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ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1.
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A cognitively plausible model
for grammar induction

Roni Katzir
Tel Aviv University

abstract
Keywords:
Universal
Grammar,
learning,
Minimum
Description-
Length

This paper aims to bring theoretical linguistics and cognition-general
theories of learning into closer contact. I argue that linguists’ no-
tions of rich Universal Grammars (UGs) are well-founded, but that
cognition-general learning approaches are viable as well and that the
two can and should co-exist and support each other. Specifically, I use
the observation that any theory of UG provides a learning criterion –
the total memory space used to store a grammar and its encoding of the
input – that supports learning according to the principle of Minimum
Description-Length. This mapping from UGs to learners maintains a
minimal ontological commitment: the learner for a particular UG uses
only what is already required to account for linguistic competence
in adults. I suggest that such learners should be our null hypothesis
regarding the child’s learning mechanism, and that furthermore, the
mapping from theories of UG to learners provides a framework for
comparing theories of UG.

1 introduction

A central task in theoretical linguistics (TL) is constructing theories
of competence – grammars (alternatively seen as computer programs)
that have an opinion (a simple yes/no or a more fine-grained eval-
uation) about possible inputs. A broader goal of TL is characterizing
the range of possible grammars that adult speakers can have. Thus,
linguists agree that humans can mentally represent grammars from a
set of possible candidates and use these grammars to analyze inputs.

Journal of Language Modelling Vol 2, No 2 (2014), pp. 213–248
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Of course, much disagreement remains about the correct competence
theories and the characterization of the range of theories. The charac-
terization of the range of allowable grammars – which can be thought
of as a reference machine into which individual grammars are writ-
ten – is often referred to as Universal Grammar (UG).1 Starting with
UG, the child reaches a particular grammar through exposure to a lin-
guistic environment. As pointed out by Chomsky (1965), this view
assigns a central role to learnability in investigating UG: a linguistic
theory must specify a range of grammars that can be attained using
the cognitive machinery and data available to the child. Moreover,
UG can provide an evaluation metric that allows the child to com-
pare potential grammars given the data. In its original formulation,
this evaluation metric was stated in terms of simplicity, a notion that
– though defined with respect to a concrete UG – is also often seen as
a cognition-general (CG) principle.
One might hope, then, that TL theories of competence and CG

theories of learning would have a close relationship: that theories of
UG would map onto theories of learning through an evaluation metric,
and that theories of learning would restrict the choice of UG. In prac-
tice, however, the evaluation metric has been largely abandoned, and
the two domains have never succeeded in constraining one another.
Worse, TL and CG approaches have grown to be considered mutually
incompatible. There are various different aspects to this ostensible in-
compatibility, such as whether linguistic knowledge involves struc-
tured, rule-like representations or not, whether probabilities play a
role, and so on. Perhaps most fundamental among the perceived dif-
ferences is how the two approaches view learning. TL, following a
more hopeful beginning, has adopted a deeply skeptical stance that
rejects the possibility of any meaningful learning and relegates most
of the linguistic ability of adults to the innate component, and often
to UG itself (that is, to the reference machine). CG, on the other hand,

1Elsewhere in the literature, UG is sometimes used to refer to the range of
possible grammars (rather than to its intentional characterization as a reference
machine), and sometimes it is used to refer to the combination of the range of
possible grammars and the learning mechanism. Here UG will refer strictly to the
reference machine. The term UG has sometimes been associated with approaches
that assume a substantial innate component. Here I will use it neutrally – this
paper makes no claims as to the correct theory of UG.
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tends to be confident of learning and skeptical of the innate compo-
nent (and especially of UG). The perceived incompatibility between
TL and CG has led over the years to a growing divide between the two
disciplines.
Over the past decade or so, the Bayesian program for cognition

and the closely related framework of Minimum Description-Length
(MDL) have brought the two disciplines closer by articulating CG
views that can integrate probabilistic reasoning with structured, sym-
bolic representations. In the other direction, proposals such as Marcus
(2000) and Yang (2004, 2010) offer TL perspectives that connect
with CG approaches to learning. But a sizable gap remains: even CG-
oriented TL proposals such as those of Marcus and Yang still question
the ability of general learningmechanisms to generalize correctly from
the data, embracing instead restrictive theories of the innate compo-
nent; and even TL-oriented CG proposals such as Goldsmith (2001),
Dowman (2007), Foraker et al. (2009), and Perfors et al. (2011) still
emphasize the power of general-purpose learning mechanisms and
question whether the innate component should be quite as rich as TL
would have it.
This paper has two goals. First, I wish to explain why the skepti-

cism in both directions is misguided. In particular, I will explain why
linguists believe in a complex innate component – including a non-
trivial UG – even in the face of powerful statistical learners. I will do
this by presenting two kinds of evidence that linguists rely on that
have nothing to do with questions of learnability in principle. I will
also explain why many cognitive scientists are confident that learning
is a real possibility, despite the arguments against learning in the TL
literature. My second goal is to offer a TL view that treats the learn-
able and the innate as mutually supportive rather than conflicting. The
ability of CG mechanisms to learn, on this view, is interpreted not as a
reason to reduce the innate component – though it will be a reason to
bring back into consideration theories that leave much to be learned
– but rather as a way to extract nuanced predictions from competing
theories of that component.
I start, in Section 2, by reviewing the history of the divide between

TL and CG, focusing first on the roots of TL pessimism regarding learn-
ing (Section 2.1) and then on CG optimism regarding the same (Section
2.2). In Section 3 I evaluate the two positions and argue that TL was
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wrong to dismiss learning but right to emphasize potentially restrictive
UGs, while CG was right to emphasize learning but wrong to dismiss
potentially restrictive UGs (Section 3.1). In Section 3.2 I explain how
the co-existence of rich UGs and meaningful learning is not only pos-
sible but in fact a good state of affairs, one that allows us to revive the
old hope of mutual collaboration from the early days of generative
grammar. In Section 3.3 I explain how any fully explicit theory of UG
provides us with a CG learner – specifically, a Minimum Description-
Length (MDL) learner – and that this provides both a starting point for
the study of learning and a basis for comparing competing theories of
UG. Section 4 illustrates this mapping from UG to MDL learner using
a simple UG and a couple of toy examples. Section 5 concludes.

2 tl and cg: a brief history of the schism

2.1 TL: Skepticism about learning
2.1.1 Identification in the limit
In an influential paper, Gold (1967) introduced a learning paradigm,
identification in the limit (iitl), and proved that learning of this kind
is impossible even in seemingly simple cases. In iitl, a learner g is
presented with a sequence (or text) T of elements from a language L,
where L is known to be taken from a set C of candidate languages.
After each new element in T is presented, g guesses a language in C .
If after a certain point all of g’s guesses are the same correct guess (in
this case, L), we will say that g has identified L in the limit from T . If
g can identify in the limit any L ∈ C based on any fair text in L (that is,
a text in L in which every w ∈ L appears at some point, and in which
nothing appears that is not in L), we will say that g identifies C in the
limit. If such a g exists, we will say that C is identifiable in the limit.
Certain simple families of languages are iitl. For example, the set

of all finite languages over a finite alphabet Σ is iitl: if g guesses at
each point the language that is the union of all the elements in T
that have been encountered so far, it will always identify the source
language in the limit. Similarly, any C that can be written as {Li |i ≥
1}, where Li ⊂ Li+1 for all i, is iitl: g can identify C in the limit by
always guessing the minimal Li that contains all the elements in T that
have been encountered so far. Changing these families of languages
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only slightly makes them not iitl. For example, adding a single infinite
language to the set of all finite languages makes the set not iitl. In
the second, more general example, adding L∞ =

∪
Li to C makes

the result (as well as any set that contains it) not iitl. To see why,
assume to the contrary that C ′ = C ∪ {L∞} is iitl. Let g be a learner
that identifies C ′ in the limit. We can construct a text T that starts as a
text in L1 up until the first point where g guesses L1 (such a point exists
by assumption), continues as a text in L2 up until the first following
point where g guesses L2, then continues as a text in L3 until g guesses
L3, and so on. The result is a text in L∞, but g makes infinitely many
different guesses and so never converges on a correct answer, contrary
to assumption.
Gold’s setting rules out learning even in intuitively very simple

families of languages, like the set of all regular languages.2 For the-
oretical linguists, this has confirmed a growing skepticism (already
discussed explicitly in Chomsky 1965, pp. 56–58) about the role of
learning in linguistic competence. The skepticism was grounded in a
general sense that learning is hard and that the data available to the
child are insufficient. Gold’s results can be seen as providing formal
justification for this skepticism: assuming iitl is an appropriate model
for language learning in humans, the set of possible languages must be
severely restricted. Osherson et al. (1984) formulate further assump-
tions about human learning that, if correct, would entail an even more
restrictive version UG in which the task of the learner is reduced to
choosing from a finite set of candidate languages. Examples of linguis-
tic approaches that adopt the finite version of UG are the Principles
and Parameters framework of Generative Grammar (P&P; Chomsky
1981) and Optimality Theory (OT; Prince and Smolensky 1993).
It is worth noting that, while a restricted enough UG addresses

the theoretical problem of iitl, even the finite version does not guaran-
2A full characterization of when a family of languages is iitl is provided by

Angluin (1980). Algorithms that guarantee iitl for various classes of languages
include Angluin (1982), Koshiba et al. (1997), Clark and Eyraud (2007), Heinz
(2010), and Yoshinaka (2011). Note that arguments such as Gold’s show that,
under the relevant assumptions, no learner can succeed. This is a stronger re-
sult than showing that a particular learner cannot succeed (such as the problem
identified by Braine 1971, Baker 1979, and Dell 1981 for the specific evaluation
metric of Chomsky and Halle 1968).
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tee an easy task in practice, since a finite space can still be dauntingly
large. In the P&P framework, for example, there are 2n settings, where
n is the number of parameters (on the standard assumption that pa-
rameters are binary), and in OT there are n! different constraint rank-
ings, where n is the number of constraints. Noise and cognitive limita-
tions further complicate the task. See Clark and Roberts (1993), Gib-
son and Wexler (1994), Niyogi and Berwick (1996), and Yang (2002)
for attempts to tackle the practical issues of acquisition within P&P and
Tesar and Smolensky (1998), Boersma and Hayes (2001), and Magri
(2013) for a similar discussion within OT.
2.1.2 Poverty of the stimulus
Much of the disagreement between TL and CG has centered on a form
of argument known as the argument from the poverty of the stimulus
(POS), involving some property P that humans demonstrate in their
language in spite of apparently insufficient support for P in the data.
To cite a well-known (and highly controversial) example, English-
speaking children will form a yes/no question by fronting the struc-
turally highest auxiliary rather than the leftmost one, thus forming the
yes/no interrogative version of The monkey that is jumping can sing by
asking Can the monkey that is jumping sing? rather than *Is the monkey
that jumping can sing? (where ∗ marks ungrammaticality). They do so,
it appears, despite hearing only simpler yes/no questions such as Is
the monkey jumping? (from The monkey is jumping) and Can the monkey
sing? (from The monkey can sing), where structurally highest and left-
most amount to the same thing. This has been taken to show that the
innate component ensures this choice by making available structure-
dependent generalizations but not rules that depend on linear order.
See Berwick et al. (2011) and Clark and Lappin (2011), as well as ref-
erences therein, for discussion.
While the form of POS arguments is clear enough, it is often dif-

ficult to establish any particular POS argument for humans in prac-
tice, even in a simple case such as the one just mentioned.3 For ex-
ample, how can we determine just what kind of evidence would suf-
fice to make the relevant choice empirically? Could there be indirect

3 In organisms for which it is possible to conduct controlled POS experiments,
the situation is different, as Dyer and Dickinson (1994)’s work on honeybees
shows.
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sources of information that would predispose the child against forming
ordering-based generalizations? And how sure are we that we know
exactly what data the subjects have encountered over those few years
prior to the experiment? Some progress has been made on these ques-
tions (see Legate and Yang (2002), Lidz et al. (2003), Yang (2010),
and Hsu and Chater (2010) for thoughts on quantifying the informa-
tion available to the the child; see Crain and Pietroski (2002) for how
POS can be constructed from developmental stages in which children
exhibit very specific linguistic knowledge that is incompatible with
their ambient language but compatible with other natural languages;
and see Wilson (2006) for an experimental paradigm designed to test
the child’s generalization beyond the data in POS situations), but the
core weakness of relying on what we think can be learned and what we
think the child hears – two questions that can be prohibitively difficult
to answer – remains.4

2.1.3 Richness of the stimulus
If children can be shown to systematically not demonstrate a property
P in their language despite an adequate amount of evidence support-
ing P in the input, we can conclude that this failure is due to the innate
component. We can term such evidence an argument from the richness
of the stimulus (ROS).5 For example, Peña et al. (2002) have shown
that, while humans are capable of extracting abstract dependencies
within words, they fail on this task when combined with a segmenta-
tion task (a task that subjects perform well on, both on its own and
when combined with the task of extracting word-internal dependen-
cies). Similarly, Moreton (2008) has shown that humans are signifi-
cantly better at learning certain phonological dependencies – specifi-
cally, dependencies relating the height of the vowels in two adjacent
syllables – than other phonological dependencies – dependencies relat-
ing the height of a vowel to the voicedness of the following consonant

4This is not to say that the POS argument above has been shown to be incor-
rect. Despite multiple attempts to do so in the CG literature, the POS argument
using subject-auxiliary inversion remains an open question. See Berwick et al.
(2011) for relevant discussion.

5See Smith (1966) for an early example of this kind of argument in humans,
and see Garcia et al. (1974) for a particularly clear example of the argument in
rats.
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and dependencies relating the voicedness of consonants in two adja-
cent syllables – even though the two patterns are equally prominent
perceptually and are both abundantly represented in the input.
One must ensure, of course, that prior exposure has not biased

the subjects against observing the relevant patterns. This, however, is
considerably easier in practice than the reverse task, essential to POS,
of ensuring that a certain pattern is never attested in the data. And
as the above examples show – see Bonatti et al. (2005), Endress et al.
(2007), Endress and Mehler (2010), Becker et al. (2011), and Hunter
and Lidz (2013), among others, for further evidence of this kind – ROS
lends itself to the design of controlled experiments that can inform us
about what humans fail to learn.
2.1.4 Typology
Perhaps the most common source for enrichments of the innate com-
ponent comes from the routine TL task of examining individual lan-
guages and comparing the results across a range of languages. If lan-
guage after language shows the same property P (which can be an
absolute universal, such as “Has nouns” or an implicational univer-
sal, such as “If demonstratives and adjectives precede the noun, then
demonstratives precede adjectives”), we can sometimes conclude that
P is due to the innate component.
As usual, caution is needed: for some properties, other sources,

such as communication pressure, might be responsible rather than the
innate component. For example, P = “Verbs have a small number of
arguments” or P = “Has vowels”. More interestingly, P may arise not
through any direct benefit to the speakers but as properties that en-
hance the transmission of language between generations of speakers.
See Kirby (2000, 2002); Kirby et al. (2004); Smith et al. (2003) as
well as Niyogi and Berwick (1997, 2009). Less frequently, P can be
explained away by appealing to historical accident.6

6Controlling completely for historical accident is quite challenging in prac-
tice, but the emergence of the Nicaraguan Sign Language (Senghas et al. 2004)
and of the Al-Sayyid Bedouin Sign Language (Sandler et al. 2005) provide an ap-
proximation. In non-human species it is sometimes possible to explore typological
questions in lab settings that control in full for historical accident, as shown by
the work of Feher et al. (2009) on the emergence of typical song patterns in zebra
finches over several generations, starting from birds grown in isolation.
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But in many cases, P has little if anything to recommend it in
terms of communication efficiency and other functionalist criteria.
Suppose, to take a syntactic example discovered by Ross (1967), that I
heard you say that you saw Max and some lady at the party last night,
but I don’t know the identity of the lady in question. I could use a
roundabout inquiry such as I heard you saw Max and some lady at the
party; can you tell me which lady?, or I could use a paraphrase such as
Which lady did you see Max with ___ at the party?, where the conjunction
and in the original sentence is replaced with the preposition with. But
what I cannot do, in English or in any other known language, is use
the standard way to form a question and say *Which lady did you see
Max and ___ at the party last night?, despite its obvious usefulness for
the conversation (P in this case could be “Does not allow a question
to target a single conjunct”). To cite a different example, discovered
by Horn (1972), no natural language has a connective corresponding
to NAND (= not and) or a quantificational determiner corresponding
to NALL (= not all), despite the usefulness of these concepts in ev-
eryday life (as well as in artificial settings).7 In such cases, it seems
reasonable to ensure P through the innate component.8, 9

2.2 CG: Optimism about learning
2.2.1 The probabilistic turn
Other work, both theoretical and experimental, supports a less restric-
tive view on learning than the TL view. First, as has often been ob-

7See Horn (2011) and Katzir and Singh (2013) for discussion of the general
context of this typological fact.

8Evans and Levinson (2009) and Levinson and Evans (2010) have made the
remarkable claim that language universals do not exist. They do not discuss the
Ross (1967)’s and Horn (1972)’s cases discussed above. See the commentaries
following Evans and Levinson (2009), as well as Abels and Neeleman (2010),
Crain et al. (2010), Reuland and Everaert (2010), Harbour (2011), and Matthew-
son (2012), among others, for additional problems with Evans and Levinson’s
claim.

9The discussion in this subsection is framed as one about absolute properties.
See Tily and Jaeger (2011) and Piantadosi and Gibson (2013) for discussion of
the challenges of obtaining a large enough sample to establish such universals
statistically. In addition to absolute universals, quantitative typological evidence
offers a rich source of information for TL, though using this information is still
difficult at present. See Sauerland and Bobaljik (2013) for an interesting example.
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served, some of Gold’s assumptions do not seem to match the situation
of the human language learner. In particular, the learner in iitl is ex-
pected to guess perfectly based on any fair text in the target language.
No provision is made for discounting (or excluding completely) texts
that are in some sense deviant, and no guess that is less than perfect
counts. In acquisition, on the other hand, it is far from obvious that all
sequences of inputs are equally good, and learning may well count as
successful even if the child ends up having somewhat different judg-
ments from its parents’ about various sentences.10 Relaxing this re-
quirement, as has been done in the probabilistic settings of Horning
(1969) and others, yields notions of learning that are often much more
inclusive than iitl. Horning’s setting involves the same form of text pre-
sentation as Gold’s, but the texts are generated by taking independent,
identically distributed samples from the strings generated by a prob-
abilistic context-free grammar (PCFG), and the criterion for learning
is modified. On these assumptions, the set of languages generated by
PCFGs is learnable, even though the set of languages generated by
Context-Free Grammars (CFGs) is not iitl.
Horning’s results – and those of later probabilistic developments

such as Wexler and Culicover (1980), Osherson et al. (1986), Angluin
(1988), Kapur (1991), and Chater and Vitányi (2007) – can be seen
as evidence that a probabilistic approach is both more natural and
more successful than iitl.11 Experimental data about specific learning

10A different aspect of iitl that could be changed with significant consequences
for learnability is the assumption that the learner is only exposed to positive
evidence. If the learner is exposed both to positive and to negative evidence (for
example, as a sequence of strings paired with a grammaticality judgment), many
more families of languages become learnable, including families that might be
of potential linguistic interest. (Intuitively, the reason negative evidence helps is
that it breaks all the subset relations between the languages in C – see Gold 1967
for discussion.) Unfortunately, infants do not seem to have access to anything
like systematic negative evidence (Brown and Hanlon 1970; Marcus 1993).

