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Dependency trees have proven to be a very successful model to rep-
resent the syntactic structure of sentences of human languages. In
these structures, vertices are words and edges connect syntactically-
dependent words. The tendency of these dependencies to be short has
been demonstrated using random baselines for the sum of the lengths
of the edges or their variants. A ubiquitous baseline is the expected
sum in projective orderings (wherein edges do not cross and the root
word of the sentence is not covered by any edge), that can be com-
puted in time O(n). Here we focus on a weaker formal constraint,
namely planarity. In the theoretical domain, we present a characteri-
zation of planarity that, given a sentence, yields either the number of
planar permutations or an efficient algorithm to generate uniformly
random planar permutations of the words. We also show the relation-
ship between the expected sum in planar arrangements and the ex-
pected sum in projective arrangements. In the domain of applications,
we derive a O(n)-time algorithm to calculate the expected value of
the sum of edge lengths. We also apply this research to a parallel cor-
pus and find that the gap between actual dependency distance and the
random baseline reduces as the strength of the formal constraint on de-
pendency structures increases, suggesting that formal constraints ab-
sorb part of the dependency distance minimization effect. Our research
paves the way for replicating past research on dependency distance
minimization using random planar linearizations as random baseline.
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1 INTRODUCTION

The structure of a natural language sentence can be represented as a
(labelled) graph indicating the syntactic relationships between words
together with the encoding of the words’ order. In such a graph, the
edge labels indicate the type of syntactic relationship between the
words. Such a combination of graph and linear ordering, as in Figure
1, is known as syntactic dependency structure (Nivre 2006). When the
graph is (1) well-formed, namely, the graph is weakly connected, (2)
is acyclic, that is, there are no cycles in the graph, (3) is single-headed,
that is, every node has a single head (except for the root node), and (4)
there is only one root node (one node with no head) in the graph, then
it is called a syntactic dependency tree (Nivre 2006). There exist for-
mal constraints that are often imposed on dependency structures. One
such constraint is projectivity: a dependency structure is projective
if, for every vertex v, all vertices reachable from v in the underlying
graph form a continuous substring within the sentence (Kuhlmann and
Nivre 2006). Projectivity implies that (1) the root word of the sentence
(the root of the underlying syntactic dependency structure) is never
covered (as in Figure 1(a)) and (2) planarity, namely absence of edge
crossings (Figure 1 (a) and (b)). Indeed planarity is another constraint
that generalizes projectivity by allowing the root to be covered by one
or more edges (as in Figure 1(b)). Figure 1(c) shows a sentence that is
neither projective nor planar.

In this article, we study statistical properties of syntactic depen-
dency structures under the planarity constraint. Such structures are
represented in this article as a pair consisting of a (free or rooted)
tree and a linear arrangement of its vertices. Free trees are denoted as
T = (V, E), and rooted trees as T r = (V, E; r), where V is the set of
vertices, E the set of edges, and r ∈ V denotes the root vertex. Unless
stated otherwise n = |V |, that is, n denotes the number of vertices
which is equal to the number of words in the sentence. A linear ar-
rangement π (also called embedding) of a tree is a (bijective) function
(π : V → {1, . . . , n}) that maps every vertex u of a tree to a unique
position in {1, . . . , n}, which is denoted by π(u).

Projectivity, as well as planarity, can be alternatively defined on
linear arrangements using the concept of edge crossing. We say that
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Figure 1: Examples of sentences with their syntactic dependency structures; arc
labels indicate dependency distance (in words) between linked words. The rect-
angles denote the root word in each sentence. a) A projective dependency tree
(adapted from Groß and Osborne 2009). b) Planar (but not projective) syntactic
dependency structure (adapted from Groß and Osborne 2009). c) Non-projective
and non-planar syntactic dependency structure (adapted from Nivre 2009)

any two (undirected) edges {s, t}, {u, v} cross if the positions of their
vertices interleave. More formally, assume, without loss of general-
ity, that π(s) < π(t), π(u) < π(v) and π(s) < π(u). Then, edges
{s, t}, {u, v} cross in the linear ordering defined by π if π(s)< π(u)<
π(t) < π(v).1 We denote the total number of edge crossings in an
arrangement π as Cπ(T ). Then, an arrangement π of a rooted tree T r

is planar if Cπ(T r) = 0 and is projective if (a) it is planar and (b) the
root of the tree is not covered, that is, there is no edge {s, t} such
that π(s) < π(r) < π(t) or π(t) < π(r) < π(s). Planarity is a re-
laxation of projectivity where the root can be covered (Sleator and
Temperley 1993; Kuhlmann and Nivre 2006). Planar arrangements
are also known in the literature as one-page book embeddings (Bernhart
and Kainen 1979).

In this article, the main object of study is the expectation of the
sum of edge lengths (or syntactic dependency distances) in planar
arrangements of free trees. The length of an edge connecting two
syntactically-related words, also known as dependency distance, is
usually2 defined as the number of intervening words between u and v

1Notice that this notion of crossing does not depend on edge orientation.
2Another popular definition is δuv(π) = |π(u)−π(v)| − 1 (Liu et al. 2017).
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Figure 2:
Examples of sentences with
their syntactic dependency

structures; arc labels
indicate dependency

distance. The rectangles
denote the root word in

each sentence. Examples
adapted from Morrill 2000.

The sum of edge lengths
are D = 18 for (a) and

D = 12 for (b)

John gave the painting that Mary hated to Bill

John gave Bill the painting that Mary hated
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in the sentence plus 1 (Figure 1). It is defined mathematically as
δuv(π) = |π(u)−π(v)|.

We define the total sum of edge lengths in π as

(1) Dπ(T ) =
∑
uv∈E

δuv(π).

Close attention has been paid to this metric in modern linguistic re-
search since its causal relationship with cognitive cost was first put for-
ward, to the best of our knowledge, by Hudson 1995. The main causal
argument is that the longer the dependency, the greater the mem-
ory burden arising from decay of activation and interference (Hudson
1995; Liu et al. 2017). A number of studies have exposed the gen-
eral tendency in languages to reduce D, the total sum of edge lengths,
a reflection of a potentially universal cognitive force known as the
Dependency Distance Minimization principle (DDm) (Ferrer-i-Cancho
2004; Liu 2008; Futrell et al. 2015; Liu et al. 2017; Ferrer-i-Cancho
et al. 2022). As an example of such cognitive cost, consider the sen-
tences in Figures 2(a) and 2(b): it is not surprising that the latter is pre-
ferred over the former due to smaller total sum of edge lengths (Morrill
2000), the former’s being D = 18 and the latter’s being D = 12.

Statistical evidence of the DDm principle has been provided show-
ing that dependency distances are smaller than expected by chance in
syntactic dependency treebanks (Ferrer-i-Cancho 2004; Liu 2008; Park
and Levy 2009; Gildea and Temperley 2010; Futrell et al. 2015; Liu
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et al. 2017; Ferrer-i-Cancho et al. 2022; Kramer 2021). Typically, the
random baseline is defined as a random shuffling of the words of a
sentence. To the best of our knowledge, the first known instance of
such an approach was done by Ferrer-i-Cancho 2004, who established
the DDm principle by comparing the average real D(T ) of sentences
against the corresponding expected value in a uniformly random per-
mutation of sentences’ words. More formally, Ferrer-i-Cancho 2004
calculated the expected value of D(T ) when the words of the sentence
are shuffled uniformly at random (u.a.r.), that is, when all n! per-
mutations are equally likely. This value is denoted here as E [D(T )].
Ferrer-i-Cancho 2004 found that

(2) E [D(T )] = n2 − 1
3

.

