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An outline of type-theoretical approaches
to lexical semantics

Robin Cooper! and Christian Retoré?
1 University of Gothenburg
2 Université de Montpellier & LIRMM

ABSTRACT

We take the opportunity of the publication of some of the papers
of the ESSLLI workshop TYTLES (TYpe Theory and LExical Seman-
tics, ESSLLI 2015, Barcelona) to provide an overview of the possi-
bilities that type theory offers to model lexical semantics, especially
the type-theoretical frameworks that properly model compositional
semantics.

ORIGINS OF THIS ISSUE: ESSLLI WORKSHOP ON
TYPE THEORY AND LEXICAL SEMANTICS (2015)

The program of the ESSLLI 2015 workshop held in Barcelona! con-
sisted of twelve selected talks. The corresponding extended abstracts,
together with an introduction and a conclusion by the workshop or-
ganisers, are available on the web as Cooper and Retoré (2015); it
includes:

A. Introduction (slides), by Robin Cooper and Christian Retoré.

B. Justyna Grudziriska and Marek Zawadowski. A Puzzle about Long-
distance Indefinites and Dependent Type Semantics.

C. Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier
and Manel Zarrouk. Type Theories and Lexical Networks: Using Se-
rious Games as the Basis for Multi-Sorted Typed Systems.

10n 17 August 2017, while writing this introduction, we learnt about the
tragic attack in Barcelona, where some friends and colleagues live. We would
like to express our sympathy.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 165-178
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Robin Cooper, Christian Retoré

. Staffan Larsson. Perceptual Meaning in TTR Judgement-based Se-

mantics and Conceptual Spaces.

. Simon Dobnik. Interfacing Language, Spatial Perception and Cogni-

tion in Type Theory with Records.

Peter Sutton and Hana Filip. Probabilistic Mereological TTR and the
Mass/Count Distinction.

Ellen Breitholtz. Are Widows Always Wicked? Learning Concepts
through Enthymematic Reasoning.

. Bruno Mery. The Relative Complexity of Constraints in Co-Predi-

cative Utterances.

. Daisuke Bekki and Miho Satoh. Calculating Projections via Type

Checking.

Laura Kallmeyer, Timm Lichte, Rainer Osswald, Sylvain Pogo-
dalla and Christian Wurm. Quantification in Frame Semantics with
Hybrid Logic.

Livy Real and Alexandre Rademaker. An Overview on Portuguese
Nominalisation.

Pepijn Kokke. Formalising type-logical grammars in Agda.

Seohyun Im and Chungmin Lee. A Developed Analysis of Type Co-
ercion Using Asher’s TCL and Conventionality.

Ribeka Tanaka, Koji Mineshima and Daisuke Bekki. Factivity and
Presupposition in Dependent Type Semantics.

Conclusion (slides), by Robin Cooper and Christian Retoré.

Some of these papers were submitted and some of these are now in-
cluded in this issue of the Journal of Language Modelling on Type theory
and lexical semantics.

Let us briefly present this fruitful connection of lasting interest.

A COMPOSITIONAL VIEW
OF LEXICAL SEMANTICS

The relation between lexical semantics and type theory is rather un-
natural if one thinks of lexical semantics as defined, e.g., in the arti-
cle Lexical Semantics in the Oxford Research Encyclopedia of Linguistics
(Geeraerts 2017):
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Type-theoretical approaches to lexical semantics

Lexical semantics is the study of word meaning. Descrip-
tively speaking, the main topics studied within lexical se-
mantics involve either the internal semantic structure of
words, or the semantic relations that occur within the vo-
cabulary. Within the first set, major phenomena include pol-
ysemy (in contrast with vagueness), metonymy, metaphor,
and prototypicality. Within the second set, dominant topics
include lexical fields, lexical relations, conceptual metaphor
and metonymy, and frames.

If we have a look from the other side, i.e., philosophy of lan-
guage, where logic, compositional semantics and type theory live, the
connection is at least evoked as in these words from the entry on Word
Meaning in the Stanford Encyclopaedia of Philosophy (Gasparri and
Marconi 2016):

Word meaning has played a somewhat marginal role in
early contemporary philosophy of language, which was pri-
marily concerned with the structural features of sentences
and showed less interest in the format of lexical represen-
tations and in the nature of the word-level input to compo-
sitional processes. Nowadays, it is well-established that the
way we account for word meaning is bound to have a major
impact in tipping the balance in favor or against a given pic-
ture of the fundamental properties of human language. This
entry provides an overview of the way issues related to lexi-
cal meaning have been explored in analytic philosophy and a
summary of relevant research on the subject in neighboring
scientific domains.

So this survey, as well as the workshop, is devoted to the study
of lexical semantics in a compositional framework deriving — roughly
speaking — from Montague semantics and the lexical issues to be dealt
with are:

» word meaning in context (various forms of polysemy),
« relation between meanings,
- relation between lexical networks and lexical semantics.

Observe that from a logical viewpoint, relations between mean-
ings are naturally higher order relations which oblige us to go beyond
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first order logic and type theories are naturally higher order — of course
reification a la Davidson is possible, but still rather unnatural and less
compositional.

Usual techniques for taking into account at least part of lexical se-
mantics are the descriptions using features (e.g. human/non-human),
argument structures which specify the nature of arguments to predi-
cates and the composition of word vectors that has been quite fash-
ionable recently although it obliges us to leave out some of the logical
structure involved in compositional semantics such as negation.

2 SOME ASPECTS OF LEXICAL SEMANTICS
IN COMPOSITIONAL FRAMEWORKS

2.1 Polysemy
Polysemy is the phenomenon that a single word or expression has sev-
eral readings. It is common to distinguish various forms of polysemy.

Simple polysemy might be viewed as the coincidence that a word
has several unrelated meanings, which in some contexts may be hard
to choose between, as in (1).

@D) a. The river flowed by the bank.
b. The bank is near the river.
c. The bank phoned me.

This should be distinguished from words that have several inter-
related meanings derived from a root meaning. An institution like a
journal or a town have such aspects, which are also called facets, as
shown in (2).

(2) a. The journal is printed on pink paper.
b. The journal hired a new commentator.
c. The journal is near the port.

Events are a special case of this, and they play a particular role
in semantics. Deverbals may refer to aspects of an action verb such as
the process, the result, the place or the material used, as in (3)-(4).
There is a rich literature on the topic, see, e.g., the references in Real
and Retoré (2014).

(3) a. The signature took three months.
b. The signature is unreadable.
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(4) a. The building in front of my house took three months.
b. The building in front of my house is ugly.

There is a special form of polysemy where the two aspects are
strongly linked: one aspect does not exclude the other, on the contrary
you cannot have one without the other. This has some consequences
for the individuation process and the interpretation of the quantifiers,
as shown in (5).

(5) a. Icarried all the books from the library to the attic.
b. Iread all the books in the library.

There are examples that are hard to understand without the con-
text, which can be linguistic or extralinguistic, as in (6).

6) a. I am parked behind a blue BMW.
b. The ham sandwich asked for a coffee.

2.2 Co-predication

Given that compositional semantics is quite interested in the logical
structure of sentences, it is normal that it has been studying how one
can conjoin the properties of a word, properties which may concern
only a single aspect of this word, as in (7)-(10).

(7) Dinner was delicious but took ages. (event/food)
(8) *The salmon we had for lunch was lightning fast. (animal/food)

(9) a. I left my preferred book on logic on the table. (physi-
cal/information)
b. Icarried the books from the shelf to the attic since I already
read them. (physical/information)
(10) a. Liverpool is a poor town and an important harbour. (peo-
ple/geographic)
b.* Liverpool defeated Chelsea and is an important harbour.
(football/geographic)

It can be observed that in some thematic contexts or contrasts a
priori infelicitous co-predication may become felicitous.

(11) a. Barcelona won four champions leagues and organised the
olympiads.
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b. Libourne, a small south-west town, defeated Lille.

Deverbals rarely allow co-predications on their different facets,
as discussed in Real and Retoré (2014) and at the workshop, in Livy
Real’s talk.

3 INTEGRATING LEXICAL SEMANTICS INTO
A COMPOSITIONAL AND COMPUTATIONAL
FRAMEWORK

Standard lexical semantics, including distributional semantics as used
in natural language processing, involving big data, machine learning,
information retrieval, and so on, is mainly concerned with what a sen-
tence or a text is about in terms of empirically grounded word mean-
ings. For instance, word vectors are derived from the cooccurrences
of words in texts. They are especially good for the study of semantic
similarity: the cosine measure of similarity or the products of vectors
by matrices may model the combination of a verb and its object or of
an adjective with a noun, etc.

Formal semantics is rather concerned with logical and pragmatic
relations: what a sentence (or discourse) asserts, denies, supposes, how
noun phrases and pronouns (co)refer to individuals and sets, in which
situations (or worlds) sentences are true. It is also concerned with the
interpretation of modality, aspect and tense. Usually intepretation as-
sumes that lexical meaning has been determined in some way exter-
nal to the semantics. It is carried out in two steps: word meanings are
combined according to syntactic analysis into a logical formula, which
is thereafter interpreted in terms of some semantics, usually possible
worlds semantics, although other interpretations of logical formulas
are possible, like situation semantics or game-theoretical semantics.