11Care must be taken, however, in interpreting positive results about such
models from the perspective of language acquisition. Horning (1969)’s original
result applies to (unambiguous) PCFGs, a class of grammars that is not a realistic
model of natural languages. Osherson et al. (1986) prove that a much broader
class of languages can be identified with probability one from a similar form
of text presentation (that is, through independent identically distributed draws
from the language; see Clark 2001 for further extension). However, this result
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tasks has provided empirical evidence for the role of statistics in learn-
ing, as well as further clarification of the requirements for a successful
theory of learning in humans. One example is the segmentation exper-
iments of Saffran et al. (1996), who showed that infants can reliably
segment an artificially-generated input after a short exposure.12 Since
the only cues for segmentation in these experiments are statistical, we
can conclude that a learner must be able to make use of statistical reg-
ularities in the input. In addition, these results show that a model for
human learning should succeed even with unsegmented input.13 Fi-
nally, the success of the babies in learning after such a brief exposure
provides a preliminary quantitative measure of the performance of the
learner. Further evidence that humans are skillful statistical learners
come from Sobel et al. (2004) and Griffiths and Tenenbaum (2006),
among others, who demonstrate the sensitivity of humans (both chil-
dren and adults) to statistical information.
2.2.2 Task-specific approaches
Experimental results about learning tasks, of the kind mentioned
above, have sometimes inspired task-specific (but domain-general)
learning models: relatively simple mechanisms, usually sensitive to
statistics, that form part of a CG toolkit. For example, the results of
Saffran et al., as well as those of subsequent experiments within the
paradigm, have been taken to show that humans can employ certain
segmentation techniques. Onemechanism, based on Harris (1955) and
suggested as the mechanism behind the infant segmentation data by
Aslin et al. (1998), involves the tracking of transitional probabilities
requires knowing the possible distributions. If this assumption is replaced by
more realistic requirements, the classes of languages that can be identified be-
come considerably more limited, as shown by Angluin (1988) and Pitt (1989).
In fact, if the child is required to perform distribution-free learning with proba-
bility one, the classes of languages that are identifiable revert to those that are
Gold-identifiable. See Niyogi (2006) and Clark and Lappin (2011) for further
discussion.

12Other examples include the tasks of categorization, the learning of phono-
tactics, and the induction of grammatical rules.

13Removing the segmentation marks in the text makes the learning problem
harder. For example, the family C = {{a}, {aa}} is trivial to learn from a seg-
mented text but impossible to learn from an unsegmented text. Both Gold and
Horning require the input to be segmented.
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between syllables. Transitions tend to bemore restrictive within words
than across words, so segmentation can proceed by finding drops in
transitional probability. Different task-specific models of segmenta-
tion have been offered by Brent and Cartwright (1996), Christiansen
et al. (1998), Brent (1999), Mattys et al. (1999), Johnson and Jusczyk
(2001), Venkataraman (2001), and Batchelder (2002), among others.
Other task-specific (but potentially domain-general) learning mecha-
nisms that have been proposed in the literature include mechanisms
for processing identity relations (Endress et al. 2007) and positional
relations (Endress and Mehler 2009).14

2.2.3 Prediction and description length
Another CG approach, one that is radically different from the task-
specific approach – and the one I will try to support in this paper –
is the idea of learning everything at once, with particular learning
tasks (such as segmentation, categorization, syntactic learning, and so
on) arising as by-products of a very general learning process. Here a
principled approach is provided by the theory of prediction developed
by Solomonoff (1964).15 Simplifying, we consider all the different hy-
potheses about the data, each treated as a computer program that out-
puts the data, and we evaluate each hypothesis according to its length.
The learner bases its guesses about the continuation of the input based
on a weighted sum of all the hypotheses compatible with the obser-
vations so far, with shorter hypotheses receiving higher weights. Re-
cently, this approach has been proposed by Chater and Vitányi (2007)
and Hsu et al. (2011) as a useful abstraction – a form of ideal learn-
ing – for evaluating certain claims about the learnability of natural
language.
While fully general and mathematically sound, ideal learning as

originally formalized is not cognitively plausible, nor is it meant to
be. In its pure form, ideal learning is not even computable (though
see Solomonoff 2008 for thoughts on how to address this concern).

14See Endress et al. (2009) and Endress and Bonatti (2013) for further discus-
sion of such mechanisms and qualifications of their generality.

15Related notions were developed by Kolmogorov (1965) and Chaitin (1966).
See Li and Vitányi (1997) for discussion. Learning of this kind is guaranteed to
minimize errors in a certain sense, as shown by Solomonoff (1978) and Chater
and Vitányi (2007).
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Another challenge to making Chater and Vitányi’s model cognitively
plausible is that it is stated with respect to a very broad UG – in its
original form, a Turing-complete UG (which is the source of the non-
computability). If we wish to take into account arguments for a more
restrictive innate component, such as the arguments from ROS and
from the typology, we should re-state Chater and Vitányi’s model in
terms of more limited UGs. Restricting the set of hypotheses can both
ensure computability and make the model work with linguistically
realistic UGs, but the computations required to derive the predictions
in a Solomonoff-based ideal learner such as Chater and Vitányi’s can
still be prohibitively complex.
The approximation to Kolmogorov Complexity known as Mini-

mum Description-Length (MDL; Rissanen 1978) offers a way to over-
come the difficulties of ideal learning while maintaining both the
weighting of hypotheses according to their length and the idea of
general learning, with particular tasks falling out as by-products.16 In
MDL – and in the closely related Bayesian framework – the hypothesis
space is restricted, and the search aims at finding a single hypothesis
that minimizes the total description length (or, in the Bayesian frame-
work, a hypothesis that maximizes the posterior probability). MDL
has been used for grammar induction in the works of Berwick (1982),
Rissanen and Ristad (1994), Stolcke (1994), Brent and Cartwright
(1996), Chen (1996), Grünwald (1996), de Marcken (1996), Osborne
and Briscoe (1997), Brent (1999), Clark (2001), Goldsmith (2001),
Onnis et al. (2002), Zuidema (2003), Dowman (2007), Chang (2008),
and Rasin and Katzir (2013) among others. In Section 3.3 I will suggest
that MDL arises as a natural criterion for the evaluation of grammars
given the data – and thus as a natural CG learning mechanism – from
the commitment to an explicit UG made in TL.

16See also the closely related approach known as Minimum Message Length
(MML; Wallace and Boulton 1968). An approach related to MDL and MML is the
search for a grammar (usually a context-free grammar) that generates the input
data as its only possible output. The problem of finding such a grammar – the
so-called shortest grammar problem – has its roots in Lempel and Ziv (1976) and
has been studied by Nevill-Manning and Witten (1997), Kieffer and Yang (2000),
Charikar et al. (2005), and Dębowski (2011), among others.
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3 reassessment

3.1 A rich UG and the possibility of learning both exist
As we saw, TL has good reasons to assume a nontrivial UG: while iitl
seems inapplicable to the condition of the child, and while POS ar-
guments are susceptible to successful learning models, ROS and typo-
logical arguments do not depend on learnability in principle. Indeed,
the better the general-purpose mechanisms that one can assume, the
more surprising both failures to learn and systematic typological pat-
terns become. At the same time, the CG models of learning are clearly
very much an option. None of the arguments against learning in prin-
ciple holds, and it seems that humans are quite good at learning sta-
tistical distributions (as shown by Sobel et al. 2004 and Griffiths and
Tenenbaum 2006, among others).
Assuming that (almost) everything is innate or that (almost) ev-

erything is learned was perhaps convenient at one point as a working
hypothesis: if we already have an elaborate innate component, we
might hope that we could do without a sophisticated learning mecha-
nism, and vice versa. But a rich innate component and a powerful CG
mechanism are not logically incompatible, and it is worth noting that
the state of the art in each project still leaves a significant amount of
work for the other. At the very least, then, the two respective research
projects should continue to co-exist: TL should keep studying the in-
nate component focusing on ROS and typological evidence, perhaps
showing more caution with POS arguments than it did before; and CG
should keep studying what humans can learn and how, perhaps show-
ing a better appreciation for the role of innateness in shaping adult
linguistic abilities.
But there is also a more interesting option, one that allows a

tighter collaboration between the two research projects and that en-
ables discoveries in one to translate into tools for the other. This op-
tion, a hope from the early days of generative grammar, was made
possible by the advent of the Bayesian program for cognition and of
the closely related MDL framework, both of which allow the integra-
tion of structured representations and probabilistic reasoning. I will
sketch an outline of this option immediately below.
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3.2 Combining innateness with general learning
Practitioners of TL often find themselves with two different hypothe-
ses, call them F1 and F2, that seem equally capable of explaining
the observed linguistic phenomena. F1 and F2 might come from en-
tirely different theoretical frameworks, such as Combinatory Catego-
rial Grammar and Minimalism for syntax or Optimality Theory and
SPE for phonology, or they may constitute two refinements of the
same broad framework. This has led to what Steedman and Baldridge
(2011) have called a crisis in syntactic theory (though a similar prob-
lem arises in other subfields of TL, such as phonology and semantics):
modern TL proposals are often meaningfully different in their essen-
tials and yet comparably successful in accounting for the linguistic
judgments of adult speakers. In order to choose between them, we
need to look elsewhere.
One important source of evidence of this kind is the mapping

from theories of competence to theories of processing, mediated by
the competence hypothesis articulated by Miller and Chomsky (1963)
and Chomsky (1965). This mapping has been used to argue for Lexical-
Functional Grammar (over transformational grammars) by Bresnan
and Kaplan (1982); for the flexible constituents endorsed by categorial
grammars (over the rigid constituency of most other formalisms) by
Steedman (1989); and for quantifier-raising (over in situ incorporation
of quantifiers) by Hackl et al. (2012). I would like to suggest that com-
bining CG with TL might provide another source of evidence of this
kind, with a suitable mapping of UGs to CG learners (in Section 3.3
below I will argue that such a mapping is available by default through
the principle of MDL). The shape of possible experiments to distinguish
between F1 and F2 is as follows. Suppose one finds two properties, P1

and P2, that some languages have but some do not – so that learning
will be involved – and that can co-exist in the same language. To take
a phonological example, P1 might be that a voiceless consonant like
/p/ is aspirated in the beginning of a syllable while a voiced conso-
nant like /b/ is not (as in English: [ph]at vs. [b]at; note that this is a
choice of English: Hindi can aspirate both /p/ and /b/, while French
aspirates neither), and P2 might be that vowels are lengthened before
a voiced consonant but not before a voiceless consonant (again as in
English: t[a:]b vs. t[a]p; again, this is a choice of English: French, for
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example, shows no such lengthening). In a syntactic example, P1 might
be that a subject can be dropped (as in Italian, but not in English) and
P2 might be that questions are marked by overt dislocation (again, as
in Italian, but not in Japanese).
Given a CG mechanism M that seems cognitively plausible, we

can now obtain two combinations, M+F1 and M+F2, and each combi-
nation can be run on a realistic corpus of child-directed speech. While
F1 and F2 might both be capable of representing both P1 and P2, there
might be a significant difference in how well the combinations M + F1

and M + F2 can learn the two and the order in which they do so. If
this is the case, we now have a criterion for choosing between F1 and
F2: whichever provides a better match with data from actual child
language acquisition will receive support. Since M was proposed as a
general-purpose learning mechanism and was not tailor made to han-
dle either F1 or F2, such evidence can be taken seriously.
Experiments of this kind require researchers in each project to pay

closer attention to work done in the other project than has usually
been the case. Still, I think that they are a more productive – and,
given current understanding, a more sensible – direction for future
work on language and learning than further attempts to determine
whether language is more innate than learned or vice versa.
3.3 An argument for MDL
I have tried to show why TL and CG can and should have a much
closer relationship than they currently enjoy. In this section I will pro-
vide an argument that any explicit theory of UG already comes with
the evaluation metric (or objective function) that forms the central
component of a CG learner. Specifically, I will show how any explicit
theory of UG translates into an MDL evaluation metric that allows the
child to compare different possible hypotheses within the hypothesis
space defined by UG. If correct, the discussion below points to bare
MDL as our starting point in studying learning and as the linguist’s M
for comparing contenders for the correct theory of UG.
A theory of UG provides a set of possible grammars. Any of these

can be the grammar of a competent speaker, who stores that gram-
mar in memory and uses it to obtain an opinion about data. At the
very least, then, assuming a theory of UG T with a set G of possible
grammars commits us to the following assumptions:
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1. A competent adult speaker has a grammar, G ∈G.
2. G is stored in memory.
3. G is used to parse inputs.

In order to make learning possible, we must allow a learner who
currently represents G to also consider at least one other grammar G′
and to switch from G to G′ under certain conditions.17 Of the very few
properties that we can rely on to compare the two grammars in the
general case, total storage space is a natural candidate, and one that
accords well with the intuition behind MDL, which equates learning
with compression. I therefore add the following two assumptions:

4. During language learning, a second grammar, G′ ∈ G can be
stored in memory and used to parse the input.

5. The memory size used to store G and its parse of the input can be
compared to the memory size used to store G′ and its parse of the
input.

These assumptions amount to little more than saying that gram-
mars can be used for parsing and that the overall description length of
two grammars can be compared. My claim is that these assumptions
already provide the language learner with an inherent learning mech-
anism: given an input D, the language learner searches through G for
the grammar G for which the encoding of G (as defined by T ) and of
D (using G) is the shortest. By relying only on what the theory of UG
under consideration is already committed to, this bare MDL learner
offers a natural starting point for the study of learnability: alterna-
tives in which the learner ignores the freely available MDL criterion
and relies on some other mechanism instead should only be pursued

17Strictly speaking, maintaining more than one grammar is not always nec-
essary. In particular, the learners proposed by Angluin (1982), Koshiba et al.
(1997), Clark and Eyraud (2007), and Heinz (2010) all operate by considering
just one grammar at a time and updating it as input comes along. All these learn-
ers, however, assume elaborate mechanisms for growing a grammar – usually
tailor-made for the specific UGs they are designed to handle – that go well be-
yond the basic commitment to an explicit UG.
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given evidence that the MDL null hypothesis is incorrect.18, 19 The
argument for bare MDL as the null hypothesis can be taken to sup-
port approaches in the literature that use MDL for learning, such as
the works mentioned in Section 2.2.3, and in particular works such
as de Marcken (1996) and Rasin and Katzir (2013) that use MDL not
simply as a convenient heuristic but as the sole principle that maps
an explicit UG to an evaluation metric.20 Moreover, as mentioned in
the introduction and discussed further in Section 3.2, the generality of

18To date, the literature has provided very little that bears directly on the
empirical question of whether children use MDL as a criterion for comparing hy-
potheses during learning. On the other hand, several works have provided argu-
ments – often in conflicting directions – regarding a possible role for description
length more broadly in the learning process. In particular, Feldman (2000), ex-
tending the results of Shepard et al. (1961), provides evidence for the cognitive
relevance of MDL by showing that description length is correlated with learning
difficulty in concept learning (see also Feldman 2006 and Goodman et al. 2008).
In the same vein, Moreton and Pater (2012a,b) review the literature on artificial
grammar learning in phonology and conclude that description length is a central
factor determining learning difficulty in this domain. On the other hand, Kurtz
et al. (2013) point to a more nuanced pattern of difficulty in concept learning,
and Moreton et al. (2014) provide evidence for correlating difficulty with fac-
tors other than description length, both in phonological learning and in concept
learning. I will not attempt to relate such results about learning difficulty with
the question of what evaluation criterion is used by the learner.

19Heinz and Idsardi (2013) note a lack of correlation between the complexity
of finite-state machines for capturing certain patterns and potentially relevant
language classes to which these patterns correspond. Based on this, Heinz and
Idsardi suggest that MDL is not an appropriate learning criterion in phonology.
Note, however, that the complexity of a grammar is only one part of the MDL
criterion: the size of the description of the data given the grammar is just as im-
portant as the size of the grammar itself, and without taking it into account it is
generally not possible to draw conclusions about the adequacy of the criterion.
In addition, Heinz and Idsardi discuss the length of very specific representations
– namely, the finite-state machines they use to describe the relevant patterns
– and these representations do not correspond to any of the main grammati-
cal formalisms for phonology. Given different representations, grammar size can
change. Finally, it is hard to see how the possible correlation of language fami-
lies with the description length for the best grammar (with or without taking the
data into account) is a relevant consideration. The question is whether, given an
appropriate representation scheme, the grammar that yields the shortest descrip-
tion in any particular situation is also the one that humans arrive at.
20For de Marcken (1996) MDL is a substitute for Structural Risk Minimiza-
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the mapping from UGs to learners provides a framework in which the-
ories of UG can be compared with respect to their predictions about
learning.

4 a simple example

4.1 Encoding
To see how the mapping from theories of UG to bare MDL learners
works, let us consider a naive theory of UG. This theory, call it T1,
allows any CFG to be represented by listing all the rules in some order,
with a category #, which is not one of the terminals or nonterminals
in the grammar, serving as a separator. Since T1 only allows CFGs,
it can list each rule unambiguously as the left-hand side followed by
the list of the categories on the right-hand side.21 T1 marks the end of
the grammar with an additional separator. For example, the grammar
below will be listed as ABA#ABC#A#BCD#…#EFG##:

G :=



A→ B A
A→ B C
A→ ε

B→ C D
...
E→ F G

We still need to specify how T1 encodes the categories in the list.
Sticking to simple-minded (and deliberately suboptimal) choices, we
will use a fixed code-length scheme for the different categories, where
each category will be encoded using k = ⌈lg(|Categories|+ 1)⌉ bits:
tion, but it is still the sole contributor to the actual evaluation metric used by the
learner. While de Marcken’s focus is different from that of the present work – in
particular, his emphasis on a specific representational framework that he devel-
ops can obscure the general applicability of MDL as an immediate CG learning
criterion for any explicit UG – his work provides a particularly clear example of
how pure MDL can fit in with a linguistically motivated UG.

21This particular choice of encoding individual rules would change in exten-
sions of the learner beyond CFG, but the general point will not be affected. As
long as the grammar can be stored and used for parsing, it can be encoded, and
the encoding can be used in an MDL learner.
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# 000
A 001
... ...
G 111

The number of bits per category, k, will have to be represented as
well. We can do this by starting the code with a sequence of k 0’s
followed by a single 1, and by agreeing to treat 000︸︷︷︸

k

as#. Encoding the
grammar above, then, will be 000︸︷︷︸

k

1 001︸︷︷︸
k

010︸︷︷︸
k

001︸︷︷︸
k

000︸︷︷︸
k

. . . 000︸︷︷︸
k

, and

the total length of encoding G will be |G| ≈ k · [∑r∈G |r|+ 1].
As for determining the encoding of the data, D, given G, T1 first

groups rules by their left-hand side, and then enumerates the expan-
sions:

Rule Code
A→ BA 00
A→ BC 01
A→ ε 10
B→ C D 0
B→ b 1
C → c ε
... ...

