
Implementing semantic frames
as typed feature structures

with XMG

Timm Lichte1 and Simon Petitjean2
1 University of Düsseldorf, Germany
2 Université d’Orléans, LIFO, France

abstract
Keywords:
metagrammar,
typed feature
structures,
models of type
constraints,
type hierarchy,
unification

This work1 presents results on the integration of frame-based repre-
sentations into the framework of eXtensible MetaGrammar (XMG).
Originally XMG allowed for the description of tree-based syntactic
structures and underspecified representations of predicate-logical for-
mulae, but the representation of frames as a sort of typed feature struc-
ture, particularly type unification, was not supported. Therefore, we
introduce an extension that is capable of handling frame representa-
tions directly by means of a novel <frame>-dimension. The aim is not
only to make possible a straightforward specification of frame descrip-
tions, but also to offer various ways to specify constraints on types, be
it as a connected type hierarchy or a loose set of feature structure con-

1This article is a substantially revised and extended version of Lichte et al.
(2013). It has greatly benefited from discussions with Laura Kallmeyer, Rainer
Osswald, Christof Rumpf and Yulia Zinova. We also thank both the reviewers of
the ESSLLI 2013 workshop on High-level Methodologies in Grammar Engineer-
ing (HMGE) and the the reviewers of the JLM for detailed and helpful comments.
The work presented in this paper was financed by the Deutsche Forschungsge-
meinschaft (DFG) within the CRC 991. It was also financially supported by the
scientific network PARSEME (COST Action IC1207) with a travel grant for Si-
mon Petitjean. When finishing this article we learned with great sadness of the
passing of our friend and colleague Christof Rumpf. We dedicate this article to
his memory.

Journal of Language Modelling Vol 3, No 1 (2015), pp. 185–228

Timm Lichte, Simon Petitjean

straints. The presented extensions to XMG are fully operational in a
new prototype.

1 introduction

Recent work (Kallmeyer and Osswald 2012a,b, 2013; Zinova and
Kallmeyer 2012) has shown increasing interest in coupling a frame-
based semantics with a tree-based syntax such as Tree Adjoining
Grammar (TAG, Joshi and Schabes 1997). While having led to promis-
ing results on the theoretic side, it is still unclear how to imple-
ment these ideas with existing grammar engineering tools, let alone
how to bring them alive in natural language parsing. In this ar-
ticle, we present results on the integration of frame-based repre-
sentations into the framework of eXtensible MetaGrammar (XMG,
Crabbé et al. 2013).2 XMG originally allowed for the description of
tree-based syntactic structures and underspecified representations of
predicate-logical formulae, but the representation of frames as a sort
of typed feature structure, particularly type unification, was not sup-
ported. Therefore we extend XMG by a novel <frame>-dimension,
among other tools, that makes it capable of handling frame repre-
sentations as formalized in Petersen (2007) and Kallmeyer and Os-
swald (2013), i.e. as extended typed feature structures, directly.3
This capability also paves the way for implementing recent work
on morphological decomposition, such as in Zinova and Kallmeyer
(2012), where morphemes are linked to a frame-semantic representa-
tion.

These efforts might seem redundant, given that there exists a mul-
titude of works on dealing with typed feature structures in grammar
implementation and parsing, notably in the framework of HPSG (e.g.
Carpenter 1992; Götz et al. 1997; Malouf et al. 2000; Flickinger 2000;
Copestake 2002; Carpenter et al. 2003). As far as we can see, however,
our approach differs from previous work in several respects: first and

2https://sourcesup.renater.fr/xmg/
3The reviewers suggested to focus more on typed feature structures and less

on semantic frames. While this is a reasonable advice, we consider the applica-
tion to be the driving force of this whole endeavour, which also crucially moti-
vates our choice of a typed feature structure logic that is, from our perspective,
uncommon in linguistic applications.

[186]

https://sourcesup.renater.fr/xmg/

Implementing semantic frames with XMG

foremost, it allows for a choice between minimal and maximal mod-
els of type constraints. As a consequence of this, our approach also
allows for anonymous types, hence types that result from the conjunc-
tion of defined types, but that are not defined themselves in the type
signature. We will precisely explicate this distinction in Section 4. Fi-
nally, our work aims at providing the grammar writer with multiple
means of expression, for example, in permitting him/her to make use
of loose type constraints or connected type hierarchies, or both. This
degree of flexibility is often not found in other grammar implemen-
tation frameworks that support typed feature structures. We hypoth-
esize that other frameworks are mainly concerned with the syntactic
component of the grammar, while we focus on the conceptual seman-
tics whose structure (and how it comes about) seems to be much less
predetermined.

The paper proceeds as follows. The next section briefly illustrates
the grammatical objects that we are concerned with, and Section 3
then shows the proposed factorization, which crucially guides the im-
plementation with XMG and also justifies the employment of frame
unification. After this, we explain the formalization of frames as a
sort of typed feature structure in Section 4, and the basic concepts of
XMG in Section 5. This will be essential to understand the usage and
compilation details of the new <frame>-dimension, the presentation
of which follows in Section 6. Finally, Section 7 concludes the article.
Moreover, a complete code example based on analyses from Section 2
and Section 3 is presented in the Appendix.

2 a frame-based semantics for ltag

Wewill use the state-of-the-art work of Kallmeyer and Osswald (2013)
on integrating frame semantics into Lexicalized Tree-Adjoining Gram-
mars (LTAG) as a starting point. One important motivation for devel-
oping a frame-based semantics for LTAG is found in the straightfor-
ward account for the well-established distinction between lexical and
constructional contributions to the overall meaning. An example of
this sort of contrast is displayed in (1):
(1) a. The ball rolled into the goal.

b. John rolled the ball into the goal.

[187]

Timm Lichte, Simon Petitjean

Both sentences involve the same verb of directed motion, rolled, but
the two instances nevertheless differ with respect to the linking of
the subject with the conveyed event semantics. While in (1a) the
subject the ball is the moved object, in (1b) the subject John is caus-
ing the motion rather than undergoing it. The trigger for this se-
mantic shift seems to be the lack or existence of the direct object
(both under the presence of a directional PP), hence the construction
type, as this constitutes the crucial syntactic difference between (1a)
and (1b).

In the framework of Kallmeyer and Osswald (2013), the syntax
of these constructions lies in the scope of the LTAG component. An
LTAG consists of a finite set of phrase structure trees, the elementary
trees, that can be combined (by means of two basic operations, substi-
tution and adjunction) to generate larger trees.4 Since we are dealing
with a lexicalized TAG, each elementary tree must include at least one
non-terminal leaf, the lexical anchor. Furthermore elementary trees are
constrained through the valency properties of their anchors. Usually
each non-terminal leaf corresponds to exactly one syntactic argument,
and vice versa.

The proposed LTAG analyses of (1a) and (1b), shown in Figure 1,
differ with respect to the elementary trees that are associated with the
two instances of rolled, say the intransitive rolledint and the transitive
rolledtr:5 since syntactic arguments are represented as non-terminal
leaves, the elementary tree for rolledint lacks the object NP slot that
the elementary tree for rolledtr has. The difference in meaning is there-
fore attributed to the different elementary trees that a given verb may
anchor.

Since elementary trees, but not the anchoring verbs, are held re-
sponsible for different linking patterns, it is straightforward to abstract
away from the concrete anchor by just considering the yet unanchored
elementary tree, which is commonly called the tree template. An exam-
ple of such a tree template is shown on the left in Figure 2, wherein the
site of lexical insertion, here of rolled, is marked by the ⋄-symbol. The

4Since in the present paper we mainly focus on single elementary trees, we
skip most details of the formalism here. See Joshi and Schabes (1997) or Abeillé
and Rambow (2000a) for comprehensive presentations.

5Note that dashed arrows indicate combinatorial operations, which in this
case only involve substitution, i.e. the rewriting of a leaf node in the target tree.

[188]

Implementing semantic frames with XMG
..

..
NP
...

..
The ball

. ..
S
.....

..
VP
.....

..
PP

.

..

..
VP
...

..
V
...

..
rolledint

.

..

..
NP

.

..
PP
.....

..
NP

.

..

..
P
...

..
into

.

..
NP
...

..
the goal

..

..
NP
...

..
John

.

..
NP
...

..
the ball

. ..
S
.....

..
VP
.....

..
PP

.

..

..
VP
.....

..
NP

.

..

..
V
...

..
rolledtr

.

..

..
NP

.

..
PP
.....

..
NP

.

..

..
P
...

..
into

.

..
NP
...

..
the goal

Figure 1: LTAG derivation for (1a) and (1b) with intransitive versus transitive
rolled

....
S
.....

..
VP[E= 0 ,PATH= 5]

.....

..
PP[I= 3 ,E= 4]

.

..

..
VP[E= 0 ,PATH= 5]

.....

..
NP[I= 2]

.

..

..
V⋄[E= 0]

...

..
rolledtr

.

..

..
NP[I= 1]

0

causation
actor 1

theme 2

goal 3

cause

activityactor 1

theme 2

effect 4

bounded-translocation
mover 2

goal 3

path 5

Figure 2: Tree template and frame-semantic representation of the transitive
motion construction from Figure 1, taken from Kallmeyer and Osswald (2013,
Fig. 26)

complex node labels will be explained presently. The right side of Fig-
ure 2 shows the event semantic contribution of the tree template in the
format of a typed feature structure, here represented as an attribute
value matrix (AVM). Typed feature structures are a common repre-
sentation format of frames (see Petersen 2007), which, according to

[189]

Timm Lichte, Simon Petitjean

Fillmore (1982), Barsalou (1992) and others, are considered a proper
representation of mental concepts.6 As can be seen from the exam-
ple, features describe semantic participants and components (agent,
theme,…), while feature structures correspond to conceptual objects,
restricted by the type (causation, activity, …) that they are associated
with. The boxed numbers, finally, are base labels which serve to mark
inequalities and correspondences in the syntax-frame interface. Fur-
thermore, they guide the unification of (subparts of) frames, as can be
seen in the next section.

Because tree templates, just as elementary trees, span an ex-
tended domain of locality,7 the linking of positions within the tree
template to positions within the frame-semantic representation can
be achieved rather directly. In Figure 2 it is indicated by co-occurring
boxed numbers. For example, the subject NP-leaf is linked with the ac-
tor role(s) of the frame, eventually causing the unification of the ac-
tor role and the frame of the substituting NP-tree. Note that the nodes
of tree templates carry (non-recursive, non-typed) feature structures,
which include, among others, interface features such as i(ndividual)
and e(vent).8 Following the terminology in Kallmeyer and Osswald
(2013), we call couples of tree template and frame-semantic represen-
tation an elementary construction.