These two approaches are complementary, and an adequate the-
ory of semantics should take both into account. For instance, if one is
looking for an answer to the question whether Geach was a student of
Wittgenstein, one can find in the French Wikipedia (contradicting the
English version):

(12) In 1941, [Geach] married Elisabeth Anscombe, through whom
he got in contact with Wittgenstein. Although he never attended
the lectures of the latter, he was strongly influenced by him.
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Both word meaning (“student of”, “to attend some lectures by”)
and sentence/discourse structure are needed to understand this text
(scope of the negative “never”, reference of pronouns like “he”,
“whom?”, “the latter”, “his” and “him”).

In Human Machine Interaction large scale analysis on the fly is
not practical but proper understanding is still important. For instance,
if a parent says “the children want pizza” to some McDonald’s-like
automaton, the person who treats the order needs to know whether
to prepare one or several pizzas and in this case the system should
know that this has not been determined by the utterance and should
therefore ask for a clarification.

3.1  Pustejovsky’s generative lexicon: a framework for polysemy

Important and pioneering work on polysemy has been carried out
by Pustejovsky. Although those questions have been studied at least
since the 1970s (Apresjan 1974; Bierwisch 1979, 1983; Nunberg 1979,
1995; Cruse 1986; see, e.g., Lauer 2004 or Dolling 2018 for survey
and comparisons), Pustejovsky (1991, 1995) was the first to propose
a formal compositional framework for handling word meaning and
the transformation of word meaning in context.
The basic components of Pustejovsky’s approach are:

+ a compositional (generative) view of word meaning,

+ a formal framework: word meaning as complex feature structures
(he way they combine is less specified),

« computational tractability.
There are four levels in an entry of the generative lexicon:

« lexical typing structure: giving an explicit type for a word posi-
tioned within a type system for the language,

+ argument structure: specifying the number and nature of argu-
ments to a predicate,

« event structure: defining the event type of the expression and any
subevent structure it may have,

+ qualia structure: a structural differentiation of the predicative
force for a lexical item organised in four quale:

- formal: the basic category which distinguishes the meaning
of a word within a larger domain,
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- constitutive: the relation between an object and its con-
stituent parts,

— telic: the purpose or function of the object, if there is one,

- agentive: the factors involved in the object’s origins or “com-
ing into being”.

Types play an important role in the generative lexicon. There are
base types organised as an ontology. Functional types are also used,
in particular, in the argument structure.

To sum up, the generative lexicon is the first compositional se-
mantic framework that integrates some aspects of lexical meaning.
Some of the structures and notions involved in this framework are
fully formalised, but not all of them. For instance, the structure of the
entries is completely formalised. Nevertheless some aspects remain to
be made precise, such as the set of base types and their ontology. When
it comes to the way lexical items combine, the composition modes and
rules are mainly described in terms of examples, whereas automated
semantic analysis would require a general procedure as well as a pre-
cise correspondence between syntactic operations and semantic rules.
So one may wonder whether this framework is already able to compute
the semantics of a whole complex sentence, or of a small discourse.

It is worth noticing that some important parts of the generative
lexicon can be learnt, in particular the qualia structure (Claveau et al.
2003). It is still an open question whether other fields than qualia
structure can be learnt.

3.2 Lexical semantics and compositionality

3.2.1 Selectional restrictions

One way to start addressing lexical issues in compositional semantics
concerns selectional restrictions, as in (13).

(13) The chair barked.
(14) Dictionary: “barks” is said of an animal, usually a dog.

A commonly adopted idea is that infelicitous semantic composi-
tion is a type mismatch: a predicate P over A entities (a function from
objects of type A to propositions or truth values) is applied to an entity
t of type B with B #A:
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PA—)prop( tB )
as it is the case in example (13):
B arkanimal—»prop (th e ch air)physical object

This constraint needs to be relaxed in certain contexts. While (13)
sounds strange, (15a) is much easier to interpret and (15b) provides a
naturally occurring example.

(15) a. I'wasso late for registration that the secretary barked at me.

b. Bow Wow barked at on Twitter for claiming he flies

private (https://www.cnet.com/news/bow-wow-barked-at-on-
twitter-for-claiming-he-flies-private/, 27/8/2017)

Observe that meaning transfers are idiosyncratic. In French you
can say that either a tyre or a car is “punctured”, as in (16a) and
(16b). Correspondingly, in English you can say that a tyre or a car has
a puncture, as in (16¢). However, while you can say that a tyre is flat
or punctured, as in (16d), in English you cannot say that a car is flat
or punctured, as in (16e).

(16) a. Le pneu est crevé.
The tyre is punctured.

b. Ma voiture est crevée.
My car is punctured.
My car has a puncture.
c. My tyre/car has a puncture.
d. My tyre is flat/punctured.
e.#My car is flat/punctured.

Idiosyncratic phenomena can even be observed in the same lan-
guage. Indeed some words with the same ”“ontological type” may have
different meanings. For instance in French, of two words designating
a set of students, namely classe (class/classroom) and promotion (year
group) only classe may mean classroom.

(17) a. La classe de CP a été repeinte pendant les
The class of 1st-year was repainted during the
vacances.
holidays.
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b.#La promotion 2015 a été repeinte pendant les
The year-group 2015 was repainted during the
vacances.
holidays.

One issue is whether adaptation of word meaning to context
should be word-driven or type-driven. A related issue is whether the
base types should be related to ontological classes or to linguistic be-
haviours, different answers being developed by Asher (2011), Retoré
(2014), Kinoshita et al. (2017), Chatzikyriakidis and Luo (2017), Mery
and Retoré (2017).

4 USING TYPES FOR LEXICAL SEMANTICS

There are three broad areas relating to the lexicon represented in the
papers here which suggest that a type-theoretical approach can be
useful. These are:

+ dynamic aspects of the lexicon,
+ use of dependent types,
+ probability.

We will discuss each of these in turn.

4.1 Dynamic aspects of the lexicon

There is general agreement in these papers that lexical meaning is to be
treated dynamically. This idea relates, of course, to the original work
on the generative lexicon and notions of coercion. But it also relates
to the fact that we are constantly learning new words and meanings
for words, that lexical meaning is in flux.

In type-theoretical approaches there is a focus on the types of
objects rather than the sets of objects (witnesses or inhabitants) which
belong to those types. In introducing types we attempt to define the
conditions under which an object would belong to the type rather than
simply associating a set of objects with the type. This means that we
can adapt a type theory to models where the set of witnesses of a type
may change dynamically over time, without the type itself thereby
changing. It introduces the possibility of modelling how we observe
new witnesses of a type as we discover more of the world. This is
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different from a Montagovian notion of sense: a function from possible
worlds and times to extensions. If you discover a new object at a given
world and time, then the Montagovian sense is different.

Another dynamic aspect offered by a type theory is that the type
associated with a word can change over time. Many modern type the-
ories offer a notion of structured types (such as record types) which
allows us to give an account of change not available in a Montago-
vian sense. For example, a record type can be changed by adding or
removing a field whereas in a Montagovian sense the only structure
we have is that of the set of ordered pairs which is the function from
world-time pairs to extensions.

Papers relating to some kind of dynamic aspect of types in this
issue are those by Chatzikyriakidis et al. and Dobnik et al.

The notion of structured type figures indirectly in the paper by
Kallmeyer et al. The notion of frame which they introduce in terms
of hybrid logic relates intuitively to the notion of frame in terms of
record types discussed in Cooper (2016). It would be interesting, for
example, to explore whether the expressions of hybrid logic can be
thought of as record types modelling event types.

4.2 Dependent types

Dependent types are parametrised types which return a type depend-
ing on what objects are provided for their parameters. They can be
thought of a functions from objects to types. A classical use of de-
pendent types is for donkey anaphora, as first presented in Sundholm
(1986) and discussed in Ranta (1994). However, a number of other
uses have been pointed out in the literature. In the papers in this issue
their use is discussed for presupposition (Tanaka et al.).

4.3 Probability

In standard type theory judgements that objects are of a given type are
categorical: either an object is of a type or it is not. However, it seems
intuitive that agents make probabilistic judgements: it is probable that
a given object is of a given type, but it is not certain. Cooper et al.
(2015) proposed a probabilistic type theory that could be used for
natural language semantics and in this issue Sutton et al. apply this to
the analysis of the mass/count distinction.
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5 CONCLUSION

This special issue represents a broad span of approaches using different
type theories but, as we have tried to point out in this introduction,
they share a number of common assumptions and goals. This bodes
well for future research on type theory and lexical semantics.
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ABSTRACT

In this paper, we will discuss three semantically distinct scope assign-
ment strategies: traditional movement strategy, polyadic approach,
and continuation-based approach. Since generalized quantifiers on a
set X are elements of €(X), which is the value of the continuation
monad ¢ on X, quantifier phrases are interpreted as ¢-computations,
in all three approaches. The main goal of this paper is to relate the
three strategies to the computational machinery connected to the
monad ¢ (strength and derived operations). As will be shown, both
the polyadic approach and the continuation-based approach make
heavy use of monad constructs. In the traditional movement strategy,
monad constructs are not used but we still need them to explain how
the three strategies are related and what can be expected of them with
regard to handling scopal ambiguities in simple sentences.

1 MULTI-QUANTIFIER SENTENCES AND THREE
SCOPE-ASSIGNMENT STRATEGIES

Multi-quantifier sentences can be ambiguous, with different readings
corresponding to how various quantifier phrases (QPs) are semanti-
cally related in the sentence. For example,

(1) Every girl likes a boy

admits of the subject wide-scope reading (S > O) where each girl likes
a potentially different boy, and the object wide-scope reading (O > S)
where there is one boy whom all the girls like. As the number of QPs in
a sentence increases, the number of distinct readings also increases.
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Thus a simple sentence with three QPs admits of six possible read-
ings, and in general a simple sentence with n QPs will be (at least) n!
ways ambiguous (we only consider readings where QPs are linearly
ordered — what we will call asymmetric readings). In this paper, we
will discuss three semantically distinct scope-assignment strategies:

Strategy A: Traditional movement strategy (Cooper 1983; May 1978;
Montague 1973).