Suppose now that G provides the following parse for D: T =
[A[B . . . ] [C . . . ]]. T1 encodes this parse by traversing the tree in pre-
order, concatenating the code for each expansion choice given the left-
hand side: C(T ) = C(A)C(A→ BC |A)C(. . . |B) . . . C(. . . |C) . . .. In cases
of ambiguity, T1 takes the shortest encoding.
4.2 Search
Using the UG specified above as T1, we can now take some input D and
search for the grammar that minimizes the total description length of
G and of the encoding of D given G. Any grammar G0 that parses the
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input can serve as an initial hypothesis for the search. Moreover, G0

provides a trivial upper bound on the size of the search, since the total
description length provided by the target grammar is at most as large
as that provided by G0.
For T1, there is a very simple grammar that is guaranteed to parse

D and can serve as G0. This grammar is what I will refer to as the con-
catenation grammar for Σ, where Σ is the alphabet in which D is writ-
ten. If Σ = {σ1, . . . ,σn}, the concatenation grammar for Σ is defined
as follows:

G :=


γ→ σ1 γ...
γ→ σn γ

The concatenation grammar for Σ makes all texts of a certain length
written in Σ equally easy to describe. It treats all symbols in all posi-
tions in D as equally good and therefore fails to capture any regularity
other than the alphabet in which D is written. Consequently, it is only
a good hypothesis for a random or near-random text. However, since it
parses D it can serve as an initial hypothesis, and it provides an initial
upper bound on the total description length using the target grammar.
Still, the bound provided by the concatenation grammar is huge,

ruling out an exhaustive search. A greedy search is not likely to suc-
ceed, due to various local optima along the way. To address this prob-
lem, the search in the simulations below relies on Simulated Annealing
(SA, Kirkpatrick et al. 1983), though I wish to emphasize that I am not
trying to model the search procedure in humans, and my only claims
concern the definition of the objective function, stated in terms of to-
tal description length. Indeed, it is quite possible that, even if they use
the MDL criterion, humans will turn out to be incapable of exploring
the search space effectively. If that is the case, the search component
could make the learner – and with it the entire innate component –
considerably more restrictive than suggested by the representational
abilities of UG and by the MDL criterion.22

22The idea that a significant part of the restrictiveness of the innate compo-
nent may be the result of constraints on learning has been pursued in the litera-
ture in various contexts. See Saffran (2003), Heinz (2007), and Heinz and Idsardi
(2013), for example.
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SA proceeds by comparing a current hypothesis to one of its neigh-
bors, chosen at random, in terms of goodness, which in the present
case is the total description length. That is, when a current hypothesis
G is compared to one of its neighbors, G′, |G|+ |D|G| is compared to
|G′|+ |D|G′|. If G′ is better than G (that is, |G′|+ |D|G′| < |G|+ |D|G|),
the search switches to G′. Otherwise, the choice of whether to switch
to G′ is made probabilistically and depends both on how much worse
G′ is and on a temperature parameter. The higher the temperature,
the more likely the search is to switch from G to its bad neighbor
G′. Similarly, the closer G and G′ are in terms of overall descrip-
tion length, the more likely the search is to switch to G′. The tem-
perature is initially set to a relatively high value, and it is gradu-
ally lowered as the search progresses, making the search increasingly
greedy. The search ends when the temperature descends below a cer-
tain threshold.
For any grammar G, the neighbor grammar G′ is generated as a

variant of G in which one of the changes in the following list occurs:
1. An element, possibly a new nonterminal, is added to one of the
rules.

2. An element is deleted from one of the rules.
3. A new rule of the form X → ε is created for some category X .
4. A nonterminal in the right-hand side of a rule is replaced with its
expansion according to some rule in the grammar.

5. A nonterminal X in the right-hand side of a rule is replaced with
a new nonterminal Y , and a unit rule Y → X is added to the
grammar.
The modification is chosen according to a uniform distribution

over possible changes. All decisions in a given modification are made
randomly as well (category for insertion, positions for insertion or
deletion, etc.).
4.3 Results
In Section 4.1 above we saw the specification of T1, a simple-minded
CFG UG, and in Section 4.2 we saw the details of a search procedure
that turns the MDL evaluation metric induced by T1 into a learner.
In this section we will see the results of running this learner on two
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extremely simple data sets: one that is the concatenation of words
from an artificial lexicon and another that involves palindromes. Both
tasks are loosely based on patterns that arise in natural language. The
concatenation data set requires that the learner address the challenge
of segmenting the input, a challenge solved by human learners, who
are exposed to inputs that are for the most part unsegmented. The
palindrome data set requires that the learner address the challenge of
acquiring center embedding, a common pattern in natural languages.
Despite this loose correspondence with natural language, the goal of
the present section is not the realistic modeling of learning in humans
– both T1 and the data sets are far too simplistic to be informative
in this respect – but rather to show how a bare MDL learner induced
by an explicit UG operates, and how the representational abilities of
the UG in question guide the search for the best hypothesis given
the data.
4.3.1 Segmentation
The first data set is based on the one described by Saffran et al. (1996).
In Saffran et al.’s experiment, in which a text was generated by the
random concatenation of elements from an artificial vocabulary con-
sisting of the items pabiku, golatu, daropi, tibudo. This text
was turned into speech using a synthesizer that produced a stream
of speech with flat intonation and no word breaks. Eight-month old
infants were exposed to this stream, and after two minutes (= 180
words = 1080 segments) they were able to distinguish between words
(e.g. pabiku) and non-word sequences that appear in the text (e.g.
bikuda).23 Here are sample snapshots from the learning process us-
ing an input that is only 300 segments long (compared to 1080 in the
original experiment), using an initial temperature of 15 and a maxi-
mum grammar-length of 200 bits. The first step, as explained above,
is a concatenation grammar, which captures no regularities:24

23The text used by Saffran et al. (1996) was subject to the additional require-
ment that no word can repeat itself. In the text that I used, repetitions are not
prohibited. As far as I can tell, this does not affect the point made here.
24 In the results reported here, the step in the search appears as the subscript

of G; γ is the seed category; and numbered categories are non-terminal categories
that are hypothesized by the learner during the search.
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G0 : γ→ k γ γ→ i γ

γ→ o γ γ→ u γ

γ→ d γ γ→ p γ

γ→ a γ γ→ g γ

γ→ r γ γ→ b γ

γ→ l γ γ→ t γ

Grammar length: 126, Encoding length: 1200, Energy: 1326.0

After a thousand steps, we already have ro from daropi, la and
go from golatu, and ku from pabiku:

G1000 : d → o γ→ d γ

γ→ γ γ→ u γ d

a→ γ→ o γ g

γ→ t γ γ→ l a γ i

γ→ r o γ γ→ g o γ p

γ→ i γ t γ→ p γ d

l → u i γ→ k u γ b

γ→ a γ r →
γ→ b γ

Grammar length: 192, Encoding length: 1023, Energy: 1215.0
As we proceed, more and more parts of the underlying vocabulary

are discovered. Here, at the final step, we have all the words:

G100000 : 5144→ t i b u d o 5144 5144→ p a b i k u 5144

5144→ g o l a t u 5144 r 5144→ d a r o p i 5144

Grammar length: 97, Encoding length: 100, Energy: 197.0
The results presented above show rules that correspond straight-

forwardly to the lexicon that was used to generate the input and thus
reflect the correct segmentation of the input, based on its statistical

[ 236 ]



A cognitively plausible model for grammar induction

regularities. Crucially, though, the theory of UG presented as T1 in
Section 4.1 is not aware of the tasks of segmentation and lexicon induc-
tion, and it does not represent probabilities in its rules. Consequently,
the bare MDL learner for T1 is not aware of these notions either. It ar-
rives at the correct segmentation as a by-product of its general search
for the best grammar given the input.
4.3.2 Palindromes
For our second simulation, along the lines of Horning’s paradigm, we
will use an input that exhibits nested dependencies. Such dependen-
cies are common in natural language: they are present in the nesting of
object-extracted relative clauses in English, for example, as well as in
the basic structure of verb-argument dependencies in German clauses.
It has been suggested by Fitch and Hauser (2004) that humans acquire
such patterns in experiments of artificial-language learning, though
the experiment and the claim remain controversial (see Perruchet and
Rey 2005, among others).25
In the nesting data set I will use a segmented input. We can specify

the learner’s goal when presented with a segmented input sequence
to be the minimization of the sum of the grammar length and the
sum of the encoding lengths for each element in the sequence.26 At
least in simple cases, the learner successfully identifies the generating
grammar from an input presented in this way. Following are several
snapshots from a run on an input that consists of 200 even-lengthed
palindromes over the alphabet Σ = {a, b, c} (the sequence reported
here starts as cccabaccabaccc, cbbc, bccccccb, aa, aabbaa, . . .; for perfor-
mance purposes, the learner cannot see past the first 25 characters of
each element in the sequence):

G0 : γ→ a γ γ→ c γ

γ→ b γ

Grammar length: 19, Encoding length: 2314, Energy: 2333.0
25The palindrome language is a member of certain interesting infinite classes

that can also be learned under the demanding criterion of iitl, as shown by
Koshiba et al. (1997).
26Note, however, that the learner treats its input as the prefix of a possibly

infinite text rather than a complete element in the language. I will not discuss
this issue.
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G1400 : γ→ c γ γ→ a γ b γ

γ→ c γ→ b γ c b γ

Grammar length: 32, Encoding length: 2122, Energy: 2154.0

G2800 : 209→ c 209 209→ a 209

209→ b 209 b c c 209 c b 209 a 209→
Grammar length: 35, Encoding length: 2154, Energy: 2189.0

G4200 : 371→ a 371 a 371→
371→ b 371 b 371→ c 371 c

Grammar length: 27, Encoding length: 1480, Energy: 1507.0
G4200 is already the correct grammar (371 is the arbitrary cate-

gory label of what would usually be written as S). Similar results were
obtained with other simple CFGs, such as an bn.

5 discussion

I set out to bring TL theories of UG and CG theories of learning into
closer contact. I reviewed some of the central arguments within each
discipline for and against rich UGs and for and against learning, con-
cluding that linguists’ notions of rich UGs are well-founded, but that
cognition-general learning approaches are viable as well. Differently
from what is often suggested in the literature, I argued that the two
can and should co-exist and support each other. Specifically, I used the
observation that any theory of UG provides a learning criterion – the
total memory space used to store a grammar and its encoding of the
input – that supports an MDL evaluation metric that can serve as the
central component of a CG learner. This mapping from theories of UG
to learners maintains a minimal ontological commitment: the learner
for a particular theory of UG uses only what that theory already re-
quires to account for linguistic competence in adults. I suggested that
such learners should be our null hypothesis regarding the child’s learn-
ing mechanism, and that furthermore, the mapping from theories of
UG to learners provides a framework for comparing theories of UG.
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The paper presents a proof-theoretic semantics account of contex-
tual domain restriction for quantified sentences in a fragment of En-
glish. First, the technique is exemplified in the more familiar first-
order logic, and in its restricted quantification variant. Then, a proof-
theoretic semantics for the NL fragment is reviewed, and extended to
handling contextual domain restriction. The paper addresses both the
descriptive facet of the problem, deriving meaning relative to a con-
text, as well as the fundamental aspect, defining explicitly a context
(suitable for quantifier domain restriction), and specifying what it is
about such a context that brings about the variation of meaning due
to it.

The paper argues for the following principle (the context incorpo-
ration principle, CIP): for every quantified sentence S depending on a
context c, there exists a sentence S′, the meaning of which is inde-
pendent of c, s.t. the contextually restricted meaning of S is equal to
the meaning of S′. Thus, the effect of a context can always be inter-
nalized. The current model-theoretic accounts of contextual domain
restriction do not satisfy CIP, in that they imply intersection of some
extension with an arbitrary subset of the domain, that need not be the
denotation of any NL-expression.

Journal of Language Modelling Vol 2, No 2 (2014), pp. 249–283



Nissim Francez

1 introduction

The problem of context dependence is the problem of ex-
plaining how context contributes to interpretation …

write Stanley and Szabó (2000), who discuss a variety of special cases
of the general problem of meaning variation with context. The pur-
pose of this paper is to provide a proof-theoretic semantics (PTS)1 (see
below) for a special case of the general context dependence problem,
namely quantifier domain restriction (QDR). It may well be the case that
the proof-theoretic interpretation of other kinds of expressions with
contextually varying meanings will require different proof-theoretic
techniques than the one used here. I focus on the QDR-problem as it
fits naturally into the fragment of natural language (NL) for which a
PTS has been proposed before (Francez and Dyckhoff 2010; Francez
et al. 2010; Francez and Ben-Avi 2014). The QDR-problem has a rich
history (see Stanley and Szabó 2000, for references to earlier work), all
carried out under the model-theoretic semantics (MTS) theory of mean-
ing.

Before turning to the main semantic issue itself, I would like to
recapitulate the highlights of the PTS and MTS approaches as theo-
ries of meaning. Proof-theoretic semantics is a challenging way for
defining meaning, an alternative to the prevailing model-theoretic se-
mantics, the latter equating meaning with providing truth conditions
(in arbitrary models).2 The MTS approach has been criticized by sev-
eral philosophers of logic and language (most notably, Dummett 1993,
Prawitz 2006, Brandom 2000, Tennant 1997, and many more) as an
inappropriate theory of meaning. I omit here a more detailed discus-
sion of this criticism, often occupying full books, as justifying the ap-
proach is not the topic here. A more condensed presentation of this
criticism and motivating advantages of PTS can be found in the in-
troduction sections of (Francez and Dyckhoff 2010) and (Francez and

1A general introductory overview of PTS can be found in an entry of The
Stanford Encyclopaedia of Philosophy, http://plato.stanford.edu/entries/
proof-theoretic-semantics/. Concrete references are given in the paper
where appropriate.

2There is also a variant of MTS called Dynamic Semantics, which view mean-
ing as updates of assignments. It also depends on models, entities, reference, ex-
tension, etc.
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Ben-Avi 2014). Initially, since the work of Gentzen (1969), PTS was
conceived as a meaning-theory for logic. Recently, however, PTS has
been advocated also for providing the semantics of (an extensional
fragment of) NL in (Francez and Dyckhoff 2010), (Francez et al. 2010)
and (Francez and Ben-Avi 2014), in contrast to the MTS approach
dominant in NL formal semantics ever since Montague’s seminal work.

I recapitulate the essence of the PTS proposal:
• For (affirmative) sentences, replace the received approach of taking
their meanings as truth conditions (in arbitrary models) by an ap-
proach taking meanings to consist of canonical derivability condi-
tions (from suitable assumptions). This involves a dedicated proof
system in natural deduction (ND) form, on which the derivability
conditions are based (canonicity is explained below). In a sense,
the proof system should reflect the use of the sentences in the frag-
ment, and should allow recovering pre-theoretic properties of the
meanings of these sentences such as entailment and assertabil-
ity conditions. The essentials of such an ND-system are reviewed
below.

• For subsentential phrases, replace taking their denotations (in ar-
bitrary models, extensions) as meaning, by taking their contri-
butions to the meanings (in our explication, derivability condi-
tions) of sentences in which they occur. This adheres to Frege’s
context principle (Frege 1884), made more specific by the incor-
poration into a type-logical grammar (TLG) (see Moortgat 1997),
the assumed underlying syntactic formalism. A detailed exposi-
tion of deriving meanings of subsentential phrases can be found
in (Francez et al. 2010) for natural language, and in (Francez and
Ben-Avi 2011) for logic.

According to the mainstream PTS programme, meaning is determined
via a meaning-conferring natural-deduction proof system. An ND-
system has two families of rules for each defined expression.
Introduction rules (I-rules): These are rules specifying the way a
formula (sentence) having the defined expression as its main oper-
ator, the conclusion of the rule, can be deduced from other formulas,
serving as premises of the rule. Such a deduction is the most direct way
to deduce the conclusion.
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Elimination rules (E-rules): These are rules specifying the way a
consequence can be deduced from a formula (sentence) having the
defined expression as its main operator, the major premise of the rule,
and from some additional minor premises. Such a conclusion is the
most direct conclusion of the major premise.
Both kind of rules can discharge assumptions, usually indicated with
square brackets. Derivability of φ from a collection of assumptions (a
context3) Γ is denoted Γ ⊢ φ. Derivation D of φ from Γ is the usual
recursively defined one. I use the Gentzen-Prawitz tree-like format for
presenting derivations. One of its advantages over linear representa-
tions of ND-derivations, useful in the current discussion, is the con-
venience of representing the composition of derivations, needed for
defining reductions.

An important requirement is that the ND-system should be har-
monious, in that its rules have a certain balance between introduction
and elimination, in order to qualify as conferring meaning. Harmony
is delineated in more detail below.

A standard reference for ND-systems for logic is (Prawitz 1965).
For ND-systems for an extensional ND-fragment, see (Francez and Dy-
ckhoff 2010).

To explain the QDR-problem itself, consider the following exam-
ple sentence from (from Stanley and Szabó 2000).4

every bottle is empty (1.1)

The literal model-theoretic meaning of (1.1), involving quantification
and predication, attributes the property of emptiness to every entity
in a model falling under the extension of bottle.5 This truth condi-
tion is usually expressed as the inclusion of the extension of bottle in
the extension of empty, alluding to the generalized quantifiers theory.
The general consent is, however, that in different circumstances, to
be captured by contexts, the domain of quantification is not over the

3Not to be confused with a DR-context c ∈ C affecting meaning variability,
as defined below.

4All the examples of natural language expressions are depicted in the san-
serif font, and are always mentioned, not used.

5As noted by Glanzberg (2006), it suffices to conduct this study in an exten-
sional fragment of NL, as intentionality seems orthogonal to QDR-problem.
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whole extension of bottle (all bottles in the universe); rather, it is over
a restriction of this extension to one determined by a context, e.g.,
every bottle in a room where some party takes place in one context,
or bottles in some chemistry laboratory in another context. Similarly,

some bottle is empty (1.2)
is taken also to have contextually varying meaning, asserting that
some bottle, determined by a given context, is empty, not that some
bottle in the universe is empty.

A more radical approach, called contextualism, claims that there
is no quantification which is not contextually restricted! Even apparently
unrestricted quantification as expressed by everything or something are
contextually restricted (see, for example, Glanzberg 2006).

