
A syntactic component
for Vietnamese language processing

Phuong Le-Hong1, Azim Roussanaly2, and Thi Minh Huyen Nguyen1

1 VNU University of Science, Hanoi, Vietnam
2 LORIA, Université de Lorraine, Nancy, France

abstract
Keywords:
language,
parsing,
segmentation,
syntactic
component,
tagging,
tree-adjoining
grammar,
Vietnamese

This paper presents the development of a grammar and a syntactic
parser for the Vietnamese language. We first discuss the construction
of a lexicalized tree-adjoining grammar using an automatic extraction
approach. We then present the construction and evaluation of a deep
syntactic parser based on the extracted grammar. This is a complete
system that produces syntactic structures for Vietnamese sentences. A
dependency annotation scheme for Vietnamese and an algorithm for
extracting dependency structures from derivation trees are also pro-
posed. This is the first Vietnamese parsing system capable of produc-
ing both constituency and dependency analyses. It offers encouraging
performance: accuracy of 69.33% and 73.21% for constituency and de-
pendency analysis, respectively.

1 introduction

Natural language processing (NLP) often depends on a syntactic rep-
resentation of text. Software that can generate such a representation
is usually composed of both a grammar and a parser for a given lan-
guage.

For decades, NLP research has mostly concentrated on English
and other well-studied languages. Recently there has been increased
interest in languages for which fewer resources exist, notably because
of their growing presence on the Internet. Vietnamese, which is among
the top 20 most spoken languages (Paul et al. 2014), is one such lan-

Journal of Language Modelling Vol 3, No 1 (2015), pp. 145–184

Phuong Le-Hong et al.

guage attracting increased attention. Obstacles remain, however, for
NLP research in general and grammar development in particular: Viet-
namese does not yet have vast and readily available constructed lin-
guistic resources upon which to build effective statistical models, nor
does it have reference works upon which new ideas may be experi-
mented.

Moreover, most existing NLP research concerning Vietnamese has
been focused on testing the applicability of existing methods and tools
developed for English or other Western languages, under the assump-
tion that their logical or statistical well-foundedness might offer cross-
language validity; whereas assumptions about the structure of a lan-
guage are usually made in such tools, and must be amended to adapt
them to different linguistic phenomena. For an isolating language such
as Vietnamese, techniques developed for inflectional languages cannot
be applied “as is”.

Our goal is to develop a syntactic parser for the Vietnamese lan-
guage. We believe that a wide-coverage grammar that incorporates
rich statistical information would contribute to the development of
basic linguistic resources and tools for automatic processing of Viet-
namese written text.

Syntactic parsing is a fundamental task in natural language pro-
cessing. For Vietnamese, there have been few published works dealing
with this problem. This paper presents the construction and evaluation
of a deep syntactic parser based on Lexicalized Tree-Adjoining Gram-
mars (LTAG) for the Vietnamese language.

The remainder of the paper is organized as follows. The next sec-
tion introduces some preliminary concepts of different types of syn-
tactic representation, a brief introduction of the Vietnamese language
and the tree-adjoining grammar formalism. Section 3 then presents the
construction of a tree-adjoining grammar – the first part of the syntac-
tic component. This grammatical resource is extracted automatically
from the Vietnamese treebank. Next, Section 4 discusses the construc-
tion of a deep parser based on the extracted grammar. The parser is
evaluated in Section 5. Section 6 concludes the paper and suggests
some directions for future work.

[146]

A syntactic component for Vietnamese language processing

2 preliminaries

2.1 Syntactic representation
Constituency structure and dependency structure are two types of syn-
tactic representation of a natural language sentence. While a con-
stituency structure represents a nesting of multi-word constituents,
a dependency structure represents dependencies between individual
words of a sentence. The syntactic dependency represents the fact that
the presence of a word is licensed by another word which is its gov-
ernor. In a typed dependency analysis, grammatical labels are added
to the dependencies to mark their grammatical relations, for example
subject or indirect object.

Recently, there have been many published works on dependency
analysis for well-studied languages, such as English (Kübler et al.
2009) or French (Candito et al. 2009b). The dependency parsers de-
veloped for these languages are usually probabilistic and trained on
corpora available in the language of interest. We can classify the ar-
chitecture of such parsers into two main types:
• parsers that employ a machine learning method on dependency
corpora extracted automatically from treebanks and that directly
produce dependency parses (Nivre 2003, McDonald and Pereira
2006, Johansson and Nugues 2008, Candito et al. 2010);

• parsers that rely on a sequential process where constituency
parses are produced first and then dependency parses are ex-
tracted (Candito et al. 2009b, de Marneffe et al. 2006).
This second type is motivated by the fact that dependency corpora

are not readily available for many languages, as in the case of Viet-
namese. In such an architecture, we need a module which takes as
input constituency parses given by a constituency parser and converts
these parses into typed dependency parses as illustrated in Figure 1
and Figure 2 for the English sentence “A hearing is scheduled on the
issue today” (Nivre and McDonald 2008).
2.2 A brief overview of Vietnamese
In this section we present some general characteristics of the Viet-
namese language; these are adopted from Hạo (2000), Hữu et al.
(1998) and Nguyen et al. (2006).

[147]

Phuong Le-Hong et al.
Figure 1:

Constituency analysis
of an English sentence

S
NP

DT
A

NN
hearing

VP
VPZ
is

VP
VBN

scheduled
PP

IN
on

NP
DT
the

NN
issue

NP
today

Figure 2:
Dependency analysis

of an English sentence

....A ..hearing ..is ..scheduled ..on ..the ..issue ..today.
det

.

nsubjpass

.
auxpass

.

pobj

.
prep

.

root

.
det

.

tmod

Vietnamese belongs to the VietMuong group of the Mon-Khmer
branch, which in turn belongs to the Austro-Asiatic language family.
Vietnamese is also similar to languages in the Tai family. The Viet-
namese vocabulary features a large number of Sino-Vietnamese words
which are derived from Chinese (Alves 1999). This vocabulary was
originally written with Chinese characters that were used in the Viet-
namese writing system, but like all written Vietnamese, is now writ-
ten with the Latin-based Vietnamese alphabet that was adopted in the
early 20th century. Moreover, by being in contact with the French
language, Vietnamese was enriched not only in vocabulary but also in
syntax by the calque (or loan translation) of French grammar. Thus,
for example, the Subject-Verb-Object structure gained prevalence over
the natively more common Theme-Rheme construction.

Vietnamese is an isolating language,1 which means that it is char-
acterized by the following traits:
• it is a monosyllabic language;
• its word forms never change, unlike occidental languages that use
morphological variations (e.g. plural form, conjugation);

1 It is noted that Chinese is also isolating; Chinese is classified in a branch of
Sino-Tibetan language family.

[148]

A syntactic component for Vietnamese language processing

• hence, all grammatical relations are manifested by word order
and function words.
Vietnamese has a special unit called “tiếng” that corresponds at

the same time to a syllable with respect to phonology, a morpheme
with respect to morpho-syntax, and a word with respect to sentence
constituent creation. For convenience, we call these “tiếng” syllables.
The Vietnamese vocabulary contains:
• simple words, which are monosyllabic (e.g. mưa (rainy) nắng
(sunny));

• reduplicated words composed by phonetic reduplication (e.g.
trắng (white) – trăng trắng (whitish))

• compound words composed by semantic coordination (e.g. quần
(trousers), áo (shirt) – quần áo (clothes))

• compound words composed by semantic subordination (e.g. xe
(vehicle), đạp (to pedal) – xe đạp (bicycle));

• some compound words whose syllable combination is no longer
recognizable (e.g. bồ nông (pelican))

• complex words phonetically transcribed from foreign languages
(e.g. cà phê (coffee), from the French café).
The issue of syntactic category classification for Vietnamese is still

in debate in the linguistic community. That lack of consensus is due to
the unclear limit between the grammatical roles or syntactic functions
of many words as well as the very frequent phenomenon of syntactic
category mutation, by which a verb may for example be used as a
noun, or even as a preposition. Vietnamese dictionaries (Hoàng 2002)
use a set of 8 parts of speech proposed by the Vietnam Committee on
Social Sciences (1983).

As for other isolating languages, the most important syntactic in-
formation source in Vietnamese is word order. The basic word order is
Subject–Verb–Object. There are prepositions but no postpositions. In
a noun phrase the main noun precedes the adjectives and the genitive
follows the governing noun. These phenomena are subsumed under
the term “head-initiality”.

The other syntactic means are function words, reduplication, and,
in the case of spoken language, intonation.

[149]

Phuong Le-Hong et al.

