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This paper aims to bring theoretical linguistics and cognition-general
theories of learning into closer contact. I argue that linguists’ no-
tions of rich Universal Grammars (UGs) are well-founded, but that
cognition-general learning approaches are viable as well and that the
two can and should co-exist and support each other. Specifically, I use
the observation that any theory of UG provides a learning criterion –
the total memory space used to store a grammar and its encoding of the
input – that supports learning according to the principle of Minimum
Description-Length. This mapping from UGs to learners maintains a
minimal ontological commitment: the learner for a particular UG uses
only what is already required to account for linguistic competence
in adults. I suggest that such learners should be our null hypothesis
regarding the child’s learning mechanism, and that furthermore, the
mapping from theories of UG to learners provides a framework for
comparing theories of UG.

1 introduction

A central task in theoretical linguistics (TL) is constructing theories
of competence – grammars (alternatively seen as computer programs)
that have an opinion (a simple yes/no or a more fine-grained eval-
uation) about possible inputs. A broader goal of TL is characterizing
the range of possible grammars that adult speakers can have. Thus,
linguists agree that humans can mentally represent grammars from a
set of possible candidates and use these grammars to analyze inputs.
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Of course, much disagreement remains about the correct competence
theories and the characterization of the range of theories. The charac-
terization of the range of allowable grammars – which can be thought
of as a reference machine into which individual grammars are writ-
ten – is often referred to as Universal Grammar (UG).1 Starting with
UG, the child reaches a particular grammar through exposure to a lin-
guistic environment. As pointed out by Chomsky (1965), this view
assigns a central role to learnability in investigating UG: a linguistic
theory must specify a range of grammars that can be attained using
the cognitive machinery and data available to the child. Moreover,
UG can provide an evaluation metric that allows the child to com-
pare potential grammars given the data. In its original formulation,
this evaluation metric was stated in terms of simplicity, a notion that
– though defined with respect to a concrete UG – is also often seen as
a cognition-general (CG) principle.

One might hope, then, that TL theories of competence and CG
theories of learning would have a close relationship: that theories of
UG would map onto theories of learning through an evaluation metric,
and that theories of learning would restrict the choice of UG. In prac-
tice, however, the evaluation metric has been largely abandoned, and
the two domains have never succeeded in constraining one another.
Worse, TL and CG approaches have grown to be considered mutually
incompatible. There are various different aspects to this ostensible in-
compatibility, such as whether linguistic knowledge involves struc-
tured, rule-like representations or not, whether probabilities play a
role, and so on. Perhaps most fundamental among the perceived dif-
ferences is how the two approaches view learning. TL, following a
more hopeful beginning, has adopted a deeply skeptical stance that
rejects the possibility of any meaningful learning and relegates most
of the linguistic ability of adults to the innate component, and often
to UG itself (that is, to the reference machine). CG, on the other hand,

1Elsewhere in the literature, UG is sometimes used to refer to the range of
possible grammars (rather than to its intentional characterization as a reference
machine), and sometimes it is used to refer to the combination of the range of
possible grammars and the learning mechanism. Here UG will refer strictly to the
reference machine. The term UG has sometimes been associated with approaches
that assume a substantial innate component. Here I will use it neutrally – this
paper makes no claims as to the correct theory of UG.
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tends to be confident of learning and skeptical of the innate compo-
nent (and especially of UG). The perceived incompatibility between
TL and CG has led over the years to a growing divide between the two
disciplines.
Over the past decade or so, the Bayesian program for cognition

and the closely related framework of Minimum Description-Length
(MDL) have brought the two disciplines closer by articulating CG
views that can integrate probabilistic reasoning with structured, sym-
bolic representations. In the other direction, proposals such as Marcus
(2000) and Yang (2004, 2010) offer TL perspectives that connect
with CG approaches to learning. But a sizable gap remains: even CG-
oriented TL proposals such as those of Marcus and Yang still question
the ability of general learningmechanisms to generalize correctly from
the data, embracing instead restrictive theories of the innate compo-
nent; and even TL-oriented CG proposals such as Goldsmith (2001),
Dowman (2007), Foraker et al. (2009), and Perfors et al. (2011) still
emphasize the power of general-purpose learning mechanisms and
question whether the innate component should be quite as rich as TL
would have it.

This paper has two goals. First, I wish to explain why the skepti-
cism in both directions is misguided. In particular, I will explain why
linguists believe in a complex innate component – including a non-
trivial UG – even in the face of powerful statistical learners. I will do
this by presenting two kinds of evidence that linguists rely on that
have nothing to do with questions of learnability in principle. I will
also explain why many cognitive scientists are confident that learning
is a real possibility, despite the arguments against learning in the TL
literature. My second goal is to offer a TL view that treats the learn-
able and the innate as mutually supportive rather than conflicting. The
ability of CG mechanisms to learn, on this view, is interpreted not as a
reason to reduce the innate component – though it will be a reason to
bring back into consideration theories that leave much to be learned
– but rather as a way to extract nuanced predictions from competing
theories of that component.

I start, in Section 2, by reviewing the history of the divide between
TL and CG, focusing first on the roots of TL pessimism regarding learn-
ing (Section 2.1) and then on CG optimism regarding the same (Section
2.2). In Section 3 I evaluate the two positions and argue that TL was

[ 215 ]



Roni Katzir

wrong to dismiss learning but right to emphasize potentially restrictive
UGs, while CG was right to emphasize learning but wrong to dismiss
potentially restrictive UGs (Section 3.1). In Section 3.2 I explain how
the co-existence of rich UGs and meaningful learning is not only pos-
sible but in fact a good state of affairs, one that allows us to revive the
old hope of mutual collaboration from the early days of generative
grammar. In Section 3.3 I explain how any fully explicit theory of UG
provides us with a CG learner – specifically, a Minimum Description-
Length (MDL) learner – and that this provides both a starting point for
the study of learning and a basis for comparing competing theories of
UG. Section 4 illustrates this mapping from UG to MDL learner using
a simple UG and a couple of toy examples. Section 5 concludes.