Note that MTS in general adheres to a compositional sentential
meaning assembly. The primary carriers of meaning are words, in-
terpreted as having denotations in models (that can be rather com-
plex), and semantic composition generates meanings for phrases until
the meaning of a whole (affirmative) sentence is determined. Accord-
ing to this methodology, (some of) the word denotations are context-
dependent, a dependence propagated to larger phrases as the inter-
pretation process advances. I’ll return to this issue in the sequel.

The general semantic problem faced in an attempt to model the
variance of literal meaning with context has, according to Stanley and
Szabó (2000), two facets.
Descriptive: Deriving the interpretation of some phrase relative to
a context, given prior characterization of which features of a context
have a bearing on the meaning of that phrase.
Fundamental: Specifying the above mentioned characterization,
namely what it is about a context in virtue of which the derivation
of the interpretation yields the correct meaning in that context. This
specification involves some explicit definition of a context.
Thus, for (1.1), the descriptive meaning is the proper derivation of
the restricted domain of quantification given a context, while the fun-
damental issue is what in the structure of a context determines the
appropriate domain restriction.

In general, MTS has many difficulties in adequately solving the
foundational aspect of contextual variance of truth conditions. Amajor
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contribution of the current paper is the provision of a solution, within
the PTS programme, of the foundational problem.

In MTS, it is far from clear where to locate contexts with respect
to a model. Stanley and Szabó (2000, p. 222), for example, admit that
they avoid giving a formal characterization of the notion of a con-
text. They just stipulate (for the QDR-problem) a certain marking in
the syntactic tree (the logical form) that interfaces in a certain way
with a context, and provide a description of the way this marking par-
ticipates in meaning derivations (by intersecting the extension of the
head noun with a set “pointed to” by the above mentioned marking).
More specifically, Stanley and Szabó (2000) posit as the lexical entry
of a noun, say man, (in the appropriate leaf of a syntactic tree) the
following compound expression.

〈man, f (i)〉 (1.3)
where man is the usual extension of man (in a model), i is an anchor
for an object to be provided by a context, and f is an anchor to a
function from objects to objects, also to be provided by context. The
rule for computing the extension of man in a given context c is the
following (in a slightly modified notation).

[[〈man, f (i)〉]]c df.
= [[man]]∩ {x | x ∈ c[[ f ]](c[[i]])} (1.4)

For an argument for a different location (in the syntactic tree) of that
marking (and for a rebuttal of the rejection of this location by Stanley
and Szabó 2000), see (Pelletier 2003). There are also views locating
this marker on the determiner node, (e.g., Westerståhl 1985). Note
that in all those approaches, there is no constraint at all imposed on the
set {x | x ∈ c[[ f ]](c[[i]])}. In particular, as is traditional in generalized
quantifier theory, this set need not be the extension (in the model at
hand) of any NL phrase.

I would like to claim that this degree of freedom regarding the
contextual restriction set is a drawback of all the above approaches to
QDR. In general, a context can be seen either as external to the inter-
preted sentence (e,g., a context of utterance), or explicitly contributed
by some phrase in the sentence itself. For example, (1.1) can be seen
as uttered in the context of bottles on some table; however, the loca-
tion of the bottles can be explicitly given in the sentence itself, say by
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means of a preposition phrase, as in

every bottle on the table is empty (1.5)

Furthermore, if the intended context is such that the salient bottles
are bottles of whisky, then this again can be given by an additional
explicit modification of the noun, as in

every whisky bottle on the table is empty (1.6)

I would like to posit the following context incorporation principle
as a characterization of contextually varying meaning (as far as QDR is
concerned). I see this principle as originating from the semantic con-
cept of ‘meaning’ (as far as it relates to contextual meaning variation),
and not from any empirical fact about this variation. One certainly
can conceive of contexts not having any linguistic expression. As I see
it, while such contexts can contribute to other dimensions of language
use, alluding to them is not part of meaning.

The context incorporation principle (CIP): For every quantified
sentence S with a meaning depending on a context c, there exists a (not
necessarily unique) sentence S′, s.t.

[[S]]c = [[S
′]] (1.7)

In other words, the effect of a given external context c in terms of QDR
in S is always expressible by S′, the meaning of which is independent
of c (all in the same language, or fragment thereof). Clearly, (CIP),
while being allowed by (1.4), is not enforced by (1.4).

It is important to realise what is not the semantic problem dis-
cussed here, namely the determination of which is the right context for
any given token of a contextually dependent meaning of a sentence. The
latter issue is always determined by extra-linguistic means, indepen-
dently of whether MTS or PTS are employed as the theory of meaning.
Rather, the issue is how to handle contextual meaning variation once
a context has been determined. Thus, if the intended context for the
above example is bottles of whisky, then an explicit assumption to this
effect has to be added to the given context. Once the whole intended
context has been incorporated, the resulting sentence should be read
as context independent.
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Finally, the consequences that can be drawn from the contextu-
ally varying meaning of an (affirmative) sentence, namely (affirma-
tive) sentences entailed by a sentence with contextually varying mean-
ing, which themselves have meanings varying with context, are hardly
ever considered in MTS-based discussions. I will relate to them in the
proposed PTS via E-rules in the meaning-conferring ND-system.

Note that I adopt here the view expressed in (Stanley and Szabó
2000) that contextual variance of meaning is a semantic phenomenon,
and not a syntactic (ellipsis) or pragmatic (agent related) one. I would
like to stress that I am investigating what (affirmative) sentences mean,
and how this meaning varies with context, and not with what an agent
means by asserting a sentence in a given context; the latter, involv-
ing intentions, plans etc., I do see as pragmatic. Thus, I exclude from
consideration examples such as the following (from Stanley and Szabó
2000)

Fred is a good friend (1.8)
uttered by a speaker in some circumstances to express that Fred is,
actually, a terrible friend. I do not take this interpretation of (1.8) as
a meaning of (1.8) in any sense of ‘meaning’ that semantics is con-
cerned with.

Why adhere to CIP?
• One can see the semantic view of the QDR-phenomenon alluded
above as a (partial) justification of CIP, that relates to linguisti-
cally expressible contexts. In a performative, agent related, use of
a sentence with a contextually varying meaning, it is conceivable
that other kinds of contextual information, not language oriented,
may have an effect. For example, complex visual information in
a common ground of speaker and hearer. This is certainly true
for contextual resolution of deictic elements in a sentence. This
would pertain to context dependence of meaning that fits a more
traditional view of it, as pragmatic, not semantic.

• While I am concerned here with meanings of single (affirmative)
sentences, there is clearly much semantic interest in dialogs, or
discourses, which are multi-sentential linguistic entities. Adhering
to CIP is compatible with identifying context with the contents of
sentences previously asserted by other participants in a dialog, or
preceding sentences in a discourse. Frommy proof-theoretic point
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of view, the PTS for such multi-sentential linguistic constructs is,
at best, in its infancy. Principles like CIP may encourage further
proof-theoretic investigations of such constructs.

The paper contains also a certain proof-theoretic innovation in the
concept of a parametric family of introduction rules (in a natural-
deduction system), which is not directly connected to the NL set-up
aimed at in the paper.

In (Francez and Wieckowski 2014), a similar approach to contex-
tual meaning variation is applied to contextual definiteness, as in

the bottle is empty (1.9)

where the usual existence and uniqueness, traditionally associated
with definiteness, is restricted to given contexts.

In the rest of this paper, I provide a PTS for the QDR-problem,
relating both to its fundamental facet as well as to its descriptive
facet, by providing meaning-conferring ND-systems. I start in Section
2 with casting the solution in a logic setting, its familiarity facilitating
a clearer explication of the proof-theoretic technique involved. Then,
I consider a PTS for the incorporation of the QDR-problem in an ex-
tensional fragment of English, for which a PTS is provided in (Francez
and Dyckhoff 2010). The paper ends with some conclusions.

2 logic with
contextual domain restriction

In this section, I present a version of first-order logic (FOL) in which
quantifiers are interpreted in a contextually dependent way. While
there is not much interest in such a logic per se, it serves as a vehicle
for a clear presentation of the ideas underlying the application of the
approach to natural language. It also provides a natural host for the
novel proof-theoretic concept of a parameterized family of I-rules in the
intended natural-deduction meaning-conferring proof system.
2.1 First-order logic with contextual domain restriction
I assume the usual object language for FOL, with the usual definition
of free/bound variables. For simplicity, a language without constant
or function symbols is considered.
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Definition 2.1 (DR-context) A DR-context (domain restricting con-
text) c is a finite collection Γc of open formulas with one free variable
only; Γc,x is the sub-collection of Γc with x as its free variable. Let C be
the collection of all DR-contexts.
This definition of a DR-context is certainly not the most general one for
a context affecting sentential meanings, but it is intended to capture
contexts as providing restriction on quantifiers, for which purpose this
definition suffices. Let ∧Γc ,x be the conjunction of all open formulas in
Γc,x (that have x free). I use Γc,x and ∧Γc,x

interchangeably. I use Γc,x(y)
or ∧Γc,x

(y) to indicate the application of the condition on x to another
variable, y, resulting in a substitution of y for free occurrences of x .

The main idea, to be captured by the rules below, is that a DR-
context provides an assumption, dischargeable in the case of universal
quantification, restricting the free variable in the premise of the I-rule
of a quantifier. Furthermore, this discharge keeps its contents excorpo-
rated from the formula (recording the context c generating it in ‘⊢c ’).

First, recall the standard I/E rules for the universal and existential
quantifiers in an ND-system for FOL.6

Γ ⊢ φ(x)
Γ ⊢ ∀x .φ(x)

(∀I)
, x /∈ free(Γ )

Γ ⊢ ∀x .φ(x)
Γ ⊢ φ(y) (∀E) (2.10)

Γ ⊢ φ(y)
Γ ⊢ ∃x .φ(x)

(∃I)
Γ ⊢ ∃x .φ(x) Γ , [φ(y)]i ⊢ χ

Γ ⊢ χ (∃E i), y /∈ free(Γ ,χ)

(2.11)

where φ(y) is the result of substituting y for all free occurrences of x
in φ(x). I now introduce a revised ND-system, in which deducibility
is indicated as ‘⊢c ’ (in contrast to ‘⊢’ indicating the deducibility in the
standard system).
Restricting the universal quantifier: Recall that the intuition be-
hind the usual (∀I)-rule is that since x does not occur free in Γ , it can
be seen as standing for an arbitrary value, unrestricted in any way by Γ ,

6 I assume familiarity with standard I/E-rules for the propositional opera-
tors, like conjunction ‘∧’ and implication ‘→’; see (Prawitz 1965) for a standard
presentation.

[ 258 ]



A proof-theoretic semantics for domain restriction

hence supporting the universal generalization embodied in the (∀I)-
rule. The idea behind the I-rule below is to restrict the generalization
to those values of x satisfying the contextual restriction imposed by
Γc,x(x) for a given DR-context c. Thereby, the same formula ∀x .φ(x)
is read differently in different DR-contexts. This is achieved by using
Γc,x(x) as a discharged assumption in the premise of the rule.

Γ , [Γc,x(x)]i ⊢c φ(x)
Γ ⊢c ∀x .φ(x)

(∀I i
C), x /∈ free(Γ )

Γ ⊢c ∀x .φ(x) Γ ⊢c ∧Γc,x
(y)

Γ ⊢c φ(y)
(∀EC)

(2.12)

Here ∀IC is a family of I-rules indexed by DR-contexts. Every appli-
cation of this rule is always by appealing to some given DR-context
c ∈ C . In the interesting cases, Γc,x ̸= ; will hold, though there might
be vacuous DR-contexts not affecting the meaning of a universal sen-
tence. Similarly, (∀EC) is a family of E-rules indexed by DR-contexts.
The conclusion drawn from ∀x .φ(x) deduced relative to a DR-context
c is read as ∧Γc,x

(y)→ φ(y), namely that y satisfies both φ(x) and the
contextual restriction ∧Γc,x

(x).
Restricting the existential quantifier: As for existential quantifica-
tion, the contextual rules are presented below.

Γ ⊢c φ(y) Γ ⊢c ∧Γc,x
(y)

Γ ⊢c ∃x .φ(x)
(∃IC)

Γ ⊢c ∃x .φ(x) Γ , [φ(y)]i , [∧Γc,x
(y)] j ⊢c χ

Γ ⊢c χ
(∃E i, j), y /∈ free(Γ ,χ)

(2.13)

The I-rule requires that for some y that satisfies the restrictions im-
posed by Γc,x , φ(y) is derived, in order to deduce that the contextually
restricted (by c) existential conclusion be derived. Recall that, like in
the standard (∃I)-rule, y may, (and in general, will) appear free in Γ .
So, the rule forces y to also fall under the restriction imposed by c.
The E-rule, like the standard (∃E)-rule, allows the derivation of an ar-
bitrary conclusion χ, under the assumption that φ and the contextual
restriction themselves derive χ (for a fresh y).
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Remark: From the above rules, it is evident that (CIP) holds for FOL
with QDR. This is true since Γc,x (and consequently, ∧Γc,x

) consist only
of formulas in the language.
Theorem 2.1 (context incorporation)
1. Γ ⊢c ∀x .φ(x) iff Γ ⊢ ∀x .∧Γc,x

(x)→ φ(x).
2. Γ ⊢c ∃x .φ(x) iff Γ ⊢ ∃x .∧Γc,x

(x)∧φ(x).
Proof:
1. (a) Assume Γ ⊢c ∀x .φ(x) is derived by means of (∀IC). By an in-

ductive argument, the premise of (∀IC), namely Γ , [Γc,x(x)]i ⊢c

φ(x) (with x /∈ free(Γ )), implies that Γ , [Γc,x(x)]i ⊢ φ(x).
Therefore, by using (→ Ii), Γ ⊢ ∧Γc,x (x) → φ(x), and by ap-
plying (∀I) (since x /∈ free(Γ )), we get Γ ⊢ ∀x .∧Γc,x (x)→ φ(x).

(b) Conversely, suppose Γ ⊢ ∀x .∧Γc,x (x)→ φ(x) is derived via (∀I)
with the premise Γ ⊢ ∧Γc,x (x)→ φ(x), where x /∈ free(Γ ). Thus,
also Γ , [Γc,x(x)]i ⊢ φ(x) (due to (→ I)). By an application of
(∀I i

C) the result follows.
2. The argument for existential quantification is similar and omitted.

Here are some examples for the more interesting direction.
1. In the DR-context c, ∀x .φ(x) is read as ∀x .∧Γc,x

(x)→ φ(x). When
φ(x) is itself an implication, say α(x) → β(x), then the result
is equivalent to conjoining the antecedent with the contextual
restriction, ∀x .α(x)∧∧Γc,x

(x)→ β(x).
2. Similarly, in the DR-context c, ∃x .φ(x) is read as ∃x .∧Γc,x

(x)∧φ(x).
Example 2.1 Suppose (1.1) is regimented by the FOL-formula ∀x .B(x)
→ E(x) (with B(x) interpreted as x is a bottle and E(x) as x is empty).
Let croom be a DR-context of some room, with Γcroom,x = {R(x)} (with
R(x) interpreted as x is in the room). Then,

Γ , [R(x)]i ⊢croom
B(x)→ E(x)

Γ ⊢croom
∀x .B(x)→ E(x)

(∀I i
C), x /∈ free(Γ )

allows the derivation of a reading of (1.1) as ∀x .R(x)→ (B(x)→ E(x)),
equivalent to ∀x .B(x)∧R(x)→ E(x); that is, every bottle in the room is
empty. This can be seen as incorporating the DR-context into the sen-
tence. Note that the contextually derived universally quantified sen-
tence does not carry its contextual meaning “on its nose”. To obtain
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the required reading, one has to know the DR-context in which the
sentence was derived (croom in this example), and consult Γcroom,x to ob-
tain this reading. Similarly,

Γ ⊢croom
∀x .B(x)→ E(x) Γ ⊢croom

R(y)

Γ ⊢croom
B(y)→ E(y)

(∀EC)

allows drawing from (1.1) derived in the DR-context croom the conclu-
sion R(y)→ (B(y)→ E(y)), equivalent to B(y)∧R(y)→ E(y); namely
a reading corresponding to if y is a bottle in the room then y is empty,
a correct reading of the conclusion in the context croom.

Example 2.2 Following is another example, establishing

∀x .W (x)∧ I(x)→ S(x),∀y.W (y)∧ S(y)→ B(y)

⊢c ∀z.W (z)→ B(z) (2.14)

in a DR-context c with Γc,z = I(z). I’ll return to this example below.

[W (z)]1

[W (z)]1 [I(z)]2
W (z)∧ I(z)

(∧I)
∀x .W (x)∧ I(x)→ S(x)

W (z)∧ I(z)→ S(z)
(∀E)

S(z)
(→ E)

W (z)∧ S(z)
(∧I)

∀y.W (y)∧ S(y)→ B(y)
W (z)∧ S(z)→ B(z)

(∀E)

B(z)
(→ E)

W (z)→ B(z) (→ I1)

∀z.W (z)→ B(z)
(∀I2

C)

(2.15)
Example 2.3 The next example is of two independent QDRs by a con-
text. It shows why the premises of the IC -rules themselves have to use
‘⊢c ’, and not just ‘⊢’.

∀x∀y.M(x)∧ Y (x)∧W (y)∧ S(y)→ L(x , y),

∀z.W (z)∧ I(z)→ S(z)

⊢c ∀x∀y.M(x)∧W (y)→ L(x , y) (2.16)

where Γc,x = Y (x), Γc,y = I(y). Let I, II abbreviate, respectively, the
two premises. I treat ‘∧’ as having arbitrary arity.
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I
M(x)∧ Y (x)∧W (y)∧ S(y)→ L(x , y)

(∀E)× 2

[M(x)∧W (y)]3
M(x)

(∧E)
[Y (x)]1

[M(x)∧W (y)]3
W (y)

(∧E)

II
W (y)∧ I(y)→ S(y)

(∀E)

[M(x)∧W (y)]3
W (y)

(∧E)
[I(y)]2

W (y)∧ I(y)
(∧I)

S(y)
(→ E)

M(x)∧ Y (x)∧W (y)∧ S(y)
(∧I)

L(x , y)
(→ E)

M(x)∧W (y)→ L(x , y) (→ I3)

∀y.M(x)∧W (y)→ L(x , y)
(∀I2

C)

∀x∀y.M(x)∧W (y)→ L(x , y)
(∀I1

C)

(2.17)
The following proposition expresses a property of the QDR-rules that
will be useful below. It says that it does not matter which variable is
used to express the contextual restriction, as long as it is amenable to
universal generalization.
Proposition 2.1 If Γ , [Γc,x(x)]i ⊢c φ(x) and y /∈ free(Γ ), then also
Γ , [Γc,x(y)]i ⊢c φ(y).

Next, consider the definition of the (reified) contextually varying
sentential meanings, following the ideas in (Francez 2014c).
Definition 2.2 (canonical derivation) A derivation D for Γ ⊢ ψ is
canonical iff it satisfies one of the following two conditions.

• The last rule applied in D is an I-rule (for the main operator of
ψ).

• The last rule applied in D is an assumption-discharging E-rule,
the major premise of which is some φ in Γ , and its encompassed
sub-derivations D1, · · · ,Dn are all canonical derivations of ψ.

