
Bimorphisms and
synchronous grammars

Stuart M. Shieber
School of Engineering and Applied Sciences
Harvard University, Cambridge MA, USA

abstract
Keywords:
synchronous
grammars,
tree transducers,
tree-adjoining
grammars,
tree-substitution
grammars

We tend to think of the study of language as proceeding by char-
acterizing the strings and structures of a language, and we think of
natural-language processing as using those structures to build systems
of utility in manipulating the language. But many language-related
problems are more fruitfully viewed as requiring the specification of
a relation between two languages, rather than the specification of a
single language.

In this paper, we provide a synthesis and extension of work that
unifies two approaches to such language relations: the automata-
theoretic approach based on tree transducers that transform trees
to their counterparts in the relation, and the grammatical approach
based on synchronous grammars that derive pairs of trees in the re-
lation. In particular, we characterize synchronous tree-substitution
grammars and synchronous tree-adjoining grammars in terms of bi-
morphisms, which have previously been used to characterize tree
transducers. In the process, we provide new approaches to formaliz-
ing the various concepts: a metanotation for describing varieties of
tree automata and transducers in equational terms; a rigorous for-
malization of tree-adjoining and tree-substitution grammars and their
synchronous counterparts, using trees over ranked alphabets; and gen-
eralizations of tree-adjoining grammar allowing multiple adjunction.

Journal of Language Modelling Vol 2, No 1 (2014), pp. 51–104

Stuart M. Shieber

1 introduction

We tend to think of the study of language as proceeding by char-
acterizing the strings and structures of a language, and we think of
natural-language processing as using those structures to build systems
of utility in manipulating the language. But many language-related
problems are more fruitfully viewed as requiring the specification of a
relation between two languages, rather than the specification of a sin-
gle language. The paradigmatic case is machine translation, where the
translation relation between the source and target natural languages
is itself the goal to be characterized. Similarly, the study of semantics
involves a relation between a natural language and a language of se-
mantic representation (phonological form and logical form in one par-
lance). Computational interpretation of text, as in question-answering
or natural-language command and control systems, requires comput-
ing that relation in the direction from natural language to semantic
representation, and tactical generation in the opposite direction. Sen-
tence paraphrase and compression can be thought of as computing a
relation between strings of a single natural language. Similar examples
abound.

The modelling of these relations has been a repeated area of
study throughout the history of computational linguistics, proceed-
ing in phases that have alternated between emphasizing automata-
theoretic tools and grammatical tools. On the automata-theoretic side,
the early pioneering work of Rounds (1970) on tree transducers was
intended to formalize aspects of transformational grammars, and led
to a long development of the formal-language theory of tree transduc-
ers. Grammatical approaches are based on the idea of synchronizing
the grammars of the related languages. We use the general term syn-
chronous grammars for the idea (Shieber and Schabes 1990), though
early work in formalizing programming-language compilation uses
the more domain-specific term syntax-directed transduction or transla-
tion (Lewis and Stearns 1968; Aho and Ullman 1969), and a variety
of specific systems – inversion transduction grammars (Wu 1996,
1997), head transducers (Alshawi et al. 2000), multitext grammars
(Melamed 2003, 2004) – forgo the use of the term. The early work
on the synchronous grammar approach for natural-language applica-
tion involved synchronizing tree-adjoining grammars (TAG). A recent

[52]

Bimorphisms and synchronous grammars

resurgence of interest in automata-theoretic approaches in the ma-
chine translation community (Graehl and Knight 2004; Galley et al.
2004) has led to more powerful types of transducers (Maletti et al.
2009) and a far better understanding of the computational properties
of and relationships among different transducer types (Maletti et al.
2009). Synchronous grammars have also seen a rise in application
in areas such as machine translation (Nesson et al. 2006; DeNeefe
and Knight 2009), linguistic semantics (Nesson and Shieber 2006;
Han and Hedberg 2008), and sentence compression (Yamangil and
Shieber 2010).

As these various models were developed, the exact relationship
among them had been unclear, with a large number of seemingly un-
related formalisms being independently proposed or characterized. In
particular, the grammatical approach to tree relations found in syn-
chronous grammar formalisms and the automata-theoretic approach
of tree transducers have been viewed as contrasting approaches.

A reconciliation of these two approaches was initiated in two
pieces of earlier work (Shieber 2004, 2006), which the present paper
unifies, simplifies, and extends. That work proposed to use the formal-
language-theoretic device of bimorphisms (Arnold and Dauchet 1982),
previously little known outside the formal-language-theory commu-
nity, as a means for unifying the two approaches and clarifying the in-
terrelations. It investigated the formal properties of synchronous tree-
substitution grammars (STSG) and synchronous tree-adjoining gram-
mars (STAG) from this perspective, showing that both formalisms,
along with traditional tree transducers, can be thought of as varieties
of bimorphisms. This earlier work has already been the basis for fur-
ther extensions, such as the synchronous context-free tree grammars
of Nederhof and Vogler (2012).

The present paper includes all of the results of the prior two pa-
pers, with notations made consistent, presentations clarified and ex-
panded, and proofs simplified, and therefore supersedes those papers.
It provides a definitive presentation of the formal foundations for TSG,
TAG, and their synchronous versions, improving on the earlier pre-
sentations. To our knowledge, it provides the most consistent defini-
tion of TAG and STAG available, and the only one to use trees over
ranked rather than unranked alphabets. It also, in passing, provides a
characterization of transducers in terms of equational systems using

[53]

Stuart M. Shieber

a uniform metagrammar notation, a new characterization of the re-
lation between tree-adjoining grammar derivation and derived trees,
and a new simpler and more direct proof of the equivalence of tree-
adjoining languages and the output languages of monadic macro tree
transducers, formal contributions that may have independent utility.
Finally, it extends the prior results to cover more linguistically appro-
priate variants of synchronous tree-adjoining grammars, in particular
incorporating multiple adjunction.

After some preliminaries (Section 2), we present a set of known
results relating context-free languages, tree homomorphisms, tree au-
tomata, and tree transducers to extend them for the tree-adjoining
languages (Section 3), presenting these in terms of restricted kinds
of functional programs over trees, using a simple grammatical nota-
tion for describing the programs. We review the definition of tree-
substitution and tree-adjoining grammars (Section 4) and synchronous
versions thereof (Section 5). We prove the equivalence between STSG
and a variety of bimorphism (Section 6).

The grammatical presentation of transducers as functional pro-
grams allows us to easily express generalizations of the notions:
monadic macro tree homomorphisms, automata, and transducers,
which bear (at least some of) the same interrelationships that their
traditional simpler counterparts do (Section 7). Finally, we use this
characterization to place the synchronous TAG formalism in the bi-
morphism framework (Section 7.3), further unifying tree transduc-
ers and other synchronous grammar formalisms. We show that these
methods generalize to TAG allowing multiple adjunction as well (Sec-
tion 8).1

The present work, being based on and synthesizing work from
some ten years ago, is by no means the last word in the general area.
Indeed, since publication of the earlier articles, the connections among
synchronous grammars, transducers, and bimorphisms have been con-
siderably further clarified. The relation between bimorphisms and tree
transducers has benefitted from a notion of extended top-down tree
transducers, which have been shown to be strongly equivalent to the
B(LC , LC) bimorphism class we discuss below (Maletti 2008). Koller

1Much of the content in Sections 2–7 of this paper is based on material in
previous papers (Shieber 2004, 2006), and is used by permission.

[54]

Bimorphisms and synchronous grammars

and Kuhlmann (2011) provide an elegant generalization of monolin-
gual and synchronous systems in terms of interpreted regular tree
grammars (IRTG), in spirit quite close to the idea here of reconstruct-
ing synchronous grammars as bimorphism-like formal systems. Their
IRTG can be used for CFG, TSG, TAG, and synchronous versions of
various sorts. Of especial interest are the formalizations of Büchse
et al. (2012, 2014), which modify the definitions of TAG to incorporate
state information at substitution and adjunction sites. This modifica-
tion eliminates much of the inelegance of the formalization here that
accounts for our having to couch the various equivalences we show
in terms of weak rather than strong generative capacity. The presen-
tation below should be helpful in understanding the background to
these works as well.

2 preliminaries

We start by defining the terminology and notations that we will use
for strings, trees, and the like.
2.1 Basics
We will notate sequences with angle brackets, e.g., 〈a, b, c〉, or where
no confusion results, simply as abc, with the empty string written ε.

We follow much of the formal-language-theory literature (and in
particular, the tree transducer literature) in defining trees over ranked
alphabets, in which the symbols decorating the nodes are associated
with fixed arities. (By contrast, formal work in computational linguis-
tics typically uses unranked trees.) Trees will thus have nodes labeled
with elements of a ranked alphabet, a set of symbols F, each with
a non-negative integer rank or arity assigned to it, determining the
number of children for nodes so labeled. To emphasize the arity of a
symbol, we will write it as a parenthesized superscript, for instance
f (n) for a symbol f of arity n. Analogously, we write F(n) for the set
of symbols in F with arity n. Symbols with arity zero (F(0)) are called
nullary symbols or constants. The set of nonconstants is written
F(≥1).

To express incomplete trees, trees with “holes” waiting to be
filled, we will allow leaves to be labeled with variables, in addition
to nullary symbols. The set of trees over a ranked alphabet F

[55]

Stuart M. Shieber

and variables X, notated T(F,X), is the smallest set such that

Nullary symbols at leaves f ∈ T(F,X) for all f ∈ F(0);
Variables at leaves x ∈ T(F,X) for all x ∈ X;
Internal nodes f (t1, . . . , tn) ∈ T(F,X) for all f ∈ F(n), n ≥ 1, and

t1, . . . , tn ∈ T(F,X).

Where convenient, we will blur the distinction between the leaf and
internal node notation for a nullary symbol f , allowing f () as synony-
mous for the leaf node f .

We abbreviate T(F,;), where the set of variables is empty, as
T(F), the set of ground trees over F. We will also make use of
the set of n numerically ordered variables Xn = {x1, . . . , xn}, and write
x , y, z as synonyms for x1, x2, x3, respectively.

Trees can also be viewed as mappings from tree addresses,
sequences of integers, to the labels of nodes at those addresses. The
address ε is the address of the root, 1 the address of the first child,
12 the address of the second child of the first child, and so forth. We
write q ≺ p to indicate that tree address q is a proper prefix of p, and
p− q for the sequence obtained from p by removing prefix q from the
front. For instance, 1213− 12= 13.

We will use the notation t/p to pick out the subtree of the node at
address p in the tree t, that is, (using · for the insertion of an element
on a sequence)

t/ε= t

f (t1, . . . , tn)/(i · p) = t i/p for 1≤ i ≤ n .

The notation t@p picks out the label of the node at address p in the
tree t, that is, the root label of t/p.

Replacing the subtree of t at address p by a tree t ′, written t[p 7→
t ′] is defined as

t[ε 7→ t ′] = t ′

f (t1, . . . , tn)[(i · p) 7→ t ′] = f (t1, . . . , t i[p 7→ t ′], . . . , tn)

for 1≤ i ≤ n .

[56]

Bimorphisms and synchronous grammars

The height of a tree t, notated height(t), is defined as follows:
height(x) = 0 for x ∈ X

height(f (t1, . . . , tn)) = 1+
n

max
i=1

height(t i) for f ∈ F(n)
We can use trees with variables as contexts in which to place

other trees. A tree in T(F,Xn) will be called a context, typically de-
noted with the symbol C . The notation C[t1, . . . , tn] for t1, . . . , tn ∈ T(F)
denotes the tree in T(F) obtained by substituting for each x i the cor-
responding t i.

More formally, for a context C ∈ T(F,Xn) and a sequence of n
trees t1, . . . , tn ∈ T(F), the substitution of t1, . . . , tn into C , notated
C[t1, . . . , tn], is defined inductively as follows:

(f (u1, . . . , um))[t1, . . . , tn] = f (u1[t1, . . . , tn], . . . , um[t1, . . . , tn])

x i[t1, . . . , tn] = t i

2.2 A grammatical metanotation
We will use a grammatical notation akin to BNF to specify, among
other constructs, equations defining functional programs of various
sorts. As an introduction to this notation, here is a grammar defining
trees over a ranked alphabet and variables (essentially identically to
the definition given above):

f (n) ∈ F(n)
x ∈ X ::= x1 | x2 | · · ·

t ∈ T(F,X) ::= f (m)(t1, . . . , tm)

| x

The notation allows definition of classes of expressions (e.g., F(n)) and
specifies metavariables over them (f (n)). These classes can be primi-
tive (F(n)) or defined (X), even inductively in terms of other classes or
themselves (T(F,X)). We use the metavariables and subscripted vari-
ants on the right-hand side to represent an arbitrary element of the
corresponding class. Thus, the elements t1, . . . , tm stand for arbitrary
trees in T(F,X), and x an arbitrary variable in X. Because numerically
subscripted versions of x appear explicitly and individually enumer-
ated as instances of X (on the right hand side of the rule defining
variables), numerically subscripted variables (e.g., x1) on the right-

[57]

Stuart M. Shieber

hand side of all rules are taken to refer to the specific elements of X
(for instance, in the definition (1) of tree transducers), whereas oth-
erwise subscripted elements within the metanotation (e.g., x i, t1, tm)
are taken as metavariables.