2 tl and cg: a brief history of the schism

2.1 TL: Skepticism about learning
2.1.1 Identification in the limit
In an influential paper, Gold (1967) introduced a learning paradigm,
identification in the limit (iitl), and proved that learning of this kind
is impossible even in seemingly simple cases. In iitl, a learner g is
presented with a sequence (or text) T of elements from a language L,
where L is known to be taken from a set C of candidate languages.
After each new element in T is presented, g guesses a language in C .
If after a certain point all of g’s guesses are the same correct guess (in
this case, L), we will say that g has identified L in the limit from T . If
g can identify in the limit any L ∈ C based on any fair text in L (that is,
a text in L in which every w ∈ L appears at some point, and in which
nothing appears that is not in L), we will say that g identifies C in the
limit. If such a g exists, we will say that C is identifiable in the limit.

Certain simple families of languages are iitl. For example, the set
of all finite languages over a finite alphabet Σ is iitl: if g guesses at
each point the language that is the union of all the elements in T
that have been encountered so far, it will always identify the source
language in the limit. Similarly, any C that can be written as {Li |i ≥
1}, where Li ⊂ Li+1 for all i, is iitl: g can identify C in the limit by
always guessing the minimal Li that contains all the elements in T that
have been encountered so far. Changing these families of languages
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only slightly makes them not iitl. For example, adding a single infinite
language to the set of all finite languages makes the set not iitl. In
the second, more general example, adding L∞ =

∪
Li to C makes

the result (as well as any set that contains it) not iitl. To see why,
assume to the contrary that C ′ = C ∪ {L∞} is iitl. Let g be a learner
that identifies C ′ in the limit. We can construct a text T that starts as a
text in L1 up until the first point where g guesses L1 (such a point exists
by assumption), continues as a text in L2 up until the first following
point where g guesses L2, then continues as a text in L3 until g guesses
L3, and so on. The result is a text in L∞, but g makes infinitely many
different guesses and so never converges on a correct answer, contrary
to assumption.
Gold’s setting rules out learning even in intuitively very simple

families of languages, like the set of all regular languages.2 For the-
oretical linguists, this has confirmed a growing skepticism (already
discussed explicitly in Chomsky 1965, pp. 56–58) about the role of
learning in linguistic competence. The skepticism was grounded in a
general sense that learning is hard and that the data available to the
child are insufficient. Gold’s results can be seen as providing formal
justification for this skepticism: assuming iitl is an appropriate model
for language learning in humans, the set of possible languages must be
severely restricted. Osherson et al. (1984) formulate further assump-
tions about human learning that, if correct, would entail an even more
restrictive version UG in which the task of the learner is reduced to
choosing from a finite set of candidate languages. Examples of linguis-
tic approaches that adopt the finite version of UG are the Principles
and Parameters framework of Generative Grammar (P&P; Chomsky
1981) and Optimality Theory (OT; Prince and Smolensky 1993).
It is worth noting that, while a restricted enough UG addresses

the theoretical problem of iitl, even the finite version does not guaran-
2A full characterization of when a family of languages is iitl is provided by

Angluin (1980). Algorithms that guarantee iitl for various classes of languages
include Angluin (1982), Koshiba et al. (1997), Clark and Eyraud (2007), Heinz
(2010), and Yoshinaka (2011). Note that arguments such as Gold’s show that,
under the relevant assumptions, no learner can succeed. This is a stronger re-
sult than showing that a particular learner cannot succeed (such as the problem
identified by Braine 1971, Baker 1979, and Dell 1981 for the specific evaluation
metric of Chomsky and Halle 1968).
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tee an easy task in practice, since a finite space can still be dauntingly
large. In the P&P framework, for example, there are 2n settings, where
n is the number of parameters (on the standard assumption that pa-
rameters are binary), and in OT there are n! different constraint rank-
ings, where n is the number of constraints. Noise and cognitive limita-
tions further complicate the task. See Clark and Roberts (1993), Gib-
son and Wexler (1994), Niyogi and Berwick (1996), and Yang (2002)
for attempts to tackle the practical issues of acquisition within P&P and
Tesar and Smolensky (1998), Boersma and Hayes (2001), and Magri
(2013) for a similar discussion within OT.
2.1.2 Poverty of the stimulus
Much of the disagreement between TL and CG has centered on a form
of argument known as the argument from the poverty of the stimulus
(POS), involving some property P that humans demonstrate in their
language in spite of apparently insufficient support for P in the data.
To cite a well-known (and highly controversial) example, English-
speaking children will form a yes/no question by fronting the struc-
turally highest auxiliary rather than the leftmost one, thus forming the
yes/no interrogative version of The monkey that is jumping can sing by
asking Can the monkey that is jumping sing? rather than *Is the monkey
that jumping can sing? (where ∗ marks ungrammaticality). They do so,
it appears, despite hearing only simpler yes/no questions such as Is
the monkey jumping? (from The monkey is jumping) and Can the monkey
sing? (from The monkey can sing), where structurally highest and left-
most amount to the same thing. This has been taken to show that the
innate component ensures this choice by making available structure-
dependent generalizations but not rules that depend on linear order.
See Berwick et al. (2011) and Clark and Lappin (2011), as well as ref-
erences therein, for discussion.

While the form of POS arguments is clear enough, it is often dif-
ficult to establish any particular POS argument for humans in prac-
tice, even in a simple case such as the one just mentioned.3 For ex-
ample, how can we determine just what kind of evidence would suf-
fice to make the relevant choice empirically? Could there be indirect

3 In organisms for which it is possible to conduct controlled POS experiments,
the situation is different, as Dyer and Dickinson (1994)’s work on honeybees
shows.
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sources of information that would predispose the child against forming
ordering-based generalizations? And how sure are we that we know
exactly what data the subjects have encountered over those few years
prior to the experiment? Some progress has been made on these ques-
tions (see Legate and Yang (2002), Lidz et al. (2003), Yang (2010),
and Hsu and Chater (2010) for thoughts on quantifying the informa-
tion available to the the child; see Crain and Pietroski (2002) for how
POS can be constructed from developmental stages in which children
exhibit very specific linguistic knowledge that is incompatible with
their ambient language but compatible with other natural languages;
and see Wilson (2006) for an experimental paradigm designed to test
the child’s generalization beyond the data in POS situations), but the
core weakness of relying on what we think can be learned and what we
think the child hears – two questions that can be prohibitively difficult
to answer – remains.4