From the point of view of functional grammar, the syntactic struc-
ture of Vietnamese follows a topic-comment structure. It belongs to the
class of topic-prominent languages as described by Li and Thompson
(1976). In those languages, topics are coded in the surface structure
and they tend to control co-referentiality (e.g. Cây đó lá to nên tôi không
thích (Tree that leaves big so I not like), which means This tree, its leaves
are big, so I don’t like it); the topic-oriented “double subject” construc-
tion is a basic sentence type (e.g. Tôi tên là Nam, sinh ở Hà Nội (I name
be Nam, born in Hanoi), which means My name is Nam, I was born in
Hanoi), while such subject-oriented constructions as the passive and
“dummy” subject sentences are rare or non-existent (e.g. There is a cat
in the garden should be translated as Có một con mèo trong vườn (exist
one <animal-classifier> cat in garden)).
2.3 Tree-adjoining grammars
In the TAG formalism (Joshi and Schabes 1997), the grammar is de-
fined by a set of elementary trees. A TAG parsing system rewrites
nodes of trees rather than symbols of strings as in context-free gram-
mars (CFG). The nodes of these trees are labelled with nonterminals
and terminals. Starting from the elementary trees, larger trees are de-
rived using composition operations of substitution and adjunction. In
the case of an adjunction, the tree being adjoined has exactly one leaf
node that is marked as the foot node (marked with an asterisk). Such a
tree is called an auxiliary tree. Elementary trees that are not auxiliary
trees are called initial trees. Each derivation starts with an initial tree.
Substituting a tree α in a tree β simply replaces a frontier substitution
node in β with α, under the convention that the non-terminal symbol
of the substitution node is the same as the root node of α. Only initial
trees and derived trees can be substituted in another tree. Adjoining
an auxiliary tree β at some node n of a derived tree γ proceeds as
follows: the sub-tree t of γ rooted by n is removed from γ, and β is
substituted for it instead, where t is substituted in the foot node of β .
In the final derived tree, all leaves must have terminal labels.

In TAG, the derived tree does not give enough information to
determine how it was constructed. The derivation tree is an object
that specifies uniquely how a derived tree was constructed. The root
of a derivation tree is labelled by a sentence-type initial tree. All other
nodes in the derivation tree are labelled by auxiliary trees in the case

[150]

A syntactic component for Vietnamese language processing

of adjunction or initial trees in the case of substitution. We use the
following convention when depicting a derivation tree: trees that are
adjoined to their parent tree are linked by a solid line to their parent,
and trees that are substituted are linked by a dashed line.

In order to represent natural languages, TAGs are enriched with
additional linguistic conventions or principles. First, a TAG for natural
languages is lexicalized (Schabes 1990), which means that each ele-
mentary tree has a lexical anchor (usually unique, but in some cases,
there is more than one anchor). Second, the elementary trees of a lex-
icalized TAG (LTAG) represent extended projections of lexical items
(the anchors) and encapsulate all syntactic arguments of the lexical
anchor; that is, they contain slots (nonterminal leaves) for all argu-
ments. Furthermore, elementary trees are minimal in the sense that
only the arguments of the anchor are encapsulated; all recursion is
factored away. This amounts to the condition on elementary tree mini-
mality from Frank (2002).

Because of these principles, in linguistic applications, combining
two elementary trees corresponds to the application of a predicate to
an argument (in case of substitution) or to the addition of modifiers
(in case of adjunction). The derivation tree then reflects the predicate-
argument structure of the sentence. This is why most approaches to
semantics in TAG use the derivation tree as an interface between syn-
tax and semantics.

Figure 3 gives a simple Vietnamese TAG and an analysis of a sen-
tence. The first half of the figure shows the elementary trees of the
grammar and the second half shows the derived tree and its corre-
sponding derivation tree, where the notation <anchor> represents
the elementary tree corresponding to a lexical anchor. A derivation
tree in TAG specifies how a derived tree was constructed.

TAG has several advantages over CFG. First, it provides an ex-
tended domain of locality. Second, the adjunction operation permits us
to model long-distance relationships in single elementary trees due to
the factoring of recursion.2 Third, TAG derivation trees show semantic
dependencies between entities in a sentence, as the tree branches rep-

2These two properties follow from the mathematical properties of TAGs.
TAGs belong to the class of mildly context-sensitive grammars. Context-free lan-
guages form a proper subset of tree-adjoining languages (TALs), which in turn
form a proper subset of context-sensitive languages.

[151]

Phuong Le-Hong et al.

Elementary trees
NP
Np

Giang

S
NP↓ VP
V
cho

NP↓ NP↓

NP
P
tôi

NP
M
một

NP∗
NP
Nu
quả

NP
NP∗ N

cam

Derived tree Derivation tree
S

NP
Np

Giang

VP
V
cho

NP
P
tôi

NP
M
một

NP
NP
Nu
quả

N
cam

<cho>

<Giang> <tôi> <quả>

<một> <cam>

Figure 3: A TAG analysis of the sentence “Giang cho tôi một quả cam” (Giang
gave me an orange)

resent their combination type (dashed or continuous line for substitu-
tion or adjunction, respectively, in Figure 3). In addition, in LTAG, lex-
ical entries naturally capture constraints associated with lexical items,
which is not possible in CFG. TAG and LTAG are formally equivalent;
however, from the linguistic perspective, LTAG is the system we shall
be concerned with in this paper.

3 grammar extraction

Since the development of hand-crafted grammars is a time-consuming
and labour-intensive task, many studies on automatic and semi-auto-
matic grammar development have been carried out during recent
decades. A semi-automatic approach to building a large computational
grammar is to rely on a formal language capable of describing the tar-
get grammar, e.g. a meta-grammar formalism. Many meta-grammar
engineering environments were developed to support the construction

[152]

A syntactic component for Vietnamese language processing

of large computational grammars for natural language. Most of them
were used to build large grammars for occidental languages. A typical
example is the XMG (eXtensible MetaGrammar) system which sup-
ports rapid prototyping of tree-based grammars (Crabbé et al. 2013).
An alternative approach for obtaining grammars is to extract gram-
mars from a treebank containing syntactically annotated sentences.
This is the approach that we chose to rapidly develop a large compu-
tational grammar for Vietnamese.

We present in this section a system that automatically extracts
lexicalized tree adjoining grammars from treebanks. We first discuss in
detail the extraction algorithms and compare them to previous work.
We then report the first results for LTAG extraction for Vietnamese,
using the recently released Vietnamese treebank.
3.1 Extracting grammars from treebanks
There has been much work done on extracting treebank grammars
in general and LTAG grammars in particular from annotated cor-
pora, but all of these works are for common languages. Xia et al.
(2000) and Xia (2001) developed the uniform method of grammar
extraction for English, Chinese and Korean. Chiang (2000) devel-
oped a system for extracting an LTAG grammar from the English
Penn Treebank and used it for statistical parsing with LTAG. Chen
and Vijay-Shanker (2000) and Chen et al. (2006) extracted TAGs
and there are other works based on Chen’s approach such as Jo-
hansen (2004) and Nasr (2004) for French, and Habash and Rambow
(2004) for Arabic. Neumann (2003) extracted lexicalized tree gram-
mars for English from the English Penn Treebank and for German
from the NEGRA treebank. Bäcker and Harbusch (2002) extracted
an LTAG grammar for German – also from the NEGRA corpus – and
used it for supertagging. Kaeshammer (2012) presented a grammar
and a lexicon for PLTAG using the German Tiger corpus. Finally, Park
(2006) extracted LTAG grammars for Korean from Korean Sejong
Treebank.
3.2 Vietnamese treebank
Recently, a group of Vietnamese computational linguists has been in-
volved in developing a treebank for Vietnamese (Nguyen et al. 2009).
This is the treebank we used for our extraction system.

[153]

Phuong Le-Hong et al.
Table 1:

Some Vietnamese treebank tags No. Category Description
1. S simple declarative clause
2. VP verb phrase
3. NP noun phrase
4. PP preposition phrase
5. N common noun
6. V verb
7. P pronoun
8. R adverb
9. E preposition
10. CC coordinating conjunction

The construction of a Vietnamese treebank is a branch project of
a national project which aims to develop basic resources and tools
for Vietnamese language and speech processing.3 The raw texts of
the treebank are collected from the social and political sections of
the Youth online daily newspaper. The corpus is divided into three
sets corresponding to three annotation levels: word-segmented, POS-
tagged and syntax-annotated set. The syntax-annotated corpus, a sub-
set of the POS-tagged set, is currently composed of 10 471 sentences
(225085 tokens). Sentences range from 2 to 105 words, with an av-
erage length of 21.75 words. There are 9314 sentences of length 40
words or less. The tagset of the treebank has 38 syntactic labels (18
part-of-speech tags, 17 syntactic category tags, 3 empty categories)
and 17 function tags. For details, please refer to Nguyen et al. (2009).4
The meanings of the tags that appear in this paper are listed in Table 1.
3.3 Extraction algorithms
In general, our work on extracting an LTAG grammar for Vietnamese
follows closely the method of grammar extraction originally proposed
by Xia (2001). The extraction process has three steps: first, phrase-
structure trees are converted into LTAG derived trees; second, the de-
rived trees are decomposed into a set of elementary trees conforming
to their three predefined prototypes; and third, invalid extracted ele-
mentary trees are filtered out using linguistic knowledge.