Canonical derivations constitute the most direct derivations of their
conclusion (though not necessarily always the shortest), and are
viewed by PTS to underlie and determine meaning. Let [[φ]]cΓ de-
note the (possibly empty) collection of all canonical derivations of φ
from Γ .7

Definition 2.3 (reified meanings) The (reified) meaning of φ is given
by

[[φ]]
df.
= λΓ .[[φ]]cΓ (2.18)

To realize the role of canonicity in the definition of reified proof-
theoretic meanings, consider the following example derivation in

7The superscript ‘c’ here relates to canonicity, and should not be confused
with a DR-context, the latter indicated by a subscript c.
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propositional logic.
α (α→ (φ ∧ψ))

φ ∧ψ (→ E) (2.19)

This is a derivation of a conjunction – but not a canonical one, as it
does not end with an application of (∧I). Thus, the conjunction here
was not derived according to its meaning! As far as this derivation
is concerned, it could mean anything, for example, disjunction. On
the other hand, the following example derivation, being canonical, is
according to the conjunction’s meaning.

α α→ φ
φ (→ E)

β β →ψ
ψ

(→ E)

φ ∧ψ (∧I) (2.20)

Similar examples can be found in natural language.
We can now see the difference between ordinary meanings and

their contextually varying counterpart. For the context-independent
meaning of ∀x .φ(x), all the canonical derivations end with an ap-
plication of the same (∀I)-rule, while for the meaning of ∀x .φ(x) in
a DR-context c, all canonical derivations end with an application of
(∀IC), varying with c.

As was already observed in (Francez 2014a), this reified mean-
ing is very fine-grained,8 and a certain relaxation of it is found useful.
Note that the CIP requires (strict) sameness of meaning between a con-
textually restricted quantified sentence and its context incorporated
counterpart. However, while the relationship of canonical derivations
of both are very similar – the former ending with application of (∀IC)
(in the universal case) whenever the latter ends with (→ I) immedi-
ately followed by (∀I), they are strictly not the same! We can obtain
a natural coarsening fitting also the current needs (for the CIP), still
fine enough as to not identify the meanings of logically equivalent
sentences as done in MTS, by introducing grounds (for assertion) for
sentences (see Francez and Dyckhoff 2010 and Francez 2014c for a
discussion of the role of those grounds in the PTS programme).

8For example, it is shown in (Francez 2014a) that [[φ∧(ψ∧χ)]] ̸= [[(φ∧ψ)∧
χ]].
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Definition 2.4 (grounds for assertion) The grounds for assertion of
φ, denoted by G[[φ]], are given by

G[[φ]]
df.
= {Γ | Γ ⊢c φ} (2.21)

In other words, any Γ from which there is a canonical derivation of φ
serves as a ground for asserting φ.

I now introduce an equivalence relation on meaning based on
sameness of grounds (for assertion), that captures the CIP requirement
in a natural way.
Definition 2.5 (grounds equivalence)

φ ≡G ψ iff G[[φ]] = G[[ψ]] (2.22)

Obviously, ‘≡G ’ is an equivalence relation on meanings. An easy in-
spection of the proof of the context incorporation theorem shows that
the meanings of the context-incorporated counterparts of contextually
restricted quantified sentences are grounds equivalent.
2.2 Harmony of the contextual domain restriction rules
Prior’s famous attack on the PTS-programme in (Prior 1960) produced
a connective with an I-rule of disjunction and an E-rule of conjunc-
tion, that trivialized ‘⊢’ so that φ ⊢ ψ for every φ and ψ. As became
evident since that attack, not every set of I/E-rules may qualify as
conferring meaning. One of the prevailing criteria for an ND-system to
qualify as conferring meaning is that of harmony, advocated by Dum-
mett, Prawitz, Tennant and many others, requiring a balance between
the I-rules and E-rules of every connective, in that neither group is
either too weak or too strong w.r.t. the other group. Clearly, Prior’s
connective fails this condition. Two main ways to capture the informal
notion of harmony were proposed in the literature.
Intrinsic harmony: According to this view of harmony, there is a re-
quirement that every maximal formula φ in a derivation, one that is a
conclusion of an I-rule and the major premise of an E-rule (both of the
main operator of φ), be eliminable, producing an equivalent deriva-
tion (with the same assumptions and same conclusion). The process
of eliminating such a maximal formula is known as (proof) reduction,
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and underlies Prawitz’s normalization procedure (Prawitz 1965).9 Re-
ductions show that nothing is gained by introducing and immediately
eliminating. The gain here does not refer to efficiency (mostly lengths)
of derivations, but to the ability to draw additional conclusion.10 In
a balanced system, any conclusion drawn by means of a maximal for-
mula can be drawn without it, as shown by the reduction. Failing this
condition shows that the I-rule is too strong (or the E-rule too weak).
The second facet of the balance between I/E-rules is that of stability,
excluding a situation in which the E-rules are too weak w.r.t. the I-
rules. I will ignore this issue here.
Harmony in form: Under this view of harmony, the E-rules are re-
quired to have a specific form, known as general elimination (GE), al-
lowing the derivation of an arbitrary conclusion using the premises of
the I-rules as discharged assumptions. The standard rules (∨E) and
(∃E) are of this form. GE-rules emerged independently of harmony,
allowing a better correspondence between normal ND-derivations and
CUT-free derivations in sequent-calculi (see, for example, Schroeder-
Heister 1984; von Plato 2000, 2001). In (Francez and Dyckhoff 2012)
a general procedure11 is presented for deriving harmoniously induced
GE-rules from given I-rules, ensuring the availability of the reductions
required by intrinsic harmony.
Below, I show the reductions for the rules for ‘⊢c ’.
Universal contextually restricted quantification:

Γ , [Γc,x(x)]i ⊢c φ(x)
Γ ⊢c ∀x .φ(x)

(∀I i
C) Γ ⊢c ∧Γc,x

(y)

Γ ⊢c φ(y)
(∀EC)

⇝r Γ [x := y], [Γc,x(y)]i ⊢c φ(y) (2.23)
9Note that the presence of a reduction is less demanding than normalisation.

The latter requires the finiteness of reduction sequences.
10Often, efficient derivation are not according to the meaning determined

by I-rules. For example, if one first proves ∀x .φ(x), and then derives (via ∀E)
φ(a),φ(b) etc., the derivations of the latter are shorter, but not according to
meaning.

11Recently, some restrictions on the domain of applicability of this procedure
have been realized, but they do not affect the current set-up.
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Note that since x /∈ free(Γ ), Γ [x := y] = Γ . The result follows by Propo-
sition 2.1. A clearer depiction of the reduction uses Ds.
[∧Γc,x

(x)]i
D

∀x .φ(x)
(∀I i

C) D ′∧Γc,x
(y)

φ(y)
(∀EC) ⇝r

D[∧Γc,x
(y) :=

D ′∧Γc,x
(y)]

φ(y) (2.24)

where the substitution ∧Γc,x
(y) :=

D ′∧Γc,x
(y) is the usual way composition

of derivations is obtained, by replacing an assumption ∧Γc (y) (a leaf
in D) with its given derivation in the second premise of (∀EC).
The harmoniously induced (∀GEC) is given below.
Γ ⊢c ∀x .φ(x) Γ ⊢c ∧Γc,x

(y) Γ , [φ(y)]i ⊢c χ

Γ ⊢c χ
(∀GE i

C), y fresh (2.25)
Existential contextually restricted quantification: The reduction
is the following.
D1
φ(y)

D2∧Γc,x
(y)

∃x .φ(x)
(∃IC)

[φ(z)]i , [∧Γc,x
(z)] j

D
χ

χ (∃E i, j
C )

⇝r

D[φ(z) :=
D1[y := z]
φ(z) , ∧Γc,x

(z) :=
D2[y := z]
∧Γc,x
(z) ]

χ (2.26)
The (∃EC)-rule is in the GE-form to start with, thus harmonious in form
too.
2.3 Quantifier domain restriction in restricted quantification
In order to make the subsequent presentation of QDR in NL more com-
prehensible, I exemplify the proof-theoretic approach by applying it
first to a fragment FOLrq of FOL that comes closer to the NL-fragment
to be considered. The fragment is known as having restricted quantifi-
cation (not to be confused with contextually restricted quantification,
which is added on top of this). Quantified formulas in this fragment
have the following form:

∀x .φ(x)→ψ(x), ∃x .φ(x)∧ψ(x) (2.27)
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Γ ,ξ ⊢ ξ (Ax)

Γ , [φ(y)]i ⊢ ψ(y)
Γ ⊢ ∀x .φ(x)→ψ(x) (∀I i)

Γ ⊢ φ(y) Γ ⊢ψ(y)
Γ ⊢ ∃x .φ(x)∧ψ(x) (∃I)

y fresh for Γ in (∀I).

Γ ⊢ ∀x .φ(x)→ψ(x) Γ ⊢ φ(y)
Γ ⊢ψ(y) (∀E)

Γ ⊢ ∃x .φ(x)∧ψ(x) Γ , [φ(y)]i , [ψ(y)] j ⊢ ξ
Γ ⊢ ξ (∃E i, j)

y fresh for Γ ,ξ in (∃E).
Figure 1: A natural-deduction proof system Nrq for restricted quantification

The universal quantification can be read as ‘everything which is φ
is ψ’, and the existential quantification can be read as ‘there exists
something which is φ that is ψ’. That is, quantification is restricted
to entities satisfying φ, to be called the restrictor. A more transparent
syntax, closer to the natural language expression of quantification,
would be

∀x : φ(x).ψ(x), ∃x : φ(x).ψ(x) (2.28)
The expression of (2.28) as (2.27) is known as Frege’s translation, that
has drawn criticism as a way to capture natural language quantifica-
tion. For example, see (Ben-Yami 2006) and (Francez 2014b) for such
a criticism. As I show in the next section, FOLrq-quantification reflects
more directly natural language quantification.

The proof system is presented in Figure 1. I use Γ ⊢ φ in this
subsection to indicate derivability of φ from Γ (in Nrq). A GE-rule for
the universal quantifier, exhibiting harmony in form, is

Γ ⊢ ∀x .φ(x)→ψ(x) Γ ⊢ φ(y) Γ , [ψ(y)]i ⊢ ξ
Γ ⊢ ξ (∀GE i)

y fresh
(2.29)

Next, I consider QDR in FOLrq. The observation is that the restrictor
can be interpreted differently in different DR-contexts. Thus, the nat-
ural regimentation of (1.1) (cf. Example (2.1)) would again be

∀x .B(x)→ E(x) (2.30)
where ‘B(x)’ expresses x is a bottle and ‘E(x)’ expresses x is empty.
Here, the restrictor B(x) can have a contextually varying interpreta-
tion.
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The idea for the proof-theoretic representation of contextual
meaning variation is as before, where for universal quantification
a DR-context c provides a contextual discharged assumption. The gen-
erated contextual restriction strengthens the restriction already present
in the formula. The rules are shown below.12

Γ , [φ(x)] j , [Γc,x(x)]i ⊢c ψ(x)

Γ ⊢c ∀x .φ(x)→ψ(x) (∀I i, j
C ), x /∈ free(Γ )

Γ ⊢c ∀x .φ(x)→ψ(x) Γ ⊢c φ(y)∧∧Γc,x
(y)

Γ ⊢c ψ(y)
(∀EC)

(2.31)

Γ ⊢c φ(y) Γ ⊢c Γc,x(y) Γ ⊢ψ(y)
Γ ⊢c ∃x .φ(x)∧ψ(x) (∃I i

C)

Γ ⊢c ∃x .φ(x)∧ψ(x) Γ , [(φ ∧∧Γc,x
∧ψ)(y)]i ⊢c χ

Γ ⊢c χ
(∃E i)

(2.32)

where y /∈ free(Γ ,χ) in (∃E).
The same considerations as those for FOL show that (CIP) holds

also for FOLrq.

3 proof-theoretic semantics
for quantifier domain restriction

in a fragment of english

In this section, I present a PTS for QDR in its more natural setting,
within an extensional fragment of English. A PTS for such a frag-
ment (without considering QDR) is provided in (Francez and Dyckhoff
2010).

For self-containment of the paper, this semantics is reviewed be-
low.
3.1 Review of the proof-theoretic semantics for sentences
I present the fragment and its associated proof system in two stages.
First, a core fragment is presented, extended in a second stage with
relative clauses and intersective adjectives.

12The notation φ(y) ∧ ∧Γc,x
(y) means the conjunction of φ(y) with the con-

junction of the context formulas in Γc,x applied to y.
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3.1.1 The core fragment and proof system
The core fragment E+0 of English consists of sentences headed by (ex-
tensional) intransitive and transitive verbs, and determiner phrases
(dp) with a (singular, count) noun and a determiner. In addition, there
is the copula. This is a typical fragment of many NLs, syntactically fo-
cusing on subcategorization, and semantically focusing on predication
and quantification. Some typical sentences are listed below.

every/some girl smiles/is a student/loves some boy (3.33)

I omit here proper names that do appear in the detailed presentation of
sentential meanings (Francez and Dyckhoff 2010). Note the absence
of negative determiners like no (hence the superscript ‘+’), which are
treated in (Francez and Ben-Avi 2014), involving technicalities orthog-
onal to QDR. Expressions such as every girl, some boy are dps.

The PTS is based on a core dedicated, meaning-conferring natural-
deduction proof system N+0 with I/E-rules presented in Figure 2. The
proof system is formulated over the language L+0 , slightly extending E+0
and disambiguating ambiguous E+0 sentences. Meta-variables X schema-
tize nouns, P over intransitive verbs and R over transitive verbs. Meta-
variable S ranges over sentences, and boldface lower-case j, k, etc.,
range over P , a denumerable set of (individual) parameters, artefacts
of the proof system (not used to make assertions). Syntactically, a pa-
rameter in L+0 is also regarded as a dp. If a parameter occurs in S in
some position, S is a pseudo-sentence, and if all dps in S are parameters,
the pseudo-sentence S is ground. The ground pseudo-sentences play the
role of atomic sentences, and their meaning is assumed given, exter-
nally to the ND proof system. The latter defines sentential meanings of
non-ground pseudo-sentences (and, in particular, E+0 -sentences), rela-
tive to the given meanings of ground pseudo-sentences.

In contrast to logic, where the introduced operator by an I-rule
is always the (unique) main operator, in E+0 sentences there is no such
main operator: every position that can be filled with a dp is a locus of
introduction (of the quantifier corresponding to the determiner of the
introduced dp). This is a major source of ambiguity in E+0 , known as
quantifier-scope ambiguity. The way ambiguity is treated is recapit-
ulated briefly below. For any dp-expression D having a quantifier, I
use the notation S[(D)n] to refer to a sentence S having a designated
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Figure 2:

The meta-rules
for N+0

Γ , S ⊢ S (Ax)

Γ , [j isa X ]i ⊢ S[j]
Γ ⊢ S[(every X )r(S[j])+1]

(eI i)

Γ ⊢ j isa X Γ ⊢ S[j]
Γ ⊢ S[(some X )r(S[j])+1]

(sI)

Γ ⊢ S[(every X )r(S[j])+1] Γ ⊢ j isa X Γ , [S[j]]i ⊢ S′

Γ ⊢ S′ (eE i)

Γ ⊢ S[(some X )r(S[j])+1] Γ , [j isa X ] j , [S[j]]i ⊢ S′

Γ ⊢ S′ (sE i, j)

where j is fresh for Γ , S[every X ] in (eI), and for Γ ,S[some X ], S′ in (sE).

position filled by D, where n is the scope level (sl) of the quantifier
in D. In case D has no quantifier (i.e., it is a parameter), sl = 0. The
higher sl, the higher the scope. For example, S[(every X )1] schema-
tizes a sentence S with a designated occurrence of every X of the
lowest scope. An example of a higher scope is S[(some X )2], having
some X in the higher scope, like in the object wide-scope reading of
(every X )1 loves (some Y )2. I use the conventions that within a rule,
both S[D1] and S[D2] refer to the same designated position in S, and
when the sl can be unambiguously determined it is omitted. I use r(S)
to indicate the rank of S, the highest sl on a dp within S. Note that for
a ground S, r(S) = 0.

Recall that in a rule, the notation [· · · ]i indicates an assumption
discharged by an application of that rule. The indices of the assump-
tions discharged by a rule appear as superscripts on the rule name.
The usual notion of (tree-shaped) derivation is assumed. I again use
D to range over derivations, where DΓ⊢S is a derivation of sentence
S from assumptions Γ . I use Γ , S for extending Γ with a sentence S.
A more detailed explanation of the rules is presented in (Francez and
Dyckhoff 2010). However, it is evident that all quantification in the
fragment is restricted. In addition to this restriction I will add QDR in
the next section.

The following is a convenient derived E-rule, that will be used to
shorten derivations.

Γ ⊢ S[(every X )r(S[j])+1] Γ ⊢ j isa X

Γ ⊢ S[j] (eÊ)
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Below is an example derivation establishing
some U isa X , (every X )2 R (some Y )1, every Y isa Z ⊢ (some U)1 R (some Z)2.

Let
D1

(some U)2 R (some Z)1 and
D2

(some U)1 R (some Y )2 be the following
two sub-derivations.

D1 :
some U isa X

[r isa U]1

(every X )2 R (some Y )1 [r isa X ]2
r R some Y (eÊ)

(some U)2 R (some Y )1
(sI)

(some U)2 R (some Y )1
(sE1,2)

D2 :
[some U R j]3

every Y isa Z [j isa Y ]4
j isa Z (eÊ)

(some U)1 R (some Z)2
(sI)

The whole derivation combines the two sub-derivations by
D1

(some U)2 R (some Y )1
D2

(some U)1 R (some Z)2
(some U)1 R (some Z)2

(sE3,4)

For a derivation D of S, its root is given by ρ(D) = S. This function
is extended to collections of derivations ∆ by ρ(∆) = {ρ(D) | D ∈
∆}, and further extended to contextualized functions F by ρ(F ) =
∪Γρ(F (Γ )).

In order to understand better the PTS of E+0 , consider one of
its well-known features: quantifier scope ambiguity. The following E+0
sentences are usually attributed to two readings each, with the fol-
lowing FOL-expressions of their respective truth-conditions in model-
theoretic semantics.