In spite of the simplicity of Equation 2, the majority of researchers
have used as random baseline the expected sum of edge lengths con-
ditioned to projective arrangements (Temperley 2008; Park and Levy
2009; Gildea and Temperley 2010; Futrell et al. 2015; Kramer 2021)
which we denote here as Epr [D(T

r)]. However, this baseline has been
computed approximately via random sampling of projective arrange-
ments. For these reasons, a formula to calculate the exact value of
Epr [D(T

r)] in linear time was derived by Alemany-Puig and Ferrer-i-
Cancho 2022

(3) Epr [D(T
r)] =

1
6

∑
u∈V

sr(u)(2dr(u) + 1)− 1
6

,

where sr(u) denotes the size (in vertices) of the subtree of T r rooted at
u, and dr(u) is the out-degree of u in T r . In spite of its extensive use,
the projective random baseline has some limitations. First, the per-
centage of non-projective sentences in languages ranges between 18.2
and 26.4 (Gómez-Rodríguez 2016) or between 6.8 and 36.4 (Gómez-
Rodríguez and g 2010) (see also Havelka 2007). The limited coverage
of projectivity raises the question if the projective baseline should be
used for sentences that are not projective as it is customary in research
on dependency distance minimization. In addition, projectivity per se
implies a reduction in dependency distances, which raises the ques-
tion if that rather strong constraint may mask the effect of the depen-
dency distance minimization principle under investigation (Gómez-
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Rodríguez et al. 2022). Here we aim to make a step forward by consid-
ering planarity, a generalization of projectivity, so as to increase the
coverage of real sentences and reduce the bias towards dependency
minimization in the random baseline. The percentage of non-planar
sentences in languages ranges between 14.3 and 20.0 (Ferrer-i-Cancho
et al. 2018) or between 5.3 and 31 (Gómez-Rodríguez and g 2010). The
latter range is consistent with earlier estimates (Havelka 2007).

This article is part of a research program on the statistical prop-
erties of D(T ) under constraints on the possible linear arrangements
(Ferrer-i-Cancho 2019; Alemany-Puig et al. 2022; Alemany-Puig and
Ferrer-i-Cancho 2022). The remainder of the article is divided into two
main parts: theory (Section 2) and applications (Section 3).

The theory part (Section 2) is structured as follows. In Section 2.1,
we introduce notation used throughout that part. In Section 2.2, we
first present a characterization of planar arrangements so as to identify
their underlying structure, which we apply to count their number for
a given free tree, and later on in Section 2.3, to generate them u.a.r.
by means of a novel O(n)-time algorithm. In Section 2.4, we use said
characterization to prove the main result of the article, namely that
expectation of D(T ) in planar arrangements can be calculated from
the expectation of projective arrangements, as the following theorem
indicates.
THEOREM 1 Given a free tree T = (V, E),

Epl [D(T )] =
1
n

∑
u∈V

E�pr [D(T
u)](4)

=
(n− 1)(n− 2)

6n
+

1
n

∑
u∈V

Epr [D(T
u)] ,(5)

where E�pr [D(T
u)] is the expected value of D(T u) in uniformly random

projective arrangements π of T u such that π(u) = 1 and Epr [D(T
u)]

(Equation 3) is the expected value of D(T u) in uniformly random projective
arrangements of T u, the free tree T rooted at u.
Table 1 summarizes the theoretical results obtained in previous arti-
cles and those presented in this article.

The applications part (Section 3) is structured as follows. In Sec-
tion 3.1, we apply Theorem 1 to derive a O(n)-time algorithm to
calculate Epl [D(T )]. Since Alemany-Puig and Ferrer-i-Cancho 2022
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Table 1: Summary of the main mathematical results for increasing constraints on
linear orders. Results for the unconstrained and projective cases are borrowed
from previous research (Ferrer-i-Cancho 2004 and Alemany-Puig and Ferrer-i-
Cancho 2022, respectively). Results for the planar case are a contribution of this
article. Npr(T r), Npl(T ) and N(T ) denote the number of distinct projective, pla-
nar and unconstrained linear arrangements, respectively, of a rooted tree T r or
of a free tree T . Epr [δuv], Epl [δuv] and E [δuv] denote the expected length of an
edge in random linear arrangement for the projective, planar and unconstrained
cases, respectively. Epr [δuv | s] is the expected value of δuv conditioned to having
vertex s as root of the tree. In Epr [δuv] the root is vertex r

Unconstrained (T ) N(T ) n!

E [δuv]
n+ 1

3

E [D(T )] n2 − 1
3

Planar (T ) Npl(T ) n
∏
u∈V

d(u)!

Epl [δuv] 1+
1
n

∑
s∈V\{u,v}

Epr [δuv | s]

Epl [D(T )]
(n− 1)(n− 2)

6n
+

1
n

∑
u∈V

Epr [D(T
u)]

Projective (T r) Npr(T r)
∏
u∈V

(dr(u) + 1)!

Epr [δuv]
1
6
(2sr(u) + sr(v) + 1)

Epr [D(T
r)]

1
6

�
−1+
∑
v∈V

sr(v)(2dr(v) + 1)
�

showed that Epr [D(T
r)] can be evaluated in time O(n), Equation 5

naturally leads to a O(n2)-time algorithm if it is evaluated ‘as is’.
However, we devise a O(n)-time algorithm to calculate Epl [D(T )].
In Section 3.2, we apply this and previous research on the projective
case (Alemany-Puig and Ferrer-i-Cancho 2022) to a parallel syntactic
dependency treebank. We find that the gap between the actual depen-
dency distance and that of the random baseline reduces as the strength
of the formal constraint on dependency structures chosen for the ran-
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dom baseline increases, suggesting that formal constraints absorb part
of the dependency distance minimization effect.

Finally, in Section 4, we review all the findings and make sugges-
tions for future research.

From this point onwards, the article is organized to ease reading
by readers of distinct profiles. Readers interested in the analysis of syn-
tactic dependency treebanks can jump directly to Section 3.2. Readers
interested in the algorithm for computing Epl [D(T )] can jump directly
to Section 3.1, after reading Section 2.1. Readers whose primary inter-
est is applying the algorithms have ready-to-use code: both methods
to generate planar arrangements (Section 2.3) and the O(n)-time cal-
culation of Epl [D(T )] (Section 3.1) are freely available in the Linear
Arrangement Library3 (Alemany-Puig et al. 2021).

2 THEORY

2.1 Definitions and notation

We use u, v, w, z to denote vertices, r to always denote a root vertex,
and i, j, k, p, q to denote integers. The edges of a free tree are undi-
rected, and denoted as {u, v}= uv; those of rooted trees are directed,
denoted as (u, v), and oriented away from r towards the leaves.

Let Γ (u) denote the set of neighbors of u ∈ V in the free tree T ,
and let Γr(u) denote the out neighbors (also, children) of u ∈ V in
T r . Notice that, Γr(u) ⊆ Γ (u) with equality if, and only if u = r. Let
dr(u) = |Γr(u)| denote the out-degree of vertex u of a rooted tree T r ,
and let d(u) = |Γ (u)| denote the degree of u in a free tree T . Notice
that dr(u) = d(u)− 1 when u 6= r and dr(r) = d(r). Furthermore, we
denote the subtree rooted at v with respect to root u as T u

v (obviously
T r

r = T r), and its size as su(v) = |V (T u
v )| (Figure 3). We call this

directional size (Hochberg and Stallmann 2003; Alemany-Puig et al.
2022). Note that sv(u) + su(v) = n for any uv ∈ E.