3The VLSP project, http://vlsp.vietlp.org:8080/demo/.
4All the resources are available at the website of the VLSP project.

[154]

http://vlsp.vietlp.org:8080/demo/

A syntactic component for Vietnamese language processing

3.3.1 Building LTAG derived trees
The phrase structures in the Vietnamese treebank follow the English
Penn Treebank (PTB) bracketed style format which are not suitable for
LTAG extraction due to two reasons. First, the PTB trees do not distin-
guish heads, arguments and adjuncts as required in derived trees of an
LTAG. Second, for each PTB tree, it is not trivial to recover a derivation
tree generating it if it is not in a proper format of derived tree.

Therefore, we first have to convert the phrase structures of the
treebank into derived trees by augmenting them with additional in-
formation needed for extraction.

In this step, we first classify each node in a phrase-structure tree
as one of three types: head, argument or modifier. We then build a
derived tree by adding intermediate nodes so that at each level of
the tree, the nodes satisfy exactly one of the following relations (Xia
2001):
• predicate-argument relation: there is one (or more) node(s), where
one is the head, and the rest are its arguments;

• modification relation: there are exactly two nodes, where one node
is modified by the other;

• coordination relation: there are exactly three nodes, in which two
nodes are coordinated by a conjunction.
In order to find heads of phrases, we have constructed a head

percolation table (Magerman 1995; Collins 1997) for the Vietnamese
treebank. This table is used to select the head child of a node. In ad-
dition, we have also constructed an argument table to determine the
types of arguments that a head child can take. The argument table
helps explicitly mark each sibling of a head child as either an argu-
ment or an adjunct according to the tag of the sibling, the tag of the
head child, and the position of the sibling with respect to the head
child. Together with the tagset table, these three tables constitute the
Vietnamese treebank-specific information that is required for the ex-
traction algorithms.

Since the conjunction structures are different from the argument
and modifier structures, we first recursively bracket all conjunction
groups of a treebank tree by Algorithm 1 and then build the full de-
rived tree for the resulting tree by Algorithm 2. A conjunction group

[155]

Phuong Le-Hong et al.
Algorithm 1:

ProcessConj(T)
Data: A syntactic tree T .
Result: T whose conjunction groups are processed.
for K ∈ T.children do

if IsPhrasal(K) then
K ← ProcessConj(K);

(C1, . . . ,Ck)← ConjGroups(T.children);
for i = 1 to k do

if ∥Ci∥> 1 then
InsertNode(T,Ci);

if k > 2 then
for i = k downto 3 do
L ←Ci−1 ∪ ci−1 ∪Ci;
T ′← InsertNode(T,L);
Ci−1← T ′;

return T ;

Figure 4:
Transformation of
conjunction groups

T

X1 c1 X2 c2 X3

⇒ T

X1 c1 T ′

X2 c2 X3

is a group of coordinating words or phrases connected by one or more
coordinating conjunction. The form of a conjunction group is either
“A and B” or “A or B”.5 Figure 4 shows a tree with conjunction groups
before and after being processed by Algorithm 1 where ci are coordi-
nating conjunctions and X i are conjunction groups. Figure 5 shows a
realisation of Algorithm 2 where Ai are arguments of the head child
H of T and Mi are modifiers of H. These two algorithms use the func-
tion InsertNode(T,L) to insert an intermediate node between a node
T and a list of its child nodes L . This new node is a child of T , has
the same label as T and has L as the list of its children. The function
IsPhrasal(X) checks whether X is a phrasal node or not.6 The function

5 In the treebank, there are no conjunctions which use the coordinating punc-
tuation; that is, a structure like “A, B and C” is not present.

6A phrasal node is defined to be a node which is not a leaf or a preterminal.
This means that it must have two or more children, or one child that is not a leaf.

[156]

A syntactic component for Vietnamese language processing

Data: A tree T whose conjunction groups have been
processed.

Result: A derived tree whose root is T .
if (not IsPhrasal(T)) then

return T ;
H ← HeadChild(T);
if not IsLeaf(H) then

for K ∈ T.children do
K ← BuildDerivedTree(K);

A ← ArgNodes(H,L);
M ← ModNodes(H,L);
m← ∥M∥;
if m> 0 then
L ← {H} ∪A ;
T ′← InsertNode(T,L);

(M1, M2, . . . , Mm)←M ;
for i← 1 to m− 1 do
L ← {Mi , T ′};
T ′′← InsertNode(T,L);
T ′← T ′′;

return T ;

Algorithm 2:
BuildDerivedTree(T)

T

H A1 A2 M1 M2

⇒ T

T ′

T ′

H A1 A2

M1

M2

Figure 5:
An example of derived
tree realisation

ConjGroups(L) returns k groups of components Ci of L which are
separated by k− 1 conjunctions c1, . . . , ck−1, which have a special POS
tag in the treebank (CC).

Algorithm 2 uses several simple functions. The HeadChild(X)
function selects the head child of a node X according to a head per-
colation table. The function IsLeaf(X) checks whether a node X is a

[157]

Phuong Le-Hong et al.
Figure 6:

A parse tree of
the Vietnamese

treebank

S

NP

P
Họ
They

VP

R
sẽ
will

R
không
not

V
chuyển
deliver

NP

N
hàng
goods

PP

E
xuống
to

NP

N
thuyền
boat

PP

E

vào

NP

N
ngày mai
tomorrow

leaf node or not. The functions ArgNodes(H,L) and ModNodes(H,L)
each return a list of nodes which are arguments and modifiers, respec-
tively, of a node H. The list L contains all sisters of H.

For example, Figure 6 shows the phrase structure of a sentence ex-
tracted from the Vietnamese treebank “Họ sẽ không chuyển hàng xuống
thuyền vào ngày mai.” (They will not deliver the goods to the boat
tomorrow.) The head children of phrases are circled.

The derived tree of the sentence once processed by Algorithm 2
is shown in Figure 7, wherein the inserted nodes are marked by the
quotation mark symbol (’).
3.3.2 Building elementary trees
At this step, each derived tree is decomposed into a set of elemen-
tary trees. The recursive structures of the derived tree are factored
out and will become auxiliary trees, and the remaining non-recursive
structures will be extracted as initial trees.

Extracted elementary trees fall into one of three prototypes as
determined by the relation between the anchor and other nodes, as
shown in Figure 8. The extraction process involves copying nodes
from the derived tree for building elementary trees. The result of
the extraction process is three sets of elementary trees: S contains
spine trees, M contains modifier trees and C contains conjunction
trees.

[158]

A syntactic component for Vietnamese language processing

S

NP

P
Họ
They

VP

R
sẽ
will

VP’

R
không
not

VP’

VP’

V
chuyển
deliver

NP

N
hàng
goods

PP

E
xuống
to

NP

N
thuyền
boat

PP

E

vào

NP

N
ngày mai
tomorrow

Figure 7:
The derived tree of the
treebank tree in Figure 6

X m

Y ↓ X m−1

X 1

X

anchor

Z ↓

W

W ∗ X m

Y ↓ X m−1

X 1

X

anchor

Z ↓

X

X CC

anchor

X ∗

Figure 8:
Prototypes of spine trees
and auxiliary trees

[159]

Phuong Le-Hong et al.
Algorithm 3:

BuildElementaryTrees(T)
Data: T is a derived tree.
Result: Sets S ,M ,C of elementary trees.
if (not IsPhrasal(T)) then

return ;
{H0, H1, . . . , Hn} ← HeadPath(T);
ok← false;
P ← H0;
for j← 1 to n do
L ← Sisters(H j);
if |L |> 0 then

Rel← GetRelation(H j ,L);
if Rel= Coordination then
C ←C∪ BuildConjTree(P);

if Rel= Modification then
M ←M∪ BuildModTree(P);
if j = 1 then
S ←S ∪ BuildSpineTree(P);
ok← true;

if Rel= Argument then
if not ok and not IsLinkNode(P) then
S ←S ∪ BuildSpineTree(P);
ok← true;

else
if not IsLinkNode(P) and IsPhrasal(P) then
S ←S ∪ BuildSpineTree(P) ;

P ← H j;

To build elementary trees from a derived tree T , we first find the
head path7 {H0, H1, . . . , Hn} of T . For each parent P and its head child
H, we get the list L of sisters of H and determine the relation be-
tween H and L . If the relation is coordination, a conjunction tree will

7A head path starting from a node T in a derived tree is the unique path from
T to a leaf node where each node except T is the head child of its parents. Here
H0 ≡ T and H j is the parent of its head child H j+1. A node on the head path is
called a link node if its label is the same as that of its parent.