Strategy B: Polyadic approach (Keenan 1992, 1987; May 1985;
Van Benthem 1989; Zawadowski 1989).

Strategy C: Continuation-based approach (Barker 2002; Barker and
Shan 2014; Bekki and Asai 2009; De Groote 2001; Kiselyov and
Shan 2014).

In all three strategies, QPs are interpreted as generalized quantifiers.
A generalized quantifier on a set X is of type ¢(X) = (X — t) — t (with
t = {true, false}). The main difference between the three approaches
lies in the semantic operations used to compute the truth-value of the
relevant multi-quantifier sentences.

1.1 Strategy A

Strategy A has been implemented in various ways, using May’s QR
(1978), Montague’s Quantifying In Rule (1973), or Cooper Storage
(1983). In this strategy, the scope relations for multi-quantifier sen-
tences like (1) are derived by applying quantifiers to the predicate (of
type Z(X xY) = (X xY) — t) one by one — the later the quantifier is
introduced, the wider its scope. In the terminology to be adopted in
this paper, strategy A makes use of what we will call, after Mostowski,
partial mos-operations:

mosy : G(V)x Z(X xY)— #(X)
defined by a lambda term as:
mosy = AQ.4(y)-AC.o(xxv) AX.x - Q(AY.y.c(x, ¥));
and total mos-operations:

mosy : (X)X P(X)—t
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defined by a lambda term as:

mOSX = AQ(g(x).AC‘@(x) .Q(C).

Strategy A can be straightforwardly extended to account for sentences
involving three or more QPs (by allowing permutations of QPs).

1.2 Strategy B

Strategy B involving polyadic quantification was introduced and de-
veloped in the works of May (1985), Keenan (1987, 1992), Zawad-
owski (1989) and Van Benthem (1989). In this strategy, the scope re-
lations for multi-quantifier sentences like (1) can be derived by turning
a sequence of quantifiers into a polyadic quantifier, using what we will
call left and right pile’up-operations (also known as iterations):

pile’up’, pile’up” : 6€(X) x €(Y) — € (X x Y)
defined, for M € €(X) and N € €(Y), by lambda terms as:

pile’up' (M, N) = A¢. (xxy)-M(Axx N(Ay.yc(x,y))
and

pile'up’ (M, N) = Ac.pxxy)-N(Ay.y M(Axxc(x, ¥)).

The polyadic quantifier thus formed is only then applied to the pred-
icate. Again, strategy B can be straightforwardly extended to account
for sentences involving three or more QPs (by allowing permutations
of QPs).

1.3 Strategy C

Strategy C, the most recent, involves continuations and was first pro-
posed in the works of Barker (2002) and De Groote (2001), and
then further developed and modified in the works of Barker and
Shan (2014), Kiselyov and Shan (2014) and Bekki and Asai (2009).
Continuation-based strategies can be divided into two groups: those
that locate the source of scope-ambiguity in the rules of semantic com-
position, and those that attribute it to the lexical entries for the quan-
tifier words. In this paper, we consider only the first group: operation-
based approaches (as in Barker 2002). In this strategy, a predicate
gets lifted (‘continuized’), i.e. a predicate of type X — t will be lifted
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to an expression of type ¥(X — t) = (X — t) — t) — t; etc. Scope
relations for multi-quantifier sentences like (1) are derived by first
combining the lifted predicate with the object QP, and then merging
the result thus obtained with the subject QP, using the so-called CPS
transforms: !

CPS!(ev),CPS (ev) : €(X) x € (X = Y) — €(Y)
given, for M € ¥(X) and N € €(X — Y), by

CPS!(ev)(M,N) = Ac.g(v)-M(Ax.x .N(Ag.xy-c(g x)))
and

CPS' (eV)(M,N) = Ac.o().N(Agxy M(Ax.x.c(g x))).

Strategy C can be seen as a compelling alternative to the traditional
movement strategy (Strategy A), and the polyadic approach (Strategy
B), for a uniform non-movement (in situ) analysis of quantifiers. How-
ever, it cannot be straightforwardly extended to account for sentences
involving three QPs.

As will be explained below, a generalized quantifier on a set X is
an element of €(X), the value of the continuation monad % on X. In
this paper, we will show that the continuation monad can be taken as a
common basis for the three scope-assignment strategies just described.
This will allow us to present these strategies against a uniform back-
ground and explicitly spell out the semantic operations used in each
strategy. Two of the three strategies, B and C, use strength: the ad-
ditional structure that exists on the continuation monad. This shows
that the pile’up operations employed in the now widely accepted and
well-understood strategy B, and the CPS operations employed in the
less popular strategy C, considered more difficult, are in fact very
close in spirit. We thus hope that our results will help to make the
continuation-based strategy more popular.

The remaining part of this paper is organized as follows. We first
introduce the notion of monad, starting with some informal remarks,

11n standard categorial grammar approaches, the scope relations for multi-
quantifier sentences like (1) can be obtained via higher-order verb types
(Hendriks 1993). For a comparison of standard type-shifting approaches and
continuation-based strategies, see e.g. Barker and Shan (2014).
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followed by a definition, and examples relevant to linguistics. We then
introduce the continuation monad itself. Next, we define the notion of
bi-strong monads, and show how the relevant algebraic operations
(pile’ups, T-transforms and, in particular, CPS-transforms) are to be
derived from strengths. Then we precisely state three specific imple-
mentations of the scope-assignment strategies: the traditional move-
ment strategy (as implemented in May 1978), the polyadic approach
(as in May 1985), and the continuation-based approach (as proposed
in Barker 2002). With this background, we can explain how the three
strategies are related, and what can be expected of them with regard
to handling scopal ambiguities in simple sentences. An appendix con-
tains the relevant proofs.

2 MONADS AND STRENGTHS

It is widely accepted that the notion of monad (also called ‘triple’) was
first introduced in 1958 by Godement under the name of ‘standard
construction’ (Godement 1958). It was soon realized that any pair of
adjoint functors gives rise to a monad. Later, in 1965, it was discovered
independently by Kleisli (1965) and by Eilenberg et al. (1965) that any
monad is induced by an adjunction. For many years, the Eilenberg-
Moore algebras were the most popular with mathematicians. It was
Moggi who in 1989 used monads to build semantics for programming
languages (Moggi 1991). Soon afterwards, Wadler employed monads
to model side-effects in functional programming (Wadler 1990). In
these new applications, the Kleisli algebras gained more importance.
In both cases, monads are used to extend the notion of a function. After
such a prelude, it did not take long for these ideas to be adopted in
linguistics. The Kleisli construction can be thought of as an extension
of a function/transformation f:

f:X—Y

between two sets, X and Y, which somehow reflects the fact that such
a transformation is not considered as a mere mapping of arguments
to values, but that there is also a particular computational process
related to this association. This process, when applied to an element
x of the domain set X, can indeed result in returning a value f(x) of
the codomain set Y. But it can also provide a more involved result
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belonging to a set T(Y), related in some way, but possibly bigger (or
even much bigger) than Y itself. Thus we can think about such an
extended? transformation between X and Y as a mere function:

f:X—T(Y)

from the set X to the extension T(Y) of the set Y. This seems to be
an intuitively clear and simple idea, but then we need to see whether
we can still work with such ‘extended functions’ as we can with or-
dinary functions. The answer varies depending on how demanding
we are. The minimum (which should be adequate for most purposes)
that we should expect from these ‘extended functions’ is that they
compose, that this composition should be associative, and that there
should be ‘extended functions’ that act as if they were ‘doing noth-
ing’ (i.e. like identities). Once we agree that these expectations are
natural, we can try to specify the reasonable condition to guarantee
this for construction T, i.e. that T should be a monad. Then the unit
(return) ny : X — T(X) acts as an identity on X, and the multiplica-
tion u, : T?(Z) — T(Z), together with the fact that T is a functor,
can be used to define the composition of the two ‘extended functions’,
f:X—T(Y)and g:Y — T(Z), as follows:

f T(g) Uz

X T(Y) T%(Z) T(Z)
The conditions imposed on T ensure that 7y is in fact the identity on
X and that the composition thus defined is associative.

It is fair to say that the above is a short mathematician’s intro-
duction to monads, as used by computer scientists. In fact, the very
notion of monad is usually formulated differently by computer sci-
entists. This is, we think, due to the fact that the actual computa-
tion of the set T(Y) even for the finite set Y can easily be infinite.
This can be taken as a form of potential infinity. But then the sec-
ond iteration T(T(Y)) = T?(Y), needed to express the multiplication
u, is even more challenging (since it requires applying the functor T
to an already potentially complicated set T(Y)). The computer scien-
tists’ solution to this problem is to consider the combined operation

bind : T(X) - (X — T(Y)) — T(Y) (instead of the multiplication w),

21n some degenerate cases, the set T(Y) might even be smaller than Y.
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which never uses the second iteration of T. No matter how we de-
fine the monad T, the Kleisli category is the same. The potential gain
from this extension for linguistics is that some processes which could
not be described as compositional processes, applying (ordinary) func-
tions to arguments, can become compositional after all, if we relax our
notion of function to the ‘extended function’ we described above. The
so-called continuation semantics for natural language, or ‘strategy C’
in this paper, is an illustration of such a phenomenon.