3 tree transducers,
homomorphisms, and automata

We review the formal definitions of tree transducers and related con-
structions for defining tree languages and relations, making use of
the grammatical metanotation to define them as functional program
classes.
3.1 Tree transducers
The variation in tree transducer formalisms is extraordinarily wide
and the literature vast. For present purposes, we restrict attention to
simple nondeterministic tree transducers operating top-down, which
transform trees by replacing each node with a subtree as specified by
the label of the node and the state of the transduction at that node.

Informally, a tree transducer (specifically a nondetermin-
istic top-down tree transducer (↓T T)) specifies a nondetermin-
istic computation from T(F) to T(G) defined such that the symbol at
the root of the input tree and a current state determines an output
context in which the recursive images of the subtrees are placed. For-
mally, we can define a transducer as a kind of functional program,
that is, a set of equations characterized by the following grammar for
equations Eqn. (The set of states is conventionally notated Q, with
members notated q. One of the states is distinguished as the initial
state of the transducer.)

q ∈Q

f (n) ∈ F(n)
g(n) ∈ G(n)

x ∈ X ::= x1 | x2 | · · ·
Eqn ::= q(f (n)(x1, . . . , xn))

.
= τ(n)

τ(n) ∈ R(n) ::= g(m)(τ(n)1, . . . ,τ(n)m)

| q j(x i) where 1≤ i ≤ n

(1)

[58]

Bimorphisms and synchronous grammars

Intuitively speaking, the expressions in R(n) are right-hand-side terms
using variables limited to the first n.

Given this formal description of the set of equations Eqn, a tree
transducer is defined as a tuple 〈Q,F,G,∆, q0〉 where2

• Q is a finite set of states;
• F is a ranked alphabet of input symbols;
• G is a ranked alphabet of output symbols;
• ∆⊆ Eqn is a finite set of equations;
• q0 ∈Q is a distinguished initial state.

Conventional nomenclature refers to the equations as transitions,
by analogy with transitions in string automata. We use both terms in-
terchangeably. To make clear the distinction between these equations
and other equalities used throughout the paper, we use the special
equality symbol .

= for these equations.
The equations define a derivation relation as follows. Given a tree

transducer 〈Q,F,G,∆, q0〉 and two trees t ∈ T(F∪G∪Q) and t ′ ∈ T(F∪
G∪Q), tree t derives t ′ in one step, notated t

.
= t ′ if and only if there

is an equation u
.
= u′ ∈ ∆ with u ∈ T(F ∪Q,Xn) and u′ ∈ T(G∪Q,Xn),

and a tree C ∈ T(F∪G∪Q,X1) in which the variable x1 occurs exactly
once and trees u1, . . . , un ∈ T(F ∪G), such that

t = C[u[u1, . . . , un]]

and
t ′ = C[u′[u1, . . . , un]] .

We abuse notation by using the same symbol for the transition equa-
tions and the one-step derivation relation they define, and will further
extend the abuse to cover the derivation relation’s reflexive transitive
closure.

The tree relation defined by a ↓T T 〈Q,F,G,∆, q0〉 is the set of
all tree pairs 〈s, t〉 ∈ T(F)×T(G) such that q0(s)

.
= t. By virtue of nonde-

terminism in the equations, multiple equations for a given state q and
symbol f , tree transducers define true relations rather than merely
functions.

2We assume without loss of generality that F, G, and Q are disjoint so that
their union can itself be taken to be a well-formed ranked alphabet. The elements
of the set Q are taken to be ranked symbols of arity 1.

[59]

Stuart M. Shieber

By way of example, the equation grammar above allows the def-
inition of the following set of equations defining a tree transducer:3

q(f (x))
.
= g(q′(x), q(x))

q(a)
.
= a

q′(f (x)) .
= f (q′(x))

q′(a) .
= a

This transducer allows for the following derivation:

q(f (f (a)))
.
= g(q′(f (a)), q(f (a)))
.
= g(f (q′(a)), g(q′(a), q(a)))
.
= g(f (a), g(a, a))

3.2 Subvarieties of transducers
Important subvarieties of the basic transducers can be defined by re-
stricting the trees τ that form the right-hand sides of equations, the
elements of R(n) used.

Recall that each equation is of the form

q(f (n)(x1, . . . , xn))
.
= τ(n) .

A transducer is
• linear if for each such equation defining the transducer, τ is
linear, that is, no variable is used more than once;

• complete if τ contains every variable in Xn at least once;
• ε-free if τ ̸∈ Xn;
• symbol-to-symbol if height(τ) = 1; and
• a delabeling if τ is complete, linear, and symbol-to-symbol.
3We will, in general, leave off the explicit specification of the set of states, in-

put and output ranked alphabet, and initial state when providing example trans-
ducers, in the expectation that the sets of states and symbols can be inferred from
the equations, and the initial state determined under a convention that it is the
state defined in the textually first equation.

Note also that we avail ourselves of consistent renaming of the variables x1,
x2, and so forth, where convenient for readability.

[60]

Bimorphisms and synchronous grammars

f

f

a f

b a

f

a b

f

f

f

f

a b

a

a

b

(a) (b)

Figure 1:
Local rotation computed by
a nonlinear tree transducer.
Trees (a) and (b) are in
the tree relation of the
transducer defined
in Section 3.3.

3.3 Nonlinearity deprecated
The following rules specify a transducer that recursively “rotates” sub-
trees of the form f (t1, f (t2, t3)) to the tree f (f (t1, t2), t3), failing if the
required pattern is not found.

q(f (x , y))
.
= f (f (q(x), q1(y)), q2(y))

q1(f (x , y))
.
= q(x)

q2(f (x , y))
.
= q(y)

q(a)
.
= a

q(b)
.
= b

The tree f (f (a, f (b, a)), f (a, b)) is transduced to f (f (f (f (a, b), a), a), b)
(as depicted graphically in Figure 1) according to the following deriva-
tion:

q(f (f (a, f (b, a)), f (a, b)))
.
= f (f (q(f (a, f (b, a))), q1(f (a, b))), q2(f (a, b)))
.
= f (f (f (f (q(a), q1(f (b, a))), q2(f (b, a))), q(a)), q(b))
.
= f (f (f (f (a, q(b)), q(a)), a), b)
.
= f (f (f (f (a, b), a), a), b)

A variant transducer can allow f subtrees to remain unchanged (rather
than failing) when the second argument is not itself an f tree. We add
a (nondeterministic) equation to allow nonrotation,

q(f (x , y))
.
= f (q(x), q′(y)) ,

[61]

Stuart M. Shieber
Figure 2:

Example of local rotation
in language translation

divergence. Corresponding
nodes are marked with

matched subscripts.

S

N P1

I

V P

V2

like

N P3

cake

S

N P3

Kuchen

V P

V2

gefällt

N P1

mir
(a) (b)

which puts the proper constraint on its second subtree y through the
new state q′ defined by

q′(a) .
= a

q′(b) .
= b .

This allows, for instance, the “already rotated” tree in Figure 1(b) to
transduce to itself.

Note that intrinsic use is made in these examples of the ability
to duplicate variables on the right-hand sides of rewrite rules. Trans-
ducers without such duplication are linear. Linear tree transducers are
incapable of performing local rotations of this sort.

Local rotations are typical of natural-language applications. For
instance, many of the kinds of translation divergences between lan-
guages, such as that exemplified in Figure 2, manifest such rotations.
Similarly, semantic bracketing paradoxes can be viewed as necessitat-
ing rotations. Thus, linear tree transducers are insufficient for natural-
language modeling purposes.

Nonlinearity per se, the ability to make copies during transduc-
tion, is not the kind of operation that is characteristic of natural-
language phenomena. Furthermore, nonlinear transducers are compu-
tationally problematic. The following nonlinear transducer generates
a tree that doubles in both width and depth.

q(f (x))
.
= g(f (f (q(x))), f (f (q(x))))

q(g(x , y))
.
= g(q(x), q(y))

q(a)
.
= a

For instance, the tree f (a) transduces to
g(f (f (a)), f (f (a)))

[62]

Bimorphisms and synchronous grammars

which in turn transduces to
g(g(f (f (g(f (f (a)), f (f (a))))),

f (f (g(f (f (a)), f (f (a)))))),

g(f (f (g(f (f (a)), f (f (a))))),

f (f (g(f (f (a)), f (f (a))))))) .
Notice that the number of a’s in the i-th iteration is 22i−1. The size
of this transducer’s output is exponential in the size of its input. (The
existence of such a transducer constitutes a simple proof of the lack
of composition closure of tree transducers, as the exponential of an
exponential grows faster than exponential.)

In summary, nonlinearity seems inappropriate on computational
and linguistic grounds, yet is required for tree transducers to express
the kinds of simple local rotations that are typical of natural-language
transductions. By contrast, STSG, as described in Section 6, is intrin-
sically a linear formalism but can express rotations straightforwardly.
3.4 Tree automata and homomorphisms
Two subcases of tree transducers are especially important. First, tree
transducers that implement a partial identity function over their do-
main are tree automata. These are delabeling tree transducers that
preserve the label and the order of arguments. Because they compute
only the identity function, tree automata are of interest for the do-
mains over which they are defined, not the mappings they compute.
This domain forms a tree language, the tree language recognized by
the automaton. The tree languages so recognized are the regular
tree languages (or recognizable tree languages). Though
the regular tree languages are a superset of the tree languages de-
fined by context-free grammars (the local tree languages), the string
languages defined by their yield are coextensive with the context-free
languages. We take tree automata to be quadruples by dropping one
of the redundant alphabets from the corresponding tree transducer
quintuple.

Second, tree homomorphisms are deterministic tree transduc-
ers with only a single state, hence essentially stateless. The replace-
ment of a node by a subtree thus proceeds deterministically and inde-
pendently of its context. Consequently, a homomorphism h : T(F)→

[63]

Stuart M. Shieber

T(G) is specified by its kernel, a function ĥ : F → T(G,X∞) such that
ĥ(f) is a context in T(G,Xarity(f)) for each symbol f ∈ F. The kernel ĥ
is extended to the homomorphism h by the following recurrence:

h(f (t1, . . . , tn)) = ĥ(f)[h(t1), . . . , h(tn)]

that is, ĥ(f) acts as a context in which the homomorphic images of the
subtrees are substituted.

As with transducers (see Section 3.2), further restrictions can be
imposed to generate the subclasses of linear, complete, ε-free, symbol-
to-symbol, and delabeling tree homomorphisms.

The import of these two subcases of tree transducers lies in the
fact that the tree relations defined by certain tree transducers have
been shown to be also characterizable by composition from these
simplified forms, via an alternate and quite distinct formalization, to
which we now turn.
3.5 The bimorphism characterization of tree transducers
Tree transducers can be characterized directly in terms of equations
defining a simple kind of functional program, as above. Bimorphisms
constitute an elegant alternative characterization of tree transducers
in terms of a constellation of elements of the various subtypes of trans-
ducers – homomorphisms and automata – we have introduced.

A bimorphism is a triple 〈L, hin, hout〉 consisting of a regular tree
language L (or, equivalently, a tree automaton) and two tree homo-
morphisms hin and hout (connoting the input and output respectively).
The tree relation L defined by a bimorphism is the set of tree pairs
that are generable from elements of the tree language by the homo-
morphisms, that is,

L(〈L, hin, hout〉) = {〈hin(t), hout(t)〉 | t ∈ L} .

Depending on the type of tree homomorphisms used in the bimor-
phism, different classes of tree relations are defined. We can limit at-
tention to bimorphisms in which the input or output homomorphisms
are restricted to a certain type: linear (L), complete (C), ε-free (F),
symbol-to-symbol (S), delabeling (D), or unrestricted (M). We will
write B(I , O)where I and O characterize a subclass of homomorphisms
for the set of bimorphisms for which the input homomorphism is in the

[64]

Bimorphisms and synchronous grammars

subclass indicated by I and the output homomorphism is in the sub-
class indicated by O. For example, B(D, M) is the set of bimorphisms
for which the input homomorphism is a delabeling but the output ho-
momorphism can be arbitrary.

The tree relations definable by bottom-up tree transducers (closely
related to the top-down transducers we use here) turn out to be ex-
actly this class B(D, M). (See the survey by Comon et al. (2008, Section
6.5) and works cited therein.) The bimorphism notion thus allows us
to characterize certain tree transductions purely in terms of tree au-
tomata and tree homomorphisms.