The composition of frame representations is moreover guided by
a globally defined type hierarchy, which determines (i) the unifiability
of types and the resulting type, and (ii) the set of appropriate features

6Note that FrameNet (Fillmore 2007), despite being declared as an imple-
mentation of Fillmore’s frame semantics, deals with flat lexical frame represen-
tations that are generally less expressive (Osswald and Van Valin 2014).

7The extended domain of locality (EDL) is one of the central properties of the
TAG formalism (cf. Joshi et al. 1990). It amounts to the capability of arguments to
immediately attach to the elementary tree of their governor; see again Figure 1.
In connection with TAG, EDL presupposes the availability of the adjunction op-
eration (i.e. the rewriting of inner nodes), in order to account for discontinuity
effects such as long distance dependencies.

8The approach to let the syntax-semantics interface rely on the unification of
interface features can already be found in, e.g., Stone and Doran (1997), Frank
and van Genabith (2001), Gardent and Kallmeyer (2003). The proposal for link-
ing nodes of an elementary tree with positions in some semantic representation,
and thus to derive syntax and semantics in parallel, dates back at least to Shieber
and Schabes (1990).

[190]

Implementing semantic frames with XMG

(and their value types) of a type, the appropriateness conditions. Re-
garding event types, Kallmeyer and Osswald (2013) work with the
partial type hierarchy in Figure 3. It has to be read top-down, with

....
event
.....

..
causation
cause :⊤∧ effect :⊤

.....

..
extended-
causation.

..

..
onset-causation
cause : punctual-event

.

....

..
motion
mover :⊤

...

..
translocation
path :⊤

...

..
bounded-translocation
goal :⊤

.

..

..
activity
actor :⊤

...

..
activity ∧ motion
actor .

= mover

...

..
locomotion

...

..
bounded-locomotion

Figure 3:
Partial
type hierarchy
for event types
proposed in
Kallmeyer and
Osswald (2013,
Fig. 16).

the more general types dominating the more specific types. Note that
the type hierarchy may also contain anonymous types, e.g. activity ∧
motion, which are usually not available in other frameworks. Roughly
speaking, anonymous types make it possible to assign appropriateness
conditions to a conjunction of types rather than just to a single type.
The details will be explained in Section 4.

In this work we are neither concerned with the unification of
frame representations following syntactic composition, nor with the
preceding process of lexical insertion that triggers the unification of
lexical and constructional frame components (see Kallmeyer and Oss-
wald 2013, Fig. 13), but rather with the metagrammatical framework
of XMG. Metagrammars are a tool to describe static elementary con-
structions such as in Figure 2, consisting of a tree template and a fixed
typed feature structure. It might therefore seem unnecessary to employ
all aspects of typed feature structures in metagrammars, particularly
unification. However, this assumption is not warranted. Unification of
types and feature structures is also found in the metagrammatical do-
main once the factorization of elementary constructions of the kind in
Figure 2 is taken into account. This will be shown in the next section.

[191]

Timm Lichte, Simon Petitjean

3 factorization of
tree templates and frames

Richly structured grammatical objects like those in Figure 2 make
necessary some kind of metagrammatical factorization, once a large
coverage grammar gets compiled and maintained (Xia et al. 2010).
Metagrammatical factorization is a process to define recurring sub-
components of grammatical objects, which can then be combined in
at least two ways: in a transformation-based fashion, known as the
metarule approach (Becker 1994, 2000; Prolo 2002), or in a purely
constraint-based, monotonic fashion as is the case in XMG (following
Candito 1996). In addition to the benefit in terms of grammar engi-
neering, however, Kallmeyer and Osswald (2012a,b, 2013) claim that
metagrammar factorization can be also used to reflect constructional
analyses in the spirit of Construction Grammar (Kay 2002; Goldberg
2006). By this perspective, both the lexical material and the “construc-
tions” used contribute meaning.

Taking these two aspects into account, Kallmeyer and Osswald
(2013) propose to factorize the tree template and the frame in Fig-
ure 2 along the lines of Figure 4.9 Boxes stand for the resulting factors
or classes (i.e. classes in the sense of XMG), consisting of descriptions
of a tree and a frame fragment. The inclusion relation between boxes is
to be understood as a representation of inheritance or instantiation, so
that the class of the comprising box inherits from, or instantiates, the
class of the included box. Double edges (indicating identity constraints
over nodes or base labels), dashed edges (non-strict dominance), ≺*
(non-strict precedence), and ∨ (disjunction) are elements of the de-
scription language. Figure 4 then illustrates that the tree-frame cou-
ple in Figure 2 is a model of the class n0Vn1pp(dir), which combines
the classes n0Vn1 and DirPrepObj. Combining two classes essentially
means that all associated information is unified, from which a mini-
mal model is resolved (see Section 5). Note that Figure 4 shows only
a part of the proposed factorization. For example, the class n0Vn1,
also taken from Kallmeyer and Osswald (2013, Fig. 4), results from
combining three other classes (Subj, VSpine, DirObj), as shown in Fig-
ure 5.10 Furthermore note that the class n0Vn1pp(dir) bears a con-

9The boxes-and-pipes notation in Figures 4 and 5 is of our invention.
10Kallmeyer and Osswald (2013) conjecture that class n0V has exactly one

[192]

Implementing semantic frames with XMG

...

class nv0Vn1

..

class DirPrepObj

..

class n0Vn1pp(dir)

.

....
S
.....

..
VP[E= 0]

...

..
VP[E= 0]

.....

..
NP[I= 3].

....

..≺*.

..

..
V⋄[E= 0]

.

..

..
NP[I= 1]

.

0

eventactor 1

theme 3

∨ 0

eventactor 1

goal 3

.

....
VP[PATH= 3]

.....

..
PP[I= 1 ,E= 0]

.

....

..≺

.

..

..
VP[PATH= 3]

...

..
V⋄

.

0

bounded-translocationgoal 1

path 3

.

0

causation
actor 1

theme 2

cause

activityactor 1

theme 2

effect 4

mover 2

goal 3

Figure 4: Metagrammatical factorization of the elementary construction from
Figure 2. Boxes stand for the resulting factors or classes. Double edges indicate
identity constraints, dashed edges indicate non-strict dominance,≺* is non-strict
precedence, and ∨ is disjunction.

minimal model, which only holds, however, if minimal models are said to consist
of the smallest set of nodes that satisfy the description. In XMG, by contrast,
minimal models just consist of a set of nodes mentioned in the description, and
nothing more. Hence, from point of view of XMG, n0V has two minimal models,
one with one VP node, and one with two VP nodes. In order to resolve only
the former one, one could additionally apply polarization, or “colours” (Crabbé
and Duchier 2005), onto the nodes. Fortunately, the question how many minimal
models there are is irrelevant for the point made here and throughout the article.

[193]

Timm Lichte, Simon Petitjean
Figure 5:

Metagrammatical
factorization for

the transitive
elementary

construction.

...

class Subj

..

class VSpine

..

class DirObj

..

class n0V

..

class n0Vn1

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1] .

....

0

event
actor 1

.
....

VP
...

..
V⋄

.

....
VP[E= 2]

.....

..
NP[I= 3].

....

..≺*.

..

..
V⋄[E= 2]

.

....

2

event
goal 3

∨ 2

event
theme 3

structional facet: it only contributes to the frame representation, but
no tree descriptions.

Now the question is whether the combination of frame representa-
tions, following the combination of two classes, should be considered
a unification of typed feature structures. It is not hard to see that this
is justified. A particularly good example is found in the combination
of the frame representations of n0Vn1 and n0Vn1pp(dir) in Figure 4.
Even though they have different types, namely event and causation,
the resulting type is supposed to be causation. According to the type
hierarchy in Figure 3, causation is a subtype of event. Hence this is in
line with regular type unification, but exceeds a plain union of feature
structures. Therefore the unification of typed feature structures should
be already supported at the metagrammatical level. The same holds
for the verification of appropriateness conditions, of course. Note that,
as can be seen from Figure 4, the flexibility of frame unification is fos-
tered by base labels when unifying the frame of DirPrepObj with a
subpart of the frame of n0Vn1pp(dir).

The graphic representation of the metagrammatical factorization
in Figure 4 and Figure 5 remains at a rather informal level and the
question arises: how could this be translated into XMG code? Since
the original XMG did not give a satisfying answer due to reasons of
usability and completeness (which we will cover in Section 5) we will

[194]

Implementing semantic frames with XMG

develop and justify a new <frame>-dimension in Section 6. But first
we will review the underlying notions: frames as typed feature struc-
ture with base labels, type hierarchies and unification.

4 base-labelled typed feature structures:
formal definitions

In what follows we largely, but not exclusively, adhere to the defi-
nitions in Kallmeyer and Osswald (2013), while streamlining them
according to our terminology and taste. What is not needed from
Kallmeyer and Osswald (2013), however, are (non-functional) rela-
tions, because they do not appear in the frame representations of ele-
mentary constructions, other than, e.g., in the frame representations
of the anchor lexicon (Kallmeyer and Osswald 2013, Fig. 13).11 So we
will ignore the notion of (non-functional) relations, and instead dwell
on type inference and the minimal and maximal models of feature
structure constraints. It is this choice between minimal and maximal
models, as well as the general availability of anonymous types, which
makes the presented extension to XMG particularly flexible at describ-
ing a type system. And it is this flexibility, among other things, which
sets our extension to XMG apart from current frameworks for HPSG.

Let us start with the building blocks of typed feature structures,
which are settled in the signature:
Definition 1 (Signature) A signature is a tuple 〈A, T, B〉 with a finite set
of attributes (or features) A, a finite set of elementary types T , and an
infinitely countable set of base labels B.
The set of elementary types is accompanied by special types ⊤ and ⊥
that are useful in feature structure descriptions and feature structure
constraints (see below). ⊤ is the most general type, unifiable with
every other type, whereas ⊥ is unifiable with none of them. Within
Boolean expressions,⊤ corresponds to ‘true’ and⊥ to ‘false’. Base labels
are commonly boxed natural numbers, thus B = { 0 , 1 , 2 , . . .}.

Based on a given signature, typed feature structures are defined
as follows:

11Kallmeyer and Osswald (2013) make use of the part-of relation when deal-
ing with directional prepositions such as to, into, and along.

[195]

Timm Lichte, Simon Petitjean

Definition 2 (Base-labelled typed feature structure) Given a signa-
ture 〈A, T, B〉, a base-labelled typed feature structure is a tuple 〈V,δ,τ,β〉
with

• V , a finite set of nodes,
• δ : (V × A)→ V , a partial transition function,
• τ : V → 2T , a total typing function, and
• β : B→ V , a partial base-labelling function.

