simpler proportions tend to be easier to predict.

58 A very frequent pattern, i.e. a pattern that applies to many lexemes in a
cell, could be easier to predict than a rarer one. The frequency of a pattern by
cell could be correlated with its complexity.

59The brms model was the following: correct | trials(total) ~ 1 +
fragmentation + log(total) + (1 + fragmentation | language/pos)
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Understanding why this effect happens in our data is not com-
pletely straightforward, but there are some potential explanations.

If more complex proportions are harder to predict, a reasonable
hypothesis is that the number of infixes in the proportions might be
driving this effect. To test this, we first look at the mean number of
infixes in low and high accuracy proportions. I looked at the results
from the datasets with 1000 lexemes. From these, I then extracted
the 100 proportions with highest accuracy, and the 100 proportions
with lowest accuracy for each language. The results shown in Figure
7. The pattern is clear: the most accurate proportions systematically
have the same or fewer number of infixes than the least accurate pro-
portions.

Next, we can approach the question from the opposite direction
and only look at the best performing proportions. For this, I further
restricted the sample to proportions with a frequency of between 2
and 100 (to control for effects of very high frequent proportions). I
also abstracted away all concrete material and matching potential to
get basic skeletal patterns: [<X>.< <X>.]. Then, I extracted the
10 most frequent proportions among those with an accuracy of 1,
those with an accuracy higher than 0.95, and those with an accu-
racy higher than 0.9, and then compare their relative frequency in
those subsamples to their relative frequency in the whole dataset. I
did this experiment aggregating across all languages. The results of
this comparison are shown in Table 14. By comparing the values in
columns ‘acc=1’, ‘acc>0.95’, ‘acc>0.9’ to the values in the baseline
column ‘total sample’, one can see the extent to which a pattern is
over-represented among the most-accurate proportions, relative to its
overall frequency.

Out of the 10 most frequent proportions on the three subsam-
ples, only [ <X>.= <X>.] shows any clear difference in relative fre-
quency between the subsample and the whole sample, but this differ-
ence is considerable. For the subsample on proportions with accuracy
of 1, this takes up 0.1 additional total frequency than in the whole
sample. What this mean is that the proportion [<X>.= <X>.] is
very common among easy to predict proportions, while we observe
more proportions with more infixes among the harder to predict pro-
portions. This helps create the observed correlation between E- and
I-complexity.
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Table 14: Relative frequency of most accurate proportions

Proportion acc=1 acc > 0.95 acc > 0.9 Total sample
<X>.5<X>. 0.49 0.44 0.43 0.39
<X>.<X>.=<X>.<X>. 0.09 0.10 0.10 0.09
<X>.<X> 5 <X>.<X> 0.07 0.07 0.07 0.07
<X>.<X>= <X>.<X>. 0.06 0.06 0.06 0.05
<X>.<X>.=<X>.<X> 0.04 0.05 0.05 0.05
<X>. 5 <X> 0.03 0.03 0.03 0.03
<X> s <X>. 0.02 0.02 0.03 0.03
<X>.<X>.<X> 5 <X>. <X>.<X> 0.02 0.02 0.02 0.02
<X>.<X>. = <X><X>. 0.01 0.01 0.02 0.02
<X><X>. 5 <X>.<X>. 0.01 0.01 0.01 0.02

CONCLUSION

In this paper, I have presented an approach to the typology of
paradigm complexity in the spirit of Word and Paradigm morphol-
ogy. I argue that a W&P approach is advantageous for doing cross-
linguistic work in inflectional morphology for multiple reasons. First,
it gets around the segmentation problem, and second, it allows for
relatively simple formalisation in the form of proportional analogies
that can be used for efficient automatic induction. I have presented
a concrete formalisation of proportional analogies, using named vari-
ables with matching potential, restricting morphological patterns to
be defined from the word boundary. With this formalisation, I have
shown that it is possible to measure both E- and I-complexity in many
typologically diverse morphological systems.

The results confirm previous results in the literature (Ackerman
and Malouf 2013). The I-complexity of most morphological systems
examined were relatively low, and increasing sample sizes leads to a
reduction in system complexity. In contrast, E-complexity is less con-
sistent across languages and parts of speech. The results also show
that there is a clear correlation between I- and E-complexity of in-
dividual patterns: patterns with higher E-complexity lead to higher
I-complexity. At the same time, there does not seem to be a clear cor-

[ 465 ]



Matias Guzmdn Naranjo

relation between I-complexity and paradigm size as has been reported
in the literature. The lack of a trade-off between different levels of mor-
phological complexity also point towards the conclusion that, among
morphologically complex languages, some are decidedly more com-
plex than others.

There are also some wider implications for the study of morpho-
logical typology in general. Using automatic induction has the advan-
tage of being neutral to linguistic tradition, and it allows for systematic
and comparable analysis for different languages. The fact that some
languages have traditionally been described as using root-and-pattern
morphology, or suffixes plus phonological rules for stem alternation,
does not play a role in this approach since we analyse everything from
a purely surface-based perspective. This is important because it is a
fundamental requirement to be able to carry out large scale quantita-
tive studies of morphological systems.

From a methodological perspective, this paper offers two contri-
butions. First, I have shown that computational work in inflectional
morphology is feasible with a relatively small number of lexemes.
While this is not a completely new insight, it is important to empha-
sise this point. The fact that data is somewhat limited for many lan-
guages does not mean that we need to exclude them in computational
approaches to morphology, it just means that we need to use tools ca-
pable of coping with small datasets. Second, I provided a new imple-
mentation of proportional analogies based on a new formalism. I have
shown one potential application of this method to the estimation of
inflectional complexity, but other applications are possible, and there
is potential for further research on automated morphological analysis.
At the same time, while this new formalism can capture a relatively
wide range of phenomena, there are still some gaps which we aim to
cover in future work, like inducing different types of reduplication and
implementing feature structures.
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