[160]

A syntactic component for Vietnamese language processing
NP
P
Họ

NP
N

hàng

NP
N

ngày mai

NP
N

thuyền

VP
R
sẽ

VP∗
VP
R

không
VP∗

PP
E

xuống
NP↓

VP
VP∗ PP

E
vào

NP↓

Figure 9:
Extracted
elementary
trees

S

NP VP

VP

V

chuyển

NP PP

⇒ S
NP↓ VP
V

chuyển
NP↓ PP↓

Figure 10:
Merge link
nodes to get
a spine tree

be extracted; if the relation is modification, a modifier tree will be
extracted; otherwise, the relation is predicate-argument and a spine
tree will be extracted. Algorithm 3 shows the complete extraction al-
gorithm. This algorithm uses additional functions as follows:
• BuildSpineTree(T) which creates a spine tree;
• MergeLinkNodes(T) which merges all link nodes of a spine tree
into one node (see Figure 10 for an example);

• BuildModTree(T) which creates a modifier tree;
• BuildConjTree(T) which creates a conjunction tree.
As an example, from the derived tree shown in Figure 7, nine trees

are extracted by algorithms as shown in Figure 9 and Figure 10.
3.3.3 Filtering out invalid trees
Annotation errors may be present in any particular treebank. The er-
rors in parse trees will result in incorrect elementary trees. An ele-
mentary tree is called invalid if it does not satisfy some linguistic re-
quirement. We have constructed some linguistic rules for filtering out
invalid elementary trees. For example, in Vietnamese, an adjective (or
an adjectival phrase) can be an argument of a noun (or a noun phrase);
however, it must always be to the right of the noun. For instance, in

[161]

Phuong Le-Hong et al.

Algorithm 4:
BuildSpineTree(T)

Data: T is a derived tree.
Result: A spine tree.
Tc ← Copy(T);
P ← Tc;
H ← NULL;
repeat

H ← HeadChild(P);
L ← Sisters(H);
if |L |> 0 then

Rel← GetRelation(H,L);
if Rel= Argument then

for A∈ L do
BuildElementaryTrees(A);
A.children← ;;
A.type← Substitution;

else
for A∈ L do

P.children← P.children \ A;

P ← H;
until (H = NULL);
return MergeLinkNodes(Tc);

Algorithm 5:
BuildModTree(T)

Data: T is a derived tree
Result: a modifier tree
Tc ← Copy(T);
H ← HeadChild(Tc);
H.children← ;;
H.type← Foot;
M ← Modifier(H);
T ′← BuildSpineTree(M);
if |M .children|> 1 then

BuildElementaryTrees(M);
M ← T ′;
return Tc;

[162]

A syntactic component for Vietnamese language processing

Data: T is a derived tree.
Result: A conjunction tree.
Tc ← Copy(T);
H ← HeadChild(Tc);
BuildElementaryTrees(H);
K ← Coordinator(H);
BuildElementaryTrees(K);
H.children← ;;
H.type← Foot;
K .children← ;;
K .type← Substitution;
return Tc;

Algorithm 6:
BuildConjTree(T)

the noun phrase cô gái đẹp (beautiful girl), the adjective đẹp (beautiful)
must go after the noun cô gái (girl). Thus if there is an adjective on the
left of a noun of an extracted spine tree, the tree is invalid and it must
be filtered out.
3.4 Comparison with previous work
As mentioned above, our approach for LTAG extraction follows the
uniform method of grammar extraction proposed by Xia (2001). Nev-
ertheless, there are some differences between our design and imple-
mentation of extraction algorithms and that of Xia.

First, in the step in which we build the derived tree, we first re-
cursively bracket all conjunction groups of the tree before fully brack-
eting the arguments and modifiers of the resulting tree. We think that
this approach is easier to understand and implement since conjunc-
tion structures are different from argument and modifier structures.
Second, in the elementary tree decomposition step, we do not split
each node in the derived tree into the top and bottom parts as was
done in Xia’s approach of Xia. In our implementation, the nodes are
directly copied to build extracted trees. Third, the tree extraction pro-
cess is separated into functions; each function builds a particular type
of elementary tree; and these functions can call each other to repeat
the extraction process for the subtrees whose roots are not yet vis-
ited. In spite of using recursive functions, our extraction algorithms
are carefully designed to avoid redundant or repeating function calls:

[163]

Phuong Le-Hong et al.
Table 2:

Some tags in the Vietnamese treebank
tagset are merged into a single tag

Category Original tags Tags in G2

noun phrases NP/WHNP NP
adjective phrases AP/WHAP AP
adverbial phrases RP/WHRP RP
preposition phrases PP/WHPP PP
clauses S/SQ S

Table 3:
Two LTAG grammars extracted from

the Vietnamese treebank
Type # of trees # of templates
G1 46382 2317
Spine trees 24 973 1022

Modifier trees 21 309 1223

Conjunction trees 100 72

G2 46102 2113
Spine trees 24 884 952

Modifier trees 21 121 1093

Conjunction trees 97 68

each node is assured to be visited one time. The “divide and conquer”
approach seems to be reasonably efficient and is easy to optimise.
3.5 An LTAG for Vietnamese
We ran extraction algorithms on the Vietnamese treebank and ex-
tracted two treebank grammars. The first one, G1, uses the original
tagset of the treebank. The second one, G2, uses a reduced tagset,
where some sets of tags in the treebank are consolidated, as shown
in Table 2. The grammar G2 is smaller than G1 and it is presumed that
the sparse data problem is less severe when G2 is used.

We count the number of elementary trees and tree templates. The
sizes of the two grammars are in Table 3. Recall that a template is an
elementary tree without the anchor word.

There are 15 035 unique words in the treebank and the average
number of elementary trees that a word anchors is around 3.07. We
also count the number of context-free rules of the grammars where
the rules are simply read off the templates in an extracted LTAG. The
extracted grammars G1 and G2 have 851 and 727 context-free rules,
respectively.

[164]

A syntactic component for Vietnamese language processing

0 20 40 60 80 100
0

500

1000

1500

2000

2500

percentage of corpus

n
u

m
b

e
r

o
f

tr
e

e
 t

e
m

p
la

te
s

all templates

initial templates

auxiliary templates

Figure 11:
The growth of tree
templates

In order to evaluate the coverage of the Vietnamese treebank,
we count the number of extracted tree templates with respect to the
size of the treebank. Figure 11 shows that the number of templates
converges very slowly as the size of the corpus grows, implying that
there are many unseen templates. This experiment also implies that
the size of the current Vietnamese treebank is not large enough to
cover all the grammatical templates of the Vietnamese language.

We have developed a software package8 that implements the pre-
sented algorithms for extracting an LTAG for Vietnamese. The soft-
ware is written in the Java programming language and is freely dis-
tributed under the GNU/GPL license. The software is very efficient
in term of extraction speed: it takes only 165 seconds to extract the
entire grammar G1 on an ordinary personal computer.9 It should be
straightforward to extend the software in order to extract LTAGs from
treebanks of other languages since the language-specific information
is intentionally factored out of the general framework. In order to use
the software on a treebank of a given language, a user would need to
provide the treebank-specific information for that language: a tagset,
a head percolation table, and an argument table.

8http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnLExtractor
9On an Intel Core 2 Duo CPU U9600 with 4GB RAM.

[165]

http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnLExtractor

Phuong Le-Hong et al.

3.6 Summary
In this section, we have presented a system that automatically extracts
LTAGs from treebanks. The system has been used to extract an LTAG
for the Vietnamese language from the recently released Vietnamese
treebank. The extracted Vietnamese LTAG covers the corpus; that is,
the corpus can be seen as a collection of derived trees for the grammar
and can be used to train statistical LTAG parsers directly.

The number of templates extracted from the current Vietnamese
treebank converges slowly. This implies that there are many new tem-
plates outside the corpus and the current Vietnamese treebank is not
large nor typical enough to cover all the grammatical templates of the
Vietnamese language.