Every girl loves some boy (3.34)
Some girl loves every boy (3.35)

Consider sentence (3.34).
Subject wide-scope (sws): ∀x .girl(x)→∃y.boy(y)∧ love(x , y)

Subject narrow-scope (sns): ∃y.boy(y)∧∀x .girl(x)→ love(x , y)

In the proposed PTS, the difference in meanings reflects itself by the
two readings having different uses of the grounds for assertion. This is
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manifested in derivations by different orders of introduction of the sub-
ject and object dps. Following Moss (2010), I disambiguate ambiguous
sentences taking part in derivations.
Subject wide-scope (sws):

[r isa girl]i
D1

r loves j
D2

j isa boy

r loves (some boy)1
(sI)

(every girl)2 loves (some boy)1
(eI i) (3.36)

Subject narrow-scope (sns):
[r isa girl]i
D1

r loves j
(every girl)1 loves j

(eI i)
D2

j isa boy

(every girl)1 loves (some boy)2
(sI) (3.37)

Note that there is no way to introduce a dpwith a narrow-scope where
the dp with the wider-scope has already been introduced. In the N+0
calculus, only disambiguated sentences participate.
3.1.2 Relative clauses and intersective adjectives
I next add relative clauses to the fragment, followed by intersective
adjectives. This fragment transcends the locality of subcategorization
in E+0 , in having long-distance dependencies. It also has unbounded num-
ber of adjectival modifications. I refer to this (still positive) fragment
as E+1 . Note that, in contrast to E+0 , E+1 is infinite. Typical sentences
include the following.

every some/boy loves every/some girl

who(m) smiles/loves every/some flower/whom some girl loves
(3.38)

every/some girl is a girl who loves every/some boy (3.39)
some boy loves every/some girl who loves every boy who smiles

(nested relative clause)
(3.40)

So, girl who smiles and girl who loves every boy are compound nouns. I
treat somewhat loosely the issue of the case of the relative pronoun,
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in the form of who(m), abbreviating either who or whom, as the case
requires. I extend the notation with S[−], which denotes, for S includ-
ing a parameter in some distinguished position, the result of removing
that parameter, leaving that position unoccupied. Examples are loves
every girl (a parameter removed from subject position in j loves every
girl), and every girl loves (a parameter removed from object position in
every girl loves k).

The corresponding ND-system N+1 extends N+0 by adding the fol-
lowing I/E-rules.

Γ ⊢ j isa X Γ ⊢ S[j]
Γ ⊢ j isa X who S[−] (relI)

Γ ⊢ j isa X who S[−] Γ , [j isa X ]i , [S[j]] j ⊢ S′

Γ ⊢ S′ (relE i, j)

(3.41)

The simplified derived E-rules are:
Γ ⊢ j isa X who S[−]

Γ ⊢ j isa X (relÊ)1
Γ ⊢ j isa X who S[−]

Γ ⊢ S[j] (relÊ)2 (3.42)
The familiar conjunctive behavior of relative clauses is exhibited here
by its rules, resembling the rules for logical conjunction.

As an example of a derivation in this fragment, consider
some girl who smiles sings ⊢N+1

some girl sings (3.43)
exhibiting the upward monotonicity of some in its first argument.

some X who P1 P2

[r isa X who P1]1
r isa X (relÊ)1 [r P2]2

some X P2
(sI)

some X P2
(sE1,2) (3.44)

Finally, I augment E+1 with sentences containing adjectives, schema-
tized by A. I consider here only what is known in model-theoretic se-
mantics as intersective adjectives. Typical sentences are:
Some girl is a beautiful girl/clever beautiful girl/clever beautiful

red-headed girl
(3.45)

every/some beautiful girl smiles (3.46)

[ 273 ]



Nissim Francez

every/some beautiful girl loves every/some clever boy (3.47)
A noun preceded by an adjective is again a (compound) noun (the
syntax is treated more precisely once the grammar is presented, as in
Francez et al. 2010). Denote this extension still by E+1 . Recall that in
the N+1 rules, the noun schematization should be taken over compound
nouns too. Note that I augment N+1 with the following ND-rules for
adjectives.

Γ ⊢ j isa X Γ ⊢ j is A
Γ ⊢ j isa A X

(adjI)

Γ ⊢ j isa A X Γ , [j isa X ]1, [j is A]2 ⊢ S′
Γ ⊢ S′ (adjE1,2)

(3.48)

Again, the following derived E-rules are used to shorten presenta-
tions of example derivations.

Γ ⊢ j isa A X
Γ ⊢ j isa X (adjÊ1)

Γ ⊢ j isa A X
Γ ⊢ j is A (adjÊ2) (3.49)

Note that the intersectivity here is manifested by the rules themselves
(embodying an invisible conjunctive operator) at the sentential level.
These rules induce intersectivity as a lexical property of (some) adjec-
tives by the way lexical meanings are extracted from sentential mean-
ings, as shown in (Francez et al. 2010).

The following sequent, the corresponding entailment of which is
often taken as the definition of intersective adjectives, is derivable
in N+1 :

j isa A X , j isa Y ⊢ j isa A Y (3.50)
as shown by

j isa Y
j isa A X

j is A (adjÊ2)

j isa A Y
(adjI) (3.51)

As an example of derivations using the rules for adjectives, consider
the following derivation for

j loves every girl ⊢ j loves every beautiful girl (3.52)
In model-theoretic semantics terminology, the corresponding entail-
ment is a witness to the downward monotonicity of the meaning of every
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in its second argument. I use an obvious schematization.

j R every Y
[r isa A Y ]1

r isa Y (adjÊ)

j R r (eÊ)

j R every A Y (eI1) (3.53)
Under this definition of the meaning of intersective adjectives, such
adjectives are also extensional, in the sense of satisfying the following
entailment:

every X isa Y ⊢ every A X isa A Y (3.54)
as shown by the following derivation:

every X isa Y
[j isa A X ]1

j isa X (adjÊ1)

j isa Y (eÊ)
[j isa A X ]1

j is A (adjÊ2)

j isa A Y
(adjI)

every A X isa A Y (eI1) (3.55)
The proof of harmony of N+1 can be found in (Francez and Dyckhoff
2010) and is not repeated here.
3.1.3 Sentential meanings
Again, a derivation is canonical if it essentially ends with an applica-
tion of an I-rule; I use ⊢c for canonical derivability, denote by [[S]]cΓ
the collection of canonical derivations of S from Γ , and by [[S]]∗Γ the
collection of all derivations of S from Γ .
Those proof-theoretic collections are used to define meanings. Note
that these are strictly proof-theoretic denotations, independent from
any notion of a model, entities, and the like.
Definition 3.6 (PTS-meaning, semantic values)
1. For a non-ground S ∈ L+1 , its (reified) meaning (also referred to

as its contributed semantic value) is given by [[S]] df.
= λΓ .[[S]]cΓ [=

λΓ .{DΓ⊢cS}].
Recall that for a ground S, [[S]] is assumed given. The meaning
of non-ground pseudo-sentences (and E+0 -sentences in particu-
lar) is defined relative to the given meanings of ground pseudo-
sentences.
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2. For an arbirary S ∈ L+1 , its contributing semantic value is given by
[[S]]∗ df.

= λΓ .[[S]]∗Γ .
This distinction corresponds to the one that Dummett (1993, p. 48)
introduced between assertoric content and ingredient sense. The content
of an (affirmative) sentence S is the meaning of S in isolation, on its
own. The ingredient sense of S is what S contributes to the meaning
of any S′ in which S occurs as a sub-expression, a component. This
distinction is propagated to sub-sentential phrases as well. I will be
concerned here with the contents of sentences only.

The main characteristic of this definition of (proof-theoretic)
meaning is the notion of entailment it induces. A more comprehensive
discussion can be found in (Francez 2014c).

By defining sentential meanings in this way, I do not allude to any
logical form of the sentence differing from its surface form. In accor-
dance with many views in philosophy of language, every derivation in
the meaning of a sentence S can be viewed as providing G[[S]], grounds
for asserting S. Definition (2.4) is adapted to the current fragment.
Definition 3.7 (grounds for assertion – NL) For S ∈ E+1 , G[[S]]

df.
=

{Γ | Γ ⊢c S}, where Γ consists of E+1 -sentences only. Parameters are not
observable in grounds of assertion.
The refinement of the (reified) sentential meanings via ‘≡G ’ is used
here too, for the CIP (see below). A more comprehensive discussion
of extensions of the fragment and some technicalities accompany the
original presentation of the PTS in (Francez and Dyckhoff 2010).
3.2 Quantifier domain restriction
In this section, I develop the proof-theoretic semantics for QDR in set-
ting of the natural language fragment E+1 . This setting is more suitable
for that task than that of FOL and FOLrq, that were considered for ease
of presentation of the approach, being more familiar to most readers
than the dedicated N+1 .
Definition 3.8 (NLDR-context) An NLDR-context (NL domain re-
stricting context) c is a finite collection Γc of pseudo-sentences with
one parameter only, where Γc,j is the sub-collection with the parame-
ter j.13 Let CNL (NL contexts) be the collection of all NLDR-contexts.

13For simplicity, I assume this sub-collection is a singleton.
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The NLDR-contexts Γc,j(j) can be of one of the following forms: j isa X
(X is a noun), j is A (where A is an adjective) or j P (where P is a verb
phrase). Note that compound contextual restrictions can also be im-
posed, as, for example, in Γc,j = j isa man whom every girl loves. Since
the fragment E+1 has only modification by means of (intersective) ad-
jectives and relative clauses, all the examples will be restricted to
such modification. Extensions, for example, to incorporate preposition
phrases, are not an obstacle in principle, but none have been proposed
yet.

Restricting universal quantification: Again, an NLDR-context c pro-
vides a discharged assumption for imposing its restriction.

Γ , [j isa X ]i , [Γc,j(j)] j ⊢c S[j]

Γ ⊢c S[(every X )r(S[j])+1]
(eI i, j

CN L), j fresh for Γ (3.56)

Γ ⊢c S[(every X )r(S[j])+1] Γ ⊢c k isa X Γ ⊢c Γc,j(k) Γ , [S[k]]i ⊢c S′

Γ ⊢c S′
(eE i

CN L)

k fresh (3.57)

Again, a family of I/E-rules is employed, for all possible NLDR-
contexts.

Example 3.4 Below is a derivation establishing

every Italian woman smiles,every woman who smiles is beautiful

⊢c every woman is beautiful
(3.58)

in an NLDR-context c with Γc,k(k) = k is Italian, intended to restrict
the universal quantification on women to a universal quantification
on Italian women. The observant reader will notice that Example 2.2
is a regimentation of this example in FOL. Since there is no quantifier
scope ambiguity involved in this example, I omit in the derivation the
scope level indicator to avoid notational clutter. Also, for typographi-
cal reasons, I abbreviate in the derivationWoman, Italian, Beautiful and
Smiles to W, I, B and S, respectively.
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[k isa W]1

[k is I]2 [k isa W]1
k isa I W

(adjI)
every I W S

k S
(eÊ)

k isa W who S
(relI)

every W who S is B

k is B
(eÊ)

every W is B
(eI1,2

CN L) (3.59)
It is interesting to note that QDR holds, no matter which scope level
the restricted quantifier is in.
Example 3.5 Consider the following scope variants of

some man admires every actress (3.60)

In the NLDR-context c with Γc,k = k is Italian, intended to restrict the
universal quantification on actresses to universal quantification on
Italian actresses. I use the abbreviations P for philosopher, M for man,
I for Italian, A for actress, adm for admires and S for smart, to show
that

some P isa M ,every P is S,every S M adm every I A

⊢c some M adm every A
(3.61)

under both scope variants of the conclusion. For typographical rea-
sons, the derivations are presented with a common sub-derivation D
factored out.

D =
[j isa M]1

[j isa P]2 every P is S
j is S

(eÊ)

j isa S M
(adjI)

every S M adm every I A
j adm every I A

(eÊ)

(3.62)
Subject wide scope: The derivation is (with obvious abbreviations
and Γ omitted):

some P isa M
[j isa M]1

[k is I]3 [k isa A]4
k isa I A

(adjI) D
j adm every I A

j adm k
(eÊ)

j adm (every A)1
(eI3,4

CN L)

(some M)2 adm (every A)1
(sI)

(some M)2 adm (every A)1
(sE1,2)

(3.63)
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Object wide scope: The derivation is

some P isa M
[j isa M]1

[k is I]3 [k isa A]4
k isa I A

(adjI) D
j adm every I A

j adm k
(eÊ)

(some M)1 adm k
(sI)

(some M)1 adm k
(sE1,2)

(some M)1 adm (every A)2
(eI3,4

CN L)

(3.64)
Example 3.6 The following example from (Stanley and Szabó 2000)
is pointed out as being difficult for MTS-handling, as it seemingly re-
quires context-shift during meaning evaluation.

every sailor waved to every sailor (3.65)
where the context imposes the restriction that the quantification in the
subject is restricted to one kind of sailors, say sailors on the ship, while
the object quantification is restricted, say, to sailors on the shore. Un-
der the current approach, such examples pose no problem whatsoever.
Suppose that j is the parameter used to introduce every sailor in the
subject, while k is the parameter used to introduce every sailor in the
object (where both scope relations are equivalent). Then, all we have
to do is consider a context csailors, with Γcsailors , j = j is− on− the− ship,
and Γcsailors ,k = k is− on− the− shore. No context shift is involved. As a
full derivation is somewhat lengthy, I skip the details.
Restricting existential quantification:

Γ ⊢ j isa X Γ ⊢ Γc,j(j) Γ ⊢ S[j]

Γ ⊢c S[(some X )r(S[j])+1]
(sICN L) (3.66)

Γ ⊢ S[(some X )r(S[j])+1] Γ , [k isa X ]i , [Γc,j(k)] j , [S[k]]k ⊢ S′

Γ ⊢ S′ (sE i, j,k
CN L)

(3.67)
where k is fresh for Γ , S[some X ], S′ in (sECN L).
The reductions needed to show the harmony of the CNL-rules are very
similar to those for the regular rules (shown in Francez and Dyckhoff
2010) and are omitted.

Next, I show how the CIP is satisfied for E+1 . Note that the fragment
includes neither implication nor conjunction (on the sentential level).
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To express the CIP effect, I use the following notation. For S[(q X )]
(with q either every or some), let SΓc,j

be defined as

SΓc,j
=


S[(q X who isa Y )] Γc,j(j) = j isa Y

S[(q A X )] Γc,j(j) = j is A
S[(q X who P)] Γc,j(j) = j P

(3.68)

Theorem 3.2 (E+1 context incorporation)

Γ ⊢c S[(q X )] iff Γ ⊢ SΓc,j
(3.69)

Proof: I will show only the proof of the first case, for q = every; all
other cases are similar. To simplify, I also omit the scope indications.
1. Asume Γ ⊢c S[(every X )], where Γc,j = j isa Y . So, the derivation

ends with (omitting scope indication)
Γ , [j isa X ]i , [j isa Y ] j ⊢c S[j]

Γ ⊢c S[(every X )] (eI i, j
CN L), j fresh for Γ (3.70)

Therefore, the following derivation can be formed, where the in-
duction hypothesis on the premise uses ‘⊢’ instead of ‘⊢c ’.
Γ , [j isa X who isa Y ]i

Γ ⊢ j isa X
(relE)

Γ , [j isa X who isa Y ]i
Γ ⊢ j isa Y

(relE)

Γ ⊢ S[j]
(ass.)

S[(every X who isa Y )] (eI i)

(3.71)
2. Assume Γ ⊢ S[(every X who isa Y)]. The derivation (again, omit-

ting scope indication) ends with
Γ , [j isa X who isa Y ]i ⊢ S[j]
Γ ⊢ S[(every X who isa Y)] (eI i) (3.72)

Let Γc,j = j isa Y . Therefore, the following derivation can be
formed:

[Γ ⊢ j isaX ]i [Γ ⊢ j isaY ] j

Γ ⊢ j isa X who isa Y
(relI)

S[j]
(ass.)

Γ ⊢c S[(every X )] (eI i, j
CN L) (3.73)
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Once again, by inspecting the rules, we obtain that
[[S[(q X )]]]c = [[SΓc,j

]] (3.74)
validating the CIP. Note again the correspondence between deriva-
tions, where a use of (qIN LC) is associated with (qI) followed by (rel I)
(or by (Adj I) in some of the cases), and similarly for the E-rules.

4 conclusions

The paper introduces proof-theoretic semantics for contextual domain
restriction as an alternative to the model-theoretic meaning generally
found in the literature. In addition to providing yet another example
for the feasibility of PTS for natural language meanings, the paper
points to an advantage (in my opinion) of the PTS approach to QDR
over the MTS approach; namely, the CIP principle, by which every
contextually restricted quantified sentence has the same meaning as
a context-independent variant thereof, where the contextual restric-
tion is incorporated as a phrase in the sentence. Thus, no equivalent
of intersection with arbitrary subsets of the quantification domain, not
being the denotation (in the model) of any NL expression, is involved.
Some other advantages related to multiple quantification have also
been shown. In particular, both facets of the QDR-problem pointed out
by Stanley and Szabó (2000), namely the descriptive and the funda-
mental, are treated, in contrast to the MTS discussion in the literature,
which usually evades the latter.

As observed by one of the referees of this paper, an important phe-
nomenon related to contextual meaning variation, namely, pronom-
inal binding, is not covered by the proposed PTS. The reason is that
currently the fragment for which a PTS has been proposed does not
include pronouns at all. I consider this to be a topic of further work,
both extending the fragment with pronouns and investigating the im-
pact of such an extension of the general contextual QDR-problem.

The approach was also exemplified in two variants of FOL (first-
order logic). The current interface between the contextual restriction
and the sentential derivation is through the name of the variable in-
volved (or in the NL case, through the parameter). This might seem
somewhat ad hoc, and a more transparent binding of contextual re-
strictions and the corresponding quantifiers should be sought.
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Many Optimality-Theoretic tableaux contain exactly the same infor-
mation, and equivalence-preserving operations on them have been
an object of study for some two decades. This paper shows that
several of the operations proposed in the earlier literature together
are actually enough to express any possible equivalence-preserving
transformation. Moreover, every equivalence class of comparative
tableaux (equivalently, of sets of Elementary Ranking Conditions, or
ERC sets) has a unique and computable normal form that can be
derived using those elementary operations in polynomial time. Any
equivalence-preserving operation on comparative tableaux (ERC sets)
is thus computable, and normal form tableaux may therefore represent
their equivalence classes without loss of generality.

Optimality Theory (OT) is a grammatical formalism based on con-
straint competition, formulated by Prince and Smolensky (1993) (later
published as Prince and Smolensky (2004)). OT is especially popular
in phonology, and is used to some extent in other branches of linguis-
tics. In OT, a set of competing output forms {Output1, Output2, . . .} is
generated by machine Gen for the underlying form Input. Each pair
〈Input, OutputN〉 is then evaluated against a set of constraints Con. The
grammar of a particular language is modeled as an ordering of the
universal set of constraints Con which determines the winning input-
output pair for each Input: an input-output pair α = 〈Input, OutputN〉
wins over another pair β = 〈Input, OutputM〉 when α incurs fewer vi-
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olations than β in the most highly ranked constraint where α and β
differ. The input-output pairs that do not lose to any other pair are
declared grammatical.

The OT formalism expresses two important intuitions regarding
how languages might function. First, it easily captures conditions of
the form “try A; if impossible, try B; if also impossible, resort to C”,
which seem to frequently occur in natural language. Second, OT allows
for elegant modeling of cross-linguistic variation and language change
in terms of re-ranking of a universal set of constraints.