3https://github.com/LAL-project/linear-arrangement-library/
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T

u v

u

v

T ua) b)

Figure 3: a) A free tree T , where d(u) = 4, and d(v) = 5; in this tree, su(v) = 5
and sv(u) = 4. b) The free tree T rooted at u, denoted as T u, where du(u) =
dT u(v) = d(u) = 4, and where 4 = du(v) = dT u(v) < d(v) = 5. Figure borrowed
from Hochberg and Stallmann 2003 and Alemany-Puig et al. 2022

As in previous research, we also decompose an edge (r, u) in a pro-
jective arrangement π into two parts: its anchor and its coanchor, as
in Figure 4 (Shiloach 1979; Chung 1984; Alemany-Puig and Ferrer-
i-Cancho 2022). Informally, αru(π) is the number of vertices in π
covered by (r, u) in the segment of T r

u including vertex u (Figure 4);
similarly, βru(π), is the number of vertices of π covered by (r, u) in
segments that fall between r and u (Figure 4). The length of an edge
connecting r with u can be expressed with the formula

δru(π) = |π(r)−π(u)|= αru(π) + βru(π),

where αru(π) is the length of the anchor and βru(π) is the length of
the coanchor. The length of the anchor and coanchor can be formally
defined as

αru(π) = |π(u)−π(z)|+ 1

βru(π) = |π(z)−π(r)| − 1,

where z ∈ V (T r
u ) is the vertex of T r

u closest to r in π (Figure 4). The
same notation with π omitted, αru and βru denote random variables.
Furthermore, it will be useful to define the operator �, which we use
to condition expected values and constrain sets of arrangements of a
rooted tree, in both cases to arrangements π where (only) the root is
fixed at the leftmost position of π. For instance, if S is a set of arrange-
ments π of a rooted tree T r then S� = {π ∈ S | π(r) = 1}. Moreover, if
X is defined on uniformly random arrangements from S then E� [X ] is
the expected value of X in uniformly random arrangements from S�.

Finally, in this article we consider that two arrangements π and
π′ of the same tree T are different if there is (at least) one vertex u for
which π(u) 6= π′(u).
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Figure 4:
Illustration of an edge’s anchor αru(π)

and coanchor βru(π). In this figure,
u, v, w ∈ Γ (r). Figure adapted

from Alemany-Puig and Ferrer-i-Cancho 2022
r

αru(π)

T r
u

βru(π)

T r
v T r

w
u z

2.2 Counting planar arrangements

It is well known that the number of unconstrained arrangements of
an n-vertex tree is n!. This is true given that arrangements are simply
permutations, and unconstrained arrangements are not subject to any
particular constraint, thus all vertex orderings are possible. Building
on the fact that projective arrangements span over contiguous inter-
vals (Kuhlmann and Nivre 2006), Alemany-Puig and Ferrer-i-Cancho
2022 studied the expected value of the random variable D(T r) in such
arrangements by defining, as usual, a set of segments Φu associated to
each vertex u, consisting of the segments associated to the subtrees
T r

u1
, . . . , T r

up
and u. A segment of a rooted tree T r

u is a segment within the
linear ordering containing all vertices of T r

u , an interval of length sr(u)
whose starting and ending positions are unknown until the whole tree
is fully linearized; thus, a segment is a movable set of vertices within
the linear ordering (Alemany-Puig and Ferrer-i-Cancho 2022). For a
vertex u, the set Φu is constructed from vertex u’s segment and the
segments of its children Γr(u) = {u1, . . . , uk} (Figure 5). Decomposing
every vertex and its segments from the root to the leaves linearizes T r

into a projective arrangement (Figure 5). This characterization led to a
straightforward derivation of the number of projective arrangements
of a rooted tree T r (Table 1)

(6) Npr(T
r) =
∏
u∈V

(dr(u) + 1)!.

Using the structure of segments summarized above, we present
a characterization of planar arrangements of free trees which helps
to devise a method to generate planar arrangements u.a.r. (Section
2.3.3) and to prove Theorem 1 (Section 2.4). To this aim, we define
P�pr(T

r) as the set of projective arrangements of a rooted tree T r such
that π(r) = 1, and denote its size as N�pr(T

r) = |P�pr(T
r)|. Notice that
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r1

r

r2 rp

u1 u2 uq

a)

b)

T r
r1

T r
r2

T r
rp

T r
u1

T r
u2

T r
uq

T r
r1

T r
r2

T r
rp

r

c)

T r
u1

T r
u2

T r
uq

r1

Φr :

Φr1
:

Figure 5:
a) A rooted tree T r where
Γ (r) = {r1, . . . , rp} are the p children
of r. The subtree T r

r1
has been circled

for clarity. b) An example
of a permutation of the segments
in Φr associated to the root.
c) An example of a permutation
of the segments in Φr1

associated
to r1, the segment at the leftmost
position in the example in (b).
The dash-dotted edge in (b) and in (c)
represent the same edge of the tree.
In (b) and (c), respectively, r and r1

are segments of length 1

when a vertex u is fixed to the leftmost position, the planar arrange-
ments in P�pr(T

u) are obtained by arranging the subtrees T u
v , v ∈ Γ (u),

projectively to the right of u in the linear arrangement. It is important
to bear in mind that the operator � only fixes the root vertex r to the
leftmost position of the arrangement: the other vertices can be placed
freely as long as the result is projective.

PROPOSITION 1 The number of planar arrangements of an n-vertex
free tree T = (V, E), with V = {u1, · · · , un} is
(7) Npl(T ) = nN�pr(T

u1) = · · · = nN�pr(T
un) = n
∏
u∈V

d(u)!.

PROOF Given a free tree T , and any two distinct vertices u, v, it
holds that P�pr(T

u) ∩ P�pr(T
v) = ; because the vertices in the first po-

sitions are different. This lets us partition Ppl(T ) into the non-empty
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pairwise-disjoint sets P�pr(T
u) and see that

Npl(T ) =
∑
u∈V

N�pr(T
u).

It is easy to see that

N�pr(T
u) = d(u)!
∏

v∈Γ (u)
Npr(T

u
v ) =
∏
v∈V

d(v)!.

We used Equation 6 in the second equality. Notice that
N�pr(T

u1) = · · · = N�pr(T
un),

since the value N�pr(T
u) does not depend on the root vertex u. There-

fore, Equation 7 follows immediately. �

Obviously, there are more planar arrangements of a free tree
T than projective arrangements of any ‘rooting’ T r of T , formally
Npl(T ) ≥ Npr(T r). We can see this by noticing that, when given a
‘rooting’ of T at r ∈ V ,

Npl(T )

Npr(T r)
=

nd(r)!
∏

u∈V\{r} d(u)!

(d(r) + 1)!
∏

u∈V\{r} d(u)!
=

n
d(r) + 1

≥ 1,

with equality when T is a star tree4 and r is its vertex of highest
degree.

2.3 Generating arrangements uniformly at random

Arrangements can be generated freely, that is, by imposing no con-
straint on the possible orderings, where all the n! possible orderings
are equally likely, or by imposing some constraint on the possible or-
derings. Generating unconstrained arrangements is straightforward: it
is well known that a permutation of n elements can be generated u.a.r.
in time O(n) (Cormen et al. 2001). It can be done as follows. Assume
we are given a set of n vertices, say V = {u1, . . . , un}, and let i = 1.
Repeat the following steps n times:

4An n-vertex star tree consists of a vertex connected to n−1 leaves; it is also
a complete bipartite graph K1,n−1.
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1. select u.a.r. a vertex from V ; the vertex is chosen with probability
1/(n− i + 1). Let ui be said vertex,

2. place ui in the arrangement at position i, that is, let π(ui) = i,
3. remove ui from V ,
4. increment i by 1.

The product of all probabilities of vertex choice gives that the proba-
bility of producing a certain linear arrangement is

n∏
i=1

1
n− i + 1

=
1
n!

thus the arrangement is constructed uniformly at random. Since the re-
moval of a vertex from the set and uniformly random choice of vertex
can both be implemented in constant time (using arrays), the running
time is O(n).

When constraints are involved, projectivity is often the preferred
choice (Gildea and Temperley 2007; Liu 2008; Futrell et al. 2015).
First, we present a O(n)-time procedure to generate projective ar-
rangements u.a.r. (Section 2.3.1) and review methods used in past
research (Section 2.3.2). Then we present a novel O(n)-time proce-
dure to generate planar arrangements u.a.r. (Section 2.3.3) which in
turn involves the generation of random projective arrangements of
a subtree.

