
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
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Finite-state methods
and mathematics of language.

Introduction to the special issue

Marco Kuhlmann1 and Christian Wurm2

1 Department of Computer and Information Science
Linköping University, Sweden

2 Department of Computational Linguistics
University of Düsseldorf, Germany

There is a long and fertile interaction between research on finite-
state methods and the mathematics of language: many central results
in mathematical linguistics are based on finite-state models such as au-
tomata and grammars, and mathematical linguistics in turn has laid
the foundations for the application of finite-state methods in natu-
ral language processing (NLP). One important outcome of the cross-
semination between the two fields is the characterisation of adequate
classes of string languages and tree languages for linguistic modelling.

Our intention with this special issue is to highlight current work
in the intersection between mathematics of language and finite-state
methods, as presented at two premier conferences in the respective
fields: the 12th International Conference on Finite-State Methods and
Natural Language Processing (FSMNLP), which was held 22–24 June
2015 in Düsseldorf, Germany; and the 14th Meeting on Mathemat-
ics of Language (MOL), which was held 25–26 July 2015 in Chicago,
USA. To this end we invited the authors of the two conferences to sub-
mit revised and extended versions of their contributions, which were
then subjected to an entirely new peer-review process – something
that would have been impossible without the dedication and thorough
work of our reviewers, to whom we owe our sincere gratitude.

At the end of the peer-review process, we selected four submis-
sions for publication in this special issue:

“Chomsky–Schützenberger parsing for weightedmultiple context-
free languages” by Tobias Denkinger generalises the well-known char-

Journal of Language Modelling Vol 5, No 1 (2017), pp. 1–2



Marco Kuhlmann and Christian Wurm

acterisation of context-free languages as the homomorphic image of
the intersection of a Dyck language and a regular language to an
expressive class of weighted languages, and then uses this characteri-
sation to derive a parsing algorithm.

“Relative clauses as a benchmark for Minimalist parsing” by
Thomas Graf, James Monette, and Chong Zhang presents a careful
and comprehensive evaluation of a large number of complexity met-
rics that have been proposed to relate parsing difficulty to memory
usage. The results show that only a handful of these metrics can ex-
plain observed contrasts in human sentence processing.

“Rewrite rule grammars with multitape automata” by Mans
Hulden addresses the following problem: relation composition is one
of the most frequently used methods in finite-state approaches; in par-
ticular, it allows to construct complex transformations out of simpler
ones via intermediate steps, which then are discarded. This discarding
is not desirable in some applications, such as the reconstruction of old
languages. However, if one does not discard intermediate steps, then
relations become more than binary, which is a problem for existing
program libraries. The article addresses this problem both from a the-
oretical and practical point of view, by encoding arbitrary tuples as
simple strings, hence relations as languages.

“A probabilistic model of Ancient Egyptian writing” by Mark-
Jan Nederhof and Fahrurrozi Rahman provides a formal model for
the transliteration of hieroglyphic writing. Ancient Egyptian writing
is particularly complex, because the same hieroglyph can have many
different functions: it can have (among other) a semantic content, a
phonological content, or just be used to specify the semantic or phono-
logical content of some other hieroglyph (both redundantly or not).
The authors approach this extremely complex system by introducing
“sign functions”, which go beyond the power of finite-state machines
and lay the foundation for “machine transliteration” of Ancient Egyp-
tian writing.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/
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Chomsky-Schützenberger parsing
for weighted multiple context-free

languages

Tobias Denkinger
Faculty of Computer Science

Technische Universität Dresden
Germany

abstract

Keywords:
Chomsky-
Schützenberger,
parsing, multiple
context-free
grammars, linear
context-free
rewriting systems

We prove a Chomsky-Schützenberger representation theorem for mul-
tiple context-free languages weighted over complete commutative
strong bimonoids. Using this representation we devise a parsing al-
gorithm for a restricted form of those devices.1

1 introduction

Mildly context-sensitive languages receive much attention in the
natural language processing community since they are able to ex-
press non-projective constituents (Maier and Søgaard 2008) and non-
projective dependencies (Kuhlmann and Satta 2009). Figure 1 shows
an example of a non-projective constituency tree. Figure 2 shows an
example of a non-projective dependency tree. Non-projectivity is evid-
ent from crossings of edges, highlighted by circles. The phenomenon
of non-projectivity occurs frequently in natural language corpora, e.g.
about 28 percent of all sentences in both the NeGra corpus2 and the
TIGER corpus (Brants et al. 2004) contain non-projective constituents

1The CS parser for weighted MCFL (Sections 5 and 6) is original to this work.
Sections 2 to 4 are a substantially revised version of Denkinger (2015).

2http://www.coli.uni-saarland.de/projects/sfb378/
negra-corpus/

Journal of Language Modelling Vol 5, No 1 (2017), pp. 3–55
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Figure 1:

A non-projective
constituency tree (taken
from Maier and Søgaard

2008, Figure 3)

S

VMFIN
muß

VP
VP

PROAV
Darüber

VVPP
nachgedacht

VAINF
werden

Figure 2:
A non-projective

dependency tree (taken
from Kuhlmann and Satta

2009, Figure 2)
A hearing is scheduled on the issue today

(Maier and Søgaard 2008, Table 6) and about 23 percent of all sen-
tences in the Prague Dependency Treebank3 contain non-projective
dependencies (Kuhlmann and Satta 2009, Section 1).

Multiple context-free grammars describe the language classes in-
duced by many mildly context-sensitive grammar formalisms, e.g.
head grammars (Seki et al. 1991), linear context-free rewriting systems
(Seki et al. 1991), combinatory categorial grammars (Vijay-Shanker
et al. 1986; Weir and Joshi 1988), linear indexed grammars (Vijay-
Shanker 1988), minimalist grammars (Michaelis 2001b,a), and finite-
copying lexical functional grammars (Seki et al. 1993).

Parsing, i.e. the annotation of a sentence with syntactic structure,
is one of the main concerns of natural language processing. Many pars-
ing approaches are known for multiple context-free grammars, e.g.

• Cocke-Younger-Kasami-style parsing (Seki et al. 1991, Proced-
ure MEMBER; and Burden and Ljunglöf 2005, Section 3),

• guided parsing (Barthélemy et al. 2001; Burden and Ljunglöf
2005, Section 4; and van Cranenburgh 2012),

• active parsing (Burden and Ljunglöf 2005, Section 5),
• incremental parsing (Villemonte de la Clergerie 2002; Burden and
Ljunglöf 2005, Section 6; and Angelov 2009), and

• LR-style parsing (Kallmeyer and Maier 2015).
3https://ufal.mff.cuni.cz/pdt/Corpora/PDT_1.0/
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CS-parsing for weighted MCFL

The Chomsky-Schützenberger (CS) representation for context-free
languages (Chomsky and Schützenberger 1963, Proposition 2) has
been generalised to a variety of unweighted and weighted settings, e.g.
context-free languages weighted with commutative semirings (Salo-
maa and Soittola 1978, Theorem 4.5), tree adjoining languages (Weir
1988, Lemma 3.5.2), multiple context-free languages (Yoshinaka et al.
2010, Theorem 3), context-free languages weighted with unital valu-
ation monoids (Droste and Vogler 2013, Theorem 2), yields of simple
context-free tree languages (Kanazawa 2014, Theorem 8.3), indexed
languages (Duske et al. 1979, Theorems 1 and 2; Fratani and Voundy
2015, Theorem 4; and Fratani and Voundy 2016, Theorem 18), and
automata with storage weighted with unital valuation monoids (Herr-
mann and Vogler 2015, Theorem 11).

We give a generalisation to the case of multiple context-free lan-
guages weighted with a complete commutative strong bimonoid and
apply it to devise a parsing algorithm. Sections 3 to 5 contain the main
contributions of this article.

• In Section 3 we provide a CS representation for weighted multiple
context-free languages by means of a modular proof that first sep-
arates the weights from the given grammar and then employs the
result for the unweighted case (using the same overall idea as in
Droste and Vogler 2013).

• In Section 4 we give a more algebraic variant of multiple Dyck
languages using congruence relations together with a decision
algorithm for membership that is strongly related to those con-
gruence relations. Also we show that congruence multiple Dyck
languages can be used to develop a CS representation of weighted
MCFLs.

• Using the CS representation based on congruence multiple Dyck
languages and given a partial order on the weights, we derive
a parsing algorithm (Section 5) similar to the one described by
Hulden (2011). It employs a regular language and a weight func-
tion to generate output that is then filtered by an acceptor for a
specific congruence multiple Dyck language in order to obtain the
best derivations with respect to the partial order.

• The idea behind the Chomsky-Schützenberger parser presented in
Section 5 is similar to already established approaches. Section 6
relates the known approaches to the one presented in this article.

[ 5 ]
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Since our proofs do not require distributivity, we can be slightly
more general than complete commutative semirings: We consider
complete commutative strong bimonoids.

2 preliminaries

In this section we recall formalisms used in this article and fix some
notation: We denote by N the set of natural numbers (including zero),
and by N+ the set N \ {0}. For every n ∈ N we abbreviate {1, . . . , n} by
[n]. Let A be a set. The power set of A is denoted by P (A). Let B be a
finite set. A partition of B is a set P ⊆ P (B) where the elements of P
(called cells) are non-empty, pairwise disjoint, and ∪p∈P p= B.

Let A and B be sets and A′ ⊆ A. The set of functions from A to B
is denoted by A→ B, we still write f : A→ B rather then f ∈ A→ B.
Let f be a function. The domain and codomain of f are denoted by
dom( f ) and codom( f ), respectively. The restriction of f to A′, denoted
by f |A′ , is a function from A′ to B such that f |A′(a′) = f (a′) for every
a′ ∈ A′. Let g be a function such that codom( f ) ⊆ dom(g). We de-
note the function obtained by applying g after f by g ◦ f . Let F be
a set of functions and B ⊆ ∩ f ∈F dom( f ). The set { f (B) | f ∈ F} ⊆
P (∪ f ∈F codom( f )) is denoted by F(B). Let G and H be sets of functions
such that ∩g∈G codom(g) ⊆∩h∈H dom(h). The set {h ◦ g | h ∈ H, g ∈ G}
of functions is denoted by H ◦ G.

Let A be a set and ≈ ⊆ A× A a binary relation on A. We call ≈ an
equivalence relation (on A) if it is reflexive, symmetric, and transitive.
Let a ∈ A and ≈ be an equivalence relation. The equivalence class of a
in ≈, denoted by [a]≈, is {b ∈ A | a ≈ b}. Let f : Ak → A be a function.
We say that ≈ respects f if for every (a1, b1), . . . , (ak, bk) ∈ ≈ holds
f (a1, . . . , ak) ≈ f (b1, . . . , bk). Now let A be an algebra with domain A.
We call ≈ a congruence relation (on A ) if ≈ is an equivalence relation
on A and respects every operation of A .

Let ⊴ ⊆ A× A be a binary relation on A. We call ⊴ a partial order
(on A) if it is reflexive, antisymmetric, and transitive.
2.1 Sorts
We will use the concept of sorts to formalise restrictions on building
terms (or trees), e.g. derivation trees or terms over functions. One can
think of sorts as data types in a programming language: Every concrete
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value has a sort (type) and every function requires its arguments to be
of fixed sorts (types) and returns a value of some fixed sort (type).

Let S be a countable set (of sorts) and s ∈ S. An S-sorted set is a
tuple (B, sort) where B is a set and sort is a function from B to S. We
denote the preimage of s under sort by Bs and abbreviate (B, sort) by B;
sort will always be clear from the context. Let A be an (S∗ × S)-sorted
set. The set of terms over A, denoted by TA, is the smallest S-sorted
set T where ξ = a(ξ1, . . . ,ξk) ∈ Ts if there are s1, . . . , sk, s ∈ S such that
a ∈ A(s1···sk ,s) and ξi ∈ Tsi

for every i ∈ [k]. Let ξ= a(ξ1, . . . ,ξk) ∈ TA. The
set of positions in ξ is defined as pos(ξ) = {ϵ}∪ {iu | i ∈ [k], u ∈ pos(ξi)}
and for every π ∈ pos(ξ) the symbol in ξ at position π is defined as
ξ(π) = a if π = ϵ and as ξ(π) = ξi(u) if π = iu for some i ∈ [k] and
u ∈ pos(ξi).

2.2 Weight algebras
A monoid is an algebra (A , ·, 1) where · is associative and 1 is neutral
with respect to ·. A bimonoid is an algebra (A ,+, ·, 0, 1)where (A ,+, 0)
and (A , ·, 1) are monoids. We call a bimonoid strong if (A ,+, 0) is com-
mutative and for every a ∈ A we have 0 · a = 0 = a · 0. Intuitively, a
strong bimonoid is a semiring without distributivity. A strong bimon-
oid is called commutative if (A , ·, 1) is commutative. A commutative
strong bimonoid is complete if there is an infinitary sum operation∑ that maps every indexed family of elements of A to A , extends
+, and satisfies infinitary associativity and commutativity laws (cf.
Droste and Vogler 2013, Section 2), i.e. for every countable set I and
every I-indexed family a : I →A it holds that:
(i) ∑i∈∅ a(i) = 0;
(ii) for every j ∈ I :

∑
i∈{ j} a(i) = a( j);

(iii) for every j, k ∈ I with j ̸= k:
∑

i∈{ j,k} a(i) = a( j) + a(k); and
(iv) for every countable set J and family I : J → P (I) with I =∪

j∈J I ( j) and for every j, j′ ∈ J with j ̸= j′ =⇒ I ( j)∩I ( j′) =∅,
we have ∑ j∈J

∑
i∈I ( j) a(i) =
∑

i∈I a(i).
For the rest of this article let (A ,+, ·, 0, 1), abbreviated by A , be a
complete commutative strong bimonoid.
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Example 2.1. We provide a list of complete commutative strong bi-
monoids (cf. Droste et al. 2010, Example 1) some of which are relevant
for natural language processing:

• any complete commutative semiring, e.g.
– the Boolean semiring B= �{0, 1},∨,∧, 0, 1

�,
– the probability semiring Pr=

�
R≥0,+, ·, 0, 1
�,

– the Viterbi semiring �[0,1], max, ·, 0, 1
�,

– the tropical semiring �R∪ {∞},min,+,∞, 0
�,

– the arctic semiring �R∪ {−∞},max,+,−∞, 0
�,

• any complete lattice, e.g.
– any non-empty finite lattice �L,∨,∧, 0, 1

� where L is a non-
empty finite set,

– the lattice (P (A),∪,∩,∅, A) where A is an arbitrary set,
– the lattice (N, lcm,gcd, 1, 0),

• the tropical bimonoid �R≥0 ∪ {∞},+,min, 0,∞�,
• the arctic bimonoid �R≥0 ∪ {−∞},+, max, 0,−∞�, and
• the algebras Pr1 = ([0,1],⊕1, ·, 0, 1) and Pr2 = ([0,1],⊕2, ·, 0, 1)
where a ⊕1 b = a + b − a · b and a ⊕2 b = min{a + b, 1} for every
a, b ∈ [0,1].

where R and R≥0 denote the set of reals and the set of non-negative
reals, respectively; +, ·, max, min denote the usual operations; ∨, ∧ de-
note disjunction and conjunction, respectively, for the boolean semir-
ing and join and meet, respectively, for any non-empty finite lattice;
and lcm and gcd are binary functions that calculate the least common
multiple and the greatest common divisor, respectively.

Also, there are some bimonoids that are interesting for natural
language processing but are not complete commutative strong bimon-
oids. E.g.

• the semiring of formal languages �P (Σ∗),∪, ·,∅, {ϵ}� where Σ is an
alphabet and · is language concatenation, i.e. L1 · L2 = {uv | u ∈
L1, v ∈ L2} for every L1, L2 ⊆Σ∗; and

• the semiring �Σ∗ ∪ {∞},∧, ·,∞,ϵ
� where Σ is an alphabet, · is

concatenation, ∧ calculates the longest common prefix of its ar-
guments, and∞ is a new element that is neutral with respect to
∧ and annihilating with respect to · (cf. Mohri 2000).

None of the two examples is commutative. □
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An A -weighted language (over ∆) is a function L:∆∗ → A . The
support of L, denoted by supp(L), is {w ∈∆∗ | L(w) ̸= 0}. If |supp(L)| ≤
1, we call L a monomial. We write µ.w for L if L(w) = µ and for every
w′ ∈∆∗ \ {w} we have L(w′) = 0.
2.3 Recognisable languages
For the many known results concerning finite state automata and reg-
ular languages, we will rely on Hopcroft and Ullman (1969) and Hop-
croft and Ullman (1979). We nevertheless recall the basic definitions:
Definition 2.2. A finite state automaton, for short: FSA, is a tuple
M = (Q,∆, q0, F, T ) where ∆ is an alphabet (terminals), Q is a finite
set (states) disjoint from ∆, q0 ∈ Q (initial state), F ⊆ Q (final states),
and T ⊆Q×∆∗ ×Q is a finite set (transitions). □

A run inM is a string κ ∈ (Q∪∆)∗ where for every substring of κ of
the form quq′ (for some q, q′ ∈Q and u ∈∆∗) we have that (q, u, q′) ∈ T ,
the first symbol of κ is q0, and the last symbol of κ is in F . If a run κ
contains a substring of the form quq′ (for some q, q′ ∈ Q and u ∈ ∆∗),
we say that the transition (q, u, q′) occurs in κ. The word corresponding
to κ is obtained by removing the elements of Q from κ. The language
of M is denoted by L(M ). The set of recognisable languages, denoted
by REC, is the set of languages L for which there is an FSA M with
L = L(M ).
2.4 Weighted string homomorphisms
Let ∆ and Γ be alphabets and g:∆ → (Γ ∗ → A ) (i.e. a function that
takes an element of ∆ and returns a function that takes an element
of Γ ∗ and returns an element of A ) such that g(δ) is a monomial for
every δ ∈ ∆. We define bg:∆∗ → (Γ ∗ → A ) where for every k ∈ N,
δ1, . . . ,δk ∈∆, and v ∈ Γ ∗ we have
bg(δ1 · · ·δk)(v) =

∑
v1,...,vk∈Γ ∗
v=v1···vk

g
�
δ1

��
v1

� · . . . · g�δk

��
vk

�
.

We call bg anA -weighted (string) homomorphism. Since g(δ1), . . . , g(δk)
are monomials for each δ1, . . . ,δk ∈ ∆, there is at most one tuple
(v1, . . . , vk) ∈ (Γ ∗)k such that g(δi)(vi) ̸= 0 for every i ∈ [k]. Hence,
there is at most one v ∈ Γ ∗ with bg(δ1 · · ·δk)(v) ̸= 0 (namely v =
v1 · · · vk). Therefore, bg(u) is a monomial for every u ∈ ∆∗. We call bg
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alphabetic if there is a function h:∆ → (Γ ∪ {ϵ} → A ) with bg = bh. Ifbg(u) = µ.w (recall the end of Section 2.2) for u ∈∆∗, then wewill some-
times say “bg maps u to w” (leaving out the weight µ) or “bg weights
u with µ” (leaving out the word w). Now assume that A = B and we
have |supp(g(δ))| = 1 for every δ ∈ ∆. Then g can be construed as a
function from ∆ to Γ ∗ and bg can be construed as a function from ∆∗
to Γ ∗. In this case we call bg a (string) homomorphism. The sets of all
A -weighted homomorphisms, A -weighted alphabetic homomorph-
isms, homomorphisms, and alphabetic homomorphisms are denoted
by HOM(A ), αHOM(A ), HOM, and αHOM, respectively.

2.5 Weighted multiple context-free languages
We fix a set X = {x j

i | i, j ∈ N+} of variables. Let ∆ be an alphabet. The
set of composition representations over ∆ is the (N∗ ×N)-sorted set RF∆
where for every s1, . . . , sℓ, s ∈ N we define X(s1···sℓ,s) = {x j

i | i ∈ [ℓ], j ∈
[si]} ⊆ X and (RF∆)(s1···sℓ,s) as the set that contains [u1, . . . , us](s1···sℓ,s) for
every u1, . . . , us ∈ (∆ ∪ X(s1···sℓ,s))

∗. We will often write X f instead of
X(s1···sℓ,s). Let f = [u1, . . . , us](s1···sℓ,s) ∈ RF∆. The string function of f , also
denoted by f , is the function from (∆∗)s1 × · · · × (∆∗)sℓ to (∆∗)s such
that f ((w1

1, . . . , ws1
1 ), . . . , (w1

ℓ
, . . . , wsℓ

ℓ
)) = (u′1, . . . , u′s) where (u′1, . . . , u′s) is

obtained from (u1, . . . , us) by replacing each occurrence of x j
i by w j

i
for every i ∈ [ℓ] and j ∈ [sℓ]. The set of all string functions for some
composition representation over ∆ is denoted by F∆. From here on we
no longer distinguish between composition representations and string
functions. We define the rank of f , denoted by rank( f ), and the fan-
out of f , denoted by fan-out( f ), as ℓ and s, respectively. Also, we will
denote si by fan-outi( f ) for every i ∈ [ℓ]. The string function f is called
linear if in u1 · · ·us every element of X f occurs at most once, f is called
non-deleting if in u1 · · ·us every element of X f occurs at least once, and
f is called terminal-free if u1, . . . , us ∈ X ∗f . The subscript is dropped from
the string function if its sort is clear from the context.

Note that for every s′ ∈ N∗×N, the set of linear terminal-free string
functions of sort s′ is finite.
Definition 2.3. A multiple context-free grammar (over ∆), for short:
MCFG, is a tuple (N ,∆, S, P) where N is a finite N-sorted set (non-
terminals), S ∈ N1 (initial non-terminal), and P ⊆fin

�
(A, f , A1 · · ·Aℓ) ∈

N × F∆ × N ℓ | sort( f ) = (sort(A1) · · · sort(Aℓ), sort(A)), f is linear,ℓ ∈ N	
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(productions). We construe P as an (N ∗×N)-sorted set where for every
ρ = (A, f , A1 · · ·Aℓ) ∈ P we have sort(ρ) = (A1 · · ·Aℓ, A). □

Let G = (N ,∆, S, P) be an MCFG and w ∈ ∆∗. A production
(A, f , A1 · · ·Aℓ) ∈ P is usually written as A → f (A1, . . . , Aℓ); it inher-
its rank, fan-out, and fan-out1, . . . , fan-outℓ from f . Also, rank(G) =
maxρ∈P rank(ρ) and fan-out(G) =maxρ∈P fan-out(ρ). MCFGs of fan-out
at most k and rank at most r are called (k, r)-MCFGs.

The function yield: TP →∪maxρ∈P fan-out(ρ)
s=0 (∆∗)s assigns to every tree

d ∈ TP the tuple obtained by projecting every production in d to the
contained function (i.e. the second component) and then evaluating
the resulting term over F∆.

Let A∈ N . The set of subderivations in G from A, denoted by DG(A),
is the set of all terms over P with sort A, i.e. DG(A) = (TP)A. The set of
derivations in G is DG = DG(S). Let w ∈∆∗. The set of derivations of w in
G is DG(w) = {d ∈ DG | yield(d) = w}.4

The language of G is L(G) = {w ∈∆∗ | DG(w) ̸=∅}. A language L is
called multiple context-free if there is an MCFG G with L = L(G). The
set of multiple context-free languages (for which a (k, r)-MCFG exists) is
denoted by MCFL ((k, r)-MCFL, respectively).

The language class (k, r)-MCFL is a substitution-closed full ab-
stract family of languages (Seki et al. 1991, Theorem 3.9). Thus
(k, r)-MCFL is closed under homomorphisms and under intersection
with regular languages.
Definition 2.4. AnA -weighted MCFG (over ∆) is a tuple (N ,∆, S, P,µ)
where (N ,∆, S, P) is an MCFG and µ: P →A \{0} (weight assignment).

□

Let G = (N ,∆, S, P,µ) be an A -weighted MCFG and w ∈ ∆∗. The
set of derivations of w in G is the set of derivations of w in (N ,∆, S, P). G
inherits fan-out and rank from (N ,∆, S, P);A -weighted MCFGs of fan-
out at most k and rank at most r are called A -weighted (k, r)-MCFGs.
We define a function bµ: DG →A that applies µ at every position of a
given derivation and then multiplies the resulting values (in any order,
since · is commutative). The A -weighted language induced by G is the
function ⟦G⟧:∆∗ → A where for every w ∈ ∆∗ we have ⟦G⟧(w) =∑

d∈DG(w)
bµ(d).

4We identify the 1-tuple containing a word w ∈∆∗ with the word w itself.
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Two (A -weighted) MCFGs are equivalent if they induce the same
(A -weighted) language. AnA -weighted language L is called multiple
context-free if there is an A -weighted MCFG G such that L = ⟦G⟧;
(k, r)-MCFL(A ) denotes the set of languages induced by multiple
context-free A -weighted grammars of fan-out at most k and rank at
most r.
Example 2.5. Consider the Pr2-weighted MCFG G =

�
N ,∆, S, P,µ
�

where N1 = {S}, N2 = {A, B}, N = N1 ∪ N2, ∆ = {a, b, c, d}, and P and µ
are given by

P: ρ1 = S→ [x1
1 x1

2 x2
1 x2

2](A, B) µ: µ(ρ1) = 1

ρ2 = A→ [ax1
1 , cx2

1](A) µ(ρ2) = 1/2

ρ3 = B→ [bx1
1 , d x2

1](B) µ(ρ3) = 1/3

ρ4 = A→ [ϵ,ϵ]() µ(ρ4) = 1/2

ρ5 = B→ [ϵ,ϵ]() µ(ρ5) = 2/3 .

Note that G has fan-out 2 and rank 2. We observe that supp(⟦G⟧) =
{am bncmdn | m, n ∈ N} and for every m, n ∈ N we have
⟦G⟧(am bncmdn) = µ(ρ1) ·

�
µ(ρ2)
�m ·µ(ρ4) ·
�
µ(ρ3)
�m ·µ(ρ5)

= 1/(2m · 3n+1).
The derivation d of w = ac and the derivation d̄ of w̄ = aabccd in
G are shown in Figure 3, their weights are 1/(21 · 30+1) = 1/6 and
1/(22 ·31+1) = 1/36, respectively. Since d and d̄ are unique derivations
for w and w̄, we have ⟦G⟧(w) = 1/6 and ⟦G⟧(w̄) = 1/36. □

A non-terminal is called productive in an (A -weighted) MCFG if
there is at least one subderivation starting from this non-terminal. It
is obvious that every (A -weighted) (k, r)-MCFL can be recognised by
an (A -weighted) (k, r)-MCFG that only has productive non-terminals.

Figure 3:
Derivation d

of ac (left) and
derivation d̄
of aabccd

(right) in G
(Example 2.5)

S→ [x1
1 x1

2 x2
1 x2

2](A, B)

A→ [ax1
1 , cx2

1](A)

A→ [ϵ,ϵ]()

B→ [ϵ,ϵ]()

S→ [x1
1 x1

2 x2
1 x2

2](A, B)

A→ [ax1
1 , cx2

1](A)

A→ [ax1
1 , cx2

1](A)

A→ [ϵ,ϵ]()

B→ [bx1
1 , d x2

1](B)

B→ [ϵ,ϵ]()
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Non-deleting normal form
An (A -weighted) MCFG is called non-deleting if the string function in
every production is linear and non-deleting. Non-deleting MCFGs are
also called linear context-free rewriting systems (Vijay-Shanker et al.
1987) in the literature. Seki et al. (1991, Lemma 2.2) proved that for
every (k, r)-MCFG there is an equivalent non-deleting (k, r)-MCFG. We
generalise this to A -weighted MCFGs.
Lemma 2.6. For everyA -weighted (k, r)-MCFG there is an equivalent
non-deleting A -weighted (k, r)-MCFG.
Proof idea. We modify the construction for the unweighted case (Seki
et al. 1991, Lemma 2.2) such that it preserves the structure of deriva-
tions. Then a weight assignment can be defined in an obvious manner.

Proof. Let G = (N ,∆, S, P,µ) be an A -weighted (k, r)-MCFG. We con-
struct the (k, r)-MCFG G′ = (N ′,∆, S〈∅〉, P ′) where N ′ = {A〈Ψ〉 |
A ∈ N ,Ψ ⊆ [sort(A)]}, P ′ = {ρΨ | ρ ∈ P,Ψ ⊆ [fan-out(ρ)]}, and
ρΨ = A〈Ψ〉 → [u j1 , . . . , u jℓ](A1〈Ψ1〉, . . . , Ak〈Ψk〉) for every ρ = A →
[u1, . . . , um](A1, . . . , Ak) ∈ P and Ψ ⊆ [sort(A)] such that
(i) { j1, . . . , jℓ}= [sort(A)] \Ψ with j1 < · · ·< jℓ and
(ii) Ψi = { j ⊆ [sort(Ai)] | x j

i does not occur in u j1 · · ·u jℓ} for each
i ∈ [k].

The construction of G′ here is a slight modification of the original con-
struction (Lemma 2.2 in Seki et al. 1991, step 2 of Procedure 1) where
we dropped the restrictions that Ψ ̸= [sort(A)] and Ψ ̸= [fan-out(ρ)]
in the definitions of N ′ and P ′, respectively.5 Note that for each ρ
and Ψ , the sets Ψ1, . . . ,Ψk are uniquely defined. Let g: P ′ → P such
that g(ρΨ) = ρ and bg: DG′ → DG be the function obtained by applying
g point-wise. We show the following hypothesis by induction on the
structure of subderivations:
Induction hypothesis: For every A∈ N and Ψ ⊆ [sort(A)]: bg is a bijection
between DG′(A〈Ψ〉) and DG(A).
Induction step: Let d ∈ DG(A) and Ψ ⊆ [sort(A)]with d = ρ(d1, . . . , dk) for
some production ρ ∈ P and derivations d1 ∈ DG(A1), . . ., dk ∈ DG(Ak).
By construction, Ψ1 ⊆ [sort(A1)], . . ., Ψk ⊆ [sort(Ak)] and therefore

5This construction may therefore create productions of fan-out 0.
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ρΨ are uniquely defined for every ρ and Ψ . By the induction hypo-
thesis, we know that there are derivations d ′1, . . . , d ′k which are unique
for (d1,Ψ1), . . . , (dk,Ψk), respectively. Therefore, d ′ = ρ(d ′1, . . . , d ′k) is
unique for d and Ψ . Hence for every Ψ , bg is a bijection between
DG′(A〈Ψ〉) and DG(A).

By construction, the new start symbol is S〈∅〉; hence for the ele-
ments of DG′ , we set Ψ =∅ and by induction hypothesis we obtain thatbg is bijective. Since bg preserves the structure of derivations and is a
bijection, we obtainÖµ ◦ g = bµ◦bg. Hence ⟦(N ′,∆, S〈∅〉, P ′,µ◦g)⟧= ⟦G⟧.
Fan-out and rank are not increased by this construction. ■

3 cs characterisation for weighted mcfls
In this section we generalise the CS characterisation of (unweighted)
MCFLs (Yoshinaka et al. 2010, Theorem 3) to the weighted case. We
prove that an A -weighted MCFL L can be decomposed into an A -
weighted alphabetic homomorphism h, a regular language R and a
multiple Dyck language mD such that L = h(R∩mD).

To show this, we use the proof idea from Droste and Vogler
(2013): We separate the weight from our grammar formalism and
then use the unweighted CS representation on the unweighted part.
The outline of our proof is as follows:
(i) We separate the weights from L (Lemma 3.3), obtaining an MCFL

L′ and a weighted alphabetic homomorphism.
(ii) We use a corollary of the CS representation of (unweighted)

MCFLs (Corollary 3.8) to obtain a CS representation of L′.
(iii) Using the two previous items and Lemma 3.10 for the composi-

tion of weighted and unweighted alphabetic homomorphisms, we
obtain a CS representation of L (Theorem 3.12).
Figure 4 outlines the proof of Theorem 3.12. The boxes represent

sub-diagrams for which the corresponding lemmas prove existence of
the arrows and that the sub-diagram commutes.
3.1 Separating the weights
We split a given weighted MCFG G into an unweighted MCFG GB and
a weighted alphabetic homomorphism weightsG such that ⟦G⟧(w) =∑

u∈L(GB)
weightsG(u)(w) for every w ∈∆∗.
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∆∗→A Γ ∗ ÒΣ∗
L(G) L(GB) R(GB)∩mD(GB)

DG DGB

weightsG homGB

h

weightsG

toDeriv

homGB

fromBrackets
(yield, µ̂)

f

yield toBrackets

⊆⊆∈

Lemma 3.3 Corollaries 3.8 and 3.9

Lemma 3.10 Figure 4:
Outline of the proof of Theorem 3.12

Definition 3.1. Let G = (N ,∆, S, P,µ) be a non-deleting A -weighted
k-MCFG. The unweighted MCFG for G is the non-deleting k-MCFG
GB = (N ,Γ , S, PB) where Γ = ∆ ∪ {ρi | ρ ∈ P, i ∈ [fan-out(ρ)]} and
PB is the smallest set P ′ such that for every production ρ = A →
[u1, . . . , us](A1, . . . , Am) ∈ P there is a production

A→ [ρ1u1, . . . ,ρsus](A1, . . . , Am) ∈ P ′. □

Definition 3.2. Let G = (N ,∆, S, P,µ) be a non-deleting A -weighted
MCFG. The weight homomorphism for G is the A -weighted alphabetic
homomorphism weightsG:Γ ∗ → (∆∗ → A ) where weightsG(δ) = 1.δ,
weightsG(ρ

1) = µ(ρ).ϵ, and weightsG(ρ
i) = 1.ϵ for every δ ∈ ∆, ρ ∈ P

and i ∈ {2, . . . , fan-out(ρ)}. □
L(GB) stands in bijection to DG via the function toDeriv given in

Algorithm 1.

Lemma 3.3. (k, r)-MCFL(A ) = αHOM(A )�(k, r)-MCFL
�

Proof. (⊆) Let L ∈ (k, r)-MCFL(A ). By Lemma 2.6 there is a non-
deletingA -weighted (k, r)-MCFG G = (N ,∆, S, P,µ) such that ⟦G⟧= L.
Let f : P → PB where for every ρ = A→ [u1, . . . , us](A1, . . . , Am) ∈ P we
have f (ρ) = A→ [ρ1u1, . . . ,ρsus](A1, . . . , Am), in other words f repres-
ents the construction of rules in PB from the corresponding rules in
P (see Definition 3.1). We extend f to bf : DG → DGB by position-wise
application, i.e. bf (d) = ( f (ρ))(bf (d1), . . . , bf (dk)) for every subderiva-
tion d = ρ(d1, . . . , dk) in G; and we write f instead of bf . For every
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Algorithm 1:

Function toDeriv
to calculate for
every word in

L(GB) the
corresponding

derivation in DG ,
cf. Lemma 3.3

Input: w ∈ L(GB)
Output: derivation tree t ∈ DG corresponding to w (represented as a

partial function from N∗ to P)
1 function toDeriv(w)
2 let t be the empty function
3 descend(t,ϵ, 1)
4 return t
5 end function
6 procedure descend(t:N∗→ P,π ∈ N∗, j ∈ N)
7 let ρ = A→ [u1, . . . , us](A1, . . . , Ak) ∈ P and u such that ρ ju= w
8 add the assignment π 7→ ρ to t
9 remove ρ j from the beginning of w

10 for every symbol δ′ in u j do
11 if δ′ ∈∆ then
12 remove δ′ from the beginning of w
13 else
14 let i, j′ such that x j′

i = δ
′

15 descend(t,πi, j′)
16 end if
17 end for
18 end procedure

w ∈ L(GB) we can calculate the corresponding derivation t in G (as a
function with domain dom(t) and labelling function t) using toDeriv
(Algorithm 1), hence yield◦ f is bijective. We derive for every w ∈∆∗:

L(w) = ⟦G⟧(w)
=
∑

d∈DG(w)
µ(d)

=
∑

d∈DG
(weightsG ◦ yield◦ f )(d)(w) (by †)

=
∑

d∈DG ,u∈L(GB)
u=(yield◦ f )(d)

weightsG(u)(w)

=
∑

u∈L(GB)
weightsG(u)(w) (L(GB) and DG are in bijection)

= weightsG(L(GB))(w)

For †, one can immediately see from the definitions of f , yield, and
weightsG that for every w ∈ ∆∗ we have (weightsG ◦ yield◦ f )(d)(w) =
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µ(d) if d ∈ DG(w) and (weightsG ◦yield◦ f )(d)(w) = 0 otherwise. Hence
L = weightsG(L(GB)).
(⊇) Let L ∈ (k, r)-MCFL and h:Γ ∗ → (∆∗ → A ) be an A -weighted
alphabetic homomorphism. By Seki et al. (1991, Lemma 2.2) there is
a non-deleting (k, r)-MCFG G = (N ,Γ , S, P) such that L(G) = L. We
construct the A -weighted (k, r)-MCFG G′ = (N ,∆, S, P ′,µ) as follows:
We extend h to h′: (Γ ∪ X )∗ → ((∆ ∪ X )∗ → A ) where h′(x) = 1.x
for every x ∈ X and h′(γ) = h(γ) for every γ ∈ Γ . We define P ′ as
the smallest set such that for every ρ = A→ [u1, . . . , us](A1, . . . , Am) ∈
P(s1···sm,s) and (u′1, . . . , u′s) ∈ supp(h′(u1))× . . .× supp(h′(us)) we have that
P ′ contains the production ρ′ = A→ [u′1, . . . , u′s](A1, . . . , Am) and µ(ρ′) =
h′(u1)(u′1) · . . . ·h′(us)(u′s). Since · is commutative and G is non-deleting,
we obtain ⟦G′⟧= h(L(G)). ■

By setting k = 1 in the above lemma we reobtain the equivalence
of 1 and 3 in Theorem 2 of Droste and Vogler (2013) for the case of
complete commutative strong bimonoids.
Example 3.4. Recall the Pr2-weighted MCFG G from Example 2.5.
The set of productions and the weight assignment of G are:

P: ρ1 = S→ [x1
1 x1

2 x2
1 x2

2](A, B) µ: µ(ρ1) = 1

ρ2 = A→ [ax1
1 , cx2

1](A) µ(ρ2) = 1/2

ρ3 = B→ [bx1
1 , d x2

1](B) µ(ρ3) = 1/3

ρ4 = A→ [ϵ,ϵ]() µ(ρ4) = 1/2

ρ5 = B→ [ϵ,ϵ]() µ(ρ5) = 2/3 .