2.1.3 Richness of the stimulus
If children can be shown to systematically not demonstrate a property
P in their language despite an adequate amount of evidence support-
ing P in the input, we can conclude that this failure is due to the innate
component. We can term such evidence an argument from the richness
of the stimulus (ROS).5 For example, Peña et al. (2002) have shown
that, while humans are capable of extracting abstract dependencies
within words, they fail on this task when combined with a segmenta-
tion task (a task that subjects perform well on, both on its own and
when combined with the task of extracting word-internal dependen-
cies). Similarly, Moreton (2008) has shown that humans are signifi-
cantly better at learning certain phonological dependencies – specifi-
cally, dependencies relating the height of the vowels in two adjacent
syllables – than other phonological dependencies – dependencies relat-
ing the height of a vowel to the voicedness of the following consonant

4This is not to say that the POS argument above has been shown to be incor-
rect. Despite multiple attempts to do so in the CG literature, the POS argument
using subject-auxiliary inversion remains an open question. See Berwick et al.
(2011) for relevant discussion.

5See Smith (1966) for an early example of this kind of argument in humans,
and see Garcia et al. (1974) for a particularly clear example of the argument in
rats.
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and dependencies relating the voicedness of consonants in two adja-
cent syllables – even though the two patterns are equally prominent
perceptually and are both abundantly represented in the input.

One must ensure, of course, that prior exposure has not biased
the subjects against observing the relevant patterns. This, however, is
considerably easier in practice than the reverse task, essential to POS,
of ensuring that a certain pattern is never attested in the data. And
as the above examples show – see Bonatti et al. (2005), Endress et al.
(2007), Endress and Mehler (2010), Becker et al. (2011), and Hunter
and Lidz (2013), among others, for further evidence of this kind – ROS
lends itself to the design of controlled experiments that can inform us
about what humans fail to learn.
2.1.4 Typology
Perhaps the most common source for enrichments of the innate com-
ponent comes from the routine TL task of examining individual lan-
guages and comparing the results across a range of languages. If lan-
guage after language shows the same property P (which can be an
absolute universal, such as “Has nouns” or an implicational univer-
sal, such as “If demonstratives and adjectives precede the noun, then
demonstratives precede adjectives”), we can sometimes conclude that
P is due to the innate component.
As usual, caution is needed: for some properties, other sources,

such as communication pressure, might be responsible rather than the
innate component. For example, P = “Verbs have a small number of
arguments” or P = “Has vowels”. More interestingly, P may arise not
through any direct benefit to the speakers but as properties that en-
hance the transmission of language between generations of speakers.
See Kirby (2000, 2002); Kirby et al. (2004); Smith et al. (2003) as
well as Niyogi and Berwick (1997, 2009). Less frequently, P can be
explained away by appealing to historical accident.6

6Controlling completely for historical accident is quite challenging in prac-
tice, but the emergence of the Nicaraguan Sign Language (Senghas et al. 2004)
and of the Al-Sayyid Bedouin Sign Language (Sandler et al. 2005) provide an ap-
proximation. In non-human species it is sometimes possible to explore typological
questions in lab settings that control in full for historical accident, as shown by
the work of Feher et al. (2009) on the emergence of typical song patterns in zebra
finches over several generations, starting from birds grown in isolation.
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But in many cases, P has little if anything to recommend it in
terms of communication efficiency and other functionalist criteria.
Suppose, to take a syntactic example discovered by Ross (1967), that I
heard you say that you saw Max and some lady at the party last night,
but I don’t know the identity of the lady in question. I could use a
roundabout inquiry such as I heard you saw Max and some lady at the
party; can you tell me which lady?, or I could use a paraphrase such as
Which lady did you see Max with ___ at the party?, where the conjunction
and in the original sentence is replaced with the preposition with. But
what I cannot do, in English or in any other known language, is use
the standard way to form a question and say *Which lady did you see
Max and ___ at the party last night?, despite its obvious usefulness for
the conversation (P in this case could be “Does not allow a question
to target a single conjunct”). To cite a different example, discovered
by Horn (1972), no natural language has a connective corresponding
to NAND (= not and) or a quantificational determiner corresponding
to NALL (= not all), despite the usefulness of these concepts in ev-
eryday life (as well as in artificial settings).7 In such cases, it seems
reasonable to ensure P through the innate component.8, 9

2.2 CG: Optimism about learning
2.2.1 The probabilistic turn
Other work, both theoretical and experimental, supports a less restric-
tive view on learning than the TL view. First, as has often been ob-

7See Horn (2011) and Katzir and Singh (2013) for discussion of the general
context of this typological fact.

8Evans and Levinson (2009) and Levinson and Evans (2010) have made the
remarkable claim that language universals do not exist. They do not discuss the
Ross (1967)’s and Horn (1972)’s cases discussed above. See the commentaries
following Evans and Levinson (2009), as well as Abels and Neeleman (2010),
Crain et al. (2010), Reuland and Everaert (2010), Harbour (2011), and Matthew-
son (2012), among others, for additional problems with Evans and Levinson’s
claim.

9The discussion in this subsection is framed as one about absolute properties.
See Tily and Jaeger (2011) and Piantadosi and Gibson (2013) for discussion of
the challenges of obtaining a large enough sample to establish such universals
statistically. In addition to absolute universals, quantitative typological evidence
offers a rich source of information for TL, though using this information is still
difficult at present. See Sauerland and Bobaljik (2013) for an interesting example.
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served, some of Gold’s assumptions do not seem to match the situation
of the human language learner. In particular, the learner in iitl is ex-
pected to guess perfectly based on any fair text in the target language.
No provision is made for discounting (or excluding completely) texts
that are in some sense deviant, and no guess that is less than perfect
counts. In acquisition, on the other hand, it is far from obvious that all
sequences of inputs are equally good, and learning may well count as
successful even if the child ends up having somewhat different judg-
ments from its parents’ about various sentences.10 Relaxing this re-
quirement, as has been done in the probabilistic settings of Horning
(1969) and others, yields notions of learning that are often much more
inclusive than iitl. Horning’s setting involves the same form of text pre-
sentation as Gold’s, but the texts are generated by taking independent,
identically distributed samples from the strings generated by a prob-
abilistic context-free grammar (PCFG), and the criterion for learning
is modified. On these assumptions, the set of languages generated by
PCFGs is learnable, even though the set of languages generated by
Context-Free Grammars (CFGs) is not iitl.
Horning’s results – and those of later probabilistic developments

such as Wexler and Culicover (1980), Osherson et al. (1986), Angluin
(1988), Kapur (1991), and Chater and Vitányi (2007) – can be seen
as evidence that a probabilistic approach is both more natural and
more successful than iitl.11 Experimental data about specific learning