We are currently experimenting with extracting a French LTAG
from a French treebank (Abeillé et al. 2003). We also plan to compare
quantitatively syntactic structures of French and Vietnamese. We be-
lieve that a quantitative comparison of the two grammars may reveal
interesting relations between them.

4 parser construction

We present in this section the construction of a deep syntactic parser
for Vietnamese. Our parser is able to produce both constituency and
dependency analyses for a given sentence.
4.1 Preprocessing pipeline
Before being parsed, a text is fed to a chain of preprocessing modules
including a sentence segmenter, a word tokenizer and a tagger. In
particular, we have integrated the following preprocessing modules
into the parser:

• vnSentDetector – a sentence detector which segments a text into
sentences;

• vnTokenizer – a tokenizer which segments sentences into words
or lexical units (Le-Hong et al. 2008);

• vnTagger – a part-of-speech tagger which tags each word of a
sentence with its most appropriate syntactic category (Le-Hong
et al. 2010).

[166]

A syntactic component for Vietnamese language processing

We have adapted an LTAG parser developed at the LORIA10 labo-
ratory to construct a deep syntactic parser for Vietnamese. This parser
was initially used to parse French text (Roussanaly et al. 2005). Given a
sentence, the parser outputs all possible constituency parses and their
corresponding derivation trees. The most important improvement we
made to the parser is the refactoring and introduction of general inter-
faces and modules for preprocessing tasks (sentence detection, word
segmentation, POS tagging) which naturally depend on specific lan-
guages. We have also enriched the parser by adding a supplementary
module which extracts dependency parses from constituency parses
given by the parser.11 This module implements the dependency anal-
ysis extraction algorithm which will be described in the next subsec-
tions.
4.2 Dependency annotation schema
There exist many schema for dependency annotation. Examples in-
clude the Stanford Dependency (SD) annotation scheme
(de Marneffe et al. 2006), created via an automated conversion of
the English Penn Treebank; the PARC 700 scheme (King et al. 2003),
inspired by functional structures of lexical functional grammars; and
the GR scheme (Caroll et al. 1998) or EASy (Paroubek et al. 2005)
for French. Recently, McDonald et al. (2013) presented a universal
treebank with homogeneous syntactic dependency annotation for six
languages: German, English, Swedish, Spanish, French and Korean.
The multiplicity of these different annotation schema is due to differ-
ent linguistic and practical choices. We prefer defining an annotation
scheme of surface dependency for the Vietnamese language which can
be not only convertible to different standards cited above but also en-
largeable to finer dependency schema if necessary. The current scheme
contains 13 grammatical relations representing principal functional
dependencies between Vietnamese words. All these dependencies use
the syntactic categories defined in the Vietnamese treebank (Nguyen
et al. 2009) and they are divided into three groups.

The first group, arg, represents the relationship between a head
word and its argument. There are two types of arguments: subject

10http://www.loria.fr/
11http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnLTAGParser

[167]

http://www.loria.fr/
http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnLTAGParser

Phuong Le-Hong et al.

(subj) or object (obj). It is worth noting that Vietnamese is a topic-
prominent language where sentences are structured around topics
rather than subjects and objects. In many cases, we cannot identify
the subject and the object of a Vietnamese sentence by their respective
positions. The distinction between subject and object of a Vietnamese
sentence is thus not a trivial task, expecially in an automatic process.
Therefore, at the moment, we do not distinguish the two relations
subj and obj in our evaluations. The second group, mod, represents
modification relations of a word and its head word (or its governor).
According to the syntactic category of the modifier, we distinguish
nine modification relations named modN (nominal modifier), modM
(numeral modifier), modA (adjective modifier), modR (adverbial mod-
ifier), modE (prepositional modifier), modV (verbal modifier), modL
(determinant modifier), modP (pronominal modifier) and modC (sub-
ordinating coordination modifier). The third group, coord, represents
dependencies of each lexical head of two coordinating phrases on the
conjunction.

Having defined a dependency annotation scheme for Vietnamese,
we now propose an algorithm for automatically extracting depen-
dency analyses from TAG derivation trees.
4.3 Dependency relation extraction
It has been shown that the TAG formalism shares many important sim-
ilarities with the dependency grammar formalism (Rambow and Joshi
1994). A derivation tree of TAG can be converted superficially into a
dependency tree in the case of lexicalized grammars (Kallmeyer and
Kuhlmann 2012). The main idea is to transform each derivation op-
eration into a dependency relation. A derivation operation between a
source tree t1 and a target tree t2 results in a dependency relation be-
tween the head word of t1 as governor and the head of t2 as dependent
word.

The dependency analysis corresponding to the analysis in Figure 3
is shown in Figure 12. We see that the derivation tree can be trans-
formed into the dependency tree by a simple transformation in which
each node of the derivation tree (representing an elementary tree) is
replaced with its lexical node. Here, we want to extract typed depen-
dencies where each one is labelled by a grammatical relation following
the annotation scheme defined above. We thus need to consider the

[168]

A syntactic component for Vietnamese language processing

....Giang ..cho ..tôi ..một ..quả ..cam
..Giang ..give ..me ..anorange.

arg

.

arg

.

arg

.

modM

.

modN

.

root
Figure 12:
Dependency tree
corresponding to the
analysis in Figure 3

operation done at each node of the derivation tree. If it is a substi-
tution, a relation of type arg will be created; if it is an adjunction, a
relation of type mod will be created and its label can be determined by
examining the syntactic category of the concerned word at the lexical
node of the derivation tree.

X
Y↓ CC

và
(and)

X∗
X

X∗ CC
hoặc
(or)

Y↓

Figure 13:
Examples of coordination
auxiliary trees

The most difficult case is the construction of coordination rela-
tions where we must consider three related nodes and two combina-
tion operations at the same time since an auxiliary tree for conjunc-
tions in TAG has a specific form having a substitution node and a
foot node, as illustrated in example trees in Figure 13. We propose
an algorithm for the automatic extraction of dependency relations
from a derivation tree given by a constituency parser. The algorithm
ExtractRelations(N) (Algorithm 7) shows the extraction procedure in
detail.

This algorithm uses some supplementary functions as follows. The
function LexicalNode(N) returns the lexical head of a node of an in-
put derivation tree N , while the function POSNode(N) returns the
part-of-speech of a lexical head. The functions IsSubst() and IsAdj()
are called at each node of the derivation tree to verify whether the
node is about a substitution or an adjunction. Finally, the function
NewRelation(type, w1, w2) creates and returns a new relation of type
type between two lexical units w1 and w2.

[169]

Phuong Le-Hong et al.
Algorithm 7:

ExtractRelations(N)
Data: A derivation tree N .
Result: A set R of dependency relations.
wn← LexicalNode(N);
tn← POSNode(N);
for K ∈ N .children do

wk← LexicalNode(K);
tk← POSNode(K);
if K.IsSubst() then

if tn = CC then
R ←R∪ NewRelation(coord, wn, wk);

else
R ←R∪ NewRelation(arg, wn, wk);

else
if K.IsAdj() then

if tk ∈ {A,N,R,V,E,L,M,P,C} then
R ←R∪ NewRelation(modtk, wn, wk);

if tk = CC then
R ←R∪ NewRelation(coord, wk, wn);

// Recursively extract relations from tree K;
ExtractRelations(K);

return R;

For example, the application of this algorithm on the input deriva-
tion tree in Figure 1 results in the following relations: arg(cho,Giang),
arg(cho,tôi), arg(cho,quả), modM(quả,một), modN(quả,cam).

5 parser evaluation

In this section, we evaluate the parser on a test corpus. The parser
performance is considered in two versions, with and without using
part-of-speech (POS) tagging.

The grammar used to evaluate the parser is an LTAG extracted
from the Vietnamese Treebank (Nguyen et al. 2009) containing 10 163
sentences (225 085 words, about 22.14 words per sentence on aver-
age). Figure 14 shows the distribution of the number of sentences ac-

[170]

A syntactic component for Vietnamese language processing

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

sentence length

lo
g
(n

u
m

b
e
r

o
f
s
e
n
te

n
c
e
s
)

Figure 14:
The distribution of the
number of sentences
according to their length

cording to their lengths. We see that most of the sentences have a
length between 5 and 30 words.

We choose a subset of the treebank containing 8808 sentences of
length 30 words or less as an evaluation corpus. This corpus is divided
into two sets: a training set (95% of the corpus, 8367 sentences) and a
test set (5% of the corpus, 441 sentences). We use vnLExtractor to ex-
tract an LTAG for Vietnamese from the training set. This grammar con-
tains 35 655 elementary trees instantiated from 1658 tree templates.
The size of this grammar is shown in Table 4.