By Definitions 3.1 and 3.2 we obtain the MCFG GB =
�
N ,Γ , S, P ′
�

where Γ = {a, b, c, d,ρ1
1 ,ρ1

2 ,ρ2
2 ,ρ1

3 ,ρ2
3 ,ρ1

4 ,ρ2
4 ,ρ1

5 ,ρ2
5} and P ′ is given by

P ′: ρ′1 = S→ [ρ1
1 x1

1 x1
2 x2

1 x2
2](A, B)

ρ′2 = A→ [ρ1
2ax1

1 ,ρ2
2cx2

1](A) ρ′4 = A→ [ρ1
4 ,ρ2

4]()

ρ′3 = B→ [ρ1
3 bx1

1 ,ρ2
3d x2

1](B) ρ′5 = B→ [ρ1
5 ,ρ2

5](),

and theA -weighted alphabetic homomorphism weightsG:Γ ∗→ (∆∗→
A ) where weightsG is given for every γ ∈ Γ and ω ∈∆∪ {ϵ} by
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weightsG(γ)(ω) =


µ(ρi) if γ= ρ1

i and ω= ϵ for 1≤ i ≤ 5

1 if γ= ρ2
i and ω= ϵ for 2≤ i ≤ 5

1 if γ ∈∆ and ω= γ
0 otherwise,

Now recall the derivation d = ρ1

�
ρ2(ρ4),ρ5

� of w= ac. Then
f (d) = ρ′1
�
ρ′2(ρ′4),ρ′5
�

=: d ′,
g(d ′) = ρ1

1 ρ
1
2 a ρ1

4 ρ
1
5 ρ

2
2 c ρ2

4 ρ
2
5 =: w′, and

weightsG(w
′) = (1 · 1/2 · 1 · 1/2 · 2/3 · 1 · 1 · 1 · 1).w = (1/6).w . □

3.2 The unweighted CS characterisation
We recall the definition of multiple Dyck languages (Yoshinaka et al.
2010, Definition 1):
Definition 3.5. Let ∆ be a finite N-sorted set,6 (·) be a bijection
between ∆ and some alphabet ∆, k = maxδ∈∆ sort(δ), and r ≥ k.
The multiple Dyck grammar with respect to ∆ and r is the (k, r)-MCFG
G r
∆ =
�{A1, . . . , Ak}, Ò∆, A1, P

� where Ò∆ = {δ[i], δ̄[i] | δ ∈∆, i ∈ [sort(δ)]},
sort(Ai) = i for every i ∈ [k], and P is the smallest set such that
(i) for every linear non-deleting7 terminal-free string function f ∈
(F∆)(s1···sℓ,s) with ℓ ∈ [r] and s1, . . . , sℓ, s ∈ [k] we have

As→ f (As1
, . . . , Asℓ) ∈ P ,

(ii) for every δ ∈∆ with sort s we have
As→
�
δ[1]x1

1δ̄
[1], . . . ,δ[s]x s

1δ̄
[s]
�
(As) ∈ P , and

(iii) for every s ∈ [k] we have
As→ [u1, . . . , us](As) ∈ P

where ui ∈
�

x i , x iδ
[1]δ̄[1], δ[1]δ̄[1]x i | δ ∈∆1

	 for every i ∈ [s].
6 In Yoshinaka et al. (2010), N-sorted sets are called indexed sets and sort is

denoted as dim.
7We add the restriction “non-deleting” in comparison to the original defini-

tion since the proof of Lemma 1 in Yoshinaka et al. (2010) only uses non-deleting
rules.
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Themultiple Dyck language with respect to∆ and r, denoted bymD(∆, r),
is L(G r

∆). We call maxδ∈∆ sort(δ) the dimension and r the rank of
mD(∆, r). The set of multiple Dyck languages of dimension at most k and
rank at most r is denoted by (k, r)-mDYCK. □

Yoshinaka et al. (2010) define (in Section 3.2) a sorted alphabet
∆, a right-linear regular grammar R, and a homomorphism h for some
given non-deletingMCFG G that has no rule with two or more identical
non-terminals on the right-hand side (this form of G can be assumed
without loss of generality). We recall their construction. To fit our
notation and highlight the connection to G, we will conceive R as an
FSA and call itM (G); also, h will be called homG.
Definition 3.6. Let G = (N ,Γ , S, P) be an MCFG. The generator set with
respect to G is the N-sorted alphabet

Σ = {⟦γ | γ ∈ Γ } ∪ {⟦ρ | ρ ∈ P} ∪ {⟦ρ,i | ρ ∈ P, i ∈ [rank(ρ)]}
where sort(⟦γ) = 1, sort(⟦ρ) = fan-out(ρ), and sort(⟦ρ,i) = fan-outi(ρ)
for every γ ∈ Γ , ρ ∈ P, and i ∈ rank(ρ). The generator alphabet with
respect to G is ÒΣ = {⟦[i]u ,⟧[i]u | ⟦u ∈Σ, i ∈ [sort(σ)]}.
For each u = γ1 · · ·γm ∈ Γ ∗ (with γ1, . . . ,γm ∈ Γ ), we will abbreviate⟦[1]γ1
⟧[1]γ1
· · ·⟦[1]γm
⟧[1]γm

by ũ. The generator automaton with respect to G is the
FSAM (G) = (Q, Ò∆, S[1], {T},τ) where Q = {A[k] | A∈ N , k ∈ [sort(A)]}∪
{T} and τ is the smallest set that contains for every production ρ =
A→ [v1, . . . , vs](B1, . . . , Bm) ∈ P and each k ∈ [s] (where vk is of the form
uk,0 x j( j,1)

i(k,1)uk,1 · · · x j(k,pk)
i(k,pk)

uk,pk
with uk,0, . . . , uk,pk

∈ Γ ∗), the transitions
(A[k],⟦[k]ρ ũk,0⟧[k]ρ , T ) if pk = 0,
(A[k],⟦[k]ρ ũk,0⟦[ j(k,1)]

ρ,i(k,1), B[ j(k,1)]
i(k,1) ) if pk > 0,

(T,⟧[ j(k,ℓ−1)]
ρ,i(k,ℓ−1)ũk,ℓ−1⟦[ j(k,ℓ)]

ρ,i(k,ℓ), B[ j(k,ℓ)]
i(k,ℓ) ) if pk > 0, for every ℓ ∈ [pk],

(T,⟧[ j(k,pk)]
ρ,i(k,pk)

ũk,pk
⟧[k]ρ , T ) if pk > 0.

The generator language with respect to G is R(G) = L(M (G)). The homo-
morphism homG: Ò∆→ Γ ∗ is given by

homG(σ) =

(
γ if σ = ⟦[1]γ for some γ ∈ Γ
ϵ otherwise. □
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From the four types of transitions inM (G), it is easy to see that
M (G) is deterministic, i.e. for each given state and input, there is at
most one successor state. We will denote L(Drank(G)

Σ ) (cf. Definition 3.5)
by mD(G) to highlight its connection to the MCFG G.
Example 3.7 (Examples 2.5 and 3.4 continued). Figure 5 shows the
FSA M (GB). An edge labelled with a set L of words denotes a set of
transitions each reading a word in L. Note that R(GB) is not finite. □

The following is Theorem 3 of Yoshinaka et al. (2010) where “ho-
momorphism” is replaced by “alphabetic homomorphism”.
Corollary 3.8. Let L be a language, k ∈ N, and r ∈ N+. Then the
following are equivalent:
(i) L ∈ (k, r)-MCFL

(ii) There are an alphabetic homomorphism h2, a regular language
R, and a multiple Dyck language mD of at most dimension k and
rank r with L = h2(R∩mD).

Proof. The construction of the homomorphism in Yoshinaka et al.
(2010, Section 3.2) already satisfies the definition of an alphabetic
homomorphism. ■

Corollary 3.9. For every MCFG G, there is a bijection between DG

and R(G)∩mD(G).
Proof. The constructions in Lemmas 1 and 3 in Yoshinaka et al. (2010)
already hint at the bijection between R(G) ∩mD(G) and DG, we will
merely point out the respective functions toBrackets: DG → R(G) ∩
mD(G) and fromBrackets: R(G)∩mD(G)→ DG here.

Let ∆ be the generator set with respect to G and r = rank(G). We
examine the proof of Lemma 1 in Yoshinaka et al. (2010). They con-
struct for every rule A→ f (B1, . . . , Bk) in G and all tuples τ̄1, . . . , τ̄k that
are generated by B1, . . . , Bk in G, respectively, a tuple ū = (u1, . . . , um)
that is generated from Am in G r

∆. For each i ∈ [m],M (G) recognises ui

on the way from A[i] to T , and f (homG(τ1), . . . , homG(τk)) = homG(ū),
where homG is applied to tuples component-wise. Now we only look
at the initial non-terminal S. Then ū has only one component and
this construction can be conceived as a function toBrackets: DG →
R(G)∩mD(G) such that homG ◦ toBrackets= yield.
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S[1]start A[1]
⟦[1]
ρ′1
ρ̃1

1⟦[1]ρ′1,1 ⟦[1]
ρ′2
ρ̃1

2 ã⟦[1]
ρ′2,1

T

⟦[1]
ρ′4
ρ̃1

4⟧[1]ρ′4 �⟧[2]
ρ′1,2
⟧[1]ρ1

, ⟧[1]
ρ′2,1
⟧[1]
ρ′2

,⟧[2]
ρ′2,1
⟧[2]
ρ′2

, ⟧[1]
ρ′3,1
⟧[1]
ρ′3

, ⟧[2]
ρ′3,1
⟧[2]
ρ′3

	
A[2]

⟦[2]
ρ′4
ρ̃2

4⟧[2]ρ′4
⟧[1]
ρ′1,2
⟦[2]
ρ′1,1

⟦[2]
ρ′2
ρ̃2

2 c̃⟦[2]
ρ′2,1

B[1]

⟦[1]
ρ′5
ρ̃1

5⟧[1]ρ′5 ⟧[1]
ρ′1,1
⟦[1]
ρ′1,2

⟦[1]
ρ′3
ρ̃1

3 b̃⟦[1]
ρ′3,1

B[2]

⟦[2]
ρ′5
ρ̃2

5⟧[2]ρ′5
⟧[2]
ρ′1,1
⟦[2]
ρ′1,2

⟦[2]
ρ′3
ρ̃2

3 d̃⟦[2]
ρ′3,1

Figure 5:
Automaton
M (GB) (cf.
Example 3.7)

In Lemma 3, Yoshinaka et al. (2010) give a construction for the
opposite direction by recursion on the structure of derivations in
G∆. In a similar way as above, we view this construction as a func-
tion fromBrackets: R(G)∩mD(G)→ DG such that yield◦ fromBrackets =
homG. Then we have homG ◦ toBrackets◦ fromBrackets = homG, and
hence toBrackets◦ fromBrackets is the identity on R(G)∩mD(G). ■

3.3 Composing the homomorphisms

Lemma 3.10. αHOM(A ) ◦αHOM= αHOM(A )

Proof. (⊆) Let h1:Γ ∗ → (∆∗ → A ) be an alphabetic A -weighted
homomorphism and h2:Σ∗ → Γ ∗ be an alphabetic homomorphism.
By the definitions of αHOM(A ) and αHOM, there exist h′1:Γ → (∆ ∪
{ϵ} → A ) and h′2:Σ → Γ ∪ {ϵ} such that Òh′1 = h1 and Òh′2 = h2. Since
h1(codom(h′2)) ⊆ (∆∪{ϵ} →A ) there is some h ∈ αHOM(A ) such that
h= h1 ◦ h2; hence h1 ◦ h2 ∈ αHOM(A ).
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(⊇) Let h:Σ → (Γ ∗ → A ) be an alphabetic A -weighted homo-
morphism. Clearly i:Σ∗ → Σ∗ with i(w) = w for every w ∈ Σ∗ is an
alphabetic homomorphism. Then we have h ◦ i = h. ■

Example 3.11 (Examples 3.4 and 3.7 continued). The homomorph-
ism h: (Σ ∪ Σ̄)∗→ (∆∗→A ) obtained from weightsG:Γ ∗→ (∆∗→A )
and homGB : (Σ ∪ Σ̄)∗→ Γ ∗ by the construction for ⊆ in Lemma 3.10 is
given for every σ ∈Σ and ω ∈∆∪ {ϵ} by

h(σ)(ω) =


µ(ρi) if σ = ⟦[1]ρi

and ω= ϵ for some i ∈ [5]
1 if σ /∈ {⟦[1]ρi

| i ∈ [5]} ∪ {⟦[1]
δ
| δ ∈∆} and ω= ϵ

1 if σ = ⟦[1]
δ

and ω= δ for some δ ∈∆
0 otherwise.

□

3.4 The weighted CS characterisation
Theorem 3.12. Let L be anA -weighted language over Σ, k ∈ N, and
r ∈ N+. The following are equivalent:
(i) L ∈ (k, r)-MCFL(A )
(ii) there are an A -weighted alphabetic homomorphism h, a regular

language R, and an multiple Dyck language mD of dimension at
most k and rank r with L = h(R∩mD).

Proof. (i)⇒ (ii) There are some L′ ∈ (k, r)-MCFL, h, h1 ∈ αHOM(A ),
h2 ∈ αHOM, mD ∈ k-mDYCKc, and R ∈ REC such that

L = h1(L
′) (by Lemma 3.3)

= h1(h2(R∩mD)) (by Corollary 3.8)
= h(R∩mD) (by Lemma 3.10)

(ii)⇒ (i) We use Definition 3.5 and Lemma 3.3, and the closure of
(k, r)-MCFG under intersection with regular languages and application
of homomorphisms. ■

Corollary 3.13. For every A -weighted MCFG G, there is a bijection
between DG and R(GB)∩mD(GB).
Proof. There are bijections between DG and L(GB) by claims in the
proof of Lemma 3.3, between L(GB) and DGB by claims in the proof of
Lemma 3.3, and between DGB and R(GB)∩mD(GB) by Corollary 3.9. ■
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4 congruence multiple dyck languages

According to Kanazawa (2014, Section 1) there is no definition of mul-
tiple Dyck languages using a cancellation law. The congruence mul-
tiple Dyck languages (Definition 4.2) close this gap. Even though con-
gruence multiple Dyck languages turn out to be quite different from
the multiple Dyck languages by Yoshinaka et al. (2010) (see Proposi-
tion 4.5 and Observation 4.6), we argue that they are still useful since
they allow a CS representation (Theorem 4.11) and they can be util-
ised more efficiently for CS parsing than multiple Dyck languages (see
Section 5.5).

For the rest of this section let Σ be an alphabet. Also let Σ be a set
(disjoint from Σ) and (·) be a bijection between Σ and Σ. Intuitively
Σ and Σ are sets of opening and closing parentheses and (·) matches
an opening to its closing parenthesis.

We define≡Σ as the smallest congruence relation on the free mon-
oid (Σ ∪ Σ)∗ where for every σ ∈ Σ the cancellation rule σσ ≡Σ ϵ
holds. The Dyck language with respect to Σ, denoted by D(Σ), is [ϵ]≡Σ .
The set of Dyck languages is denoted by DYCK.
Example 4.1. Let Σ = {(, 〈, [,⟦}. We abbreviate (̄, 〈̄, [̄, and ⟦̄ by ), 〉,
], and ⟧, respectively. Then we have for example ⟦()⟧〈〉() ≡Σ ⟦⟧〈〉 ≡Σ⟦⟧≡Σ ϵ and (⟦)⟧〈〉()≡Σ (⟦)⟧()≡Σ (⟦)⟧ ̸≡Σ ϵ. □

Let P be a partition of Σ. We define ≡Σ,P as the smallest congru-
ence relation on the free monoid (Σ ∪Σ)∗ such that if v1 · · · vℓ ≡Σ,P ϵ

with v1, . . . , vℓ ∈ D(Σ), then the cancellation rule

u0σ1v1σ1u1 · · ·σℓvℓσℓuℓ ≡Σ,P u0 · · ·uℓ
holds for every {σ1, . . . ,σℓ} ∈ P and u0, . . . , uℓ ∈ D(Σ). Intuitively,
every cell of P denotes a set of linked opening parentheses, i.e. paren-
theses that must be consumed simultaneously by ≡Σ,P.
Definition 4.2. The congruence multiple Dyck language with respect to
Σ and P, denoted by mDc(Σ,P), is [ϵ]≡Σ,P

. □

Example 4.3. Let Σ = {(, 〈, [,⟦} and P = {p1,p2} where p1 = {(, 〈}
and p2 = {[,⟦}. We abbreviate (̄, 〈̄, [̄, and ⟦̄ by ), 〉, ], and ⟧, re-
spectively. Then, using the cancellation rule, we have for example⟦()⟧[〈〉] ≡Σ,P ϵ since p2 = {[,⟦} ∈P, ()〈〉 ≡Σ,P ϵ, and u0 = u1 = u2 = ϵ.

[ 23 ]



Tobias Denkinger

But ⟦()⟧〈[]〉 ̸≡Σ,P ϵ since when instantiating the cancellation rule with
any of the two cells of P, we can not reduce ⟦()⟧〈[]〉:
(i) If we choose {σ1,σ2} = {⟦, [} then we would need to set u1 = 〈

and u2 = 〉, but they are not in D(Σ), also () ̸≡Σ,P ϵ;
(ii) If we choose {σ1,σ2} = {(, 〈} then we would need to set u0 = ⟦

and u1 = ⟧, but they are not in D(Σ), also [] ̸≡Σ,P ϵ.
Hence ⟦()⟧[〈〉], ()〈〉 ∈mDc(Σ,P) and ⟦()⟧〈[]〉 /∈mDc(Σ,P). □

Observation 4.4. From the definition of ≡Σ,P it is easy to see that for
every u1, . . . , uk ∈ D(Σ) and v1, . . . , vℓ ∈ D(Σ) we have that u1 · · ·uk,
v1 · · · vℓ ∈ mDc(Σ,P) implies that every permutation of u1, . . . , uk,
v1, . . . , vℓ is in mDc(Σ,P). ■

The dimension of mDc(Σ,P) is maxp∈P|p|. The set of congruence
multiple Dyck languages (of at most dimension k) is denoted by mDYCKc
(k-mDYCKc, respectively).
Proposition 4.5. For each mD ∈ (k, r)-mDYCK there is an mDc ∈
k-mDYCKc such that mD ⊆mDc.
Proof idea. We construct a congruence multiple Dyck language mDc of
dimension at most k such that, if a tuple (w1, . . . , wm) can be generated
in G r

∆ from non-terminal Am, then w1, . . . , wm ∈ D(Σ) and w1 · · ·wm ∈
mDe. We prove this by induction on the structure of derivations in G r

∆.

Proof. Let mD ∈ (k, r)-mDYCK. Then there is an N-sorted set ∆ such
that mD = mD(∆, r) and maxδ∈∆ sort(δ) ≤ k. We define pδ = {δ[i] | i ∈
[sort(δ)]} for every δ ∈∆, Σ =∪δ∈∆ pδ, and P= {pδ | δ ∈∆}. Clearly
maxp∈P|p| ≤ k. Thus mDc(Σ,P) ∈ k-mDYCKc. Let Tup(G r

∆, A) denote
the set of tuples generated in G r

∆ when starting with non-terminal A
where A is not necessarily initial. In the following we show that for
every m ∈ [maxδ∈∆ sort(δ)] and w1, . . . , wm ∈ (Σ ∪ Σ̄)∗:

(w1, . . . , wm) ∈ Tup(G r
∆, Am) =⇒ w1 · · ·wm ∈mDc(Σ,P) (∗)

∧w1, . . . , wm ∈ D(Σ) .

It follows from the definitions of Tup and G r
∆ that (w1, . . . , wm) ∈

Tup(G r
∆, Am) implies that there are a rule Am → f (Am1

, . . . , Amℓ) in G r
∆

and tuples u⃗i = (u1
i , . . . , umi

i ) ∈ Tup(G r
∆, Ami

) for every i ∈ [ℓ] such
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that f (u⃗1, . . . , u⃗ℓ) = (w1, . . . , wm). By applying the induction hypo-
thesis ℓ times, we also have that u1

1, . . . , um1
1 , . . . , u1

ℓ
, . . . , umℓ

ℓ
∈ D(Σ) and

u1
1 · · ·um1

1 , . . . , u1
ℓ
· · ·umℓ

ℓ
∈ mDc(Σ,P). We distinguish three cases (each

corresponding to one type of rule in G r
∆):

(i) f is linear, non-deleting, and terminal-free. Then we have for
every i ∈ [m] that wi ∈ {u1

1, . . . , um1
1 , . . . , u1

ℓ
, . . . , umℓ

ℓ
}∗ and therefore

also wi ∈ D(Σ). Furthermore, by applying Observation 4.4 (ℓ− 1)
times, we have that w1 · · ·wm ∈mDc(Σ,P).

(ii) f = [δ[1]x1
1δ̄
[1], . . . ,δ[m]xm

1 δ̄
[m]]; then ℓ = 1, m1 = m, and for

every i ∈ [m] we have wi = δ[i]ui
1δ̄
[i] and since ui

1 ∈ D(Σ), also
wi ∈ D(Σ). Furthermore, w1 · · ·wm = δ[1]u1

1δ̄
[1] · · ·δ[m]um

1 δ̄
[m] ∈

mDc(Σ,P) due to the cancellation rule.
(iii) f = [u1, . . . , um] where ui ∈

�
x1

i , x1
i δ
[1]δ̄[1], δ[1]δ̄[1]x1

i | δ ∈ ∆1

	
for every i ∈ [m]; then wi ∈

�
u1

i , u1
i δ
[1]δ̄[1], δ[1]δ̄[1]u1

i | δ ∈ ∆1

	
for every i ∈ [m], ℓ = 1, and m1 = m. Since ≡Σ is a congruence
relation (in particular, ≡Σ respects composition), we have that
w1, . . . , wm ∈ D(Σ). By applying Observation 4.4 m times, we have
that w1 · · ·wm ∈mDc(Σ,P). ■

From the above proof we can easily see that the rank r of a mul-
tiple Dyck language can not be taken into account by a congruence
multiple Dyck language. This leads us to the next observation.
Observation 4.6. Let mD be a multiple Dyck language and mDc be a
congruence multiple Dyck language. Then mD ̸=mDc. ■

Similar to multiple Dyck languages, the congruencemultiple Dyck
languages cover the Dyck languages if we set the dimension to 1. Also
they form a hierarchy with increasing dimension.
Proposition 4.7. DYCK= 1-mDYCKc ⊊ 2-mDYCKc ⊊ . . .

Proof. We have the equality since the dimension of some partition P

of Σ is 1 if and only if P = {{σ} | σ ∈ Σ}. Then we have ≡Σ = ≡Σ,P

and thus D(Σ) = mDc(Σ,P). Hence DYCK = 1-mDYCKc. We get “⊊”
from the definition of k-mDYCKc. ■

4.1 Membership in a congruence multiple Dyck language
We give an algorithm to decide membership in a congruence multiple
Dyck language (Algorithm 2). It is closely related to the cancellation
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Algorithm 2:

Function
isMember to

decide
membership
in mDc(Σ,P)

Input: Σ, P, and w ∈ (Σ ∪Σ)∗
Output: True if w ∈mDc(Σ,P), False otherwise
1 function isMember(Σ,P, w)
2 if w /∈ D(Σ) then return False end if
3 let (σ1u1σ1, . . . ,σℓuℓσℓ) = split(Σ, w) such that σ1, . . . ,σℓ ∈Σ
4 let I =∅
5 for each I = {i1, . . . , ik} ⊆ [ℓ] with {σi1 , . . . ,σik} ∈P do
6 if isMember(Σ,P, ui1 · · ·uik) then
7 add I as an element to I
8 end if
9 end for

10 for each J ⊆ I do
11 if J is a partition of [ℓ] then return True end if
12 end for
13 return False
14 end function

rule and thus provides an algorithmic view on congruence multiple
Dyck languages. Although the algorithm is at least exponential in a
polynomial of the length of the input word, it becomes quadratic if
we only accept input words of a specific form. The parsing algorithm
presented in Section 5 will only consider words of that form.

Algorithm 2 works roughly as follows: It is a recursive algorithm.
In every call of isMember, it checks if the given word can be re-
duced to ϵ by applications of the cancellation rule. For substrings
σ1v1σ̄1, . . . ,σℓvℓσ̄ℓ to be cancelled, the string v1 · · · vℓ must be an equi-
valence multiple Dyck word; this is checked with a recursive call to
isMember. Note that it suffices to only apply the cancellation rule from
left to right. To account for all possible applications of the cancel-
lation rule, isMember must consider all decompositions of the input
string into Dyck words. For this purpose, recall split (from Section 4)
that splits a given Dyck word into shortest non-empty Dyck words.

Outline of isMember
In the following, all line numbers refer to Algorithm 2. We first

check if w is in D(Σ), e.g. with the context-free grammar in (7.6)
in Salomaa (1973). If w is not in D(Σ), it is also not in mDc(Σ,P)
and we return False. Otherwise, we split w into shortest non-empty
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Dyck words (on line 3), i.e. we compute the tuple (u1, . . . , uℓ) such that
u1, . . . , uℓ ∈ D(Σ) \ {ϵ}, u1 · · ·uℓ = u, and for every i ∈ [ℓ] there are no
u′i , v′i ∈ D(Σ)\{ϵ} with u′i v′i = ui. We denote (u1, . . . , uℓ) by split(u). Note
that split(u) can be calculated in time and space linear in |u| with the
help of a pushdown transducer (Aho and Ullman 1972, Section 3.1.4):
We initially write “(” on the output tape. Whenever we read an ele-
ment ofΣ, we write that element on the output tape and push it on the
stack. Whenever we read an element of Σ, we write that element on
the output tape and pop it from the stack. Upon reaching the bottom
of the stack, we write a “,” on the output tape. Finally, we write “)” on
the output tape. Then the inscription of the output tape is (u1, . . . , uℓ).
Since each of those shortest non-empty Dyck words has the form σuσ
for some σ ∈Σ and u ∈ (Σ∪Σ)∗, we write (σ1u1σ1, . . . ,σℓuℓσℓ) for the
left-hand side of the assignment on line 3. On lines 4 to 9 we calculate
the set I of sets of indices I = {i1, . . . , ik} such that the outer parenteses
of the substrings σi1ui1σi1 , . . . ,σik uikσik of w can be reduced with one
step of the cancellation rule. This reduction is possible if there exists an
appropriate cell inP (checked on line 5) and if ui1 · · ·uik is inmDc(Σ,P)
(checked on line 6). Therefore, at the end of line 9, each element of I
represents one possible application of the cancellation rule. In order
for ≡Σ,P to reduce w to ϵ, each component of (σ1u1σ1, . . . ,σℓuℓσℓ)
needs to be reduced (exactly once) by an application of the cancella-
tion rule. This is equivalent to a subset of I being a partition of [ℓ]
(lines 10 to 12). If no such subset exists, then w can not be reduced
to ϵ and we return False on line 13.
Example 4.8 (Example 4.3 continued). Table 1 shows a run of Al-
gorithm 2 on the word ⟦()⟧[〈〉] where we report return values and a
subset of the variable assignment, when necessary, at the line ending.
The recursive calls to isMember are indented. Table 2 shows the run of
Algorithm 2 on the word ⟦()⟧[]⟦⟧[〈〉]. □

In light of the close link between Algorithm 2 and the relation
≡Σ,P we omit the proof of correctness.

Proof of termination for Algorithm 2. If w = ϵ, then ℓ = 0, the loop on
lines 5 to 9 has no I ’s to consider, the loop on lines 10 to 13 has only
J = ∅ to consider, which is a partition of [ℓ] = ∅, and hence the al-
gorithm terminates on line 11. If w /∈ D(Σ), the algorithm terminates
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Table 1:

Run of Algorithm 2 on the word ⟦()⟧[〈〉],
cf. Examples 4.3 and 4.8.

isMember(Σ,P,⟦()⟧[〈〉])
line 3: ℓ= 2,σ1 = ⟦,σ2 = [, u1 = (),u2 = 〈〉
line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P, ()〈〉)

line 3: ℓ= 2,σ1 = (,σ2 = 〈, u1 = ϵ = u2

line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P,ϵ)

line 3: ℓ= 0
line 10: J =∅
line 11: return True

line 7: I = �{1, 2}	
line 10: J =∅
line 10: J =
�{1, 2}	

line 11: return True
line 7: I = �{1,2}	
line 10: J =∅
line 10: J =
�{1, 2}	

line 11: return True

on line 2. The loop on lines 5 to 9 considers only finitely many val-
ues I . Thus there are only finitely many calls to isMember on line 6 for
each recursion. In the call of isMember, the length of the third argu-
ment ui1 · · ·uik is strictly smaller then the length of w. Therefore, after
a finite number of recursions, the fourth argument passed to isMember
becomes the empty word and the algorithm terminates. ■

Properties of isMember
Algorithm 2 is at least exponential in a polynomial of the length of
the input word. This is due to the cardinality of I and the for-loop on
lines 10 to 12. Let κ be the number of different cells p ∈P that occur
in σ1 · · ·σℓ, and let each symbol occurs at most r times. Both κ and r
have upper bound ℓ. Let m be the dimension of P. Then there are at
most κ· rm−1 ≤ ℓm values of I considered in the for-loop on lines 5 to 9.
Since ℓ < |w|, we execute this for-loop at most |w|m times. Hence, I
has cardinality at most |w|m. Therefore, the for-loop on lines 10 to 12
considers 2|I | ≤ 2|w|m different values of J in the worst case.

Let us now turn to the modification of isMember we will use in
Section 5. Let u ∈ D(Σ) and (σ1u′1σ1, . . . ,σℓu

′
ℓ
σℓ) = split(u). For every

σ ∈ Σ, we define occσ u = |{i ∈ [ℓ] | σi = σ}|. Furthermore for
every p ∈ P, we define occp u = max{occσ u | σ ∈ p} and we define
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Table 2: Run of Algorithm 2 on the word ⟦()⟧[]⟦⟧[〈〉].
isMember(Σ,P,⟦()⟧[]⟦⟧[〈〉])
line 3: ℓ= 4,σ1 = ⟦= σ3,σ2 = [ = σ4, u1 = (),u2 = ϵ = u3,u4 = 〈〉
line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P, ())

line 3: ℓ= 1,σ1 = (,u1 = ϵ
line 9: I =∅
line 10: J =∅
line 13: return False

line 8: I =∅
line 5: k = 2, i1 = 1, i2 = 4
line 6: isMember(Σ,P, ()〈〉)

line 3: ℓ= 2,σ1 = (,σ2 = 〈,u1 = ϵ = u2

line 5: I =∅, k = 2, i1 = 1, i2 = 2
line 6: isMember(Σ,P,ϵ)

line 3: ℓ= 0
line 9: I =∅
line 10: J =∅
line 11: return True

line 7: I = �{1,2}	
line 10: J =∅
line 10: J =
�{1,2}	

line 13: return True
line 7: I = �{1,4}	
line 5: k = 2, i1 = 2, i2 = 3
line 6: isMember(Σ,P,ϵ)

line 3: ℓ= 0
line 10: I =∅, J =∅
line 11: return True

line 7: I = �{1,4}, {2,3}	
line 5: k = 2, i1 = 3, i2 = 4
line 6: isMember(Σ,P, 〈〉)

line 3: ℓ= 1,σ1 = 〈,u1 = ϵ
line 10: I =∅, J =∅
line 13: return False

line 8: I = �{1,4}, {2,3}	
line 10: J =∅
line 10: J =
�{1,4}	

line 10: J =
�{2,3}	

line 10: J =
�{1,4}, {2,3}	

line 11: return True
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occP u=
∑

p∈P occp u. We call a word w ∈ (Σ∪Σ)∗ P-simple if w /∈ D(Σ);
or occp w ≤ 1 for each cell p ∈ {p′ ∈ P | |p′| ≥ 2} and v1 · · · vℓ is P-
simple whenever there are u0, . . . , uℓ ∈ D(Σ), v1, . . . , vℓ ∈ D(Σ), and
p= {σ1, . . . ,σℓ} ∈P with w= u0σ1v1σ̄1u1 · · ·σℓvℓσ̄ℓuℓ. In other words,
w is P-simple if, whenever the cancellation rule can be applied to w
to cancel an occurrence of the cell p (where p has more than one ele-
ment), then there is only one such occurrence and the string v1 · · · vℓ
(from the definition of the cancellation rule) is also P-simple.

In order for isMember to recognise w only if it is P-simple, we
check between lines 1 and 2 in the algorithm whether occp w ≤ 1 for
each cell p ∈ {p′ ∈ P | |p′| ≥ 2}. If this is the case, we continue, other-
wise we return False. Let us call the function obtained in this manner
isMember’. Note that the check between lines 1 and 2 can be done in
time linear in the input word. Then the I ’s that Algorithm 2 considers
in the for-loop on lines 5 to 9 are pairwise disjoint. This means that
each ui (for i ∈ [ℓ]) occurs in at most one recursive call on line 6. Then
the elements of I are always pairwise disjoint and we only need to
consider J = I in the for-loop on lines 10 to 12. We can decide in time
O (ℓ) whether I is a partition of [ℓ]. Lines 2 and 3 can be computed
in time O (|w|). Since ℓ < |w|, we know that for each call of isMember,
we have to invest time linear in the length of the third argument. The
maximum depth of recursion is |w|/2 because the third argument in
the call on line 6 has at most length |w|−2. For every recursion depth,
the sum of the lengths of all third arguments is at most |w| because ui

(for i ∈ [ℓ]) occurs in at most one recursive call on line 6. Therefore
isMember’(Σ,P, w) can be calculated in time O (|w|2).
4.2 A CS representation using congruence multiple Dyck languages
Definition 4.9. Let G = (N ,Γ , S, P) be an MCFG. The congruence mul-
tiple Dyck language with respect to G, denoted by mDc(G), is mDc(Σ,P)
where P is the smallest set such that

• pγ = {⟦[1]γ } ∈P for every γ ∈ Γ ,
• pρ = {⟦[ j]ρ | j ∈ [fan-out(ρ)]} ∈P for every ρ ∈ P, and
• pρ,i = {⟦[ j]ρ,i | j ∈ [fan-outi(ρ)]} ∈ P for every ρ ∈ P and i ∈
[rank(ρ)],

and Σ =∪p∈P p. □
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Lemma 4.10. R(G)∩mD(G) = R(G)∩mDc(G) for each MCFG G.
Proof. It follows from Definitions 3.5 and 4.9 and Proposition 4.5 that
mD(G) ⊆mDc(G) and hence R(G)∩mD(G) ⊆ R(G)∩mDc(G). It remains
to be shown that R(G) ∩mDc(G) ⊆ mD(G). Let G = (N ,Γ , S, P) and Σ
and ∆ be defined as in Definitions 3.5 and 4.9.