2.3.1Generating projective arrangements

The method we will present in detail here was outlined first by Futrell
et al. 2015. Here we borrow from recent theoretical research sum-
marized above (Alemany-Puig and Ferrer-i-Cancho 2022) to derive a
detailed algorithm to generate projective arrangements and prove its
correctness. In order to generate projective arrangements u.a.r., sim-
ply make random permutations of a vertex u and its children Γr(u),
that is, choose one of the possible (dr(u) + 1)! permutations u.a.r. Al-
gorithm 1 formalizes this brief description. The proof that Algorithm 1
produces projective arrangements of a rooted tree T r u.a.r. is sim-
ple. The first call takes the root and its dependents and produces a
uniformly random permutation with probability 1/(d(r) + 1)!. Sub-
sequent recursive calls (in Algorithm 2) produce the corresponding
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Algorithm 1:
Generating
projective

arrangements
u.a.r

1 Function RANDOM_PROJECTIVE_ARRANGEMENT(T r) is
Input: T r a rooted tree.
Output: A projective arrangement π of T r chosen u.a.r.

2 π← empty n-vertex arrangement
// Algorithm 2

3 RANDOM_PROJECTIVE_ARRANGEMENT_SUBTREE(T r , r, 1,π)
4 return π

Algorithm 2:
Generating
projective

arrangements
u.a.r. of a

subtree

1 Function
RANDOM_PROJECTIVE_ARRANGEMENT_SUBTREE(T r , u, p,π) is

Input: T r a rooted tree, u any vertex of T r , p the starting position
to arrange the vertices of T r

u , π partially-constructed
without T r

u .
Output: π partially-constructed with T r

u .
2 Φu← a random permutation of Γr(u)∪ {u}
3 for v ∈ Φu do
4 if v = u then
5 π(v)← p
6 p← p+ 1

7 else
8 RANDOM_PROJECTIVE_ARRANGEMENT_SUBTREE(T r , v, p,π)

9 p← p+ sr(v)

permutations each with its respective uniform probability, hence the
probability of producing a particular permutation is the product of
individual probabilities. Using Equation 6, we easily obtain that the
probability of producing a certain projective arrangement is∏

u∈V

1
(dr(u) + 1)!

=
1

Npr(T r)
.

2.3.2 Generation of projective arrangements in past research

Algorithm 1 is equivalent to the “fully random” method used by
Futrell et al. 2015 as witnessed by the implementation of their code
available on Github,5 in particular in file cliqs/mindep.py6 (func-
tion _randlin_projective). Notice that Futrell et al. 2015 outline

5https://github.com/Futrell/cliqs/tree/
44bfcf2c42c848243c264722b5eccdffec0ede6a

6https://github.com/Futrell/cliqs/blob/
44bfcf2c42c848243c264722b5eccdffec0ede6a/cliqs/mindep.py
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Edge lengths in random planar linearizations

(though vaguely) that a projective arrangement is generated randomly
by “Starting at the root node of a dependency tree, collect[ing] the
head word and its dependents and order[ing] them randomly”.

Futrell et al. 2015 present their method to generate random pro-
jective arrangements as though it were the same as that by Gildea and
Temperley 2007, 2010, who introduced a method to generate random
linearizations of a tree which consists of “choosing a random branch-
ing direction for each dependent of each head,7 and – in the case of
multiple dependents on the same side – randomly ordering them in
relation to the head” (Gildea and Temperley 2010). However, Futrell
et al. 2015 do not actually implement Gildea and Temperley’s method
as witnessed by their code. Critically, Gildea and Temperley’s method
does not produce uniformly random linearizations as we show with a
counterexample.

Consider a star tree rooted at its hub. Let X be a random variable
for the position of the root in a random projective linear arrangement
(1 ≤ X ≤ n). We have P (X = x) = 1/n for all x ∈ [1, n], therefore
X follows a uniform distribution and hence E [X ] = (n + 1)/2 and
V [X ] = (n2 − 1)/12 (Mitzenmacher and Upfal 2017). Let X ′ be a
random variable for the position of the root according to Gildea and
Temperley’s method. It is easy to see that X ′ − 1 follows a binomial
distribution with parameters n−1 and 1/2. Namely, P (X ′ − 1= x) =�n−1

x

�
/2n−1. We have that E [X ′] = 1+E [X ′ − 1] = (n+1)/2= E [X ],

but V [X ′] = V [X ′ − 1] = (n−1)/4. Therefore, the variance in a truly
uniformly random projective linear arrangement isΘ(n2)while Gildea
and Temperley’s method results in Θ(n), a much smaller dispersion.
As n→∞, X ′ − 1 converges to a Gaussian distribution.

Gildea and Temperley’s method was introduced as a random
baseline for the distance between syntactically-related words in lan-
guages and has been used with that purpose (Gildea and Temperley
2007, 2010; Temperley and Gildea 2018). Interestingly, the mini-
mum baseline, namely, the minimum sum of dependency distances,
results from placing the root at the center (Shiloach 1979; Chung
1984). The example above shows that Gildea and Temperley’s base-
line tends to put the root at the center of the linear arrangement

7That is, as explained by Temperley and Gildea 2018, “choose a random
assignment of each dependent to either the left or the right of its head.”
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with higher probability than the truly uniform baseline. That behav-
ior casts doubts on the power of that random baseline to investigate
dependency distance minimization in languages since it tends to place
the root at the center of the sentence, as expected from an optimal
placement under projectivity (Gildea and Temperley 2007; Alemany-
Puig et al. 2021) and does it with much lower dispersion around the
center than in truly uniformly random linearizations.

2.3.3 Generating planar arrangements

Proposition 1 leads to a method to generate planar arrangements u.a.r.
for any free tree T . The method we propose is detailed in Algorithm 3.

Algorithm 3:
Generating

planar
arrangements

u.a.r.

1 Function RANDOM_PLANAR_ARRANGEMENT(T ) is
Input: T a free tree.
Output: A planar arrangement π of T chosen u.a.r.

2 π← empty n-vertex arrangement
3 u← a vertex of T chosen u.a.r.
4 π(u)← 1
5 Φu← a random permutation of Γ (u)
6 p← 2
7 for v ∈ Φu do

// Algorithm 2
8 RANDOM_PROJECTIVE_ARRANGEMENT_SUBTREE(T u, v, p,π)
9 p← p+ su(v)

10 return π

It is easy to see that Algorithm 3 has time complexity O(n). Now
we show that it generates planar arrangements uniformly at random.
Firstly, choose a vertex, say u ∈ V , u.a.r., and place it at one of the
arrangement’s ends, say, the leftmost position; this vertex acts as a
root for T . Secondly, choose u.a.r. one of the d(u)! permutations of
the segments of the subtrees T u

v u.a.r. Lastly, recursively choose u.a.r. a
projective linearization of every subtree T u

v for v ∈ Γ (u) (Algorithm 2).
These steps generate a planar arrangement u.a.r. since the probability
of producing a certain planar arrangement following these steps is,
then,

1
n

1
d(u)!

∏
v∈Γ (u)

1
Npr(T u

v )
=

1
n

1
d(u)!

∏
v∈V\{u}

1
d(v)!

=
1

Npl(T )
.

The equalities follow from Proposition 1.

[ 16 ]
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2.4Expected sum of edge lengths

In this section we derive an arithmetic expression for Epl [D(T )].
First, we prove Theorem 1. To this aim, we define E�pr [αuv | r] =
Epr [αuv | π(r) = 1] as the expected value of αuv conditioned to the
projective arrangements π of T r such that π(r) = 1; we define
E�pr [βuv | r] likewise. The root is specified as a parameter of the ex-
pected value because we want to be able to use various roots. In the
following proofs we rely heavily on Linearity of Expectation (Mitzen-
macher and Upfal 2017, Theorem 2.1) and the Law of Total Expecta-
tion (Mitzenmacher and Upfal 2017, Lemma 2.5).
PROOF [Proof of Theorem 1] We first prove Equation 4. By the
Law of Total Expectation,

Epl [D(T )] =
∑
u∈V

Epl [D(T ) | π(u) = 1]Ppl (π(u) = 1) .