The information that a given dataset contributes constrains the
possible rankings of constraints. Such information may be represented
in the form of a comparative tableau (Prince 2000) or the correspond-
ing set of Elementary Ranking Conditions, or ERC set (Prince 2002) . In
this paper, I present an incremental step completing the development
of a full theory of equivalence classes of comparative OT tableaux, or,
equivalently, ERC sets.

Earlier work, especially that of Hayes (1997), Prince (2000),
Prince (2002), Brasoveanu and Prince (2011)1, and Prince (2006), has
established a number of results concerning how one may transform
the information in an OT tableau without loss. What has not yet been
done in this line of research is to establish the limits of operations that
preserve equivalence. For example, the following natural question has
not been answered: given two arbitrary comparative tableaux or ERC
sets, can we determine whether they contain identical information?2

The present paper fills this gap: I show that any (finite) com-
parative tableau may be (computably, and actually quite efficiently)
transformed into a normal form, which is unique for the whole equiv-
alence class. Moreover, this transformation is possible by applying
a sequence of a set of five elementary operations and their inverses

1An earlier version (Brasoveanu and Prince 2005) was circulated through
Rutgers Optimality Archive (ROA) http://roa.rutgers.edu/

2For a finite constraint set, there is only a finite number of possible rankings,
so strictly speaking, brute-force testing for equivalence is possible: one may sim-
ply build every possible ranking and test whether the two tableaux/ERC sets are
compatible with it. However, the number of logically possible rankings of n con-
straints is n!, so the complexity of brute-force testing is factorial in the number of
constraints. This should be compared with the merely polynomial time complex-
ity of our new test for equivalence through normalization given in Theorem (16).
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already introduced in the literature. Only two of those are non-trivial,
so a very small and simple set turns out to be sufficient to capture
all the diversity of possible equivalence-preserving operations on
tableaux. Normalization gives us a handle on equivalence classes of
tableaux/ERC sets, as we show that each equivalence class contains
exactly one normal form tableau. The normal form may therefore
serve as the class’s representative. A test for equivalence of arbitrary
tableaux (computable for finite tableaux) involves normalizing the in-
put tableaux and comparing the resulting normal form tableaux. The
original tableaux are equivalent if and only if their normal forms are
identical. Thanks to the normal form theorem proved in the present
paper, the space of all possible equivalence-preserving operations
may be enumerated, and the same is true of the members of which
equivalence class.

1 introduction

As a concrete example of how OT works, consider the pattern of final
obstruent devoicing in Dutch.3 Underlyingly, Dutch morphemes may
have both voiced and voiceless obstruents: the morpheme for ‘bed’ is
/bɛd/, surfacing faithfully in [bɛd-ən] ‘beds’, while the morpheme for
‘dab’ is /bɛt/, surfacing faithfully in [bɛt-ən] ‘(we) dab’. But when the
final obstruent of either morpheme closes the syllable, it is realized
on the surface by the same voiceless [t]: both ‘bed’ /bɛd/ and ‘(I)
dab’ /bɛt/ surface as [bɛt]. The following OT tableau demonstrates
the violation patterns for several potential outputs corresponding to
the underlying form /bɛd/:
(1)

UR: /bɛd/
*Voiced-
Obs-Coda Ident-Voice *Voiced-Obs

a. [bɛd] * **
b. [bɛt] * *
c. [pɛd] * * *
d. [pɛt] **

According to the OT conventions, solid vertical lines in the tableau
indicate that the left-to-right order of the constraints corresponds to
their ranking in the grammar: *Voiced-Obs-Coda ≫ Ident-Voice

3My description of the Dutch pattern is based on Kager (1999).
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≫ *Voiced-Obs. The constraint *Voiced-Obs penalizes any voiced
obstruent. Its specialized cousin *Voiced-Obs-Coda only penalizes
voiced obstruents in the coda position of a syllable. Finally, Ident-
Voice penalizes mismatches in voice between underlying and out-
put consonants. The ranking in the tableau ensures that [bɛt] is the
winning output form: [bɛd] and [pɛd] lose to [bɛt] in the highest con-
straint *Voiced-Obs-Coda, and [pɛt] loses to it in the next constraint
Ident-Voice. Overall, the ranking says: “avoid voiced obstruents in
the coda, but preserve them elsewhere”.4 We worked through this
example already knowing the ranking. Normally the work of an OT
analyst proceeds in the opposite direction: she would know the con-
straints, the violation profiles, and the designated winner, and would
need to uncover the ranking that selects the winner correctly. For that
procedure, it is more convenient to use a comparative OT tableau,
Prince (2000). The comparative counterpart of Tableau (1) is given
in Tableau (2). Each row of a comparative tableau corresponds to a
pair of the winner output and one of the loser outputs of the regular
OT tableau as in Tableau (1). For a specific row corresponding to a
specific winner-loser pair, if the winner incurs less violations than the
loser in a given constraint, the relevant cell is marked with a W; if the
loser incurs less violations, the cell is marked with an L. If there is a
tie, it is marked with an e.
(2)

UR: /bɛd/
*Voiced-
Obs-Coda Ident-Voice *Voiced-Obs

[bɛt]∼[bɛd] W L W
[bɛt]∼[pɛd] W e e
[bɛt]∼[pɛt] e W L

It is easy to see that converting a traditional OT tableau into a
comparative tableau loses information about the number of violations.
But the lost information is irrelevant for recovering the ranking. More-
over, the characterization of rankings which select the correct winner
becomes very simple with comparative tableaux: a ranking selects the
right winner iff in every row, all L-constraints are dominated by a W-

4 It is easy to check that the ranking in 1 predicts correct results for Dutch
[bɛd-ən] ‘beds’, [bɛt-ən] ‘(we) dab’, and /bɛt/-[bɛt] ‘(I) dab’. It is also the only
ranking selecting the correct winner in 1, though there exist tableaux whose
winner can be correctly selected by more than one ranking.
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constraint. A specific condition selecting the rankings compatible with
a fixed row is called the Elementary Ranking Condition, or ERC, by
Prince (2002). In Tableau (2), we can see for instance that the pair
[bɛt]∼[pɛt] necessitates the inclusion of a pairwise ranking Ident-
Voice≫ *Voiced-Obs into our grammar. On the other hand, another
pair [bɛt]∼[pɛd] does not add any useful information: without any Ls
in the row, [pɛd] is going to lose to [bɛt] on any possible ranking of
our three constraints (i.e., the ERC corresponding to this comparative
row is trivial, as it is compatible with any ranking.) In what follows, I
will be largely talking in terms of comparative rows and tableaux, but
it is easy to translate this into talk about ERCs and ERC sets.

Turning to definitions, a comparative tableau is a possibly
empty 2-dimensional matrix with labelled columns where each cell
contains a W, an L or an e. The column labels of a given tableau form
the constraint set. A comparative row is a comparative tableau with
one row. The tableau with zero rows is special: it is compatible with
any ranking whatsoever; we refer to it as T⊤. A (total) ranking is a
total order of a constraint set. In what follows, we always assume that
tableaux and rankings use the same fixed constraint set.

The following terminology, mostly borrowed from Prince (2002),
will also be useful. A ranking M 5 is (OT-)compatible with a com-
parative tableau T iff for every row, every L-constraint is dominated
by some W-constraint. We say that ranking M covers an L in con-
straint C in row r when M orders one of the W-constraints of r higher
than the L-constraint C . We also say that a W in any constraint C ′
that dominates C under ranking M covers the L in C . If every rank-
ing compatible with tableau T is also compatible with tableau U , we
say that T entails U . When T and U are compatible with exactly the
same rankings, they are called OT-equivalent. It is trivial to extend
the notions to ERC sets.

Once a comparative tableau is computed, the actual input-output
pairs are no longer needed for the task of determining the correct
ranking. Thus we may freely combine several tableaux stemming from
different input forms into a single bigger tableau: the input informa-

5Prince (2002) introduces the logical perspective on OT compatibility
wherein rows/ERCs are formulas, and rankings are essentially models. Hence
M , N as designations for rankings.
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tion in it may be viewed as being about the grammar of the language
rather than about particular linguistic forms. In this paper, we will be
working exclusively with comparative tableaux.

Tableaux directly computed from particular linguistic forms are
often suboptimal in how they represent information. For example, the
second row of 2 may be omitted without any loss of information; sim-
ilarly, the W in *Voiced-Obs in the first row is “false”, because re-
placing it with an e will not change which ranking selects the right
winner. It thus becomes important to study equivalence relations be-
tween comparative tableaux/ERC sets. To name just a few examples,
Hayes (1997) (cf. also a follow-up in Prince (2006)) seeks to find trans-
formations for tableaux allowing for better information extraction;
Prince (2000) introduces the notion of entailment between rows and
tableaux; Brasoveanu and Prince (2011) define an algorithm trans-
forming an arbitrary tableau into a small-size “basis” conveniently
representing the same information.

The current paper continues that line of investigation. Namely,
I prove that the equivalence-preserving operations introduced in the
earlier literature are already enough to handle equivalence classes of
comparative tableaux/ERC sets, once we add the necessary proofs.
By definition, any (comparative) tableau T belongs to an equivalence
classC such that any tableau inC is compatible with exactly the same
rankings. Whenever there are such non-trivial equivalence classes,
there is a problem of handling them: in geometry, there are congru-
ence classes of geometrical figures; in proof theory, there often ex-
ist many proofs of the same statement; in lambda-calculus, there are
plenty of equivalent lambda-terms. In all those cases we want to be
able to obtain results common for the equivalence class. Our strategy
for getting a handle on equivalent classes of OT tableaux will be fairly
standard: we will find a special representative which exists in every
equivalence class, and is unique in it — in other words, a normal form
that can represent the class.

The plan is as follows. In Section 2, I review several elementary
equivalence-preserving transformations of tableaux from the earlier
literature, adding their inverses where needed. Later it will be shown
that the introduced set of operations is functionally complete (that is,
any equivalence-preserving transformation can be decomposed into a
sequence of elementary transformations from the set). In Section 3 I
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define a normal form for OT tableaux, and prove the central result of
the paper: a normal form is unique in its equivalence class. This means
that the normal form may be used as the representative of a class, or
its name. Finally, in Section 4 I provide several easy corollaries fol-
lowing from the normal form theorems. For example, we obtain a test
of equivalence for OT tableaux, and a proof that bases of Brasoveanu
and Prince (2011) are unique in their equivalence classes and thus can
serve as class representatives (just as normal-form tableaux can).

2 five elementary
equivalence-preserving

transformations

In this section, we provide the definitions for five operations with in-
verses that will be shown in the next section to form a functionally
complete set. The operations are either trivial (Operations (3) and
(4)) or have been described and proven correct before (Operations (5)
and (6) are either explicitly discussed by, or immediately follow from
Prince (2002); Operation (7) is studied in Prince (2006)). The proofs of
equivalence-preservation are provided here mainly for completeness’
sake, so the readers familiar with the operations may wish to skip
them. The novelty of the present paper is not in the operations them-
selves, but in the fact that together they form a functionally complete
set that is enough to represent any possible equivalence-preserving
operation whatsoever.

The order of columns in example tableaux below does not cor-
respond to any ranking, unlike in the previous section.6 Constraint
names are chosen to be C1, C2, …, rather than the usual meaningful
names, to underscore the fact that the transformations are completely
blind to actual linguistic content, and only concern the formal infor-
mation encoded in a tableau.

We use variables M , N , …for OT rankings; variables T , U , …for
comparative OT tableaux; and r and q for comparative OT rows. W (r),
for row r, denotes the set of constraints that have aW in r. Similarly for
L(r). This short notation allows us to define new rows compactly: e.g.,

6Sometimes the absence of order is marked by using dashed vertical lines.
We refrain from this practice at the request of a reviewer.
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if we say that W (r) = {C3} and L(r) = {C1}, and Con is the 5-con-
straint set {C1, C2, C3, C4, C5}, then row r is the row (L, e, W, e, e).

The first two operations we will consider are trivial. First, row
swaps defined in Operation (3) never affect OT-equivalence, as the
order of the rows is not significant for determining whether a ranking
M is compatible with the tableau. (If we think in terms of correspond-
ing ERC sets, the very concept of row order becomes irrelevant.) Row
swap is its all inverse. Second, if a tableau is not compatible with any
ranking whatsoever (that is, if it puts contradictory requirements on
the ranking of constraints), there is no useful information in it any-
way, so as long as the tableau remains contradictory, any changes to
it do not offend equivalence (Operation (4)).
(3) Row swaps: swapping any two rows preserves OT equivalence.

C1 C2 C3 C4

e W L L
W e L e

⇔
C1 C2 C3 C4

W e L e
e W L L

Proof: trivial.
(4) Contradictory jumps: for a contradictory tableau (that is, a

tableau not compatible with any ranking), any row can be added,
or, inversely, subtracted as long as the resulting tableau is still
contradictory.

C1 C2 C3 C4

W L e e
L W e e

⇔
C1 C2 C3 C4

W L e e
L W e e
e e W L

Proof: trivial.

Row splitting and its inverse, row merging, are also nearly trivial.
Given the ERC theory of Prince (2002), it is easy to show that a row
with several Ls is equivalent to a set of single-L rows. In ERC terms,
such single-L rows have been called Primitive Ranking Conditions by
Prince (2006, p. 4). The correctness of row splitting and row merging
shows that covering each L in a multiple-L row is independent from
covering the other Ls. Working with single-L rows, or PRCs, is often
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more convenient, especially when we turn all rows in a tableau into
this single-L/PRC form.

(5) Row splittings and mergings: a row r is equivalent to any set
of rows r1, . . . , rn such that ∀r i : W (r i) = W (r), and ∪ i L(r i) =
L(r). That is, r, r1, . . . , rn must have exactly the same Ws, and
the combined Ls of r1, . . . , rn must form the same set as the Ls of
r.

C1 C2 C3 C4

W W L L ⇔
C1 C2 C3 C4

W W L e
W W e L

Proof: Suppose a ranking M puts on top of each L in r one of r’s
Ws. As any r i has the same Ws, any L in any r i will also be covered by
a W under ranking M .

Conversely, suppose a ranking N is compatible with all rows
r1, . . . , rn. Consider some L of row r. Some r i must have an L in the
same constraint, and ranking N covers it with a W in one of W (r i).
That W-constraint in r i also has a W in r, by definition. Thus N covers
the arbitrary L in r just as well.

Thus a ranking is compatible with r iff it is compatible with
r1, . . . rn. □

The remaining two pairs of operations are the non-trivial part of
the set. Some OT rows may be superfluous in their tableaux: even if
we delete them, the amount of information in the tableau does not
change (e.g., the second row in Tableau (2) is superfluous.) By defini-
tion, subtraction or addition of such rows does not offend OT equiv-
alence. What is non-trivial, though, is determining the exact formal
conditions under which a row is superfluous. In the proof, I use the
criterion by Prince (2002), featuring his operation of fusion.7 One can
provide an alternative characterization of superfluousness based on

7The operation of fusion on rows is defined by Prince (2002, page 8, Equation
(12)). For tableau U , the fusion row f U has an e in the Ci cell iff all rows in U
have an e in Ci; has an L iff some row in U has an L in Ci; and has a W otherwise,
that is, when at least one row in U has a W in Ci, and all other rows have either
Ws or es, but not Ls.
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domination chains of constraints, but the proof based on such chains
is more cumbersome.8

Using the fact that row order is not significant in a tableau, cf.
Operation (3), we can safely use set notation for tableaux, understood
as being parasitic on the notation for ERC sets: T \ r denotes tableau
T with row r subtracted; T ∪ U is a concatenation of tableaux T and
U ; and so forth.
(6) Inference eliminations and introductions: a row r entailed in

tableau T by the rest of the tableau (that is, by T \ r) can be
subtracted from T , or added back to tableau T \ r.

C1 C2 C3 C4

W L e e
e W L e
W e L e

⇔
C1 C2 C3 C4

W L e e
e W L e

Proof: Trivial. What is non-trivial is how to determine if r is en-
tailed by T \ r. By Prop. 2.5 of (Prince 2002, p. 14), r is entailed by
T \ r iff there exists a subtableau U of T \ r s.t. the fusion q (cf. Foot-
note (7)) of U entails r. In turn, q entails r either when r has no L-s
and thus is compatible with any ranking, or when W (q) ⊆ W (r) and
L(q) ⊇ L(r). □

8 I provide the definitions of possible and maximal domination chains in (i),
and the criterion of superfluousness based on them, without proof, in (ii):
(i) For a tableau T , a row r i ∈ T , and a C j ∈ L(r i), a possible domination

chain is a sequence of constraints 〈Ck1
, . . . , Ckn

〉 s.t. Ckn
= C j, a single con-

straint never occurs twice in the chain, and for each Ckl
, Ckl+1

there is a row
rm ∈ T for which Ckl

∈W (rm), Ckl+1
∈ L(rm). A maximal possible domina-

tion chain is a possible domination chain for which there is no rm ∈ T s.t.
Ck1
∈ L(rm).

(ii) Superfluous row theorem. A tableau T = 〈r1, . . . , rn〉 entails a row q iff for
each Ci ∈ L(q), there exists such a row r ∈ T in every maximal domination
chain for Ci, r, and T , that there is a constraint Ckl

in it s.t. Ckl
∈W (q).

Checking the criterion based on maximal chains does not require computing
new rows, as the fusion criterion does. But it is easy to see from the cumbersome-
ness of the definitions that proving the criterion’s correctness from first principles
requires a bit of work. Therefore I simply reuse Prince’s fusion-based result in the
main text, referring the reader to Prince (2002) for proofs of its correctness.
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To reduce the computational complexity of inference elimination,
an RCD-based method is proposed by (Prince 2002, Sec. 5). Prince
shows that instead of checking the fusions of all subtableaux, one may
check whether T \ r is consistent with the negative ¬r of r, obtained
by replacing all r’s Ws with Ls and vice versa. For m rows, we need m
such RCD-based checks. As Magri (2009) explains, RCD requires m2n
operations for a tableau with m rows and n constraints. The complex-
ity of RCD-based inference elimination is thus polynomial, in contrast
to subtableau-fusion version which is exponential in the number of
constraints n.

Finally, not all Ws in an OT tableau are necessarily equal: there
may be rows with “false Ws” such that there is no ranking compatible
with the tableau which puts that W on top of any Ls in the row. As
shown by (Prince 2006, p. 12), such false Ws may be replaced with
an e without affecting the set of rankings the tableau is compatible
with. An example of such a W is the W in the first row in C3 in the
left tableau in Operation (7). The third row of the tableau necessitates
ordering C4 over C3 in any compatible ranking M , and because of
that the L in the first row may never be covered by the W in C3 in M .
Therefore replacing that W with an e, as in the right tableau, does not
offend OT-equivalence. The operation for doing such changes is called
Generalized Removal of W, or GRW. We also introduce its inverse,
Generalized Introduction of W, or GIW.

(7) Generalized Removal of W (GRW) and Introduction of W
(GIW): informally, a “false” W is a W whose replacement with
an e does not change which rankings the tableau is compatible
with. Thus a false W does not do any actual work. The example
tableaux below may help visualize the phenomenon.