We prove the following statement by induction on the length of
w1 · · ·wℓ: If B ∈ N and w1, . . . , wℓ ∈ D(Σ) such that w1 · · ·wℓ ∈mDc and
wκ is recognised along a path from B[κ] to T inM (G) for every κ ∈ [ℓ],
then (w1, . . . , wℓ) can be generated by Aℓ in Grank(G)

∆ .
By setting ℓ= 1 and B = S, this statement implies our claim. Now

let B ∈ N and w1, . . . , wk ∈ D(Σ) such that w1 · · ·wℓ ∈ mDc and wκ is
recognised along a path from B[κ] to T in M (G) for every κ ∈ [ℓ].
By the definitions ofM (G) and mDc(G), we know that there is some
production ρ = B→ f (B1, . . . , Bk) ∈ P with

f = [u1,0 x j(1,1)
i(1,1)u1,1 · · · x j(1,p1)

i(1,p1)
u1,p1

, . . . , uℓ,0 x j(ℓ,1)
i(ℓ,1)uℓ,1 · · · x j(ℓ,pℓ)

i(ℓ,pℓ)
uℓ,pℓ]

such that for every κ ∈ [ℓ] either
(i) wκ = ⟦[κ]ρ euκ,0⟧[κ]ρ or
(ii) wκ = ⟦[κ]ρ euκ,0 ⟦[ j(κ,1)]

ρ,i(κ,1) v j(κ,1)
i(κ,1) ⟧[ j(κ,1)]

ρ,i(κ,1) euκ,1 · · ·
⟦[ j(κ,pκ)]
ρ,i(κ,pκ)

v j(κ,pκ)
i(κ,pκ)
⟧[ j(κ,pκ)]
ρ,i(κ,pκ)
euκ,pκ ⟧[κ]ρ ,

and v j
i ∈ D(Σ) is recognised along a path from B[ j]i to T inM (G) for

every i ∈ [k] and j ∈ [sort(Bi)], and v1
i · · · vsort(Bi)

i ∈ mDc(G) for every
i ∈ [k]. Then by induction hypothesis (v1

i , . . . , vsort(Bi)
i ) can be generated

from Asort(Bi) in Grank(G)
∆ for every i ∈ [k]. Using productions of types (ii)

and (iii) (cf. Definition 3.5), Asort(B1), . . . , Asort(Bk) can generate tuples
that together have exactly the componentseu1,0⟦[ j(1,1)]

ρ,i(1,1)v
j(1,1)
i(1,1) ⟧[ j(1,1)]

ρ,i(1,1)eu1,1,⟦[ j(1,2)]
ρ,i(1,2)v

j(1,2)
i(1,2) ⟧[ j(1,2)]

ρ,i(1,2)eu1,2, . . . ,

⟦[ j(1,p1)]
ρ,i(1,p1)

v j(1,p1)
i(1,p1)
⟧[ j(1,p1)]
ρ,i(1,p1)
eu1,p1

, . . . ,

euℓ,0⟦[ j(ℓ,1)]ρ,i(ℓ,1)v
j(ℓ,1)
i(ℓ,1) ⟧[ j(ℓ,1)]ρ,i(ℓ,1)euℓ,1,⟦[ j(ℓ,2)]

ρ,i(ℓ,2)v
j(ℓ,2)
i(ℓ,2) ⟧[ j(ℓ,2)]ρ,i(ℓ,2)euℓ,2, . . . ,

⟦[ j(ℓ,pℓ)]
ρ,i(ℓ,pℓ)

v j(ℓ,pℓ)
i(ℓ,pℓ)
⟧[ j(ℓ,pℓ)]
ρ,i(ℓ,pℓ)
euℓ,pℓ .

Set w′1, . . . , w′
ℓ
∈ D(Σ) such that wκ = ⟦[κ]ρ w′κ⟧[κ]ρ for every k ∈ [ℓ]. Then

we can derive (w′1, . . . , w′
ℓ
) from Aℓ in Grank(G)

∆ by first using a production
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of type (i) with rank exactly rank(ρ), and for each κ ∈ [ℓ] where wκ
has the form ⟦[κ]ρ euκ,0⟧[κ]ρ productions of type (iii). Using a production
of type (ii), we finally obtain (w1, . . . , wℓ) from Aℓ in Grank(G)

∆ . ■

Theorem 4.11. For every multiple context-free languages L of fan-out
at most k, there exist a weighted homomorphism h, a regular language
R, and a congruence multiple Dyck language mDc of dimension at most
k such that L = h(R∩mDc).

Proof. This follows immediately from Lemma 4.10 and Theorem 3.12
when taking h= weightsG ◦homGB , R= R(GB), and mDc =mDc(GB). ■

5 nʿbest parsing for weighted mcfgs using
a chomskyʿschützenberger

representation

In this section we describe an n-best parsing algorithm (cf. Huang and
Chiang 2005; Büchse et al. 2010) for a subset of weighted MCFGs, i.e.
we want to find the best parses of a given word in a weighted MCFG.
In our case, “parse” refers to a derivation in the weighted MCFG. We
formalise our intuition of when a derivation is “better” than another
derivation by means of a partial order ⊴ on the weights. That is, if
we have two derivations d1 and d2 with weights µ1 and µ2, respect-
ively, we call d1 “not worse than” d2 if µ1 ⊴ µ2. Note that we think of
weights as costs here, i.e. better derivations will get a smaller weight
with respect to ⊴. We define the irreflexive relation with respect to ⊴ as
Ã = ⊴ \ {(a, a) | a ∈ A} ⊆ A× A. We say that A respects ⊴ if · has the
following three properties:
(i) it is (strictly) increasing, i.e. a Ã a · b for every a, b ∈A \ {0,1},
(ii) it has arbitrarily large powers, i.e. for every a, b ∈ A \ {0,1} there

is a k ∈ N with b ⊴ ak where ak = ak−1 · a for k ≥ 1 and a0 = 1,
and

(iii) it is monotone, i.e. a ⊴ b implies a · c ⊴ b · c for every a, b, c ∈A .
For the rest of this section let argmin⊴ be a function that assigns

for every family f : B →A a value b̄ ∈ B such that there is no b′ ∈ B
with f (b′)Ã b̄; we write argmin⊴b∈B( f (b)) for b̄.
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Note that we only need multiplication to obtain the weight of a
derivation and therefore the sum operation of our complete commut-
ative strong bimonoid becomes irrelevant within this section.
5.1 n-best parsing
We will take the n best parses from the possibly infinite sequence of
derivations for some word in an MCFG. We therefore need a notion of
infinite strings.
Definition 5.1. Let B be a set. The set of infinite strings over B, denoted
by Bω, is the set of partial functions u:N \ {0} → B where the fact
that u(n) is defined implies that u(n− 1) is defined as well, for every
n> 1. □

Every element u of B∗ can be construed as an element of Bω where
dom(u) is finite. Let u ∈ B∗ and v ∈ Bω. The concatenation of u and v,
denoted by u ·ω v, is given by

(u ·ω v)(n) =

(
u(n) if n≤ |u|
v(n− |u|) otherwise.

To work with infinite strings, we define the following functions:
map applies a function to every element in an infinite list.

map: (B→ C)→ (Bω→ Cω)

map( f )(bu) = f (b) ·ωmap( f )(u) (if b ∈ B)
map( f )(ϵ) = ϵ

take returns a finite prefix of a given infinite list.
take:N→ (Bω→ B∗)

take(n)(bu) = b ·ω take(n− 1)(u′) (if n> 0 and b ∈ B)
take(n)(u) = ϵ (if n= 0 or u= ϵ)

filter removes elements that are not in a given set from an infinite list.
filter:P (B)→ (Bω→ Bω)

filter(B′)(b′u) = b′ ·ω filter(B′)(u) (if b′ ∈ B′)
filter(B′)(bu) = filter(B′)(u) (if b /∈ B′)

filter(B′)(ϵ) = ϵ
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sort returns an infinite list that contains each element of a given set
exactly once in an order that respects ⊴.

sort: (B→A )×P (A ×A )→ (P (B)→ Bω)

sort( f ,⊴)(B′) = argmin⊴b∈B′( f (b))

·ω sort( f ,⊴)(B′ \ argmin⊴b∈B′( f (b))) (if B′ ̸=∅)
sort( f ,⊴)(∅) = ϵ

Definition 5.2. Let B be a set, f : B → A , n ∈ N, and ⊴ be a partial
order on A . We define the n-best function with respect to f and ⊴ as a
function n -best( f ,⊴):P (B)→P (B∗) where for every B′ ⊆ B we have
that (b1, . . . , bk) ∈ n -best( f ,⊴)(B′) if the following conditions hold
(i) k =min{n, |B′|},
(ii) b1, . . . , bk ∈ B′ are pairwise different,
(iii) f (b1)⊴ f (b2)⊴ . . .⊴ f (bk), and
(iv) there is no b ∈ B′ \ {b1, . . . , bk} with f (b)Ã f (bk). □

Note that |n -best( f ,⊴)(B′)|= 1 if n≤ |B′|.
Definition 5.3. The parsing problem for A -weighted MCFG is:
given an A -weighted MCFG G = (N ,Σ, S, P,µ), a partial order ⊴ on
A , a word w ∈Σ∗, and an integer n ∈ N,

output an element of n -best(µ̂,⊴)(DG(w)). □
The following observation is apparent from the definitions of sort,

take, and n -best.
Observation 5.4. take(n) ◦ sort( f ,⊴)

�
B′
� ∈ n -best( f ,⊴)(B′)

for every set B, subset B′ ⊆ B, function f : B → B , n ∈ N, and partial
order ⊴ on B . ■

5.2 Specification of the CS parser
Given an A -weighted MCFG G, we construct the regular language
R(GB), the A -weighted homomorphism h= weightsG ◦homGB , and the
congruence multiple Dyck language mDc(GB). Then L(G) = h

�
R(GB)∩

mDc(GB)
�. In a more procedural view on this representation of G, we

might say that one obtains words (with weights) in L(G) by (i) gen-
erating words in R(GB) (called candidates), (ii) discarding the candid-
ates that are not in mDc(GB), and (iii) applying h to the remaining
candidates.
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Recall that there is a bijection between DG and R(GB) ∩mDc(GB)
(Corollary 3.13). Now let w be the word we want to parse. Further-
more, let Rh,w be the set of words that hmaps to w. Then there is a bijec-
tion between Rh,w ∩ R(GB)∩mDc(GB) and DG(w). Our strategy to com-
pute the n best derivations is to enumerate the words in Rh,w∩R(GB) in
the order given by the weights defined by the homomorphism h and
then checking whether each word is in mDc(GB) until we have found
n words. However, this approach will have to be refined to ensure
termination of the parsing algorithm.

First we show that the set Rh,w of words mapped by h to w is
regular.
Definition 5.5. Let h:Σ∗ → (Γ ∗ →A ) be an A -weighted alphabetic
homomorphism and γ1, . . . ,γn ∈ Γ . Furthermore, let Σϵ = {σ ∈ Σ |
h(σ) = µ.ϵ for some µ ∈A}, and for every γ ∈ Γ , define σγ ∈ Σ such
that h(σγ) = µ.γ for some µ ∈A . The domain language of h with respect
to γ1 · · ·γn, is the language

Rh,γ1···γn
= {u0σγ1

u1 · · ·σγn
un | u0, . . . , un ∈Σ∗ϵ}. □

Lemma 5.6. Rh,w is a regular language for every A -weighted alpha-
betic homomorphism h:Σ∗→ (Γ ∗→A ) and word w ∈ Γ ∗.
Proof. Since {σγ1

}, . . . , {σγn
}, and Σϵ are finite sets, Rh,w = Σ∗ϵ · {σγ1

} ·
Σ∗ϵ ·. . .·{σγn

}·Σ∗ϵ , and because finite sets are recognisable (Hopcroft and
Ullman 1969, Theorem 3.7) and recognisable languages are closed un-
der language concatenation (Hopcroft and Ullman 1969, Theorem 3.8)
and Kleene-star (Hopcroft and Ullman 1969, Theorem 3.9), we have
that Rh,w is regular. ■

Example 5.7 (Examples 3.7 and 3.11 continued). Figure 6 shows a
deterministic FSAMh,ac that recognises Rh,ac. □

0start

Σϵ

1
⟦[1]a

Σϵ

2
⟦[1]c

Σϵ Figure 6:
Deterministic FSAMh,ac that recognises Rh,ac

(cf. Example 5.7)
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5.3 Problems and restrictions
Definition 5.8. LetM = (Q,∆, qi, F, T ) be an FSA and h:∆∗ → (Γ ∗ →
A ) be an A -weighted homomorphism. The set of harmful loops inM
with respect to h is the set of all runs q0u1q1 · · ·ukqk inM where q1, . . . , qk

are pairwise disjoint elements ofQ, q0 = qk, u1, . . . , uk ∈∆∗, and h(u1) =
. . .= h(uk) = 1.ϵ. □

When examining Example 3.11 and Figure 5, we see that there
are seven harmful loops in M (GB) with respect to h: the five self-
loops of T , the loop between T and A[2], and the loop between T and
B[2]. Harmful loops are problematic for the termination of a parsing
algorithm since they cause an infinite set of candidates that are not dis-
tinguishable by their image under h. When generating the sequence of
candidates for our parsing algorithm, such a situation creates the con-
tingency of never producing a candidate that is accepted by mDc(GB)
even if one exists. To allow our parsing algorithm to solve the above
problem, we will
(i) only admit a restricted form of weighted MCFGs and
(ii) require each value in the domain of A (except 0 and 1) to be

viewed as a product of arbitrarily many smaller values from the
domain of A .

Restricted weighted MCFG
Definition 5.9. An A -weighted MCFG G = (N ,∆, S, P,µ) is called
restricted if there do not exist a subderivation d in G and a posi-
tion π = n1 · · ·nk ∈ pos(d) (where n1, . . . , nk ∈ N) such that d(ϵ) =
d(π), d(ϵ), d(n1), d(n1n2), . . . , d(n1 · · ·nk) are pairwise different, and
µ(d(ϵ)) = µ(d(n1)) = µ(d(n1n2)) = . . .= µ(d(n1 · · ·nk)) = 1. □

Restricted weighted MCFG are strictly less powerful than (unres-
tricted) weighted MCFG, as the next example shows.
Example 5.10. Let us consider an arbitrary B-weighted MCFG G and
let m be the number of rules in G. Assume that L(G) is not finite. Then
there are subderivations in G of arbitrary height. It is clear that every
subderivation d in G with a height greater than m + 1 must have a
position π ∈ pos(d) such that d(ϵ) = d(π). Then, since G has weights
from B, we know that 1 is assigned to every production in G and thus
G is not restricted. □
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Restricted weighted MCFGs are still useful in practice, as the fol-
lowing two observations show.
Definition 5.11. An A -weighted MCFL is called proper if A is the
probability semiring, the Viterbi semiring, or one of the algebras Pr1

or Pr2 (cf. Example 2.1) and for each non-terminal A the sum (using the
usual addition in R) of the weights of all productions with left-hand
side A is 1. □

Observation 5.12. Every proper weighted MCFG is restricted.
Proof. Assume that G is proper but not restricted. Then there is a sub-
derivation d in G and a position π ∈ pos(d) such that the weights of
all productions along the path from the root to position π in d are 1
and d(ϵ) = d(π) = ρ. All productions along the path from the root to
position π are unique for their respective left-hand side non-terminals
since G is probabilistic. This means that every subderivation d ′ start-
ing from ρ has the position π and ρ = d ′(ϵ) = d ′(π) = d(ϵ) = d(π).
But then {ϵ,π,ππ,πππ, . . .} ⊆ pos(d) and hence d is not a (finite) term,
which contradicts our definition of a subderivation. ■

If we extract a weighted MCFG from a corpus and assign the
weights by maximum-likelihood estimation (as for example in Kall-
meyer and Maier 2013, p. 107), then we will get a weighted MCFG
that is proper and therefore restricted.

The next observation allows us to enrich the weight structure of
a B-weighted MCFG to make it suitable for CS-parsing.
Observation 5.13. For every B-weighted MCFG G, there is a restric-
ted weighted MCFG G′ such that supp(L(G)) = supp(L(G′)).
Proof. This can be done by assigning to every w ∈ supp(G), the size (i.e.
number of productions) of its smallest derivation. To achieve that, we
choose the tropical semiring as weight algebra for G′, use the produc-
tions from G, and give every production the weight 1. Then no pro-
duction in G′ has the semiring-1 (which is 0 for the tropical semiring)
as its weight and G′ is restricted. ■

Factorisable weight structures
Definition 5.14. LetA be a complete commutative strong bimonoid
and ⊴ be a partial order on A . We say that A is ⊴-factorisable if for
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every a ∈ A \ {0,1} and natural number k ≥ 2, there are a1, . . . , ak ∈
A \ {0,1} such that a1 Ã a, . . . , ak Ã a and a1 · . . . · ak = a. We then call
a1 · . . . · ak a (⊴, k)-factorisation of a. □

Some of the complete commutative strong bimonoids mentioned
in Example 2.1 are ⊴-factorisable for some suitable partial order ⊴,
as Table 3 shows. The examples where multiplication is idempotent,
however, have no suitable partial order since a · a = a contradicts ·
being increasing (in particular a Ã a · a).

Table 3:
List of some complete
commutative strong
bimonoids A from

Example 2.1 together with
a partial order ⊴ that A

respects and a
(⊴, k)-factorisation.

example algebra partial order (⊴, k)-factorisation
(A ,+, ·, 0, 1) ⊴ of a ∈A \ {0, 1}

Viterbi semiring ≥
kpa · . . . · kpa︸ ︷︷ ︸

k times([0,1],max, ·, 0, 1)

tropical semiring ≤ a/k+ . . .+ a/k︸ ︷︷ ︸
k times(R≥0 ∪ {∞},min,+,∞, 0)

arctic semiring ≤ a/k+ . . .+ a/k︸ ︷︷ ︸
k times(R≥0 ∪ {−∞}, max,+,−∞, 0)

Pr1 = ([0,1],⊕1, ·, 0, 1) and ≥
kpa · . . . · kpa︸ ︷︷ ︸

k timesPr2 = ([0,1],⊕2, ·, 0, 1)

For the probability semiring Pr= (R≥0,+, ·, 0, 1)monotonicity and
increasingness contradict each other. To show this we first assume that
Prwould respect some partial order⊴. From 1/2·1/2= 1/4 and 2·2= 4
follows 1/2Ã 1/4 and 2Ã 4 since · is increasing. By monotonicity then
follows 2 ·1/2⊴ 4 ·1/2⊴ 4 ·1/4 and hence 1⊴ 2⊴ 1. But ⊴ is a partial
order and thus antisymmetric.

5.4 A CS parsing algorithm
For the remainder of this article let A be a complete commutative
strong bimonoid and ⊴ be a partial order on A such that A respects
⊴ and is ⊴-factorisable. Also, we will require our weighted MCFGs to
be restricted.

To solve the problem stated in the beginning of Section 5.3, we
define a modified generator language and a modified weight function
to replace R and h from the CS-theorem (cf. Theorem 3.12).
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The modified generator language
Consider an MCFG G with non-terminals N . Then, intuitively, M (G)
has two kinds of states:
(i) For every non-terminal A∈ N and every j ∈ [fan-out(A)] there is a

state A[ j] that signifies that the automaton is about to process the
j-th component of a string tuple generated by G with A.

(ii) There is a state T that signifies that the automaton just finished
processing some component of a string tuple generated by G with
some non-terminal.

We split state T fromM (G) up to formalise the following intuition:
(ii’) For every non-terminal A∈ N and every j ∈ [fan-out(A)] there is a

state Ā[ j] that signifies that the automaton just finished processing
the j-th component of a string tuple generated by G with A.

Definition 5.15. Let G = (N ,∆, S, R) be an MCFG. The modified
generator automaton with respect to G, denoted by M ′(G), is the fi-
nite state automaton (Q ∪ Q̄,Σ, S[1], {S̄[1]},τ) where Σ is the gener-
ator alphabet with respect to G, Q = {A[ j] | A ∈ N , j ∈ [fan-out(A)]},
Q̄ = {Ā[ j] | A ∈ N , j ∈ [fan-out(A)]}, and τ is the smallest set such that
for every rule

ρ = A→ [u0
1 y1

1 u1
1 · · · yn1

1 un1
1 , . . . , u0

s y1
s u1

s · · · yns
s uns

s ](B1, . . . , Bm)

in R we have that
(i) �A[ j], ⟦[ j]ρ ũ0

j ⟧[ j]ρ , Ā[ j]
� ∈ τ for every j ∈ [s] with n j = 0,

(ii) �A[ j], ⟦[ j]ρ ũ0
j ⟦[ℓ]ρ,i , B[ℓ]i

� ∈ τ for every i ∈ [m], j ∈ [s], and ℓ ∈
[fan-out(Bi)] with n j ̸= 0 and y1

j = xℓi ,
(iii) �B̄[ℓ]i , ⟧[ℓ]ρ,i ũ

κ−1
j ⟦[ℓ′]ρ,i′ , B[ℓ

′]
i′
� ∈ τ for every i, i′ ∈ [m], j ∈ [s], κ ∈ [n j],

ℓ ∈ [fan-out(Bi)], ℓ′ ∈ [fan-out(Bi′)] with n j ̸= 0, yκ−1
j = xℓi , yκj =

xℓ
′

i′ , and
(iv) �B̄[ℓ]i , ⟧[ℓ]ρ,i ũ

n j

j ⟧[ j]ρ , Ā[ j]
� ∈ τ for every i ∈ [m], j ∈ [s], and ℓ ∈

[fan-out(Bi)] with n j ̸= 0 and y
n j

j = xℓi .
The modified generator language with respect to G is R′(G) = L(M ′(G)).

□
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S[1]

start

A[1]
⟦[1]
ρ′1
ρ̃1

1⟦[1]ρ′1,1

⟦[1]
ρ′2
ρ̃1

2 ã⟦[1]
ρ′2,1

Ā[1]
⟦[1]
ρ′4
ρ̃1

4⟧[1]ρ′4
⟧[1]
ρ′2,1
⟧[1]
ρ′2

B[1]
⟧[1]
ρ′1,1
⟦[1]
ρ′1,2

⟦[1]
ρ′3
ρ̃1

3 b̃⟦[1]
ρ′3,1

B̄[1]
⟦[1]
ρ′5
ρ̃1

5⟧[1]ρ′5
⟧[1]
ρ′3,1
⟧[1]
ρ′3

A[2]

⟧[1]
ρ′1,2
⟦[2]
ρ′1,1

⟦[2]
ρ′2
ρ̃2

2 c̃⟦[2]
ρ′2,1

Ā[2] ⟦[2]
ρ′4
ρ̃2

4⟧[2]ρ′4
⟧[2]
ρ′2,1
⟧[2]
ρ′2

B[2] ⟧[2]
ρ′1,1
⟦[2]
ρ′1,2

⟦[2]
ρ′3
ρ̃2

3 d̃⟦[2]
ρ′3,1

B̄[2] ⟦[2]
ρ′5
ρ̃2

5⟧[2]ρ′5
⟧[2]
ρ′3,1
⟧[2]
ρ′3

S̄[1] ⟧[2]
ρ′1,2
⟧[1]
ρ′1

Figure 7: Modified generator automaton M ′(G′) with respect to G′ from
Example 3.4

Lemma 5.16. R(G)∩mDc(G) = R′(G)∩mDc(G) for every MCFG G.
Proof. Let G = (N ,∆, S, P) and Σ be the generator alphabet with re-
spect to G.
(⊇) For this we show that R(G) ⊇ R′(G). Let q0u1q1 · · ·umqm be a suc-
cessful run inM ′(G). We define the string v = t(q0)u1 t(q1) · · ·um t(qm)
where

t(q) =

(
q if q = A[ j] ∈Q for some A∈ N and j ∈ fan-out(A)

T otherwise.
Clearly for every transition (q, u, q′) in M ′(G), there is a transition
(t(q), u, t(q′)) inM (G). Since S̄[1] is the final state inM ′(G) and t(S̄[1])
is a final state inM (G), we have that v is a successful run inM (G).
(⊆) Since R(G) ∩mDc(G) is in bijection with DG (Corollary 3.9), it
suffices to show that yield(DG) ⊇ homG(R′(G)). We prove the following
for every A∈ N and d ∈ DG(A) by induction on d:

Let yield(d) = (u1, . . . , um). There are v1, . . . , vm ∈Σ∗ such that
M ′(G) recognises vi from A[i] to Ā[i] and homG(vi) = ui for
every i ∈ [m].

This statement implies the claim.
Induction base: Let d = ρ = A → [u1, . . . , um]() ∈ P. Then for every
i ∈ [m], there is a transition (A[i],⟦[i]ρ ũi⟧[i]ρ , Ā[i]) in M ′(G). Clearly,
homG(⟦[i]ρ ũi⟧[i]ρ ) = ui andM ′(G) recognises ⟦[i]ρ ũi⟧[i]ρ from A[i] to Ā[i].
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Step: Let d = ρ(d1, . . . , dk) with ρ = A → [u1, . . . , um](B1, . . . , Bk) and
mi = fan-out(Bi) for every i ∈ [k]. By induction hypothesis there
are v i

1, . . . , v i
mi

for every i ∈ [k] such that (homG(v i
1), . . . , homG(v i

mi
)) =

yield(di) and M ′(G) recognises v i
j from B[ j]i to B̄[ j]i for every j ∈ [m].

By the existence of ρ in P and Definition 5.15, we can construct runs
in M ′(G) from A[1] to Ā[1], …, A[m] to Ā[m], recognising v1, . . . , vm, re-
spectively such that (homG(v1), . . . , homG(vm)) = yield(d). ■

The modified weight function
ExaminingM ′(GB) from Figure 7 together with h from Example 3.11
we notice that there are still four harmful loops: the self-loops of A[1],
B[1], A[2], and B[2]. Therefore, we will define a function wtG,⊴ from
strings of parentheses to A that assigns a weight different from 1 to
the labels along those loops, but still computes the same weights as h
on the subset mDc(GB). Intuitively, we take the weight attached to a
symbol ⟦[1]ρ (for some rule ρ of fan-out s) and distribute it along the 2·s
symbols ⟦[1]ρ ,⟧[1]ρ , . . . ,⟦[s]ρ ,⟧[s]ρ using the fact that A is ⊴-factorisable.
Definition 5.17. LetA be a complete commutative strong bimonoid,
⊴ be a partial order onA ,A be ⊴-factorisable, and G = (N ,∆, S, P,µ)
be an A -weighted k-MCFG. Furthermore, let Σ be the generator al-
phabet with respect to G. For every ρ = A→ [u1, . . . , us](B1, . . . , Bk) ∈ P,
we set ρ′ = A→ [ρ1u1, . . . ,ρsus](B1, . . . , Bk) and fix values aρ1 , . . . , aρ2·s ∈A \ {0} such that

• if µ(ρ) ̸= 1 then aρ1 , . . . , aρ2·s are not 1, are smaller or equal to µ(ρ)
with respect to ⊴, and aρ1 · . . . · aρ2·s = µ(ρ); or

• if µ(ρ) = 1 then aρ1 = . . .= aρ2·s = 1.
The weight function with respect to G and ⊴ is the function wtG,⊴:Σ∗→
A defined for every u1, . . . , uk ∈Σ by

wtG,⊴(u1 · · ·uk) = wt′G,⊴(u1) · . . . ·wt′G,⊴(uk)

where wt′G,⊴:Σ→A is given by

wt′G,⊴(σ) =


aρ2·i−1 if σ is of the form ⟦[i]ρ
aρ2·i if σ is of the form ⟧[i]ρ
1 otherwise.

□
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Example 5.18 (Example 2.5 continued). First, we calculate factorisa-
tions of the weights in G as shown in Table 3 for Pr2:

for ρ2 and ρ4: 1/2= 4
Æ

1/2 · 4
Æ

1/2 · 4
Æ

1/2 · 4
Æ

1/2

for ρ3: 1/3= 4
Æ

1/3 · 4
Æ

1/3 · 4
Æ

1/3 · 4
Æ

1/3

for ρ5: 2/3= 4
Æ

2/3 · 4
Æ

2/3 · 4
Æ

2/3 · 4
Æ

2/3

Then wtG,⊴ is given as follows:

wtG,≥(σ) =



4
p

1/2 if σ ∈ {⟦[ j]ρ′ ,⟧[ j]ρ′ | ρ′ ∈ {ρ′2,ρ′4}, j ∈ [2]},
4
p

1/3 if σ ∈ {⟦[ j]
ρ′3

,⟧[ j]
ρ′3
| j ∈ [2]},

4
p

2/3 if σ ∈ {⟦[ j]
ρ′5

,⟧[ j]
ρ′5
| j ∈ [2]},

1 otherwise.

□

Now we examine the FSA M ′(GB) from Figure 7 again, but this
time we use the weight function wtG,⊴ from Example 5.18 instead
of the weights given by the homomorphism h in Example 3.11. For
this let h′: (Σ ∪ Σ̄)∗ → (∆∗ → A ) be the A -weighted homomorph-
ism defined by h′(σ) = wtG,⊴(σ).uσ where h(σ) = µσ.uσ for every
σ ∈ Σ ∪ Σ̄. Then there are no more harmful loops in M ′(GB) with
respect to h′.
Lemma 5.19. Let G = (N ,∆, S, P,µ) be a restrictedA -weighted MCFG
that only has productive non-terminals and ⊴ be a partial order on
A such that A is ⊴-factorisable. Furthermore, let h′: (Σ ∪ Σ̄)∗ →
(∆∗ → A ) be the A -weighted homomorphism defined by h′(σ) =
wtG,⊴(σ).uσ where (weightsG ◦homGB)(σ) = µσ.uσ for every σ ∈Σ∪ Σ̄.
ThenM ′(GB) has no harmful loops with respect to h′.
Proof. We show the claim by contradiction. For this assume that
q0u1q1 · · ·ukqk is a harmful loop in M ′(GB) with respect to h′ where
q0, . . . , qk are states and u1, . . . , uk ∈ (Σ ∪ Σ̄)∗. Then q0 = qk and
wtG,⊴(u1) = . . .= wtG,⊴(uk) = 1. We now distinguish two cases:
(Case 1) Let q0 = qk ∈ Q and I = {i0, . . . , im} be the maximal subset
of {0, . . . , k} (with i0 < · · ·< im) such that
(i) i0 = 0 and im = k,
(ii) for every i ∈ I we have that qi is of the form B[ ji]i for some Bi ∈ N

and ji ∈ [fan-out(Bi)], and
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(iii) for every κ ∈ [m] we have that Biκ occurs on the right-hand side
of ρiκ−1

where ⟦[ jiκ−1
]

ρiκ−1
is read in the transition that leaves qiκ−1

.
Since every non-terminal in G is productive there is a derivation d and
a position π = n1 · · ·nm in d such that n1, . . . , nm ∈ N and d(ϵ) = ρi1 ,
d(n1) = ρi2 , …, d(n1 · · ·nm−1) = ρim , and d(n1 · · ·nm) = ρi1 . For every i ∈
I we know that µ(ρi) = 1 since wtG,⊴(⟦[ ji]ρi

) = 1 and by Definition 5.17.
This contradicts G being restricted.
(Case 2) Let q0 = qk ∈ Q̄ and I = {i0, . . . , im} be the maximal subset
of {0, . . . , k} (with im < · · ·< i0) such that
(i) im = 0 and i0 = k,
(ii) for every i ∈ I we have that qi is of the form B̄[ ji]i for some Bi ∈ N

and ji ∈ [fan-out(Bi)], and
(iii) for every κ ∈ [m] we have that Biκ occurs on the right-hand side

of ρiκ−1
where ⟧[ jiκ−1

]
ρiκ−1

is read in the transition that reaches qiκ−1
.

Since every non-terminal in G is productive there is a derivation d and
a position π = n1 · · ·nm in d such that n1, . . . , nm ∈ N and d(ϵ) = ρim ,
d(n1) = ρim−1

, …, d(n1 · · ·nm−1) = ρi1 , and d(n1 · · ·nm) = ρim . For every
i ∈ I we know that µ(ρi) = 1 since wtG,⊴(⟧[ ji]ρi

) = 1 and by Defini-
tion 5.17. This contradicts G being restricted. ■

Lemma 5.20. Let G = (N ,∆, S, P,µ) be anA -weighted MCFG and ⊴ a
partial order onA . Then h= weightsG◦homGB assigns the same weight
to each word in mDc(GB)∩ R′(GB) as wtG,⊴.

Proof. Let ρ ∈ P be an arbitrary production, m = fan-out(ρ), and
wtG,⊴(⟦[1]ρ ) = a2·i−1 and wtG,⊴(⟧[1]ρ ) = a2·i for every i ∈ [m]. By the defin-
ition of R′(GB), we know that symbols of the forms ⟦[i]ρ , ⟦[1]ρi , and ⟦[1]ρi

occur only as a sequence ⟦[i]ρ ⟦[1]ρi ⟧[1]ρi (see the construction in Lemma 3.3
and items (i) and (ii) in Definition 5.15). By the definition of the can-
cellation rule, we also know that for every symbol ⟦[i]ρ there must occur
corresponding symbols ⟦[1]ρ , . . . ,⟦[i−1]

ρ ,⟦[i+1]
ρ , . . . ,⟦[m]ρ and ⟧[1]ρ , . . . ,⟧[m]ρ in

mDc(GB). Thus in the set mDc(GB) ∩ R′(GB) we have that ⟦[1]ρ occurs
iff all the corresponding symbols ⟦[2]ρ , . . . ,⟦[m]ρ and ⟧[1]ρ , . . . ,⟧[m]ρ occur.