2.1 Monads - definition and examples

For unexplained notions related to category theory, we refer the reader
to standard textbooks on the subject. We shall be exclusively working
in the Cartesian closed category of sets Set. The category Set of sets
has sets as objects. A morphism in Set from an object (set) X to an
object (set) Y is a function® f : X — Y from X to Y. A monad on
Set is a triple (T,n,u) where T : Set — Set is an endofunctor (the
underlying functor of the monad), n : 15,, — T and u : T> — T are
natural transformations (the first from the identity functor on Set to
T, the second from the composition of T with itself to T) making the
following diagrams commute:

T(n)
T Nr T2 n 3 Ur T2
1r u 1r T(u) u
}
2
T T o T

These diagrams express the essence of the algebraic calculations. We
shall explain their meaning while describing the list monad below. The
symbols 1 and u are often referred to as the unit and multiplication of
the monad, respectively, while T is its functor part. When 7 and u are
clear from the context, it is customary to refer to the whole monad
(T,n,u)as T.

Before we focus on the continuation monad, the main notion of
computation considered in this paper, we shall illustrate the concept

3We always consider functions with specified domains and codomains. For a
pedantic reader, a function can be thought of as a triple (X, Y, f), such that X and
Y are sets and f is a subset of the product X x Y, which is total and univalued.
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with some examples also relevant to linguistics (see e.g. Charlow 2014,
and Shan 2002).

Examples of monads

1. The Identity monad is the simplest possible monad, but it is not
very interesting. In this case, the functor T and the natural trans-
formations 1 and u are identities. For this monad, the notion of
a T-computation in X is just an element of X, as the function
f:X—T(Y)isjustf: X —Y.

2. The Maybe monad is the simplest non-trivial monad. The functor
T sends every set X to the set T(X) =X + {1} (the disjoint sum of
X and singleton {_1}), and every function f : X — Y to a function
T(f): T(X)— T(Y), such that, for x € T(X):

x ifxeX

T(f)(x):{ 1 oifx=1

So T adds to X an additional element 1, called bottom or nothing.
The component at X of the natural transformation 7 is a function
Ny : X — X + {1}, such that ny(x) = x, i.e. it sends x to the
same x but in the set X + {_L}. The component at X of the natural
transformation u is a function uy : X + {1, L'} — X + {L}, such
that, for x e X + {1, L'}

(x) = x ifxeXx
WA= ] ifx=lorx=1’

i.e. it sends x in X to the same x, and two bottoms L and 1’ in
T2(X) to the only bottom L in T(X).

For this monad, the notion of a T-computation in X consists of
elements of X, and an additional computation L, which says that
we do not get a value in X. The function X — T(Y) carries the
same information as a partial function X—Y. So this monad al-
lows partial computations to be treated as total computations.

3. The Exception monad is less trivial than the maybe monad. We
are given a fixed set of exceptions E and, for a set X, the monad
functor is T(X) = X + E, i.e. the disjoint union of X and E. If E
is empty, it is the identity monad; if E is a singleton, then it is
a maybe monad; otherwise is it like the maybe monad but with
many options for nothingness.
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4. The List monad or monoid monad is even more interesting than
the previous monad, and we shall work it out in detail. It is not
needed for the applications in the paper but it provides some in-
sights before we move on to the continuation monad. To any set
X, the list monad functor associates the set T(X) of (finite) words
over X (treated as an alphabet). This includes the empty word e¢.
To a function f : X — Y, the functor T associates the func-
tion T(f) : T(X) — T(Y), sending the word x;x,...x, over X
to the word f(x;)f(x5)...f(x,) over Y. The component at X of
the natural transformation 7 is a function 7y : X — T(X), such
that ny(x) = x, i.e. it sends the letter x to the one-letter word x
in T(X). The component at X of the natural transformation u is
a function uy : T?(X) — T(X). Note that T?(X) = T(T(X)) is
the set of words whose letters are words over the alphabet X.
Thus it can be thought of as a list of lists. Applying uy to such
a list of lists flattens it to a single list. A three-letter word t =
(x1x5)(x3x,4Xs5)e is a typical element of T?(X). The result of flat-
tening T is the list uy(T) = x;x5x3x,x5 in T(X). We can think
of a word w as a term/word/computation u = y;y,ys, in which
we intend to substitute the term v; = x;x, for variable y,, the
term v, = x3x,x5 for variable y,, and the term v; = ¢ for vari-
able ys, i.e. u[y;\v1,¥5\vs, ¥3\vs]. Now the multiplication u can
be thought of as an actual substitution. With this interpretation,
one can understand the intuitions behind the monad diagrams.
In the left triangle, an element of T(X), say x;x,x3, is mapped
through 7r(x) to a single-letter word (x;x,x3) and uy flattens it
back to x;x,x5, as required for the triangle to commute. In other
words, the substitution y[y\v] results in v. In the right triangle,
the map T(n,) sends, say x;x,x3, to the letter word (x;)(x;)(x5),
with each letter being a single-letter word. Thus, again, flattening
such a list gives x; x,x5 back, as required. In other words, the sub-
stitution y; ¥, ys[y1\x1, Y2 \X5, ¥3\x5] results in x;x,x5. The com-
mutation of the square diagram, in this case, expresses the fact
that, if we have a list of lists of lists and we flatten it in two differ-
ent ways, starting either with the upper two levels of lists, or with
the lower two levels, and then we flatten the results again to get
the ordinary lists over X in T(X), these lists coincide. On a more
conceptual level, this square expresses the fact that evaluation
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commutes with substitution. In this sense, these diagrams capture
the essence of all algebraic calculations.

For this monad, the notion of a T-computation in X consists
of words over X to be evaluated/multiplied in a monoid when
elements of X will be (interpreted) in a monoid. The function
f :X — T(Y) is just a function f : X — T(Y) sending elements
of X to words over Y. So this monad allows a list of values for a
given input.

2.2 Notation

Before we explain the notion of computation that accompanies the
continuation monad, we restate the monad in a more functional way.
To do this, we need to introduce some form of notation. As Set is a
Cartesian closed category, it is customary to denote functions between
sets using A notation. One can think of it as if we were to work in the
internal language of Set, i.e. A theory, where all functions have their
names represented. For sets X and Y, we shall use X x Y to denote the
binary product of X and Y, and X — Y to denote the set of functions
from X to Y. As is customary, we associate — to the right, i.e. X —
Y —» Z means X — (Y — Z), and this set is naturally bijective with
(X xY)— Z. If we have a function:

f:XxY—Z,
then by:
Ay f:X—Y =27

we denote its exponential adjunction, i.e. the function from X to the set
of functions Y — Z, such that, for an element x € X, Ay.,..f (x) is a func-
tion from Y to Z such that, for an element y € Y, (Ay.,.f)(x)(y) is by
definition equal to f (x, y). Note that, in the expression (Ay.y.f )(x)(y),
the first occurrence of y is an occurrence of a variable (as it is part of
the name of a function), whereas the second occurrence of y in this
expression denotes an element of the set Y.

Then 7; will denote the projection on i-component from the prod-
uct. Any function o : {1,...m} — {1,...,n} induces a generalized
projection denoted:

Ty = <na(l)7"'3na(m)> :Xl X ... XXn —>X0'(1) X ... XXU(m)‘
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We will use this notation mainly when o is bijective, i.e. when =, is
just a permutation of the component for the product.

We have a fixed set of truth values t = {true, false}. We shall use
the usual (possibly infinitary) operations on this set. For a set X, we
write 2 (X) =X — t, i.e. the (functional) powerset of X.

2.3 Continuation monad

The Continuation monad, the most important for us, is denoted %¥.
Its functor part (also denoted ¥), at the level of objects, is just a
twice-iterated power-set construction, i.e. for set X, 4(X) = 2%(X).
At the level of morphisms, it is an inverse image of an inverse image,
i.e., function f : X — Y induces an inverse image function between
powersets:

Z(f)=F1:2(Y)— 2X)
R hof,
in A-notation,

P(f) = Ah.py).Ax.x.h(f x).
Taking again an inverse image function, we have
C(=2(F ) ¢X)— ¢(Y)
Q—Qof,
in A-notation:
€ (f)(Q) = Ah.g(v).Q(Ax.x .h(f X)),

for Q € € (X).
The unit ny : X — €6(X) is given by:

'nx(x) = Ah@(x).h(x), for xeX.

The multiplication uy : 6¥2(X) — %(X) can be explained in terms
of n:
Ux = 9(")9(}()) : 9’4(X) - e@z(X)

In other words, uy (%) : 2 (X) — tis a function such that:

ux(F)(h) = 9(719()()(}1))
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for
F:23(X)—t and h:X —t

In A-notation, we write:
px (F)(h) = F(AD.4x)-D(h)).

Now we can look at the notion of computation related the con-
tinuation monad. Consider the function:

f:X— €(Y).
By exponential adjunction (uncurrying), it corresponds to a function:
fli2Y)xX—t

and again, by exponential adjunction (currying), it corresponds to a
function:
"2 (Y)— 2 (X).