We call types in 2T , i.e. elements of the powerset of T , conjunctive types
in order to distinguish them from elementary types.

We follow Kallmeyer and Osswald (2013) in that we do not spec-
ify a type hierarchy immediately, but treat it as a model of feature
structure constraints, i.e. generalized feature structure descriptions.12
Therefore the following notations can be directly borrowed from
Kallmeyer and Osswald (2013, (3)), omitting only those parts of their
definition that deal with relations. Note that we extend δ by feature
paths in the usual way.13

Definition 3 (Unlabelled feature structure description) Let 〈V,δ,
τ,β〉 be a feature structure over the signature 〈A, T, B〉 with v, w ∈ V ,
t ∈ 2T and p, q ∈ A+, then the satisfaction relation |= between nodes and
feature structure descriptions is defined as follows:

• v |= t iff t ∈ τ(v)
• v |= p : t iff δ(v, p) |= t

• v |= p
.
= q iff δ(v, p) = δ(v, q)

• 〈v, w〉 |= p ≜ q iff δ(v, p) = δ(w, q)

As such, unlabelled feature structure descriptions apply to nodes of a
feature structure. For example, the root node of the causation frame
in Figure 4 satisfies the following conjunction of descriptions:
(2) causation ∧ actor .

= cause actor ∧ theme .
= cause theme ∧

theme .
= effect mover ∧ cause : activity ∧ effect goal : ⊤

By adding base labels, we can explicitly assign descriptions to nodes
within a feature structure. Therefore, in contrast to unlabelled ones,

12However, XMG also allows one to specify a type signature explicitly; see
Section 6.

13δ(v, p a) with p ∈ A+ and a ∈ A is a shorthand for δ(δ(v, p), a).

[196]

Implementing semantic frames with XMG

the labelled feature structure descriptions are satisfied by feature
structures as a whole:14

Definition 4 (Labelled feature structure description) Let F = 〈V,δ,
τ,β〉 be a feature structure over the signature 〈A, T, B〉 with p, q ∈ A+ and
l, k ∈ B, and let ϕ be an unlabelled feature structure description. The satis-
faction relation |= between feature structures and labelled feature structure
descriptions is defined in the following way:

• F |= l ϕ iff β(l) |= ϕ
• F |= l p ≜ k q iff 〈β(l),β(k)〉 |= p ≜ q

The unlabelled descriptions in (2) can be straightforwardly labelled in
order to be satisfied by the causation frame as a whole:
(3) 0 causation ∧ 0 actor .

= cause actor ∧ 0 theme .
= cause

theme ∧ 0 theme .
= effect mover ∧ 0 cause : activity ∧ 0

effect goal : ⊤
Note that 0 actor .

= cause actor is equivalent with 0 actor ≜
0 cause actor (see Kallmeyer and Osswald 2013, fn. 14). We adopt
the convention to write l instead of l ε for some label l. This allows us
to write 1 ≜ 2 for expressing the value identity of labels 1 and 2 .

Concerning the subsumption relation on feature structures, we
can transfer the fairly standard definition from Kallmeyer and Osswald
(2013), which they extend by base labels.
Definition 5 (Subsumption, ⊑) Given feature structures F1 = 〈V1,δ1,
τ1,β1〉 and F2 = 〈V2,δ2,τ2,β2〉 over the signature 〈A, T, B〉, F1 subsumes
F2, if there is a function h : V1→ V2 so that

• if δ1(v, a) is defined for v ∈ V1 and a ∈ A, then δ2(h(v), a) =
h(δ1(v, a));

• for every v ∈ V1, τ1(v) ⊆ τ2(h(v));
• if β1(l) is defined for l ∈ B, then β2(l) = h(β1(l)).

As usual, the definition of unification builds on subsumption:
14From the general shape of labelled feature structure descriptions it follows

that they can only describe feature structures where every node is reachable from
some labelled node via a (potentially empty) attribute path. In fact, this is why
these labels are called base labels.

[197]

Timm Lichte, Simon Petitjean

Definition 6 (Unification, ⊔) Let F1, F2, F3 be feature structures. F3 is
the result of the unification of F1 and F2, iff F3 is the least specific feature
structure such that F1 ⊑ F3 and F2 ⊑ F3.
The specificity of feature structures is determined by the number of
nodes, the specificity of the assigned types and the size of the base
labelling function. Note that, in cases of unification such as in Fig-
ure 4, feature structures (and corresponding interface variables) are
relabelled beforehand, so that they come with disjoint sets of labels.
The identity of certain labels can then be imposed through additional
identity statements.

Feature structure constraints consist of universally quantified, un-
labelled features structure descriptions, i.e. descriptions that hold for
every node in the feature structure. Kallmeyer and Osswald (2013)
restrict them to Horn clauses for reasons of tractability.15

Definition 7 (Feature structure constraint) Given unlabelled feature
structure descriptions ϕ1, . . . ,ϕn,ψ, a feature structure constraint is ϕ1 ∧
. . .∧ϕn ⪯ψ, which is equivalent to the universally quantified implication
∀(ϕ1∧. . .∧ϕn→ψ) where quantification is over the nodes of the described
feature structure.
The following list shows different kinds of feature structure constraints
(mostly taken from Kallmeyer and Osswald 2013, (12)):16

(4) a. activity ⪯ event
b. causation ⪯ ¬activity ⇔ causation ∧ activity ⪯⊥
c. locomotion ⪯ activity ∧ translocation
⇔ (locomotion ⪯ activity) ∧ (locomotion ⪯ translocation)

d. activity ⪯ actor:⊤
e. agent:⊤⪯ agent .

= actor
The first three feature structure constraints in (4a)–(4c) consist of de-
scriptions over types, which is why we call them type constraints. The
simplest type constraint in (4a) relates two elementary types and cor-

15Horn clauses are disjunctive clauses with at most one non-negative literal,
all others being negative. Hence they are of the form ¬ϕ1 ∨ . . .∨¬ϕn ∨ψ, which
has the implicational equivalent ϕ1 ∧ . . .∧ϕn→ψ.

16Note that⇔ in (4) is not part of the description language but indicates the
equivalence of descriptions.

[198]

Implementing semantic frames with XMG

responds to an ISA-relation, namely activity being also an event. An
ISNOTA-relation can be expressed by type constraints of the kind in
(4b). Note that the use of negation in the consequent is equivalent
to a clause with a conjunctive antecedent and a ‘false’ (⊥) conse-
quent. Not only can the antecedent be complex, but also the conse-
quent, even though this is reducible to a conjunction of simpler im-
plications, as shown in (4c). The last two examples in (4d) and (4e)
contain attribute-value terms. Constraint (4d) represents an appropri-
ateness condition, namely a condition on the type activity concerning
the value type of its attribute actor. Finally, (4e) adds a constraint
about the token identity of the values of the attributes agent and
actor (if agent has a value). Constraints of this sort, where every
conjunct consists of a feature-value description or a path equation, can
be characterized as feature-value constraints.17

A crucial decision concerns the model of feature structure con-
straints, as it can be seen as maximal or minimal. The difference is
made visible in Figure 6 with type hierarchies based on ⪯.

T = {a, b, c}
b ⪯ a

maximal: minimal:
.. ⊤.

a

.

c

.

b

.. .. ⊤.

a

.

c

.

b

Figure 6:
Examples
of a maximal
and a minimal
model of type
constraint

Roughly speaking, a maximal model of type constraints allows
for anonymous types (indicated with dots in Figure 6) as long as they
are not explicitly excluded. With minimal models it is the other way

17Other sorts of feature structure constraints, for example those in (i), are not
discussed in Kallmeyer and Osswald (2013):
(i) a. p : t1 ⪯ t2

b. p : t1 ∧ t2 ⪯ t3

We therefore concentrate on feature structure constraints in the shape of type
constraints, appropriateness conditions and feature-value constraints.

[199]

Timm Lichte, Simon Petitjean

around: anonymous types are forbidden as long as they are not ex-
plicitly allowed. In both cases they could be introduced (or excluded)
by constraints such as in (5a), where the antecedent consists of a con-
junction of elementary types. In Figure 6, a ∧ c and a ∧ b ∧ c are
anonymous types. It is shown in (5b) that these anonymous types can
bear feature-value constraints as well.18

(5) a. a ∧ c ⪯⊤
b. action ∧ motion ⪯ actor .

= mover
(Kallmeyer and Osswald 2013, (12e))

The preceding remarks were concerned with elementary types.
However, as we learned in Definition 2, the typing function τ assigns
sets of elementary types, the conjunctive types. They are included for
good reason, since they help to treat elementary types and anonymous
types in a uniform way, and eventually to facilitate the definition and
implementation of unification.19 In the following, we treat conjunc-
tive types as a model of type constraints, and, on this basis, explicate
what it means to be minimal or maximal.

Definition 8 (Model of type constraints) Given type constraints TC
over a signature 〈A, T, B〉, a set T̂ of conjunctive types over T is a model of
TC , if T̂ satisfies the type constraints from TC in the following way:

• T̂ |= t1 ∧ . . .∧ tn ⪯⊥ iff {t1, . . . , tn} ̸⊆ t̂ for all t̂ ∈ T̂ ;
• T̂ |= t1 ∧ . . .∧ tn ⪯ tm iff if {t1, . . . , tn} ⊆ t̂, then {tm} ⊆ t̂.

The model T̂ of given type constraints is said to be maximal, if T̂ is
the largest set of conjunctive types that satisfies them. On the other

18Note that anonymous types are generally ruled out in major implementation
tools for HPSG such as LKB (Copestake and Flickinger 2000; Copestake 2002) and
TRALE (Götz et al. 1997; Carpenter et al. 2003), fromwhich it follows that models
from type constraints are always minimal.

19Note however that Carpenter (1992, 23–25) defines conjunctive types dif-
ferently as he adds the condition that p, but not q, is included whenever the
relation p ⪯ q is considered. Hence, following his conception, there is no co-
occurrence of elementary types and their elementary subtypes within a conjunc-
tive type. On the other hand, our definition of conjunctive type rather coincides
with the notion of “conjunctive concepts” in Carpenter and Pollard (1991), or
with the notions of “entity types” and “generic entities” in Osswald (2003, 24f).

[200]

Implementing semantic frames with XMG

hand, T̂ is said to be the minimal model, if T̂ includes just those con-
junctive types of the maximal model that correspond (i) to elementary
types, and (ii) to conjunctive types that make up the left side (i.e. the
condition) of a type constraint.