As an example, we consider the rotation transducer of Section 3.3,
expressed as a bimorphism. The tree relation for the bimorphism ex-
presses an abstract specification of where the rotations are to occur,
picking out such cases with a special symbol R of arity 3, its arguments
being the three subtrees participating in the rotation.

q(A)
.
= A

q(B)
.
= B

q(R(x , y, z))
.
= R(q(x), q(y), q(z))

The input homomorphismmaps these trees onto trees prior to rotation.

q(A)
.
= a

q(B)
.
= b

q(R(x , y, z))
.
= f (q(x), f (q(y), q(z)))

Notice that the trees rooted in R map onto a tree configuration that
should be rotated.

The output homomorphism maps each tree onto the correspond-
ing post-rotation tree:

q(A)
.
= a

q(B)
.
= b

q(R(x , y, z))
.
= f (f (q(x), q(y)), q(z))

Again, to allow the option of nonrotating configurations, we can
add to the control trees nodes labeled F that should map onto config-
urations that cannot be rotated. (New equations are marked with⇐.)

[65]

Stuart M. Shieber

The new q′ state guarantees this constraint on the F trees.

q(A)
.
= A

q(B)
.
= B

q(F(x , y))
.
= F(q(x), q′(y)) ⇐

q(R(x , y, z))
.
= R(q(x), q(y), q(z))

q′(A) .
= A ⇐

q′(B) .
= B ⇐

The input homomorphism maps the new F states onto f trees

q(A)
.
= a

q(B)
.
= b

q(F(x , y))
.
= f (q(x), q(y)) ⇐

q(R(x , y, z))
.
= f (q(x), f (q(y), q(z)))

as does the output homomorphism.

q(A)
.
= a

q(B)
.
= b

q(F(x , y))
.
= f (q(x), q(y)) ⇐

q(R(x , y, z))
.
= f (f (q(x), q(y)), q(z))

4 tree-substitution and
tree-adjoining grammars

Tree-adjoining grammars (TAG) and tree-substitution grammars (TSG)
are grammar formalisms based on tree rewriting, rather than the string
rewriting of the Chomsky hierarchy formalisms. Grammars are com-
posed of a set of elementary trees, which are combined according to
simple tree operations. In the case of TAG, these operations are sub-
stitution and adjunction, in the case of TSG, substitution alone. Syn-
chronous variants of these formalisms extend the base formalism with
the synchronization idea presented in earlier work (Shieber 1994). In
particular, grammars are composed of pairs of elementary trees, and
certain pairs of nodes, one from each tree in a pair, are linked to indi-

[66]

Bimorphisms and synchronous grammars

cate that operations incorporating trees from a single elementary pair
must occur at the linked nodes.

We review here the definition of tree-substitution and tree-ad-
joining grammars, and their synchronous variants. Since TSG can be
thought of as a subset of TAG, we first present TAG, describing the
restriction to TSG thereafter. Our presentation of TAG differs slightly
from traditional ones in ways that simplify the synchronous variants
and the later bimorphism constructions.
4.1 Tree-adjoining grammars
A tree-adjoining grammar is composed of a set of elementary trees,
such as those depicted in Figure 4, that are combined by operations
of substitution and adjunction. Traditional presentations of TAG, with
which we will assume familiarity, take the symbols in elementary and
derived trees to be unranked; nodes labeled with a given nonterminal
symbol may have differing numbers of children. (Joshi and Schabes
(1997) present a good overview.) For example, foot nodes of auxiliary
trees and substitution nodes have no children, whereas the similarly
labeled root nodes must have at least one. Similarly, two nodes with
the same label but differing numbers of children may match for the
purpose of allowing an adjunction (as the root nodes of α1 and β1 in
Figure 4). In order to integrate TAG with tree transducers, however,
we move to a ranked alphabet, which presents some problems and
opportunities. (In some ways, the ranked alphabet definition of TAGs
is slightly more elegant than the traditional one.)

We will thus take the nodes of TAG trees to be labeled with sym-
bols from a ranked alphabet F; a given symbol then has a fixed arity
and a fixed number of children. However, in order to maintain infor-
mation about which symbols may match for the purpose of adjunction
and substitution, we take the elements of F to be explicitly formed as
pairs of an unranked label e and an arity n. (For notational consis-
tency, we will use e for unranked and f for ranked symbols.) We will
notate these elements, abusing notation, as e(n), and make use of a
function |·| to unrank symbols in F, so that |e(n)|= e.

To handle foot nodes, for each non-nullary symbol e(i) ∈ F(≥1),
we will associate a new nullary symbol e∗, which one can take to be
the pair of e and ∗; the set of such symbols will be notated F∗. Simi-
larly, for substitution nodes, F↓ will be the set of nullary symbols e↓

[67]

Stuart M. Shieber

for all e(i) ∈ F(≥1). These additional symbols, since they are nullary,
will necessarily appear only at the frontier of trees. We will extend
the function |·| to provide the unranked symbol associated with these
symbols as well, so |e↓|= |e∗|= e.

A TAG grammar (which we will define more precisely shortly) is
based then on a set P of elementary trees, a finite subset of T(F∪F↓∪
F∗), divided into the auxiliary and initial trees depending on whether
they do or do not possess a foot node, respectively. In order to al-
low reference to a particular tree in the set P, we associate with each
tree a unique name, conventionally notated with a subscripted α or
β for initial and auxiliary trees respectively. We will abuse notation
by using the name and the tree that it names interchangably, and use
primed and subscripted variants of α and β as variables over initial
and auxiliary trees, with γ serving for elementary trees in general.

Traditionally in TAG grammars, substitutions are obligatory at
substitution nodes (those with labels from F↓) and adjunctions are op-
tional at nodes with labels from F. This presents two problems. First,
the optionality of adjunction makes it tricky to provide a canonical
fixed-length specification of what trees operate at the various nodes
in the tree; such a specification will turn out to be helpful in our def-
initions of derivation for TAG and synchronous TAG. (This is not a
problem for substitution, as the obligatoriness of substitution means
that there will be exactly as many trees substituting in as there are
substitution nodes.) Second, it is standard within TAG to provide fur-
ther constraints that disallow adjunction at certain nodes. So far, we
have no provision for such nonadjoining constraints. To address
these problems, we use a TAG formalism slightly modified from tradi-
tional presentations, one that loses no expressivity in weak generative
capacity but is easier for analysis purposes.

First, we make all adjunction obligatory, in the sense that if a
node in a tree allows adjunction, an adjunction must occur there. To
get the effect of optional adjunction, for instance at a node labeled
B, we add to the grammar a nonadjunction tree naB, a vestigial
auxiliary tree of a single node B∗, which has no adjunction sites and
therefore does not itself modify any tree that it adjoins into. These
nonadjunction trees thus found the recursive structure of derivations.4

4 In traditional TAG, all adjunction is optional; adding nonadjunction trees

[68]

Bimorphisms and synchronous grammars

B

A

B

A⇤B#a b

2

3

1

Figure 3:
Sample TAG tree marked with diacritics to show the
permutation of operable nodes. Note that the node at
address 1 is left out of the set of operable sites; it is
thus a nonadjoining node.

Second, now that it is determinate whether an operation must
occur at a node, the number of children of a node in a derivation
tree is determined by the elementary tree γ at that node; it is just the
number of adjunction or substitution sites in γ, the operable sites,
which we will notate γ. We take γ to be the set of adjunction and
substitution nodes in the tree, that is, all nodes in the tree with the
exception of the foot node. (Below, we will allow for nodes to be left
out from the set of operable sites, and in Section 8, we generalize this
to allow multiple adjunctions at a single site.)

All that is left is to provide a determinate ordering of operable
sites in an elementary tree, that is, a permutation π on the opera-
ble sites γ (or equivalently, their addresses). This permutation can be
thought of as specified as part of the elementary tree itself. For ex-
ample, the tree in Figure 3, which requires operations at the nodes
at addresses ε, 12, and 2, may be associated with the permutation
〈12,2,ε〉. The permutation can be marked on the tree itself with nu-
meric diacritics i , as shown in the figure.

A nonadjoining constraint on a node can now be implemented
merely by removing the node from the operable sites of a tree, and
hence from the tree’s associated permutation. In the graphical depic-
tions, nonadjoining nodes are those non-substitution nodes that bear
no numeric diacritic.

Formally, we define E(F), the elementary trees over a ranked
alphabet F, to be all pairs □γ = 〈γ,π〉 where γ ∈ T(F ∪F↓ ∪F∗) and π
is a permutation of a subset of the nodes in γ. As above, we use the
notation γ to specify the operable sites of γ, that is, the domain of π.
The operable sites γ must contain all substitution nodes in γ.
for all elements of F is consistent with that practice. Our approach, however,
opens the possibility of leaving out nonadjunction trees for one or more symbols,
thereby implementing a kind of global obligatory adjunction constraint, less ex-
pressive than those variants of TAG that have node-based obligatory adjunction
constraints, but more so than the purely adjunction-optional approach.

[69]

Stuart M. Shieber

We further require that the tree γ whose root is labeled f contain
at most one node labeled with | f |∗ ∈ F∗ and no other nodes labeled in
F∗; this node is its foot node, and its address is notated foot(β). The
foot node is not an element of γ. Trees with a foot node are auxiliary
trees; those with no foot node are initial trees. The set E(F) is the
set of all possible such elementary trees.

The notation □γ is used to indicate an elementary tree, the box as
a mnemonic for the box diacritics labeling the permutation. We use
similar notations for the particular cases where the elementary tree is
initial (□α) or auxiliary (□β). For convenience, for an elementary tree
□γ, we will use γ for its tree component when no confusion results,
and will conflate the tree properties of an elementary tree □γ and its
tree component γ.

A TAG grammar is then a triple 〈F, P, S〉, where F is a ranked al-
phabet; P is the set of elementary trees, a finite subset of E(F);
and S ∈ F↓ is a distinguished initial symbol. We further partition
the set P into the set I of initial trees in P and the set A of auxiliary
trees in P. A simple TAG grammar is depicted in Figure 4; α1 and α2

are initial trees, and β1 and β2 are auxiliary trees.
4.2 The substitution and adjunction operations
We turn now to the operations used to derive more complex trees
from the elementary trees. It is convenient to notationally distinguish
derived trees that have the form of an initial or auxiliary tree, that
is, (respectively) lacking or bearing a foot node. We use the bolded
symbols α and β for derived trees in T(F ∪F↓ ∪F∗) without and with
foot nodes, respectively, again using γ when being agnostic as to the
form.

The trees are combined by two operations, substitution and
adjunction. Under substitution, a node labeled e↓ (at address p) in a
tree γ can be replaced by an initial-form tree αwith the corresponding
label f at the root when | f |= e. The resulting tree, the substitution of
α at p in γ, is

γ[substp α]≡ γ[p 7→ α] .

Under adjunction, an internal node of γ at p labeled f ∈ F is split apart,
replaced by an auxiliary-form tree β rooted in f ′ when | f |= | f ′|. The

[70]

Bimorphisms and synchronous grammars

T#

S

c

a1 : a2 :

S⇤

a S

a

b1 :

S⇤

b S

b

b2 :

1 11

2 naS : S∗SST Figure 4:
Sample TAG for
the copy language
{wcw | w ∈ {a, b}∗ }.
The initial symbol is S↓.

b1

b2

a1

a2

naS

a

b

S

aS

T

c

b

S

S

S

(a) (b)

Figure 5:
Derivation and derived
trees for the sample
grammar of Figure 4:
(a) derivation tree,
(b) corresponding
derived tree.

resulting tree, the adjunction of β at p in γ, is
γ[adjp β]≡ γ[p 7→ β[foot(β) 7→ γ/p]] .

This definition (by requiring f to be in F, not F∗ or F↓) is consistent
with the standard convention, without loss of expressivity, that ad-
junction is disallowed at foot nodes and substitution nodes.

For uniformity, we will notate these operations with a single op-
erator opp defined as follows:

γ[opp γ
′]≡
¨
γ[substp γ

′] if γ@p ∈ F↓
γ[adjp γ

′] otherwise

4.3 Derivation trees and the derivation relation
A derivation tree D records the operations over the elementary trees
used to derive a given derived tree. Each node in the derivation tree
specifies an elementary tree □γ, with the node’s child subtrees Di

recording the derivations for trees that are adjoined or substituted
into that tree at the corresponding operable nodes.

A derivation for a grammar G = 〈F, P, S〉 is a tree whose nodes
are labeled with elementary trees, that is, a tree D in T(P). We here

[71]

Stuart M. Shieber

interpret P itself as a ranked alphabet, where for each □γ= 〈γ,π〉 ∈ P,
we take its arity to be arity(□γ) ≡ |π|. This requirement enforces the
constraint that nodes in a derivation tree labeled with □γ will have
exactly the right number of children to specify the subtrees to be used
at each of the operable sites in □γ. We add an additional constraint:
Labels match: For each node in D labeled with □γ = 〈γ,π〉, and for

all i where 1 ≤ i ≤ arity(□γ), the root node of the i-th child of □γ,
labeled with □γi, must match the corresponding operable site in
□γ, that is,

|γ@πi |= |γi@ε| .
(The notation γ@πi can be thought of as the node in γ labeled by
diacritic i .)
A derivation is complete if it is rooted in an initial tree that is

itself rooted in the initial symbol:
Initial symbol at root: The tree □αr at the root of the derivation tree

must be an initial tree labeled at its root by the initial symbol;
that is, |αr@ε|= |S|.5
For example, the tree in Figure 5(a) is a well-formed complete

derivation tree for the grammar in Figure 4. Note, for instance, that
|α1@π2| = S = |β1@ε| as required by the label-matching constraint,
and the root is an initial tree α1 whose root is consistent with the
initial symbol S↓.