10A different aspect of iitl that could be changed with significant consequences
for learnability is the assumption that the learner is only exposed to positive
evidence. If the learner is exposed both to positive and to negative evidence (for
example, as a sequence of strings paired with a grammaticality judgment), many
more families of languages become learnable, including families that might be
of potential linguistic interest. (Intuitively, the reason negative evidence helps is
that it breaks all the subset relations between the languages in C – see Gold 1967
for discussion.) Unfortunately, infants do not seem to have access to anything
like systematic negative evidence (Brown and Hanlon 1970; Marcus 1993).

11Care must be taken, however, in interpreting positive results about such
models from the perspective of language acquisition. Horning (1969)’s original
result applies to (unambiguous) PCFGs, a class of grammars that is not a realistic
model of natural languages. Osherson et al. (1986) prove that a much broader
class of languages can be identified with probability one from a similar form
of text presentation (that is, through independent identically distributed draws
from the language; see Clark 2001 for further extension). However, this result
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tasks has provided empirical evidence for the role of statistics in learn-
ing, as well as further clarification of the requirements for a successful
theory of learning in humans. One example is the segmentation exper-
iments of Saffran et al. (1996), who showed that infants can reliably
segment an artificially-generated input after a short exposure.12 Since
the only cues for segmentation in these experiments are statistical, we
can conclude that a learner must be able to make use of statistical reg-
ularities in the input. In addition, these results show that a model for
human learning should succeed even with unsegmented input.13 Fi-
nally, the success of the babies in learning after such a brief exposure
provides a preliminary quantitative measure of the performance of the
learner. Further evidence that humans are skillful statistical learners
come from Sobel et al. (2004) and Griffiths and Tenenbaum (2006),
among others, who demonstrate the sensitivity of humans (both chil-
dren and adults) to statistical information.
2.2.2 Task-specific approaches
Experimental results about learning tasks, of the kind mentioned
above, have sometimes inspired task-specific (but domain-general)
learning models: relatively simple mechanisms, usually sensitive to
statistics, that form part of a CG toolkit. For example, the results of
Saffran et al., as well as those of subsequent experiments within the
paradigm, have been taken to show that humans can employ certain
segmentation techniques. Onemechanism, based on Harris (1955) and
suggested as the mechanism behind the infant segmentation data by
Aslin et al. (1998), involves the tracking of transitional probabilities
requires knowing the possible distributions. If this assumption is replaced by
more realistic requirements, the classes of languages that can be identified be-
come considerably more limited, as shown by Angluin (1988) and Pitt (1989).
In fact, if the child is required to perform distribution-free learning with proba-
bility one, the classes of languages that are identifiable revert to those that are
Gold-identifiable. See Niyogi (2006) and Clark and Lappin (2011) for further
discussion.

12Other examples include the tasks of categorization, the learning of phono-
tactics, and the induction of grammatical rules.

13Removing the segmentation marks in the text makes the learning problem
harder. For example, the family C = {{a}, {aa}} is trivial to learn from a seg-
mented text but impossible to learn from an unsegmented text. Both Gold and
Horning require the input to be segmented.
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between syllables. Transitions tend to bemore restrictive within words
than across words, so segmentation can proceed by finding drops in
transitional probability. Different task-specific models of segmenta-
tion have been offered by Brent and Cartwright (1996), Christiansen
et al. (1998), Brent (1999), Mattys et al. (1999), Johnson and Jusczyk
(2001), Venkataraman (2001), and Batchelder (2002), among others.
Other task-specific (but potentially domain-general) learning mecha-
nisms that have been proposed in the literature include mechanisms
for processing identity relations (Endress et al. 2007) and positional
relations (Endress and Mehler 2009).14

2.2.3 Prediction and description length
Another CG approach, one that is radically different from the task-
specific approach – and the one I will try to support in this paper –
is the idea of learning everything at once, with particular learning
tasks (such as segmentation, categorization, syntactic learning, and so
on) arising as by-products of a very general learning process. Here a
principled approach is provided by the theory of prediction developed
by Solomonoff (1964).15 Simplifying, we consider all the different hy-
potheses about the data, each treated as a computer program that out-
puts the data, and we evaluate each hypothesis according to its length.
The learner bases its guesses about the continuation of the input based
on a weighted sum of all the hypotheses compatible with the obser-
vations so far, with shorter hypotheses receiving higher weights. Re-
cently, this approach has been proposed by Chater and Vitányi (2007)
and Hsu et al. (2011) as a useful abstraction – a form of ideal learn-
ing – for evaluating certain claims about the learnability of natural
language.

While fully general and mathematically sound, ideal learning as
originally formalized is not cognitively plausible, nor is it meant to
be. In its pure form, ideal learning is not even computable (though
see Solomonoff 2008 for thoughts on how to address this concern).

14See Endress et al. (2009) and Endress and Bonatti (2013) for further discus-
sion of such mechanisms and qualifications of their generality.

15Related notions were developed by Kolmogorov (1965) and Chaitin (1966).
See Li and Vitányi (1997) for discussion. Learning of this kind is guaranteed to
minimize errors in a certain sense, as shown by Solomonoff (1978) and Chater
and Vitányi (2007).
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Another challenge to making Chater and Vitányi’s model cognitively
plausible is that it is stated with respect to a very broad UG – in its
original form, a Turing-complete UG (which is the source of the non-
computability). If we wish to take into account arguments for a more
restrictive innate component, such as the arguments from ROS and
from the typology, we should re-state Chater and Vitányi’s model in
terms of more limited UGs. Restricting the set of hypotheses can both
ensure computability and make the model work with linguistically
realistic UGs, but the computations required to derive the predictions
in a Solomonoff-based ideal learner such as Chater and Vitányi’s can
still be prohibitively complex.