The type hierarchies from Figure 6 for elementary types are re-
peated in Figure 7 for conjunctive types. They are now based on ⊆
rather than ⪯. We say that conjunctive type t̂1 is the subtype of t̂2, if
t̂1 ⊃ t̂2. The definition of the most general common subtype is equally
simple.

T = {a, b, c}
b ⪯ a

maximal: minimal:
.. { }.

{a}

.

{c}

.

{a, b}

.

{a, c}

.

{a, b, c}

.. { }.

{a}

.

{c}

.

{a, b}

Figure 7:
Example
of maximal
and minimal
models of type
constraints over
conjunctive
types

Definition 9 (Most general common subtype) The most general
common subtype of two conjunctive types t̂1, t̂2 ∈ T̂ is the smallest set
t̂3 ∈ T̂ such that t̂1 ∪ t̂2 ⊆ t̂3.
It is easy to see that, whenever type constraints have the shape of
Horn clauses, the maximal model over conjunctive types T̂ forms a
meet semi-lattice (a bounded complete partially ordered set) 〈T̂ ,⊆〉.
Hence, there is a most general common subtype for any two unifiable
types. This does not necessarily hold for minimal models that are con-
fined to elementary and certain anonymous types.20 In order to obtain
uniqueness of the most general common subtype for any two unifiable
types, it can be necessary to add further anonymous types to T̂ (the
Dedekind-McNeille completions). Theses completions are computed
by the compiler that will be described in Section 6.3.2.

20For example, say T = {a, b, c, d}, TC = {c ⪯ a ∧ b, d ⪯ a ∧ b}, then T̂ =
{{}, {a}, {b}, {a, b, c}, {a, b, d}} satisfies TC and only contains the conjunctive types
that correspond to elementary types in T . However, {a} and {b} have more than
one most general common subtype in T̂ , namely {a, b, c} and {a, b, d}.

[201]

Timm Lichte, Simon Petitjean

A conjunctive type t̂ corresponds to an elementary type t, if t̂ is
the smallest set that contains t according to the model. Otherwise, if
there is no t to which t̂ corresponds, t̂ is an anonymous type. Similarly,
t̂ corresponds to some conjunctive type t̂ ′, if t̂ is the smallest set of
a model that contains t̂ ′. Moreover, it can be useful to also express
subtype relations among elementary types t1, t2 ∈ T . We say that t1 is
the subtype of t2, if for t̂1, t̂2 ∈ T̂ that correspond to t1 and t2 it holds
that t̂1 is a subtype of t̂2.

Before proceeding to the next section, two further aspects of
the feature logic used here and in Kallmeyer and Osswald (2013)
should be mentioned. Firstly, it cannot account for reverse type con-
straints, which refer to dominating nodes (Rainer Osswald, personal
communication, July 23, 2014). A case in point is the set of rela-
tional concepts such as the mother example from Petersen and Oss-
wald (2014, Fig. 11.5), where mother is said to constrain the existence
of a dominating node, connected with a mother edge. Hence, if
mother was treated as a type (a subtype of, e.g., person), this con-
straint could not be expressed, at least not as a part of its appro-
priateness conditions. Secondly, what seems to be missing so far
from the definition in Petersen (2007) is the notion of the central
node of a frame, i.e. the node that tells us what the frame “repre-
sents” or “refers to”. We think, however, that the notion of central
nodes is reflected, and generalized, in the present formalization by
the notion of base labels. By reappearing in the interface features
on the syntactic side, they serve to connect frame nodes with lin-
guistic entities, and nothing else seems to be expressed by central
nodes.

5 a brief introduction to xmg

XMG (eXtensible MetaGrammar, Crabbé et al. 2013) stands both for
metagrammatical descriptions and the compiler for these descriptions.
Such descriptions are organized into classes that can be reused (i.e.
“imported” or instantiated) by other classes. Borrowing from object
oriented programming, classes are encapsulated, which means that
each class can handle the scopes of their variables explicitly, by declar-
ing variables and choosing which ones to make accessible for (i.e. to
“export to”) other instantiating classes. The namespace of a class is

[202]

Implementing semantic frames with XMG

...

class Subj

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1]

class Subj
...
<syn>{

node ?S [cat=s];
node ?SUBJ [cat=np,

top=[i=?1]];
node ?VP [cat=vp,bot=[e=?0]];
node ?V (mark=anchor)

[cat=v,top=[e=?0]];
?S->?SUBJ; ?S->?VP; ?VP->*?V;
?SUBJ>>?VP

}
...

Figure 8:
The <syn>-
dimension of
class Subj

then composed of the declared variables and all the variables exported
by the imported classes.

Dimensions are the crucial elements of a class. They can be equip-
ped with specific description languages and are compiled indepen-
dently, thereby enabling the grammar writer to treat the levels of lin-
guistic information separately. The standard dimensions are <syn> for
the syntax, and <sem> for the semantics.21

The <syn>-dimension allows one to describe TAG tree templates
(or fragments thereof). An example is shown in Figure 8 for the <syn>-
dimension of class Subj from Figure 4. It includes two sorts of state-
ments, namely those like ‘node ?S [cat=s]’ that instantiate nodes
of the trees, and those like ‘?S->?SUBJ’ which determine the relative
position of two nodes in the trees by referring to dominance and linear
precedence.22 Note that variable names are prefixed with a question
mark (‘?’). The <sem>-dimension, on the other hand, includes descrip-
tions of a different language, for which a different compiler is used.
Since this could be a candidate for hosting frame descriptions, we will
have a look at <sem>more closely below. Different as they may be, one
crucial commonality of all the dimensions pertains to the joint access

21Crabbé et al. (2013, 601) also mention the fairly technical dimension <dyn>,
more commonly called interface, which helps to express the coreference of vari-
ables from different dimensions. Recently Duchier et al. (2012) have introduced
a dimension for morphology; see also Lichte et al. (2013).

22There is also available a notational alternative with bracket structure.

[203]

Timm Lichte, Simon Petitjean

to local variables declared in the same class. These shared variables
constitute a direct interface between otherwise separated dimensions.

The combination of classes takes place outside the <syn>- and
<sem>-dimensions. Figure 9 shows an example where the two classes
Subj and VSpine are reused by the class n0V. First Subj and VSpine
are instantiated and assigned a variable, then the encapsulated, yet
exported, variables from Subj and VSpine can be accessed via the dot
operator (e.g. to impose identity).

Figure 9:
Example of

the combination
of classes

...

class Subj

..

class VSpine

..

class n0V

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1] .

....
VP
...

..
V⋄

class n0V
...
?Subj = Subj[];
?VSpine = VSpine[];
?Subj.?V = ?VSpine.?V;
...
value n0v

When the metagrammar is compiled, first a set of descriptions for
each class under evaluation (triggered by value statements such as
in Figure 9) is accumulated, and then the accumulated descriptions
are resolved to yield minimal models. In the case of <syn>, the solver
computes tree templates as minimal models, which is to say that only
those nodes that are mentioned in the description are included. The
final result can be explored with a viewer, or exported as an XML file
in order to use it for parsing (e.g. with the TuLiPA parser, Kallmeyer
et al. 2008).

Frame descriptions in the <sem>-dimension?
As mentioned before, the <sem>-dimension is designed to contain
underspecified, flat formulae of predicate logic (borrowing from Bos
1996). In fact, it is rather straightforward to reformulate frame de-
scriptions in first-order predicate logic (Kallmeyer and Osswald 2013,
Sec. 3.3.3). Concerning the signature, attributes can be represented
with two-place predicates, while types can be seen as one-place pred-
icates. The functionality of attributes is imposed by the following
axiom for all a ∈ A, given some signature 〈A, T 〉:

[204]

Implementing semantic frames with XMG

(6) ∀x∀y∀z(a(x , y)∧ a(x , z)→ y = z)
(Kallmeyer and Osswald 2013, (6a))

The reformulation of feature structure descriptions and feature struc-
ture constraints is equally unproblematic:

(7) a. p : t λx∃y(p(x , y)∧ t(y))
b. p

.
= q λx∃y(p(x , y)∧ q(x , y))

c. a p λxλz∃y(a(x , y)∧ q(y, z))
(Kallmeyer and Osswald 2013, (7))

(8) a. t1 ⪯ t2 ∀x(t1(x)→ t2(x))
b. t1 ⪯ p : t2 ∀x∃y(t1(x)→ p(x , y)∧ t2(y))
c. t ⪯ p

.
= q ∀x∃y(t(x)→ p(x , y)∧ q(x , y))

Following this approach, a frame representation such as 0 [actor 1]
would be translated into the two-place predicate actor(?0, ?1), using
regular XMG variables. A more detailed example based on the class
n0Vn1pp(dir) is shown in Figure 10.

While the reformulation of frame descriptions via two-place pred-
icates is straightforward, it is far less obvious how to account for fea-
ture structure constraints and the axiom of functionality. As far as
type constraints and the type hierarchy are concerned, there seems
to be a chance to simulate them with sets of type predicates. This
approach is pursued in Figure 10. The construction of those type sim-
ulating sets (TSSs), as we call them, could proceed as follows: given
a signature 〈A, T 〉 and a type hierarchy T such as the one in Fig-
ure 10, we say that t ∈ T is simulated by the minimal set of predicates
Pt(?X) for some variable ?X , if Pt(?X) is assembled in the following
way: for every t ′ ∈ T , if t ′ reflexively and transitively dominates t in
T , then t ′(?X) ∈ Pt(?X); else if t and t ′ have no common subtype,
then ~t ′(?X) ∈ Pt(?X), where ‘~’ stands for negation. To give an ex-
ample, Plocomotion(?X) for the type locomotion in the type hierarchy of
Figure 10 would be the set {activity(?X), motion(?X),~causation(?X),
locomotion(?X)}. It is easily seen that the size of some Pt(?X) crucially
depends on the position of t in T , and on the size of T . Note that TSSs
do not fully match conjunctive types, due to the insertion of negated
type predicates.

[205]

Timm Lichte, Simon Petitjean

(a)

0

causation
actor 1

theme 2

cause

activityactor 1

theme 2

effect 4

mover 2

goal 3

(b)
event
.....

..
causation

.

....

..
motion

.

..

..
activity

...

..

.

locomotion

(c)
class n0Vn1pp(dir)
...
<sem>{

actor(?0,?1);
theme(?0,?2);
cause(?0,?5);
actor(?5,?1);
theme(?5,?2);
effect(?0,?4);
goal(?4,?3);

%% causation type
event(?0);

~activity(?0);
~motion(?0);
~locomotion(?0);
causation(?0);

%% activity type
event(?5);
activity(?5);

~causation(?5)
}
...