A simple tree automaton can check these conditions, and there-
fore define the set of well-formed complete derivation trees. This au-
tomaton is constructed as follows. The states of the automaton are the
set {qN | N ∈ |F|}, one for each unranked vocabulary symbol in the de-
rived tree language. The start state is q|S|. For each tree □γ= 〈γ,π〉 ∈ P,
of arity n and rooted with the symbol N , there is a transition of the
form

q|N |(□γ(x1, . . . , xn))
.
= □γ(q|γ@π1|(x1), . . . , q|γ@πn|(xn)) . (2)

The set of well-formed derivation trees is thus a regular tree set.
5The stripping of ranks and diacritics is necessary to allow, for instance, the

initial symbol to match root nodes of differing arities.

[72]

Bimorphisms and synchronous grammars

For the grammar of Figure 4, the automaton defining well-formed
derivation trees is given by

qS(α1(x , y))
.
= α1(qT (x), qS(y))

qT (α2)
.
= α2

qS(β1(x))
.
= β1(qS(x))

qS(β2(x))
.
= β2(qS(x))

qS(naS)
.
= naS

which recognizes the tree of Figure 5(a):
qS(α1(α2,β1(β2(naS))))

.
= α1(qT (α2), qS(β1(β2(naS))))
.
= α1(α2,β1(qS(β2(naS))))
.
= α1(α2,β1(β2(qS(naS))))
.
= α1(α2,β1(β2(naS)))

The derivation relation D, that is, the relation between
derivation trees and the derived trees that they specify, can be simply
defined via the hierarchical iterative operation of trees at operable
sites. In particular, for a derivation tree with root labeled with the
elementary tree □γ= 〈γ,π〉 of arity n, we define

D(□γ(t1, . . . , tn))≡ γ[opπ1
D(t1),opπ2

D(t2), . . . ,opπn
D(tn)]

where, following Schabes and Shieber (1994), the right-hand side
specifies the simultaneous application of the specified operations. We
define this in terms of the sequential application of operations as fol-
lows:
γ[opp1

γ1,opp2
γ2, . . . ,oppn

γn]

≡ γ[opp1
γ1][opupdate(p2,γ1,p1) γ2, . . . ,opupdate(pn,γ1,p1) γn] (3)

The update function adjusts the paths at which later operations take
place to compensate for an earlier adjunction. (Recall the notations
q ≺ p for q a proper prefix of p and p−q for the sequence obtained by
removing the prefix q from p.)

update(p,γ, q)≡


p if γ is an initial-form tree
p if γ is an auxiliary-form tree and q ̸≺ p
q · foot(γ) · (p− q)

if γ is an auxiliary-form tree and q ≺ p

[73]

Stuart M. Shieber
Figure 6:

Grammar for a tiny
English fragment.

α1: S

2 N P↓ V P

V

like

1 N P↓

α2: N P

I

α3: N P

cake

Schabes and Shieber (1994) prove that adjunctions at distinct
sites commute: if p ̸= q then

γ[. . . ,adjp γ1,adjq γ2, . . .] = γ[. . . ,adjq γ2,adjp γ1, . . .] (4)

that is, that the order of adjunctions is immaterial according to this
definition. The proof applies equally well to substitution and mixtures
of operations. This proves that the order of the permutation over op-
erable sites is truly arbitrary; any order will yield the same result. (In
Section 8, the introduction of multiple adjunction presents the poten-
tial for noncommutativity. We address the issue in that section.)

As the base case, this definition gives, as expected,

D(□γ)≡ γ
for elementary trees of arity 0, that is, trees with no operable sites.
4.4 Tree-substitution grammars
Tree-substitution grammars are simply tree-adjoining grammars with
no auxiliary trees, so that the elementary trees are only combined by
substitution.

As a simple natural-language example, we consider the grammar
with three elementary trees of Figure 6 and initial symbol S. The arities
of the symbols should be clear from their usage and the associated
permutations from the link diacritics.

As in Section 4.3, the derived tree for a derivation tree D is gener-
ated by performing all of the requisite substitutions. In this section, we
provide a new definition of the derivation relation between a deriva-
tion tree and the derived tree it specifies as a simple homomorphism
hD, and prove that this definition is equivalent to that of Section 4.3.

[74]

Bimorphisms and synchronous grammars

We define hD in equational form. For each elementary tree □α ∈ P,
there is an equation of the form

hD(□α(x1, . . . , xn))
.
= ⌊□α⌋

where the right-hand-side transformation ⌊·⌋ is defined by
⌊A(t1, . . . , tn)⌋= A(⌊t1⌋, . . . , ⌊tn⌋)

⌊ k A↓⌋= hD(xk) . (5)

Essentially, this transformation replaces each operable site πi by the
homomorphic image of the corresponding variable x i, that is,

⌊α⌋= α[π1 7→ hD(x1)] . . . [πn 7→ hD(xn)]

for a tree α with n substitution sites in its permutation π.
4.5 An example derivation
Returning to the example, the equations corresponding to the elemen-
tary trees of Figure 6 are

hD(α1(x1, x2))
.
= S(hD(x2), V P(V (l ike), hD(x1)))

hD(α2)
.
= N P(I)

hD(α3)
.
= N P(cake) .

We define the derived tree corresponding to a derivation tree D
as the application of this homomorphism to D, that is hD(D). For the
example above, the derived tree is that shown in Figure 2(a):

hD(α1(α3,α2))
.
= S(hD(α2), V P(V (l ike), hD(α3))
.
= S(N P(I), V P(V (l ike), N P(cake)))

By composing the automaton recognizing well-formed derivation
trees with the homomorphism above, we can construct a single trans-
ducer doing the work of both. We do this explicitly for TAG in Sec-
tion 7.1.

Note that, by construction, each variable occurs exactly once on
the right-hand side of a given equation. Thus, this homomorphism hD

is linear and complete.

[75]

Stuart M. Shieber

4.6 Equivalence of D and hD

We can show that this definition in terms of the linear complete ho-
momorphism hD is equivalent to the traditional definition D:

D(D) = hD(D) (6)
The proof is by induction on the height of D. Since hD is the identity
function everywhere except at operable sites,

D(□α) = α= hD(□α) .
This serves as the base case for the induction.

Now suppose, that Equation (6) holds for trees of height k, and
consider tree □α(D1, . . . , Dn) of height k+ 1. Then
D(□α(D1, . . . , Dn)) = α[substπ1

D(D1), . . . ,substπn
D(Dn)]

= α[substπ1
D(D1)] . . . [substπn

D(Dn)]

= α[π1 7→D(D1)] . . . [πn 7→D(Dn)]

= α[π1 7→ hD(D1)] . . . [πn 7→ hD(Dn)] ⇐
= α[π1 7→ hD(x1)] . . . [πn 7→ hD(xn)][D1, . . . , Dn]

= ⌊α⌋[D1, . . . , Dn]

= hD(□α(D1, . . . , Dn)) .
The marked step applies the induction hypothesis.

Later, in Section 7 we will provide a similar reformulation of the
derivation relation for tree-adjoining grammars. To do so, however,
requires additional power beyond simple tree homomorphisms, which
is the subject of that section.

5 synchronous grammars

We perform synchronization of tree-adjoining and tree-substitution
grammars as per the approach taken in earlier work (Shieber 1994).
Synchronous grammars consist of pairs of elementary trees with a
linking relation between operable sites in each tree. Simultaneous
operations occur at linked nodes. In the case of synchronous tree-
substitution grammars, the composition operation is substitution, so
the linked nodes are substitution nodes.

[76]

Bimorphisms and synchronous grammars

We define a synchronous tree-adjoining grammar, then, as a quin-
tuple G = 〈Fin,Fout , P, Sin, Sout〉, where

• Fin and Fout are the input and output ranked alphabets, respec-
tively,

• Sin ∈ Fin↓ and Sout ∈ Fout↓ are the input and output initial symbols,
and

• P is a set of elementary linked tree pairs, each of the form
〈γin,γout ,⌢〉, where γin ∈ T(Fin ∪ Fin↓ ∪ Fin∗) and γout ∈ T(Fin ∪
Fin↓ ∪ Fin∗) are input and output trees and ⌢ ⊆ γin × γout is a
bijection between operable sites from the two trees.
We define Gin = 〈Fin, Pin, Sin〉 where Pin = {〈γ,πin〉 | 〈γ,γ′,⌢〉 ∈ P};

this is the left projection of the synchronous grammar onto a simple
TAG. The right projection Gout is defined similarly. Recall that the
elementary trees in this grammar need a permutation on their opera-
ble sites. In order to guarantee that derivations for the synchronized
grammars are isomorphic, the permutations for the operable sites for
paired trees should be consistent. We therefore choose an arbitrary
permutation 〈pin,1⌢ pout,1, . . . , pin,n⌢ pout,n〉 over the linked pairs, and
take the permutations πin for γin and πout for γout to be defined as
πin = 〈pin,1, . . . , pin,n〉 and πout = 〈pout,1, . . . , pout,n〉. Since ⌢ is a bijec-
tion, these projections are permutations as required.

A synchronous derivation was originally defined (Shieber 1994)
as a pair 〈Din, Dout〉 where6
1. Din is a well-formed derivation tree for Gin, and Dout is a well-

formed derivation tree for Gout , and
2. Din and Dout are isomorphic.7

The derived tree pair for derivation 〈Din, Dout〉 is then 〈D(Din),D(Dout)〉.
6 In our earlier definition (Shieber 1994), a third condition required that the

isomorphic operations be sanctioned by links in tree pairs. This condition can
be dropped here, as it follows from the previous definitions. In particular, since
the permutations for paired trees are chosen to be consistent, it follows that the
isomorphic children of isomorphic nodes are substituted at linked paths.

7By “isomorphism” here, wemean the normal sense of isomorphism of rooted
trees where the elementary-tree-pairing relation in P serves as the bijection wit-
nessing the isomorphism.

[77]

Stuart M. Shieber

Presentations of synchronous tree-adjoining grammars typically
weaken the requirement that the linking relation be a bijection; mul-
tiple links are allowed to impinge on a single node. One of two inter-
pretations is possible in this case. We might require that if multiple
links impinge upon a node, only one of the links be used. Under this
interpretation, the multiple links at a node can be thought of as abbre-
viatory for a set of trees, each of which contains only one of the links.
(The abbreviated form allows for exponentially fewer trees, however.)
Thus, the formalism is equivalent to the one described in this section
in terms of bijective link relations. Alternatively, we might allow true
multiple adjunction of nontrivial trees, which requires an extended
notion of derivation tree and derivation relation. This interpretation,
proposed by Schabes and Shieber (1994), is arguably better motivated.
We defer discussion of multiple adjunction to Section 8, where we ad-
dress the issue in detail.

6 the bimorphism characterization of stsg

The central result we provide relating STSG to tree transducers is this:
STSG is weakly equivalent to B(LC , LC), that is, equivalent in the char-
acterized string relations. To show this, we must demonstrate that any
STSG is reducible to a bimorphism, and vice versa.
6.1 Reducing STSG to B(LC , LC)

Given an STSG G = 〈Fin,Fout , P, Sin, Sout〉, we need to construct a bimor-
phism characterizing the same tree relation. All the parts are in place
to do this. We start by defining a languageD of synchronous derivation
trees, which recasts synchronous derivations as single derivation trees
from which the left and right derivation trees can be projected via ho-
momorphisms. Rather than taking a synchronous derivation to be a
pair of isomorphic trees Din and Dout , we take it to be the single tree
D isomorphic to both, whose element at address p is the elementary
tree pair in P that includes Din@p and Dout@p. The two synchronized
derivations Din and Dout can be separately recovered by projecting this
new derivation tree on its first and second elements via homomor-
phisms: hin that projects on the first component and hout that projects
on the second, respectively. These homomorphisms are trivially linear
and complete (indeed, they are mere delabelings).

[78]

Bimorphisms and synchronous grammars

We define the set D of well-formed synchronous derivation trees
to be the set of trees D ∈ T(P) such that hin(D) and hout(D) are both
well-formed derivation trees as per Section 4.3. Since tree automata
are closed under inverse homomorphism and intersection, the set D is
a regular tree language.

The fact that for any tree D ∈ D, hin(D) and hout(D) are well-
formed derivation trees for their respective TSGs is trivial by con-
struction. It is also trivial to show that any paired derivation has a
corresponding synchronous derivation tree in D.