[ 43 ]



Tobias Denkinger

Then by the construction of wtG,⊴ it follows that

wtG,⊴(⟦[1]ρ )︸ ︷︷ ︸
=a1

·wtG,⊴(⟦[1]ρ1 ⟧[1]ρ1 )︸ ︷︷ ︸
=1

·wtG,⊴(⟧[1]ρ )︸ ︷︷ ︸
=a2

· . . . ·wtG,⊴(⟦[m]ρ )︸ ︷︷ ︸
=a2m−1

·wtG,⊴(⟧[m]ρ )︸ ︷︷ ︸
=a2m

is µ(ρ) and thus exactly the weight assigned to those symbols by h. ■
The parser

Definition 5.21. Let G be an A -weighted MCFG over ∆, n ∈ N, and
⊴ be a partial order onA . The n-best CS parser with respect to G and ⊴,
denoted by CS-parse(G, n,⊴), is a function from ∆∗ to D∗G that assigns
for every w ∈∆∗ the value

take(n) ◦map(toDeriv ◦ homGB) ◦ filter(mDc(GB))

◦ sort(wtG,⊴,⊴)
�
R′(GB)∩ Rh,w

�
where h= weightsG ◦ homGB . □

Theorem 5.22. CS-parse(G, n,⊴)(w) ∈ n -best(µ̂,⊴)(DG(w))
for every A -weighted MCFG G = (N ,∆, S, P,µ), n ∈ N, partial order ⊴
that respects A , and word w ∈∆∗.
Proof. Let h = weightsG ◦ homGB . We prove the claim by verifying the
four conditions from Definition 5.2.
(i) This follows from the definition of sort and the bijection between
R(GB)∩mDc(GB) and DG (Corollary 3.13).
(ii) d1, . . . , dk are pairwise different since u1, . . . , uk are pairwise dif-
ferent and R(GB)∩mDc(GB) and DG stand in bijection (Corollary 3.13).
(iii) Let (d1, . . . , dk) = CS-parse(G, n,⊴)(w) and (u1, . . . , uk) be a prefix
of filter(mDc(GB)) ◦ sort(wtG,⊴,⊴)

�
R(GB) ∩ Rh,w

�. Due to the definition
of filter, there must be a natural number m such that (v1, . . . , vm) is
a prefix of sort(wtG,⊴,⊴)

�
R(GB) ∩ Rh,w

� for some v1, . . . , vm ∈ (Σ ∪ Σ̄)∗
and u1, . . . , uk occur in that order in v1, . . . , vm. By the definition of
sort, we have that wtG,⊴(v1) ⊴ . . . ⊴ wtG,⊴(vm). Since u1, . . . , uk occur
in that order in v1, . . . , vm, it follows that wtG,⊴(u1) ⊴ . . . ⊴ wtG,⊴(uk).
By Lemma 5.20 we obtain bµ ◦ toDeriv ◦ homGB(u1) ⊴ . . . ⊴ bµ ◦ toDeriv ◦
homGB(uk) and by the definition of map we get bµ(d1)⊴ . . .⊴ bµ(dk).
(iv) There is no d ∈ DG(w) with bµ(d) Ã bµ(dk) since, by definition of
sort, there is no u ∈ R(GB)∩mDc(GB) with wtG,⊴(u)Ã wtG,⊴(uk). ■
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In addition to just implementing CS-parse(G, n,⊴), we add a
threshold θ for the weight of the found derivations. Then our al-
gorithm will only consider the candidates whose weight is less than
or equal to θ . Without such a threshold, the parsing algorithm would
not terminate if the intersection of R′(GB) and Rh,w had an infinite lan-
guage and w had less than n derivations in G. On the other hand, if w
has a derivation in G with a weight above the threshold, our algorithm
will not find it, however large we choose n. Thus the algorithm only
approximates CS-parse(G, n,⊴).

Input: a restricted A -weighted MCFG G = (N ,∆, S, P,µ), a number
n ∈ N, a partial order ⊴ on A where ⊴ respects A and A is
⊴-factorisable, a threshold θ ∈A with 0⊴ θ , and a word w ∈∆∗

Output: the subsequence of derivations d in CS-parse(G, n,⊴)(w)
with µ(d)⊴ θ

1 function CS-Parse(G, n, ⊴, θ , w)
2 let mDc(Σ,P) =mDc(GB)
3 let h= weightsG ◦ homGB
4 let parses= ϵ
5 while hasNextCandicate∧ |parses|< n do
6 let u= nextCandidate
7 if isMember(Σ,P, u) then
8 append toDeriv(u) to the end of parses
9 end if

10 end while
11 return parses
12 end function
13 procedure hasNextCandicate
14 return whether some u ∈ R′(GB)∩ Rh,w with wtG,⊴(u)⊴ θ was

not yet considered
15 end procedure
16 procedure nextCandidate
17 from the elements of R′(GB)∩ Rh,w previously not considered,

return an element whose image under wtG,⊴ is smallest with
respect to ⊴

18 end procedure

Algorithm 3:
Approximation
of CS-parse using
a threshold θ
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To achieve that our algorithm terminates, we require for our input
that G is restricted and that A is ⊴-factorisable. Let us take a closer
look at how Algorithm 3 works. Since sort(wtG,⊴,⊴) returns an infin-
ite list, we have a procedure nextCandidate that computes only the
next element in that list, hasNextCandicate returns whether there is
such a next element. We utilise those two procedures to only compute
the prefix of sort(wtG,⊴,⊴)(R′(GB) ∩ Rh,w) we need to obtain the first
n parses. Since there are deterministic FSA to recognise both R′(GB)
and Rh,w, the computation of sort(wtG,⊴,⊴)(R′(GB) ∩ Rh,w) amounts to
enumerating the paths in a weighted labelled graph ordered by their
weights8 and then replacing each path by the unique word recognised
along it, where we take the graph with its labels from a deterministic
FSA recognising R′(GB)∩ Rh,w and the weights from wtG,⊴.

Proof of termination for Algorithm 3. Let h= weightsG◦homGB and M be
the set of all weights assigned by wtG,⊴ to each of the words read in the
transitions along one pass of every loop in the product ofM ′(GB) and
Mh,w. Then M contains neither 0 nor 1 becauseM ′(GB) has no harmful
loops. Since · has arbitrarily large powers, we know that for every
element a ∈ M , there is a natural number k such that θ ⊴ ak. Let k̂ be
the maximum of all such k’s. There are only finitely many runs in the
product ofM ′(GB) andMh,w that contain every loop less than k̂ times.
Hence hasNextCandicate is false after a finite number of iterations of
the while-loop (lines 6 to 11), and Algorithm 3 terminates. ■

Example 5.23 (Examples 2.5, 3.7, and 5.7 continued). Consider the
word w = ac. The product of M ′(GB) and Mh,w together with wtG,⊴
is shown in Figure 8 (for the product construction see Hopcroft and
Ullman 1979, after Theorem 3.3). It suffices to consider at most 8 can-
didates to find the (only) derivation of w in G, as is shown in Table 4.
The candidates themselves are not shown, instead we see their weight,
their corresponding path in the graphical representation of the product
of M ′(GB) and Mh,w, and whether they are in mDc(GB). Candidate 7
is exactly toBrackets(ρ′1(ρ′2(ρ′4),ρ′5)). □

8This is described for example in Hoffman and Pavley 1959 for graphs with
edge weights from the real numbers. However, their algorithm works also for
complete commutative strong bimonoids A with a partial order on A that re-
spects A .
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Figure 8: Product ofM ′(GB) andMh,w with the weight assigned by wtG,⊴ to words
read in each transition

Table 4: First eight paths (sorted by their image under wtG,⊴) in the product of
M ′(GB) andMh,w and whether the corresponding candidate ui is in mDc(GB)

i wtG,⊴(ui) path corresponding to ui ui ∈mDc(GB)?

1 1

3
p

2
without using any loops no

2 1

3 4p8

use the loop of (Ā[1], 1) no
3 use the loop of (Ā[2], 2) no
4 1

3 4p12

use the loop of (B̄[1], 1) no
5 use the loop of (B̄[2], 2) no
6

1
6

use the loop of (Ā[1], 1) twice no
7 use the loops of (Ā[1], 1) and (Ā[2], 2) yes
8 use the loop of (Ā[2], 2) twice no
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5.5 Analysis of CS-Parse
From the proof of termination of Algorithm 3 we can gather that the
complexity of the algorithm depends on howmany candidates are con-
sidered. The upper bound for the number of considered candidates is
determined by n, θ , and the numberbk. In particular, it does not depend
on the input word w. Therefore we cannot expect to get a meaningful
time complexity for Algorithm 3.

Instead we will only determine the time complexity of the evalu-
ation of isMember on line 7.
Lemma 5.24. Let G be an MCFG and mDc(Σ,P) =mDc(G). The every
element of R′(G)∩mDc is P-simple.
Proof. Let G = (N ,Γ , S, P) and Σ andP be defined as in Definition 4.9.

We prove the following statement by induction on the length of
w1 · · ·wℓ: If B ∈ N and w1, . . . , wℓ ∈ D(Σ) such that w1 · · ·wℓ ∈mDc and
wκ is recognised along a path from B[κ] to B

[κ] in M ′(G) for every
κ ∈ [ℓ], then w1 · · ·wℓ is P-simple.

By setting ℓ= 1 and B = S, this statement implies our claim. Now
let B ∈ N and w1, . . . , wk ∈ D(Σ) such that w1 · · ·wℓ ∈ mDc and wκ is
recognised along a path from B[κ] to B

[κ] inM ′(G) for every κ ∈ [ℓ].
By the definitions ofM ′(G) and mDc(G), we know that there is some
production ρ = B→ f (B1, . . . , Bk) ∈ P with

f = [u1,0 x j(1,1)
i(1,1)u1,1 · · · x j(1,p1)

i(1,p1)
u1,p1

, . . . , uℓ,0 x j(ℓ,1)
i(ℓ,1)uℓ,1 · · · x j(ℓ,pℓ)

i(ℓ,pℓ)
uℓ,pℓ]

such that for every κ ∈ [ℓ] either
(i) wκ = ⟦[κ]ρ euκ,0⟧[κ]ρ or
(ii) wκ = ⟦[κ]ρ euκ,0 ⟦[ j(κ,1)]

ρ,i(κ,1) v j(κ,1)
i(κ,1) ⟧[ j(κ,1)]

ρ,i(κ,1) euκ,1 · · ·
⟦[ j(κ,pκ)]
ρ,i(κ,pκ)

v j(κ,pκ)
i(κ,pκ)
⟧[ j(κ,pκ)]
ρ,i(κ,pκ)
euκ,pκ ⟧[κ]ρ ,

and v j
i ∈ D(Σ) is recognised along a path from B[ j]i to B

[ j]
i in M ′(G)

for every i ∈ [k] and j ∈ [sort(Bi)], and v1
i · · · vsort(Bi)

i ∈ mDc(G) for
every i ∈ [k]. Set w′1, . . . , w′

ℓ
∈ D(Σ) such that wκ = ⟦[κ]ρ w′κ⟧[κ]ρ for each

κ ∈ [ℓ]. Then by induction hypothesis the string v1
i · · · vsort(Bi)

i is P-
simple for every i ∈ [k]. By analysing the form of wκ for each κ ∈ [ℓ],
we observe that occp w′1 · · ·w′ℓ ≤ 1 and occp w1 · · ·wℓ ≤ 1 for each cell
p ∈ {p′ ∈P | |p′| ≥ 2}. Hence, w1 · · ·wℓ is P-simple. ■
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Let G be an MCFG and mDc(Σ,P = mDc(G). Since every element
of R′(G)∩mDc(G) is P-simple, we can use isMember’ on line 7 instead
of isMember. Then line 7 can be done in time quadratic in the length
of the candidate u.

6 related parsing approaches
An established approach to speed up the parsing of MCFGs for prac-
tical applications is to use a formalism with lower parsing complexity
than MCFGs to guide the exploration of the search space. In the fol-
lowing, we will focus on four such approaches.

The parsers in Barthélemy et al. (2001); Burden and Ljunglöf
(2005); van Cranenburgh (2012) work as follows: Suppose that we
want to parse a given word w with a grammar G of a formalism A.
We first construct a grammar (or automaton) G′ in a formalism B that
has a lower parsing complexity than A. This can be done offline. Then,
we parse w with G′. Lastly, we parse w with G, but while doing so,
we consult the parses of w in G′ to guide the exploration of the search
space (of possible parses). The three papers differ in their choice of
formalisms for G and G′, and in their use of the parses of w in G′ while
parsing w in G:
(i) Barthélemy et al. (2001) have a positive range concatenation

grammar (short: PRCG) (Boullier 1998) of arbitrary arity for G
and use a PRCG of arity 1 for G′. They extract from the parse
forest F of w in G′ a so-called guiding structure and query this struc-
ture while parsing w in G. The guiding structure can range from a
set of instantiated clauses that occur in F to F itself. In their exper-
iments they used as a guiding structure the function that assigns
for each instantiated clause the number of its occurrences in F .

(ii) Burden and Ljunglöf (2005, Section 4) have a linear context-free
rewriting system (short: LCFRS) (Vijay-Shanker et al. 1987) for G
and a context-free grammar for G′. They use deductive parsing.
The parse chart C ′ of w in G′ is created. While creating the parse
chart of w in G, only items are created that are consistent with the
items in C ′. The algorithm is therefore an instance of coarse-to-fine
parsing (Charniak et al. 2006).

(iii) Van Cranenburgh (2012) has a probabilistic LCFRS (of arbitrary
fan-out) for G and a probabilistic LCFRS of fan-out 1 for G′. As
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Burden and Ljunglöf (2005), he uses deductive parsing: First, a
parse chart C ′ of w in G′ is created. Then the probabilities of G′
are used to restrict C ′ to the n best parses, obtaining a new parse
chart bC , this step is called pruning. A value of n = 50 was used
in the experiments. Then, while creating the parse chart of w in
G, only items are created that are consistent with the items in bC .
The algorithm is an instance of coarse-to-fine parsing.

Kallmeyer and Maier (2015) present a different approach:
(iv) They construct an FSA G′ as the predict/resume-closure of thread

automaton thread stores (Villemonte de la Clergerie 2002) where
the corresponding thread automaton is constructed from the
given LCFRS G. The addresses in the thread stores are represented
by regular expressions to keep the set of states of G′ finite. Then,
a parse table is read off of G′. As opposed to Items (i) to (iii), w
is not parsed with G′. Instead, while parsing w with G using a
shift-reduce parser, the parse table is consulted directly at each
shift or reduce operation to determine the successor state. Their
algorithm is an instance of LR-parsing.
With the Chomsky-Schützenberger parsing presented in this art-

icle, we construct from the given weighted LCFRS G three devices
(instead of just one): the deterministic FSA M ′(GB) together with
the weight assignment wtG,⊴, the congruence multiple Dyck language
mDc(GB), and the alphabetic homomorphism homGB . For the given
word w we construct a deterministic FSA, let us call it M , that re-
cognises hom−1

GB
(w) ∩ L(M ′GB). Constructing M is an additional pre-

processing step in comparison to Items (i) to (iv). In contrast to
Item (iii), we do not use the weight assignment wtG,⊴ for pruning. We
instead use it to enumerate the elements of L(M ) in increasing order
of their costs. Finally, we filter the list of those elements with mDc(GB).
Note that w is never actually parsed with G as in Items (i) to (iv).

7 conclusion and outlook
We obtained a weighted version of the Chomsky-Schützenberger char-
acterisation of MCFLs for complete commutative strong bimonoids
(Theorem 3.12) by separating the weights from the weighted MCFG
and using Yoshinaka et al. (2010, Theorem 3) for the unweighted part.
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We defined a variant of multiple Dyck languages that uses congru-
ence relations (Definition 4.2), gave an algorithm to decide whether a
word is in a given congruence multiple Dyck language in Algorithm 2,
and derived a CS representation using congruence multiple Dyck lan-
guages.

Following the idea of Hulden (2011), we used this CS representa-
tion for weighted MCFL to describe a parsing algorithm (Algorithm 3)
that approximates n-best parsing for restricted weighted MCFGs with
a weight structure that is partially ordered and factorisable.

The utility of Algorithm 3 can not be judged based on theoretical
considerations alone. The author therefore plans to implement it and
evaluate it empirically.
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Minimalist grammars have been used recently in a series of papers to
explain well-known contrasts in human sentence processing in terms
of subtle structural differences. These proposals combine a top-down
parser with complexity metrics that relate parsing difficulty to mem-
ory usage. So far, though, there has been no large-scale exploration
of the space of viable metrics. Building on this earlier work, we com-
pare the ability of 1,600 metrics to derive several processing effects
observed with relative clauses, many of which have been proven dif-
ficult to unify. We show that among those 1,600 candidates, a few
metrics (and only a few) can provide a unified account of all these
contrasts. This is a welcome result for two reasons: First, it provides a
novel account of extensively studied psycholinguistic data. Second, it
significantly limits the number of viable metrics that may be applied
to other phenomena, thus reducing theoretical indeterminacy.

1 introduction

It is beyond doubt that the structural properties of a sentence influ-
ence how easily said sentence is processed by humans. For example,
a sentence with multiple levels of center embedding is harder to parse
than its counterpart with right embedding, and English subject rela-
tive clauses are processed more quickly than object relative clauses.
There is large disagreement, however, on what the relevant structural
properties are. This paper continues a recent series of investigations
(Kobele et al. 2013; Graf and Marcinek 2014; Graf et al. 2015; Gerth
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2015) that approach this question by combining Stabler’s (2013) top-
down parser for Minimalist grammars (MGs) with structurally rich
analyses from Minimalist syntax, the most recent version of Chom-
sky’s transformational grammar framework.
The works above are part of longer tradition applying computa-

tional formalisms to human sentence processing (Joshi 1990; Rambow
and Joshi 1995; Steedman 2001; Hale 2011; Yun et al. 2014, among
others). Common to all of them is a tripartite structure consisting of i)
an articulated theory of syntax that has sufficient empirical coverage
to be applicable to a wide range of constructions, ii) a sound and com-
plete parser for the syntactic formalism, and iii) a complexity metric
that acts as linking theory to derive psycholinguistic predictions from
the previous two components. The allure of this approach is that all
components are rigorously specified and mathematically worked out
to a degree that allows for very fine-grained and detailed processing
predictions. Not only does this provide insightful explanation of cer-
tain processing phenomena, it also makes it possible to distinguish be-
tween competing syntactic proposals based on their psycholinguistic
predictions.
The decomposition into three distinct modules is intuitive and el-

egant, but it also highlights a worrying underspecification issue. With
three components that by necessity have to make very detailed as-
sumptions, it is to be expected that a large number of different com-
binations all replicate the same behavioral data. For instance, a syn-
tactician whose analysis makes the wrong processing predictions may
insist that the problem is not with the analysis but with the parser
or the complexity metric. For the previous MG modeling work, the
issue has already arisen with respect to the choice of complexity met-
rics, with Graf and Marcinek (2014) and Graf et al. (2015) arguing for
slightly different metrics than Kobele et al. (2013) and Gerth (2015).
The specificity of computational models – one of their biggest virtues
– thus runs the risk of combinatorial explosion and empirical indeter-
minacy, which would severely weaken their appeal.
In order to address this issue, we define a total of 1,600 complex-

ity metrics and evaluate whether they can account for the processing
contrasts with relative clauses that were originally discussed in Ko-
bele et al. (2013), Graf and Marcinek (2014), and Graf et al. (2016).
We also use two different analyses of relative clauses from Minimal-

[ 58 ]



Relative clauses as a benchmarkfor Minimalist parsing

ist syntax (promotion and wh) to determine whether the set of em-
pirically viable metrics is still sufficiently structure-sensitive to dis-
tinguish between the accounts. Our findings show that the issues of
indeterminacy and combinatorial explosion are much less severe in
practice than one might expect – a handful of data points is sufficient
to significantly reduce the space of empirically viable parsing models.
Furthermore, this reduced set contains some very simple metrics that
are capable of explaining a wide range of processing contrasts in an
intuitively pleasing fashion. At the same time, the set of viable metrics
varies with the posited analysis in an interesting way, which suggests
that more data points will eventually allow us to rule out specific syn-
tactic proposals.
The paper proceeds as follows. The next section introduces MGs

(2.1) and explains how the behavior of Stabler’s (2013) top-down
parser for MGs can be represented at an abstract level with index/
outdex annotated derivation trees. Section 3 then defines 1,600 com-
plexity metrics that operate over these annotated derivation trees. This
large number is obtained from just three basic metrics that are subse-
quently parameterized along various axes. In Section 4, we establish
the empirical viability of only a few of these 1,600 metrics for the pro-
cessing of relative clauses in English, Chinese, Korean, and Japanese.
The paper concludes with a discussion of conceptual and methodolog-
ical aspects of our finding.

2 minimalist grammars for processing

The mathematical backbone of this paper is provided by MGs (Stabler
1997, 2011) and the top-down MG parser proposed by Stabler (2013).
MGs were chosen because they present a rare combination of traits.
On the one hand they incorporate ideas from Chomskyan syntax that
have found wide adoption in syntactic processing. MGs are also flexi-
ble enough to implement even unusual proposals such as Late Merge
(Lebeaux 1988; Takahashi and Hulsey 2009) and test their predic-
tions. On the other hand they can be regarded as a simple variant of
context-free grammars, which have been studied extensively in the
computational parsing literature (Shieber et al. 1995; Sikkel 1997).
MGs thus act as mathematical glue between formal parsing theory,
psycholinguistics, and large areas of contemporary syntax.
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After a brief introduction to MGs in Section 2.1, we discuss the
central role of derivation trees (2.2) and how Kobele et al.’s (2013)
system of annotating derivation trees acts as a high-level abstraction
of Stabler’s top-down parser (2.3). This provides us with a unified rep-
resentational format that simultaneously describes the structure of a
sentence and relevant parts of its parse history. When combined with
the complexity metrics in Section 3, this simple system is sufficient to
obtain concrete processing predictions.

2.1 Non-technical introduction to Minimalist grammars
MGs take inspiration from the most recent iteration of transforma-
tional grammar, known as Minimalism or Minimalist syntax (Chom-
sky 1995b, 2001). Like all iterations of transformational grammar,
MGs furnish a mechanism for encoding basic head-argument relations
which are then manipulated by a movement operation to produce the
actual syntactic structure. In the case of MGs, these twomodes of struc-
ture building are called Merge and Move, respectively. What differen-
tiates MGs from standard Minimalism is their fully explicit feature
calculus, which regulates when each operation has to be applied. This
makes MGs a lexicalized formalism similar to CCG, LFG or HPSG in the
sense that each grammar G is just a finite list of feature-annotated lex-
ical items (LIs) – a structure is generated by G iff it can be assembled
from LIs of G according to their feature specifications.
For the purposes of this paper, an intuitive understanding of MGs

is sufficient, so we do not give a complete, rigorous definition here.
The interested reader is referred to Stabler (2011), Graf (2013, Chap-
ters 1 & 2), and Gerth (2015, Section 4.1) for detailed yet accessible
introductions. Suppose that we want to generate the sentence John,
the girl likes. While there are in principle infinitely many distinct ways
to do so with MGs, only a few, marginally different ones are also en-
tertained in Minimalist syntax. The most common analysis posits the
syntactic structure shown in Figure 1, where dashed lines have been
added to indicate which positions certain phrases were moved from.
The basic idea is that the sentence starts out as the girl likes John and is
subsequently transformed into John, the girl likes via Move. There are,
however, several independently motivated factors that complicate this
simple picture.
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CP
John C′

ϵ TP
DP

the girl
T′

ϵ vP
t vP

t v′

ϵ VP
likes t

Figure 1:
MG phrase structure tree for
John, the girl likes; dashed arrows
indicate movement

• Instead of the usual X′-structure, a more succinct Bare Phrase
Structure tree (Chomsky 1995a) is assumed. The two are almost
identical except that Bare Phrase Structure trees omit all unary
branches (wherefore they are strictly binary branching). So an
X′-structure like [DP [D′ [D John ]]] reduces to simply John.
• A phrase can have multiple specifiers but only one complement.
Heads are always linearized to the left of their complement and
to the right of their specifiers (Kayne 1994).
• Sentences are allowed to contain unpronounced LIs, which are
denoted ϵ.
• VPs are split into VP and vP (read “little VP”) following ideas first
formulated in Larson (1988). The vP phrase serves many purposes
in the literature, but its relevance for this paper is limited to its
role as the base position for subjects.
• Subjects in English (and all other languages discussed in this pa-
per) move from the lowest specifier of vP to the canonical subject
position, i.e. the lowest specifier of TP.
• For the sake of exposition, Figure 1 also incorporates the assump-
tion that a phrase moving out of vP must intermittently land in a
specifier of vP (Chomsky 2001). We omit this in the remainder of
the paper as it has no effect on our results and thus would only
add irrelevant complexity.
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While many of these assumptions are not widely shared outside of
Minimalist syntax and add a certain degree of verbosity, they rest on
decades of syntactic research. Since a major goal of the MG parsing
project is to determine to what extent different syntactic assumptions
can affect processing predictions, we adapt these Minimalist analyses
as faithfully as possible to MGs.
Let us then look more closely at how the phrase structure tree in

Figure 1 is assembled by an MG. MGs combine LIs into trees via the
structure-building operations Merge and Move based on the features
carried by those LIs. We start out by applying Merge to likes and John,
which marks John as an argument of likes. In order for this Merge step
to be licensed, likes must have a feature that indicates that the verb
takes a DP as its complement, whereas John must have the matching
category feature D. The verb is then selected by the unpronounced
head of vP, which also requires a DP as its specifier. In this particular
case, the DP is obtained by merging the with girl. As before, all these
instances of Merge must be licensed by suitable feature specifications
on the LIs. We do not write out these features here as they will play
no role in this paper beyond the fact that an MG parser needs to keep
track of all features.
At this point we have assembled the tree depicted in Figure 2. This

figure also shows the corresponding derivation tree, which records the
structure-building steps taken to build the phrase structure tree. In a
derivation tree, all leaves are lexical items, and all interior nodes are
labeled by Merge and Move depending on which operation takes place
at that point. The two trees in Figure 2 differ only in their interior node
labels, but they will diverge more significantly once Move enters the
picture.
So far each step has added new material to the tree via Merge.

But now something different happens: the object DP John is displaced
to a specifier of vP via Move. When exactly Move may take place and

Figure 2:
An intermediate state of
the assembly of John, the

girl likes; all feature
specifications are omitted

vP
DP

the girl
v′

ϵ VP
likes John

Merge

Merge

the girl

Merge

ϵ Merge

likes John
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which phrase it may displace is once again controlled by the feature
calculus. In the case at hand, the vP-head must have a feature f that
requires some phrase to move into a vP specifier. Similarly, Johnmust
have a feature that requires it to undergo f -movement. The result of
Move is shown in Figure 3. Note that the phrase structure tree and
the derivation tree now have different geometries, with John in a vP
specifier in the former but still in its base position in the latter. Con-
sequently, reading the leaves in a derivation tree from left to right
thus may not produce the actual word order of the sentence, which
will play an important role during the discussion of MG parsing in the
next two sections.

vP
John vP
DP

the girl
v′

ϵ VP
likes t

Move
Merge

Merge

the girl

Merge

ϵ Merge

likes John

Figure 3:
Phrase structure tree and
derivation tree after the
first movement step;
dashed arrows are not part
of the trees

The reader may also wonder why Move is represented as a unary
branching node even though the operation seems to involve two ar-
guments, a target position and the subtree that is to be displaced. The
answer is that Move is a deterministic operation in MGs. The target
position is always added at the root of the current tree, and from the
feature specifications of LIs one can always infer which particular sub-
tree is to be displaced. There simply is no need to explicitly specify the
arguments of Move. However, in the derivation trees in this paper we
omit the feature specifications for the sake of brevity and instead use
dashed arrows to indicate what moves where.
Strictly speaking we could stop here as the current phrase struc-

ture tree already has John, the girl likes as its string yield. However,
the tree is still incomplete according to Minimalist syntax and thus the
derivation continues. After merging the tree with an unpronounced T-
head, the subject the girl moves from its base position inside vP to the
canonical subject position in the specifier of TP. Then the TP is merged
with an unpronounced C-head, and John is topicalized by moving it
to a CP specifier. By assumption, a tree is well-formed iff its root is
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Figure 4:

MG derivation
tree for John, the
girl likes with
explicit feature
specifications for

all LIs

Move
Merge

ϵ :: T+top+C− Move
Merge

ϵ :: v+nom+T− Move
Merge

Merge

the :: N+D−nom− girl :: N−

Merge

ϵ :: V+D+acc+v− Merge

likes :: D+V− John :: D−acc−top−

labeled CP and all feature requirements have been satisfied. Since this
is the case for this tree, the derivation can stop here. The full deriva-
tion is given in Figure 4 – to give the reader an idea of what the MG
feature calculus looks like, we also list the feature specifications in this
example.
2.2 The central role of derivation trees
Since derivation trees provide a record of how a given phrase struc-
ture tree is to be assembled, they implicitly contain all the information
encoded in the latter. In itself this is a rather unremarkable fact, but in
the MG community a trend has developed in the last 10 years to treat
derivation trees as the primary data structure of MGs (Kobele et al.
2007; Kobele 2011, 2015; Graf 2011, 2012a,b, 2013; Hunter 2011).
That is to say, MGs are no longer viewed as generators of phrase struc-
ture trees or strings but rather as a generator of derivation trees. A suit-
able graph transduction then transforms the derivation trees into the
desired output structure – strings, phrase structure trees, logical forms,
dependency graphs, and so on. Similar ideas have been explored in a
more general setting under the label of two-step approaches (Moraw-
ietz 2003; Mönnich 2006), interpreted regular tree grammars (Koller
and Kuhlmann 2011), and Abstract Categorial Grammar (de Groote
2001). This view of MGs has many technical advantages, but it also
provides a unique perspective on parsing: if one assumes that the struc-
tures to be produced by an MG parser are derivation trees rather than
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phrase structure trees, MG parsing turns out to be closely related to
parsing of context-free grammars (CFGs).
It has been known for a while now that an MG’s set of well-formed

derivation trees forms a regular tree language (Michaelis 2001; Ko-
bele et al. 2007; Salvati 2011; Graf 2012a).1 Regular tree languages,
in turn, can be directly linked to CFGs. For any CFG G, let D(G) be the
set of its derivation trees. Furthermore, a projection π : Σ→ Ω is a total
function from alphabet Σ to alphabet Ω. Projections can be extended
to trees in a point-wise fashion such that the image of tree t under π is
the result of replacing each label in t by its image under π. A famous
theorem by Thatcher (1967) states that a tree language L is regular
iff there is a CFG G and projection π such that L = π(D(G)). In other
words, every regular tree language can be generated by a CFG if one
is willing to refine the node labels. For MGs, the refinement involves
replacing all instances of Merge and Move with tuples of feature spec-
ifications. The details are of no particular interest here (see Michaelis
2001, Kobele et al. 2007 and section 2.1.1 of Graf 2013). The crucial
point is that MGs have a close link to CFGs via their derivation trees,
and this link can be exploited in parsing.
An MG parser can co-opt CFG parsing techniques as long as it has

mechanisms to deal with the properties that separate MGs from CFGs.
The use of Merge and Move as interior node labels instead of more
fine-grained labels is rather trivial in this respect. The true challenge
lies in the fact that the left-to-right order of leaves in theMG derivation
tree does not correspond to the linear order in the string. The latter can
be deduced from the former only if one keeps track of the structural
alterations brought about by Move, which requires some ingenuity. At
any rate, MGs can be regarded as CFGs with a more complex mapping

1This fact is not restricted to standard MGs as presented in the previous sec-
tion. MGs have been extended and modified with numerous devices from the
syntacticians’ toolbox. Even the most truncated list includes adjunction (Frey
and Gärtner 2002; Fowlie 2013; Hunter 2015a), new movement types (Kobele
2006; Stabler 2006; Gärtner and Michaelis 2010; Graf 2012b), and a variety of
constraints (Gärtner and Michaelis 2007; Graf 2013). But these revised versions
still preserve the regularity of the derivation tree language. The complexity of
the string yield mapping is affected by new movement types, but stays within
the restricted class of transductions that are definable in first-order logic with
equality and proper dominance (Graf 2012b).
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from trees to strings, and MG parsers are CFG parsers that have been
augmented with a mechanism to handle this increased complexity.2

2.3 Encoding parses with tree annotations
Consider a standard recursive descent parser for CFGs, i.e. a parser
that operates top-down, depth-first, and left-to-right. Following Ko-
bele et al. (2013), the order in which a parser builds a given tree t for
input string i can be represented by a specific annotation of the nodes
of t as in Figure 5.

Figure 5:
The annotations of the tree indicate in what
order it is built by a recursive descent parser

1S2
2NP3

3the4 3girl5

2AuxP6
6may7 6VP8

8like9 8John10

Intuitively, the annotation indicates for each node in the tree
when it is first conjectured by the parser and at what point it is con-
sidered completed and flushed from memory. So at the very first step,
the parser conjectures S, which is expanded in step 2 to NP and AuxP.
Assuming that NP and AuxP will eventually yield the desired string,
S can be marked as done and removed from memory at step 2. After
that the parser works on NP (because it operates left-to-right), adding
the and girl. So those two are first conjectured at step 3 while NP is
removed from memory at the same time. As the parser is depth-first,
it now proceeds to work on the and girl rather than AuxP. First the is
scanned at step 4. This means that the parser reads in the first word of

2The connection between MGs and CFGs does not emerge with phrase struc-
ture trees. MGs are known to be weakly equivalent to MCFGs (Harkema 2001;
Michaelis 2001), from which it follows immediately that there are MGs whose
set of well-formed phrase structure trees is supra-regular. But supra-regular tree
languages cannot be made context-free via a simple relabeling as is the case for
regular tree languages, wherefore CFG parsing techniques are not easily extended
to Minimalist phrase structure trees. The technical gulf between phrase structure
trees on the one hand and derivation trees on the other is significant, and it holds
only because derivation trees need not directly encode the linear order of leaves
in the string.
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the input and verifies that it is indeed the. If so, the parser then scans
girl at step 5, checking it against the second word in the string. Assum-
ing that scanning succeeded, the parser then returns to AuxP, which it
has held in memory since step 2. Now at step 6 it finally gets to flush
AuxP from memory and replace it by may and VP. The remainder of
the parse is straight-forward.
This is of course a highly abstracted view of the actual work done

by a parser. For one thing, a parser operates with parse items rather
than trees or tree nodes, and how such parse items are organized in
memory depends on a lot on the specifics of the algorithm (for exam-
ple, a chart-based parser would never remove an already constructed
parse item from memory). More importantly, the problem of which
rewrite rules must be chosen to derive the correct string is completely
ignored. So this way of annotating trees is no substitute for a proper,
rigorously defined parser. Crucially, though, these abstractions are im-
material for this paper’s approach to modeling human sentence pro-
cessing – the tree annotation is a sufficiently close representation of a
parser’s behavior to enable the kind of processing predictions we are
interested in.
Now consider how a standard recursive descent parser would op-

erate over an MG derivation tree. Consider first the derivation tree for
the girl likes John, depicted in Figure 6. For the sake of clarity, we indi-
cate unpronounced LIs by their category (C, T, v). As can be gleaned
from the figure, the parser scans the leaf nodes in this derivation in
the following order: C T the girl v likes John. But the actual order in the
input string is C the girl T v likes John, with the girl preceding T rather
than following it. In this particular case the slight difference does not
matter because T is the empty string, so “T the girl” and “the girl T” are
exactly the same string. However, this example already shows that a
standard recursive descent parser is not guaranteed to scan the leaf
nodes of an MG derivation in the order in which they appear in the
input string. Problems arise whenever Move actually alters the prece-
dence relations between leaf nodes, as is the case with John, the girl
likes (also shown in Figure 6). The recursive descent parser will reach
the and try to scan it. It subsequently aborts the parse because the
scanned leaf node does not match the first word in the input, John.
We see, then, that a CFG recursive descent parser does not operate
correctly over MG derivation trees despite them being context-free.
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Figure 6:

Standard recursive descent works for
MG derivation trees only if Move does
not alter the precedence relations in

the string

1Merge2
2C3 2Move4

4Merge5
5T6 5Merge7

7Merge8
8the9 8girl10

7Merge11
11v12

11Merge13
13likes14 13John15

1Move2
2Merge3

3C4 3Move5
5Merge6

6T7 6Merge8
8Merge9

9the10 9girl11

8Merge12
12v13

12Merge14
14likes15 14John16

The problem with the CFG recursive descent parser is its assumption
that the left-to-right order in trees reflects the left-to-right order in the
derived string. The core insight of Stabler (2013) (building on Main-
guy 2010) is that the left-to-right order can instead be inferred from
the MG feature calculus. At the level of abstraction used in this paper,
the answer is even simpler. Given two sibling nodes m and n in an
MG derivation, m is left of n iff m reflexively dominates a leaf node l
such that every leaf node reflexively dominated by n is somewhere to
the right of l in the derived string (where reflexive dominance is the
reflexive, transitive closure of the mother-of relation). According to
this definition, the recursive descent parser will choose a right branch
instead of a left one whenever the right branch contains a mover and
this mover appears to the left of all the material in the left branch.
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1CP2
2C′3

3C 11
3TP4
4T′5

5T 15 5vP6
6vP7

7DP 12
12the13 12girl14

7v′8

8v 16
8VP9

9likes 17 9John10

Figure 7:
Modified recursive descent operates correctly
over MG derivation trees

Figure 7 shows that this modified kind of recursive descent scans the
leaf nodes in the correct order: John C the girl T v likes. To further
increase the readability of derivation trees, this and all later figures
replace the labels Merge and Move by the corresponding X′-labels in
the phrase structure tree.
The annotations for MG derivation trees can be computed in a

purely tree-geometric fashion (Graf et al. 2015). From here on out, we
will refer to a node’s superscript as its index and its subscript as its
outdex. The terminology is intended to highlight that the index repre-
sents the step at which the parser first conjectures a node whereas the
outdex records the point at which it has finished working on the node.
Index and outdex thus provide information about the parser’s memory
usage. The greater the difference between the two, the longer an item
has to be stored in memory. Since memory usage plays a central role
in deriving processing predictions from these annotations, any outdex
that is larger than the corresponding index by a non-trivial amount
will be henceforth highlighted by a box (more on this in Section 3.2).
Definition 1 Let s[urface]-precedence be the relation that holds between
nodes md and nd in a derivation tree iff their counterparts mp and np in
the corresponding phrase structure tree stand in the precedence relation. If
md undergoes movement during the derivation, its counterpart mp is the
final landing site rather than its base position.
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Given a well-formed Minimalist derivation tree t, its index/outdex
annotation is computed as follows:
1. Every node of t has exactly one index and exactly one outdex.
2. The index of the root is 1. For every other node, its index is identical
to the outdex of its mother.