Notice, quite simply, that
Epl [D(T ) | π(u) = 1] = Epr [D(T

u) | π(u) = 1] = E�pr [D(T
u)] ,

that is, the expected value of D conditioned to planar arrangements of
T such that u is fixed at the leftmost position, Epl [D(T ) | π(u) = 1],
is equal to the expected value of D conditioned to projective arrange-
ments of T u such that vertex u is fixed at the leftmost position, which
is denoted as E�pr [D(T

u)]. By noticing, given a fixed vertex u, that
Ppl (π(u) = 1) = 1

n , which is the proportion of planar arrangements of
T in which π(u) = 1 (Proposition 1), Equation 4 follows immediately.
Notice that Equation 4 expresses the expected value of D conditioned
to planar arrangements of a free tree T as the average of each of the
expected values of D conditioned to projective arrangements of T u

(for all u ∈ V ) such that the root is fixed at the leftmost position.
Now we aim to write E�pr [D(T

u)] as a function of Epr [D(T
u)].

We start by decomposing E�pr [D(T
u)] into a summation of expected

values of the individual edge lengths, and group the edges of every
subtree T u

v of T u (where uv is a (directed) edge of the tree) into one
single expected value for each subtree and leave the edges incident to
the root u in the same summation as follows:

E�pr [D(T
u)] =
∑

vw∈Γ (u)

�
E�pr [δvw | u] +Epr

�
D(T u

v )
��

.

[ 17 ]
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Now, it is important to notice that we did not write E�pr

�
D(T u

v )
�

in the
summation above since the conditioning imposed by the operator �
in E�pr [D(T

u)] only applies to the root u. The root of the subtrees can
be placed freely in the arrangement as long as the result is projective.
Now we decompose all (directed) edges uv of T r in the first summation
into anchor and coanchor, and we get

E�pr [D(T
u)] =
∑

v∈Γ (u)

�
E�pr [αuv + βuv | u] +Epr

�
D(T u

v )
��

.

Although the root u is clear in this context, we have made it explicit in
E�pr [αuv + βuv | u] so as to be able to keep track of it in the following
derivations. By linearity of expectation,

E�pr [αuv + βuv | u] = E�pr [αuv | u] +E�pr [βuv | u] .

Now, notice that the length of the anchor of any given directed edge
(u, v), where u is the head and v is the dependent, is invariant to the
position of u, that is, it only changes if we change the position of v
within its interval. Therefore, fixing the head to the leftmost posi-
tion of the arrangement (or any position outside the segment of v)
does not affect the value of E�pr [αuv | u] and we simply have that
E�pr [αuv | u] = Epr [αuv | u] and thus

E�pr [D(T
u)] =
∑

v∈Γ (u)

�
Epr [αuv | u] +E�pr [βuv | u]

+Epr

�
D(T u

v )
��

.

The next step is to find the value of E�pr [βuv | u]. Notice now that
the length of the coanchor of any directed edge (u, v) is affected by
the position of the head u and, as such, E�pr [βuv | u] need not be ex-
actly equal to Epr [βuv | u]. The derivation is found in Appendix 4.3
since it is merely an adaptation of the proof by Alemany-Puig and
Ferrer-i-Cancho 2022, Lemma 1; it gives

E�pr [βuv | u] = 3
2
Epr [βuv | u] .
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Thus,

E�pr [D(T
u)] =
∑

v∈Γ (u)

�
Epr [αuv | u] + 3

2
Epr [βuv | u]

+Epr

�
D(T u

v )
��

=
∑

v∈Γ (u)

�
Epr [δuv | u] +Epr

�
D(T u

v )
�

+
1
2
Epr [βuv | u]
�

= Epr [D(T
u)] +

1
2

∑
v∈Γ (u)
Epr [βuv | u] .(8)

In the third equality we have used the identity by Alemany-Puig
and Ferrer-i-Cancho 2022, Equation 28, which states that in a rooted
tree T r

Epr [D(T
r)] =
∑

v∈Γ (r)

�
Epr [δrv] +Epr

�
D(T r

v )
��

.

In this equation, we have not specified the expected values as being
conditioned by the root r since this is clear from the context. Plugging
Equation 8 into Equation 4 we get

(9) Epl [D(T )] =
1

2n

∑
u∈V

∑
v∈Γ (u)
Epr [βuv | u] + 1

n

∑
u∈V

Epr [D(T
u)] .

We can use the following result by Alemany-Puig and Ferrer-i-Cancho
2022, Equation 16:

Epr [βuv | u] = su(u)− su(v)− 1
3

=
n− su(v)− 1

3

to further simplify Equation 9 and, after proving that∑
v∈Γ (u)
Epr [βuv | u] =

∑
v∈Γ (u)

su(u)− su(v)− 1
3

=
(n− 1)(d(u)− 1)

3
,∑

u∈V

1
3
(n− 1)(d(u)− 1) =

(n− 1)(n− 2)
3

,
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we obtain
(10) 1

2n

∑
u∈V

∑
v∈Γ (u)
Epr [βuv | u] = (n− 1)(n− 2)

6n
.

Hence Equation 5. �
For the sake of comprehensiveness, we also provide an arithmetic

expression for the expected length of an edge uv of a free tree in
uniformly random planar arrangements. To this aim, we further de-
fine E�pl [δuv | r] = Epl [δuv | π(r) = 1] to be the expected value of the
length of edge uv ∈ E(T ) when the vertex r ∈ V (T ) is fixed to the
leftmost position in planar arrangements of T . Similarly, given a root-
ing of T at r, let E�pr [δuv | r] = Epr [δuv | π(r) = 1] to be the expected
value of the length of edge uv ∈ E(T r) when vertex r acts as the root
of the tree and it is fixed to the leftmost position in projective arrange-
ments of T r . The root vertex r may be vertex u, vertex v, or neither.
In the expected value E�pr [δuv | r] we assume that the edge uv is di-
rected from u to v in accordance with the orientation defined by the
root vertex r. Therefore, when r is neither u nor v, the vertex of edge
uv closest to r is always vertex u, and the farthest is always vertex v.
LEMMA 2 Given a free tree T = (V, E), for any uv ∈ E it holds that

(11) Epl [δuv] = 1+
1
n

∑
r∈V\{u,v}

Epr [δuv | r] ,

where as per Alemany-Puig and Ferrer-i-Cancho 2022

(12) Epr [δuv | r] = 2sr(u) + sr(v) + 1
6

.

PROOF Following the characterization of planar arrangements de-
scribed in Section 2.2, we have that Ppl (π(r) = 1) = 1/n. Then apply-
ing the Law of Total Expectation

Epl [δuv] =
∑
r∈V

Epl [δuv | π(r) = 1]Ppl (π(r) = 1)

=
1
n

∑
r∈V

E�pl [δuv | r] .(13)

Now we calculate E�pl [δuv | r] by cases. When r /∈ {u, v},
(14) E�pl [δuv | r] = E�pr [δuv | r] = Epr [δuv | r] .
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When r ∈ {u, v}, by linearity of expectation,
E�pl [δuv | r] = E�pr [δuv | r]

= E�pr [αuv + βuv | r]
= E�pr [αuv | r] +E�pr [βuv | r] .

By denoting r the only vertex in {u, v} \ {r}, then

(15) E�pr [αuv | r] = Epr [αuv | r] = sr(r) + 1
2

.

Equation 15 relies on the fact that in a rooted tree T r , the expected
length of the anchor of an edge incident to the root, say rw ∈ E(T r),
is given by Epr [αrw | r] = (sr(w) + 1)/2 (Alemany-Puig and Ferrer-i-
Cancho 2022). An arithmetic expression for E�pr [βuv | r] can be found
by modifying the proof of Alemany-Puig and Ferrer-i-Cancho 2022,
Lemma 1. Then, as before, we get (see Appendix 4.3),

(16) E�pr [βuv | r] = 3
2
Epr [βuv | r] = n− sr(r)− 1

2
.