Type Number of trees Number of templates
Spine trees 19708 741

Modifier trees 15868 860

Conjunction trees 79 57

Total 35655 1658

Table 4:
Size of the LTAG extracted
from the training corpus

To evaluate the parser, we make use of two measures: tree ac-
curacy (or T -accuracy) and dependency accuracy (or D-accuracy).12

12 In computing these scores, unanalyzable sentences and punctuations are not
taken into account.

[171]

Phuong Le-Hong et al.
Table 5:

Performance of the
constituency analysis
without or with POS

tagging

T -accuracy All ≤ 10 words
No POS POS No POS POS

Precision 67.98 69.15 71.28 71.60

Recall 68.40 69.52 71.39 72.30

F -measure 68.19 69.33 71.33 71.95

Complete match 13.00 16.67 17.57 20.69

Average crossing 2.66 2.39 1.80 1.69

No crossing 23.00 27.78 29.73 32.76

Fewer than three crossings 55.00 54.17 68.92 65.52

Tagging accuracy 87.72 95.25 87.34 95.43

Table 6:
Performance of the

dependency analysis
without or with POS

tagging

D-accuracy With type Without type
No POS POS No POS POS

Precision 70.83 71.81 74.02 73.21

Complete match 15.87 20.00 23.37 25.45

When there are multiple parse trees for a sentence (which is very often
the case even with short sentences), we choose one of the derivation
trees whose derived trees have smallest number of nodes because these
parses correspond to the most specific tree.13

5.1 Performance without POS tagging
First, the parser is evaluated without using a POS tagger. That is, the
module vnTagger is not integrated into the parser. In this setting, each
word occurrence of an input sentence is tagged with all possible tags
that have been assigned to it in the training set. Unknown words are
tagged as common nouns (label N). We first evaluate the performance
of the constituency analysis. The results are shown in Table 5.14

In addition to the familiar precision and recall ratios, other mea-
sures are reported to help analyze the results:15

13 In case of equality by this criterion, we take the first result returned by the
parser.

14The presented evaluation results are calculated automatically by EVALB, a
tool used frequently for the evaluation of syntactic constituency analysis which
is distributed freely at http://nlp.cs.nyu.edu/evalb/.

15The F -measure is the harmonic mean of precision and recall and is com-
puted as F = 2 PR

P+R .

[172]

http://nlp.cs.nyu.edu/evalb/

A syntactic component for Vietnamese language processing

• Complete match ratio is the percentage of sentences where recall
and precision are both 100%. About 13% of the test sentences
match completely. The complete match ratio for sentences of 10
words or less is 17.57%.

• The average crossing ratio is the number of constituents crossing
a test constituent divided by the number of sentences of the test
corpus.

• The no crossing ratio is the percentage of sentences which have
zero crossing brackets. There are 23% of the test sentences that do
not have any crossing (29.73% for the sentences of 10 words or
less). There are 55% (respectively 68.92%) of the test sentences
which have fewer than three crossings.

• The tagging accuracy is the percentage of correct POS tags (with-
out punctuations). It is interesting to note that the tagging accu-
racy declines slightly when shorter test sentences are used.
The performance of dependency analysis is evaluated in two ver-

sions: with and without type. In the first version, two typed depen-
dencies type1(u1, v1) and type2(u2, v2) are considered equal if three cor-
responding parts of these dependencies are all equal, that is type1 ≡
type2, u1 ≡ u2, v1 ≡ v2. In the second version, we compare only two
pairs of concerned words without using their dependency types. The
D-accuracy of the two evaluations are given in Table 6.16 Table 7
shows the system’s performance for each dependency type.

We see that the parser works perfectly on coordination structures,
as they are inherently unambiguous in both the grammar and the ex-
traction algorithm. The performance on the dependencies of type ar-
gument is much better than that of type modifier. These results justify a
higher ambiguity of the adjunction operation of the LTAG formalism
(which is related to auxiliary trees) in comparison with the substitu-
tion operation (which is related to initial trees).

We observe that the parser could not parse about 16.6% of the
test corpus. We believe that there may be two main reasons that some
sentences can not be analysed. First, there is an insufficient coverage
of the underlying LTAG grammar used by the parser. That is, the gram-

16Note that when evaluating the accuracy of a dependency analysis, we do
not need to compute precision or recall ratios since they are equal: the number
of relations given by the parser always matches the number of correct relations.

[173]

Phuong Le-Hong et al.
Table 7:

Performance of
dependency

analysis by type
without or with

POS tagging

Type Precision Recall F -measure
No POS POS No POS POS No POS POS

arg 87.57 87.18 79.02 80.95 83.08 83.95

coord 100.00 100.00 100.00 100.00 100.00 100.00

modA 48.57 59.09 62.96 65.00 54.84 61.90

modC 46.67 66.67 43.75 60.00 45.16 63.16

modE 50.00 35.71 56.52 35.71 53.06 35.71

modL 72.73 100.00 47.06 50.00 57.14 66.67

modM 80.00 81.82 53.33 75.00 64.00 78.26

modN 50.00 58.54 66.67 68.57 57.14 63.16

modR 64.10 47.06 60.98 42.11 62.50 44.44

modV 52.63 58.33 62.50 87.50 57.14 70.00

mar extracted from the training corpus does not contain the syntactic
structure (elementary trees) of a given sentence to be parsed. Sec-
ondly, our heuristic choice of tagging all the new words as a common
noun may effectively introduce errors prior to the analysis, which may
result in analysis failures. We have not yet thoroughly investigated
these causes.

The ambiguity and the duration of parsing are strongly dependent
on the length of sentences, as shown in Figure 15. It seems that the
number of parses has an exponential growth with respect to the length
of the sentence.17

5.2 Performance with POS tagging
The results reported in the previous subsection make possible a pre-
liminary evaluation of the grammar and the performance of the parser.
Nevertheless, the condition under which the experimentation is car-
ried out is rather harsh since the parser has to try all possible syn-
tactic categories of each word of an input sentence. The experiments
in this subsection are closer to real use conditions, in that each sen-
tence is first processed by a tagger to remove POS-tagging ambiguity
– each word is assigned a unique tag. We have thus a sole sequence of

17For some considerably long sentences, the parser could not give any result
after a fixed time-out predefined at 3 minutes. We limit the sentence length to
15 words in the experiments with the symbolic parser.

[174]

A syntactic component for Vietnamese language processing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

sentence length

lo
g

(n
u
m

b
e
r

o
f

p
a

rs
e
s
)

(a)

maximum

average

4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

sentence length

lo
g
(p

a
rs

in
g
 t
im

e
 i
n
 s

e
c
o

n
d

s
)

(b)

maximum

average

Figure 15: The ambiguity (a) and duration (b) of analysis, average and maximum,
according to the length of sentences

words/tags and it is used as input to the syntactic parser. The tagging
is done by the vnTagger module.

We proceed with the evaluation of this parser version in a similar
way as presented for the previous version without POS tagging. We
first give constituency parsing results, then dependency parsing results
and finally the ambiguity and duration of the parsing.

The T -accuracy of the system is shown in Table 5. By integrating a
POS tagger, the tagging accuracy is greatly improved, from 87.72% to
95.25%.18 This helps improve all the scores of the system, notably the
complete match ratio, from 13.00% to 16.67% (and that for sentences
of length 10 words or less improves to 20.69%).

The dependency analysis performance both with andwithout type
is shown in Table 6 and the performance of particular dependency
types is shown in Table 7.

We see that the performance of the system is improved slightly
in comparison with the system without tagging. However, the most
important benefit of the parser with the integrated tagger is a strong
reduction of analysis ambiguity and time, shown in Figure 16. The tag-

18Recall that the test corpus only contains sentences of 30 words or less.

[175]

Phuong Le-Hong et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

sentence length

lo
g

(n
u
m

b
e
r

o
f

p
a

rs
e
s
)

(a)

maximum

average

4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

sentence length

lo
g
(p

a
rs

in
g
 t
im

e
 i
n
 s

e
c
o

n
d

s
)

(b)

maximum

average

Figure 16: The ambiguity (a) and duration (b) of analysis, average and maximum,
with an integrated tagger

ger helps reduce analysis ambiguity fivefold on average and reduces
analysis duration three times in comparison with the required time
of the parser without prior tagging. Nevertheless, we observe that the
integration of the tagger results in a higher number of sentences that
the parser could not parse, to 40% of the test corpus. This result is to
be expected because in this version the parser uses only a syntactic
category (the most probable POS) given by the tagger for each word.
(We note also that the precision of the tagger at sentence level is about
32% (Le-Hong et al. 2010); that is, the tagger can give correct tags for
all the words of a sentence to be parsed only one third of the time).
5.3 Discussion
In the previous section, we evaluated a syntactic analysis system based
on LTAG for Vietnamese. The best results obtained are 73.21% (de-
pendency accuracy, or D-accuracy) and 69.33% (F -measure of con-
stituency accuracy, or T-accuracy, measured by EVALB) on a test cor-
pus.