3. If nodes n and n′ are distinct nodes with index i, and n reflexively
dominates a node that is not s-preceded by any node reflexively dom-
inated by n′, then n has outdex i + 1.

4. Otherwise, the outdex of node n with index i ismax(i+1, j+1), where
j ≥ 0 is greatest among the outdices of all nodes that s-precede n but
are not reflexively dominated by n.

Throughout the rest of the paper we use these annotated deriva-
tion trees as abstract representations of the behavior of Stabler’s
(2013) recursive descent parser for MGs. This greatly simplifies the
discussion by substituting easily interpreted derivation trees with in-
dices and outdices for the complex mechanics of the parser. But it
means that the difficulty of finding this derivation tree in the first
place is completely ignored. The most demanding task of parsing –
searching through a large space of structures in the search for the cor-
rect one – is taken out of the equation. This simplification is shared
among all recent work that use Stabler’s MG parser to model human
processing (Kobele et al. 2013; Graf and Marcinek 2014; Graf et al.
2015; Gerth 2015). In the words of Graf et al. (2015, p.3):
While psychologically implausible, this idealization is meant
to stake out a specific research goal: processing effects must
be explained purely in terms of the syntactic complexity of
the involved structures, rather than the difficulty of find-
ing these structures in a large space of alternatives. More
pointedly, we assume that parsing difficulty modulo non-
determinism is sufficient to account for the processing phe-
nomena under discussion.
The aim of these MG processing models, then, is to see how much

of human sentence processing can be explained by considering only
the order of how the parts of the correct derivation are built. This does
not deny that ambiguity has a large role to play, e.g. in garden path
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sentences, but it is taken out of the equation in order to determine
the relevance of isolated structural factors. A simpler model has the
advantage of being easier to reason about, and the focus on structure
allows us to compare specific syntactic proposals according to their
processing predictions.

3 complexity metrics for processing

The previous section recast Stabler’s top-down parsing algorithm for
MGs as a particular kind of tree annotation, but this raises the question
how a simple annotation of derivation trees can be linked to psycholin-
guistic processing effects. This is accomplished via a linking theory,
which takes the form of complexity metrics.3 The next section discusses
what we mean by complexity metrics and how all our metrics are
rooted in notions of memory usage. Sections 3.2 and 3.3 then provide
formal definitions of all the relevant metrics. The full set comprises
1,600 metrics, of which only a handful will prove able to account for
all the data in Section 4.

3.1 Complexity metrics and three notions of memory usage
A complexity metric is any procedure that ranks strings according to
processing difficulty. For instance, Kimball’s (1973) principle that the
human parser cannot work on more than two CPs at the same time
provides a simple complexity metric that is computed over phrase
structure trees. O’Grady (2011) suggests that the length of movement
dependencies affects processing difficulty. The Derivational Theory of
Complexity (Miller and Chomsky 1963; Miller and McKean 1964; see
also Phillips 1996, Chapter 5) equates complexity with the number
of syntactic operations that are required to build said sentence. Syn-
tactic Prediction Locality Theory (Gibson 1998) and Dependency Lo-
cality Theory (Gibson 2000) instead operate directly over the string
and measure the length and interaction of certain dependencies. There
are also metrics that consider more than one isolated structure: sur-
prisal and entropy reduction (Hale 2001, 2003, 2011; Levy 2013), for

3Following the advice of two reviewers, we refrain from using Graf et al.’s
(2015) term parsing metric, which already has an established but distinct meaning
in the formal parsing community.
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instance, measure how the search space shrinks and grows during in-
cremental processing.
The open-endedness of complexity metrics reflects the fact that

the number of conceivable linking theories between the parser and
the observed processing phenomena is dauntingly large. In the face
of such an overabundance of choices, the methodologically soundest
position is to explore simple metrics before moving on to more compli-
cated ones. This is the stance we adopt throughout this paper. The MG
parser has already been simplified to a degree where all ambiguity is
abstracted away and parsing is reduced to index/outdex annotations
of derivation trees. Sticking with our focus on derivation trees and
maximal simplicity, we only consider complexity metrics that predict
processing difficulty based on how the geometry of derivation trees
affects memory usage.
That processing difficulty correlates with memory usage is a very

common hypothesis in the psycholinguistic literature. The idea can be
traced back to Kaplan (1974) and Wanner and Maratsos (1978),4 with
Joshi (1990), Gibson (1998, 2000) and many other as more recent
examples (see Gerth (2015, Section 2.3.1) for a detailed discussion).
Memory usage may be measured in many different ways, though, and
as a result there is a myriad conceivable complexity metrics that differ
only in minor details. This paper compares over a thousand memory-
based complexity metrics, but fortunately they can be reduced to three
basic concepts, which will be gradually refined and modified as we
go along.
As we briefly remarked in Section 2.3, the MG parser does not

actually hold nodes of the derivation tree in memory but rather parse
items that encode various pieces of information about each node, in
particular whether the node is the root of a subtree containing movers.
For a parser that has to hold such parse items in memory, one can
distinguish at least three kinds of memory usage:
Tenure How long is the item kept in memory?
Payload How many items are held in memory?
Size How many bits does the item consume in memory?

4We thank an anonymous reviewer for bringing these early works to our
attention.
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Each category is part of some complexity metric that has been invoked
in previous work onMG parsing (Kobele et al. 2013; Graf andMarcinek
2014; Graf et al. 2015; Gerth 2015). In terms of annotated derivation
trees, the three notions can be formalized as follows:
Definition 2 Let t be some Minimalist derivation tree annotated with in-
dices and outdices.
• For every node n with index i and outdex o (i < o), its tenure ten(n)
is o− i. A node’s tenure is trivial iff ten(n)≤ 2.
• The payload of t is equal to the number of nodes in t with non-trivial
tenure: | {n | ten(n)> 2} |.
• For every node n its size is identical to the number of phrases that are
reflexively dominated by n, distinct from n, and are associated to a
Move node that reflexively dominates n.
For a concrete example, consider again the derivation tree in Fig-

ure 7. The tenure of the empty C-head is 11−3= 8, whereas the tenure
of TP is just 4− 3 = 1. The derivation tree’s payload is 5 as there are
five nodes with non-trivial tenure (indicated by boxed outdices): the
empty C-, T-, and v-heads, as well as DP and likes. The size of a parse
item corresponding to node n is the same as the number of nodes be-
low n that have a movement arrow pointing to somewhere above n.
So the size of CP and v′ is 1 and the size of T′ is 2, whereas the size of
DP and v is 0.
The definition of size may strike the reader as very stipulative.

It derives from how information about movers is stored by Stabler’s
(2013) top-down parser. For a detailed discussion, the reader is re-
ferred to Graf et al. (2015). Similarly, readers may wonder why the
threshold for payload is set to 2 rather than 1. Once again this is done
for technical reasons, discussed in Graf and Marcinek (2014).
3.2 From memory usage to complexity metrics
Note that tenure, size and payload are not exactly on equal footing.
While payload is a property of derivation trees, tenure and size are
properties of individual nodes/parse items. Consequently, payload can
already be used as a complexity metric for our simple purposes: given
two derivation trees, the one with lower payload is predicted to be
easier to process. Graf and Marcinek (2014) use the name Box to dis-
tinguish payload as a complexity metric over derivation trees from
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payload as general concept of memory usage. The name is motivated
by the notational convention to draw a box around the outdices of
nodes with non-trivial tenure, which we also adhere to in this paper.
In contrast to payload, tenure and size can be applied to derivation
trees in multiple ways.
Tenure was incorporated into three distinct complexity metrics

by Kobele et al. (2013). Let T be the set of nodes of derivation tree t.
Then
MaxT max({ten(n) | n ∈ T})
SumT ∑n∈T,ten(n)>2 ten(n)

AvgT SumT(t)
Box(t)

So MaxT reports the maximum memory usage used by any single one
node, SumT the total (non-trivial) tenure of the entire derivation tree,
and AvgT the average memory usage of a node with non-trivial tenure.
Recall that the derivation in Figure 1 has a payload of 5, which is also
its Box value. Moreover we have MaxT = 10 (due to T), SumT =
8+ 10+ 5+ 8+ 8 = 39 (summing the tenure of all boxed nodes), and
AvgT= 39

5 = 7.8.
Graf et al. (2015) furthermore generalize size to the complexity

metric Gap in a fashion that mirrors SumT for tenure. To highlight
this similarity, we call this metric SumS instead of Gap (the original
name is motivated by the parallels to measuring the length of filler-
gap dependencies). Let M be the set of all nodes of derivation tree t
that are the root of a subtree undergoing movement. Also, for each
m ∈ M , i(m) is the index of m and f (m) is the index of the highest
Move node that m’s subtree is moved to. With the visual aids in our
derivation trees, M can be taken to consist of exactly those nodes that
are the starting point of an arrow, while f (m) is the target node of the
highest arrow that starts in m. SumS sums the differences between
these indices.
SumS ∑m∈M i(m)− f (m)

Considering once more the derivation tree in Figure 1, we see that
M = {DP,John}, i(DP)− f (DP) = 7− 3 = 4, and i(John)− f (John) =
9− 1 = 8. So the whole derivation tree has a SumS value of 12. The
motivation behind SumS is again hard to convey without drilling deep
into the bowels of the MG top-down parser. Intuitively, though, SumS
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expresses the idea (independently argued for in O’Grady 2011) that
moving a subtree is computationally expensive – the longer it takes
to actually get to the subtree that needs to be moved, the higher the
resource cost.
Even though SumS is transparently a size-based analog of SumT,

no complexity metrics have been previously proposed for size that
operate similar to Box, MaxT or AvgT. We introduce these metrics
here for the sake of completeness, even though they will eventually
turn out to be inadequate for sentence processing.

Movers |M |, where M is the set of all nodes that are the root of a
subtree undergoing movement

MaxS max({i(n)− f (n) | n ∈ T}), where T is the set of all nodes of the
derivation tree

AvgS SumS(t)
Movers(t)

For the example in Figure 7, we have Movers = 2 (only subject
and object move), MaxS = 8 (topicalization of John), and AvgS =
(9−1)+(7−3)

2 = 6.

3.3 Further refinements
3.3.1 Recursive application

Another metric briefly mentioned in Graf and Marcinek (2014) is
MaxTR, which applies MaxT recursively. With MaxT, two derivation
trees may receive exactly the same score and would thus be predicted
to be equally difficult. MaxTR instead assigns each derivation tree a
weight that enumerates in decreasing order the tenure of all nodes
in the payload. Then derivation u is easier than derivation v iff their
weights are identical up to position i, at which point u’s weight con-
tains a smaller number than v’s weight. A similar strategy can also be
used for size, yielding the complexity metric MaxSR.
Our example derivation tree has the valuesMaxTR = [10,8,8, 8,5]

and MaxSR = [8,4]. Therefore it would be harder than a compet-
ing derivation with MaxTR = [10,8, 8,5], but easier than one with
MaxSR = [8, 3].
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3.3.2 Restriction by node type
Graf and Marcinek (2014) refine the set of metrics even more by rel-
ativizing them to specific types of nodes. For each metric M, an addi-
tional four variants MI, ML, MP, and MU are defined.
MI restriction of metric M to interior nodes
ML restriction of metric M to leaf nodes
MP restriction of metric M to pronounced leaf nodes
MU restriction of metric M to unpronounced leaf nodes
For instance, the unrestricted MaxT value of our derivation was 10,
but the refined values are MaxTI = 5 (on DP), MaxTL = 10 (on T),
MaxTP = 8 (on likes), and MaxTU = 10 (on T).
Note that these restrictions make little sense for size-basedmetrics

since moving subtrees usually contain pronounced material and the
correspondingMove node is necessarily an interior node. Therefore we
do not consider type-based restrictions of size metrics. At this point,
then, the set of defined metrics includes Box, MaxT, SumT, AvgT,
MaxTR, four restricted subtypes for each one of them, as well as the
size-basedmetricsMovers,MaxS, SumS,AvgS, andMaxSR (for a total
of 30 metrics).

3.3.3 Time course of memory usage
The final metric to be considered refines payload so that it reflects
maximum memory usage more faithfully. As we saw earlier, Box sim-
ply reports howmany parse items had to be held in memory. However,
a high Box value need not imply a heavy memory burden as long as
one item is removed from memory before the next one is inserted.
That is to say, if nodes u and v contribute to the payload of derivation
t but the outdex of u is less than the index of v, then the two never
reside in memory at the same time. In order to home in on this aspect,
we define two metrics convergence Con and divergence Div that keep
track of how many distinct nodes do or do not reside in memory at
the same time.
Con | {〈u, v〉 | ten(u)≥ 2, ten(v)≥ 2, index(u)≤ index(v)≤ outdex(u)} |
Div | {〈u, v〉 | ten(u)≥ 2, ten(v)≥ 2,outdex(u)< index(v)} |
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As before these metrics can be relativized to the four subtypes I, L, P,
and U. Returning one final time to the derivation in Figure 7, we see
that ConU = | {〈C,T〉 , 〈C, v〉 , 〈T, v〉} |= 3 and Div= |;|= 0.

3.3.4 Ranked complexity metrics
With just a handful of psycholinguistically plausible factors such as
maximum and average memory usage and restrictions to specific types
of nodes the number of metrics has quickly risen to a bewildering de-
gree. But things do not stop here. Graf et al. (2015) argue in favor of a
combined metric MaxT+ SumS which uses MaxT to predict process-
ing difficulty but relies on SumS whenever MaxT results in a tie. So
given two derivation trees t1 and t2, t1 is predicted to be easier than t2

if either t1 has a lower MaxT or t1 and t2 have the same MaxT value
but t1 has a lower SumS value. This is similar to constraint ranking
in OT (Prince and Smolensky 2004), where a lower ranked constraint
matters only if all higher ranked constraints have failed to pick out
a unique winner. If complexity metrics are allowed to be ranked in
such a way, their number quickly reaches an astronomical size. We
have introduced 40 metrics, wherefore a ranked complexity metric
can consist of up to 40 metrics. It follows that there are over 40 facto-
rial (40!) distinct metrics that are ranked combinations of our 40 basic
metrics – a truly astounding number. Even if one only allows pairs of
our 40 complexity metrics, there are 1,600 distinct metrics (pairs of
the form 〈m, m〉 are equivalent to just the metric m).
Ranked Metric Given a set C of complexity metrics, a ranked metric
is an n-tuple 〈c1, . . . , cn〉 such that for 1≤ i, j ≤ n it holds that ci ∈ C
and that i ̸= j implies ci ̸= c j. Given a ranked metric 〈c1, . . . , cn〉 and
two derivation trees t1 and t2, t1 is predicted to be easier than t2

iff there is some j ≤ n such that ci(t1) = ci(t2) for all i ≤ j and c j

predicts t1 to be easier than t2.

3.4 Discussion
The large number of metrics poses a significant problem. Remember
the promise of the MG parser and the psycholinguistic modeling work
that builds on it: processing phenomena are explained in terms of the
syntactic structures they involve, and in the other direction, syntac-
tic analyses can be evaluated based on their processing predictions.
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But the processing claims of these models arise from the interaction
of three factors, which are the parser (represented via index/outdex
annotation), the syntactic analysis (in the form of derivation trees),
and the complexity metric.
There are few alternatives to the current top-down parser. Despite

some suggestive evidence such as merely local syntactic coherence ef-
fects (Tabor et al. 2004; Konieczny 2005; Konieczny et al. 2009; Bick-
nell et al. 2009), there is still a large consensus among psycholinguists
that if the human parser builds any kind of tree structures, it does
not do so in a pure bottom-up fashion. The other prominent option is
left-corner parsing. Unfortunately, no left-corner parser exists for MGs
at this time because the notion left corner does not carry over neatly
from CFGs (but see Hunter 2015b). Without a readily available alter-
native to top-down parsing, the two major parameters in the model
are the choice of metric and the choice of syntactic analyses. But the
larger the set of metrics, the higher the risk that just about any syn-
tactic analysis will make the right predictions with some metric. This
would significantly weaken the link between syntactic structure and
processing effects, which is the very heart of the work carried out by
Kobele et al. (2013), Graf and Marcinek (2014), Graf et al. (2015), and
Gerth (2015).
Fortunately, this worst-case scenario does not seem to arise. It

turns out that a few constructions involving relative clauses are suffi-
cient to rule out the vast majority of these metrics. We have no prin-
cipled explanation as to why this is the case – it is far from a logical
necessity. But this result, established in the next section, strengthens
the viability of the enterprise started by Kobele et al. (2013) to model
processing phenomena with MGs and use these findings to distinguish
competing Minimalist analyses. It demonstrates that i) a very simpli-
fied processing model can still account for a noteworthy range of chal-
lenging processing phenomena, and ii) the set of workable complexity
metrics is small enough to give the model discriminative power with
respect to syntactic analyses.

4 testing metrics with relative clauses

Now that we have a precisely defined parsing model (abstractly repre-
sented in terms of annotated derivation trees) as well as a collection of
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complexity metrics that link the parser’s behavior to processing pre-
dictions, we are finally in a position to investigate how well these
tools model a collection of phenomena from human sentence process-
ing. All these phenomena, which will be presented in detail in Sec-
tion 4.1, involve relative clauses (RCs) to some extent and have been
studied separately in Kobele et al. (2013), Graf and Marcinek (2014),
and Graf et al. (2015).5 In contrast, we consider the full data set and
test our much bigger collection of metrics against each one of them.
We furthermore compare two competing analyses of RCs (4.2) using
a fairly simple methodology of automated comparisons (4.3). We con-
clude that this small set of data points is highly discriminative in that
it rules out a large number of metrics for each analysis (4.4) while
still allowing for linguistically natural explanations of the observed
patterns (4.5).

4.1 Overview of relative clause constructions
Our testing data for the comparison of metrics and syntactic proposals
relies on several well-known processing contrasts involving RCs. RCs
are a promising test case because they are complex enough to allow
for syntactically interesting structures while factoring out aspects that
aren’t purely structural in nature such as co-reference resolution. The
general idea is to take a pair of constructions A and B such that A is
easier to process than B. This result then has to be replicated by the
complexity metrics given a specific analysis of RCs.
The specific behavioral contrasts to be accounted for were cho-

sen according to several criteria. First, the processing effects must be
well-documented in the psycholinguistic research. Second, the phe-
nomenon should involve a clear structural contrast, rather than just a
meaning contrast (e.g. pronoun resolution). Third, ambiguity should
not be a major factor, which rules out garden path effects.
1. SC/RC < RC/SC
A sentence with a relative clause embedded inside a sentential
complement (SC/RC) is easier to parse than a sentence with a

5Gerth (2015) investigates some additional phenomena which were not in-
cluded in our data sample as we were not aware of her findings until recently,
unfortunately.
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sentential complement embedded inside a relative clause (RC/
SC; Gibson 1998, 2000).

2. SRC < ORC
• Subject relative clauses (SRCs) are easier to parse than ob-
ject relative clauses (ORCs) in languages like English, where
relative clauses are post-nominal and therefore follow their
head noun (Mecklinger et al. 1995; Gibson 1998, 2000; Mak
et al. 2002, 2006; Gordon et al. 2006).
• SRCs are also easier to parse than ORCs in Chinese, Korean,
and Japanese, where relative clauses are pre-nominal, that is
to say, they precede their head noun (Miyamoto and Naka-
mura 2003, 2013; Lin and Bever 2006; Ueno and Garnsey
2008; Kwon et al. 2010; Gibson and Wu 2013).

3. Right < Center
Right embedding is easier than center embedding.

These generalizations have been carefully established in the literature
via self-paced reading experiments and ERP studies with minimal pairs
such as the ones listed in (1)–(6).
(1) SC/RC < RC/SC

a. The fact [SC that the employeei [RC who the manager hired
t i] stole office supplies] worried the executive.

b. The executivei [RC who the fact [SC that the employee stole
offices supplies] worried t i] hired the manager.

(2) SRC < ORC in English
a. The reporteri [RC who t i attacked the senator] admitted the
error.

b. The reporteri [RC who the senator attacked t i] admitted the
error.

(3) SRC < ORC in Chinese
a. [RC t i gongji

attack
yiyuan]
senator

de
rel

jizhe
reporter

chengren-le
admit-prf

cuowu
error

b. [RC yiyuan
senator

gongji
attack

t i] de
rel

jizhe
reporter

chengren-le
admit-prf

cuowu
error

(4) SRC < ORC in Korean
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a. [RC t i uywon-ul
senator-acc

kongkyekha-n]
attacked-rel

kicai-ka
reporter-nom

silswu-lul
error-acc

siinhayssta
admitted

b. [RC uywon-i
senator-nom

t i kongkyekha-n]
attacked-rel

kicai-ka
reporter-nom

silswu-lul
error-acc

siinhayssta
admitted

(5) SRC < ORC in Japanese
a. [RC t i giin-ga

senator-acc
hinanshita]
attacked

kishai-ga
reporter-nom

ayamari-o
error-acc

mitometa
admitted

b. [RC giin-ga
senator-nom

t i hinanshita]
attacked

kishai-ga
reporter-nom

ayamari-o
error-acc

mitometa
admitted

(6) Right < Center
a. The boy disappeared [RC who the man saw [RC who the
woman praised]].

b. The boy [RC who the man [RC who the woman praised] saw]
disappeared.

It should be pointed out that the SRC preference is less robust in
Chinese than Korean or Japanese. This has been attributed to struc-
tural ambiguities (Gibson and Wu 2013), which is corroborated by
Yun et al. (2014) and their ambiguity-based account rooted in entropy
reduction. Recall from Section 2.3, though, that we deliberately ig-
nore ambiguity in this paper so that only tree-geometric aspects of the
derivation can derive processing effects. For this reason, we assume
that Chinese would also exhibit a uniform preference for SRCs over
ORCs if it were not for the confound of structural ambiguity.
Some of the contrasts above have previously proven difficult to

account for. While the preference for SC/RC and SRC in English can
be explained by string-based models such as the Dependency Local-
ity Theory (Gibson 1998) or the Active-Filler strategy (Frazier 1987),
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these models erroneously derive an ORC preference for East Asian lan-
guages with their pre-nominal RCs. This is because the head noun is
closer to the object than the subject position of the RC in this case. A
functional account like Keenan and Comrie’s (1977) accessibility hier-
archy, on the other hand, derives the SRC preference across languages
but has little to say about the ease of SC/RC in comparison to RC/SC.
That right embeddings are much easier than center embeddings has
an elegant explanation in terms of left-corner parsing (Resnik 1992),
but this account in turn does not generalize to the other configura-
tions. Overall, then, the data points above have been accounted for
individually, but their unification is challenging.

4.2 Promotion and wh-analysis of relative clauses
As one of the promises of the MG processing model is the ability to
distinguish syntactic analyses based on their processing predictions,
our evaluation uses two popular proposals for the structure of RCs: the
wh-movement analysis (Chomsky 1965, 1977; Montague 1970; Heim
and Kratzer 1998), and the promotion analysis (Vergnaud 1974; Kayne
1994). Graf et al. (2015) did the same in their investigation of the SRC
preference in East Asian, whereas Kobele et al. (2013) and Graf and
Marcinek (2014) only used a promotion analysis.
Both the promotion analysis and the wh-analysis posit that the

gap inside the RC is initially filled by some element, but disagree
on what this element is and where it moves. In the promotion anal-
ysis, it is the head noun itself that starts from the gap position. The
wh-analysis has two variants. Either the relative pronoun6moves from
the gap position, or it acts as the C-head of the RC while a silent op-
erator undergoes movement from the base position. For the purposes
of this paper the two variants of the wh-movement analysis are fully
equivalent.

6The use of “relative pronoun” is slightly misleading here in that the relative
clause markers in Chinese and Korean are not pronouns (as is rightfully noted by
an anonymous reviewer). But since the syntactic category of LIs is ignored by all
complexity metrics, we freely change between the terms relative pronoun and
RC marker in the discussion. We also represent the East Asian RC markers with
who in the derivation trees in an attempt to ease the comparison to the English
derivation trees.
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Notably absent are proposals that do not involve anymovement at
all. This is because in the absence of movement, theMG parser behaves
exactly like a recursive descent parser for CFGs and thus would have
little new to offer. In addition, the comparison and detailed analysis of
the complexity metrics already involves a multitude of factors, so that
increasing the number of analyses would run the risk of rendering the
discussion (even more) impenetrable.
With both the promotion analysis and the wh-analysis, the tar-

get of movement depends on whether RCs are post-nominal or pre-
nominal in the language under investigation. Let us consider lan-
guages with post-nominal RCs like English, French, and German. All
these languages also have overt complementizers, although they may
optionally remain unpronounced, as is the case in English. The gen-
eral template is [DP Det head-noun [RC complementizer subject verb
object]], with either the subject or the object unrealized. The posi-
tion of the verb depends on language-specific word order constraints,
but we can safely ignore this aspect because English is the only lan-
guage with post-nominal RCs in our data set. Figures 8 and 9 show
the promotion analysis and the wh-analysis, respectively, for the SRC
The reporter who attacked the senator admitted the error. In both deriva-
tion trees the element that fills the gap in the SRC moves to the CP
specifier (Spec,CP), i.e. the left edge of the relative clause. But note
that the head noun is outside the RC in the wh-movement analysis,
whereas it is in Spec,CP (and thus inside the RC) in the promotion
analysis.
The only difference between SRC and ORC under these analyses

is the position that the mover occupies initially. In the SRC, the mover
fills the base position of subjects (equated with Spec,vP here), whereas
the ORC requires the mover to start out in object position (i.e. as the
VP complement). This is illustrated in Figure 10, which depicts an
ORC with an embedded sentential complement.
Languages with pre-nominal RCs, such as Chinese, Japanese, and

Korean, can also be accommodated, but the word order differences
render both analyses more complex. Below is an example of pseudo-
English SRCs and ORCs with Chinese word order.
(7) a. [DP [RC _ invited the tycoon who] the mayor] likes wine.

b. [DP [RC the tycoon invited _ who] the mayor] likes wine.
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1CP2
2C3 2TP4

4T′5
5T 26 5vP6
6DP7

7the8 7NP9
9N′10

10who 17 10TP11
11T′12

12T 18 12vP13
13DP14

14D15 14reporter16

13v′ 19

19v20
19VP21

21attacked22 21DP23
23the24 23senator25

6v′ 27

27v28
27VP29

29admitted30 29DP31
31the32 31error33

Figure 8: English SRC, promotion analysis

Since standard MGs do not provide a headedness parameter to deter-
mine the linearization of arguments (following the received view in
Minimalist syntax), the pre-nominal word order must be derived from
the post-nominal one via movement. This causes the wh-movement
analysis and the promotion analysis to diverge more noticeably.
In the promotion analysis, the RC is no longer a CP, but rather

a RelP that contains a CP (see also Yun et al. 2014). The head noun
still moves from within the RC to Spec,CP, but this is followed by the
TP moving to Spec,RelP. This creates the desired word order with the
complementizer between the rest of the RC in Spec,RelP and the head
noun in Spec,CP. In the wh-movement analysis, on the other hand,
the head noun is once again outside the RC, which is just a CP instead
of a RelP. The complementizer starts out in subject or object position
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1CP2
2C′3

3C4 3TP5
5T′6

6T 27 6vP7
7DP8

8the9 8NP10
10reporter11 10CP12

12C′13
13C 18

13TP14
14T′15

15T 19 15vP16
16who17 16v′ 20

20v21
20VP22

22attacked23 22DP24
24the25 24senator26

7v′ 28

28v29
28VP30

30admitted31 30DP32
32the33 32error34

Figure 9: English SRC, wh-movement analysis

depending on the type of RC, and then moves into a right specifier
of the CP (rightward movement is not part of Stabler’s (2013) MG
parser, but we can easily add it without modifying the annotation rules
from Definition 1 as they are defined in terms of s-precedence). The
CP subsequently moves to the specifier of the DP of the head noun,
once again yielding the desired word order with the complementizer
between the RC and the head noun. In sum, the promotion analysis
needs to posit a new phrase RelP but all movement is leftward and
takes place within this phrase. This contrasts with the wh-movement

[ 85 ]



Thomas Graf et al.

1CP2
2C3 2TP4

4T′5
5T 41 5vP6
6DP7

7the8 7NP9
9N′10

10who 19 10TP11
11T′12

12T 38 12vP13
13DP 20

20the21 20NP22
22fact23 22CP24

24that25 25TP26
26T′27

27T 32 27vP28
28DP29

29the30 29employee31

28v′ 33

33v34
33VP35

35stole36 35office supplies37

13v′14

14v 39
14VP15

15worried 40 15DP16
16D17 16executive18

6v′ 42

42v43
42VP44

44hired45 44DP46
46the47 46manager48

Figure 10: ORC containing a sentential complement, promotion analysis
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analysis, which sticks with a single CP but invokes one instance of
rightward movement and moves the RC into Spec,DP, a higher posi-
tion than Spec,RelP. Examples of the two derivation trees for a Chinese
SRC are given in Figures 11 and 12, where dotted arrows are used in-
stead of dashed ones for rightward movement.
Among the three East Asian languages, Chinese still has the sim-

pler analysis thanks to its SVO word order, whereas Japanese and Ko-
rean are SOV languages. As was the case with the linear order of RCs
relative to their head noun, Minimalist syntax assumes that the SOV
word order is derived via Move rather than simply linearizing the com-
plement of the verb to its left. The standard assumption is that SOV

1CP2
2C3 2TP4

4T′5
5T 25 5vP6
6DP7

7D8 7RelP9
9Rel′10

10who 22 10CP11
11C′12

12C 24
12TP13
13T′14

14T15 14vP16
16mayor 23 16v′17

17v18
17VP19

19invite20 19tycoon21

6v′ 26

26v27
26VP28

28likes29 28wine30

Figure 11: SRC in Chinese, promotion analysis
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1CP2
2C3 2TP4

4T′5
5T 25 5vP6
6DP7
7D′8

8D 23
8NP9

9mayor 24 9CP10
10C′11

11C12 11TP13
13T′14

14T15 14vP16
16who 22 16v′17

17v18
17VP19

19invite20 19tycoon21

6v′ 26

26v27
26VP28

28likes29 28wine30

Figure 12: SRC in Chinese, wh-movement analysis

languages require the object to move from the VP-complement posi-
tion to a specifier of vP as exemplified in Figure 13. While this might
seem like a minor complication, we will see in the next section that
it actually causes many metrics to incorrectly prefer ORCs over SRCs.
Korean and Japanese thus show that the complexity metrics are indeed
exquisitely sensitive to minor structural alterations.
We also use rightward movement in right embedding construc-

tions (Figure 14), as embedding without additional movement yields
center embedding structures. Whether these instances of extraposi-
tion are best analyzed as rightward movement has been called into
question in recent research (Hunter and Frank 2014), but it is the best
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1CP2
2C3 2TP4

4T′5
5T 27 5vP6

6vP7
7DP8

8D9 8RelP10
10Rel′11

11who 24 11CP12
12C′13

13C 26
13TP14
14T′15

15T 19 15vP16
16vP17

17mayor18 17v′ 20

20v21
20VP22

22invited23 22tycoon 25

7v′ 28

28v 31
28VP29

29loves 32 29money30

Figure 13: ORC in Korean, promotion analysis

choice here to maintain analytical consistency across the different con-
structions.
For a full listing of all the analyses with annotated derivation

trees, the reader is referred to the supplementary material for this arti-
cle. Derivation trees for Japanese are omitted since they are identical
to the Korean ones except that the RC complementizer remains unpro-
nounced.
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1CP2
2C3 2TP4

4T′5
5T 19 5vP6

6vP7
7DP8

8the9 8CP10
10C′11

11that 23 11TP12
12T′13

13T 34 13vP14
14vP15

15DP 24
24the25 24CP26

26C′27
27that 37 27TP28

28T′29
29T 41 29vP30

30DP 38
38the39 38woman40

30v′31

31v 42
31VP32

32praised 43 32man33

15v′16

16v 35
16VP17

17saw 36
17boy18

7v′ 20

20v21
20disappeared22

Figure 14: Right embedding, promotion analysis
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4.3 Methodological remarks
As 1,600 metrics cannot be accurately compared by hand, we rely on a
collection of Python scripts, available in the Github repository of the
Stony Brook Computational Linguistics lab: https://github.com/
CompLab-StonyBrook. For each basic metric, these scripts perform
pairwise comparisons of minimally different derivation trees, e.g. the
English SRC in Figure 8 and its ORC counterpart. Whichever one re-
ceives a better (= lower) score has a lower memory burden is thus
predicted to be easier to process. From the relative rankings that are
obtained this way one can then automatically compute all the metrics
– including combinations of multiple metrics – that correctly predict
all processing contrasts.
Note that the difficulty metric only has to account for overall sen-

tence difficulty. This is different frommore ambitious approaches such
as Hale (2001) and Yun et al. (2014), which seek to predict online dif-
ficulty, i.e. how difficulty increases or decreases with each word in
the input. Modeling online processing is feasible with certain com-
plexity metrics like MaxT (see Kobele et al. 2013 and Gerth 2015),
but it is hard to automatically compare metrics at this level of granu-
larity. Finally, we reiterate that all ambiguity is factored out – we only
consider how the parser builds a specific derivation tree, rather than
how it finds this tree among many alternatives.
4.4 Quantitative evaluation of complexity metrics
The performance of the basic metrics with the respective syntactic
analyses is summarized in Tables 1 and 2. A checkmark (✓) indicates
that themetric correctly predicts structure A to be easier than structure
B, a tie that they are expected to be equally difficult, and a cross (7)
that the complexity metric incorrectly reverses difficulty, making B
easier than A. Consequently, all basic metrics that contain a cross in
at least one column can be discarded. This leaves only one metric
for the promotion analysis – MaxTRU – and one for the wh-movement
analysis – AvgTP.
Many inadequate basic metrics, though, may still occur as the sec-

ond component in a ranked metric. As the second component is only
invoked to handle ties for the first component, wrong predictions for
a given contrast have no effect unless the first component could not
conclusively resolve this contrast. When ranked metrics are also taken
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Table 1:
Predictions of
complexity
metrics with
promotion
analysis

SC/RC SRC< ORC Right
< RC/SC Eng Chi Kor Jap < Center

Box tie ✓ ✓ tie tie 7

BoxI tie tie ✓ ✓ ✓ 7

BoxL tie ✓ ✓ 7 7 tie
BoxP tie ✓ tie 7 7 ✓
BoxU ✓ ✓ ✓ tie tie 7

AvgT ✓ ✓ 7 7 7 ✓
AvgTI 7 ✓ 7 7 7 7

AvgTL ✓ ✓ 7 ✓ ✓ ✓
AvgTP ✓ ✓ 7 7 7 ✓
AvgTU ✓ ✓ 7 ✓ ✓ ✓
MaxT tie tie tie tie tie ✓
MaxTI tie tie tie tie tie 7

MaxTL tie tie tie tie tie ✓
MaxTP ✓ ✓ tie tie 7 ✓
MaxTU tie tie tie tie tie ✓
MaxTR ✓ ✓ 7 7 7 ✓
MaxTRI 7 ✓ ✓ ✓ ✓ 7