Thus a 4-computation from X to Y is a function that sends functions
from #(Y) =Y — t to functions in #(X). So instead of having for
a given element x € X a direct answer to the question what is the
value of f at x, i.e. the element f(x) in Y, we are given for every
continuation function ¢ : Y — t a value in the answer type t that
could be thought of as c(f(x)) (if there were an element in Y that
could be reasonably called f(x)). We can draw a picture illustrating
the situation: £(0)

| ¥

X—f ¥Vt

Instead of ‘procedure’ f ? computing y’s from x’s (that we do not have),
we provide a continuation f (c) for any continuation (of the computa-
tion) c. If f? were indeed a genuine function f? : X — Y, then f(c)
would be the composition c o f?.

2.4 Bi-strong monads

As noted in Moggi (1991), a monad has to be strong, in order to have
a well-behaved notion of computation.* Fortunately, all monads on

4 As the notion of strength is new in this context, we shall briefly recall its
history. There are three manifestations of strength on a functor. Historically, the
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Set are strong. More precisely, all monads on Set can be canonically
equipped with two strengths, left and right, and these strengths are
compatible in a precise technical sense. This additional structure on
the continuation monad will be essential when we analyze the mean-
ing of multi-quantifier sentences.

Let (T,n, u) be a monad on Set. The left strength is a natural trans-
formation with components:

styy : TX)xY —TX xY)
for sets X and Y, making the following two diagrams commute:

l
XY><Z

TX)XYXZ ———""+>T(XXYxZ)
YN /;xyz
TXxY)xZ
and
XxY

Ny x1 Nxxy

T(X)xY Sy T(X xY)
Uy X1 X XY

T>(X)xY oy T(T(X)xY) Tstyn) T?>(X xY)

The right strength is a natural transformation with components:
sty : X xT(Y)— T(X xY)

for sets X and Y, making the following two diagrams commute:

first one was the notion of enrichment of a functor (c.f. Eilenberg and Kelly 1966).
Tensorial strength (i.e., natural transformation of type X® T(Y) — T(X®Y) used
in this paper) was introduced in Kock (1970) and further developed in Kock
(1972). Cotensorial strength (i.e., natural transformation of type T(X - Y) —
X — T(Y)) introduced in Kock (1971) has also proved useful in some contexts. In
symmetric monoidal closed categories, these concepts are equivalent (c.f. Kock
(1971)).
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XxYxT(Z)M»T(XxYxZ)
1xst'y, st'x yxz
XxT(Y xZ)
and
XxY

1 xny Nxxy

X x T(Y) Sty T(X xY)
1xuy X XY

X x T?(Y)) P T(X x T(Y)) W T>(X xY)

The monad (T, n, u) on Set together with two natural transforma-
tions st' and st” of right and left strength is a bi-strong monad if, for
any sets X, Y, Z, the following square commutes:

1, x st!
XxT(Y)xZ """, x x T((Y x Z)
StrX’Y X ].Z StrX,YXZ

T(X XY)xZ

i T(X XY X2Z)
St xxy,z

As we already mentioned, each monad (T, n, u) on Set is bi-strong.
We shall define the right and left strength. Fix sets X and Y. For x € X
and y €Y, we have functions:

l,:X—XxY, and r,:Y—>XXxY,

such that:

The left and right strength:

styy i TX)XxY —TXxY) and st'yy:XxT(Y)— T(XxY)
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are given respectively for x e X,s € T(X), y €Y and t € T(Y) by:

st'xy(s,y)=T(,)(6) and sty y(x,0)=T(r,)(0).

When it does not lead to confusion, we drop the indices x y.

It is not difficult to verify that the above defines left (st') and
right (st") strength on the monad T. Since for any x € X and z € Z, the
following square commutes:

-
Y X XXY

L, L

Y xZ 7 XxYxZ
X

they are compatible and make the monad T bi-strong. Note that these
strengths are related by the following diagram:

1
TX)xY Stay T(X xY)
T ({73, 1)) ‘ (79, 1)
Y x T(X) STyx T(Y xX)

Examples of strength on monads in Set
1. Maybe monad. The left strength stlx,y (X +H{LPHXY —> (X xY)+
{L} is given by:

1 ifx=1
(x,y) otherwise.

st'(x,y) = {

Right strength is similar.
2. List monad. The left strength st' : T(X) x Y — T(X x Y) is given
by:

stl(%,y) = € ifx=¢
Y= <x19y>:"-;<xn:y> iff:xl:'”:xn'

Right strength is similar.

[ 193 ]



Justyna Grudgziriska, Marek Zawadowski

3. Continuation monad. We shall describe the strength morphisms
by lambda terms. The left strength is:

st = AN.4(x)-AY .y -AC.0 (x x1)-
NAxx.c(x,y)): ¢X)xY — (X xY)
and the right strength is:
Str = A‘XZX')‘M:‘K(Y)'A‘QL@(XXY)'
MAy.y.c(x,¥)): X x6(Y)— €(X xY).

2.5 Combining computations in arbitrary monad T on Set

Using both strengths, we can define two pile’up natural transforma-
tions, left and right. For any sets X and Y, the left pile up pile’upl Xy is
defined from the diagram:

ile’up’
T(X) x T(Y) _ Preuwbxy T(X xY)
Sth,T(Y) Au’XXY
T(X x T(Y)) T?(X xY)

T(st'xy)
In the above diagram, the function pile’uplx,y is defined as a com-
position of three operations: the first takes the T-computation on X
‘outside’ to be a computation on X x T(Y), the second takes the T-
computation on Y ‘outside’ to be a T-computation on X xY. In this way,
we have T-computations coming from X on T-computations coming
from Y on X xY. Now the last morphism uy, flattens these two levels
to one, i.e. the T-computation on T-computations to T-computations.
The right pile up pile’up’, ; is defined from the diagram:

ile’up”
TX) x T(Y) — e P XY | 1ix xv)

StrT(X)’Y Ux xy

T(T(X)xY)

T?(X xY)
T(Sth,Y)

This operation takes the T-computations in reverse order and so they
pile up in the opposite way.
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If these pile’up operations agree for all sets X and Y, the monad is
called commutative. In our list of monads, both the identity and maybe
monads are commutative. The exception, list and continuation mon-
ads are not commutative. Most monads, including the continuation
monad %, are not commutative. It should be noted that even if the
monad T is not commutative, both lift morphisms agree for pairs in
which at least one component comes from the actual value (not an
arbitrary T-computation). In other words, the functions:

pile’up' X, X,
T(X;) x T(X,) T(X; xX,)
pile’up’y

are equalized by both the following morphisms:
Nx, X 1

X x T(X,) T(X;) x T(X,)
and

X Nx,

T(X;)xX, T(X;) x T(X,)

Both pile’up’ and pile’'up” are associative. All this is shown in the
Appendix.
Examples of pile’up-operations

1. Maybe monad. The left and right pile’ups coincide in this case, as
in any commutative monad. We have

pile’up'y , = pile'up’y y : (X +{L}) x (¥ + {L'}) — (X x ¥) +{L}
given by:

1 if {c,y}n{l, L'} #0

o/ 1 I PV r —
pile'up (x, y) = pile'up' (x,y) = { (x,y) otherwise.
l

2. List monad. The left pile’up pile'up : T(X)x T(Y)— T(X xY) is
given by:
pile'up ((x1 ... .0, (¥1 ... Ym)) =
= <x1:y1)<x1>y2> s (xlﬁym><x2’yl> s (xm.ym—1><xn:ym>
and the right pile’up pile'up’ : T(X) x T(Y) — T(X xY) is
given by:
pile’up’ ({x; ... x,), (y1... ym)) =
= <x1:yl)<x2>y1> e <xn’yl><x1:.y2> v (xn—l’yn‘L)(xn:ym)'
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Continuation monad. Both pile’up operations:
pile’up’, pile’up” : €(X) x €(Y) — €(X x Y)
can be defined, for M € €(X) and N € €¥(Y), by lambda terms,
such as:
pile’upl (M,N) = Ac.pxxy)-M(Ax x N(Ay.yc(x,y))
and
pile’up’ (M, N) = Ac.5xxy)-N(Ay.y M(Ax.xc(x, ¥)).

The calculations for these operations are in the Appendix.

Thus in the case of the continuation monad, ‘piling up’ computa-
tions one on top of the other is nothing but putting (interpreta-
tions of) quantifiers (= computations in the continuation monad)
in order, either the first before the second or the second before
the first.

T-transforms on arbitrary monad T on Set

There are two (binary) T-transformations, right and left. For a function
f X xY — T(Z), the left T-transform is defined as the composition:

TR
T(X) x T(Y) xr () T(2)
pile’up’ Mz
TX XY T%(Z
& x V) (2)
and the right T-transform is defined as the composition:
TRr,T
T(X) x T(Y) xy () T(2)
pile’up’ Wz
T(XxY T*(Z
(X V) (2)

The most popular T-transforms are for the evaluation morphism:

ev: XX(X—>Y)—Y

but there are also other morphisms with useful transforms.
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Examples of T-transforms and in particular CPS-transforms

. The evaluation map ev : X x (X —» Y) — Y gives rise to applica-
tion transforms:

TR (ev), TR™" (ev) : T(X) x T(X — Y) —> T(Y).

When T is the continuation monad ¥, they are the usual CPS-
transforms CPS!(ev),CPS"(ev) : €(X) x €(X — Y) — €(Y)
given by:

CPS!(ev)(M,N) = Ah.g(v)-M(Ax.x .N(Ag.x_y-h(g x)))
for M € ¢(X) and N € €(X — Y).The right transform is similar.

. Various evaluation maps are typically defined as maps from a
product. Thus they give rise to various T-transforms. We list some
of them below, mainly to introduce notation that will be used
later. The definitions are given by lambda terms.