It is worth noting that these are the first results of syntactic anal-
ysis of Vietnamese based on LTAG. To our knowledge, to date there

[176]

A syntactic component for Vietnamese language processing

have been few published works on the syntactic analysis of Viet-
namese. The most complete report on parser performance for Viet-
namese is an empirical study of applying probabilistic CFG parsing
models by Collins (2003); its best result on constituency analysis is
78% T -accuracy on a test corpus, while there is no result reported
for dependency analysis. Concerning the constituency parsing result,
their parser is slightly better than ours. However, these results are not
directly comparable since the parsing models are trained and tested
on a different corpus.

Our first results of the syntactic parsing of Vietnamese are rather
good although they are still significantly weaker than parsing re-
sults for well-studied languages like English (whose T -accuracy is
91.10% (Carreras et al. 2008) and whose D-accuracy is 92.93% (Koo
and Collins 2010) on the Penn Treebank) or French (T -accuracy is
86.41% (Candito et al. 2009a) and D-accuracy is 85.55% on a French
treebank (Candito et al. 2010)). However, we can improve our results
by correcting three main sources of errors identified by the experi-
ments; we examine each such type of error presently.

The principal source of parsing errors is the selection of parse.
When there are multiple parses for a sentence, only the parse whose
derivation tree contains the fewest nodes is selected. Although the
returned tree corresponds to the most specific analysis, it is obvi-
ous that this selection method is purely heuristic and fragile. How-
ever, the use of a probabilistic parser does not improve significantly
the parsing accuracy. We think that the parameters of the statisti-
cal parser are currently not optimised for parsing Vietnamese or the
Vietnamese grammar is not large enough in order for the statisti-
cal parser to be effective. Consequently, optimising parameters of
the statistical parsing model could help improve the parsing perfor-
mance.

The second source of parsing errors is the POS tagging. In the
experiments with a tagger integrated, we use only the most confident
prediction generated by vnTagger as input to the parser. We have
seen that the tagger often makes errors at the sentence level; perfectly
tagged sentences are rare. A tagging error may effectively introduce
one or more parsing errors. An improvement in tagging performance
is thus another necessary condition to improve the performance of the
parser.

[177]

Phuong Le-Hong et al.

The third source of parsing errors concerns the coverage of the
grammar used in the experiments. In general, the proportion of test
sentences having at least one word that the grammar does not rec-
ognize is rather high, at about 15%. Consequently, the parser could
not build the correct analysis for these sentences. A straightforward
solution to this problem is to enlarge the coverage of the LTAG gram-
mar, which in turn necessitates an enlargement of the Vietnamese tree-
bank. However, developing such a corpus is an expensive and labour-
intensive task. In addition, this may lead to the typical problem of a
symbolic syntactic parser: the tradeoff between its performance and
its efficiency. This is an interesting problem in itself, which we shall
investigate in future works.

6 conclusion

In this article, we have presented a complete syntactic component for
Vietnamese language processing. The component comprises two es-
sential resources: a lexicalized tree-adjoining grammar for Vietnamese
and a set of software tools that are chained together to produce syn-
tactic structures from Vietnamese raw text. The grammar is extracted
automatically from a treebank by an efficient algorithm. The software
includes necessary modules for detecting sentence boundaries, tok-
enizing word units, part-of-speech tagging and syntactic parsing. This
syntactic component is the first system capable of generating both con-
stituency and dependency analyses for the language with encouraging
performance.

Syntactic dependency representation of natural sentences has
gained a wide interest in the natural language processing community
and has been successfully applied to many problems and applications
such as machine translation (Ding and Palmer 2004), ontology con-
struction (Snow et al. 2005) and automatic question answering (Lin
and Pantel 2001). A primary advantage of dependency representation
is its natural mechanism for representing discontinuous constructions
or long distance dependencies which are common in Vietnamese. We
think that the presence of a good dependency schema and a depen-
dency parser for Vietnamese will be very helpful in a wide range of
tasks for Vietnamese processing.

[178]

A syntactic component for Vietnamese language processing

We have seen in recent years a rapid increase of research on
data-driven dependency parsers, especially the rise of statistical meth-
ods in natural language processing where dependency annotated cor-
pora exist. These parsers use one of two predominant paradigms for
data-driven dependency parsing which are often called graph-based
and transition-based dependency parsing. However, the constituency
parser and dependency parser developed in this work are currently
purely symbolic in that they do not make use of any probabilistic ev-
idence to discriminate good parses from bad ones for a given sen-
tence, regardless of its grammaticality. An initial investigation of sta-
tistical dependency parsing for Vietnamese has shown encouraging re-
sults (Nguyen et al. 2013). We believe that there is room to improve the
performance of dependency parsers in general and of our dependency
parser in particular by employing a hybrid approach: use elementary
trees of an lexicalized tree-adjoining grammar as good syntactic fea-
tures in a statistical dependency parser. This is an interesting problem
that we plan to work on in the future.

acknowledgements

This research is funded by the Vietnam National University, Hanoi
(VNU) under project number QG.15.04. Any opinions, findings and
conclusion expressed in this paper are those of the authors and do not
necessarily reflect the view of VNU.

We are grateful to our three anonymous reviewers for their in-
sightful comments, which helped us improve the quality of the article
in terms of both presentation and content. Finally, we thank the copy
editors of the Journal of Language Modelling for their great job on the
manuscript.

[179]

Phuong Le-Hong et al.

references
Anne Abeillé, Lionel Clément, and François Toussenel (2003), Building a
treebank for French, in Anne Abeillé, editor, Treebanks: Building and Using
Parsed Corpora, volume 20 of Text, Speech and Language Technology,
pp. 165–187, Springer Netherlands.
Mark Alves (1999), What’s so Chinese about Vietnamese?, in Proceedings of the
Ninth Annual Meeting of the Southeast Asian Linguistics Society, pp. 221–224,
University of California, Berkeley, USA.
Jens Bäcker and Karin Harbusch (2002), Hidden Markov model-based
supertagging in a user-initiative dialogue system, in Proceedings of TAG+6,
pp. 269–278, Universita di Venezia, Italy.
Marie Candito, Benoît Crabbé, and Djamé Seddah (2009a), On statistical
parsing of French with supervised and semi-supervised strategies, in Proceedings
of EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical
Inference, pp. 49–57, Athens, Greece.
Marie Candito, Benoît Crabbé, and Pascal Denis (2010), Statistical French
dependency parsing: treebank conversion and first results, in Proceedings of
LREC 2010, pp. 19–21, Valletta, Malta.
Marie Candito, Benoît Crabbé, Pascal Denis, and François Guérin (2009b),
Analyse syntaxique du français : des constituants aux dépendances (Syntactic
Parsing of French: from constituents to dependencies), in Actes de Traitement
Automatique des Langues, pp. 40–49, Senlis, France.
John Caroll, Ted Briscoe, and Antonio Sanfilippo (1998), Parser
evaluation: a survey and a new proposal, in Proceedings of LREC 1998, Granada,
Spain.
Xavier Carreras, Michael Collins, and Terry Koo (2008), TAG, dynamic
programming, and the perceptron for efficient, feature-rich parsing, in
Proceedings of CoNLL 2008, pp. 9–16, Manchester, UK.
John Chen, Srinivas Bangalore, and K. Vijay-Shanker (2006), Automated
extraction of tree-adjoining grammars from treebanks, Natural Language
Engineering, 12(3):251–299.
John Chen and K. Vijay-Shanker (2000), Automated extraction of TAGs
from the Penn treebank, in Proceedings of the Sixth International Workshop on
Parsing Technologies.
David Chiang (2000), Statistical parsing with an automatically extracted tree
adjoining grammar, in Proceedings of ACL, pp. 456–463, Morristown, New
Jersey, USA.
Michael Collins (1997), Three generative, lexicalised models for statistical
parsing, in Proceedings of ACL, pp. 16–23, Association for Computational
Linguistics, Stroudsburg, Pennsylvania, USA.