For a given derivation tree D ∈ D, the paired derived trees can
be constructed as hD(hin(D)) and hD(hout(D)), respectively. Thus the
mappings from the derivation tree to the derived trees are the compo-
sitions of two linear complete homomorphisms, hence linear complete
homomorphisms themselves. We take the bimorphism characterizing
the STSG tree relation to be 〈D, hD ◦ hin, hD ◦ hout〉. Thus, the tree rela-
tion defined by the STSG is in B(LC , LC).
6.2 Reducing B(LC , LC) to STSG
The other direction is somewhat trickier to prove. Given a bimorphism
〈L, hin, hout〉 over input and output alphabets Fin and Fout , respectively,
we construct a corresponding STSG G = 〈F′in,F′out , P, Sin, Sout〉. By “cor-
responding”, we mean that the tree relation defined by the bimor-
phism is obtainable from the tree relation defined by the STSG via
simple homomorphisms of the input and output that eliminate the
nodes labeled inQ (as described below). The tree yields are unchanged
by these homomorphisms; thus, the string relations defined by the bi-
morphism and the synchronous grammar are identical.

As the language L is a regular tree language, it is generable by a
nondeterministic tree automaton hD = 〈Q,Fd ,∆, q0〉. We use the states
of this automaton in the input and output alphabets of the STSG. The
input alphabet of the STSG is F′in = Fin ∪ Q, composed of the input
symbols of the bimorphism, along with the states of the automaton
(taken to be symbols of arity 1), and similarly for the output alpha-
bet. The state symbols mark the places in the tree where substitutions
occur, allowing control for appropriate substitutions. It is these state
symbols that can be eliminated by a simple homomorphism.8

8 In previous work (Shieber 2004), we used a construction that did not in-

[79]

Stuart M. Shieber

The basic idea of the STSG construction is to construct an ele-
mentary tree pair corresponding to each compatible pair of transi-
tions in the transducer hD ◦ hin = 〈Q in,Fd ,Fin,∆in, qin,0〉 and hD ◦ hout =
〈Qout ,Fd ,Fout ,∆out , qout,0〉. For each pair of transitions of the form

qin,i(f (x1, . . . , xn))
.
= τin ∈∆in

and
qout, j(f (x1, . . . , xn))

.
= τout ∈∆out

we construct a tree pair
〈qin,i(⌈τin⌉), qout, j(⌈τout⌉)〉

where the following transformation is applied to the right-hand sides
of the transitions to form the body of the synchronized trees:

⌈ f (t1, . . . , tm)⌉= f (⌈t1⌉, . . . , ⌈tm⌉)
⌈q j(xk)⌉= k q j↓

Note that this transformation generates the tree along with a permuta-
tion of the operable sites (all substitution nodes) in the tree, and that
there will be exactly n such sites in each element of the tree pair, since
the transitions are linear and complete by hypothesis. Thus, the two
permutations define an appropriate linking relation, which we take to
be the synchronous grammar linking relation for the tree pair.

An example may clarify the construction. Take the language of
the bimorphism to be defined by the following two-state automaton:

q(f (x , y))
.
= f (q′(x), q′(y))

q(a)
.
= a

q′(g(x)) .
= g(q(x))

troduce any extra tree structure in the STSG, so that the trees generated by the
bimorphism relation could be recovered by a delabeling rather than a homomor-
phism deleting extra nodes. However, the proof of equivalence was considerably
more subtle, and did not generalize as readily to the case of STAG. Nonetheless,
it is useful to note that even more faithful STSG reconstructions of bimorphisms
are possible.

Alternately, the definition of STSG (and similarly, STAG) can be modified to
incorporate finite-state information explicitly at operable sites. By adding in this
information, the bookkeeping done here can be folded into the states, allowing
for a stricter strong-generative capacity equivalence. This elegant approach is
pursued by Büchse et al. (2014).

[80]

Bimorphisms and synchronous grammars

F

G

F

G

A

G

A

G

A

hin⇐= f

g

f

g

a

g

a

g

a

hout
=⇒ D

E

N

D

E

D

E

N

D

E

N

N

N

Figure 7:
Example of
bimorphism
construction

This automaton uses the states to alternate g’s with f ’s and a’s level
by level. For instance, it admits the middle tree in Figure 7. With input
and output homomorphisms defined by

ĥin(f)
.
= F(x , y) ĥout(f)

.
= D(y, D(x , N))

ĥin(g)
.
= G(x) ĥout(g)

.
= E(x)

ĥin(a)
.
= A ĥout(a)

.
= N

the bimorphism so defined generates the tree relation instance exem-
plified in the figure.

The construction given above generates the elementary tree pairs
in Figure 8 for this bimorphism. The reader can verify that the gram-
mar generates a tree pair which corresponds to that shown in Fig-
ure 7 generated by the bimorphism after deletion of the state sym-
bols.

By placing STSG in the class of bimorphisms, which have already
been used to characterize tree transducers, we synthesize these two
independently developed approaches to specifying tree relations. But
the relation between a TAG derivation tree and its derived tree is not a
mere homomorphism. The appropriate morphism generalizing linear
complete homomorphisms to allow adjunction can be used to provide

[81]

Stuart M. Shieber
Figure 8:

Generated STSG for
previous example of

bimorphism construction
(in Figure 7) α f =

* q

F

1 q′↓ 2 q′↓

q

D

2 q′↓ D

1 q′↓ N

+

αg =

* q′

G

1 q↓

q′

E

1 q↓

+

αa =

*
q

A

q

N

+

a bimorphism characterization of STAG as well, further unifying these
strands of research. It is to this possibility that we now turn.

7 embedded tree transducers

We have shown that the string relations defined by synchronous tree-
substitution grammars were exactly the relations B(LC , LC). Intu-
itively speaking, the tree language in such a bimorphism represents
the set of derivation trees for the synchronous grammar, and each ho-
momorphism represents the relation between the derivation tree and
the derived tree for one of the projected tree-substitution grammars.
The homomorphisms are linear and complete because the tree rela-
tion between a tree-substitution grammar derivation tree and its asso-
ciated derived tree is exactly a linear complete tree homomorphism.
To characterize the relations defined by synchronous tree-adjoining
grammars, it similarly suffices to find a simple homomorphism-like char-

[82]

Bimorphisms and synchronous grammars

acterization of the tree relation between TAG derivation trees and derived
trees. In Section 7.3 below, we show that linear complete embedded
tree homomorphisms (which we introduce next) serve this purpose.

Embedded tree transducers are a generalization of tree trans-
ducers in which states are allowed to take a single additional argu-
ment in a restricted manner. They correspond to a restrictive subcase
of macro tree transducers with one recursion variable. We use the
term “embedded tree transducer” rather than the more cumbersome
“monadic macro tree transducer” for brevity and by analogy with
embedded pushdown automata (Schabes and Vijay-Shanker 1990),
another automata-theoretic characterization of the tree-adjoining lan-
guages.

We modify the grammar of transducer equations to add an extra
optional argument to each occurrence of a state q. To highlight the
special nature of the extra argument, it is written in angle brackets
before the input tree argument. We uniformly use the otherwise un-
used variable x0 for this argument in the left-hand side, and add x0 as
a possible right-hand side itself. Finally, right-hand-side occurrences
of states may be passed an arbitrary further right-hand-side tree in this
argument. (The use of square brackets in the metanotation indicates
optionality.)

q ∈Q

f (n) ∈ F(n)
x ∈ X ::= x0 | x1 | x2 | · · ·

Eqn ::= q〈[x0]〉(f (n)(x1, . . . , xn))
.
= τ(n)

τ(n) ∈ R(n) ::= f (m)(τ(n)1, . . . ,τ(n)m)

| x0

| q j〈[τ(n) j]〉(x i) where 1≤ i ≤ n

(7)

Embedded transducers are strictly more expressive than tradi-
tional transducers, because the extra argument allows unbounded
communication between positions unboundedly distant in depth in
the output tree. For example, a simple embedded transducer can com-
pute the reversal of a string, transducing 1(2(2(nil))) to 2(2(1(nil))),
for instance. (This is not computable by a traditional tree transducer.)
It is given by the following equations:

[83]

Stuart M. Shieber
r〈〉(nil)

.
= nil

r〈〉(1(x)) .
= s〈1(nil)〉(x)

r〈〉(2(x)) .
= s〈2(nil)〉(x)

s〈x0〉(nil)
.
= x0

s〈x0〉(1(x)) .
= s〈1(x0)〉(x)

s〈x0〉(2(x)) .
= s〈2(x0)〉(x)

(8)

This is, of course, just the normal accumulating reverse functional pro-
gram, expressed as an embedded transducer.9 The additional power
of embedded transducers is exactly what is needed to characterize the
additional power that TAGs represent over CFGs in describing tree lan-
guages, as we will demonstrate in this section. In particular, we show
that the relation between a TAG derivation tree and derived tree is
characterized by a deterministic linear complete embedded tree trans-
ducer (DLCETT).

The first direct presentation of the connection between the tree-
adjoining languages and macro tree transducers – the basis for the
presentation here – was given in an earlier paper (Shieber 2006). How-
ever, the connection may be implicit in a series of previous results in
the formal-language theory literature.10 For instance, Fujiyoshi and
Kasai (2000) show that linear, complete monadic context-free tree
grammars generate exactly the tree-adjoining languages via a normal
form for spine grammars. Separately, the relation between context-
free tree grammars and macro tree transducers has been described,
where the relationship between the monadic variants of each is im-
plicit. Thus, taken together, an equivalence between the tree-adjoining

9A simpler set of equations achieves the same end.

r〈〉(x) .
= s〈nil〉(x)

s〈x0〉(nil)
.
= x0

s〈x0〉(1(x)) .
= s〈1(x0)〉(x)

s〈x0〉(2(x)) .
= s〈2(x0)〉(x)

(9)

Unfortunately, this set of equations doesn’t satisfy the structure of an embedded
tree transducer given in Equation (7). Surprisingly, however, the compilation
from equations to TAG presented in Section 7.2 applies to this set of equations
as well, generating a TAG whose derived trees also reverse its derivation trees.

10We are indebted to Uwe Mönnich for this observation.

[84]

Bimorphisms and synchronous grammars

languages and the image languages of monadic macro tree transducers
might be pieced together.

In the present work, we define the relation between tree-adjoining
languages and linear complete embedded tree transducers directly,
simply, and transparently, by giving explicit constructions in both di-
rections. First, we show that for any TAG we can construct a DLCETT
that specifies the tree relation between the derivation trees for the
TAG and the derived trees. Then, we show that for any DLCETT we
can construct a TAG such that the tree relation between the derivation
trees and derived trees is related through a simple homomorphism to
the DLCETT tree relation. Finally, we use these results to show that
STAG and the bimorphism class B(ELC , ELC) are weakly equivalent,
where ELC stands for the class of linear complete embedded homo-
morphisms.
7.1 From TAG to transducer
As the first part of the task of characterizing TAG in terms of DLCETT,
we show that for any TAG grammar G = 〈F, P, S〉, there is a DLCETT
〈{hD}, P,F,∆, hD〉 (in fact, an embedded homomorphism), that trans-
duces the derivation trees for the grammar to the corresponding de-
rived trees. This transducer plays the same role for TAG as the defi-
nition of hD in Section 4.3 did for TSG. We define the components of
the transducer as follows: The single state, evocatively named hD, is
the initial state. The input alphabet is the set of elementary trees P
in the grammar, since the input trees are to be the derivation trees of
the grammar. The arity of a tree (qua symbol in the input alphabet) is
as described in Section 4.3. The output alphabet is that used to define
the trees in the TAG grammar, F.

We now turn to the construction of the equations, one for each
elementary tree □γ ∈ P. Suppose □γ has a permutation π= 〈π1, . . . ,πn〉
on its operable sites. (We use this ordering by means of the diacritic
representation below.) If γ is an auxiliary tree, construct the equation

hD〈x0〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

and if γ is an initial tree, construct the equation

hD〈〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

[85]

Stuart M. Shieber

where the right-hand-side transformation ⌊·⌋ is defined by11

⌊ f (t1, . . . , tn)⌋= f (⌊t1⌋, . . . , ⌊tn⌋)
⌊ k f (t1, . . . , tn)⌋= hD〈⌊ f (t1, . . . , tn)⌋〉(xk)

⌊ f∗⌋= x0

⌊ k f↓⌋= hD〈〉(xk) .

(10)

Note that the equations so generated are linear and complete, because
each variable x i is generated once as the tree α is traversed, namely
at position πi in the traversal (marked with i), and the variable x0 is
generated at the foot node only. Thus, the generated embedded tree
transducer is linear and complete. Because only one equation is gen-
erated per tree, the transducer is trivially deterministic. Because there
is only one state, it is a kind of embedded homomorphism.