Figure 10: The feature structure of n0Vn1pp(dir) (repeated from Figure 4),
the global type hierarchy (partially repeated from Figure 2), and its reformu-
lation inside the <sem>-dimension

One basic problem of this approach is that so far XMG does not
interpret the predicates of the <sem>-dimension, but merely accumu-
lates them for later use. Hence XMG allows for, e.g., the coexistence
of predicates theme(x1, x2) and theme(x1, x3) with x2 ̸= x3, which con-
flicts with the required functionality of feature predicates. But even if
XMG was enhanced to verify the functionality of predicates, at least
three disadvantages would remain: (i) TSSs have to be provided by the
grammar writer, (ii) they have to be included in the XMG descriptions
as a whole, and (iii) unifying sister types with a common subtype will
yield a TSS that does not immediately reveal the elementary type of

[206]

Implementing semantic frames with XMG

the common subtype. The latter disadvantage might be more of an
aesthetic kind, but the first and the second one clearly have an impact
on usability. Modifying the type hierarchy in the context of a large
grammar would make necessary a meta-metagrammar, that would au-
tomatically recompute the TSSs and adapt the parts of the XMG de-
scriptions, where TSSs were used. Rather than considerably modifying
and extending the solver of the <sem>-dimension, let alone the avail-
able description language, we present a novel <frame>-dimension in
the next section, which is closely adjusted to the peculiarities of frame
representations and frame composition.

6 the implementation of
typed feature structure descriptions

and constraints

Implementation entails two operations: specification and compilation.
We will deal with the first one in Section 6.2, when introducing spec-
ification languages for feature structure descriptions and constraints.
The compilation of frame models based on these specifications is then
covered in Section 6.3. First, however, the technical prerequisites for
extending the XMG compiler are to be outlined.
6.1 Architecture and extensibility of XMG
The XMG project started in 2003 with the goal of providing a means
to write large scale tree-based grammars, i.e. Tree Adjoining Gram-
mars and Interaction Grammars (Perrier 2000). Originally, the com-
piler was written in Oz/Mozart, a language which is not maintained
anymore. For this reason, and in order to build a compiler more in line
with the project’s ambitions (regarding modularity and extensibility),
it was necessary to restart the implementation from scratch. The new
implementation started in 2010 and is sometimes called XMG-NG or
XMG2.23 The compiler is now written in YAP (Yet Another Prolog)
with bindings to Gecode for solving constraints. The extensibility is
provided by automatic code generation using Python.

With this new version, an XMG compiler can be built from a
combination of elementary compiler units. These elementary units are

23See https://sourcesup.renater.fr/xmg/.

[207]

https://sourcesup.renater.fr/xmg/

Timm Lichte, Simon Petitjean

called bricks, and correspond to the set of compiling steps of a meta-
grammatical language. A brick can correspond to a description lan-
guage (e.g. the TAG description language of the <syn>-dimension),
to a subpart thereof (e.g. the feature structure language used by the
<syn>-dimension), or to a solver (e.g. the tree solver used by the same
dimension). Every part of the compiler is a brick, even the control
language allowing one to express conjunction and disjunction, and a
compiler is built by picking bricks and plugging them together. In this
process, the parser for a new metagrammatical language, and all the
other compiling steps, can be automatically assembled according to
the way the bricks are plugged together, to generate a whole com-
piler for this language. The idea is that every brick holds a fragment
of compiler, dedicated to a fragment of language (described by a set
of context-free rules). Whilst combining these language fragments to
build a full language, the compiler fragments are also contributed to
a full compiler.

Hence, when extending XMG by components that are able to han-
dle typed feature structures, we can take advantage of the compiler’s
modularity to add another module, dedicated to this new task. Such a
module, for example a new dimension, can be equipped with a dedi-
cated specification language and compiler.
6.2 Specification languages
The design of the specification languages that we present in the fol-
lowing subsections is guided by certain goals, ideas and examples.
Firstly, we try to adhere to the notation in the definitions in Section 4
as closely as possible. Secondly, we try to remain consistent with the
coding style that already exists in XMG, though being largely unre-
stricted in principle from a technical point of view. Thirdly, and most
importantly, we aim at specification languages that are inherently con-
sistent, lightweight, transparent, and at the same time flexible. In do-
ing so, we share certain elements from specification languages pro-
posed in other work, but, as far as we know, our combination of these
elements has not been presented elsewhere.

A complete code example based on the type hierarchy from Sec-
tion 2 and the factorization from Section 3 is presented in the Ap-
pendix.

[208]

Implementing semantic frames with XMG

6.2.1 Specification of the signature
For the specification of the signature, that is to say attributes, types
and base labels, the global fields frame_types and frame_attri-
butes are available:
frame_types = {event,activity,motion,causation,...}
frame_attributes = {actor,theme,goal,...}

Base labels correspond to XMG variables and do not need to be de-
clared globally.
6.2.2 Specification language for feature structure descriptions
Feature structure descriptions are specified within the <frame>-di-
mension of a class, which comes with a dedicated specification lan-
guage and compiler. The mode of operation of the compiler is detailed
below in Section 6.3.1. We make use of the following description lan-
guage, which is basically a simple bracket notation:24

<frame>{Descriptions;Descriptions;...}
Descriptions ::= var? ’[’ Description (’,’ Description)* ’]’
Description ::= type | PathEquation | AVPair
PathEquation ::= attr+ ’=’ var? attr+ (’:’ Value)?
AVPair ::= attr+ ’:’ Value
Value ::= var | type | Descriptions

Unsurprisingly, type and attr stand for a type and an attribute from
the signature, while var is an XMG variable. Borrowing the notation
from Definition 7, attr:type is an attribute-value pair. Figure 11
then shows the description language in action, while mimicking the
AVM representation of the frame. Note that the order of descriptions
within a pair of brackets is generally unrestricted, as well as the num-
ber of type expressions (in order to fully support conjunctive types).
The specification language furthermore follows the definitions in Sec-
tion 4 in that it allows for the abbreviated specification of paths,
namely as a sequence of attributes separated by whitespaces. Hence,
[cause:[actor:?1]] and [cause actor:?1] have the same mean-
ing. Path equations are similarly constructed using the equality sym-

24 In the following we use a simplified Backus-Naur form to define the syn-
tax of specification languages. Disjunction (|), optionality (?) and the Kleene
operators (*,+) are encoded as usual.

[209]

Timm Lichte, Simon Petitjean
Figure 11:

Specification
of the frame

component of
n0Vn1pp(dir)

0

causation
actor 1

theme 2

cause

activityactor 1

theme 2

effect 4

mover 2

goal 3

<frame>{
?0[causation,

actor:?1,
theme:?2,
cause:[activity,

actor:?1,
theme:?2],

effect:?4[mover:?2,
goal:?3]

]}

bol =. For example, the meaning of [actor:?1,cause actor:?1]
could also be expressed with [actor=cause actor:?1].25

The use of XMG variables not only enables one to avoid path
equations, and eventually to mimic AVM representations, as we just
demonstrated, but they may also serve to link semantic components
with positions in the syntactic tree, as can be seen from Figure 12,
where the actor role and the NP-slot of the subject are linked in this
way. It shows that XMG variables may play the role of base labels in
labelled feature structure descriptions (see Section 4).

Finally, it might be instructive to compare the specification lan-
guage for feature structure descriptions proposed here with alterna-
tives that are used elsewhere, particularly in grammar development
tools for HPSG. The ALE/TRALE system (Götz et al. 1997; Carpenter
et al. 2003), for example, is rather similar in this respect. The only
major difference is found in the path specification, where attributes
are separated with the colon, which happens to be also the attribute-
value separator. This overloading might be disadvantageous – and in
fact path equations then entail a different way of specifying paths.26

25Note that, in the <syn>-dimension, the symbol = has a different meaning
for historical reasons; there it acts as a attribute-value separator.

26Another case of overloading can be observed in PATR-II (Shieber 1984),
where the operator for path equations and attribute-value pairs coincides. As a
consequence, paths are enclosed by angled brackets to distinguish them from reg-
ular (atomic) values. Nevertheless, the notation of feature structures in Shieber
(1984) bears similarity to our specification language. Indeed, one could say that
we basically merge, and extend, the path and feature structure representations
from PATR-II. See also the PC-PATR manual (McConnel 1995).

[210]

Implementing semantic frames with XMG

...

class Subj

.

....
S
.....

..
VP[E= 0]

...

..
V⋄[E= 0]

.

..

..
NP[I= 1] .

....

0

event
actor 1

class Subj
...
<syn>{

node ?S [cat=s];
node ?SUBJ [cat=np,

top=[i=?1]];
node ?VP [cat=vp,bot=[e=?0]];
node ?V (mark=anchor)

[cat=v,top=[e=?0]];
?S->?SUBJ; ?S->?VP; ?VP->*?V;
?SUBJ>>?VP

}
<frame>{
?0[event,

actor:?1]
}
...

Figure 12:
Implementation
of class Subj

In LKB (Copestake 2002), on the other hand, paths are encoded with
dots instead of colons, while the whitespace acts as the separator in
attribute-value pairs. This being merely an alphabetical variant of our
proposal, there are other differences, notably the types being placed
outside the feature structure brackets. Still, these differences seem
rather marginal.
6.2.3 Specification language for feature structure constraints
We have seen in Section 4 that feature structure constraints can be –
and in practice are – specified in different ways, namely either on
the basis of a set of single constraint statements, or on the basis of
a connected type hierarchy. Therefore one important aspect of the
specification language for feature structure constraints is its versatil-
ity. Instead of dictating what direction to follow, the grammar writer
should have several options at hand from which a suitable one may
be chosen on a case-by-case basis.

Concerning the specification of feature structure constraints,
two options are provided: a loose set of constraint statements, or a
type hierarchy. The former are collected in the global field frame_
constraints:

[211]

Timm Lichte, Simon Petitjean

frame_constraints = {Constraint,Constraint,...}
Constraint ::=

%% type constraint
type+ ’->’ type+ |
%% appropriateness condition
type+ ’->’ Descriptions+ |
%% feature-value constraint
(’[’ (AVPair|PathEquation) (’,’ AVPair|’,’ PathEquation)* ’]’)+

’->’ Descriptions+
Descriptions ::= ’[’ Description (’,’ Description)* ’]’
Description ::= type | PathEquation | AVPair
PathEquation ::= attr+ ’=’ attr+ (’:’ Value)?
AVPair ::= attr+ ’:’ Value
Value ::= type | Descriptions

The specification language for constraints largely integrates the spec-
ification language for (unlabelled) descriptions, while it adds -> as
a symbol for generalized implication (⪯ in Definition 7). Similarly,
a distinction is made between type constraints, appropriateness con-
ditions and feature-value constraints, to which we confine ourselves
in the following. An example is provided in Figure 13. Note that the
antecedent and the consequent of -> may consist of more than one
description separated by whitespaces, in which case the descriptions
form a Cartesian product in the following way: t1 t2 -> t3 t4 iff t1 ->
t3, t1 -> t4, t2 -> t3, t2 -> t4. Furthermore it is possible to reverse ->,
hence to use t2 <- t1 instead of t1 -> t2.