The approximation to Kolmogorov Complexity known as Mini-
mum Description-Length (MDL; Rissanen 1978) offers a way to over-
come the difficulties of ideal learning while maintaining both the
weighting of hypotheses according to their length and the idea of
general learning, with particular tasks falling out as by-products.16 In
MDL – and in the closely related Bayesian framework – the hypothesis
space is restricted, and the search aims at finding a single hypothesis
that minimizes the total description length (or, in the Bayesian frame-
work, a hypothesis that maximizes the posterior probability). MDL
has been used for grammar induction in the works of Berwick (1982),
Rissanen and Ristad (1994), Stolcke (1994), Brent and Cartwright
(1996), Chen (1996), Grünwald (1996), de Marcken (1996), Osborne
and Briscoe (1997), Brent (1999), Clark (2001), Goldsmith (2001),
Onnis et al. (2002), Zuidema (2003), Dowman (2007), Chang (2008),
and Rasin and Katzir (2013) among others. In Section 3.3 I will suggest
that MDL arises as a natural criterion for the evaluation of grammars
given the data – and thus as a natural CG learning mechanism – from
the commitment to an explicit UG made in TL.

16See also the closely related approach known as Minimum Message Length
(MML; Wallace and Boulton 1968). An approach related to MDL and MML is the
search for a grammar (usually a context-free grammar) that generates the input
data as its only possible output. The problem of finding such a grammar – the
so-called shortest grammar problem – has its roots in Lempel and Ziv (1976) and
has been studied by Nevill-Manning and Witten (1997), Kieffer and Yang (2000),
Charikar et al. (2005), and Dębowski (2011), among others.
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3 reassessment

3.1 A rich UG and the possibility of learning both exist
As we saw, TL has good reasons to assume a nontrivial UG: while iitl
seems inapplicable to the condition of the child, and while POS ar-
guments are susceptible to successful learning models, ROS and typo-
logical arguments do not depend on learnability in principle. Indeed,
the better the general-purpose mechanisms that one can assume, the
more surprising both failures to learn and systematic typological pat-
terns become. At the same time, the CG models of learning are clearly
very much an option. None of the arguments against learning in prin-
ciple holds, and it seems that humans are quite good at learning sta-
tistical distributions (as shown by Sobel et al. 2004 and Griffiths and
Tenenbaum 2006, among others).

Assuming that (almost) everything is innate or that (almost) ev-
erything is learned was perhaps convenient at one point as a working
hypothesis: if we already have an elaborate innate component, we
might hope that we could do without a sophisticated learning mecha-
nism, and vice versa. But a rich innate component and a powerful CG
mechanism are not logically incompatible, and it is worth noting that
the state of the art in each project still leaves a significant amount of
work for the other. At the very least, then, the two respective research
projects should continue to co-exist: TL should keep studying the in-
nate component focusing on ROS and typological evidence, perhaps
showing more caution with POS arguments than it did before; and CG
should keep studying what humans can learn and how, perhaps show-
ing a better appreciation for the role of innateness in shaping adult
linguistic abilities.
But there is also a more interesting option, one that allows a

tighter collaboration between the two research projects and that en-
ables discoveries in one to translate into tools for the other. This op-
tion, a hope from the early days of generative grammar, was made
possible by the advent of the Bayesian program for cognition and of
the closely related MDL framework, both of which allow the integra-
tion of structured representations and probabilistic reasoning. I will
sketch an outline of this option immediately below.
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3.2 Combining innateness with general learning
Practitioners of TL often find themselves with two different hypothe-
ses, call them F1 and F2, that seem equally capable of explaining
the observed linguistic phenomena. F1 and F2 might come from en-
tirely different theoretical frameworks, such as Combinatory Catego-
rial Grammar and Minimalism for syntax or Optimality Theory and
SPE for phonology, or they may constitute two refinements of the
same broad framework. This has led to what Steedman and Baldridge
(2011) have called a crisis in syntactic theory (though a similar prob-
lem arises in other subfields of TL, such as phonology and semantics):
modern TL proposals are often meaningfully different in their essen-
tials and yet comparably successful in accounting for the linguistic
judgments of adult speakers. In order to choose between them, we
need to look elsewhere.
One important source of evidence of this kind is the mapping

from theories of competence to theories of processing, mediated by
the competence hypothesis articulated by Miller and Chomsky (1963)
and Chomsky (1965). This mapping has been used to argue for Lexical-
Functional Grammar (over transformational grammars) by Bresnan
and Kaplan (1982); for the flexible constituents endorsed by categorial
grammars (over the rigid constituency of most other formalisms) by
Steedman (1989); and for quantifier-raising (over in situ incorporation
of quantifiers) by Hackl et al. (2012). I would like to suggest that com-
bining CG with TL might provide another source of evidence of this
kind, with a suitable mapping of UGs to CG learners (in Section 3.3
below I will argue that such a mapping is available by default through
the principle of MDL). The shape of possible experiments to distinguish
between F1 and F2 is as follows. Suppose one finds two properties, P1

and P2, that some languages have but some do not – so that learning
will be involved – and that can co-exist in the same language. To take
a phonological example, P1 might be that a voiceless consonant like
/p/ is aspirated in the beginning of a syllable while a voiced conso-
nant like /b/ is not (as in English: [ph]at vs. [b]at; note that this is a
choice of English: Hindi can aspirate both /p/ and /b/, while French
aspirates neither), and P2 might be that vowels are lengthened before
a voiced consonant but not before a voiceless consonant (again as in
English: t[a:]b vs. t[a]p; again, this is a choice of English: French, for
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example, shows no such lengthening). In a syntactic example, P1 might
be that a subject can be dropped (as in Italian, but not in English) and
P2 might be that questions are marked by overt dislocation (again, as
in Italian, but not in Japanese).

Given a CG mechanism M that seems cognitively plausible, we
can now obtain two combinations, M+F1 and M+F2, and each combi-
nation can be run on a realistic corpus of child-directed speech. While
F1 and F2 might both be capable of representing both P1 and P2, there
might be a significant difference in how well the combinations M + F1

and M + F2 can learn the two and the order in which they do so. If
this is the case, we now have a criterion for choosing between F1 and
F2: whichever provides a better match with data from actual child
language acquisition will receive support. Since M was proposed as a
general-purpose learning mechanism and was not tailor made to han-
dle either F1 or F2, such evidence can be taken seriously.