Therefore, by adding Equations 15 and 16 we obtain
E�pl [δuv | r] = E�pr [αuv | r] +E�pr [βuv | r]

=
sr(r) + 1

2
+

n− sr(r)− 1
2

=
n
2

.(17)
Equation 11 follows immediately after inserting Equations 17 and 14
in Equation 13. �

3APPLICATIONS

3.1A linear-time algorithm to compute Epl [D(T )]

Here we consider algorithms of increasing efficiency. First, since
Epr [D(T

u)] can be calculated in O(n)-time for any n-vertex rooted
tree T u (Alemany-Puig and Ferrer-i-Cancho 2022, Theorem 1), the
evaluation ‘as is’ of Equation 5 leads to a O(n2)-time algorithm.

Second, we could calculate the value Epr [D(T
u)] for all u ∈ V in

O(n)-time and O(n)-space with the following procedure:

[ 21 ]
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1. Precompute su(v) in O(n)-time (Alemany-Puig et al. 2022);
2. Choose an arbitrary vertex w;
3. Calculate Epr [D(T

w)] in O(n)-time (Alemany-Puig and Ferrer-i-
Cancho 2022); and, finally,

4. Perform a Breadth First Search (BFS) traversal of T starting at w.
In this traversal, when going from vertex u to vertex v, the value
of Epr [D(T

v)] is calculated applying the precomputed value of
Epr [D(T

u)] to the following equation:

Epr [D(T
u)] = Epr [D(T

v)] +∆,

where ∆ is equal to the difference Epr [D(T
u)]−Epr [D(T

v)]. We
can obtain a formula for this difference by manipulating Equa-
tion 3. We get

∆ = Epr [D(T
u)]−Epr [D(T

v)]

=
1
6

�
su(v) (2d(v)− 1) + 2n (d(u)− d(v))

− sv(u) (2d(u)− 1)
�
.

Notice that the value of ∆ can be computed in constant time for
any two vertices u and v (here we are interested in the value of
∆ for pairs of adjacent vertices) and, crucially, without knowl-
edge of either Epr [D(T

u)] or Epr [D(T
v)]. That is, if the value

of Epr [D(T
u)] is known then the value of Epr [D(T

v)] for any
v ∈ Γ (u) can be calculated in constant time as

Epr [D(T
v)] = Epr [D(T

u)]−∆.

Third, we propose an alternative that is also O(n)-time yet simpler
and faster in practice, based on Proposition 2.

PROPOSITION 2 Given a free tree T = (V, E),

(18)
Epl [D(T )] =

(n− 1)(3n2 + 2n− 2)
6n

− 1
6n

∑
v∈V

(2d(v)− 1)
∑

u∈Γ (v)
sv(u)

2.
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PROOF Here we simplify the summation in Equation 5, which be-
comes (as per Alemany-Puig and Ferrer-i-Cancho 2022)

1
n

∑
u∈V

Epr [D(T
u)] =

1
6n
( f (T )− n)

with

f (T ) =
∑
u∈V

∑
v∈V

su(v)(du(v) + 1).

Now we simplify f (T ) by first replacing the term du(v) by d(v) after
the necessary transformations so that we can swap the order of the
summations afterwards, that is,

f (T ) =
∑
u∈V

�
su(u)(2du(u) + 1) +

∑
v∈V\{u}

su(v)(2du(v) + 1)
�

=
∑
u∈V

n(2d(u) + 1) +
∑
u∈V

∑
v∈V\{u}

su(v)(2d(v)− 1)

= n(5n− 4)−∑
u∈V

su(u)(2d(u)− 1)

+ 2
∑
u∈V

∑
v∈V

su(v)d(v)−
∑
u∈V

∑
v∈V

su(v)

= 2n2 + g(T )− h(T )(19)

with

g(T ) = 2
∑
u∈V

∑
v∈V

su(v)d(v),(20)

h(T ) =
∑
u∈V

∑
v∈V

su(v).(21)

In the preceding derivation, the second equality holds due to du(v) =
d(v)−1 for v 6= u; the third and fourth steps, we apply the Handshak-
ing lemma.8 These lead to

(22) 1
n

∑
u∈V

Epr [D(T
u)] =

1
6n
(n(2n− 1) + g(T )− h(T )) .

8The Handshaking lemma (Gunderson 2014) states that the sum of the de-
grees of all vertices of a graph equals twice the number of its edges.
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Figure 6:
Proof of Proposition 2. The value su(v)

is the same for all vertices of T v
w denoted

as {u1, . . . , uk} in the figure and the proof
u1 u3

u2

w

v

sv(w) vertices

It remains to simplify Equations 20 and 21. We start by changing the
order of the summations in Equation 20,

g(T ) = 2
∑
v∈V

∑
u∈V

su(v)d(v) = 2
∑
v∈V

d(v)
∑
u∈V

su(v),

and continue simplifying the inner summation. Consider a fixed v ∈ V .
We have that∑

u∈V

su(v)︸ ︷︷ ︸
(1)

= n+
∑

u∈V\{v}
su(v)︸ ︷︷ ︸

(2)

= n+
∑

w∈Γ (v)
sw(v)sv(w).

The summation (1) adds up the size of all subtrees T w
v with respect

to a ‘moving’ root w. In the first equality we have simply taken out
the case su(u). To understand the second equality, focus for now on a
single subtree T v

w such that wv ∈ E. The summation (2) contains sum-
mands that correspond to all the vertices in T v

w, say vertices u1, . . . , uk

(assume, without loss of generality, that w = uk). These summands
are su1

(v), . . . , suk
(v), which are all equal to sw(v) (Figure 6). More-

over, there are sv(w) vertices in T v
w thus k = sv(w), and this holds for

all w ∈ Γ (v), hence the equality. Finally,
(23)
∑
u∈V

su(v) = n+
∑

u∈Γ (v)
(n− sv(u))sv(u) = n2 − ∑

u∈Γ (v)
sv(u)

2,

thanks to the identity su(v) + sv(u) = n. Then,
(24) g(T ) = 4n2(n− 1)− 2

∑
v∈V

d(v)
∑

u∈Γ (v)
sv(u)

2.

We use the result in Equation 23 to simplify Equation 21,
(25) h(T ) =
∑
v∈V

∑
u∈V

su(v) = n3 −∑
v∈V

∑
u∈Γ (v)

sv(u)
2.
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By combining Equations 24 and 25 into Equation 22 and, after some
effort, we obtain

Epl [D(T )] =
(n− 1)(n− 2)

6n
+

1
6n

�
n(n− 1)(3n+ 1)

−∑
v∈V

(2d(v)− 1)
∑

u∈Γ (v)
sv(u)

2
�

,

which leads directly to Equation 18. �

LEMMA 3 For any given free tree T , Algorithm 4 calculates Epl [D(T )]
in time and space O(n).