The other option is to specify feature structure constraints in the
shape of a connected type hierarchy. For this the field frame_type_
hierarchy is available and should be used in the following way:
frame_type_hierarchy = {Hierarchy,Hierarchy,...}
Hierarchy ::= ’[’ type (’,’ (Description|Hierarchy))* ’]’
Descriptions ::= ’[’ Description (’,’ Description)* ’]’
Description ::= type | PathEquation | AVPair
PathEquation ::= attr+ ’=’ attr+ (’:’ Value)?
AVPair ::= attr+ ’:’ Value
Value ::= type | Descriptions

An example of this way of specifying a type hierarchy was already
included in Figure 13. Similarly to frame_constraints, only unla-
belled feature structure descriptions are admitted, but unlike frame_
constraints, the implication symbol -> is missing. Instead squared

[212]

Implementing semantic frames with XMG
....

event
.....

..
causation

cause :⊤∧ effect :⊤.

....

..
motion

mover :⊤.

..

..
activity

actor :⊤
...

..

.

locomotion

frame_constraints = {
activity -> event, activity -> [actor:+],
motion -> event, motion -> [mover:+],
causation -> event, causation -> [cause:+,effect:+],
locomotion -> activity motion}

frame_type_hierarchy = {
[event, [activity, actor:+, [locomotion]],

[motion, mover:+, [locomotion]],
[causation, cause:+, effect:+]]}

Figure 13: Examples of the specification of feature structure constraints. The
type hierarchy is a fraction of the type hierarchy shown above in Figure 3 from
Kallmeyer and Osswald (2013)

brackets receive a second interpretation where they correspond to
types. In other words, the set of feature structure constraints enclosed
by a pair of brackets constitute the type constraints and appropri-
ateness conditions for exactly one type. If there are several type ex-
pressions, then they form a conjoined type. And if another pair of
type-denoting brackets is embedded, then this is a subtype of the
embedding type. This squared bracket notation is introduced in the
Hierarchy part of the syntax definition of frame_type_hierarchy,
and it is also the only one that is used in the example in Figure 13.

Note here that frame_type_hierarchy can only express a proper
subset of feature structure constraints, since constraints with feature
structures in their antecedents are excluded from this representational
format in general. Fortunately, constraints like these may be specified
in parallel in the frame_constraints field.

Finally, there is the possibility to set a flag to trigger either the
maximal or the minimal model of feature structure constraints:
use hierarchy (maximal|minimal) with dims (frame)

[213]

Timm Lichte, Simon Petitjean

At the time of writing, minimal models are compiled by default.
6.3 Compilation
Within XMG2, the compilation of feature structure descriptions and
constraints leads to representations which are used in the Prolog com-
ponent of the system. Therefore we will be mainly concerned with
Prolog data structures in the following. Note that, other than with
tree descriptions in the <syn>-dimension, no underspecification is
involved, and therefore the compiler for feature structure descrip-
tions and constraints employs no constraint solving in the proper
sense.
6.3.1 Compilation of feature structure descriptions
Typed feature structures are decomposed into two parts during com-
pilation: types are compiled separately from feature structures. For
the latter, we can reuse the XMG module (or brick) for untyped fea-
ture structures, which is already applied to feature structures in the
<syn>-dimension. The module falls back on attributed variables and
association lists, which are predefined data structures in Prolog. At-
tributed variables behave like common variables, the only difference
being that they come with encapsulated attributes that can be accessed
with dedicated commands only, and for which the standard unification
algorithm can be customized. They are basically used here in order to
replace the standard list (or term) unification by type unification and
set union. Association lists, on the other hand, consist of key-value
pairs with unique keys, thereby supporting the functionality of fea-
tures within feature structures.

When a typed feature structure is declared, an attributed variable
with two attributes is created: one attribute for the type and one for the
feature-value pairs. Types are represented by bit vectors, basically Pro-
log lists over {0,1}, that get unified by means of element-wise Boolean
operations (see the next section). A set of feature-value pairs, on the
other hand, is represented by an association list, whose values can
be attributed variables again and thus induce recursion, i.e. feature
structures of arbitrary depth. When two declared feature structures
are unified, the compiler unifies their attributed variables in two dif-
ferent ways, namely with type unification on their type attribute and
with set union on their association lists.

[214]

Implementing semantic frames with XMG

The check on the well-formedness of the generated structures
is performed dynamically during their creation. This includes check-
ing the appropriateness conditions (i.e. for invalid features or specific
types of feature values) and computing type unifications. Contrary to
the <syn>-dimension, the <frame>-dimension does not come with a
description solver.

When the descriptions in the frame dimension are compiled, a
number of instantiations and unifications of attributed variables is ex-
ecuted. It is important to note that the unification has to be explic-
itly specified by means of variable equations. Hence the compilation
result may consist of several unconnected feature structures, as the
compiler does not search for a minimal connected model that satisfies
the processed feature structure descriptions. Furthermore note that,
as unification is deterministic, there is at most one model for each
accumulation.
6.3.2 Compilation of feature structure constraints
We are dealing with conjunctive types in the sense of Definition 8.
Following a widespread approach (Aït-Kaci et al. 1989; Penn 1999;
Kilbury et al. 2006; Skala et al. 2010), conjunctive types are internally
represented by bit vectors (or “bit strings”), more precisely by Prolog
lists over {0,1}. The length of these lists is at least the number of ele-
mentary types in the signature. Every position in a bit vector stands for
the membership of an elementary type in the conjunctive type, which
means that a bit vector composed only of zeros is the most generic
type (the empty set) and a bit vector composed only of ones is the
conjunction of all elementary types.

We will present two methods to determine the set of valid bit vec-
tors for a set of type constraints. The first one is a brute-force method
that basically applies top-down filtering. The second one is based on
subsumption matrices (Aït-Kaci et al. 1989; Penn 1999) and turns out
to be more efficient. In the following let T = {a, b, c, d} be the set of
elementary types and # a bijective positioning function for bit vectors
with #= {(a, 1), (b, 2), (c, 3), (d, 4)}.

The top-down filtering on bit vector representations proceeds in
the following way:
1. Generate the set of virtual (conjunctive) types, namely the bit vec-

tors that represent the powerset of the set of elementary types:

[215]

Timm Lichte, Simon Petitjean

{[1,0,0, 0], [1,1,0, 0], . . .}.
2. Translate type constraints into bit vector patterns of nonvalid

types: a ⪯ b ⇝ [1, 0, ,]
a ∧ c ⪯⊥ ⇝ [1, , 1,]
a ∧ b ⪯ d ⇝ [1, 1, , 0]

3. Maximal model: Filter the set of bit vectors (representing the vir-
tual types) based on the bit vector patterns in order to identify
the valid types. Consequently, if no constraint is expressed, the
set of valid types is the powerset of elementary types.

To compute the minimal model it needs an extra step:
3′. Minimal model: Translate elementary types and conjunctive types

(on the left side of type constraints) into bit vector patterns of de-
clared types: a ⇝ [1, , ,]

a ∧ b ⪯ d ⇝ [1, 1, ,]

Then, for each declared type, determine the set of compatible bit
vectors from the maximal model and select the bit vector with the
fewest 1s. If there is more than one such bit vector, compute the
bitwise AND over all these bit vectors and add the resulting bit
vector to the set of declared types.

4. Assign bit vector patterns to elementary types: a → [1, , ,],
b→ [, 1, ,], …

5. Based on the set of valid bit vectors, unification of two types pro-
ceeds as list unification, after which the set of valid types is fil-
tered with the resulting bit vector pattern. Finally the matching
bit vector with the fewest 1s gets selected.

It is not hard to see that this method gets intractable for larger sets of
elementary types, since the set of virtual types grows exponentially,
namely with 2n where n is the number of elementary types.

Fortunately, methods based on subsumption matrices tend to
be much more space-efficient, although they still come with at least
quadratic growth in terms of the number of elementary types. In the
following, we adapt the procedure of Aït-Kaci et al. (1989) (see also
Penn 1999), and only add to it anonymous types and maximal models:
1. Generate a boolean matrix where rows and columns correspond

to elementary types and anonymous types that are subject to type

[216]

Implementing semantic frames with XMG

constraints. An element ai j in the ith row and the jth column has
value 1 iff t i ⪯ t j is a valid type constraint.27 Otherwise it has
value 0. For example, given type constraints d ⪯ c and a ∧ b ⪯ d,
the following preliminary matrix is generated:

a b c d a ∧ b

a 1 0 0 0 1
b 0 1 0 0 1
c 0 0 1 1 0
d 0 0 0 1 1
a ∧ b 0 0 0 0 1

2. Multiply the matrix by itself until a fixpoint is reached.28 This

ensures that transitive subsumption relations are taken into ac-
count. When applied to the preliminary matrix above, we receive
the following matrix, where c furthermore subsumes a ∧ b:

a b c d a ∧ b

a 1 0 0 0 1
b 0 1 0 0 1
c 0 0 1 1 1
d 0 0 0 1 1
a ∧ b 0 0 0 0 1

3. Each type is assigned two vectors: a subsumption vector taken

from the row, and an ISA vector taken from the column (which
was also used in the previous filtering approach). Hence the bit
vector representation for type a consists of the subsumption vec-
tor [1,0,0, 0,1] and the ISA vector [1,0, 0,0, 0]. The difference of
the minimal and maximal model emerges in the use of these vec-
tor pairs.

4. Minimal model: During unification the subsumption vectors are
combined with bitwise AND in order to determine the most gen-
eral common subtype (Aït-Kaci et al. 1989). To give an example,
the unification of the subsumption vectors assigned to a and d
results in the subsumption vector of a ∧ b:

27We tacitly assume that tautologies (e.g. t i ⪯ t i and t i ∧ t j ⪯ t i) are taken
into account.

28According to Aït-Kaci et al. (1989), this takes at most log2n iterations.