C1 C2 C3 C4

W W W L
W L e e
e e L W

⇔
C1 C2 C3 C4

W W e L
W L e e
e e L W

Turning to the formal definition: for rows r and r ′ such that in-
stead of r’s W in a fixed Ci, row r ′ has an e, consider a pair of T in-
cluding r that is not entailed by the rest of T , and T ′ := (T \r)∪r ′.
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(That is, T ′ that is exactly like T , but with the W in Ci in row r
replaced with an e.)
The claim is: T and T ′ thus defined are equivalent iff T \ r entails
the row q such that W (q) := L(r)∪ (W (r) \ Ci), and L(q) = {Ci}.

Proof: Just as with inference eliminations, the fact that a false W
can be replaced with an e is trivial. What is non-trivial is the criterion
for false Ws: a W is false iff the row q as described above is entailed
by T \ r. Prince (2006, p. 12) proves essentially that criterion in his
(31) using fusion.9 Yanovich (2011) provides a different proof in his
(125) using partial OT rankings. The proof below is based on the idea
of the proof in Yanovich (2011), but does not use either fusion or the
apparatus of partial rankings.

Consider row r with a W in Ci, and row q defined as in the cri-
terion above: W (q) contains all W- and L-constraints of r except Ci,
and the only L-constraint of q is Ci. We need to show that the W in Ci
in r is false in tableau T precisely when the rest of the tableau, T \ r,
entails the row q so constructed.

Without loss of generality, assume that r has only one L, in con-
straint C j. (We have the right to assume that because we proved in 5
that any multiple-L row may be split into several single-L rows that
are together equivalent to it.)

Suppose q is entailed by T \ r. We will prove that T is then equiv-
alent to T ′, and thus the W Ci in r is false. Assume towards a contra-
diction that there is a ranking M which is compatible with T , but not
with T ′. That ranking M must be compatible with r, but not with r ′
which differs from it in that it has an e in Ci instead of a W. Then M
must say that Ci≫ C j and that for every Ck from W (r)\Ci, C j≫ Ck:
otherwise it would be compatible not only with r, but also with r ′.
But then M is incompatible with q: the L-constraint Ci dominates C j
in M , and then by transitivity any W-constraint Ck. This is contrary to
assumption, and therefore there cannot be such an M . Furthermore,
any ranking compatible with T ′ is bound to be compatible with T ,

9Prince’s theorem is slightly weaker compared to our formulation: Prince
requires all rows in T to be not entailed by the rest of the tableau. His actual
proof, though, only employs the fact that r is not entailed by T \ r, just as our
proof does.
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and thus we derive that if q is entailed by T \ r, then T and T ′ are
OT-equivalent.

For the other direction, suppose q is not entailed by T \r. We show
that then there is a ranking compatible with T , but not T ′. We need
to show that there exists ranking M compatible with T \ r that says
Ci ≫ C j ≫ Ck for all Ck ∈ W (r ′): such a ranking will be compatible
with r, but not with r ′. Towards a contradiction, suppose there is no
such M . That is only possible if no ranking compatible with T \ r says
Ci ≫ C j ≫ Ck. For the Ci ≫ C j part, T \ r cannot necessitate the
opposite ordering C j ≫ Ci: if it did, then it would have entailed q,
contrary to assumption. For C j≫ Ck, suppose towards a contradiction
that every ranking compatible with T \ r says for some Ck ∈W (r ′) or
other that Ck≫ C j. That can only be if there is a row s in T \ r with
an L in C j, and W (s) ⊆ W (r ′). But if that is so, then the row s, and
thus T \ r as a whole, entail r: the L is in the same place in s and
r, and W (s) ⊆ W (r ′) ⊂ W (r). That is contrary to assumption, so if
T \ r does not entail either q or r, then there must be a ranking M
compatible with T \ r saying Ci ≫ C j ≫ Ck for all Ck ∈ W (r ′). That
M is compatible with T , but not with T ′, and thus witnesses that T
and T ′ are not OT-equivalent: T is compatible with a larger number
of rankings, thanks to the non-false W for which the criterion based
on a specially constructed row q fails. □

We have now defined and proved correctness of five pairs of
elementary operations preserving OT-equivalence of comparative
tableaux. Those operations as such have been known before. What has
not been known is that those five pairs form a functionally complete
set: any transformation preserving OT-equivalence can be performed
by applying a sequence of those elementary operations, as we will
show in the next section.

The following easy-to-prove fact will become useful later:

(8) All operations in (3)–(7) have inverses: row swap is self-inverse;
for the other four pairs, the two members of the pair are inverses.

What (8) means is that each sequence of applications of our el-
ementary operations may be inverted: if we can derive from tableau
T another tableau U using those operations, then we can also derive
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from U the original tableau T by applying the inverted form of the
same sequence.

3 normal form for ot tableaux

In this section, we present core novel results of this paper: two theo-
rems regarding the existence and uniqueness of normal form for com-
parative OT tableaux. Namely, we define a specific tableau format in
Definition (9), and then prove that for each equivalence class C , there
exists exactly one tableau in such format, and moreover, that the nor-
mal form of a (finite) tableau is computable. Normal forms thus can
serve as true representatives of their equivalence classes, giving us a
handle on those.

It should be stressed that there is nothing particularly special
about normal forms — in fact, as we will see in the next section, other
forms may be proven to be usable as normal forms just as well. The
reason we define the normal form in Definition (9) the way we do is
simply that it is convenient for proof purposes. Nor is the form we
chose new: Prince (2006, p. 6) defines essentially the same form in
terms of ERCs, called the Minimal Primitive Generator, or MPG. Thus
in this section we show that (the tableau counterpart of) an MPG is a
true normal form for OT equivalence classes.

(9) Normal form for OT tableaux:
1. The only contradictory tableau in the normal form is the

one-row tableau with a single L in the first constraint. We
can refer to this special tableau as T⊥.

2. Each row has at most a single L.10

3. There are no rows which can be inference-eliminated (see
Operation (6)).

4. In multiple-W rows, there are no false Ws (see Operation
(7)).

10Such single-L rows correspond to Primitive Ranking Conditions of Prince
(2006).
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5. The rows are ordered according to some strict total order of
the set of all possible rows.11 (For corresponding ERC sets,
the notion of row order becomes irrelevant.)

Here is an example of a normal form tableau:

(10)

C1 C2 C3 C4 C5

W e L e e
W e e L e
W e e e L
e W e L e

Just calling something a normal form does not make it one. The
results in (11)–(14) establish the fact that the class of tableaux defined
in Definition (9) indeed has normal form properties.
(11) Normal Form Existence Theorem

An arbitrary (finite) tableau T can be transformed into an equiv-
alent normal form tableau by a (finite) sequence of equivalence-
preserving transformations in Operations (3)–(7).

(12) Corollary to Theorem (11). Each non-empty equivalence class
of tableaux contains at least one normal form tableau.

Proof of Theorem (11). We give an explicit procedure for trans-
forming an arbitrary tableau so that it satisfies the requirements
in Definition (9). For contradictory tableaux, we just add the row
(L, e, e, …), and subtract all others. If the tableau is not contradic-
tory, we apply row splittings until all rows have at most one L (and
are thus PRC-rows). Assuming the tableau is finite, we can eliminate
all entailed rows by testing whether the fusions of subtableaux satisfy
Prince’s condition on entailment, see Operation (6). After that, we can
similarly eliminate all false Ws from the resulting tableau by testing
if the conditions for GRW, see Operation (7), are met (as all entailed
rows were eliminated by that point, the row independence precondi-
tion of the criterion in Operation (7) is met). We finish the procedure
by applying row swaps to get the ordering right. □

11The actual choice of ordering is irrelevant as long as all conceivable rows
are strictly ordered. I will use the following: 1) let the first constraint where only
one of r and q has a W be Ci; then the row with the W in Ci goes first; 2) for
rows which have identical W-sets, the row which has an L in the first constraint
where only one of them has an L goes first.
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Proof of Corollary (12). Trivial: if there were no normal form
tableau in a non-empty equivalence class, then Theorem (11) could
not have been valid. □

Note that if the tableau is finite, the normalization procedure de-
scribed in our proof of Theorem (11) is computable. This is important
because if the normal form were not computable, we could not use
it without restrictions in place of any other tableau in its equivalence
class: we would not have been able to ensure we can actually derive
one from the other in a finite amount of time. In fact, complexity anal-
ysis shows that normalization is not only computable, but quite effi-
cient:

(13) Tableau normalization as defined in the proof of Theorem (11)
runs in time polynomial in the number of rows m and the num-
ber of constraints n.

Proof of Theorem (13). Consider tableau T with m rows and n
constraints. Consistency check may be performed through fusing all
subtableaux of T and checking if any resulting fused row has only Ls
— or equivalently and faster using RCD, as shown by Prince (2002,
Section 4). To perform RCD, we need m3n operations (Magri 2009,
p. 371). Next, we do row splittings, which for any of the m rows can-
not result in creating more than n rows of n constraints each, so this
requires at most mn2 operations. The number of rows in the resulting
split tableau is not greater than mn. Next, we check for entailed rows
to eliminate. As we discussed above regarding Operation (6), rather
than doing subtableau fusion, exponential in the number of rows m,
we can do instead m RCD-based checks as described by Prince (2002,
Section 5). We have mn rows, and each RCD involves (mn)3n oper-
ations, so overall we need m3n4 operations for this step. Finally, we
need to check for false Ws. For that we check every W in mn rows, so
at most this would be mn2 checks (actually, much less, as the same row
cannot contain both n Ls and n Ws, but we can ignore this.) Each test
involves checking whether the rest of the tableau entails a specially
constructed row for each particular W. Again, the cost of an entailment
check for a single row and a tableau with mn rows is m3n4, so overall
we have at most m4n6 operations. This will be the dominating term
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in our complexity estimate. The time complexity of normalization is
thus polynomial, which is very good. □

From Theorems (11) and (12), we know that each equivalence
class has at least one normal form tableau. But can a class contain more
than one normal form? Theorem (14) shows that it cannot, and thus
a normal form tableau defines its class: it is its unique representative.
To prove that fact, we will need to use relatively complex ranking-
construction techniques.

(14) Normal Form Uniqueness Theorem
In each equivalence class of OT tableaux, there is at most one
normal form tableau.

Proof of Theorem (14). We show that any two distinct normal form
tableaux T and U belong to different equivalence classes.

Pick some row r from T which is not shared by U (in case T ⊂ U ,
we immediately derive the conclusion by considering a row from U
that is not in T , and the fact that T cannot entail that row). Either our
pick r is entailed by U , or it is not. In case r is not entailed by U , there
is some ranking M compatible with U , but not with r, and thus not
with T , so U and T are not OT-equivalent.

The interesting case is when U entails the row r we picked. We
will show that in that case, there must be some ranking compatible
with T , but not with U . We pick a minimal subtableau V of U that still
entails r. As V entails r, every ranking compatible with V must also
put one of r’s Ws on top of r’s L. That can only be if there is a row
q ∈ V which has an L in the same constraint where r has an L. Let’s
call that constraint Ci.

Suppose towards contradiction that T and U are equivalent, that
is, compatible with exactly the same rankings. Consider some M com-
patible with T , and accounting for V “in the minimal possible man-
ner”: let M contain the domination chain Ck1≫ Ck2≫ . . .≫ Ci where
each pairwise ranking Ck1 ≫ Ck2, …, Ckn ≫ Ci accounts for one of
the rows in V , but no other pairwise rankings accounting for any of
V ’s rows. As V is in normal form and all its Ws are not false, it must
be possible to construct such an M . As V entails r, constraint Ck1 is a
W-constraint in r.
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T \ r cannot entail V : if it did, it would have entailed r by transi-
tivity, which is contrary to the normal form assumption. Therefore it
must be possible to lower one of Cki constraints below Ci building a
ranking M ′ which is still compatible with T \ r, but not with V . As V
entails r by assumption, M ′ must also be incompatible with r. But that
can only be if the lowered constraint has to be Ck1, a W-constraint in
r, for otherwise M ′ would have still said Ck1≫ Ci.

We modify M ′ as follows: raise Ck1 just on top of Ci, but be-
low Ckn, resulting in M ′′ = . . . Ck2 ≫ Ck3 ≫ . . . ≫ Ckn ≫ Ck1 ≫ Ci.
That ranking M ′′ is incompatible with V , because by construction there
must have been a row in V for which we needed the pairwise ranking
Ck1≫ Ck2, and M ′′ says Ck2≫ Ck1. But at the same time M ′′ is com-
patible with r, as it puts one of its Ws on top of its L. Now compare M ′
and M ′′, and consider their compatibility with T \ r. M ′ was compat-
ible with T \ r. M ′′ differs from it in that it says Ck1 ≫ Ci instead of
Ci≫ Ck1. That change could not make M ′′ incompatible with T \r: the
initial ranking M also said Ck1 ≫ Ci and was compatible with T \ r.
Therefore we have built a ranking, namely M ′′, which is compatible
with T \ r and with r, but not with V . This ranking witnesses that T
and U are not equivalent. □

Theorems (11) and (14) together entail that there is exactly one
normal form tableau per equivalence class. Thus a tableau as described
in Definition (9) is a true normal form: a full-fledged representative,
or a “name”, of its equivalence class.

In practical terms, that means that in our proofs, we can capitalize
on the many nice properties of normal forms, knowing that the results
will generalize to arbitrary tableaux. In the next section, we illustrate
that the use of the normal form results in several simple corollaries.

4 capitalizing on the normal form results

Theorems in (15), (16) and (18) serve two purposes. First, they have
independent value, especially the proof that Brasoveanu and Prince’s
SKB bases are unique in their equivalence classes. Second, the proofs
of these statements illustrate how one can use the normal form results
in practice to handle equivalence classes of OT tableaux.
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(15) Operations (3)–(7) form a functionally complete set: any tableau
can be transformed into any equivalent tableau by a sequence
of such operations.

Proof of (15). By Theorems (11) and (14), any pair of equivalent
tableaux may be transformed into the same normal form tableau by a
sequence of operations in Operations (3)–(7). To conclude the proof,
we observe that an inverted sequence transforms the normal form back
into the original tableau. By normalizing the first tableau, and then de-
normalizing it by applying the inverted sequence built for the second
tableau, we transform the first tableau into the second. □

(16) Equivalence of finite OT tableaux is computable in polynomial
time.

Proof of (16). To test tableaux T and U for equivalence, it suffices
to normalize both and check whether the resulting normal forms are
the same. All operations are computable, for finite tableaux.

The complexity of this test is polynomial: by Theorem (13), the
time complexity of normalization is polynomial in the number of rows
m and the number of constraints n, and we need two such normaliza-
tions, plus a comparison of two resulting normal form tableaux which
is also polynomial in m and n for the original tableaux. This fairly
moderate complexity may be compared with the enormous factorial
complexity of the brute-force test for equivalence that involves testing
every possible ranking for compatibility with each tableau, cf. Foot-
note 2. □

Brasoveanu and Prince (2011) define a dense format of tableaux
called the Skeletal Basis (SKB) and an algorithm turning an arbitrary
tableau into an equivalent tableau in that format. An SKB of tableau
T is a tableau T ′ such that 1) there is no OT-equivalent tableau with
a smaller number of rows; and 2) no other equivalent tableau of the
same cardinality has more es. Tableau (17) is the Skeletal Basis of the
normal form tableau in Tableau (10):

(17)
C1 C2 C3 C4 C5

W e L L L
e W e L e
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Brasoveanu and Prince (2011) claim to have proven, in an un-
published manuscript, the fact that for a single tableau, the SKB ba-
sis is unique. (Prince (2006, page 6) derives from that the result that
MPGs, corresponding to our normal forms, are also unique for a single
tableau.) Using our uniqueness theorem for normal forms in Theorem
(14), we prove a much stronger result for SKBs in Theorem (18): each
equivalence class of tableaux has a unique SKB.
(18) Each equivalence class of OT tableaux has exactly one tableau in

the Skeletal Basis (SKB) form of Brasoveanu and Prince (2011).
Proof of (18). By showing that SKBs are in one-one correspon-

dence with normal forms.
If we apply all possible row mergers to a normal form tableau, we

get an SKB: the original normal form tableau did not have superfluous
rows, so the quantity of the rows in the resulting tableau will be min-
imal; furthermore, as the normal form tableau does not contain any
false Ws, the resulting tableau will have the maximal number of es.

In the other direction, if we split all rows of an SKB into one-L
rows, there can be no superfluous rows in the result (otherwise the L
corresponding to a superfluous row could have been replaced with an
e, contrary to the definition of an SKB which must have as many es as
possible); as for false Ws, there can be none in the SKB tableau itself,
and after all row splittings are applied, no new false Ws can arise (if a
false W could arise in one of the resulting one-L rows, then the same
W would have been false even before splitting).

What remains is to show that there can be no two SKBs in the same
equivalence class. Suppose towards contradiction there are two SKBs
S1 and S2. They both normalize to the same normal form tableau by
the procedure above. From the definition of SKB, only row splittings
are required. Pick an arbitrary set of rows r1, …rn with Ws in the
same constraints from the resulting normal form tableau. If S1 and
S2 each have only one row splitting into this same set, that must be
the same row. If S1 and S2 have more than one row splitting into this
set, we can actually merge those rows into just one, resulting in a
smaller equivalent tableau S3, contrary to the assumption of S1 and
S2’s minimality. Thus either S1 = S2, or they are not minimal possible
size in their equivalence class. Therefore there is only one SKB per
class. □
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Theorem (18) essentially means that all useful results about nor-
mal forms may be transferred to SKBs. For instance, the equivalence
test in Theorem (16) may be replaced by an equivalence test compar-
ing SKBs derived using Brasoveanu and Prince’s Fusional Reduction
algorithm. With 18 in hand, we may employ Brasoveanu and Prince’s
SKBs as representatives of their equivalence classes instead of our nor-
mal forms. Normal forms are oftenmore convenient in complex proofs,
because the relations between constraints in them are maximally un-
tangled; but SKBs are more useful when it becomes convenient to have
smaller-sized representatives.

5 conclusion

We defined a normal form for OT tableaux, and showed that there
is exactly one normal form in each equivalence class of OT tableaux.
Moreover, we have demonstrated that each OT tableau can be com-
putably normalized by a sequence of five pairs of previously known
equivalence-preserving transformations in Operations (3)–(7). The
computational cost of normalization is only polynomial in the num-
ber of rows m and constraints n, thanks to the use of the efficient
RCD-based algorithm for entailment checking proposed by Prince
(2002, Section 5).

Those results provide us with a handle on equivalence classes of
OT tableaux: using them, we may reason about tableaux without any
loss of generality while only considering normal forms. The exam-
ples in Section 4, including Theorem (18) stating that Brasoveanu and
Prince’s Skeletal Bases are unique in their equivalence classes, illus-
trate how to capitalize on the presented OT normal form theorems.
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