PROOF The pseudocode to calculate Epl [D(T )] based on Propo-
sition 2 is given in Algorithm 4. This algorithm first calculates su(v)
for all edges uv ∈ E, for the given tree T in O(n) time using the pseu-
docode by Alemany-Puig et al. 2022, Algorithm 2.1. Then it uses these
values to calculate the sums of sv(u)2 for every vertex v ∈ V . Such sums
are then used to evaluate Equation 18 hence calculating Epl [D(T )] in
time O(n). �

1 Function COMPUTE_EXPECTED_PLANAR(T ) is
Input: T free tree.
Output: Epl [D(T )].
// Alemany-Puig et al. 2022, Algorithm 2.1

2 S←COMPUTE_S_FT(T )
3 L← {0}n // a vector of n zeroes.
4 for (u, v, su(v)) ∈ S do L[u]← L[u] + su(v)2

5 return ((n− 1)(3n2 + 2n− 2)−∑u∈V (d(u)− 1)L[u])/6n

Algorithm 4:
Calculation
of Epl [D(T )].
Cost O(n)-time,
O(n)-space

3.1.1A simple application

Let E≥1 [D(T )] be the expected value of the sum of edge lengths condi-
tioned to arrangements π such that Cπ(T )≥ 1. That is, arrangements
such that the number of edge crossings is at least 1. An immediate
consequence of Lemma 3 is that E≥1 [D(T )] can be computed easily
as the following corollary states.
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COROLLARY 3 For any free tree T , E≥1 [D(T )] can be computed in
time and space O(n) thanks to the fact that

(26) E≥1 [D(T )] =
E [D(T )]−Epl [D(T )]P (C(T ) = 0)

P (C(T )≥ 1)

with P (C(T )≤ 0) = Npl(T )/n! and P (C(T )≥ 1) = (n!−Npl(T ))/n!.
PROOF Due to the Law of Total Expectation,

(27) E [D(T )] = Epl [D(T )]P (C(T ) = 0)+E≥1 [D(T )]P (C(T )≥ 1) ,

and hence Equation 26. Npl(T ) can be computed in O(n)-time with
Equation 6 and Epl [D(T )] can be computed in time and space O(n)
(Lemma 3). Hence all the components in the right hand side of Equa-
tion 26 can be computed in time and space O(n). �

3.2 Real syntactic dependency distances
versus random baselines

Evidence that dependency distances are smaller than expected by
chance can be obtained by random baselines of varying strength:

• None, E [D(T )], the expectation of D(T ) in unconstrained ran-
dom linear arrangements (Ferrer-i-Cancho 2004).

• Planarity, Epl [D(T )], the expectation of D(T ) in planar random
linear arrangements (this article).

• Projectivity,Epr [D(T
r)], the expectation of D(T ) in projective

random linear arrangements (Alemany-Puig and Ferrer-i-Cancho
2022; Gildea and Temperley 2007).

This raises the questions of what would be the most appropriate base-
line for research on dependency distance minimization. Epr [D(T

r)] is
by far the most widely used random baseline (Gildea and Temperley
2007; Liu 2008; Park and Levy 2009; Futrell et al. 2015).

Since planarity is a weaker condition than projectivity, Epl [D(T )]
implies a gain in coverage. Accordingly, there are more planar sen-
tences than projective sentences in real texts (Havelka 2007; Gómez-
Rodríguez and g 2010, Table 1) and also in artificially-generated syn-
tactic dependency structures (Gómez-Rodríguez et al. 2022, Figure 2).
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However, surprisingly, Epl [D(T )] has never been used in research on
the principle of dependency distance minimization. Here we aim to
test the hypothesis that formal constraints mask the effects of the prin-
ciple, a hypothesis that has already been confirmed on artificially-
generated syntactic dependency structures (Gómez-Rodríguez et al.
2022).

Given the natural growth of dependency distance as sentence
length increases (Ferrer-i-Cancho and Liu 2014; Ferrer-i-Cancho et al.
2022), we measure, for each sentence, the average dependency dis-
tance, namely 〈d〉 = D(T )/(n− 1) instead of the raw total sum D(T )
(a sentence of n vertices has n − 1 syntactic dependencies when the
structure is a tree). As, in addition to such a growth, the manifesta-
tion of the principle also depends on sentence length (the statistical
bias towards shorter distances may disappear or become a bias in
the opposite direction in short sentences; Ferrer-i-Cancho and Gómez-
Rodríguez 2021; Ferrer-i-Cancho et al. 2022), we compare the actual
dependency distances against the values predicted by the baselines in
sentences of the same length.

3.2.1Data and methods

We use the Parallel Universal Dependencies 2.6 collection (Zeman
et al. 2020) for experimentation. To control for annotation style, we
consider two versions of the collection: the collection with its original
content-head annotation (PUD) and its transformation into Surface-
Syntactic Universal Dependencies 2.6 (hereafter PSUD). By doing so,
we cover two major competing annotation styles (Gerdes et al. 2018).

We borrow the preprocessing methods from previous research
(Ferrer-i-Cancho et al. 2022). The main features of the processing are
that nodes that are punctuation marks are removed and that the corpus
remains fully parallel after the removal (Ferrer-i-Cancho et al. 2022).
The preprocessed data is freely available as ancillary materials of the
Linear Arrangement Library website.9

With respect to previous accounts (Havelka 2007; Ferrer-i-Cancho
et al. 2018; Gómez-Rodríguez and g 2010), our collections exhibit
some remarkable statistical differences. First, the proportion of pro-
jective and planar sentences is higher in PUD, where the proportion of

9https://cqllab.upc.edu/lal/universal-dependencies/
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Table 2:
Proportion (%)

of projective and
planar sentences

in the PUD
collection

Language Projective Planar Language Projective Planar
Arabic 96.2 96.3 Italian 99.3 99.3
Czech 89.6 89.8 Japanese 99.7 99.7
Chinese 99.4 99.4 Korean 93.6 95.2
German 86.3 86.7 Polish 94.8 95.3
English 95.5 95.9 Portuguese 96.7 96.8
Finnish 96.4 96.7 Russian 97.6 98.0
French 98.3 98.3 Spanish 95.5 95.7
Hindi 74.3 76.3 Swedish 96.5 96.9
Icelandic 96.2 96.9 Thai 97.2 97.2
Indonesian 98.7 99.0 Turkish 93.5 94.1

Table 3:
Proportion (%)

of projective and
planar sentences

in the PSUD
collection

Language Projective Planar Language Projective Planar
Arabic 83.6 83.9 Italian 94.5 94.6
Czech 86.6 87.2 Japanese 35.8 35.8
Chinese 42.0 46.1 Korean 75.8 77.1
German 72.3 72.7 Polish 88.2 89.7
English 93.6 94.1 Portuguese 87.3 87.7
Finnish 88.8 89.4 Russian 95.1 95.5
French 90.5 90.6 Spanish 80.2 80.9
Hindi 43.6 44.3 Swedish 93.0 93.7
Icelandic 90.7 92.0 Thai 85.6 86.8
Indonesian 90.5 91.8 Turkish 87.6 88.3

non-projective or non-planar sentences does not exceed 10% in most
cases (Tables 2 and 3). This proportion increases in PSUD; wherein,
in two exceptional languages, Chinese and Hindi, it becomes larger
than 50% (Table 3). Second, the difference between the proportion
of non-projective and non-planar sentences is smaller than in pre-
vious reports (Gómez-Rodríguez and g 2010; Havelka 2007). Hav-
ing said that, notice that our collections are fully parallel, and spe-
cial care has been taken to keep annotation consistent across lan-
guages.

Given formal constraint ‘c’ (either ‘none’, ‘planarity’ (c = pl) or
‘projectivity’ (c = pr)) and sentence length n,
1. We calculate D(T r) for each T r and also calculate the expected
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sum of edge lengths under ‘c’ different constraints (none, Equation
2; planarity, Equation 5; projectivity, Equation 3).

2. Then, for each sentence, we divide each by n− 1, to produce the
mean length of its dependencies

〈dc〉= D
n− 1

and the expected mean of length of its dependencies under some
constraint ‘c’

E [〈dc〉] = Ec [D]

n− 1
.

3. Finally, we compute the average 〈dc〉 and the average E [〈dc〉]
over all sentences of length n satisfying constraint ‘c’.