[217]

Timm Lichte, Simon Petitjean

a [1,0, 0,0, 1]
d [0,0, 0,1, 1]
a ∧ b [0,0, 0,0, 1]

Otherwise, if the resulting bit vector was not found among the bit
vectors of the matrix, the unification does not necessarily fail. It
only fails if the resulting bit vector only consists of 0s.

4′. Maximal model: During unification, the ISA vectors are combined
with bitwise OR, while the subsumption vectors are ignored.
Hence the unification of a and d yields an ISA vector not found
in the matrix:

a [1,0,0, 0,0]
d [0,0,1, 1,0]
(a ∧ d) [1,0, 1, 1, 0]

In order to account for constraints on anonymous types, further
unification steps can be necessary. For example, upon unifying
the ISA vectors of a and b, the ISA vector of a∧ b has to be added
as well:

a [1,0, 0,0, 0]
b [0,1, 0,0, 0]

[1,1, 0,0, 0]
a ∧ b [1,1, 1,1, 1]

[1,1, 1,1, 1]

Types that are explicitly ruled out in the type constraints are ac-
counted for by means of extra filtering. For example, a type con-
straint such as a ∧ d ⪯ ⊥ would give rise to a filter based on the
pattern [1, , , 1,], which would be applied to the resulting ISA
vector after unification.
For each one of the computed valid types, i.e. the assigned ISA

vectors, XMG also computes the set of appropriateness conditions.
Once again, this step uses the technique of vector pattern matching:
when a valid type matches a pattern corresponding to a appropriate-
ness condition, the appropriateness condition is added to the list of
appropriateness conditions for this type. These lists can be used in
other precompilation steps to check for cyclicity in the feature struc-
ture constraints, and for their incompatibility.

[218]

Implementing semantic frames with XMG

At the end of the compilation process, the bit vectors can be easily
mapped back to conjunctive types and the corresponding elementary
type, if it exists.

7 discussion and conclusion

In this article, we presented recent efforts to extend the grammar engi-
neering framework XMG in order to deal with frame representations
in the format of typed feature structures. Because metagrammatical
factorization involves the composition of feature structures and types
along given feature structure constraints, the full power of unification
on typed feature structures is needed in XMG. We showed that the
simulation of typed feature structures within the <sem>-dimension
comes with severe disadvantages concerning the implementation of
types and type unification. Therefore a new toolkit was developed,
including a novel <frame>-dimension, which is adjusted to the pecu-
liarities of typed feature structures and type unification, and which
should eventually reduce the burden for the grammar writer. The ar-
ticle explained the main components of this toolkit: the specification
language, for which a comprehensive code example is included in the
appendix, and the compilation procedure, which uses bit vector en-
codings of types.

While the focus was on the theoretic foundation of the proposed
extension and its proof of concept, aspects of computational complex-
ity and the possibilities for optimization (e.g. regarding the size of bit
vectors) were largely set aside. Undoubtedly, there is room for future
improvements of the compiler. It has to be stressed, however, that
compilation with XMG is not as time-critical as parsing, because XMG
compilation is part of the preprocessing (Kallmeyer and Osswald 2013,
56). Nevertheless it would be interesting to see how compilation time
scales as a function of the size and structure of the type hierarchy,
and whether this is relevant given theoretically justified conceptual
type systems. As no complex examples of the latter kind are known to
us, this remains to be seen.29 We are aware, of course, that the issue
of complexity will become more critical once these resources are used
for parsing. Note that, while the presented extensions to XMG are fully

29 Just for comparison, Skala and Penn (2011) count some 3412 elementary
types in the English Resource Grammar (ERG, Copestake and Flickinger 2000).

[219]

Timm Lichte, Simon Petitjean

operational in a recent prototype, a compatible lexical component as
well as a parser have yet to be implemented.

Regardless of complexity issues, it could be useful to separate
the sources and compilation procedures for global feature structure
constraints on the one hand, and local feature structure descriptions
within the <frame>-dimension on the other hand. The reason is that
at some point the feature structure constraints should stabilize, given
that they represent cognitive concepts, and therefore constant recom-
pilation triggered by changes in other parts of themetagrammar would
be superfluous. At the current stage of research, however, as the devel-
opment of frame representations is still ongoing, we think that meta-
grammars are the right place to implement and to experiment with
feature structure constraints.

Finally it remains to be stressed that the combination of the
<frame>-dimension with the <syn>-dimension is by no means priv-
ileged. The <frame>-dimension can also be used to implement stan-
dalone frames, or to implement recent frame-based accounts to mor-
phological decomposition (e.g. Zinova and Kallmeyer 2012), thereby
considerably widening the scope of XMG.

appendix:
complete code example

The following code example covers the implementation of the type
hierarchy in Figure 3 and the factorization of the prepositional object
construction in Figures 4 and 5.
%%
% HEADER:
%%
type MARK = {subst, nadj, foot, anchor, coanchor, flex, lex}
type CAT = {np,v,vp,s,pp}
type VAR !
property mark : MARK
feature cat : CAT
feature top : VAR
feature bot : VAR
feature i : VAR

[220]

Implementing semantic frames with XMG

feature e : VAR
feature path : VAR

frame_types = {event,activity,motion,causation,translocation,
onset-causation,extended-causation,locomotion,bounded-
translocation,bounded-locomotion}

frame_attributes = {actor,theme,goal,mover,path,cause,effect}
frame_constraints = { activity -> event,

activity -> actor:+,
motion -> event,
motion -> mover:+,
causation -> event,
causation -> cause:+,
causation -> effect:+,
[activity,motion] -> actor=mover,
translocation -> motion,
translocation -> path:+,
bounded-translocation -> translocation,
bounded-translocation -> goal:+,
locomotion -> activity translocation,
bounded-locomotion -> locomotion bounded-translocation

}
%%
% TREE FRAGMENTS:
%%
class VSpine
export ?V
declare ?VP ?V ?X0
{<syn>{

node ?VP [cat=vp] {
node ?V (mark=anchor)[cat=v]

} } }
%%
class Subj
export ?V ?X0
declare ?S ?NP ?VP ?V ?X0 ?X1
{ <syn>{

node ?S [cat = s];
node ?NP (mark=subst)[cat=np,top=[i=?X1]];
node ?VP [cat=vp,bot=[e=?X0]];
node ?V (mark=anchor)[cat=v,top=[e=?X0]];
?S -> ?NP; ?S -> ?VP; ?VP ->* ?V; ?NP >> ?VP

};

[221]

Timm Lichte, Simon Petitjean

<frame> {
?X0[event,

actor:?X1]
} }
%%
class DirObj
export ?V ?X0
declare ?VP ?NP ?V ?X0 ?X2
{ <syn>{
node ?VP [cat = vp,bot=[e=?X0]]{

node ?V [cat=v,top=[e=?X0]]
,,,node ?NP (mark=subst)[cat=np,top=[i=?X2]]

} };
<frame>{
?X0[event,goal:?X2]
|
?X0[event,theme:?X2]

} }
%%
class DirPrepObj
export ?V ?X0
declare ?VP1 ?VP2 ?PP ?V ?X0 ?X1 ?X2 ?X3
{ <syn>{
node ?VP1 [cat = vp,bot=[path=?X3]]{

node ?VP2 [cat = vp,bot=[path=?X3]]{
node ?V (mark=anchor)[cat=v]}

node ?PP (mark=subst)[cat=pp,top=[i=?X1,e=?X0]]
} };
<frame>{
?X0[bounded-translocation,

goal:?X1,
path:?X3]

} }
%%
% TREE TEMPLATES:
%%
class n0V
export ?V ?X0
declare ?V ?SSubj ?Spine ?X0
{
?SSubj = Subj[];
?Spine = VSpine[];
?SSubj.?V = ?V;

[222]

Implementing semantic frames with XMG

?Spine.?V = ?V;
?SSubj.?X0 =?X0

}
%%
class n0Vn1
import n0V[]
declare ?Obj
{

?Obj = DirObj[];
?Obj.?V = ?V

}
%%
class n0Vn1pp-dir
import n0Vn1[]
declare ?PPObj ?X1 ?X2 ?X3 ?X4
{

?PPObj = DirPrepObj[];
?PPObj.?V = ?V;
?PPObj.?X0 = ?X4;
<frame>{
?X0[causation,
actor:?X1,
theme:?X2,
cause:[activity,

actor:?X1,
theme:?X2],

effect:?X4[
mover:?X2,
goal:?X3]

]
} }
%%
% EVALUATION:
%%
value n0V
value n0Vn1
value n0Vn1pp-dir

[223]

Timm Lichte, Simon Petitjean

references
Anne Abeillé and Owen Rambow (2000a), Tree Adjoining Grammar: An
overview, in Abeillé and Rambow (2000b), pp. 1–68.
Anne Abeillé and Owen Rambow, editors (2000b), Tree Adjoining Grammars:
Formalisms, linguistic analyses and processing, number 107 in CSLI Lecture Notes,
CSLI Publications, Stanford, CA.
Hassan Aït-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr (1989),
Efficient implementation of lattice operations, ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(1):115–146.
Lawrence Barsalou (1992), Frames, concepts, and conceptual fields, in
Adrienne Lehrer and Eva Feder Kittey, editors, Frames, fields, and contrasts:
New essays in semantic and lexical organization, pp. 21–74, Lawrence Erlbaum
Associates, Hillsdale, NJ.
Tilman Becker (1994), HyTAG: A new type of Tree Adjoining Grammars for
hybrid syntactic representations of free word order languages, Ph.D. thesis,
Universität des Saarlandes,
http://www.dfki.de/~becker/becker.diss.ps.gz.
Tilman Becker (2000), Patterns in metarules for TAG, in Abeillé and Rambow
(2000b), pp. 331–342.
Johan Bos (1996), Predicate logic unplugged, in Paul Dekker and Martin
Stokhof, editors, Proceedings of the tenth Amsterdam Colloquium, pp. 133–143,
Amsterdam, Netherlands.
Marie-Hélène Candito (1996), A principle-based hierarchical representation
of LTAGs, in Proceedings of the 16th International Conference on Computational
Linguistics (COLING 96), Copenhagen, Denmark,
http://aclweb.org/anthology-new/C/C96/C96-1034.pdf.
Bob Carpenter (1992), The logic of typed feature structures with applications to
unification grammars, logic programs and constraint resolution, number 32 in
Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, Cambridge, UK.
Bob Carpenter, Gerald Penn, and Mohammad Haji-Abdolhosseini
(2003), The Attribute Logic Engine user’s guide with TRALE extensions, version 4.0
beta edition.
Bob Carpenter and Carl Pollard (1991), Inclusion, disjointness and choice:
The logic of linguistic classification, in Proceedings of the 29th annual meeting of
the Association for Computational Linguistics, pp. 9–16, Berkeley, CA,
http://acl.ldc.upenn.edu/P/P91/P91-1002.pdf.
Ann Copestake (2002), Implementing typed feature structure grammars, CSLI
Publications, Stanford, CA.