(a) Left evaluation:

eps'y = Ah.p(x) Ax h(x) : P(X) x X — t;
(b) Right evaluation:
eps’ x = Ax.x.Ah.g(x).h(x) : X X P (X) — t;
(c) Left partial evaluation:
X
eple (ePSZY) = AC:gw(XxY)-}U’:Y-7UC;X-C(X,)’) :
PXxY)xY — P(X);
(d) Right partial evaluation:
epsri‘(epsry) = Ay:Y'AC:‘@(XxY)')'X:Xf(x:_Y) :
YXPXxY)— P(X).

. What we call Mostowski maps are maps similar to epses that
are the algebraic counterpart of the interpretation of generalized
quantifiers by Mostowski. Again, we give a definition for total and
partial case.

(a) Left Mostowski:

mos'y = AQ.4(x)-AC.p(x)-Q(c) : €(X) x P(X) — t;
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(b) Right Mostowski:
mos'y = AC.(x)-AQ.¢x)-Q(c) : Z(X) X C(X) — t;
(c) Left partial Mostowski:

mole = AQ:“K(Y)'AC:W(XXY)')'X:X QAy.y.clx,y)):
C(Y)XxP(X xY)— 2(X);
(d) Right partial Mostowski:

mos'y = AC:.@(XXY)'AQ:%(Y)-AX:X-Q(Ay:Y-C(x:.y)) :
PXxY)x6(Y)— Z(X).

3 SCOPE-ASSIGNMENT STRATEGIES

Using the notions connected to the continuation monad introduced
above, we shall now precisely state and compare three strategies (A,
B, and C) for determining the meaning of multi-quantifier sentences.

3.1 General remarks

In each strategy, the starting point is the surface structure tree of a
sentence. This tree is rewritten so as to obtain formal structure trees
that correspond to all the available meanings of the sentence. Finally,
we relabel those trees to obtain computation trees® that provide the
semantics for the sentence in each of its readings.

5We think of computation trees by analogy with mathematical expressions,
e.g.
((2=7)—8)+((12+5):7)
that can be represented as:
+

/\ /\
- 8 + 7
PN PN
2 7 12 5
i.e. alabeled binary tree where the leaves are labeled with values and the internal
nodes are labeled with operations that will be applied in the computation to the
values obtained from the computations of the left and right subtrees.
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rewriting relabelling
Surface (disambiguation) Formal (interpretation) | Computation
Structure Structure (Semantic)
Tree Tree Tree

Rewriting. Scope-assignment strategies can be divided into two fami-
lies: movement analyses (rewriting rules include QR, Predicate Col-
lapsing, and possibly Rotation) and in situ analyses (no rewriting
rules). Below we define three rewrite rules on trees: QR Rule, Predi-
cate Collapsing, and Rotation.

* QR (Quantifier Raising) Rule
— applies when we have a chosen QP in a leaf of a tree;
- adjoins QP to S;
- indexes S with the variable bound by the raised QP.

L — S*
PN N
a p QP L
‘ PN
QP a p
\
X

(L-label, a-subtree, 3-subtree.)
« Predicate Collapsing
— applies when all the leaves under the node labeled S are la-
beled with variables (not QPs);

- collapses the whole subtree with the root S to a single leaf
labeled with the variables x;,x,,x; from the leaves under

the S-node.
S — |
PN S
X B T~
PN “X1X~X3-
X2 X3
* Rotation

— applies to a tree with two nodes labeled with S’es super-
scripted with some variables: the mother labeled S* and its
right daughter labeled S”;
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— it rotates left the subtree with the root labeled S¥;

— the root of this subtree is labeled S*7 and the (new) left
daughter is labeled Polyadic.

st - §%
Py P
a Sy Polyadic y
. RS
B a p

(a-subtree, B-subtree, y-subtree.)

Relabelling. In each scope-assignment strategy, the leaves in the
computation tree have the same labels: QPs are interpreted as
% -computations, and predicates are interpreted as usual or lifted. The
main difference between the three approaches consists in the shape of
the formal structure trees and the operations (epses, moses, pile’ups,
CPSes) used as labels for the inner nodes of the computation trees.

3.2 Strategy A
In the traditional movement strategy (as implemented in May 1978)
+ Surface structure trees are rewritten (disambiguated) as formal
structure trees (Logical Forms) via:
— QR Rule;
— Predicate Collapsing.

» Formal structure trees (LFs) are relabelled as computation trees
as follows:

— S* (root of a subtree representing a formula) is interpreted as
a suitably typed mos-operation (the only operation allowed);

— S (leaf of a tree) is interpreted as a predicate;

— QP (leaf of a tree) is interpreted as a generalized quantifier
[|Qll quantifying over a set X (i.e. as a ¢-computation on X).

We will illustrate each strategy with examples involving one, two and
three QPs.

Sentence with one QP, e.g. Every kid (most kids) entered.

(A1) Surface structure tree:
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S

PN
QP VP

|
'

(A1) Formal structure tree (LF) and the corresponding computation
tree:

S* mos!
P P\
QP S lQllx) Pl
—_
_x p—

The computation tree in (A1) gives rise to the following general map:

ECX)x 2 (X)

strat;, : z
mos'y

t

In this case, there is one such map, so strategy A yields one reading
for a sentence with one QP.

Sentence with two QPs, e.g. Every girl likes a boy.
(A2) Surface structure tree:

S

/\
QP, VP

/\
Vt QP,

(A2) Formal structure tree (LF) and the corresponding computation
tree:

S*em) moleU(l)
QPU(I) S*o@
P Qe yl(X5ar)) mos'y_,
QPO'(Z) S /\
— ||Qa(2)||(XO'(2)) 1P|
_X] _xz_
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The computation tree in (A2) gives rise to the following general map,
with o € S, (where S, is the set of permutations of the set {1,2}):

To(i
C(X)) X P (X)X X,) X G(Xy) —— 0+ G(X o)

2,0, = T
strat,” : (o) To(2)> Ta)

%(Xa(l)) X cg(Xa(z)) X P(X; xX,)

l

1 xmos'y .

(g(XU(l)) X t0)7"()(0(1))

l
mos X

t

where 7,;) is the projection on the 1st factor if o(i) = 1, and on the
3rd factor if o(i) = 2, i.e. as it should be. This convention will be used
in all similar diagrams without any further explanations.

There are two such maps corresponding to the two permuta-
tions o of {1,2}. These maps are different in general. Thus strategy A
yields two (both) asymmetric readings for a sentence with two QPs.

Sentence with three QPs, e.g. Some teacher gave every student most
books.

(A3) Surface structure tree:°®

S
QpP, VP
/\
A QP;
/\
vdt QP,

61n this paper, we adopt the structure postulated by Chomsky (1993).

[ 202 ]



Scope ambiguities, monads and strengths

(A3) Formal structure tree (LF) and the corresponding computation
tree:

Xo(1)
S*o mos! Xot

QPU(I) S¥o( /\

/\ ||Qa(1)||(Xa(1)) mos' Xo2)
QPO'(Z) SXo(3) /\

QP s 3 1Qo) (X o(2)) mos'y @
o
_— N
-X1-X5-X3- Qo) l|Xo)) Pl

The computation tree in (A3) gives rise to the following general map,
with o € S; (where S; is the set of permutations of the set {1,2,3}):

C(X1) x P (Xy x Xy x X3) X G(X;) x €(X;)

3,0
StratA ( 0’(1)5 0(2)’ 0(3)’71-2)

C(Xo1)) X €(Xp(2)) X €(Xp(3)) X P (X X Xy x X3)

l
1 x 1 x mos Xo@

C (X)) X CXo2) X P (... x X3y x...)

l
1 x mos Xo)

C(Xo1)) X P (Xo(1))

[
mos X
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There are six such maps corresponding to the six permutations o of
{1,2,3}. These maps are different in general. Thus strategy A yields
6 asymmetric readings for a sentence with three QPs.

3.3 Strategy B
In the polyadic approach (as implemented in May 1985):

+ Surface structure trees are rewritten (disambiguated) as formal
structure trees (Polyadic Logical Forms) via:

— QR Rule;

— Predicate Collapsing;

- Rotation.

» Formal structure trees (PLFs) are relabelled as computation trees
as follows:

- Polyadic (root of a subtree representing a polyadic quantifier)
is interpreted as a suitably typed pile’up-operation (we can
choose whether to use only pile’up' or pile’up” and then stick
to that decision).

- S%, S, QP are interpreted as above.

Sentence with one QP, e.g. Every kid (most kids) entered.

(B1) Surface structure tree:

S

PN
QP VP

|
4

(B1) Formal structure tree (PLF) and the corresponding computation
tree:

S* mos!y
P P\
QP S IQIE) [Pl
—_
- x -

The computation tree in (B1) gives rise to the following general map:
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E(X)x 2(X)

strat}, : 1
mos'y

t

In this case, there is one such map, so strategy B yields one reading
for a sentence with one QP.

Sentence with two QPs, e.g. Every girl likes a boy.