MaxTRL ✓ ✓ 7 7 7 ✓
MaxTRP ✓ ✓ 7 7 7 ✓
MaxTRU ✓ ✓ ✓ ✓ ✓ ✓
SumT ✓ ✓ ✓ 7 7 7

SumTI 7 ✓ ✓ ✓ ✓ 7

SumTL ✓ ✓ 7 7 7 ✓
SumTP ✓ ✓ 7 7 7 ✓
SumTU ✓ ✓ ✓ ✓ ✓ 7

AvgS 7 ✓ ✓ ✓ ✓ 7

Movers tie ✓ ✓ tie tie 7

MaxS tie ✓ ✓ tie tie 7

MaxSR 7 ✓ ✓ ✓ ✓ 7

SumS 7 ✓ ✓ ✓ ✓ 7

Con 7 ✓ ✓ 7 7 7

ConI 7 tie ✓ ✓ ✓ 7

ConL 7 ✓ ✓ 7 7 ✓
ConP tie ✓ tie 7 7 ✓
ConU tie ✓ ✓ tie tie 7

Div ✓ tie ✓ ✓ ✓ 7

DivI ✓ tie tie tie tie 7

DivL ✓ tie ✓ 7 7 7

DivP tie tie tie 7 7 tie
DivU tie tie tie tie tie 7
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SC/RC SRC< ORC Right
< RC/SC Eng Chi Kor Jap < Center

Box tie ✓ ✓ 7 7 7

BoxI tie tie ✓ ✓ ✓ 7

BoxL tie ✓ tie 7 7 7

BoxP tie ✓ 7 7 7 tie
BoxU tie ✓ ✓ tie 7 7

AvgT ✓ ✓ 7 ✓ ✓ ✓
AvgTI 7 ✓ 7 7 7 7

AvgTL ✓ ✓ 7 ✓ ✓ ✓
AvgTP ✓ ✓ ✓ ✓ ✓ ✓
AvgTU ✓ ✓ 7 ✓ ✓ ✓
MaxT tie tie tie tie tie ✓
MaxTI tie tie tie tie tie 7

MaxTL tie tie tie tie tie ✓
MaxTP ✓ ✓ tie tie tie ✓
MaxTU tie tie tie tie tie ✓
MaxTR ✓ ✓ 7 7 7 ✓
MaxTRI 7 ✓ ✓ ✓ ✓ 7

MaxTRL ✓ ✓ 7 7 7 ✓
MaxTRP ✓ ✓ 7 7 7 ✓
MaxTRU ✓ ✓ ✓ ✓ 7 ✓
SumT ✓ ✓ tie 7 7 ✓
SumTI 7 ✓ ✓ ✓ ✓ 7

SumTL ✓ ✓ 7 7 7 ✓
SumTP ✓ ✓ 7 7 7 ✓
SumTU ✓ ✓ ✓ ✓ 7 ✓
AvgS 7 tie ✓ ✓ ✓ 7

Movers tie ✓ ✓ tie tie 7

MaxS tie ✓ ✓ tie tie 7

MaxSR 7 ✓ ✓ ✓ ✓ 7

SumS 7 ✓ ✓ ✓ ✓ 7

Con 7 ✓ 7 7 7 ✓
ConI 7 tie 7 ✓ ✓ tie
ConL 7 ✓ tie 7 7 ✓
ConP tie tie ✓ 7 7 ✓
ConU 7 ✓ 7 tie 7 ✓
Div ✓ tie tie 7 7 7

DivI ✓ tie tie tie tie 7

DivL ✓ tie tie 7 7 7

DivP tie tie tie 7 7 7

DivU ✓ tie tie tie 7 7

Table 2:
Predictions of
complexity
metrics with
wh-movement
analysis
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Table 3:

List of empirically viable
complexity metrics

Promotion Wh-Movement

Basic MaxTRU AvgTP
Ranked 〈MaxT,SumTU〉 〈MaxTP,AvgS〉

〈MaxTL,SumTU〉 〈MaxTP,BoxI〉
〈MaxTU,SumTU〉 〈MaxTP,ConI〉
MaxTP,MaxSR�
MaxTP,MaxTRI

�
〈MaxTP,SumS〉
〈MaxTP,SumTI〉

into consideration, the number of metrics increases from 40 to 1,600.
The number of empirically adequate metrics, on the other hand, does
not increase by the same factor and grows from 1 to 4 (promotion)
and 8 (wh-movement), respectively. No metric is a viable candidate
for both analyses (see Table 3). Note that these numbers do not include
ranked metrics whose first component is an empirically adequate ba-
sic metric (MaxTRU or AvgTP) because the second metric would never
be used in those cases. If those pair metrics are included, the respec-
tive numbers grow to 4+ 39= 43 and 8+ 39= 47. Depending on how
one counts, then, between 4

1600−39 = 0.2% and 47
1600 = 2.9% of the full

space of complexity metrics can account for the five observed pro-
cessing contrasts with relative clauses. In addition, all the remaining
ranked metrics have some variant of MaxT as their first component.
This shows that the underspecification problem is not nearly as bad as
one might expect, with a few contrasts ruling out the great majority
of metrics.
In fact, the five constructions differ in their discriminatory power

in a manner that roughly reflects how difficult they are to account for.
For example, the preference for SRCs over ORCs in English requires
no structure at all and can be explained purely in terms of string dis-
tance (Gibson 1998, 2000), and no metric reverses difficulty for this
construction. Even the number of ties is comparatively low. The same
contrast is much harder to account for in East Asian languages with
their pre-nominal RCs. String-based explanations fail in this case, and
so do more than half of all the basic metrics. The processing differ-
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ence between right embedding and center embedding is interesting in
this case because there are a variety of explanations in the psycholin-
guistic literature, and except for the size- or diversion-based metrics,
all the core metrics have some variant that captures the contrast. The
failure of size-based metrics is not surprising in this case. Recall that
right embedded RCs induce additional syntactic complexity because
they start out as center embedded RCs that have to undergo rightward
movement. The additional movement steps inevitable cause size-based
metrics to make the wrong predictions. Crucially, though, not all met-
rics fall into this trap, which proves that well-chosen complexity met-
rics can factor out irrelevant aspects of structural complexity.

4.5 Qualitative evaluation of complexity metrics
Since the connection between complexity metrics and the structure of
derivation trees is very subtle and sensitive to even minor differences,
determining why a complexity metric fails to capture a specific con-
trast while succeeding at another can be difficult. An exhaustive dis-
cussion of all the patterns reported in Table 1–3 is not feasible within
the confines of a single paper. Instead, we present a few general ob-
servations on the role of MaxT, which has been a prominent metric
in all previous work on MG parsing and is a component of almost all
successful metrics.
First it is instructive, though, to consider why AvgTP works for the

wh-analysis but fails for the promotion analysis. The problematic con-
structions are the East-Asian RCs. Recall that in the promotion analy-
sis, it is the head noun that moves from the gap, whereas in the wh-
movement analysis it is the RC marker (simply transcribed as who in
our derivation trees). Since RCs in East-Asian languages are prenomi-
nal and have the RC marker at their very end, the wh-movement anal-
ysis has
1. high tenure on the head noun outside the RC (which is encoun-
tered before the RC but cannot be finished until the latter is com-
plete),

2. medium tenure on the RCmarker in SRCs (as it occupies the struc-
turally prominent subject position, which means that it is hypoth-
esized early by the parser but must wait until the rest of the RC
is completed),
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3. low tenure on the verb in Korean and Japanese (which is intro-
duced at the same time as the object but only finished after it due
to object movement to the left).

In an ORC, the object moves to the right of the RC, so the low tenure
on the RC marker disappears, and since it is an ORC the verb does not
have any tenure either. But AvgTP divides the sum of tenure of pro-
nounced nodes by the number of pronounced nodes with non-trivial
tenure. Removing two entries with low tenure ends up increasing the
AvgTP value for ORCs. The final numbers are 16+6+3

3 = 8.3 for SRCs in
contrast to 16

1 = 16 for an ORC.
The structural differences in the promotion analysis, on the other

hand, mean that although the switch from SRC to ORC reduces the
tenure on the mover (the head noun, rather than the relative pronoun)
it does not completely eliminate it. Hence the mover still counts to-
wards the payload and thus greatly lowers the AvgTP value for ORCs:
13+7+3

2 = 11.5 in contrast to 13+3
2 = 8. The success of AvgTP with the

wh-movement thus relies on completely eliminating non-trivial tenure
on some nodes in ORCs, rather than just reducing it. The counterin-
tuitive prediction of AvgT and its variants – if a derivation contains a
node with high tenure, it will become easier the more nodes have low
tenure instead of no tenure – accidentally makes the right prediction
for SRCs and ORCs.
Let us now turn to MaxT, which strikes us as a more insightful

and overall more robust choice of metric. The non-recursive variants
of MaxT are a good choice for ranked metrics because they rarely
make a completely wrong prediction but instead produce many ties.
This is the reason why all successful ranked metrics contain them as
their first component: a complexity metric with a cross in at least one
column cannot be the first component of a ranked metric, which rules
out all basic metrics except the “tie-heavy” MaxT variants (and the
basic metrics that capture all the data, for which we do not list any
ranked metrics).
The high frequency of ties withMaxT variants is a natural conse-

quence of our focus on embedding constructions. All embedding con-
structions follow a template where different subtrees are inserted into
a fixed main clause. For instance, the English SRC and ORC sentences
differ only in the shape of their RCs; the main clause always has the
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same structure. The overall number of steps it takes to parse an RC
is independent of whether it is an SRC or an ORC. But this, in turn,
implies that i) the nodes in the main clause that are introduced before
the RC but cannot be worked on until the RC is finished (e.g. T and v′
in Figure 8) have very large tenures exceeding that of any node inside
the RC, and ii) the tenure of these nodes is independent of whether
the RC is an SRC or an ORC. As MaxT metrics only pay attention to
the largest tenure in a tree, the differences between SRCs and ORCs
get drowned out by the high tenure on nodes in the main clause.
This accidental flattening of contrasts does not occur in the case

of right and center embedded RCs because the movement of an RC in
right embedding directly interacts with the nodes in the clause con-
taining the RC. In particular, moving an RC to the right of an LI l
means that l can be worked on before the RC is explored by the parser,
thus reducing its tenure. With center embedding, the parser would first
have to explore the full RC, so the sister node of the RC would wind up
with very high tenure. The overall generalization, then, is that MaxT
metrics flatten contrasts where the differences between constructions
are restricted to nodes within the embedded subtree.

MaxTP is an exception because its restriction to pronounced nodes
filters out the tenure of interior nodes like v′ and unpronounced lexi-
cal heads like T. This improves its performance for the SC/RC versus
RC/SC contrast as well as English SRC and ORC constructions. If our
analysis had treated T as a pronounced head (e.g. for do support, or as
the carrier of inflection that affix hops onto the verb), MaxTP would
also produce ties in these cases. But even in this case the behavior of
MaxTP could still be replicated by a metric that ignores interior nodes
and functional heads, irrespective of whether they are pronounced.
While MaxTP improves on other variants in some respects, it is

also the only non-recursiveMaxT version to incorrectly derive an ORC
advantage in Japanese with the promotion analysis. This is due to
the RC marker being unpronounced in Japanese, so that the only pro-
nounced nodes with tenure are the head noun and the embedded verb.
The head noun has the same tenure for SRC and ORC, but the em-
bedded verb has non-trivial tenure in the SRC as it is introduced at
the same time as the object but must wait for it to move leftward to
Spec,vP. In the ORC, on the other hand, the object moves to a position
to the right of the embedded verb, so that the latter can be completed
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as soon as it is introduced. The ORC advantage thus is due to object
extraction negating the inherent disadvantage of object movement.
In sum, it seems that any variant of MaxT that does not restrict

itself to just pronounced nodes provides a solid baseline for a ranked
metric with a suitably chosen ancillary metric to resolve ties. MaxT
has previously been studied by Kobele et al. (2013), Graf and Marcinek
(2014) and Gerth (2015), and it can even be traced back to Kaplan
(1974) and Wanner and Maratsos (1978). It also plays a role in the
TAG processing models of Joshi (1990) – in fact, Joshi (1990) ignores
the memory usage of empty nodes and thus uses what amounts to
ourMaxTP, which is part of the majority of viable metrics. That three
very different processing models home in on the same kind of memory
usage as a benchmark for processing difficulty is very suggestive.
From the perspective of Minimalist syntax, 〈MaxT,SumS〉 and
MaxT,MaxSR� are arguably the most elegant metric as they, intu-

itively speaking, combine maximum memory load with the total re-
source demand of all movement dependencies. In the generative lit-
erature, O’Grady (2011) has independently argued for the impact of
movement dependencies on sentence processing, supporting a size-
basedmetric. Our study confirms that these conceptually pleasingmet-
rics have a lot of explanatory power to offer, although there are still
some viable alternatives.

5 further observations and discussion

While the present study considers a much wider range of constructions
and metrics than previous work on MG processing, it is still more lim-
ited in its scope than is desirable. The set of syntactic analyses, process-
ing phenomena, and MG parsing algorithms all need to be extended
to get a fuller picture of the empirical feasibility of this approach.
Our syntactic analyses still fix a plethora of parameters that need

to be carefully modulated. For example, the low starting position of
subjects and the movement of objects to Spec,vP cause tenure on T
and v, respectively, which affects certain metrics. Replacing rightward
movement by sequences of leftward movement (also known as rem-
nant movement) will also be picked up on by some metrics, as would
the introduction of a general headedness parameter to do away with
certain movement steps. Since the derivation trees using these alter-
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native proposals need to be carefully constructed by hand, a piecewise
comparison that alters only one parameter at a time is a very laborious
process.
A reviewer raises similar concerns and asks how useful these re-

sults are considering that the structure of East Asian languages is not
nearly as well understood as that of English, wherefore their Minimal-
ist analyses are much more likely to be fatally flawed. We agree that
if push comes to shove, a metric’s failure to account for the East Asian
processing patterns has less weight than its performance on English
data. However, the English data that is available and easily tested in
this framework lacks some discriminatory power that the East Asian
RC data provides. In science, we have to work with the data that is
available, even if that data is sometimes sub-optimal.
But suppose that the structure of East Asian RCs does indeed need

to be reanalyzed. We do not believe that this would lead to completely
different metrics being chosen. We did some tests with an analysis of
Korean and Japanese that simply linearizes the object to the left of
the verb rather than moving it to Spec,vP. This made the processing
predictions for them more similar to Chinese, and as a result widened
the set of feasible metrics to also include ranked metrics whose first
component is SumT for the wh-movement analysis or a variant of
Box for the promotion analysis. Crucially, though, all the previously
successful metrics were still available.
In the other direction, we also experimented with adding the pref-

erence for crossing dependencies over nested dependencies (Bach et al.
1986) to our data set. This preference was already shown in Kobele
et al. (2013) to be predicted by MaxT. So it comes as little surprise
that this contrast has no discriminative power relative to our current
data set. All of our successful metrics correctly predict the contrast.
Preliminary work on attachment preferences for dative arguments in
Korean and quantifier scope preferences in English suggest that these,
too, can be accounted for with the metrics identified in this paper.
Overall, then, it seems that the class of complexity metrics carved out
in this paper is fairly robust and more than just an accident.
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conclusion

We defined a large set of reasonably simple complexity metrics that
make predictions about processing behavior based on the shape of in-
dex/outdex annotated MG derivation trees that closely mimic well-
known analyses from Minimalist syntax. Only a few metrics could
cover the full range of relative clause constructions, suggesting that
the choice of metric is much more restricted than one might initially
expect, and that underspecification is not too much of an issue in prac-
tice. In addition, the fact that it was at all possible to give a unified
explanation of relative clause processing effects, which have proven
challenging to deal with in the psycholinguistic literature, is encour-
aging. The MG processing model we advocate deliberately abstracts
away from many aspects of sentence processing in order to clearly
bring out the role that might be played by syntactic factors. It seems
that at least in the case of relative clauses, structural considerations
go a long way.
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The majority of computational implementations of phonological and
morphophonological alternations rely on composing together individ-
ual finite state transducers that represent sound changes. Standard
composition algorithms do not maintain the intermediate representa-
tions between the ultimate input and output forms. These intermedi-
ate strings, however, can be very helpful for various tasks: enriching
information (indispensable for models of historical linguistics), pro-
viding new avenues to debugging complex grammars, and offering
explicit alignment information between morphemes, sound segments,
and tags. This paper describes a multitape automaton approach to cre-
ating full models of sequences of sound alternation that implement
phonological and morphological grammars. A model and a practical
implementation of multitape automata is provided together with a
multitape composition algorithm tailored to the representation used in
this paper. Practical use cases of the approach are illustrated through
two common examples: a phonological example of a complex rewrite
rule grammar where multiple rules interact and a diachronic example
of modeling sound change over time.

1 introduction

Finite-state transducer based phonological and morphological mod-
els tend to be built by the composition of individual transducers that
encode morphotactics and morphophonological alternations (Beesley
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and Karttunen 2003). Apart from cases such as nonconcatenative mor-
phologies where augmented techniques tend to be favored (Beesley
and Karttunen 2000; Habash et al. 2005; Hulden 2009d; Kiraz 2001),
this well-established approach is indeed quite successful and stream-
lined in the domain of morphophonology if the goal is to produce a
single transducer that maps underlying forms (parses) to surface forms
and vice versa.
Some types of grammatical information are difficult to include in

such a design, however. In morphological modeling, one may want to
recover the alignment of morphological tags to the actual morphemes;
in phonological modeling, one may want to recover intermediate rep-
resentations that show how a particular phonological alternation tar-
gets specific segments in a word, what order phonological alternations
occur in, and what they were conditioned on. This is particularly im-
portant in developing finite-state models of historical sound change,
where it is imperative to retain intermediate alignment information
so that the model may indicate what sound laws proto-segments are
subject to and in what order changes occur. In some respect, the “in-
termediate representations” in diachronic derivations are more crucial
to the linguist than their counterparts in synchronic models since in
the latter case they are bound to a particular model of phonology. The
ability to model such sequences would make finite-state devices more
attractive for linguistic research, where computational methods could
help streamline the work of lining up large amounts of data and test-
ing hypothetical generalizations; it might therefore increase linguists’
use of finite-state methods, whose potential has to date been underex-
ploited in the linguistics literature (Karttunen 2003).
In this paper, I show that a multitape model constructed by com-

position of individual multitape lexicon or alternation transducers of-
fers a simple framework that addresses the problem of intermediate
forms, while at the same time retaining the straightforward design
of morphology and morphophonology. Apart from expanding the ex-
pressive power of the grammar, the method also offers the grammar
designer the option to re-convert the multitape grammar to a simple
underlying-to-surface transducer, if desired – as may be the case if the
multitape representation is only used for obtaining debugging infor-
mation. Indeed, debugging the alternation rules and lexicon descrip-
tion involved in drafting a morphological grammar becomes much
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less burdensome under the multitape model, since information about
each step in the process of mapping from underlying to surface form
is retained and is available for inspection.1
The methods described in this paper are implemented as a stand-

alone library in Python. The library itself is built on top of the
foma library (Hulden 2009b) which provides a backbone implemen-
tation of standard transducer algorithms. The implementation allows
users to develop multitape grammars in standard regular expression
and rewrite-rule notation, automatically and transparently convert-
ing the compiled transducers to multitape equivalents and performing
multitape composition on the components. This enables a relatively
linguist-friendly grammar design procedure that relies on well-known
formalisms and offers the possibility of quick conversion of existing
grammars into a multitape representation where word-forms can be
parsed and generated with a rich intermediate structure.
This paper is structured as follows: first, some background on

rewrite-rule grammars is presented, motivating the need for more
richly structured representations; this is followed by a description of
the multitape encoding with special focus on the composition algo-
rithm for multitape automata; following this, a system for augmenting
the multitape automata with extra annotation (such as rule names) is
presented; two case studies are then provided to illustrate in concrete
terms the possibilities of the multitape formalism.

2 traditional rewriteʿrule grammars

A significant portion of morphological analysis tools are written with
the design described above: (1) a transducer that encodes morpho-
tactics and tag sequences, and (2) a series of transducers that model
morphophonological/orthographic alternation. The latter may be ex-
pressed as Sound Pattern of English-inspired ‘rewrite rules’ (Chom-
sky and Halle 1968) or as two-level parallel constraints (Koskenniemi
1983), the former being arguably the more popular choice at present
due to simplicity of debugging complex rule interactions (Alegria et al.
2010). The result of composing the lexicon transducer and the mor-

1The code and the examples in this article are available at https://
fomafst.github.io/.
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Table 1: Interaction of multiple phonological processes in Lardil

tupalan-uõ papi-uõ pulpu-un pulpu kiúikiúi muNkumuNku Underlying form

tupalankuõ /k/-epenthesis
papiwuõ /w/-epenthesis

pulpun Vowel Deletion
pulpa kiúikiúæ muNkumuNka Final Lowering

kiúikiú muNkumuNk Apocope
muNkumuN Cluster Reduction
muNkumu Non-apical Truncation

kiúikiõ Sonorantization

tupalankuõ papiwuõ pulpun pulpa kiúikiõ muNkumu Surface form

Table 1: Interaction of multiple phonological processes in Lardil.

(Koskenniemi, 1983), the former being the ar-
guably more popular choice at present. The result
of composing the lexicon transducer and the mor-
phophonological transducers is one monolithic
transducer that directly performs the bidirectional
mapping from underlying-to-surface forms (gen-
eration) and vice versa (parsing). The prevalence
of this design is probably partly due to known
algorithms (Kaplan and Kay, 1994; Kempe and
Karttunen, 1996; Mohri and Sproat, 1996; Hulden,
2009a) or software tools designed around this
paradigm (such as Xerox’s lexc/xfst/twol (Beesley
and Karttunen, 2003), foma (Hulden, 2009b), or
Kleene (Beesley, 2012)). In the following, we
shall assume the more common ‘rewrite-rule’
paradigm.

Table 1 illustrates this standard design using
some example words from a grammar of Lardil—
an example language often used to illustrate com-
plex rule ordering and word-final phonology with
rules that are sensitive to ordering. The original
data stems from Hale (1973), and we follow anal-
yses by Kenstowicz and Kisseberth (1979); Hayes
(2011); Round (2011). Due to the rich interaction
of word-final deletion rules, this is a widely used
data set that has been a target of many analyses,
all of which illustrate the difficulty of marshaling
a complex set of phonological alternations. To ex-
plain the workings of the grammar, we show all
the intermediate steps in mapping from lemma-
and-inflection forms to actual surface realizations.
In actuality, if modeled by transducer composi-
tion, all the intermediate forms are lost through
the composition process, which is one of the short-
comings addressed below. That is, a final compos-
ite transducer simply provides mappings between
parse and surface. For phonological analysis, pos-
sible grammar debugging, and perhaps language
documentation purposes, it would be very desir-

able to be able to produce a rich representation
such as the one in table 1 from either an underly-
ing form (morphological information) or the sur-
face form showing all the processes that the word
undergoes step-by-step.

Under the standard composition model, there is
no easy way to do this, save by applying an un-
derlying form to each of the individual transduc-
ers representing the alternation rules in order, sav-
ing the results, and passing them on as input to
the next transducer. However, in the inverse di-
rection, such a strategy is not directly feasible, in
addition to the fact that not composing the trans-
ducers partly defeats the purpose of using a finite-
state model in the first place.

There is no principled reason, however, why the
composition algorithm should destroy the interme-
diate representations if they are desired later. In
other words, when creating a composite transducer
modeling x:z from transducers x:y and y:z, one
can in principle expand the composition algorithm
to yield x:y:z in some representation, retaining all
the intermediate information.

3 Previous work

The importance of the preservation of intermediate
results in composition has been noted and partly
addressed in Kempe et al. (2004), among others.
Our formulation below differs in representation
and algorithms, and also in that it is intended to
be simple and easily implementable without spe-
cial algorithms for multi-tape automata, i.e. only
using established algorithms for single-tape au-
tomata and transducers. We use the representation
of Hulden (2009a) for multi-tape automata. In that
work, conversion from transducers is not consid-
ered, and no composition algorithm is given, as the
assumption is that multi-tape automata are con-
structed through intersections of constraints on co-

phophonological transducers is one monolithic transducer that di-
rectly performs the bidirectional mapping from underlying-to-surface
forms (generation) and vice versa (parsing). The prevalence of this
design is probably partly due to known algorithms (Kaplan and Kay
1994; Kempe and Karttunen 1996; Mohri and Sproat 1996; Hulden
2009c) or software tools designed around this paradigm (such as
lexc/xfst/twol by Xerox (Beesley and Karttunen 2003), foma (Hulden
2009b), or Kleene (Beesley 2012)). In the following, I shall assume the
more common ‘rewrite-rule’ paradigm.
Table 1 illustrates this standard design using some example words

from a grammar of Lardil (iso 639-3: lbz, a Pama-Nyungan language
spoken on Mornington Island in Australia). This is an example lan-
guage often used to illustrate complex rule ordering and word-final
phonology with rules that are sensitive to ordering. The table is laid
out in a manner often employed by phonologists to quickly give an
overview of interacting processes. The original data stems from Hale
(1973), and I follow analyses by Kenstowicz and Kisseberth (1979);
Hayes (2011); Round (2011). Due to the rich interaction of word-final
deletion rules, this is a commonly cited data set that has been a target
of many analyses, all of which illustrate the difficulty of marshaling
a complex set of phonological alternations. In the language, we find
three independently motivated deletion rules (apocope, cluster reduc-
tion, non-apical truncation) which interact in complex ways, some-
times conspiring to elide multiple segments word-finally. The rules in
question are shown here in traditional phonological notation:
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apocope V → ; / V C0 V C0 #
cluster reduction C → ; / C #
non-apical truncation C → ; / # (unless C = [-distr.])
To explain the workings of the grammar, the table shows all the

intermediate steps in mapping from lemma-and-inflection forms to ac-
tual surface realizations. In actuality, however, if modeled by trans-
ducer composition, all the intermediate forms are lost through the
composition process, which is one of the shortcomings addressed be-
low. That is, a final composite transducer simply provides mappings
between parse and surface. For phonological analysis, possible gram-
mar debugging, and perhaps language documentation purposes, it
would be very desirable to be able to produce a rich representation
such as any of the columns shown in Table 1 from either an underly-
ing form (morphological information) or the surface form showing all
the processes that the word undergoes step-by-step.
Under the standard composition model, there is no easy way to

do this, save by applying an underlying form to each of the individual
transducers representing the alternation rules in order, saving the re-
sults, and passing them on as input to the next transducer. However,
in the inverse direction, such a strategy is not directly feasible, in ad-
dition to the fact that not composing the transducers partly defeats the
purpose of using a finite-state model in the first place.
There is no principled reason, however, why the composition

algorithm should destroy the intermediate representations. In other
words, when creating a composite transducer modeling x:z from trans-
ducers x:y and y:z, one can in principle expand the composition al-
gorithm to yield x:y:z in some representation, retaining all the inter-
mediate information. As will be seen below, a combination of a mul-
titape design together with a rule-decoration mechanism allows us to
automatically produce rich analyses very much like the ones given
in Table 1.

3 previous work

Multitape automata in general have been proposed as viable models
for morphology and phonology, particular when addressing noncon-
catenative phenomena abundant in Semitic languages such as Arabic,
Hebrew, and Syriac (Altantawy et al. 2010; Kay 1987; Habash et al.
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2005; Habash and Rambow 2006; Hulden 2009d; Kiraz 2000, 2001).
In these approaches, different phonological tiers are represented by
different tapes in a multitape model. Most of these earlier models
could in fact be called multitape transducer models, since they typ-
ically work akin to transducers, although with an extended symbol
representation where instead of manipulating symbol pairs, as in the
transducer case, transitions are labeled with n-tuples of symbols. Spe-
cialized algorithms are then used to handle this representation and to
enforce symbol correspondences across tapes – Kiraz (2000), for ex-
ample, works with a constraint formalism similar to that of two-level
morphology (Koskenniemi 1983), extended to operate in a multitape
transducer scenario.
By contrast, the current work assumes as a starting point that

regularities across multiple levels of representation will be captured
not by constraints across multiple tapes, but that adjacent tapes will
be constrained by (morpho)phonological rewrite rules. To make this
feasible, the compilation of rewrite rules must be extended to a multi-
tape scenario, and a composition algorithm is required that is able
to join multitape representations together, preserving intermediate
information.
The importance of the preservation of intermediate results in

composition has been noted and partly addressed in Kempe et al.
(2004), among others. The formulation presented below differs from
earlier work in both representation and algorithms, and also in that
it is intended to be simple and easily implementable without special
algorithms for multitape automata, i.e. using only established algo-
rithms for single-tape automata and transducers. The same represen-
tation (without a composition design) has been used earlier for the
construction of Arabic multitape grammars (Hulden 2009a). In that
work, conversion from transducers is not considered, and no composi-
tion algorithm is given, as the assumption is that multitape automata
are constructed through intersections of constraints on co-occurrence
of symbols on the various tapes, analogously to two-level grammars
(Koskenniemi 1983). The multitape representation in this paper uses
the encoding from (Hulden 2009d) and builds upon extensions to it
given in Hulden (2015).
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4 notation

In discussing algorithmic aspects, familiarity with standard regular ex-
pression notation to construct automata and transducers is assumed.
For regular languages or automata X and Y , the description below will
make use of the operations union (X ∪Y ), concatenation (X Y ), Kleene
closure (X ∗), Kleene plus (X+), intersection (X ∩Y ), complement (¬X ),
and difference (X−Y ). The n-ary concatenation of a language X with it-
self is denoted X n. From two languages represented as automata, their
string-wise cross-product and resulting regular relation (representable
as a transducer) is denoted with X :Y . If X and Y are transducers, their
composition is (X ◦ Y ). The input and output projections of a rela-
tion/transducer X are denoted domain(X ) and range(X ). Whenever a
regular language (or automaton) X appears in a transducer context,
it is assumed to represent the identity relation, i.e. a transducer that
simply repeats the set of words accepted by X . In some algorithms
subtraction is performed in a transducer context (X −Y ); in such cases
the subtraction refers to transducer path subtraction and not relation
subtraction which regular relations are not closed under, i.e. the result
represents the set of valid sequences of symbol pairs in X but not in
Y . We use the special symbol ? to represent any single symbol.
When describing linguistic grammars, the well-known Xerox reg-

ular expression notation (Beesley and Karttunen 2003) is used in this
paper to define andmanipulate automata and transducers, rewrite rule
transducers in particular; the examples should be directly compilable
with the foma library. The formalism used is summarized in Table 2.
Multitape additions are implemented through a Python interface dis-
cussed in Section 9.

5 a multitape encoding

In the implementations below, a multitape representation is assumed
to be a simple single-tape automaton that either accepts or rejects
a string s in the standard way. However, the strings in question are
intended to represent valid computations of a multitape automaton
where certain positions in s pertain to certain tapes. Which symbol
in the linear string s belongs to which tape is modeled by a simple
“interleaving” encoding where the length of any accepted string s is
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Table 2:

Regular expression notation in
xfst/foma

AB Concatenation
A|B Union
A* Kleene Star
˜A Complement
? Any symbol in alphabet
0 The empty string (epsilon)
Aˆk k-ary concatenation
% Escape symbol

[ and ] Grouping brackets
A:B Cross product
A/B A ignoring intervening B
T.2 Output projection of T

A -> B Rewrite A as B
|| C _ D Context specifier
.#. End or beginning of string

def F(X1,...,Xn) definition of macro
def X definition of language constant

always an even multiple of the number of tapes in the multitape model
it is intended to represent. Informally, the string first encodes the first
column of the legal contents of an n-tape multitape automaton, top-
down, then the second column, etc. etc. Every symbol in position k
in the linear string representation corresponds to – in the case of n
tapes – position ⌊k/n⌋ on tape (k mod n). A special representation
for empty symbols (ε-symbols) in the single-tape model is assumed
whereby they are represented with the symbol □ – a so-called “hard
zero”. A string of length l×n in the single-tape string would correspond
to the multitape representation as follows, where, in parentheses, the
position within a tape is shown first, followed by the tape number in
the multitape representation.

T0 (0,0) (1,0) … (l,0)
…

Tn−1 (0,n− 1) (1,n− 1) … (l, n− 1)
Tn (0,n) (1,n) … (l, n)

For example, if a single-tape representation contains in its lan-
guage the string abcde□, this is assumed to correspond to a valid
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configuration  a d
b e
c □


seen from the multitape point-of-view (a 3-tape configuration); i.e. a
multitape automaton that accepts the string ad as input, translates it
into be, and then translates this into c (the □-symbol representing the
empty string).

6 conversion from transducers

It is evident that an existing transducer can be converted to this mul-
titape representation – that is, to a 2-tape representation – without
much effort. To convert a standard transducer, where transitions are
encoded as symbol pairs, one simply expands each transition with a
symbol pair x : y to a two-symbol sequence x y in the correspond-
ing n-tape automaton. This operation will be referred to as “flatten-
ing.”2 If the original transducer T maps a string x1 . . . xn to y1 . . . yn

by a sequence of transitions with labels ((x1, y1), . . . , (xn, yn)), then the
automaton flatten(T ) accepts a string (x1 y1 . . . xn yn). In the result, ε-
symbols are replaced with the □-symbol. This □-symbol is only used
to mark the alignment of epsilons and need not be specified by the
user in any way, as will be discussed below.
So-called Unknown symbols – placeholders for future alphabet

expansion in incremental construction of automata – are denoted by
@. These are symbols that match any symbol outside the alphabet of
an automaton. Note that this is different from the semantics of the
?-symbol in regular expressions which represent any single symbol at
all with no reference to an alphabet (Beesley and Karttunen 2003).
Conversion of transducers is particularly convenient since we can

take advantage of existing algorithms for building complex transduc-
ers for NLP use. This includes replacement-rule transducers available
in many toolkits, as well as lexicon transducers constructed through
essentially right-linear grammars. Figure 1 shows a replacement rule
that deletes x-symbols at the end of a string compiled into a trans-
ducer, and the result of subsequently converting that transducer to

2A symmetrical unflattening operation can also be defined.
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0

@ 

1
x:ε 

2

x 

@ 

x:ε x 0

1

@ 

2x 

@ 

3□ 

4
x 

@ x 

Σ = {x} Σ = {x,□}

x -> ε || _ .#. flatten(x -> ε || _ .#.)

Figure 1: Illustration of a replacement-rule encoded as a transducer (left) and
subsequently converted to a 2-tape automaton using the encoding presented here

a standard automaton representing a 2-tape layout in the encoding
used here. In other words, we can rely on existing algorithms to build
phonological transducers, and only convert them to 2-tape automata
before multitape composition.

7 multitape composition

The overall usefulness of converting transducers to 2-tape au-
tomata, and then combining a number of individual such 2-tape au-
tomata by composition, is illustrated in Figure 2. By combining the
individual 2-tape representations into a monolithic n-tape represen-

Rewrite rules 2-tape automata n-tape automaton

xyz

xyz

xuz

xuz xuz
xvz xvz

xvz
xvw

xvw

y -> u || x _ z

u -> v ||   _ z

z -> w || v _ 

Rewrite rules 2-tape automata n-tape automaton

compose

co
mpose

compose

compile

compile

compile

Figure 2: Workflow for converting rewrite rule specifications to transducers, then
2-tape automata, then n-tape automata

[ 116 ]



Rewrite rule grammars with multitape automata

tation, all the intermediate representations which would normally be
destroyed in a series of compositions can be preserved. As will be seen
below, if such a strategy is augmented with the possibility of adding
decoration and comment symbols to the individual tapes, very user-
friendly grammars for parsing and generation can be developed.
Interestingly, a generic multitape composition algorithm in this

representation can be encoded entirely algebraically, which is to say,
as regular expressions. Given two multitape automata, A and B, en-
coded as above, each representing some specified number of tapes m
and n, the core idea is to break down their composed representation
as a two-step process, which yields an m+n−1 tape representation of
the composite. Informally, this multitape composition process for any
m and n-tape automata in the representation at hand can be described
as follows:
1. Force automata A and B to be of the same number of tapes
(m+ n− 1) by alternatively inserting columns of empty (□) sym-
bols followed (in A) or preceded (in B) by arbitrary symbols, or
retaining the original columns in A an B but inserting arbitrary
symbols after each column (in A) or before each column (in B).