Experiments of this kind require researchers in each project to pay
closer attention to work done in the other project than has usually
been the case. Still, I think that they are a more productive – and,
given current understanding, a more sensible – direction for future
work on language and learning than further attempts to determine
whether language is more innate than learned or vice versa.
3.3 An argument for MDL
I have tried to show why TL and CG can and should have a much
closer relationship than they currently enjoy. In this section I will pro-
vide an argument that any explicit theory of UG already comes with
the evaluation metric (or objective function) that forms the central
component of a CG learner. Specifically, I will show how any explicit
theory of UG translates into an MDL evaluation metric that allows the
child to compare different possible hypotheses within the hypothesis
space defined by UG. If correct, the discussion below points to bare
MDL as our starting point in studying learning and as the linguist’s M
for comparing contenders for the correct theory of UG.

A theory of UG provides a set of possible grammars. Any of these
can be the grammar of a competent speaker, who stores that gram-
mar in memory and uses it to obtain an opinion about data. At the
very least, then, assuming a theory of UG T with a set G of possible
grammars commits us to the following assumptions:
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1. A competent adult speaker has a grammar, G ∈G.
2. G is stored in memory.
3. G is used to parse inputs.

In order to make learning possible, we must allow a learner who
currently represents G to also consider at least one other grammar G′
and to switch from G to G′ under certain conditions.17 Of the very few
properties that we can rely on to compare the two grammars in the
general case, total storage space is a natural candidate, and one that
accords well with the intuition behind MDL, which equates learning
with compression. I therefore add the following two assumptions:

4. During language learning, a second grammar, G′ ∈ G can be
stored in memory and used to parse the input.

5. The memory size used to store G and its parse of the input can be
compared to the memory size used to store G′ and its parse of the
input.

These assumptions amount to little more than saying that gram-
mars can be used for parsing and that the overall description length of
two grammars can be compared. My claim is that these assumptions
already provide the language learner with an inherent learning mech-
anism: given an input D, the language learner searches through G for
the grammar G for which the encoding of G (as defined by T ) and of
D (using G) is the shortest. By relying only on what the theory of UG
under consideration is already committed to, this bare MDL learner
offers a natural starting point for the study of learnability: alterna-
tives in which the learner ignores the freely available MDL criterion
and relies on some other mechanism instead should only be pursued

17Strictly speaking, maintaining more than one grammar is not always nec-
essary. In particular, the learners proposed by Angluin (1982), Koshiba et al.
(1997), Clark and Eyraud (2007), and Heinz (2010) all operate by considering
just one grammar at a time and updating it as input comes along. All these learn-
ers, however, assume elaborate mechanisms for growing a grammar – usually
tailor-made for the specific UGs they are designed to handle – that go well be-
yond the basic commitment to an explicit UG.
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given evidence that the MDL null hypothesis is incorrect.18, 19 The
argument for bare MDL as the null hypothesis can be taken to sup-
port approaches in the literature that use MDL for learning, such as
the works mentioned in Section 2.2.3, and in particular works such
as de Marcken (1996) and Rasin and Katzir (2013) that use MDL not
simply as a convenient heuristic but as the sole principle that maps
an explicit UG to an evaluation metric.20 Moreover, as mentioned in
the introduction and discussed further in Section 3.2, the generality of

18To date, the literature has provided very little that bears directly on the
empirical question of whether children use MDL as a criterion for comparing hy-
potheses during learning. On the other hand, several works have provided argu-
ments – often in conflicting directions – regarding a possible role for description
length more broadly in the learning process. In particular, Feldman (2000), ex-
tending the results of Shepard et al. (1961), provides evidence for the cognitive
relevance of MDL by showing that description length is correlated with learning
difficulty in concept learning (see also Feldman 2006 and Goodman et al. 2008).
In the same vein, Moreton and Pater (2012a,b) review the literature on artificial
grammar learning in phonology and conclude that description length is a central
factor determining learning difficulty in this domain. On the other hand, Kurtz
et al. (2013) point to a more nuanced pattern of difficulty in concept learning,
and Moreton et al. (2014) provide evidence for correlating difficulty with fac-
tors other than description length, both in phonological learning and in concept
learning. I will not attempt to relate such results about learning difficulty with
the question of what evaluation criterion is used by the learner.

19Heinz and Idsardi (2013) note a lack of correlation between the complexity
of finite-state machines for capturing certain patterns and potentially relevant
language classes to which these patterns correspond. Based on this, Heinz and
Idsardi suggest that MDL is not an appropriate learning criterion in phonology.
Note, however, that the complexity of a grammar is only one part of the MDL
criterion: the size of the description of the data given the grammar is just as im-
portant as the size of the grammar itself, and without taking it into account it is
generally not possible to draw conclusions about the adequacy of the criterion.
In addition, Heinz and Idsardi discuss the length of very specific representations
– namely, the finite-state machines they use to describe the relevant patterns
– and these representations do not correspond to any of the main grammati-
cal formalisms for phonology. Given different representations, grammar size can
change. Finally, it is hard to see how the possible correlation of language fami-
lies with the description length for the best grammar (with or without taking the
data into account) is a relevant consideration. The question is whether, given an
appropriate representation scheme, the grammar that yields the shortest descrip-
tion in any particular situation is also the one that humans arrive at.
20For de Marcken (1996) MDL is a substitute for Structural Risk Minimiza-
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the mapping from UGs to learners provides a framework in which the-
ories of UG can be compared with respect to their predictions about
learning.

4 a simple example

4.1 Encoding
To see how the mapping from theories of UG to bare MDL learners
works, let us consider a naive theory of UG. This theory, call it T1,
allows any CFG to be represented by listing all the rules in some order,
with a category #, which is not one of the terminals or nonterminals
in the grammar, serving as a separator. Since T1 only allows CFGs,
it can list each rule unambiguously as the left-hand side followed by
the list of the categories on the right-hand side.21 T1 marks the end of
the grammar with an additional separator. For example, the grammar
below will be listed as ABA#ABC#A#BCD#…#EFG##:

G :=



A→ B A
A→ B C
A→ ε

B→ C D
...
E→ F G

We still need to specify how T1 encodes the categories in the list.
Sticking to simple-minded (and deliberately suboptimal) choices, we
will use a fixed code-length scheme for the different categories, where
each category will be encoded using k = ⌈lg(|Categories|+ 1)⌉ bits:
tion, but it is still the sole contributor to the actual evaluation metric used by the
learner. While de Marcken’s focus is different from that of the present work – in
particular, his emphasis on a specific representational framework that he devel-
ops can obscure the general applicability of MDL as an immediate CG learning
criterion for any explicit UG – his work provides a particularly clear example of
how pure MDL can fit in with a linguistically motivated UG.