As noted for TSG in Section 4.3, by composing the automaton
recognizing well-formed derivation trees from Section 4.3 with the
embedded homomorphism above generating the derived tree, we can
construct a single DLCETT doing the work of both. Where the con-
struction of Section 4.3 would generate a transition of the form in
Equation 2, repeated here as

q|N |(□γ(x1, . . . , xn))
.
= □γ(q|γ@π1|(x1), . . . , q|γ@πn|(xn))

we compose this transition with the corresponding transition from the
previous section

hD〈x0〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

11 It may seem like trickery to use the diacritics in this way, as they are not
really components of the tree being traversed, but merely manifestations of an ex-
trinsic ordering. But their use is benign. The same transformation can be defined,
a bit more cumbersomely, keeping the permutation π separate, by tracking the
permutation and the current address p in a revised transformation ⌊·⌋π,p defined
as follows:

⌊ f (t1, . . . , tn)⌋π,p = f (⌊t1⌋π,p·1, . . . , ⌊tn⌋π,p·n)
⌊ f (t1, . . . , tn)⌋π,p = hD〈⌊ f (t1, . . . , tn)⌋π,p〉(xπ−1(p))

⌊ f∗⌋π,p = x0

⌊ f↓⌋π,p = hD〈〉(xπ−1(p))

We then use ⌊α⌋π,ε for the transformation of the tree α.

[86]

Bimorphisms and synchronous grammars

or
hD〈〉(□γ(x1, . . . , xn))

.
= ⌊γ⌋

for auxiliary and initial trees respectively. The composition construc-
tion generates a transducer with states in the cross-product of the
states of the input transducers. In this case, since the latter transducer
has a single state, we simply reuse the state set of the former, gener-
ating

q|N |〈x0〉(□γ(x1, . . . , xn))
.
= ⌊γ⌋

or
q|N |〈〉(□γ(x1, . . . , xn))

.
= ⌊γ⌋

where

⌊ f (t1, . . . , tn)⌋= f (⌊t1⌋, . . . , ⌊tn⌋)
⌊ k f (t1, . . . , tn)⌋= q| f |〈⌊ f (t1, . . . , tn)⌋〉(xk)

⌊ f∗⌋= x0

⌊ k f↓⌋= q| f↓|〈〉(xk) .
(11)

7.1.1 An example derivation
By way of example, we consider the tree-adjoining grammar given by
the following trees:

α : 1 A(e)
βA : A(1 B(a), 2 C(3 D(A∗)))
βB : 1 B(b, B∗)

naB : B∗
naC : C∗
naD : D∗

Starting with the auxiliary tree βA = A(1 B(a), 2 C(3 D(A∗))), the
adjunction sites, corresponding to the nodes labeled B, C , and D at
addresses 1, 2, and 21, have been arbitrarily given a preorder permu-

[87]

Stuart M. Shieber

tation. We therefore construct the equation as follows:

hD〈x0〉(βA(x1, x2, x3))
.
= ⌊A(1 B(a), 2 C(3 D(A∗)))⌋
= A(⌊ 1 B(a)⌋, ⌊ 2 C(3 D(A∗))⌋)
= A(hD〈⌊B(a)⌋〉(x1), ⌊ 2 C(3 D(A∗))⌋)
= A(hD〈B(⌊a⌋)〉(x1), ⌊ 2 C(3 D(A∗))⌋)
= · · ·
= A(hD〈B(a)〉(x1), hD〈C(hD〈D(x0)〉(x3))〉(x2))

Similar derivations for the remaining trees yield the (deterministic
linear complete) embedded tree transducer defined by the following
set of equations:

hD〈〉(α(x1))
.
= hD〈A(e)〉(x1)

hD〈x0〉(βA(x1, x2, x3))
.
= A(hD〈B(a)〉(x1), hD〈C(hD〈D(x0)〉(x3))〉(x2))

hD〈x0〉(βB(x1))
.
= hD〈B(b, x0)〉(x1)

hD〈x0〉(naB())
.
= x0

hD〈x0〉(naC())
.
= x0

hD〈x0〉(naD())
.
= x0

We can use this transducer to compute the derived tree for the deriva-
tion tree

α(βA(βB(naB),naC ,naD))

as follows:

hD〈〉(α(βA(βB(naB),naC ,naD)))
.
= hD〈A(e)〉(βA(βB(naB),naC ,naD))
.
= A(hD〈B(a)〉(βB(naB)), hD〈C(hD〈D(A(e))〉(naD))〉(naC))
.
= A(hD〈B(b, B(a))〉(naB), C(hD〈D(A(e))〉(naD)))
.
= A(B(b, B(a)), C(D(A(e))))

7.1.2 Equivalence of D and hD

We can now show for TAG derivations, as we did for TSG derivations
in Section 4.3, that the embedded homomorphism hD constructed in
this way computes the derivation relation D.

[88]

Bimorphisms and synchronous grammars

In order to simplify the argument, we take advantage of the com-
mutativity of operations (Equation 4), and assume without loss of gen-
erality that each permutation associated with the operable sites of an
elementary tree is consistent with a postorder traversal of the nodes
in the tree. We can then simplify Equation 3 to

γ[opp1
γ1,opp2

γ2, . . . ,oppn
γn] ≡ γ[opp1

γ1][opp2
γ2, . . . ,oppn

γn]

since in a postorder traversal, pi ̸≺ pi+k.
It will also prove to be useful to have a single notation for the

effect of both substitution and adjunction. Recall the definitions of
substitution and adjunction:

γ[substp α]≡ γ[p 7→ α]
γ[adjp β]≡ γ[p 7→ β[foot(β) 7→ γ/p]]

Under the convention that mapping a (nonexistent) “foot” of an initial
tree leaves the tree unchanged, that is,

α[foot(α) 7→ γ]≡ α
the two operations collapse notationally, so that we can write

γ[opp γ
′]≡ γ[p 7→ γ′[foot(γ′) 7→ γ/p]]

for both substitution and adjunction.
We prove that D(D) = hD〈〉(D) for derivations D rooted in an

initial tree, and D(D)[foot(D(D)) 7→ x] = hD〈x〉(D) for derivations
rooted in an auxiliary tree. The proof is again by induction on the
height of the derivation D.

For the base case, the derivation consists of a single tree with
no operable sites. If it is an initial tree α, then D(α) = α = hD〈〉(α)
straightforwardly from the definition of hD, using only the first equa-
tion in Equation (10). Similarly, the base case for auxiliary trees,

D(β)[foot(β) 7→ x] = β[foot(β) 7→ x] = hD〈x〉(β)
requires only the first and third equations in (10).

[89]

Stuart M. Shieber

For the recursive case,

hD〈〉(α(D1, . . . , Dn))

= ⌊α⌋[x1 7→ D1, . . . , xn 7→ Dn]

= α[π1 7→ hD〈α/π1〉(D1)] · · · [πn 7→ hD〈α/πn〉(Dn)]

= α[π1 7→D(D1)[foot(D(D1)) 7→ α/π1]]

· · · [π1 7→D(Dn)[foot(D(Dn)) 7→ α/πn]] ⇐
= α[opπ1

D(D1)] · · · [opπn
D(Dn)]

= α[opπ1
D(D1), · · · ,opπn

D(Dn)]

=D(α(D1, . . . , Dn))

with the marked step appealing to the induction hypothesis.
Similarly, for derivations rooted in an auxiliary tree,

hD〈x〉(β(D1, . . . , Dn))

= ⌊β⌋[x0 7→ x , x1 7→ D1, . . . , xn 7→ Dn]

= β[foot(β) 7→ x][π1 7→ hD〈β/π1〉(D1)]

· · · [πn 7→ hD〈β/πn〉(Dn)]

= β[foot(β) 7→ x][π1 7→D(D1)[foot(D(D1)) 7→ β/π1]]

· · · [π1 7→D(Dn)[foot(D(Dn)) 7→ β/πn]]

= β[foot(β) 7→ x][opπ1
D(D1)] · · · [opπn

D(Dn)]

= β[foot(β) 7→ x][opπ1
D(D1), . . . ,opπn

D(Dn)]

= β[opπ1
D(D1), · · · ,opπn

D(Dn)][foot(D(β(D1, . . . , Dn))) 7→ x]

=D(β(D1, . . . , Dn))[foot(D(β(D1, . . . , Dn))) 7→ x] .

7.2 From transducer to TAG
Having shown how to construct a DLCETT that captures the relation
between derivation trees and derived trees of a TAG, we turn now to
showing how to construct a TAG that mimics in its derivation/derived
tree relation a DLCETT. Given a linear complete embedded tree trans-
ducer 〈Q,F,G,∆, q0〉, we construct a corresponding TAG 〈G∪ Q̇, P, q̇0〉
where the alphabet consists of the output alphabet G of the transducer
together with the disjoint set of unary symbols Q̇ = {q̇1, . . . , q̇|Q|} cor-
responding to the states of the input transducer. The initial symbol of

[90]

Bimorphisms and synchronous grammars

the grammar is the symbol q̇0 corresponding to the initial state q0 of
the transducer.

The elementary trees of the grammar are constructed as follows.
For each rule of the form

q〈[x0]〉(f (m)(x1, . . . , xm))
.
= τ

we build a tree named 〈q, f ,τ〉. Where this tree appears is determined
solely by the state q, so we take the root node of the tree to be the
corresponding symbol q̇. Any foot node in the tree will also need to be
marked with the same label, so we pass this information down as the
tree is built inductively. The tree is therefore of the form q̇(⌈τ⌉q)where
the right-hand-side transformation ⌈·⌉q constructs the remainder of the
tree by the inductive walk of τ, with the subscript noting that the root
is labeled by state q.

⌈ f (m)(t1, . . . , tm)⌉q = f (⌈t1⌉q, . . . , ⌈tm⌉q)
⌈q j〈τ〉(xk)⌉q = k q̇ j(⌈τ⌉q)
⌈q j〈〉(xk)⌉q = k q̇ j↓
⌈x0⌉q = q̇∗

Note that at x0, a foot node is generated of the proper label. (Because
the equation is linear, only one foot node is generated, and it is labeled
appropriately by construction.) Where recursive processing of the in-
put tree occurs (q j〈τ〉(xk)), we generate a tree that admits adjunctions
at q̇ j. The role of the diacritic k is merely to specify the permutation
of operable sites for interpreting derivation trees; it says that the k-th
child in a derivation tree rooted in the current elementary tree is taken
to specify adjunctions at this node.

The trees generated by this TAG correspond to the outputs of the
corresponding tree transducer. Because of the more severe constraints
on TAG, in particular that all combinatorial limitations on putting sub-
trees together must be manifest in the labels in the trees themselves,
the outputs actually contain more structure than the corresponding
transducer output. In particular, the state-labeled nodes are merely
for bookkeeping. A simple homomorphism removing these nodes gives

[91]

Stuart M. Shieber

the desired transducer output:12

rem(q̇(x))
.
= rem(x) for q̇ ∈ Q̇

rem(f (n)(x1, . . . , xn))
.
= f (n)(rem(x1), . . . , rem(xn)) for f (n) ∈ G(n)

An example may clarify the construction. Recall the reversal em-
bedded transducer in (8) above. The construction above generates a
TAG containing the following trees. We have given them indicative
names rather than the cumbersome ones of the form 〈qi , f ,τ〉.

αnil : ṙ(nil)
α1 : ṙ(1 ṡ(1(nil)))
α2 : ṙ(1 ṡ(2(nil)))
βnil : ṡ(ṡ∗)
β1 : ṡ(1 ṡ(1(ṡ∗)))
β2 : ṡ(1 ṡ(2(ṡ∗)))

It is simple to verify that the derivation tree

α1(β2(β2(βnil))))

derives the tree
ṙ(ṡ4(2(ṡ(2(ṡ(1(nil))))))) .

Simple homomorphisms that extract the input function symbols
on the input and drop the bookkeeping states on the output (that is, the
homomorphism rem provided above) reduce these trees to 1(2(2(nil)))
and 2(2(1(nil))) respectively, just as for the corresponding tree trans-
ducer.
7.2.1 Equivalence of DLCETT and TAG
We demonstrate that the compilation from DLCETT to TAG gener-
ates a grammar with the same language as that of the DLCETT by
appeal to the previous result of Section 7.1.2. Consider a DLCETT
T = 〈Q,F,G,∆, q0〉 converted by the compilation above to a gram-
mar G = 〈G∪ Q̇, P, q̇0〉. That grammar may itself be compiled to a

12As noted in Footnote 8, a formalization of a modified form of TAG that di-
rectly incorporates state information at operable sites (Büchse et al. 2014) elimi-
nates this need for bookkeeping through extra nodes in the tree structure, making
the equivalence even stronger.

[92]

Bimorphisms and synchronous grammars

DLCETT using the compilation of Section 7.1.2, previously shown
to be language-preserving. We show that this round-trip conversion
preserves the language that is the range of the DLCETT by showing
that each equation in the original grammar “round-trip” compiles to
an equation that differs only in the tree structure. In particular, a
rule of the form q〈x0〉(f (x1, . . . , xm)) = τ compiles to the equation
q〈x0〉(f (x1, . . . , xm)) = τ′ where τ = rem(τ′). We will write τ′ ≈ τ
when τ= rem(τ′).