2. Call the new automata Aextend and Bextend: now, the result of in-
tersecting the two Aextend ∩ Bextend (using standard automaton in-
tersection) represents their composition A◦M T B, seen from a mul-
titape point of view (with intermediate steps retained).
An illustration of the main logic behind the padding and column

insertion mechanisms is given in Figure 3. The exact algorithm is given
in Algorithm 1.

a
b
c

d
e
□ c

□
x
x

□
z
u
x

□
w
w
w

?
?
?

?
?
?

?
?
?
?
?
?

a
b
c

□
□
□
?
?
?

A

B

epsilon-insertion

padding

padding

c
□
x
x

□
z
u
x

□
w
w
w

a
b
d
e
□

aaaa
bbb
cccc

A

Figure 3:
Illustration of multitape composition: the shaded areas
show possible contents of the original multitape automata
A and B, while the remaining areas show the result of
insertions to coerce the automata to have the same
dimensions and epsilon-behavior before intersection
of A and B
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Algorithm 1:
Multitape

Composition

Input: A= FSM with m tapes, B = FSM with n tapes
1 eInsertA ← (ε:□)m

�
(ε:?)n−1 − (ε:□)n−1

�
2 padA ← ?m (ε:?)n−1

3 eInsertB ← �(ε:?)m−1 − (ε:□)m−1
�
(ε:□)n

4 padB ← (ε:?)m−1 ?n

5 ExtendA ← range�A◦ (eInsertA∪ padA)∗�
6 ExtendB ← range�B ◦ (eInsertB∪ padB)∗�
7 Sync ← ?m+n−1

8 X0 ← ?m−1 □n

9 XY ← �?m−1 −□m−1
�
□
�
?n−1 −□n−1
�

10 0Y ← □m ?n−1

11 Filter ← ¬�Sync∗ (0Y(X0∪XY)∪X0(0Y∪XY) ?∗
�

12 Result ← ExtendA∩ ExtendB∩ Filter

7.1 Path filtering
A well known problem of standard composition algorithms for trans-
ducers also carries over to the multitape representation; this is the
problem of producing multiple alternate paths in the resulting trans-
ducer when epsilon-symbols are present (ε-multiplicity). The cause of
this is that there exist many equivalent paths that yield the same trans-
duction: e.g. a:ε ◦ ε:b can be represented as a:b, a sequence a:ε ε:b,
or a sequence ε:b a:ε. Figure 4 illustrates different but equivalent
outputs for the composition of two multitape automata. None of the
multiple paths for describing a relation are incorrect, but the incon-
venience of handling the possibility of multiple equivalent parses or
generations motivates an attempt to provide unambiguous paths for
each composition during the process itself. Furthermore, in a weighted
automaton/transducer scenario – which we will not specifically deal
with here – use of a non-idempotent semiring can yield incorrect re-
sults if multiple paths are not filtered out.
The common solution in the classical transducer domain is to ei-

ther design a separate filter transducer that serves to prefer some spe-
cific order of epsilon-interleaving (Mohri et al. 2002) or to incorporate
this filter mechanism directly into the composition algorithm (Hulden
2009a). In the multitape case, however, this filtering mechanism can
be encoded entirely as a regular language filter which disallows cer-
tain interleavings of epsilon-symbols in the string representation, in
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A B a d
b e
c □




c □ □
□ z w
x u w
x x w


A ◦M T B

a d □
b e □
c □ □
□ z w
x u w
x x w




a □ d
b □ e
c □ □
□ z w
x u w
x x w




a d □ □
b e □ □
c □ □ □
□ □ z w
x □ u w
x □ x w




a □ d □
b □ e □
c □ □ □
□ z □ w
x u □ w
x x □ w




a □ □ d
b □ □ e
c □ □ □
□ z w □
x u w □
x x w □


Figure 4: Composition of automata A and B, illustrating different alignments of
epsilon-symbols. This shows composition behavior with respect to two particu-
lar configurations in A and B. A subsequent filter, expressed as an automaton,
removes all the solutions except the upper leftmost one

particular those where an x:□-transition (when automaton A has an
epsilon on the last tape in some position) immediately follows or pre-
cedes a □:y-transition (when automaton B inserts a symbol on its first
pair of tapes). This filter can then be intersected with the output of
the earlier algorithm. As mentioned, this regular expression (Filter)
can simply be intersected with the earlier result to remove redundant
paths in the composition (shown in lines 7-11 in the algorithm).
7.2 Algorithm details
The algorithm in 1 essentially reiterates the above, with a few details
worth mentioning. In lines 1–4, constants that perform the insertion
and padding are declared. Lines 5 and 6 create the transducers Aextend
and Bextend. Lines 7–11 create the filter automaton which is indepen-
dent of A and B, and the three-element intersection at line 12 yields
the result of the final composition.
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8 composition in grammars
The composition algorithm is the only extension needed to retain all
the intermediate information in an ordered rewrite-rule grammar. One
can simply convert any individual transducers to a multitape represen-
tation and proceed with the composition, yielding a multitape repre-
sentation of the same grammar. Parsing and generation of a string s
can be performed by creating a padded multitape automaton where
either the underlying representation or the surface representation is in
place, with arbitrary symbols present on the other tapes. This multi-
tape automaton can then be intersected with the grammar G, yielding
a string representation of the set of legal parses or generations, with
their intermediate representations intact.
That is to say, if we have an n-tape automaton grammar G and

want to parse a string s, we can convert the string to an automaton
that accepts that string (ignoring possible intervening blanks □), pad
the automaton to match the number of tapes in G (making sure s is on
the last tape), and then intersect with G. The padding operation may
be performed by the standard method of composing with a transducer
that inserts the right amount of arbitrary symbols, and then extracting
the range of the transducer.

Parse(s, G)
def
= range�s/□ ◦ ((ε:?)n−1 ?)∗

� ∩ G (1)
Likewise, to generate, we may perform the same calculation with

the padding done in such a manner that s is on the first tape:

Generate(s, G)
def
= range�s/□ ◦ ((? ε:?)n−1)∗

� ∩ G (2)
Again, these functions are intended to make the system transpar-

ent to the user so that no knowledge of the actual multitape represen-
tation is needed to design and apply grammars.
8.1 Adding intermediate information
It was hinted above that annotating the effect of various transducers is
a very useful feature (as seen in Table 1) for debugging or phonological
analysis. Incorporating such information can be done separately from
the multitape encoding; that is, one can first incorporate the desired
decorative information in a standard transducer and then perform the
conversion to a multitape representation, retaining the decoration. For
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morphophonological processes, it suffices to modify the transducers
that encode the relevant replacement rules in such a way as to add
information about each process. In most cases, this would only entail
naming the process in question. Such an annotation mechanism can
be added separately to each rule transducer before converting it to a
2-tape representation.

8.2 Decoration example
In the examples below, each alternation rule transducer is augmented
with a textual description of that rule. This allows us to pair up rule
descriptions with rules, so that when parsing or generating with a
multitape automaton, informative descriptions will appear for each
rule in a chain of compositions. In essence, this allows for the inclusion
of comments whenever a phonological alternation rule fires, similar
to those given in Table 1.
For example, a rule that deletes the latter of consecutive vowels

can be encoded as follows as a rule-description pair:
(’V -> 0 || V _ ’, ’Vowel Del’)

and would have the following effect on input words (a) papiin and
(b) papi, respectively, when generating words:

(a) (b)
p a p i i n p a p i
p a p i n # Vowel Del p a p i # Vowel Del

making it clear to the user that this particular rule applies at that point
in the derivation.

9 implementation

As the foma tool has existing Python bindings that can be used to call
the underlying standard algorithms for manipulating automata and
transducers, providing an extension to that library becomes a matter
of implementing the above algorithms. The multitape encoding has
been implemented as a standard Python-class that (1) provides a mul-
titape automaton data type MTFSM and (2) can perform composition
together with rule decoration on arbitrary transducers. This allows for
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a certain level of transparency in the bookkeeping needed. For exam-
ple, the information about how many tapes are encoded in an FSM is
auxiliary information that it is necessary to store during a composition
process, since the multitape encoding does not inherently contain this
information. The interface to the foma formalism allows for automatic
conversion of transducers to 2-tape automata, which may then be in-
crementally composed to yield representations with multiple tapes.
In effect, designing a complete grammar does not require the user to
possess knowledge about or keep track of the underlying machinery,
such as the number of tapes used, the padding performed, etc. Even
the padding symbols – though helpful for debugging individual rules
– can be omitted from the output as they are only used internally to
produce a consistent alignment of different-length strings.
For example, to simply compose two rules, without any decora-

tion, the user may enter arbitrary regular expressions (in this exam-
ple rewrite rules) which automatically convert to two-tape represen-
tations that can be composed and inspected:
>>> r1 = MTFSM(”x -> y || c _ ”)
>>> r2 = MTFSM(”y -> z || _ d”)
>>> composed = r1 + r2

>>> print composed
States: 35
Transitions: 126
Final states: 7
Deterministic: 1
Minimized: 1
Numtapes: 3

Entire grammars can be compiled through a separate and more
involved mtgrammar module. This module allows for the type of rule
decoration described above, and provides for a method of composing
the different multitape automata in order, as well parsing and gener-
ation functionality:
from mtgrammar import *

G = compilemt([(’b -> x || a _ c’, ’Rule 1’), (’x -> 0 || a _ c’, ’Rule 2’)])
printparses(’ac’, G, dir=’up’)

Here, two rewrite rules are compiled, converted automatically to
multitape automata through the compilemt statement and composed
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in the order given. After this, the resulting 3-tape automaton is used to
parse the word ac in the “upward” direction, that is, assuming that the
string is on the output tape. This produces the three aligned outputs:

abc□□ axc□□ ac□□
axc#Rule 1 axc#Rule 1 ac#Rule 1
a□c#Rule 2 a□c#Rule 2 ac#Rule 2
a□c□□ a□c□□ ac□□

Here, we see that there are three ways the two phonological rules
in question could produce the output ac – by starting from the under-
lying forms abc, axc, and ac, respectively. The blanks are automati-
cally positioned in their correct positions without the user having to
specify anything except the input string to be parsed and the direction
of parsing (up= from surface form to underlying form, down= from
underlying form to surface form).
9.1 Illustrative example 1: phonology (Lardil)
Returning now to the original Lardil example: annotating replacement
rules with additional descriptive symbols to be inserted at the ends of
strings every time a rule fires in combination with the multitape com-
position mechanism allows us to essentially automatically replicate
the linguist-friendly representation given in Table 1. The following
snippet illustrates some key points in the design of such grammars:

1 from foma import *
2 from mtgrammar import *
3

4 # Definitions #
5 FST.define(u’{jilijili}|{kiʈikiʈi}|{muŋkumuŋku}’, u’Stems’)
6 FST.define(u’[a | æ | i | u]’, ’Vow’)
7 FST.define(u’[m | n | ɳ | ŋ | ŋ | n̪ | nʲ]’, ’Nasal’)
8 ...
9 # Rules #
10 kEpenthesis = (u’[..] -> k || Nasal _ u ɻ ’, ’k-Epenthesis’)
11 wEpenthesis = (u’[..] -> w || i _ u’ , ’w-Epenthesis’)
12 ...
13 G = compilemt((Lex, kEpenthesis, wEpenthesis, VowelDeletion, FinalLowering,
14 Apocope, ClusterRed, NonApicalDel, Sonorantization))

That is, wemaywrite grammars inmuch the sameway as in estab-
lished formalisms, defining regular expression constants such as Vow
and Nasalwhich are later used in building more complex rewrite rules
such as k-Epenthesis and w-Epenthesis, etc. These decorations are
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automatically added to the right end of each tier, as illustrated in two
different parses below:

>>> printparses(u’muŋkumu’, G)

muŋkumuŋku[Uninflected]□□
muŋkumuŋku□#Lexicon Output
muŋkumuŋku□#k-Epenthesis
muŋkumuŋku□#w-Epenthesis
muŋkumuŋku□#Vowel Deletion
muŋkumuŋka□#Final Lowering
muŋkumuŋk□□#Apocope
muŋkumuŋ□□□#Cluster Reduction
muŋkumu□□□□#Non-Apical Deletion
muŋkumu□□□□#Sonorantization
muŋkumu□□□□□□

>>> printparses(u’putu’, G)

putuka[Uninflected]□□
putuka□#Lexicon Output
putuka□#k-Epenthesis
putuka□#w-Epenthesis
putuka□#Vowel Deletion
putuka□#Final Lowering
putuk□□#Apocope
putuk□□#Cluster Reduction
putu□□□#Non-Apical Deletion
putu□□□#Sonorantization
putu□□□□□

In the generation direction, the same procedure applies, and the
library offers an up/down parameter to control for the direction of op-
eration; a command printparses(u’putuka[Uninflected]’, G,
dir=’down’) in the above would have produced the same output as
the example on the right hand side.
9.2 Illustrative example 2: Historical Linguistics

(Proto-Indo-European)
As alluded to above, another scenario where intermediate, possibly
annotated strings provide important information is in the modeling
of historical sound change by finite-state means. In the development
of models of diachronic sound change, this provides the possibility of
providing annotated parses from modern variants to proto-language
forms given hypothesized chronological sound changes. The following
parses show the behavior of an ordered set of rewrite rules in multitape
form that model the path of sound changes from Proto-Indo-European
(PIE) to German and Latin. The relevant rules are implemented as
rewrite transducers as in the Lardil example above.
>>> printparses(u’pátēr’, Latin)

ph2tḗrs□□
ph2tḗrs#*PIE
ph2tḗr□#Szemerényi’s law
pa□tḗr□#*H > a between consonants
pá□tēr□#Proto-Italic stress
pá□tēr□□□

>>> printparses(u’fā́tɐr’, German)

ph2tḗrs□□
ph2tḗrs#*PIE
ph2tḗr□#Szemerényi’s law
pa□tḗr□#*H > a between consonants
fa□tḗr□#Grimm’s Law
fa□dḗr□#Verner’s Law
fá□dēr□#Stress Shift
fá□tēr□#High Germanic Consonant Shift
fā́tēr□#Lengthening
fā́tɐr□#Reduction
fā́tɐr□□□
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Here, we see the parsing of the Latin form for the word “father”,
pátēr as well as the German form fāt́ɐr, using two different grammars
that share part of the rewrite rules (the early sound changes affect-
ing both). Both correspond to the underlying, hypothesized PIE form
ph₂tḗrs. The relevant sound changes in this grammar were modeled fol-
lowing Beekes (2011); Trask (1996). As opposed to synchronic phono-
logical grammars, the chains of sound changes over long periods can
grow quite extensive. For example, the German surface form is sub-
ject to a number of them: first, a sound change called Szemerényi’s law
deleting coda fricatives takes place, followed by a process of laryngeal
vocalization,3 Grimm’s and Verner’s Laws, a stress shift, as well as a
number of processes that affect vowels. The multitape parse in this
case illustrates the value of such a design in checking correctness of
very complex sequences of sound changes. Such sequences could plau-
sibly be generated in the chronological direction through non-finite-
state means, but the direction of interest for the linguist is generally
the inverse one – parsing from surface form to underlying form, which
is what is calculated here.
More advanced usage scenarios can also be explored with the

method through more complex intersections of individual tapes in
multitape representations for different languages. For example, having
postulated a sequence of sound changes that two modern languages
have undergone from the proto-language, we can calculate the set of
possible proto-forms for some modern cognates x and y in two lan-
guages. In the above parses of “father”, only a single parse per cog-
nate is given, since we have included the postulated proto-form in
the grammar. There might, however, exist other plausible PIE-forms
that fit the sequence of sound changes. For example, removing the
proto-form from the grammar yields two plausible parses in the inter-
section of Latin and German, patḗr and patḗrs. Such techniques can be
extended to a larger scale to support the endeavor of verifying consis-
tency of postulated sound changes with the possibility of immediate
feedback when minor changes are made in the various sound laws.

3Laryngeals are abstract segments proposed to have been present in Proto-
Indo-European (De Saussure 1879) but later disappeared, leaving behind differ-
ent vowel qualities and a compensatory lengthening. The laryngeals are com-
monly labeled ∗h1, ∗h2, and ∗h3, and ∗H is used as a cover symbol for all three.
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10 conclusion

This paper has presented a general, automatic method for extend-
ing finite-state grammars in the composed rewrite-rule tradition. The
method in effect replaces the use of transducers with multitape au-
tomata, which are shown to have the capacity to provide rich parses
and to support elaborate annotation of intermediate forms. Existing al-
gorithms for constructing transducers from rewrite-rule specifications
can still be used, once converted to multitape representations. We can
also take advantage of specialized string-rewriting and constraint sys-
tems to handle syllabification (Hulden 2006), Semitic interdigitation
(Beesley and Karttunen 2000), and, with some caution, unification
features such as flag diacritics to model long-distance dependencies
(Beesley 1998). Potentially, steps in candidate removal in Optimal-
ity Theoretic grammars could also be implemented by incorporating
proposals to model such processes by finite-state composition (Kart-
tunen 1998; Gerdemann and van Noord 2000; Gerdemann and Hulden
2012).
The model itself assumes little machinery beyond the ability to

compose the resulting multitape automata, but offers a way to produce
rich representations of grammars constructed in this vein. If desired
(for memory efficiency reasons), the resulting multitape automata can
still be re-converted to transducers by eliminating the intermediate
representations. This offers the possibility to only use the multitape
representation for debugging purposes, if the final intent is to produce
a simpler underlying-to-surface mapping or vice versa.
The above techniques may be useful for applications outside stan-

dard designs of morphophonological grammars. In modeling historical
sound changes, for example, ‘debugging’ problems similar to those in
phonology and morphology tend to arise – much exacerbated by the
fact that one is often dealing with multiple languages at the same time.
Keeping track of hundreds of proposed sound laws together with their
effect on lexical items across languages is a task that is well suited for
the type of modeling presented in this paper.
Although the application focus of this paper has been more along

the lines of modeling traditional non-probabilistic grammars, the
methods presented above – the composition algorithm in particular
– are also adaptable to weighted automata.
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appendix a ʸ lardil grammar
# -*- coding: utf-8 -*-
from foma import *
from mtgrammar import *

# Definitions needed for rules
FST.define(u’{papi}|{wiʈæ}|{ŋuku}|{wanka}|{kaɾikaɾi}|{jukaɾpa}|{putuka}|

{jilijili}|{kiʈikiʈi}|{muŋkumuŋku}’, u’Stems’)
FST.define(u’[a | æ | i | u]’, u’Vow’)
FST.define(u’[p | t | ʈ | t̪ | tʲ |k | m | n | ɳ | ŋ | ŋ | n̪ | nʲ| ɾ | l |

w | ɻ | j ]’, u’Cons’)
FST.define(u’[t | ʈ | n | ɳ | ɾ | l | ɻ ]’, u’Apical’)
FST.define(u’[m | n | ɳ | ŋ | ŋ | n̪ | nʲ]’, u’Nasal’)
FST.define(u’”#”|.#.’, u’E’) # Word edge

# Grammar Lexicon + Rules
Lex = (u’Stems [”[Acc. Nonfuture]”:{in} |

”[Acc. Future]”:{uɻ} |
”[Uninflected]”:0 ]’, u’Lexicon Output’)

kEpenthesis = (u’[..] -> k || Nasal _ u ɻ ’, u’k-Epenthesis’)
wEpenthesis = (u’[..] -> w || i _ u’ , u’w-Epenthesis’)
VowelDeletion = (u’Vow -> 0 || Vow _ ’, u’Vowel Deletion’)
FinalLowering = (u’i -> æ, u -> a || _ E’, u’Final Lowering’)
Apocope = (u’Vow -> 0 || Vow Cons* Vow Cons* _ E’, u’Apocope’)
ClusterRed = (u’Cons -> 0 || Cons _ E’, u’Cluster Reduction’)
NonApicalDel = (u’Cons - Apical -> 0 || _ E’, u’Non-Apical Deletion’)
Sonorantization = (u’ʈ -> ɻ || _ E’, u’Sonorantization’)

Grammar = compilemt((Lex, kEpenthesis, wEpenthesis, VowelDeletion,
FinalLowering, Apocope, ClusterRed, NonApicalDel, Sonorantization))

## Parse ##
mtgrammar.printparses(u’muŋkumu’, Grammar)
mtgrammar.printparses(u’putu’, Grammar)
mtgrammar.printparses(u’ŋukuɻ’, Grammar)
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This article offers a formalization of how signs form words in Ancient
Egyptian writing, for either hieroglyphic or hieratic texts. The formal-
ization is in terms of a sequence of sign functions, which concurrently
produce a sequence of signs and a sequence of phonemes. By involv-
ing a class of probabilistic automata, we can define the most likely
sequence of sign functions that relates a given sequence of signs to
a given sequence of phonemes. Experiments with two texts are dis-
cussed.

1 introduction

Ancient Egyptian writing, used in Pharaonic Egypt, existed in the form
of hieroglyphs, often carved in stone or painted on walls, and some-
times written on papyrus (Allen 2000). Hieroglyphs depict people, an-
imals, plants and various kinds of objects and geographical features.
A cursive form of Ancient Egyptian writing, called hieratic, was pre-
dominantly written on papyrus. Most hieratic symbols can be seen
as simplified hieroglyphs, to such an extent that it is difficult for the
modern untrained eye to tell what is depicted. Because hieratic hand-
writing varied considerably over time, with notable differences be-
tween regions and scribes, the creation of computer fonts for hieratic
is problematic, and consequently scholars commonly resort to publish-
ing hieratic texts in a normalized hieroglyphic font. Since Version 5.2,
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Unicode contains a selection of 1071 hieroglyphs. Henceforth we will
use the term sign to refer to a hieroglyph or a hieratic symbol.
The Ancient Egyptian language is in the family of Afro-Asiatic

languages, which includes the Semitic languages (Loprieno 1995). As
in writing systems of several Semitic languages (e.g. Hebrew, Arabic,
Phoenician), only consonants are written. Modern scholars use 24 or
25 letters to transliterate Ancient Egyptian texts in terms of these con-
sonants. Most are written as Latin characters, some with diacritical
marks, plus aleph ꜣ and ayin ʾ. An equal sign is commonly used to
precede suffix pronouns; thus sḏm means “to hear” and sḏm=f “he
hears”. A dot can be used to separate other morphemes; for example,
in sḏm.tw=f, “he is heard”, the morpheme tw indicates passive.
The Ancient Egyptian writing system itself is a mixture of pho-

netic and semantic elements. The most important are phonograms, lo-
gograms and determinatives. A phonogram is a sign that represents a
sequence of one, two or three letters, without any semantic associa-
tion. A logogram represents one particular word, or more generally
the lemma of a word or a group of etymologically related words. A
determinative is commonly written at the end of a word, following
phonograms, to clarify the meaning of a word; in their most obvious
use, determinatives disambiguate between homophones, or more pre-
cisely, different words consisting of the same consonants. In addition,
there are typographical signs, for example, three strokes that indicate
the plural form of a noun (also used for collective nouns). These and
more classes of signs are discussed in detail in Section 2.
What makes automatic analysis of Ancient Egyptian writing so

challenging is that there was no fixed way of writing a word, so that
table-lookup is largely ineffective. Even within a single text, the same
word can often be found written in several different ways. Moreover,
one sign can often be used in different functions, e.g. as phonogram
or as determinative. Some signs can be used as different phonograms
with different sound values. Together with the absence of word bound-
ary markers, this makes it even hard to segment a text into words.
Generalizing statements can be made about writings of words.

Typically, either a word starts with a number of phonograms, cover-
ing all the letters of the stem, possibly some covered more than once,
followed by one or more determinatives, or a word starts with a lo-
gogram, possibly followed by one or more phonograms, possibly fol-
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lowed by one or more determinatives. More phonograms can follow
the determinatives for certain suffixes. This coarse description is inad-
equate however to model the wide spectrum of writings of words, nor
would it be sufficient to disambiguate between alternative analyses of
one sequence of signs.
These factors motivate the search for an accurate and robust

model that can be trained on data, and that becomes more accurate as
more data becomes available. Ideally, the model should be amenable
to unsupervised training. Whereas linguistic models should generally
avoid unwarranted preconceptions, we see it as inevitable that our
model has some knowledge about the writing system already built in,
for two reasons. First, little trainingmaterial is currently available, and
second, the number of signs is quite large, so that the little training
material is spread out over many parameters. The a priori knowledge
in our model consists of a sign list that enumerates possible functions
of signs and a formalization of how these functions produce words.
This knowledge sufficiently reduces the search space, so that proba-
bilistic parameters can be relatively easily estimated.
In our framework, a sign function is formally identified by the com-

bination of (a) the one or more signs of its writing, (b) its class, which
could be ‘phonogram’, ‘logogram’, ‘determinative’, etc., and (c) a se-
quence of letters or a description of a semantic value, depending on
the class. One example is the phonogram function for sign with
sound value r. There is a logogram function for the same sign, with as
value the transliteration of the lemma rꜣ, which means “mouth”. A ty-
pographical function for the three strokes may have a semantic value
‘plurality or collectivity’.
The first attempt to systematically classify functions of signs in

context may have been Schenkel (1984). The proposed system used a
notation that is close to traditional transliteration, but with additional
elements, capturing some functional aspects of some used signs. For
example, for each determinative in the writing of a word, a super-
script giving the name of the sign is added to the transliteration. Use
of logograms was indicated by capitalizing letters of the stem in the
transliteration. It is not possible however to reconstruct a complete
hieroglyphic writing from an instance of this notation, and moreover
this system does not seem to lend itself to formalization.
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The problem we will address in the experiments is guessing the
sign functions given the signs and the letters. This is related to the
problem of automatically obtaining transliteration from hieroglyphic
text. As far as we are aware, the earliest work to attempt this was
Billet-Coat and Hérin-Aime (1994), which focussed on a multi-agent
architecture to combine expert knowledge about signs, words and
clauses. Another approach to automatic transliteration, by Tsukamoto
(1997), used Unix applications such as ‘grep’ and ‘sed’. The approach
by Rosmorduc (2008) used manually produced rewrite rules. Further
work along these lines by Barthélemy and Rosmorduc (2011) used two
approaches, namely cascades of binary transducers and intersections
of multitape transducers, with the objective to compare the sizes of
the resulting automata.
A more modest task is to automatically align given hieroglyphic

text and transliteration, as considered by Nederhof (2008), who used
an automaton-based approach with configurations, similar to that in
Section 5, except that manually determined penalties were used in-
stead of probabilities. As we will demonstrate, the use of probabilities
allows training of parameters of the model.
Relating hieroglyphic texts and their Egyptological transliteration

is an instance of relating two alternative orthographic representations
of the same language. The problem of mechanizing this task is known
as machine transliteration. For example, Knight and Graehl (1998)
consider translation of names and technical terms between English
and katakana, and Malik et al. (2008) consider transliteration between
Hindi and Urdu. Another very related problem is conversion between
graphemes and phonemes, considered for example by Galescu and
Allen (2002).
Typical approaches to solve these tasks involve finite-state trans-

ducers. This can be justified by the local dependencies between input
and output, that is, ultimately the transliteration can be broken down
into mappings from at most n to at most m symbols, for some small n
and m. For Ancient Egyptian however, it is unclear what those bounds
on n and m would be. We therefore depart from finite-state methods,
and propose a model that involves a tape, with a tape head that can
jump left as well as right. This idea is reminiscent of alignment mod-
els of machine translation (Brown et al. 1993) and of the Operation
Sequence Model (Durrani et al. 2015).
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Sproat (2000) formulates the Regularity hypothesis, stating that
orthographic processes can be realized in terms of finite-state meth-
ods. For Ancient Egyptian, he singles out two isolated phenomena,
namely a particular writing of plurality (cf. Section 2.6) and honorific
transposition (cf. Section 4). He argues that whereas their realization
requires extra care, they can be realized in terms of finite-state meth-
ods nonetheless. He ignores more problematic phenomena however,
such as phonetic complements (cf. Section 2.2) and phonetic deter-
minatives (cf. Section 2.4), which are core elements of the writing
system and form the main motivation for our non-finite-state automa-
ton model. Thereby, Ancient Egyptian remains a significant challenge
to the Regularity hypothesis.
In the sequel, we let ‘Egyptian’ refer to ‘Ancient Egyptian’. The

structure of this paper is as follows. Section 2 explains in more de-
tail the sign functions that are distinguished in our model of Egyptian
writing. An annotated sign list couples sign functions to signs, as ex-
plained in Section 3. The annotated texts themselves, which were used
for training and testing, are presented in Section 4. A formal model of
Egyptian writing is the subject of Section 5, extended with probabili-
ties in Section 6. Experiments are discussed in Section 7.

2 sign functions

In our formal framework, we distinguish the sign functions that are ex-
plained in the following sections. Except for ‘spurious’ functions, each
function has exactly one value, specified at the end of each section.

2.1 Logograms
A logogram is a sign that represents a word, or more accurately, the
lemma of a word, or possibly a group of etymologically related words
with closely related meanings. Often a logogram depicts the word it
represents. For example, the aforementioned sign can be a lo-
gogram for rꜣ, “mouth”. In other cases, a logogram may represent an
idea that can be associated with the thing that is depicted, rather than
the thing itself. For example, depicts a (standing) leg, while its
meaning is the word bw, “place”. A related example is the sign
depicting (walking) legs, with meaning jw, “to come”.
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An example where we would include etymologically related
words is the following. The sign can literally mean the thing that
is depicted, namely bjt, “bee”, but the same sign is used in much the
same way for the etymologically related word bjt, “honey”.
The value of a logogram is the transliteration of the lemma that

it represents.
2.2 Phonograms
Much of the Ancient Egyptian writing system evolved via the princi-
ple of rebus writing (Daniels and Bright 1996), that is, the use of a sign
solely for its sound value, derived from one or more sounds that occur
in the word expressing what the sign depicts. For example, from the lo-
gographic use of sign for bw, “place”, the use as phonogram evolved,
allowing it to represent the letter b in the writing of any word.
For each letter, there is at least one phonogram that represents

that letter in isolation. We call such a phonogram uniliteral. There are
also several dozens of phonograms for sequences of two or three let-
ters. For example, is a (biliteral) phonogram with sound value
wn and is a (triliteral) phonogram with sound value tjw.
A word is often written using several phonograms, which together

cover some letters more than once. A uniliteral phonogram represent-
ing a letter that is also represented by a neighboring biliteral or trilit-
eral phonogram is known as a phonetic complement; there are examples
in Figure 3 that will be discussed later.
As pointed out by e.g. Schenkel (1984), it can be very hard to dis-

tinguish between logograms and phonograms, especially in the case
of triliteral phonograms that can by themselves write a whole word.
For example, can stand for the word wḥmt, “hoof”, and in this use
it is obviously a logogram, but it can also stand for the word wḥm,
“to repeat”. (The t in wḥmt is the feminine ending.) It is plausible that
the two words are etymologically related, as the depicted cloven hoof
‘repeats’ a toe. However, traditionally the use of in “to repeat” is an-
alyzed as phonogram, as if its use was motivated by accidental similar-
ity of the pronunciations of the two words. We have adopted that view.
One more example is the sign , which is primarily used as lo-

gogram for nṯr, “god”. It is also used in the writing of the word snṯr,
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“incense”, and one may naively interpret it as phonogram there. How-
ever, it is very likely that the sign is not merely chosen for its sound
value, but for its semantic relationship to nṯr, “god”, in combination
with the causative prefix s-. An alternative etymology suggested by
de Vartavan (2010) involves the verb sn, “to smell”, in combination
with nṯr, but either way, the sign in snṯr is best analyzed as logogram.
In later stages of Egyptian, some pairs of sounds from earlier

stages merged together. As a result, the corresponding signs were
sometimes confused. One example is the use of a sign represent-
ing the sound t for writing a word whose historical pronunciation
had a different sound ṯ. In our framework, we let the value of a
phonogram be its historical sound value, regardless of how it is
used. However, we follow Hannig (1995) in not distinguishing s from
z. In Middle Egyptian, these two sounds had merged together to
such an extent that even the (conservative) writing system treated
both as largely exchangeable. Both sounds are therefore transliter-
ated as s.

2.3 Determinatives
A determinative is a sign that derives a semantic value from what is
depicted, much like many logograms. However, determinatives are
not used in isolation to form writings of words. Instead they must
be combined with logograms and phonograms together covering all
the letters. Typically, determinatives occur at the end of a writing,
following the logograms and phonograms.
Most determinatives do not pertain to any particular word. For

example, the “tree” determinative is used with various nouns re-
lated to trees, plants and wood. Another example is , depicting
a papyrus scroll with ties, which is used as determinative for words
that express abstract notions. Thus we have , jqr, “excellent”,
where the first three signs are each uniliteral phonograms for the three
letters in that word.
The sign can be used as determinative with the general mean-

ing “man and his occupations”. For example, it is used in ,
šmsw, “follower” (someone accompanying the king). Here the first sign
is a logogram for the verb šms, “to follow” and the second sign is a
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uniliteral phonogram with value w, a suffix which turns the verb into
a masculine noun.
The distinction between determinatives and logograms is illus-

trated by the word pryt, “settlement”, written as . The
first sign (reading left-to-right and top-to-bottom for stacked signs) is
a logogram depicting the plan of a house, with meaning pr, “house”,
and derivatives. The next four signs are phonograms together covering
the letters r, y and t. Note the r in pryt is covered by both the logogram
and the first phonogram, which makes here a phonetic comple-
ment. The second occurrence of has a different function from the
first. Here it is a determinative, clarifying that the written word has
something to do with buildings.
A determinative may also be specific to one lemma. For exam-

ple, is generally used only for the noun mnjt, “mooring post”, and
its derivatives. One may ask what distinguishes such a determinative
from a logogram, which is by definition also specific to one lemma.
The answer lies in the different roles that logograms and determina-
tives fulfil in the writing of words, as illustrated above for pryt, “set-
tlement”.
When a determinative is specific to one lemma, the same sign can

often be used as logogram as well, that is, the sign can be used to write
a word without accompanying phonograms. For example, can as
logogram stand on its own for ḫr, “to fall”, but it is determinative in the
alternative writing , ḫr, where it is preceded by two uniliteral
phonograms.
The value of a determinative specific to a word is the translitera-

tion of that word, such asmnjt for . The value of other determinatives
is a general description of the kinds of concepts that are covered, such
as “building, seat, place” for .

2.4 Phonetic determinatives
A phonetic determinative is similar to a determinative in that it tends
to be placed near the end of a word, next to normal determinatives.
However, its value is phonetic, repeating letters already written by
logograms and phonograms.
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An example is given by the writing of the word mnḫt, “splendid
(fem.)” in Figure 1. The phonetic determinative here has phonetic
reading mnḫ. Note that unlike the phonograms, it occurs near the end
of the word, even following the feminine t ending.

phon phon phon phon phondet det typ(coll)

m n ḫ t

Figure 1:
Use of a phonetic
determinative

Many signs can be both phonograms and phonetic determinatives,
even with the same sound value. We then classify an occurrence as the
latter only if the corresponding letters have already been accounted
for by earlier signs.
The value of a phonetic determinative is its (earliest historical)

sound value.
2.5 Typographical signs
Signs that fall outside any of the classes above will be called typograph-
ical. One example is the single stroke written under, or next to, another
sign, most often a logogram. Often its function is to indicate that the
meaning of that other sign is what is depicted, rather than, say, the
sound value of that sign. We then call the single stroke a semogram
marker. For example, might mean rꜣ, “mouth”, while , with-
out semogrammarker, might stand for the preposition r, “to”. The sign

here is logogram or phonogram, respectively.
The function of the single stroke is not always clear however.