(B2) Surface structure tree:

S

/\
QP, VP

/\
Vt QP,

(B2) Formal structure tree (PLF) obtained from LF in (A2) via rotation:

SXo) — SXo(1)¥Xo(2)
QP S¥o@ Polyadic S
/\ —
QP2 S QP,y  QPyy  ~X1Xo-
—_—
XXy

and the corresponding computation tree:

!
mos x, xx,

T

pile’up' Pl

R

QeI Xo))  1Qo)|(Xo(2))

The computation tree in (B2) gives rise to the following general
map, with o € S,:
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B(X1) x P (X, xX,) x 6(X,)
stratlzg’a : (Feo1)s oy T2)
C X)) X 6 (Xp(2)) X P (X1 X X3)
pile’up’ x 1
C KXoy X X)) X P (X1 X X,)
C(my-1)x1

B(X, xXy) X P (X xX5)

!
mos x .x,

There are two such maps, corresponding to the two permutations o
of {1,2} combined with a pile/upl-operation (here, we can also choose
to use both pile’ups instead and no permutations at all). These maps
are different in general. Thus strategy B yields two (both) asymmetric
readings for a sentence with two QPs.

Sentence with three QPs, e.g. Some teacher gave every student most
books.

(B3) Surface structure tree:

S
QP, VP
/\
A QP;
/\
vdt QP,
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(B3) Formal structure tree (PLF) obtained from LF in (A3) via rotation:

S¥e()

T

QPa(l) St
QPU(Z) S*e®

/\
QP.(3) S
—_—

-Xl-xz-X3-

— S¥e)

T

QPO'(l) SXU(Z)XU(S]

Polyadic S
P —_—
QP,2) QPy3y  ~X17X2-X3-

— SXo()Xo(2)Xo(3)

T

Polyadic S
/\
QP,() Polyadic’ XXX

N

QP  QPgys

and the corresponding computation tree:
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1
mos x xx,xX,

pile’up' [Pl

Qo)X o) pile’up'

Qe lXo2)  1Qu3)(Xos))

The computation tree in (B3) gives rise to the following general map,
with o € S5:

B(X1) X P (X1 x Xy X X3) X €(X3) x €(X3)
stratz’a : (Feo1)s oy Tos), T2)
C(Xo1)) X € (Xp(2)) X CXp(3)) X P (X7 x Xy X X3)
1 x pile’up’ x 1
(X)) X € (Xs(2) X Xp(3)) X P (X X Xy X X3)
pile’up' x 1
C(Xo) X Xo@) X X)) X P (X1 x Xy X X3)
C(mya)x1

C (X1 XXy xX3) x P (X1 x X3 X X3)

[
mos X xXyxX3
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There are six such maps, corresponding to the six permutations o of
{1,2,3} combined with a pile’upl-operation (here, we can also choose
to use pile’up’ instead). These maps are different in general. Thus
strategy B yields 6 asymmetric readings for a sentence with three QPs.

3.4 Strategy C

In the continuation-based strategy approach (as proposed in Barker
2002):

« A surface structure tree is rewritten as a formal structure tree via:

- no rewriting rules (formal structure trees are just surface
structure trees — this is what is understood by in situ).

* Relabelling formal structure trees (= surface structure trees) as
computation trees follows this procedure:

- S, VP, V’ (roots of a (sub)tree with some (possibly all) ar-
guments provided) are interpreted as suitably typed CPS-
operations (left and right);

-V, Vt, Vdt (leaves of a tree) are interpreted as ‘continuized’
predicates (1-, 2-, 3-ary, respectively).

Sentence with one QP, e.g. Every kid (most kids) entered.

(C1) Surface structure tree and the corresponding computation tree:

S CPS’(eps’y)
PN N
QP VP lQII(X)  Lift
\ \
\Y 1Pl

The computation tree in (C1) gives rise to the following general map:
E(X)x 2 (X)
strat! : 1 X N5k

CPS’(eps’y)

(g(t) Tld' t

t
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We use CPS’ when it does not matter whether we apply CPS' or CPS'.
This is the case when one of the arguments is a lifted element (like
interpretations of predicates in this strategy). Strategy C yields one
reading for a sentence with one QP.

Sentence with two QPs, e.g. Every girl likes a boy.

(C2) Surface structure tree and the corresponding computation tree:

S CPs*(eps'y,)

o b s

lQll(X;) CPS’(eps'y,)

/\ /\
vVt  QP, Lift  ||Q|I(X,)
\
IIP]|

The computation tree in (C2) gives rise to the following general map:
B (X)) x P (X, xX,) x 6(X5)
strati’g : 1 X Ny, x,) X 1
B(X) X €P (X1 x X)X €(X5)
1 x CPS’(eps! x,)
C(X1)x €2 (X1)

CPS*(eps'yx,)

E(t)

t
evidt

with ¢ € {I,r}. Depending on whether we use CPS' or CPS", we get
the relevant one of the two asymmetric readings for a sentence with
two QPs. Strategy C yields two readings for a sentence with two QPs,
corresponding to the two forms of CPS.
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Sentence with three QPs, e.g. Some teacher gave every student most
books.

(C3) Surface structure tree and the corresponding computation tree:

S CPS*(eps’y,)
P VP /\
o7 5 IQICx,) w
3
d/\ CPS’(eps'y,)  IIQIICK)
vdt QP, P
Lift  [QIICK,)
|
1Pl

The computation tree in (C3) gives rise to the following general map:
B(X1) x P (X x Xy xX3) X B(X,) x €(X3)

stratz"’gl"g : 1 X Ngx, xxxx,) X 1 X 1
CX1) X 6P (X1 x Xy x X3) X 6€(X,) x €(X3)

1 x CPS(eps'y,) x 1

C(X1) x €P(X; x X3) x 6(X3)

1x CPSSI(epslxa)

C(X1) x 6P (Xq)

CPSS(epsrX1 )

(g(t) Tui» t

Strategy C provides four asymmetric readings for the sentence, such
that QP in subject position can be placed either first or last only
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(corresponding to the four possible combinations of the two forms
of CPS). Thus it yields four out of the six readings accounted for by
strategies A and B. Of course, it is a matter of empirical discovery
which readings are available for such sentences, and the status of the
two missing ‘interleaved’ interpretations (every > some > most and
most > some > every) is still under discussion.

The tables below summarize the main features of the three ap-
proaches.

Passing from Surface Structure Trees to Formal Structure Trees

Strategy A B Cc
Rewrite QR, QR, No rewrite rules
rules Predicate Predicate (in situ)
Collapsing | Collapsing,
Rotation

Passing from Formal Structure Trees to Computation Trees

Strategy A B Cc
Relabelling $* > mos $% > mos
inner nodes
Polyadic — S, VBV’ —
pile’up CPS
Relabelling S — relation S — relation V, Vt, Vdt —
leaves continuized
relation
QP — €-comp. QP — €-comp. QP — ¢-comp.

The semantics for sentences with intransitive or transitive verbs,
as defined by strategies A, B, and C, will be equivalent. The seman-
tics for sentences with ditransitive verbs, as defined by strategies A,
and B, will be equivalent, providing six asymmetric readings for the
sentence. The semantics for sentences with ditransitive verbs, as de-
fined by strategy C, will provide four asymmetric readings for the sen-
tence, such that QP in subject position can be placed either first or last
only, corresponding to four out of the six readings accounted for by
strategies A and B. The proofs are given in the Appendix.
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4 CONCLUSIONS AND FUTURE WORK

We compared three scope-assignment strategies for simple multi-
quantifier sentences: the traditional movement strategy, the polyadic
approach, and the continuation-based approach. These strategies can
be viewed as instances of the same general pattern: first transform
the SS-tree of a sentence so as to obtain the shape of the computa-
tion tree, then relabel the leaves of that tree, with the interpretation
of lexical items (predicate and QPs), and the inner nodes, using al-
gebraic operations, and finally evaluate this computation in order to
get the truth value of the whole sentence. We have shown that while
the traditional movement strategy is very close to the original seman-
tics for the logic with generalized quantifiers due to Mostowski, the
polyadic approach and the continuation-based strategy are in fact cog-
nate in spirit, as they can both be defined using operations derived
from the strength of the continuation monad. As the polyadic strategy
is well-understood among linguists, we hope that our results will help
to make the continuation-based strategy more popular. With the con-
tinuation monad as a common basis for the three scope-assignment
strategies discussed, it is also easy to identify their relative merits
and weaknesses. Traditional and polyadic approaches cannot provide
a non-movement (in situ) analysis of quantifiers. The continuation-
based strategy is in situ but does not account for all the asymmetric
readings possible for sentences involving three QPs. As discussed in
Bekki and Asai (2009) and proved in this paper, it only provides four
out of the six readings possible for such sentences. In the sequel to this
paper, we show how to overcome this problem, keeping the resulting
strategy in situ (Grudzinska and Zawadowski 2016). We take the re-
sults of this work to be the first step towards an in situ semantics that
will be sufficient to account for the whole range of possible readings
for multi-quantifier sentences.

5 APPENDIX

5.1 The continuation monad

In this subsection, we gather all the basic facts (sometimes repeated
from the text) of the continuation monad ¢ on Set. We have an adjunc-
tion:
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»
Set Set?
apop

where both # and #°P are the contravariant powerset functors” with
the domains and codomains as displayed. In particular, for f : X — Y,
the function 2(f)=f"!: 2(Y) — 2 (X) is given by:

frm =hof

for h : Y — t. Function ny : X — €(X), the component at set X of
the unit of this adjunction 7 : 15, — P PP = ¢, is given by:

Nx(x) = Ahp ) h(X).

Function &5 : X — ¥(X), the component at set X of the co-unit of
this adjunction ¢ : 1g,, — PP, is given by (essentially the same
formula):

€X(x) = Ah:(@up(x).h(x)

for x € X. The function €(f) : €(X) — €(Y), forQ: Z(X) — t e
%(X), is a function € (f)(Q) : (Y) — t given by:

€ (f)(Q)(h) =Q(hof)

forh: vy —t.