21This particular choice of encoding individual rules would change in exten-
sions of the learner beyond CFG, but the general point will not be affected. As
long as the grammar can be stored and used for parsing, it can be encoded, and
the encoding can be used in an MDL learner.
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# 000
A 001
... ...
G 111

The number of bits per category, k, will have to be represented as
well. We can do this by starting the code with a sequence of k 0’s
followed by a single 1, and by agreeing to treat 000︸︷︷︸

k

as#. Encoding the
grammar above, then, will be 000︸︷︷︸

k

1 001︸︷︷︸
k

010︸︷︷︸
k

001︸︷︷︸
k

000︸︷︷︸
k

. . . 000︸︷︷︸
k

, and

the total length of encoding G will be |G| ≈ k · [∑r∈G |r|+ 1].
As for determining the encoding of the data, D, given G, T1 first

groups rules by their left-hand side, and then enumerates the expan-
sions:

Rule Code
A→ BA 00
A→ BC 01
A→ ε 10
B→ C D 0
B→ b 1
C → c ε
... ...

Suppose now that G provides the following parse for D: T =
[A[B . . . ] [C . . . ]]. T1 encodes this parse by traversing the tree in pre-
order, concatenating the code for each expansion choice given the left-
hand side: C(T ) = C(A)C(A→ BC |A)C(. . . |B) . . . C(. . . |C) . . .. In cases
of ambiguity, T1 takes the shortest encoding.
4.2 Search
Using the UG specified above as T1, we can now take some input D and
search for the grammar that minimizes the total description length of
G and of the encoding of D given G. Any grammar G0 that parses the
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input can serve as an initial hypothesis for the search. Moreover, G0

provides a trivial upper bound on the size of the search, since the total
description length provided by the target grammar is at most as large
as that provided by G0.
For T1, there is a very simple grammar that is guaranteed to parse

D and can serve as G0. This grammar is what I will refer to as the con-
catenation grammar for Σ, where Σ is the alphabet in which D is writ-
ten. If Σ = {σ1, . . . ,σn}, the concatenation grammar for Σ is defined
as follows:

G :=


γ→ σ1 γ...
γ→ σn γ

The concatenation grammar for Σ makes all texts of a certain length
written in Σ equally easy to describe. It treats all symbols in all posi-
tions in D as equally good and therefore fails to capture any regularity
other than the alphabet in which D is written. Consequently, it is only
a good hypothesis for a random or near-random text. However, since it
parses D it can serve as an initial hypothesis, and it provides an initial
upper bound on the total description length using the target grammar.

Still, the bound provided by the concatenation grammar is huge,
ruling out an exhaustive search. A greedy search is not likely to suc-
ceed, due to various local optima along the way. To address this prob-
lem, the search in the simulations below relies on Simulated Annealing
(SA, Kirkpatrick et al. 1983), though I wish to emphasize that I am not
trying to model the search procedure in humans, and my only claims
concern the definition of the objective function, stated in terms of to-
tal description length. Indeed, it is quite possible that, even if they use
the MDL criterion, humans will turn out to be incapable of exploring
the search space effectively. If that is the case, the search component
could make the learner – and with it the entire innate component –
considerably more restrictive than suggested by the representational
abilities of UG and by the MDL criterion.22

22The idea that a significant part of the restrictiveness of the innate compo-
nent may be the result of constraints on learning has been pursued in the litera-
ture in various contexts. See Saffran (2003), Heinz (2007), and Heinz and Idsardi
(2013), for example.
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SA proceeds by comparing a current hypothesis to one of its neigh-
bors, chosen at random, in terms of goodness, which in the present
case is the total description length. That is, when a current hypothesis
G is compared to one of its neighbors, G′, |G|+ |D|G| is compared to
|G′|+ |D|G′|. If G′ is better than G (that is, |G′|+ |D|G′| < |G|+ |D|G|),
the search switches to G′. Otherwise, the choice of whether to switch
to G′ is made probabilistically and depends both on how much worse
G′ is and on a temperature parameter. The higher the temperature,
the more likely the search is to switch from G to its bad neighbor
G′. Similarly, the closer G and G′ are in terms of overall descrip-
tion length, the more likely the search is to switch to G′. The tem-
perature is initially set to a relatively high value, and it is gradu-
ally lowered as the search progresses, making the search increasingly
greedy. The search ends when the temperature descends below a cer-
tain threshold.

For any grammar G, the neighbor grammar G′ is generated as a
variant of G in which one of the changes in the following list occurs:
1. An element, possibly a new nonterminal, is added to one of the
rules.

2. An element is deleted from one of the rules.
3. A new rule of the form X → ε is created for some category X .
4. A nonterminal in the right-hand side of a rule is replaced with its
expansion according to some rule in the grammar.

5. A nonterminal X in the right-hand side of a rule is replaced with
a new nonterminal Y , and a unit rule Y → X is added to the
grammar.
The modification is chosen according to a uniform distribution