3.2.2Results

Figures 7 and 8 show the scaling of mean dependency distance
as a function of sentence length in real sentences and in their corre-
sponding random baselines. Concerning the random baselines (dashed
lines), we find that the stronger the formal constraint on syntactic de-
pendency structures, the lower the value of the random baseline. In
contrast, the actual mean sentence length (solid lines) is practically
the same independently of the formal constraint (none, planarity and
projectivity). This is due to the fact the proportion of sentences that
are lost by imposing some formal constraint is small in the PUD and
PSUD collections, namely, the baselines 〈d〉, 〈dpl〉 and 〈dpr〉 are ex-
tremely similar in value. The overwhelming majority of sentences are
planar and the proportion of planar sentences that are not projective
is really small (Table 2 and 3). Thus, selecting sentences satisfying a
certain formal constraint has a negligible impact on the estimation of
mean dependency distance.

Concerning the relationship between the actual mean dependency
distance and the random baselines, we find that the average 〈d〉 is
below the average value of the random baselines for sufficiently large
n in all languages. The only exception is Turkish, where the actual
average 〈d〉 is just slightly below the average of the projective baseline
(Figures 7 and 8).

[ 29 ]



Alemany-Puig, Ferrer-i-Cancho

Figure 7:
The scaling

of 〈d〉, the mean
dependency
distance of a
sentence as
a function

of sentence
length (n) for

languages in the
PUD collection

for formal
constraints

of increasing
strength: none

(blue), planarity
(green) and
projectivity
(red). Lines
indicate the

average value
over all

sentences of the
same length.

Solid lines are
used for real

sentences and
dashed lines are

used for the
corresponding

random baseline.
Solid lines

overlap so much
that only one of

them can be seen
in most cases
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The scaling
of 〈d〉, the mean
dependency
distance
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as a function
of sentence
length (n) for
languages in the
PSUD collection
for formal
constraints
of increasing
strength. Format
is the same
as in Figure 7.
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These findings are consistent between PUD and PSUD, in spite
of their differences in proportions of projective and planar sentences
commented above.

4 CONCLUSIONS AND FUTURE WORK

4.1 Theory

In Section 2.2, we have characterized planar arrangements of a given
free tree T using the concept of segment (Alemany-Puig and Ferrer-i-
Cancho 2022). Employing said characterization, we have shown that
the number of planar arrangements of a free tree depends on its degree
sequence (Proposition 1), similar to the manner in which projective
arrangements of a rooted tree do (Alemany-Puig and Ferrer-i-Cancho
2022). Moreover, we have given a procedure to generate u.a.r. planar
arrangements of a given free tree in Section 2.3 (Algorithm 3) which
can be easily adapted to generate such arrangements exhaustively.
Notably, our algorithm to generate planar arrangements is based on
the generation of projective arrangements of a rooted subtree. For the
sake of completeness, we have detailed a procedure to generate u.a.r.
projective arrangements of a given rooted tree (Algorithm 1).

4.2 Applications

Having identified the underlying structure of planar arrangements, we
have derived an arithmetic expression, in Section 2.4, for Epl [D(T )]
(Theorem 1). We have also devised a O(n)-time algorithm to calculate
this value (Proposition 1, Algorithm 4).

In Section 3, we have applied the theory developed up until
that point to investigate the effect of formal constraints of increasing
strength (none, planarity, projectivity) in a parallel collection and re-
ported two main findings. First, the average dependency distance in
real sentences remains practically the same while the strength of the
formal constraint increases. We believe that this result stems from the
high proportion of planar sentences (and the very low proportion of
planar sentences that are not projective) of the PUD collection. Higher
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proportions of non-planar sentences have been reported in other col-
lections (Gómez-Rodríguez and Ferrer-i-Cancho 2017). Second, the
tendency of the random baseline to have a smaller value in stronger
formal constraints indicates that the strength of the dependency dis-
tance minimization effect depends on the choice of the formal con-
straint for the random baseline. As these formal constraints may be
a side effect of dependency distance minimization (Ferrer-i-Cancho
2006; Gómez-Rodríguez and Ferrer-i-Cancho 2017; Gómez-Rodríguez
et al. 2022; Yadav et al. 2022), this phenomenon suggests that
1. Formal constraints absorb the dependency distance effect.
2. A fairer evaluation of the actual degree of optimization of depen-

dency distances or a more accurate measurement of the power of
the effect of dependency distance minimization requires consid-
ering not only the magnitude of the effect with respect to some
random baseline but also the formal constraint, as the latter may
hide part of the dependency distance minimization effect.
In past research on syntactic dependency distance minimization,

Epr [D(T
r)] has been the most widely used random baseline (Gildea

and Temperley 2007; Liu 2008; Park and Levy 2009; Futrell et al.
2015). However, projectivity has a lower coverage than planarity in
real sentences (Havelka 2007; Gómez-Rodríguez and g 2010). Pro-
jectivity is at risk of underestimating the strength of the dependency
distance minimizaton principle (Ferrer-i-Cancho 2004) because of the
significant reduction in the value of the random baseline (Figures 7
and 8) or the reduction of the actual dependency distances (Gómez-
Rodríguez et al. 2022, Figure 2) that it introduces. Thanks to the re-
search in this article, we have paved the way for replicating past re-
search replacing Epr [D(T

r)] with Epl [D(T )].

4.3Future work

Planarity is a relaxation of projectivity but future work should ad-
dress the problem of the expected value of D(T ) in classes of formal
constraints with even more coverage (Ferrer-i-Cancho et al. 2018). A
promising step is the investigation of E≤k [D(T )], the expected value
of D(T ) conditioned to arrangements π such that Cπ(T ) ≤ k, that is,
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in arrangements such that the number of edge crossings is at most k.
Notice that E≤0 [D(T )] = Epl [D(T )]. In real languages, the average
number of crossings ranges between 0.40 and 0.62 (Ferrer-i-Cancho
et al. 2018), suggesting that E≤k [D(T )] with k = 1 or a small k would
suffice.
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APPENDIX
DERIVATION OF E�pr [βuv | u]

Here we derive the expected length of the coanchor of a (directed)
edge uv ∈ E(T u) in uniformly random projective arrangements of
T u conditioned to π(u) = 1. Following Alemany-Puig and Ferrer-i-
Cancho (2022), we decompose the length of the coanchor of the (di-
rected) edge uv, βuv , as the sum of the lengths of the segments in-
between u and v (Figure 4). Here we use kuv to denote the number
of segments in-between u and v, and φ(i)uv to denote the size of the ith
segment, yielding (Alemany-Puig and Ferrer-i-Cancho 2022),

βuv =
kuv∑
i=1

φ(i)uv .
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By the Law of Total Expectation, we have that

(28) E�pr [βuv | u] =
d(u)−1∑

k=1

E�pr [βuv | u, kuv = k]P�pr (kuv = k | u) ,

where E�pr [βuv | u, kuv = k] is the expectation of βuv given that u is the
root of the tree (fixed at the leftmost position), and that u and v are
separated by k segments, and P�pr (kuv = k | u) is the probability that
u and v are separated by k intermediate segments, both in uniformly
random projective arrangements π conditioned to π(u) = 1, both con-
ditioned to the root of the tree being vertex u. On the one hand,

(29) E�pr [βuv | u, kuv = k] = E�pr

�
k∑

i=1

φ(i)uv | u
�
=

n− su(v)− 1
d(u)− 1

k.

Notice that this is the same result as that obtained in Alemany-Puig
and Ferrer-i-Cancho 2022. Lastly, the proportion of arrangements in
which the segment of v is at position kuv +1 equals (d(u)−1)!, there-
fore,

(30) P�pr (kuv = k | u) = (d(u)− 1)!
∏

v∈Γ (u)Npr(T u)

d(u)!
∏

v∈Γ (u)Npr(T u)
=

1
d(u)

.

Recalling that (Alemany-Puig and Ferrer-i-Cancho 2022)

Epr [βuv | u] = su(u)− su(v)− 1
3

,

and plugging the results of Equations 29 and 30 into Equation 28,
we get

E�pr [βuv | u] = n− su(v)− 1
d(u)− 1

1
d(u)

d(u)−1∑
k=1

k

=
su(u)− su(v)− 1

2

=
3
2
Epr [βuv | u] .
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