[224]

http://www.dfki.de/~becker/becker.diss.ps.gz
http://aclweb.org/anthology-new/C/C96/C96-1034.pdf
http://acl.ldc.upenn.edu/P/P91/P91-1002.pdf

Implementing semantic frames with XMG

Ann A. Copestake and Dan Flickinger (2000), An open source grammar
development environment and broad-coverage English grammar using HPSG, in
Proceedings of the second Conference on Language Resources and Evaluation (LREC
2000), Athens, Greece.
Benoit Crabbé and Denys Duchier (2005), Metagrammar redux, in Henning
Christiansen, Peter Rossen Skadhauge, and Jørgen Villadsen, editors,
Constraint solving and language processing, number 3438 in Lecture Notes in
Computer Science, pp. 32–47, Springer, Berlin, Germany.
Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and
Yannick Parmentier (2013), XMG: eXtensible MetaGrammar, Computational
Linguistics, 39(3):1–66,
http://hal.archives-ouvertes.fr/hal-00768224/en/.
Denys Duchier, Brunelle Magnana Ekoukou, Yannick Parmentier, Simon
Petitjean, and Emmanuel Schang (2012), Describing morphologically rich
languages using metagrammars: A look at verbs in Ikota, in Workshop on
Language Technology for Normalisation of Less-Resourced Languages (SALTMIL 8 -
AfLaT 2012), pp. 55–59, Istanbul, Turkey, http://www.tshwanedje.com/
publications/SaLTMiL8-AfLaT2012.pdf#page=67.
Charles J. Fillmore (1982), Frame Semantics, in The Linguistic Society of
Korea, editor, Linguistics in the morning calm, pp. 111–137, Hanshin Publishing,
Seoul, South Korea.
Charles J. Fillmore (2007), Valency issues in FrameNet, in Thomas Herbst
and Katrin Götz-Votteler, editors, Valency: Theoretical, descriptive and
cognitive issues, pp. 129–162, Mouton de Gruyter, Berlin, Germany.
Dan Flickinger (2000), On building a more effcient grammar by exploiting
types, Natural Language Engineering, 6(1):15–28.
Anette Frank and Josef van Genabith (2001), GlueTag. Linear Logic based
Semantics for LTAG – and what it teaches us about LFG and LTAG, in Miriam
Butt and Tracy Holloway King, editors, Proceedings of the LFG01 conference,
CSLI Publications, Hong Kong.
Claire Gardent and Laura Kallmeyer (2003), Semantic construction in
Feature-Based TAG, in Proceedings of the 10th meeting of the European Chapter of
the Association for Computational Linguistics, pp. 123–130.
Adele Goldberg (2006), Constructions at work. The nature of generalizations in
language, Oxford University Press, Oxford, UK.
Thilo Götz, Detmar Meurers, and Dale Gerdemann (1997), The ConTroll
manual, Seminar für Sprachwissenschaft, Universität Tübingen, Tübingen,
Germany,
http://www.sfs.uni-tuebingen.de/controll/controll-manual.ps.gz,
draft of 17. September 1997 for ConTroll v.1.0b and XTroll v.5.0b.

[225]

http://hal.archives-ouvertes.fr/hal-00768224/en/
http://www.tshwanedje.com/publications/SaLTMiL8-AfLaT2012.pdf#page=67
http://www.tshwanedje.com/publications/SaLTMiL8-AfLaT2012.pdf#page=67
http://www.sfs.uni-tuebingen.de/controll/controll-manual.ps.gz

Timm Lichte, Simon Petitjean

Aravind K. Joshi and Yves Schabes (1997), Tree-Adjoining Grammars, in
Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 3, pp. 69–124, Springer, Berlin, Germany.
Aravind K. Joshi, K.Vijay Shanker, and David Weir (1990), The convergence
of mildly context-sensitive grammar formalisms, Technical Report
MS-CIS-90-01, Department of Computer and Information Science, University of
Pennsylvania, http://repository.upenn.edu/cis_reports/539/.
Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier,
Johannes Dellert, and Kilian Evang (2008), TuLiPA: Towards a
multi-formalism parsing environment for grammar engineering, in Proceedings
of the workshop on Grammar Engineering Across Frameworks (GEAF ’08), pp. 1–8,
Manchester, UK.
Laura Kallmeyer and Rainer Osswald (2012a), An analysis of directed
motion expressions with Lexicalized Tree Adjoining Grammars and frame
semantics, in Luke Ong and Ruy de Queiroz, editors, Proceedings of WoLLIC,
number 7456 in Lecture Notes in Computer Science (LNCS), pp. 34–55,
Springer, Berlin, Germany.
Laura Kallmeyer and Rainer Osswald (2012b), A frame-based semantics of
the dative alternation in Lexicalized Tree Adjoining Grammars, in Christopher
Piñón, editor, Empirical Issues in Syntax and Semantics 9, pp. 167–184, Paris,
France.
Laura Kallmeyer and Rainer Osswald (2013), Syntax-driven semantic frame
composition in Lexicalized Tree Adjoining Grammar, Journal of Language
Modelling, 1:267–330.
Paul Kay (2002), An informal sketch of a formal architecture for Construction
Grammar, Grammars, 5:1–19.
James Kilbury, Wiebke Petersen, and Christof Rumpf (2006),
Inheritance-based models of the lexicon, in Dieter Wunderlich, editor,
Advances in the theory of the lexicon, number 13 in Interface Explorations,
pp. 429–478, De Gruyter, Berlin, Germany.
Timm Lichte, Alexander Diez, and Simon Petitjean (2013), Coupling trees,
words and frames through XMG, in Proceedings of the ESSLLI 2013 workshop on
high-level methodologies for grammar engineering, Düsseldorf, Germany.
Robert Malouf, John Carroll, and Ann Copestake. (2000), Efficient
feature structure operations without compilation, Natural Language Engineering,
6(1):29–46.
Stephen McConnel (1995), PC-PATR reference manual,
http://www.sil.org/pcpatr/manual/pcpatr.html, version 0.97a9.
Rainer Osswald (2003), A logic of classification with applications to linguistic
theory, Dissertation, FernUniversität Hagen.

[226]

http://repository.upenn.edu/cis_reports/539/
http://www.sil.org/pcpatr/manual/pcpatr.html

Implementing semantic frames with XMG

Rainer Osswald and Robert D. Van Valin, Jr. (2014), FrameNet, frame
structure, and the syntax-semantics interface, in Thomas Gamerschlag, Doris
Gerland, Rainer Osswald, and Wiebke Petersen, editors, Frames and
concept types, number 94 in Studies in Linguistics and Philosophy, pp. 125–156,
Springer, Cham, Switzerland.
Gerald Penn (1999), An optimized Prolog encoding of typed feature structures,
Arbeitspapiere des SFB 340 138, University of Tübingen.
Guy Perrier (2000), Interaction Grammars, in Proceedings of the 18th
International Conference on Computational Linguistics (COLING 2000),
pp. 600–606, Saarbrücken, Germany.
Wiebke Petersen (2007), Representation of concepts as frames, The Baltic
International Yearbook of Cognition, Logic and Communication, 2:151–170.
Wiebke Petersen and Tanja Osswald (2014), Concept composition in
frames: Focusing on genitive constructions, in Thomas Gamerschlag, Doris
Gerland, Rainer Osswald, and Wiebke Petersen, editors, Frames and
concept types, number 94 in Studies in Linguistics and Philosophy, pp. 243–266,
Springer, Cham, Switzerland.
Carlos A. Prolo (2002), Generating the XTAG English grammar using
metarules, in Proceedings of the 19th International Conference on Computational
Linguistics (COLING 2002), pp. 814–820, Taipei. Taiwan.
Stuart M. Shieber (1984), The design of a computer language for linguistic
information, in Proceedings of the 10th International Conference on Computational
Linguistics and 22nd annual meeting of the Association for Computational
Linguistics, pp. 362–366, Stanford, CA,
http://www.aclweb.org/anthology/P84-1075.
Stuart M. Shieber and Yves Schabes (1990), Synchronous Tree-Adjoining
Grammars, in Proceedings of the 13th International Conference on Computational
Linguistics (COLING 1990), pp. 253–258, Helsinki, Finland.
Matthew Skala, Victoria Krakovna, János Kramár, and Gerald Penn
(2010), A generalized-zero-preserving method for compact encoding of concept
lattices, in Proceedings of the 48th annual meeting of the Association for
Computational Linguistics, pp. 1512–1521, Uppsala, Sweden.
Matthew Skala and Gerald Penn (2011), Approximate bit vectors for fast
unification, in Makoto Kanazawa, András Kornai, Marcus Kracht, and
Hiroyuki Seki, editors, The mathematics of language, number 6878 in Lecture
Notes in Computer Science, pp. 158–173, Springer, Berlin, Germany.
Matthew Stone and Christine Doran (1997), Sentence planning as
description using Tree Adjoining Grammar, in Proceedings of the eighth
conference of the European Chapter of the Association for Computational Linguistics
(EACL’97), pp. 198–205.

[227]

http://www.aclweb.org/anthology/P84-1075

Timm Lichte, Simon Petitjean

Fei Xia, Martha Palmer, and K. Vijay-Shanker (2010), Developing
Tree-Adjoining Grammars with lexical descriptions, in Srinivas Bangalore
and Aravind K. Joshi, editors, Using complex lexical descriptions in natural
language processing, pp. 73–110, MIT Press, Cambridge, UK.
Yulia Zinova and Laura Kallmeyer (2012), A frame-based semantics of
locative alternation in LTAG, in Proceedings of the 11th international workshop on
Tree Adjoining Grammars and Related Formalisms (TAG+11), pp. 28–36, Paris,
France, http://www.aclweb.org/anthology-new/W/W12/W12-4604.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[228]

http://www.aclweb.org/anthology-new/W/W12/W12-4604
http://creativecommons.org/licenses/by/3.0/

	Introduction
	A frame-based semantics for LTAG
	Factorization of tree templates and frames
	Base-labelled typed feature structures: formal definitions
	A brief introduction to XMG
	The implementation of typed feature structure descriptions and constraints
	Architecture and extensibility of XMG
	Specification languages
	Specification of the signature
	Specification language for feature structure descriptions
	Specification language for feature structure constraints

	Compilation
	Compilation of feature structure descriptions
	Compilation of feature structure constraints

	Discussion and conclusion