over possible changes. All decisions in a given modification are made
randomly as well (category for insertion, positions for insertion or
deletion, etc.).
4.3 Results
In Section 4.1 above we saw the specification of T1, a simple-minded
CFG UG, and in Section 4.2 we saw the details of a search procedure
that turns the MDL evaluation metric induced by T1 into a learner.
In this section we will see the results of running this learner on two
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extremely simple data sets: one that is the concatenation of words
from an artificial lexicon and another that involves palindromes. Both
tasks are loosely based on patterns that arise in natural language. The
concatenation data set requires that the learner address the challenge
of segmenting the input, a challenge solved by human learners, who
are exposed to inputs that are for the most part unsegmented. The
palindrome data set requires that the learner address the challenge of
acquiring center embedding, a common pattern in natural languages.
Despite this loose correspondence with natural language, the goal of
the present section is not the realistic modeling of learning in humans
– both T1 and the data sets are far too simplistic to be informative
in this respect – but rather to show how a bare MDL learner induced
by an explicit UG operates, and how the representational abilities of
the UG in question guide the search for the best hypothesis given
the data.
4.3.1 Segmentation
The first data set is based on the one described by Saffran et al. (1996).
In Saffran et al.’s experiment, in which a text was generated by the
random concatenation of elements from an artificial vocabulary con-
sisting of the items pabiku, golatu, daropi, tibudo. This text
was turned into speech using a synthesizer that produced a stream
of speech with flat intonation and no word breaks. Eight-month old
infants were exposed to this stream, and after two minutes (= 180
words = 1080 segments) they were able to distinguish between words
(e.g. pabiku) and non-word sequences that appear in the text (e.g.
bikuda).23 Here are sample snapshots from the learning process us-
ing an input that is only 300 segments long (compared to 1080 in the
original experiment), using an initial temperature of 15 and a maxi-
mum grammar-length of 200 bits. The first step, as explained above,
is a concatenation grammar, which captures no regularities:24

23The text used by Saffran et al. (1996) was subject to the additional require-
ment that no word can repeat itself. In the text that I used, repetitions are not
prohibited. As far as I can tell, this does not affect the point made here.
24 In the results reported here, the step in the search appears as the subscript

of G; γ is the seed category; and numbered categories are non-terminal categories
that are hypothesized by the learner during the search.
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G0 : γ→ k γ γ→ i γ

γ→ o γ γ→ u γ

γ→ d γ γ→ p γ

γ→ a γ γ→ g γ

γ→ r γ γ→ b γ

γ→ l γ γ→ t γ

Grammar length: 126, Encoding length: 1200, Energy: 1326.0

After a thousand steps, we already have ro from daropi, la and
go from golatu, and ku from pabiku:

G1000 : d → o γ→ d γ

γ→ γ γ→ u γ d

a→ γ→ o γ g

γ→ t γ γ→ l a γ i

γ→ r o γ γ→ g o γ p

γ→ i γ t γ→ p γ d

l → u i γ→ k u γ b

γ→ a γ r →
γ→ b γ

Grammar length: 192, Encoding length: 1023, Energy: 1215.0
As we proceed, more and more parts of the underlying vocabulary

are discovered. Here, at the final step, we have all the words:

G100000 : 5144→ t i b u d o 5144 5144→ p a b i k u 5144

5144→ g o l a t u 5144 r 5144→ d a r o p i 5144

Grammar length: 97, Encoding length: 100, Energy: 197.0
The results presented above show rules that correspond straight-

forwardly to the lexicon that was used to generate the input and thus
reflect the correct segmentation of the input, based on its statistical
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regularities. Crucially, though, the theory of UG presented as T1 in
Section 4.1 is not aware of the tasks of segmentation and lexicon induc-
tion, and it does not represent probabilities in its rules. Consequently,
the bare MDL learner for T1 is not aware of these notions either. It ar-
rives at the correct segmentation as a by-product of its general search
for the best grammar given the input.
4.3.2 Palindromes
For our second simulation, along the lines of Horning’s paradigm, we
will use an input that exhibits nested dependencies. Such dependen-
cies are common in natural language: they are present in the nesting of
object-extracted relative clauses in English, for example, as well as in
the basic structure of verb-argument dependencies in German clauses.
It has been suggested by Fitch and Hauser (2004) that humans acquire
such patterns in experiments of artificial-language learning, though
the experiment and the claim remain controversial (see Perruchet and
Rey 2005, among others).25

In the nesting data set I will use a segmented input. We can specify
the learner’s goal when presented with a segmented input sequence
to be the minimization of the sum of the grammar length and the
sum of the encoding lengths for each element in the sequence.26 At
least in simple cases, the learner successfully identifies the generating
grammar from an input presented in this way. Following are several
snapshots from a run on an input that consists of 200 even-lengthed
palindromes over the alphabet Σ = {a, b, c} (the sequence reported
here starts as cccabaccabaccc, cbbc, bccccccb, aa, aabbaa, . . .; for perfor-
mance purposes, the learner cannot see past the first 25 characters of
each element in the sequence):

G0 : γ→ a γ γ→ c γ

γ→ b γ

Grammar length: 19, Encoding length: 2314, Energy: 2333.0
25The palindrome language is a member of certain interesting infinite classes

that can also be learned under the demanding criterion of iitl, as shown by
Koshiba et al. (1997).
26Note, however, that the learner treats its input as the prefix of a possibly

infinite text rather than a complete element in the language. I will not discuss
this issue.
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G1400 : γ→ c γ γ→ a γ b γ

γ→ c γ→ b γ c b γ

Grammar length: 32, Encoding length: 2122, Energy: 2154.0

G2800 : 209→ c 209 209→ a 209

209→ b 209 b c c 209 c b 209 a 209→
Grammar length: 35, Encoding length: 2154, Energy: 2189.0

G4200 : 371→ a 371 a 371→
371→ b 371 b 371→ c 371 c

Grammar length: 27, Encoding length: 1480, Energy: 1507.0
G4200 is already the correct grammar (371 is the arbitrary cate-

gory label of what would usually be written as S). Similar results were
obtained with other simple CFGs, such as an bn.

5 discussion

I set out to bring TL theories of UG and CG theories of learning into
closer contact. I reviewed some of the central arguments within each
discipline for and against rich UGs and for and against learning, con-
cluding that linguists’ notions of rich UGs are well-founded, but that
cognition-general learning approaches are viable as well. Differently
from what is often suggested in the literature, I argued that the two
can and should co-exist and support each other. Specifically, I used the
observation that any theory of UG provides a learning criterion – the
total memory space used to store a grammar and its encoding of the
input – that supports an MDL evaluation metric that can serve as the
central component of a CG learner. This mapping from theories of UG
to learners maintains a minimal ontological commitment: the learner
for a particular theory of UG uses only what that theory already re-
quires to account for linguistic competence in adults. I suggested that
such learners should be our null hypothesis regarding the child’s learn-
ing mechanism, and that furthermore, the mapping from theories of
UG to learners provides a framework for comparing theories of UG.
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