[180]

A syntactic component for Vietnamese language processing

Michael Collins (2003), Head-driven statistical models for natural language
parsing, Computational Linguistics, 29(4):589–637.
Benoît Crabbé, Denys Duchier, Claire Gardent, Josheph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):591–629.
Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D.
Manning (2006), Generating typed dependency parses from phrase structure
parses, in Proceedings of LREC 2006, pp. 449–454, Genoa, Italy.
Yuan Ding and Martha Palmer (2004), Synchronous dependency insertion
grammars: a grammar formalism for syntax-based statistical machine
translation, in Workshop on Recent Advances in Dependency Grammars,
pp. 90–97, Geneva, Switzerland.
Robert Frank (2002), Phrase structure composition and syntactic dependencies,
MIT Press, Boston, USA.
Nizar Habash and Owen Rambow (2004), Extracting a tree-adjoining
grammar from the Penn Arabic treebank, in Actes de Traitement Automatique des
Langues, pp. 50–55, Fez, Morocco.
Cao Xuân Hạo (2000), Vietnamese – Some Questions on Phonetics, Syntax and
Semantics (in Vietnamese), NXB GD, Hanoi, Vietnam.
Phê Hoàng (2002), Vietnamese Dictionary, NXB DN, Danang, Vietnam.
Đạt Hữu, Trí Dõi Trần, and Thanh Lan Đào (1998), Basis of Vietnamese (in
Vietnamese), NXB GD, Hanoi, Vietnam.
Ane-Dybro Johansen (2004), Extraction des grammaires LTAG à partir d’un
corpus étiquetté syntaxiquement, Master’s thesis, Université Paris 7, Paris, France.
Richard Johansson and Pierre Nugues (2008), Dependency-based
syntactic-semantic analysis with PropBank and NomBank, in CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Language
Learning, pp. 183–187, Manchester, UK.
Aravind K. Joshi and Yves Schabes (1997), Tree Adjoining Grammars, in
Grzegorz Rozenberg and Arto Salomaa, editors, Handbooks of Formal
Languages and Automata, pp. 69–123, Springer-Verlag, New York, USA.
Miriam Kaeshammer (2012), A German treebank and lexicon for tree-adjoining
grammars, Master’s thesis, Universitat des Saarlandes, Saarlandes, Germany.
Laura Kallmeyer and Marco Kuhlmann (2012), A formal model for
plausible dependencies in lexicalized tree adjoining grammar, in Proceedings of
TAG+11, pp. 108–116, Paris, France.
Tracy Holloway King, Richard Crouch, Stefan Riezler, Mary Dalrymple,
and Ronald M. Kaplan (2003), The PARC 700 dependency bank, in Proceedings
of 4th International Workshop on Linguistically Interpreted Corpora, pp. 1–8,
Budapest, Hungary.

[181]

Phuong Le-Hong et al.

Terry Koo and Michael Collins (2010), Efficient third-order dependency
parsers, in Proceedings of ACL, pp. 1–11, Uppsala, Sweden.
Sandra Kübler, Ryan McDonald, and Joakim Nivre (2009), Dependency
parsing, Morgan & Claypool Publishers.
Phuong Le-Hong, Thi Minh Huyen Nguyen, Azim Roussanaly, and
Tuong Vinh Ho (2008), A hybrid approach to word segmentation of
Vietnamese texts, in Proceedings of LATA, LNCS 5196, pp. 240–249, Springer.
Phuong Le-Hong, Azim Roussanaly, Thi Minh Huyen Nguyen, and Mathias
Rossignol (2010), An empirical study of maximum entropy approach for
part-of-speech tagging of Vietnamese texts, in Actes de Traitement Automatique
des Langues, pp. 50–61, Montreal, Canada.
Charles N. Li and Sandra A. Thompson (1976), Subject and topic: a new
typology of language, in Subject and topic, pp. 457–489, London/New York:
Academic Press.
Dekang Lin and Patrick Pantel (2001), Discovery of inference rules for
question answering, Natural Language Engineering, 7(4):343–360.
David M. Magerman (1995), Statistical decision-tree models for parsing, in
Proceedings of ACL, pp. 276–283, Stroudsburg, Pennsylvania, USA.
Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav
Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Nuria Bertomeu Castelló, and
Jungmee Lee (2013), Universal dependency annotation for multilingual
parsing, in Proceedings of ACL, pp. 92–97, Sofia, Bulgaria.
Ryan McDonald and Fernando Pereira (2006), Online learning of
approximate dependency parsing algorithms, in Proceedings of EACL, pp. 81–88,
Trento, Italy.
Alexis Nasr (2004), Analyse syntaxique probabiliste pour grammaires de
dépendances extraites automatiquement, Habilitation à diriger des recherches,
Université Paris 7, Paris, France.
Günter Neumann (2003), A uniform method for automatically extracting
stochastic lexicalized tree grammar from treebank and HPSG, in Anne Abeillé,
editor, Treebanks: Building and Using Parsed Corpora, volume 20 of Text, Speech
and Language Technology, pp. 351–365, Springer Netherlands.
Phuong Thai Nguyen, Luong Vu Xuan, Thi Minh Huyen Nguyen, Van Hiep
Nguyen, and Phuong Le-Hong (2009), Building a large
syntactically-annotated corpus of Vietnamese, in Proceedings of the 3rd Linguistic
Annotation Workshop, ACL-IJCNLP, pp. 182–185, Suntec City, Singapore.
Thi Luong Nguyen, My Linh Ha, Viet Hung Nguyen, Thi Minh Huyen
Nguyen, and Phuong Le-Hong (2013), Building a treebank for Vietnamese
dependency parsing, in The 10th IEEE RIVF, pp. 147–151, IEEE, Hanoi, Vietnam.

[182]

A syntactic component for Vietnamese language processing

Thi Minh Huyen Nguyen, Laurent Romary, Mathias Rossignol, and
Xuan Luong Vu (2006), A lexicon for Vietnamese language processing,
Language Resources and Evaluation, 40(3–4).
Jaokim Nivre and Ryan McDonald (2008), Integrating graph-Based and
transition-Based dependency parsers, in Proceedings of ACL-08, pp. 950–958,
ACL, Columbus, Ohio, USA.
Joakim Nivre (2003), An efficient algorithm for projective dependency
parsing, in Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT 03), pp. 149–160, Nancy, France.
Jungyeul Park (2006), Extraction of tree adjoining grammars from a treebank
for Korean, in Proceedings of COLING-ACL Student Research Workshop,
pp. 73–78, Morristown, New Jersey, USA.
Patrick Paroubek, L. G. Pouillot, I. Robba, and Anne Vilnat (2005),
EASY : Campagne d’évaluation des analyseurs syntaxiques (EASY Evaluation
compagne of syntactic parsers), in Actes de Traitement Automatique des Langues,
pp. 3–12, Dourdan, France.
Lewis M. Paul, Gary F. Simons, and Charles D. Fennig (eds.) (2014),
Ethnologue: Languages of the World, Seventeenth edition, SIL International, Dallas,
Texas, USA.
Owen Rambow and Aravind Joshi (1994), A formal look at dependency
grammars and phrase-structure grammars, with special consideration of
word-order phenomena, in Current Issues in Meaning-Text Theory, pp. 1–20,
Pinter, London, UK.
Azim Roussanaly, Benoît Crabbé, and Jérôme Perrin (2005), Premier bilan
de la participation du LORIA à la campagne d’évaluation EASY, in Actes de
Traitement Automatique des Langues, pp. 49–52, Dourdan, France.
Yves Schabes (1990), Mathematical and computational aspects of lexicalized
grammars, Ph.D. thesis, University of Pennsylvania, Pennsylvania, USA.
Rion Snow, Dan Jurafsky, and Andrew Y. Ng (2005), Learning syntactic
patterns for automatic hypernym discovery, in Advances in Neural Information
Processing Systems, pp. 1297–1304, Vancouver, Canada.
Vietnam Committee on Social Sciences, editor (1983), Vietnamese
Grammar (in Vietnamese), NXB KHXH, Hanoi, Vietnam.
Fei Xia (2001), Automatic grammar generation from two different perspectives,
Ph.D. thesis, University of Pennsylvania, Pennsylvania, USA.
Fei Xia, Martha Palmer, and Aravind Joshi (2000), A uniform method of
grammar extraction and its applications, in Proceedings of the joint SIGDAT
conference on empirical methods in NLP and very large corpora, pp. 53–62,
Morristown, New Jersey, USA.

[183]

Phuong Le-Hong et al.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[184]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Preliminaries
	Syntactic representation
	A brief overview of Vietnamese
	Tree-adjoining grammars

	Grammar extraction
	Extracting grammars from treebanks
	Vietnamese treebank
	Extraction algorithms
	Building LTAG derived trees
	Building elementary trees
	Filtering out invalid trees

	Comparison with previous work
	An LTAG for Vietnamese
	Summary

	Parser construction
	Preprocessing pipeline
	Dependency annotation schema
	Dependency relation extraction

	Parser evaluation
	Performance without POS tagging
	Performance with POS tagging
	Discussion

	Conclusion