For each rule in T of the form q〈x0〉(f (x1, . . . , xm)) = τ, we gen-
erate a tree 〈q, f ,τ〉 in the grammar G of the form q̇(⌈τ⌉q). This tree,
in turn, is compiled as in Section 7.1 to an equation in the output
transducer T ′:

q〈x0〉(〈q, f ,τ〉(x1, . . . , xm)) = ⌊q̇(⌈τ⌉q)⌋
= q̇(⌊⌈τ⌉q⌋)
≈ ⌊⌈τ⌉q⌋

(Here and in the following, we write q for q|q̇| in the ⌊·⌋ construction,
taking advantage of the bijection between the Q̇ symbols and the corre-
sponding states of the generated transducer.) Note that this is exactly
of the required form, so long as ⌊⌈τ⌉q⌋ ≈ τ, which we now prove by
induction on the structure of τ.

• If τ= x0, ⌊⌈x0⌉q⌋= ⌊q̇∗⌋= x0.
• If τ= q j〈〉(xk), ⌊⌈q j〈〉(xk)⌉q⌋= ⌊ k q̇ j↓⌋= q j〈〉(xk).
• If τ= q j〈τ0〉(xk),

⌊⌈q j〈τ0〉(xk)⌉q⌋= ⌊ k q̇ j(⌈τ0⌉q)⌋
= q j〈⌊q̇ j(⌈τ0⌉q)⌋〉(xk)

= q j〈q̇ j(⌊⌈τ0⌉q⌋)〉(xk)

≈ q j〈τ0〉(xk).

The last step follows from the induction hypothesis and the fact
that rem removes the symbol q̇ j.

• If τ= f (m)(t1, . . . , tm),
⌊⌈ f (m)(t1, . . . , tm)⌉q⌋= ⌊ f (m)(⌈t1⌉q, . . . , ⌈tm⌉q)⌋

= f (m)(⌊⌈t1⌉q⌋, . . . , ⌊⌈tm⌉q⌋)
≈ f (m)(t1, . . . , tm).

[93]

Stuart M. Shieber

Again, the last step applies the induction hypothesis.

Writing L(T) for the range string language of the transducer T ,
we have that L(G) = L(T ′) and L(T) = L(T ′). We conclude that L(T) =
L(G). In fact, by the above, the tree languages are identical up to the
homomorphism rem. Most importantly, then, the weak generative ca-
pacity of TAGs and the range of DLCETTs are identical.
7.3 The bimorphism characterization of STAG
The major advantage of characterizing TAG derivation in terms of
tree transducers (via the compilation (10)) is the integration of syn-
chronous TAGs into the bimorphism framework, which follows di-
rectly.

In order to model a synchronous grammar formalism as a bi-
morphism, the well-formed derivations of the synchronous formalism
must be characterizable as a regular tree language and the relation
between such derivation trees and each of the paired derived trees
as a homomorphism of some sort. As shown in Section 6, for syn-
chronous tree-substitution grammars, derivation trees are regular tree
languages, and the map from derivation to each of the paired derived
trees is a linear complete tree homomorphism. Thus, synchronous tree-
substitution grammars fall in the class of bimorphisms B(LC , LC). The
other direction holds as well; all bimorphisms in B(LC , LC) define
string relations expressible by an STSG.

A similar result follows for STAG. Crucially relying on the result
above that the derivation relation is a DLCETT, we can use the same
method directly to characterize the synchronous TAG string relations
as just B(ELC , ELC). We have thus integrated synchronous TAG with
the other transducer and synchronous grammar formalisms falling un-
der the bimorphism umbrella.

8 multiple adjunction

The discussion so far has assumed that derivations allow at most one
operation to occur at any given node in an elementary tree (in fact,
exactly one). This constraint inhered in the original formulations of
TAG derivation (Vijay-Shanker 1987), and had the effect of removing
systematic spurious ambiguities without reducing the range of defin-

[94]

Bimorphisms and synchronous grammars

able languages. Schabes and Shieber (1994) point out the desirability
of allowing multiple adjunctions at a single node, and provide various
arguments for this generalization, most notably as needed for many
applications of synchronous TAG, which is precisely the case that we
are concerned with in this paper. It therefore behooves us to examine
the effect of multiple adjunction on the analysis.

There are various ways in which multiple adjunction can be in-
serted. Most simply, one could specify that the set of operable nodes
of a tree allows for a given node in the set a fixed number of times.
(This could be graphically depicted by allowing more than one dia-
critic at a given node, with each diacritic to be used exactly once.)
In theory, this would allow multiple nontrivial adjunctions to occur
at a single node, inducing ambiguity as to the resulting derived tree,
but we can eliminate this possibility by requiring that nontrivial (that
is, non-na) trees be adjoined at at most one site at a given node. We
start by handling this kind of simple generalization of TAG derivation
in Sections 8.1–8.2.

More generally, Schabes and Shieber (1994) call for allowing an
arbitrary number of adjunctions at a given node. In particular, they
call for distinguishing predicative and modifier auxiliary trees, and
allowing any number of modifier trees and at most one predicative
tree to adjoin at a given node. The derived tree is ambiguous as to
the relative orderings of the modifier trees, but the predicative tree
is required to fall above the modifier trees. We address this major
generalization of TAG derivation in Section 8.3.
8.1 Simple multiple adjunction
We start with a simple generalization of TAG derivation in which op-
erable nodes may be used a fixed number of times. Since the set of
operable nodes may now include duplicates, adjunction nodes may
occur more than once in the permutation π. To guarantee that at most
one of these can be nontrivially adjoined, we need to revise the defini-
tion of derivation tree, that is, fix the tree automaton from Section 4.3
defining well-formed derivation trees, and to prove that the derivation
relation D is still well-defined.

We present an alternative automaton defining the regular tree
language of well-formed derivation trees now allowing the limited
form of multiple adjunction. We double the number of states from

[95]

Stuart M. Shieber

the previous construction. The states of the automaton are the set
{qN△ | N ∈ F} ∪ {qN• | N ∈ F}, two for each unranked vocabulary sym-
bol in the derived tree language. The△ diacritic indicates a nontrivial
tree rooted in the given symbol; the • diacritic requires a nonadjunc-
tion na tree rooted in that symbol. The start state is q|S|△.

For each nontrivial tree (that is, not an na tree) □γ = 〈γ,π〉, of
arity n and rooted with the symbol N , we construct all possible tran-
sitions of the form

q|N |△(γ(x1, . . . , xn))
.
= γ(q1(x1), . . . , qn(xn))

where each qi is either q|γ@πi |• or q|γ@πi |△, subject to the constraint that
for each node η in α, the sequence 〈qi | πi = η〉 contains at most one
△. Because there are many such ways of setting the qi to satisfy this
constraint, there are many (though still a finite number of) transitions
for each γ.

In addition, for na trees, there is a transition
q|N |•(γ)

.
= γ .

The set of well-formed derivation trees is thus still a regular tree
set.

The only remaining issue is to verify that the limited form of
multiple adjunction that we allow still yields a well-defined derived
tree. In general, multiple adjunctions at the same site do not com-
mute. However, the only cases of multiple adjunctions that we al-
low involve all but one of the auxiliary trees being vestigial non-
adjunction trees. Such cases do commute. It suffices to show that
γ[adjp β ,adjp na] = γ[adjp na,adjp β]; we derive this as follows:

γ[adjp β ,adjp na] = γ[adjp β][adjupdate(p,β ,p) na]
= γ[adjp β][adjp na]
= γ[adjp β]

= γ[adjp na][adjp β]

= γ[adjp na][adjupdate(p,β ,p) β]

= γ[adjp na,adjp β]

8.2 Fixed multiple adjunction
What if we allow more than one of the multiple (fixed) occurrences of
a node to be operated on by a nontrivial auxiliary tree? At that point,

[96]

Bimorphisms and synchronous grammars

αjohn: T

john

αtwice: F

twice F∗

αblink: 1 2 F

blink 3 T↓

αintentionally: F

intentionally F∗

Figure 9:
A fragment with
multiple adjunction.

the definition of simultaneous operations no longer commutes, and
which auxiliary tree is used at which position becomes important.

The definition of the derivation tree language given in Section 4.3
allows such derivations to be specified merely by relaxing the con-
straint that a node appears only once in the set of operable sites. If we
move to a multiset of operable sites, with π a permutation over that
multiset, the remaining definitions generalize properly.

We present (Figure 9) a fragment based on the semantic half of
a synchronous TAG presented previously (Shieber 1994, Figure 1) to
exemplify simultaneous adjunction. This grammar uses simultaneous
adjunction at the root of the αblink tree. That tree has three operable
sites, two of which are the root node. We will take the permutation of
operable sites for the tree to be 〈 1 , 2 , 3 〉.

We can examine what the compilation of Section 7.1 provides as
the interpretation for this grammar. Applying it to the output trees
in the grammar generates a DLCETT. We start with the problematic
multiple adjunction tree αblink.

qF 〈〉(αblink(x1, x2, x3))
.
= ⌊αblink⌋
= ⌊ 1 2 F(blink, 3 T)⌋
= qF 〈⌊ 2 F(blink, 3 T)⌋〉(x1)

= qF 〈qF 〈⌊F(blink, 3 T)⌋〉(x1)〉(x2)

= qF 〈qF 〈F(blink, qT 〈〉(x3))〉(x1)〉(x2)

(Here, the second line uses the obvious generalization of the second
equation of (10) to sets of diacritics, that is,

⌊ k · · · f (t1, . . . , tn)⌋= q| f |〈⌊· · · f (t1, . . . , tn)⌋〉(xk) ,
the ellipses standing in for arbitrary further diacritics.)

[97]

Stuart M. Shieber

The second and third steps are notable here, in that the choice
of which of the two operable sites to use first was arbitrary. That is,
one could just as well have chosen to process diacritic 2 before 1 , in
which case the generated rule would have been

qF 〈〉(αblink(x1, x2, x3))
.
= qF 〈qF 〈F(blink, qT 〈〉(x3))〉(x2)〉(x1) .

This is, of course, just the consequence of the fact that multiple adjunc-
tions at the same node do not commute. To manifest the ambiguity,
we can just generate both transitions (and in general, all such tran-
sitions) in the transducer defining the derivation relation. The trans-
ducer naturally becomes nondeterministic. Alternatively, a particular
order might be stipulated, regaining determinism, but giving up anal-
yses that take advantage of the ambiguity.

Completing the compilation, we generate transitions for the other
trees:

qT 〈〉(αjohn)
.
= T (john)

qF 〈x0〉(βtwice)
.
= F(twice, x0)

qF 〈x0〉(βintentionally)
.
= F(intentionally, x0)

The derivation tree αblink(βintentionally,βtwice,αjohn) then derives trees as
follows:

qF 〈〉(αblink(βintentionally,βtwice,αjohn))
.
= qF 〈qF 〈F(blink, qT 〈〉(αjohn))〉(βintentionally)〉(βtwice)
.
= qF 〈qF 〈F(blink, T (john))〉(βintentionally)〉(βtwice)
.
= qF 〈F(intentionally, F(blink, T (john)))〉(βtwice)
.
= F(twice, F(intentionally, F(blink, T (john))))

corresponding to themeaning twice(intentionally(blink(john))). Alterna-
tively, use of the other nondeterministic alternative transition yields

qF 〈〉(αblink(βintentionally,βtwice,αjohn))
.
= qF 〈qF 〈F(blink, qT 〈〉(αjohn))〉(βtwice)〉(βintentionally)
.
= qF 〈qF 〈F(blink, T (john))〉(βtwice)〉(βintentionally)
.
= qF 〈F(twice, F(blink, T (john)))〉(βintentionally)
.
= F(intentionally, F(twice, F(blink, T (john))))

giving the alternative reading for the sentence.

[98]

Bimorphisms and synchronous grammars

αc: 1 S

c

βa: S

a S∗ a

naS: S∗ βb: S

b S∗ b

αc

·
βb ·

βa naS

(a) (b)

Figure 10:
A grammar (a) for
{wcwR | w ∈ {a, b}∗ }
using general multiple
adjunction, and (b) a
derivation of the
string abba.

8.3 General multiple adjunction
Finally, fully general multiple adjunction as described by Schabes and
Shieber (1994) allows for one and the same operable site to be used an
arbitrary number of times. To enable this interpretation of TAG deriva-
tions, major changes need to be made to the definitions of derivation
tree and derivation relation.

Consider the sample grammar of Figure 10 where the two auxil-
iary trees βa and βb are modifier trees (in the terminology of Schabes
and Shieber (1994)) and thus allowed to multiply adjoin at the two
operable nodes in the initial tree. This grammar should generate the
language {wcwR | w ∈ {a, b}∗ }.