More often than not, it acts as space filler; at this point we should
explain that Egyptian writing is often influenced by aesthetical con-
siderations, in particular the desire to fill up empty spaces between
signs. As a consequence, can either mean ḥr, “face”, or ḥr, “on”. In
the first case, the single stroke is clearly a semogram marker, but in
the second it is merely a space filler.
Further typographical symbols consist of a combination of two

or three strokes. These are typically written at the end of a noun as
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marker of duality or plurality. (Egyptian had a dual form next to a plu-
ral.) The three strokes were however also used for singular nouns with
collective meanings, such as rmṯ, “people” and jmnt, “what is hidden”.
The three strokes are also written behind plural personal pronouns.
Similarly, two strokes can be used for singular words whose meaning
involves the idea of pairing two things or two people. An example is

, snnw=f, “his fellow”.
There are also false dual and false plural writings, with two or

three strokes for words that happen to end on -wj, -tj or -w, the mas-
culine and feminine dual and masculine plural endings, while these
words are not grammatically dual or plural. In these cases the group
of two or three strokes is analyzed as phonogram with sound value wj,
j (without the feminine ending t) or w. It is not always easy however to
determine whether words ending on -wj/-tj/-w are (historically) dual
or plural.
Further typographical symbols include the numerals. We analyze

a number written using a sequence of numerals as one sign function.
Egyptian numerals are a topic by themselves (Ifrah 1981) and further
discussion here would not be productive.
A peculiar typographical function exists in a combination of signs

that indicates the preceding (phrase, word or sequence of letters)
should be read twice. An example is , sksk, “to de-
stroy”. Here the first three signs are phonograms together accounting
for the first two letters sk of sksk. The following group then indicates
the letters sk should be read a second time.
As value of a typographical function we take a description, which

can be, for example, “semogram marker”, “space filler”, “duality”,
“plurality or collectivity”, “replaces human figure, or sign difficult to
draw” and “number”.

2.6 Multiplication of signs
We discussed above that duality and plurality (and collectivity) can
be expressed by two or three strokes. There is an alternative way to
express the same, by repeating a sign once or twice. For example, the
logogram stands for nṯr, “god”. By repeating it twice, we obtain

, nṯrw, “gods”. We recall -w is the masculine plural ending.
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Typically only the last sign of a singular writing is repeated to
obtain a dual or plural writing, but sometimes larger groups of signs
are repeated. For example, stands for rn, “name”, written with
two uniliteral phonograms for r and n, respectively. The plural can be
written , rnw, “names”.
Also determinatives may be repeated. An example is the writing

of “the two lands (Upper and Lower Egypt)” as , tꜣwj. We recall
-wj is the masculine dual ending. A typical writing for the singular is
, tꜣ, “land”, written with a logogram for tꜣ, depicting a strip of land

with three grains of sand, a semogram marker, and a determinative
depicting irrigated land.
We have chosen a modeling of such writings that allows straight-

forward automatic processing. This consists in taking all repeated
signs together to correspond to a single function indicating plurality.
In the example of “names”, the first occurrences of and are
analyzed as phonograms r and n, respectively, as they would be in the
singular writing of the word. The two remaining occurrences each of

and together indicate plurality. An example for duality, as
illustrated in Figure 2a, will be discussed later.
As in the case of the dual and plural strokes (Section 2.5), there are

false dual and false plural writings using duplication of signs. Common
examples concern the nisbe form. A nisbe is an adjective derived from
a noun by adding the ending -j. For example, , njwt means “town”
while njwtj means “concerning the town; local”. The latter word is
typically written as , which should be read “local” and not “the two
towns”.
There are cases of plural and collective nouns that are written us-

ing three similar but distinct signs. For example, the word that means
“cattle” can be accompanied by three determinatives depicting differ-
ent kinds of cattle, and the word that means “birds” can be accompa-
nied by three determinatives depicting different species of birds. These
cases are rare enough to be ignored for the purposes of our model in
Section 5. At this point we should emphasize that playfulness and cre-
ativity are important features of Egyptian writing, and this precludes
existence of an exhaustive list of orthographic phenomena.
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The value of a multiplicative function is a number, which can be
2 for dual and 3 for plural. In rare cases, we also find multiplicative
functions for the numbers 4 and 9.
2.7 The spurious functions
Occasionally we find signs that do not have a clear function. Some can
be plausibly attributed to scribal errors. There are also cases however
for which a historical explanation can be given. For example, the two
signs , representing crossing streets, and , the phonogram for t, are
often written as one ‘frozen’ group. This makes sense in the writing of
the word njwt, “town”, which has the (feminine) ending -t, with
being a logogram. However, where is used as determinative with
meaning “inhabited area” at the end of a masculine word (not ending
on -t), we sometimes also find . We then classify as spurious.
The spurious functions also contribute to creating a robust model.

By interpreting some signs as ‘spurious’, the model can complete the
analysis of a problematic writing as fall-back option if nothing else
works. We return to this matter in Section 5.
2.8 Combinations of signs having a function
In the above, we have seen a few instances of a group of signs together
having one function, in the case of multiplications of signs and in the
case of typographical signs. Another example is , which together
represents the logogram tꜣwj, “the two lands”. The signs in isolation
represent two different plants, lily and papyrus, symbolizing Upper
and Lower Egypt, respectively.
The group has a single function as phonogram with sound

value nn. An isolated can only be a phonogram nḫbt. Similarly,
the combination of signs has a single function as a determinative
for a “group of people”.

3 sign list

Essential to the application of our model is an annotated sign list.
We have created such a list in the form of a collection of XML files.1

1http://mjn.host.cs.st-andrews.ac.uk/egyptian/unicode/
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Apart from being machine-readable, these files can also be converted
to human-readable web pages. Among other things, the files contain
knowledge about the various functions of the 1071 signs from the Uni-
code repertoire, gathered from a number of sources, the foremost of
which is Gardiner (1957). The annotated sign list is necessarily im-
perfect and incomplete, which is due to inadequacies of the Unicode
set itself (Rosmorduc 2002/3; Polis and Rosmorduc 2013), as well as
to the nature of Ancient Egyptian writing, which gave scribes consid-
erable freedom to use existing signs in new ways and to invent new
signs where existing signs seemed inadequate. We have furthermore
ignored the origins of signs, and distinguish fewer nuances of sign use
than e.g. Schenkel (1971). See Polis and Rosmorduc (2015) for a re-
vised taxonomy of hieroglyphic sign functions, motivated by the goal
of compiling sign lists.
The items in our annotated sign list most relevant to this article

each consist of:
• a sequence of signs (sometimes multiple sequences of alternative
writings),
• a sign function class of that sequence,
• a sequence of letters or a semantic value, depending on the class.
As discussed in Section 2, a sign can often be both a logogram or a

determinative specific to a lemma. Similarly, sometimes a sign can be
both a phonogram or a phonetic determinative. To avoid duplication,
we have created two combined classes. Thus, the sign list distinguishes
the following:
• logogram, with the transliteration of a lemma,
• determinative, with a description of meaning,
• logogram / determinative, with the transliteration of a lemma,
• phonogram, with a phonetic value,
• phonetic determinative, with a phonetic value,
• phonogram / phonetic determinative, with a phonetic value,
• typographical, with a description of meaning.

Note that multiplication of signs and spurious signs are not included
in the sign list, as these are not properties of the signs themselves but
consequences of particular use.
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Some signs can be used instead of other signs. This happens in
particular where one sign is a graphical variant of another. In order
to avoid redundancy, the sign list then only contains a listing of the
sign functions for the most representative of two or more graphical
variants, plus references from less representative to more representa-
tive variants. Such a reference can be automatically expanded into the
relevant functions of the most representative sign. Also the two com-
bined classes (logogram / determinative, and phonogram / phonetic
determinative) can be split into the individual classes for the purposes
of the model of Section 5.
The sign list contains (very rudimentary) information about the

morphological structure of the lemmas written by logograms, in par-
ticular the stem and the gender (of nouns). The motivation is that this
is necessary in order to match sign occurrences to transliterations. For
example, the information that the word nmtt, “step”, denoted by the
logogram , is feminine can be used to infer that uses of the logogram
in plural writings should be matched to nmtwt, “steps”, with the fem-
inine plural ending -wt in place of the feminine singular ending -t.
Similarly, the logogram , for ẖnj, “to row”, is accompanied by in-
formation that its stem is ẖn, so we can identify the use in the writing
of ẖn=f, “he rows”, without the weak consonant j, which disappears
in most inflections.

4 corpus

There is currently only one comprehensive corpus of Late Egyptian,
which is still under development (Polis et al. 2013). Corpora of Mid-
dle Egyptian, the object of our study, are scarce however. Moreover,
we are not aware of any available corpora of hieroglyphic texts in
which each sign is annotated with its function. One attempt in that
direction was reported by Hannig (1995, p. XXXV), with the objective
to determine the ratios of frequencies of four main classes of signs,
using the first 40 lines of the text of Sinuhe.
It follows that in order to train and test our model, we had to cre-

ate our own annotated corpus.2 As yet, it is of modest size, including
2as part of the St Andrews corpus: http://mjn.host.cs.st-andrews.ac.

uk/egyptian/texts/
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just two classical texts, known as The Shipwrecked Sailor (Blackman
1932) and Papyrus Westcar (Blackman 1988). Disregarding damaged
parts of the manuscripts, the segmented texts comprise 1004 and 2669
words, respectively.
For the convenience of annotation with sign functions, the texts

were linearized, that is, information about horizontal or vertical ar-
rangement of signs was discarded. Whereas the positioning of signs
relative to one another can be meaningful, our current models do not
make use of this; if necessary in the future, the exact sign positions
can be extracted from another tier of annotation.
We normalized the texts by replacing graphical variants, such as
and , by a canonical representative, using machine-readable

tables that are part of our sign list (Section 3). We also replaced com-
posite signs by smallest graphemic units. For example, we replaced a
single sign consisting of three strokes (typographical sign for plurality
or collectivity) by three signs of one stroke each. Motivations for this
include convenience and uniformity: in typeset hieroglyphic texts one
may prefer to use three separate strokes and fine-tune the distance
between them to obtain a suitable appearance.
The texts were annotated with functions, using a customized,

graphical tool. In this tool one can select known functions for
signs, as present in the XML files mentioned in Section 3, but the
tool also gives the option to create new functions that are not
covered by the sign list. Many such functions were found during
annotation.
A peculiar phenomenon in Egyptian writing is honorific transpo-

sition, which means that a sign or word is written first, even though
its linguistic position is further to the end of a word or phrase. This
applies in particular to gods and kings. For example, The Shipwrecked
Sailor has dwꜣ.n=f n=j nṯr, “he thanked the god for me”, with the sign
for nṯr, “god”, written before the signs for dwꜣ.n=f n=j. Where there
is honorific transposition in the corpus spanning more than one word,
all these words are put together in one segment. Apart from honorific
transposition, a segment in the annotated corpus is simply one word.
For each word (or segment), the annotated corpus has:
• the sequence of functions, and
• the sequence of letters of the transliteration.
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Figure 2:

Annotations in the corpus
(Shipwrecked Sailor)

a: “my (two) legs”

phon phon det mult(2) log

r d w j = j

b: “your fingers”

log typ(plur) phon

ḏ b ʾ w = k

The allowable functions are those listed in Section 2. Each function
represents one or more signs, which are assumed to occur consecu-
tively. Thereby the sequence of functions specifies the sequence of
signs in the hieroglyphic writing. This was made possible by, among
other things, our representation of the multiplicative functions (Sec-
tion 2.6). An example is given in Figure 2a for rdwj, “pair of legs”.
Whereas the first ‘leg’ sign of the writing is represented by a determi-
native function, the second such sign is represented by a multiplicative
function with value ‘2’, that is, indicating duality.
Depending on their classes, functions may also represent letters,

but due to such phenomena as phonetic complements, the sequence
of letters of the transliteration is not determined uniquely by the se-
quence of functions. For this reason, the transliteration is present as
separate tier, and functions are linked to the relevant letters of the
transliteration, where applicable. In particular, phonograms and pho-
netic determinatives are linked in this way, and so are logograms and
determinatives specific to words.
Also multiplicative functions may be linked to the letters of the

dual/plural endings, as exemplified in Figure 2a. The same holds for
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a: “he is seen”

log phon phon phon

m ꜣ . t w = f

b: “water”

phon phon phon phon phon det(liquid)

n w y

Figure 3:
Further annotations
(Shipwrecked Sailor)

the two or three strokes that indicate duality/plurality. An example
is found in Figure 2b, for the plural of ḏbʾ, “finger”. Recall that the
masculine plural ending is -w. Not linked to letters are determinatives
that are not specific to any word, as exemplified in Figure 3b.
In the diagrams, the values of the functions are abbreviated or

omitted altogether to avoid clutter. For example, we do not explic-
itly indicate the sound values of phonograms, which usually follow
from the links between functions and letters. Also the lemmas of lo-
gograms and determinatives specific to words are not shown in the
diagrams. Note that these may not be equal to the relevant letters
from the transliteration. For example, the lemma of the first function
in Figure 3a is in factmꜣꜣ, “to see”; the second ꜣ disappears in some verb
forms. Recall that the morpheme tw indicates passive; in this writing
the w is not written out.
Figure 3b is interesting in that it shows two phonetic comple-

ments: both the first and the fourth signs are uniliteral phonograms
that cover the letters n and w, which are also covered by the second
and third signs, which are both biliteral phonograms.
An essential document while annotating the corpus was the an-

notation manual, which helped to disambiguate contentious cases, of
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which there were many. Examples of such cases were discussed in Sec-
tion 2.2. We have as far as possible relied on conventional wisdom,
but on several occasions we had to resort to informed guesses, making
additions to the annotation manual to ensure consistency.

5 model

In order to motivate our model, we investigate Figure 3a. If we string
together the letters coming from the respective functions we obtain
mꜣꜣtf rather than the correct transliteration mꜣ.tw=f. Similarly, for
Figure 3b we would obtain nnwnwwy. There are two causes for this
mismatch. The first is that letters can be written more than once, by
several functions. In most cases this is done with phonetic comple-
ments, that is uniliteral phonograms, but we also find biliteral and
triliteral phonograms as well as phonetic determinatives that cover
letters already covered before. The second cause is that some letters
in the transliteration, often weak consonants, are not represented by
any signs at all. For pragmatic reasons, we will treat the Egyptological
punctuation symbols, such as the period and the equal sign, on a par
with weak consonants not written by signs.
For the second issue, our solution is to introduce an additional

type of function, which we call epsilon-phonogram. Such a function acts
much like a normal phonogram in the sense that a letter is produced
in the transliteration, but it does not correspond to any sign (in other
words, it corresponds to the empty, or epsilon string of signs).
For the first issue, that of letters covered several times, we con-

ceive of the transliteration as being produced incrementally, in terms
of a tape with a head that can move in both directions. In the sim-
plest case, a function appends letters at the end of the tape, and
moves the head a corresponding number of places to the right. This
suffices for Figure 2b, as shown in Figure 4. The left column indi-
cates the kind of function that is applied, omitting the associated
signs, and the right column indicates the tape content, with the ar-
row marking the position of the head. Initially the tape is empty,
and the tape head is at position 0. The logogram function then puts
ḏbʾ on the tape, moving the tape head to position 3. Subsequently,
the typographical function appends a w, moving the head to po-
sition 4. After application of an epsilon-phonogram and a phono-

[ 148 ]



A probabilistic model of Ancient Egyptian writing

↓
log(ḏbʾ) ḏ b ʾ ↓
typ(plur) ḏ b ʾ w ↓
eps-phon(=) ḏ b ʾ w = ↓
phon(k) ḏ b ʾ w = k ↓

Figure 4:
Computation for ḏbʾw=k

gram function, = and k will have been appended and the head is
at position 6.
The situation is only slightly more involved for Figure 2a. Here

the determinative specific to rd should only be allowed if rd occurs
at the beginning of the tape. This ‘lookback’ amounts to a check of
validity of the computation, but it does not alter the fact that the tape
is written strictly from left to right, and the tape head always moves
rightward.
However, a different approach is needed for cases such as those

in Figure 3, which involve phonograms that cover letters more than
once, some appending more letters to the tape at the same time. Our
solution is to add one more type of function, which we call jump. This
decrements (or increments) the position of the head, so a string of
letters can be written starting from a position other than the end of
the tape. The computation for mꜣ.tw=f is given by Figure 5. Here a
jump one position back allows another occurrence of ꜣ corresponding
to a phonogram, after ꜣ was already seen as part of the logogram.
Recall that the second ꜣ of the lemma mꜣꜣ, “to see”, is omitted in many
verb forms. The second feature of ‘log(mꜣꜣ, mꜣ)’ in our ad hoc notation
attempts to convey that we are dealing with a particular use of this
logogram that produces only the letters mꜣ in the transliteration. For
writing of other words, in which the full, geminated form is present,

↓
log(mꜣꜣ, mꜣ) m ꜣ ↓
jump(-1) m ↓ ꜣ
phon(ꜣ) m ꜣ ↓
eps-phon(.) m ꜣ . ↓
phon(t) m ꜣ . t ↓
eps-phon(w) m ꜣ . t w ↓
eps-phon(=) m ꜣ . t w = ↓
phon(f ) m ꜣ . t w = f ↓

Figure 5:
Computation for mꜣ.tw=f
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Figure 6:

Computation for nwy
↓

phon(n) n ↓
jump(-1) ↓ n
phon(nw) n w ↓
jump(-2) ↓ n w
phon(nw) n w ↓
jump(-1) n ↓ w
phon(w) n w ↓
phon(y) n w y ↓
det(liquid) n w y ↓

Figure 7:
Computation for mnḫt

↓
phon(mn) m n ↓
jump(-1) m ↓ n
phon(n) m n ↓
phon(ḫ) m n ḫ ↓
phon(t) m n ḫ t ↓
phondet(mnḫ) m n ḫ t ↓
det(abstract) m n ḫ t ↓
typ(coll) m n ḫ t ↓

we could use alternatively ’log(mꜣꜣ, mꜣꜣ)’. We will see more examples
of functions having additional features later.
The computation for nwy is given by Figure 6. Here several jumps

are needed to model that n and w are each covered by three different
signs. Note that the determinative has a general description ‘liquid’
and so does not correspond to any letters.
The computation for mnḫt is given by Figure 7. As shown, ap-

plication of a phonetic determinative does not require a jump. This
is motivated by the observation that phonetic determinatives behave
similarly to determinatives in that they tend to appear at the end of
a word, even after phonograms for subsequent letters (cf. Figure 1).
A phonetic determinative with a certain sound value is applicable if
that value is a substring of the current content of the tape. Applica-
tion of the function leaves the tape content and position of the head
unchanged.
We impose two constraints on the use of jumps. The first is that

jumps with positive values, moving the tape head rightward, should
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not bring it beyond the end of the (written) tape. This is because the
transliteration should be a sequence of letters without any gaps.
The second constraint is that no tape square that already contains

a letter can be overwritten with a different letter. This is consistent
with the application we are aiming to model, viz. Egyptian writing.
This means for example that the first ‘phon(nw)’ in Figure 6 is appli-
cable because the tape content to the right of the head, which is n, is
a prefix of nw. Application of the function leaves that existing n unaf-
fected and in addition appends the remaining suffix w at the end of the
tape and moves the head to be after that suffix. In general, if the tape
content to the right of the head is β , then we can apply a phonogram
with value γ if:
• β is a prefix of γ (as in the case discussed above) or
• γ is a prefix of β (cf. phonogram for f in Figure 8a below).
Our aim is to complete the above framework to allow a sequence

of functions to uniquely determine a sequence of signs and a sequence
of letters. The sequence of signs is straightforwardly obtained as we
already assumed from Section 1 onward that each function deter-
mines one or more consecutive signs. After having added epsilon-
phonograms and jumps, we can now also account for letters not rep-
resented by signs, and for letters represented by several signs.
At least one more refinement remains to be explained. A phono-

gram for t or d is sometimes used for letters in a word that histor-
ically should have ṯ or ḏ, and vice versa; cf. the discussion in Sec-
tion 2.2 about historical sound changes in Egyptian. Hence we some-
times need to give a phonogram an additional feature, so that for ex-
ample ‘phon(t,ṯ)’ indicates that t is the historical sound value of the
sign, say , but the sign is used in the writing of a word whose translit-
eration has ṯ instead.
After this and other minor refinements, any sequence of functions

corresponds to at most one analysis of a word, in terms of a sequence of
signs, a sequence of letters, and the links between them, as exemplified
in Figures 1–3, or in other words, in terms of the kinds of annotations
that exist in our corpus. We also aim to achieve the converse, namely
to translate an annotation of a word to a unique sequence of functions.
Part of this is straightforward, as most of the functions and the order
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in which they occur in a sequence are determined by the order of
the signs. However, if there are no further restrictions, jumps may be
inserted anywhere, even when they are not useful. In particular, they
may be applied just before applying a determinative, even though a
determinative does not depend on the input positions. In principle we
could even apply a number of jumps in sequence, moving the head
back and forth.
We solve this by demanding that jumps only occur just before

application of a phonogram, or a related function whose application
relies on the input position. The concrete realization is by a flag fljump,
which is set to true after a jump. As long as the flag is true, no de-
terminative, phonetic determinative, or another jump is applicable. A
phonogram and a few other functions reset the flag to false. For simi-
lar reasons, we use a flag fleps that is set of true after application of an
epsilon-phonogram. As long as this flag is true, no jump is allowed.
The effect is that epsilon-phonograms are applied as late as possible.
Two more flags, flfp and flend, will be discussed later.
To make the preceding more precise, we introduce the concept of

configuration, which contains:
• the tape content preceding the head position, denoted by α,
• the tape content from the head position onwards, denoted by β ,
• the values of the four flags.

Initially, the tape is empty, so α = β = ϵ, where ϵ denotes the empty
string, and all flags are false.
In a given configuration, only a subset of functions is applicable.

For example, if α = ϵ and β = n, then a function phon(nw) would be
applicable, but not say a function phon(t). The flags also restrict the
applicable functions, as explained above. In general, every function
has a precondition, that is, a set of constraints that determines whether
it is applicable in a certain configuration, and a postcondition, which
specifies how its application changes the configuration. The most im-
portant functions are characterized in this manner in Table 1, with
tape content and position of the head as specified by α and β .
The precondition of a logogram for lemma γ says that γ must

occur from the position of the head onward, possibly after a prefix
of γ was written already, e.g. using phonograms. Furthermore, the
position of the head must be either 0 or 1, and in the latter case,

[ 152 ]



A probabilistic model of Ancient Egyptian writing

Table 1: Preconditions and postconditions

Logogram for γ
Pre α= ϵ or (for causative; see main text) α= s, β is prefix of γ,

fleps = false.
Post α := αγ, β := ϵ, fljump := false.
Phonogram with sound value γ
Pre γ is prefix of β or β is prefix of γ.
Post α := αγ, if β was of the form γδ then β := δ else β := ϵ,

fljump := false, fleps := false.
Determinative not specific to any word
Pre fljump = false, fleps = false.
Post -
Determinative specific to γ
Pre αβ = γδ or (for causative) αβ = sγδ for some δ,

fljump = false, if fleps = true then δ = ϵ.
Post fleps := false.
Phonetic determinative with sound value γ
Pre αβ = δ1γδ2 for some δ1 and δ2,

fljump = false, if fleps = true then δ2 = ϵ.
Post fleps := false.
Spurious
Pre fljump = false, fleps = false

Post -
Jump with value j

Pre fljump = false, fleps = false, δ = αβ , i = |α|, 0≤ i + j ≤ |δ|.
Post α := α′, β := β ′ for some α′ and β ′ such that α′β ′ = δ and |α′|= i + j,

fljump := true.
Epsilon-phonogram for letter ℓ
Pre β = ϵ.
Post α := αℓ, fleps := true.
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the first letter on the tape must be s. This is because in Egyptian,
the prefix s- can be used to derive causative verbs from other verbs.
The writing may then consist of a phonogram for s followed by a lo-
gogram for the original verb. The postcondition for logograms says
simply that γ is written to the tape and the head moves rightward by
|γ| positions.
The precondition of a phonogram with value γ was discussed be-

fore. The postcondition is slightly complicated by the need to distin-
guish between two cases, where γ is a prefix of β or where β is a prefix
of γ (if γ= β , the two cases collapse).
The preconditions and postconditions of determinatives not spe-

cific to any words are straightforward. For a determinative specific
to word γ, we merely need to check whether γ is present near the
beginning of the tape, possibly after the causative prefix s-; if the
previous function was an epsilon-phonogram, then γ must be a suf-
fix of the tape content (recall that we want epsilon-phonograms to be
applied as late as possible). Phonetic determinatives are similar, ex-
cept that the required string γ need not occur near the beginning of
the tape.
Spurious functions require that the previously applied function is

not a jump or epsilon-phonogram. A jump with value j, which can
be positive or negative, is allowed for current position i of the head
provided the previously applied function was not a jump or epsilon-
phonogram, and provided the new position i + j is not preceding the
beginning of the tape nor beyond the end of the tape. An epsilon-
phonogram is only allowed if the head is at the end of the tape.
Our model has a number of specialized functions in place of the

generic typographical functions as they occur in the corpus. For ex-
ample, the three strokes, for ‘plurality or collectivity’, in the model
correspond to three different functions with different preconditions
and postconditions. First, the three strokes may be purely semantic,
in the writing of a collective noun in singular form, where they do not
represent any letters. This function behaves much like a determinative
not specific to any word, except that it can only occur at the end of a
word. For this reason, the flag flend is set to true. The purpose of this
flag is to prevent that further letters are appended behind the end of
the tape, until possibly an Egyptological ‘=’ symbol marks the end of
the current word proper, before a suffix pronoun.
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The plural strokes may also signify plurality in the grammatical
sense, in which case it corresponds to the -w ending of masculine plu-
ral, or to the -wt ending of feminine plural. A separate function is
needed for the two genders, both of which set flend to true. Apart from
the flag flend, the function of three strokes for masculine plural has pre-
conditions and postconditions identical to those of the phonograms.
The case of feminine plural will be discussed further below.
Similarly, our model distinguishes between three uses of the mul-

tiplicative functions with value ‘3’, with different preconditions and
postconditions. As in the case of the plural strokes, their meaning may
be purely semantic, without a word being grammatically plural, or
they may be used as markers of either masculine plural or feminine
plural.
In our corpus we have linked functions marking plural only to the

w from the ending, whether it is the -w ending of masculine plural or
the w that is the first letter of the -wt ending of feminine plural. This is
because the t of the feminine ending would normally be accounted for
already by another sign, which could be a phonogram or logogram, as
illustrated in Figures 8a and 8b.

a: “beautiful (women)”

phon phon phon phon det typ(plur)

n f r w t

b: “its fields”

log phon det typ(plur) phon

s ḫ w t = f

Figure 8:
Annotations of feminine plural words
(Papyrus Westcar)
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The same two examples also illustrate the challenge that feminine
plural poses to a left-to-right automaton model. When the feminine t
is written to the tape, the function justifying the w in front of the t is
not seen until many steps later. The use of jumps to handle this seems
inappropriate, as jumps were designed for phonetic complements. An-
other potential solution is to use lookahead, but this appears difficult
to extend with probabilities.
We have chosen for a different solution, using the flag flfp, for

‘feminine plural’. This flag is set to true when a feminine plural is
predicted by (nondeterministically) putting an extra w on the tape, in
one of two cases. The first is if a logogram of a feminine word is seen,
and the second is if a phonogram for t is seen.
The rest of the computation then has the obligation to reset flfp to

false, and this can only happen if a function for plurality (either the
three strokes or a multiplicative function with value ‘3’) is seen later.
While flfp = true, analysis of the current word cannot be completed.
Concretely for Figure 8a, we now have two functions

‘phon(t,t,false)’ and ‘phon(t,wt,true)’. Both correspond to a phono-
gram for the letter t (the first feature), but realized as t or wt in the
transliteration (the second feature), while possibly predicting femi-
nine plural (the third feature). The first function has the preconditions
and postconditions of a normal phonogram (cf. Table 1), while the
second writes wt on the tape instead of just t and sets flfp to true. The
resulting computation is in Figure 9.
Similarly for Figure 8b, we now have two functions

‘log(sḫt,sḫt,false)’ and ‘log(sḫt,sḫwt,true)’. Both are logograms
for the same sign for lemma sḫt (first feature) while they are realized
differently in the transliteration (second feature), possibly predicting
feminine plural (the third feature). The first function behaves like a
normal logogram, but the second writes sḫwt on the tape and sets flfp

to true. The resulting computation is in Figure 10.
Our model presently has no special provisions for the phe-

nomenon of honorific transposition (Section 4). This implies that
accuracy is poor for the (few) cases of honorific transposition in the
corpus. To address this, one may consider refinements of the model
that allow ‘gaps’ in the hieroglyphic writing to be filled in later, along
the lines of the Operation Sequence Model (Durrani et al. 2015).
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↓ flfp = false, flend = false

phon(nfr) n f r ↓ flfp = false, flend = false

jump(-2) n ↓ f r flfp = false, flend = false

phon(f ) n f ↓ r flfp = false, flend = false

phon(r) n f r ↓ flfp = false, flend = false

phon(t, wt, fp=true) n f r w t ↓ flfp = true, flend = true

det(female) n f r w t ↓ flfp = true, flend = true

typ(plur) n f r w t ↓ flfp = false, flend = true

Figure 9:
Computation for nfrwt

↓ flfp = false, flend = false
log(sḫt,sḫwt, fp=true) s ḫ w t ↓ flfp = true, flend = true
jump(-1) s ḫ w ↓ t flfp = true, flend = true
phon(t,t,fp=false) s ḫ w t ↓ flfp = true, flend = true
typ(plur) s ḫ w t ↓ flfp = false, flend = true
phon(=) s ḫ w t = ↓ flfp = false, flend = false
phon(f ) s ḫ w t = f ↓ flfp = false, flend = false

Figure 10:
Computation for sḫwt=f

6 probabilities

After having captured the relation between sequences of signs and
sequences of letters solely in terms of sequences of functions, the next
step is to estimate their probabilities. An obvious candidate is a simple
N -gram model:

P( f n
1 ) =
∏

i

P( fi | f i−1
1 )≈∏

i

P( fi | f i−1
i−N+1)

Here f1, . . . , fn is a sequence of functions, ending in an artificial end-
of-word function, and f j

i is short for fi , . . . , f j. In our experiments, es-
timation of P( fi | f i−1

i−N+1) is by relative frequency.
About 4000 functions are compiled out of the entries of the sign

list. Added to this are dynamically created functions, such as num-
bers, epsilon-phonograms and jumps. Because little training material
is available, this means a considerable portion of these functions is
never observed, and smoothing techniques become essential. We use
Katz’s back-off (Katz 1987) in combination with Simple Good-Turing
(Gale and Sampson 1995).
Functions are naturally divided into a small number of classes,

such as the class of all phonograms and the class of all logograms.
Using these classes as states, we obtain a second type of model in
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terms of (higher-order) HMMs (Rabiner 1989; Vidal et al. 2005). For
fixed N , and with ci denoting the class of function fi, we have:

P( fi | f i−1
i−N+1) ≈ P(ci |c i−1

i−N+1) ∗ P( fi |ci)

Estimation of both expressions in the right-hand side is again by rela-
tive frequency estimation, in combination with smoothing.
It should be noted that not all sequences of functions correspond

to valid writings. Concretely, in the configuration reached after ap-
plying functions f i−1

1 , the preconditions of function fi may not hold.
As a result, some portion of the probability mass is lost in invalid se-
quences of functions. We see no straightforward way to avoid this, as
the model discussed in Section 5, which allows jumps of the tape head,
cannot be captured in terms of finite-state machinery.

7 results
In our experiments, the training corpus was Papyrus Westcar and the
test corpus was The Shipwrecked Sailor. We have considered but re-
jected the possibility of taking two disjoint parts of both texts together
as training and test corpora, for example taking all odd words from
both texts for training and all even words for testing. The argument
against this is that many words occur repeatedly in the same text, and
therefore there would be a disproportionate number of words that oc-
cur in both training and test material, potentially leading to skewed
results.
Our objective is now to guess the correct sequence of functions,

given the sequence of signs and the sequence of letters of a word. We
determined recall, precision, and F-measure, averaged over all words
in the test corpus. This was done after removing jumps and epsilon-
phonograms, so that we could take the annotations from the corpus
as gold standard. We have also ignored how functions are linked to
letters; the main motivation for this was to be able to define a suitable
baseline, as described next.
Among all sequences of functions that correspond to a given se-

quence of signs, the baseline model yields the one that maximizes the
product of the (unigram) probabilities of those functions. Note that a
function can correspond to one, two or more signs, so that all rele-
vant partitions of the given sequence of signs need to be considered.
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As this ignores the letters altogether, the baseline is independent of
the model of Section 5, avoiding the intricacies of preconditions and
postconditions.
For a concrete example, consider Figure 2b as gold standard. The

‘relevant’ items are (1) the logogram function of for the lemma ḏbʾ,
“finger”, tied to the first sign, (2) the typographical function of the
three strokes, with meaning ‘plural’ and realized as letter w, tied to
the next three signs, and (3) the phonogram function of with
sound value k, tied to the last sign. Recall and precision are 100% if
‘retrieved’ are exactly these three items.
We implemented the N -gram models and HMMs from Section 6.

An acyclic finite automaton is first created, with states representing
configurations together with the last N − 1 functions or classes. Tran-
sitions are labelled by functions, and have weights that are negative
log probabilities determined by the chosen probabilistic model. Most
of the functions directly come from the sign list. Other functions are
dynamically constructed, on the basis of the input signs, as for example
typographical functions representing numbers. Another example is the
class of multiplicative functions, which are generated if a pattern of
one or more signs occurs two or more times. Final states correspond to
configurations reached after processing all the signs of a word, with
α equal to the transliteration of that word, β = ϵ, fljump = false and
flfp = false. A final state always exists, in the worst case by analyzing
all signs as spurious, and applying one epsilon-phonogram for every
letter.
The shortest path from the initial state to a final state is extracted

using the shortest-path algorithm of Dijkstra (1959). The labels on
this path then give us the list of functions on the basis of which we
compute recall and precision.
Results are given in Table 2. It is unsurprising that the models

with N = 1 improve over the baseline. Although the baseline is also
defined in terms of unigram probabilities, it ignores consistency of
the sequence of functions relative to the letters. The first-order HMM
performs better than the unigram model. This can be attributed to
smoothing. For example, the unigram model will assign the same low
probability to a spurious function unseen in the training material as
to an unseen phonogram, although phonograms overall are far more
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Table 2:

Experimental results:
recall, precision, F-measure

R P F1
baseline 86.0 86.0 86.0
N -gram
N = 1 90.6 90.6 90.6
N = 2 94.4 94.4 94.4
N = 3 94.4 94.4 94.4
HMM
N = 1 91.4 91.4 91.4
N = 2 91.8 91.8 91.8
N = 3 92.0 92.0 92.0
interpolation of N -gram and HMM
N = 1 90.5 90.5 90.5
N = 2 94.8 94.8 94.8
N = 3 95.0 94.9 94.9

likely. The first-order HMM however suitably models the low proba-
bility of the class of spurious functions.
For N greater than 1, the HMMs perform less well than the N -

gram models. This suggests that the probabilities of functions depend
more on the exact identities of the preceding functions than on their
classes. The best results are obtained with linear interpolation of the
N -gram model and the HMM, weighted 9:1, for N = 3.

8 conclusion and outlook

Our contributions include the design of an annotated corpus of sign
use, allowing quantitative study of the writing system, and serving
to document rare uses of signs. The second main contribution is a
probabilistic model of how signs follow one another to form words.
The model is amenable to supervised training. Unsupervised training
will be the subject of future investigation.
The probabilistic model is evaluated through computation of

the most probable sequence F of functions given the sequence S of
signs and the sequence L of letters, or formally argmaxF P(F | S, L)
= argmaxF P(F, S, L), where P(F, S, L) is the joint model of Section 6.
The model could also be the starting point for other tasks, such as
automatic transliteration. However, evaluating argmaxL P(L | S) =
argmaxL

∑
F P(F, S, L), using the same model P(F, S, L) as before, is
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not likely to give satisfactory results. This is because, in general, a
shorter sequence F tends to have a higher probability than a longer
one, and handling of, for example, phonetic complements typically
requires longer sequences involving jumps. As a consequence, overly
long transliterations will be produced with repeated letters.
The solution we propose is to let the automaton model compute

conditional probabilities P(F, S | L), in combination with a prior model
P(L). This model would involve a probability distribution over the
lengths of stems (most nouns and verbs have stems of two or three
letters) and simple forms of morphosyntactic knowledge, including
the Egyptological punctuation symbols. In the ideal case it would also
include a lexicon. This is yet to be implemented and evaluated.
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