Derivation trees must allow an arbitrary number of operations
to occur at a given site. To represent this in a ranked tree, we can
encode the sequence of trees adjoined at a given location with a re-
cursive structure. In particular, we use a binary symbol · (which we
write infix) to build a list of trees to be adjoined at the site, using a
nonadjunction tree to mark the end of the list. Essentially, derivation
trees now contain lists of auxiliary trees to operate at a site rather than
a single tree, with the nonadjoining trees serving as the nil elements of
the list and the binary · serving as the binary constructor. For example,
a derivation for the grammar of Figure 10(a) can be represented by
the tree in Figure 10(b).

The derivation tree language with lists instead of individual trees
is still regular. In fact, the full specification of multiple adjunction
given by Schabes and Shieber (1994) specifies that at a given operable
site an arbitrary number of modifier trees but at most one predicative

[99]

Stuart M. Shieber

tree may be adjoined. Further, the predicative tree is to appear highest
in the derived tree above the adjoined modifiers. This constraint can
be specified by defining the derivation tree language appropriately,
allowing at most one predicative tree, and placing it at the end of the
list of nontrivial trees adjoining at a site. It is a simple exercise to
show that the derivation tree language so restricted still falls within
the regular tree languages.

Finally, we must provide a definition of the derivation relation for
this generalized form of multiple adjunction. In particular, we need
transitions for the new form of constructor node, which specifies the
combination of two adjunctions at a single site. We handle this by
stacking the rest of the adjunctions above the first. We add to the
definition of the derivation transducer of Section 7.1 transitions of the
following form for each symbol N that is the root of some auxiliary
tree:

qN 〈x0〉(x1 · x2)
.
= qN 〈qN 〈x0〉(x1)〉(x2)

Note that the new transition is still linear and complete.
For the grammar of Figure 10(a) we would thus have the follow-

ing transitions defining the derivation relation:
qS〈〉(α(x)) .

= qS〈S(c)〉(x)
qS〈x0〉(naS)

.
= x0

qS〈x0〉(βa)
.
= S(a, x0, a)

qS〈x0〉(βb)
.
= S(b, x0, b)

qS〈x0〉(x1 · x2)
.
= qS〈qS〈x0〉(x1)〉(x2)

Using this derivation relation, the derived tree for the derivation
tree of Figure 10(b) can be calculated as

qS〈〉(αc(βb · βa ·naS))
.
= qS〈S(c)〉(βb · βa ·naS)
.
= qS〈qS〈S(c)〉(βb)〉(βa ·naS)
.
= qS〈S(b, S(c), b)〉(βa ·naS)
.
= qS〈qS〈S(b, S(c), b)〉(βa)〉(naS)
.
= qS〈S(a, S(b, S(c), b), a)〉(naS)
.
= S(a, S(b, S(c), b), a)

corresponding to the string abcba as expected.

[100]

Bimorphisms and synchronous grammars

9 conclusion

Synchronous grammars and tree transducers – two approaches to the
specification of language relations useful for a variety of formal and
computational linguistics modeling of natural languages – are uni-
fied by means of the elegant construct of the bimorphism. This con-
vergence synthesizes the approaches and allows a direct comparison
among these and other potential systems for describing language re-
lations through other bimorphisms. The examination of additional bi-
morphism classes may open up further possibilities for useful model-
ing tools for natural language.

acknowledgements

This paper has been gestating for a long time. I thank the participants
in my course on Transducers at the 2003 European Summer School on
Logic, Language, and Information in Vienna, Austria, where some of
these ideas were presented, and Mark Dras, Mark Johnson, Uwe Mön-
nich, Rani Nelken, Rebecca Nesson, James Rogers, and Ken Shan for
helpful discussions on the topic of this paper and related topics. The
extensive comments of the JLM reviewers were invaluable in improv-
ing the paper. This work was supported in part by grant IIS-0329089
from the National Science Foundation.

references
Alfred V. Aho and Jeffrey D. Ullman (1969), Syntax Directed Translations
and the Pushdown Assembler, Journal of Computer and System Sciences,
3(1):37–56, doi:10.1016/S0022-0000(69)80006-1.
Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas (2000), Learning
Dependency Translation Models as Collections of Finite State Head Transducers,
Computational Linguistics, 26(1):45–60, doi:10.1162/089120100561629.
André Arnold and Max Dauchet (1982), Morphismes et bimorphismes
d’arbres [Morphisms and bimorphisms of trees], Theoretical Computer Science,
20(1):33–93, doi:10.1016/0304-3975(82)90098-6.
Matthias Büchse, Andreas Maletti, and Heiko Vogler (2012),
Unidirectional Derivation Semantics for Synchronous Tree-Adjoining
Grammars, in Developments in Language Theory, volume 7410 of Lecture Notes in
Computer Science, pp. 368–379, Springer, doi:10.1007/978-3-642-31653-1_33.

[101]

Stuart M. Shieber

Matthias Büchse, Heiko Vogler, and Mark-Jan Nederhof (2014), Tree
Parsing for Tree-Adjoining Machine Translation, Journal of Logic and
Computation, 24(2):351–373, doi:10.1093/logcom/exs050.
Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard,
Denis Lugiez, Sophie Tison, and Marc Tommasi (2008), Tree Automata
Techniques and Applications, http://tata.gforge.inria.fr/, release of
November 18, 2008.
Steve DeNeefe and Kevin Knight (2009), Synchronous Tree Adjoining
Machine Translation, in Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pp. 727–736, Association for Computational
Linguistics, Singapore, http://aclweb.org/anthology/D09-1076.
Akio Fujiyoshi and Takumi Kasai (2000), Spinal-Formed Context-Free Tree
Grammars, Theory of Computing Systems, 33:59–83,
doi:10.1007/s002249910004.
Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu (2004),
What’s In a Translation Rule, in Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004, pp. 273–280, Association for Computational
Linguistics, Boston, Massachusetts,
http://aclweb.org/anthology/N04-1035.
Jonathan Graehl and Kevin Knight (2004), Training Tree Transducers, in
Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,
pp. 105–112, Association for Computational Linguistics, Boston, Massachusetts,
http://aclweb.org/anthology/N04-1014.
Chung-Hye Han and Nancy Hedberg (2008), Syntax and Semantics of
It-Clefts: A Tree Adjoining Grammar Analysis, Journal of Semantics, 25:345–380,
doi:10.1093/jos/ffn007.
Aravind Joshi and Yves Schabes (1997), Tree-Adjoining Grammars, in
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
volume 3, pp. 69–124, Springer, Berlin.
Alexander Koller and Marco Kuhlmann (2011), A Generalized View on
Parsing and Translation, in Proceedings of the 12th International Conference on
Parsing Technologies, IWPT ’11, pp. 2–13, Association for Computational
Linguistics, Stroudsburg, PA, USA, ISBN 978-1-932432-04-6,
http://dl.acm.org/citation.cfm?id=2206329.2206331.
Philip M. Lewis II and Richard E. Stearns (1968), Syntax-Directed
Transduction, Journal of the Association for Computing Machinery,
15(3):465–488, ISSN 0004-5411, doi:10.1145/321466.321477.

[102]

http://tata.gforge.inria.fr/
http://aclweb.org/anthology/D09-1076
http://aclweb.org/anthology/N04-1035
http://aclweb.org/anthology/N04-1014
http://dl.acm.org/citation.cfm?id=2206329.2206331

Bimorphisms and synchronous grammars

Andreas Maletti (2008), Compositions of Extended Top-down Tree
Transducers, Information and Computation, 206(9-10):1187–1196,
doi:10.1016/j.ic.2008.03.019.
Andreas Maletti, Jonathan Graehl, Mark Hopkins, and Kevin Knight
(2009), The power of extended top-down tree transducers, SIAM Journal on
Computing, 39:410–430, doi:10.1137/070699160.
I. Dan Melamed (2003), Multitext Grammars and Synchronous Parsers, in
Proceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 79–86,
Association for Computational Linguistics, Edmonton, Canada,
doi:10.3115/1073445.1073466.
I. Dan Melamed (2004), Statistical Machine Translation by Parsing, in
Proceedings of the 42nd Annual Conference of the Association for Computational
Linguistics, pp. 653–660, Association for Computational Linguistics, Barcelona,
Spain, doi:10.3115/1218955.1219038.
Mark-Jan Nederhof and Heiko Vogler (2012), Synchronous Context-Free
Tree Grammars, in Proceedings of the 11th International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+11), pp. 55–63, Paris,
France.
Rebecca Nesson and Stuart M. Shieber (2006), Simpler TAG Semantics
Through Synchronization, in Proceedings of the 11th Conference on Formal
Grammar, pp. 129–142, Center for the Study of Language and Information,
Malaga, Spain, http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252595.
Rebecca Nesson, Stuart M. Shieber, and Alexander Rush (2006), Induction
of Probabilistic Synchronous Tree-Insertion Grammars for Machine Translation,
in Proceedings of the 7th Conference of the Association for Machine Translation in
the Americas (AMTA 2006), pp. 128–137, Association for Machine Translation
in the Americas, Cambridge, Massachusetts,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2261232.
William C. Rounds (1970), Mappings and Grammars on Trees, Mathematical
Systems Theory, 4(3):257–287, doi:10.1007/BF01695769.
Yves Schabes and Stuart M. Shieber (1994), An Alternative Conception of
Tree-Adjoining Derivation, Computational Linguistics, 20(1):91–124,
http://aclweb.org/anthology/J94-1004.
Yves Schabes and K. Vijay-Shanker (1990), Deterministic Left to Right
Parsing of Tree Adjoining Languages, in Proceedings of the 28th Annual Meeting
of the Association for Computational Linguistics, pp. 276–283, Association for
Computational Linguistics, Pittsburgh, Pennsylvania,
doi:10.3115/981823.981858.

[103]

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252595
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2261232
http://aclweb.org/anthology/J94-1004

Stuart M. Shieber

Stuart M. Shieber (1994), Restricting the Weak-Generative Capacity of
Synchronous Tree-Adjoining Grammars, Computational Intelligence,
10(4):371–385, doi:10.1111/j.1467-8640.1994.tb00003.x.
Stuart M. Shieber (2004), Synchronous Grammars as Tree Transducers, in
Proceedings of the Seventh International Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+7), pp. 88–95, Vancouver, Canada,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2019322.
Stuart M. Shieber (2006), Unifying Synchronous Tree-Adjoining Grammars
and Tree Transducers via Bimorphisms, in Proceedings of the 11th Conference of
the European Chapter of the Association for Computational Linguistics (EACL-06),
pp. 377–384, European Chapter of the Association for Computational
Linguistics, Trento, Italy,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252609.
Stuart M. Shieber and Yves Schabes (1990), Synchronous Tree-Adjoining
Grammars, in Proceedings of the 13th International Conference on Computational
Linguistics, volume 3, pp. 253–258, International Committee on Computational
Linguistics, Helsinki, Finland, doi:10.3115/991146.991191.
K. Vijay-Shanker (1987), A Study of Tree Adjoining Grammars, Ph.D. thesis,
Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, Pennsylvania,
http://repository.upenn.edu/dissertations/AAI8804974/.
Dekai Wu (1996), A Polynomial-Time Algorithm for Statistical Machine
Translation, in Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics, pp. 152–158, Association for Computational
Linguistics, Santa Cruz, California, doi:10.3115/981863.981884.
Dekai Wu (1997), Stochastic Inversion Transduction Grammars and Bilingual
Parsing of Parallel Corpora, Computational Linguistics, 23(3):377–404,
http://aclweb.org/anthology/J97-3002.
Elif Yamangil and Stuart M. Shieber (2010), Bayesian Synchronous
Tree-Substitution Grammar Induction and Its Application to Sentence
Compression, in Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pp. 937–947, Association for Computational
Linguistics, Uppsala, Sweden,
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4733833.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[104]

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2019322
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2252609
http://repository.upenn.edu/dissertations/AAI8804974/
http://aclweb.org/anthology/J97-3002
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4733833
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Preliminaries
	Basics
	A grammatical metanotation

	Tree transducers, homomorphisms, and automata
	Tree transducers
	Subvarieties of transducers
	Nonlinearity deprecated
	Tree automata and homomorphisms
	The bimorphism characterization of tree transducers

	Tree-substitution and tree-adjoining grammars
	Tree-adjoining grammars
	The substitution and adjunction operations
	Derivation trees and the derivation relation
	Tree-substitution grammars
	An example derivation
	Equivalence of D and hD

	Synchronous grammars
	The bimorphism characterization of STSG
	Reducing STSG to B(LC, LC)
	Reducing B(LC, LC) to STSG

	Embedded tree transducers
	From TAG to transducer
	An example derivation
	Equivalence of D and hD

	From transducer to TAG
	Equivalence of DLCETT and TAG

	The bimorphism characterization of STAG

	Multiple adjunction
	Simple multiple adjunction
	Fixed multiple adjunction
	General multiple adjunction

	Conclusion