The monad induced by this adjunction is the continuation monad.
Its multiplication is given by the co-unit of the above adjunction trans-
ported back to Set, i.e. u = #°P(e4). For X in Set, the function

py : 64X) — 6(X)
is given by:
ux(Z) =R oy for # < €*X).
In A-notation we write:

px(F)(h) = F(AD.4x).D(h)).

7 Note that this is in contrast with the functor &, where & is the covariant
power-set functor.
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The left strength for the monad ¥ is:
st (X)) XY — €(X xY)

for M € ¥(X) and y €Y, given by:

st'(M,y) = Ac.pxxy)M(Axx.c(x,y)): P(X xY)—t
and the right strength, for x € X and N € €(Y), is given by:

st (x,N) = Ac.pxxy)-N(Ay.y-c(x,¥)) : P(X X Y) — t.

The left pile’up operation:
pile’upl X)X E(Y)— (X xY)

is the following composition:

€ (st")

st G(X x G(V)) L @2(x x v) XY+ @(x x Y)

EX)x €(Y)

where, for Q € 6(X), Q' € 6(Y), c € (X x €(Y)), we have:
st'(Q,Q)(c) = Q(Axxc(x,Q))
and, ford € €(X x €(Y)), % € Z€(X xY), we have:
(st )(d)(%)=d(U ost").

Now, using the above formulas, we can calculate pile’upl as the
composition on Q € €(X), Q' € ¥(Y), and c € #(X x Y) as follows:

pile’up'(Q, Q)(c) = pxxy (€ (st )(st'(Q, Q)))(c)
= G (st")(st'(Q Q) (AD.sg(xxyyD(C))
= 5t/(Q, Q)(AD.¢(xxy)D(c)) o 5t")
= Q(Ax x (AD.s(xxy)D(c)) o st )(x, Q"))
= Q(Axx (AD.g(xxy)D(O))(st (x, Q"))
= Q(Axxst"(x,Q)(c))
= QAxxQ (AY.yc(x,¥)))
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Similarly, we can show that:
pile’up’(Q,Q")(c) = Q' (Ay.y Q(Axxc(x, ¥))).
One can easily verify that pile’up’s are related by:
pile'up’y , = 6(n(yy)) o pile’uply,x o T(,1)-

5.2 Some properties of pile’up operations

Lemma 5.1 (pile’'up lemma) pile’ups on pairs where one element is
continuized agree and are equal to the corresponding strength.

Proof. We have to show that the functions:
pile’upl XX,
T(X1) x T(X3) T(X, xX5)
pile'up’y

are equalized by both:

x T(1y.)
Xy x T(xp) — 07

T(X;) x T(X,)
and

T Xy — XMy )

and their composition with these functions is equal to strength mor-
phisms. Using the diagram:

Nrx)xx,

T(1x,) x nx, St rx).x,

)x X3 T0G) X T(X,) T(T() *X2)
st'r(x,).x, T(st'x,x)
< X,) T(Xy x T(X3)) —— 5~ T?(X; xX
2 T(Ly, x ny,) ! 2 T(st'x, x,) %)
T(nX1XXz)
,U/X1><X2

NT(x,xX5)
1T(X1><X2) T(Xl XXZ)
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we shall show that:

. r . 1
pile'up'y x o(T(1x)xnx,)= Stlxl,x2 =pile'up y x, o (T(1y,) % nx,).

The other cases are symmetric. We have:
pile’up’y y o(T(1y)xny,) = (defof pile'up”)

= Uy, xx,°T(st'x, x,)08t" 1(x,)x,°(T(1x,)xMy,) (1 strong w.r.t. st”)
= Ux, xXZOT(St1X1x2)°T)T(X1)XX2 (n nat transf)
!
= Ux, xx,°NT(x, xX,)°St x, x, (T monad)
I

To show the remaining equation, we can continue the penultimate
formula above as follows:

pile'uerIXZO(T(lxl)><77X2) = .= U xx,°NT(x, xxz))°3tlx1,x2

= (T monad)

= Ux, xx,°T (Nx, xxz)OStlxl,xz (n strong w.r.t. st”)

= Ux, xx,° T (t'x, x,)0T (1, X 77)(2)“"Stlxl,x2 (st' nat transf)

= Uy, xx,°T (st x, x, )"Stlxl,x2 oT(1x,x7nx,) (defof pile'up')

= pile’up'y, x,o(T(Lx,)xny,) ¢

Corollary 5.2 The left and right CPS-operation on pairs where one ele-
ment is continuized agree.

Proof. The corollary states that, for any sets X, Y, Z and a function
f :X xY — Z, both morphisms:

Ny X 1

X xT(Y) T(X)x T(Y)

and

x 1

T(X)xY Y T(X)x T(Y)

equalize the pair of morphisms:
CPs'(f)

TX)x T(Y) Z
CPS'(f)
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This immediately follows from the above lemma and the definition of
CPSes. &

Using binary pile’up operations, we can define eight ternary
pile’up operations:

T(X1) x T(Xy) x T(X3) — T(X; X X5 x X3)
out of the following diagram:

T(X;) x T(Xy) x T(X3)

pile’up’ x1 % m 1xpile’up”

T2(X; x X,) x T(X3) T(X;) x T?(X, x X3)

pile’up! w )M pile’up”

T3(X; x X, x X3)

However, both pile’ upl and pile’up” operations are associative (Propo-
sition 5.3 below) and hence only six of them are different, in general.

Proposition 5.3 Both pile’upl and pile’up” operations are associative
on any monad on Set.

Proof. In fact, pile’upl and pile’'up’ are associative on any bi-strong
monad in the monoidal category. We shall show this fact for a monad
T on Set with canonical strength.

We need to show that:

pile’up” o (pile’up” x 1) = pile’up’ o (1 x pile’up")

and

pile’up' o (pile’up' x 1) = pile’up' o (1 x pile’up)
But as pile’ups are mutually definable, either of these equalities readily
implies the other. We shall show the second equality. For sets X;, X,
X5, using all the assumptions, we have:

. 1 ; L
pile’up X, sz’xso(pﬂe’up X%, % 1T(Xg)) =
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!
= Wy, xx,yxx, O T (S X, xx,.%, )OSt x, wx, 7(x,)° (Ui, xx, X T(1x,))

I
o(T(st'x, x,) * Lrx,)) © (Stx, r(x,) X 1r(x,))

_ !
= U, x5, O T (S, ity ) © iy sty x7(,) O T (S, wxt,, T(x5))

! 1
oSt 1 x, xx,) T(xs) © (T(Stx, x,) X T(1x,)) o (st'x, r(x,) X rx,))

_ 2 !
= Wy, xx, xXs O T, xX,x5) O T (S X, xx, 7(x,))0 T (8t x xx,, 7(x,))

! I
o(T(st'y, x, X 1x,)) © St r(x, xx,).7(x,) © (Stx, 7x,) X 17(x5))

_ 2 !
= Wy, xx, xXs OMT (0, xX,x25) O T (S x, xx, 7(x,))0 T (8t x xx,, 7(x,))

o(T(st'y, x, X 17(x,))) © Sthl,T(XZ)xT(X3)

_ 2
= Wy, xx, xXs OMT(x, xX,x35) O T~ (S % xx, 10,))O T (S, x, x7(x,))

1 l
oT(1x, X st 1(x,)) © Stx, 7(x,)xT(x)

_ 2
= Wy, xx,yxX; OMT(x, x X, x,) O T (St x e, 70x,) )0 T (St %, x, x7(x,))

° Sthl,T(szT(X3)) o(T(1y,) x SthZ,T(X3))

_ 2 2
= Wy, xx,y xXs OMT (0, x X, xx5) O T (St x, 7, xx,))0 T (1x, X 8t'x x.)

oT(st'x, x,x7(x,)) © Stlxl,T(szT(X3)) o(T(1x,) x Sthz,T(X3))

_ 2
= Wy, xx, x X, OMT(x, xX,x35) O T~ (S x, 1,0 )0 T (St %, 7x, %))

oT(1x, x T(st'x, x,))© StZXl,T(szT(X3)) o(T(1x,) x Sthz,T(Xg))

_ 2
= Wy, xx,yxXs OMT(x, xXyx5) © T (St x, 13, xx)) © T (St x, 73, xx5))

° SthI,TZ(szxg) o (T(1x,) x T(st'y, x,)) o (T(1y ) x SthZ,T(Xs))

_ !
= W, xx,xx, © T(S x, x,xx,)0 T (L, X Uy, xx,) O St x, 12(x,xx4)

°(T(1X1) X T(Strxz,xs)) o (T(le) X Sthz,T(X3))
= Mx, xx, %X, © T(stthXZ ><X3)° Sthl,T(XZ xX3) © (T(1X1)><,uX2 ><X3)
o(T(1x,) x T(st'x, x,)) o (T(1x,) x Sthz,T(X3))

. ! . !
= pile'up x x,«x,°(1rx,) *pile'up x x )
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5.3 Arity one: intransitive verbs

Proposition 5.4 The semantics for sentences with intransitive verbs, as
defined by strategies A, B, and C, will be equivalent.

Proof. In case of a sentence with an intransitive verb, the semantics
will be defined by the morphisms strat}, straty, and strat;. We need
to show that they are equal. We have:

1 _ I _ 1
stratA =mos y = stratB.

strat]. is the composition of the following morphisms:

X Ngx) CPS!(eps’y)

E€X)x 2(X) 6 (X) x €P(X) ) e,

Thus we need to show that this composition is equal to mos'y. Con-

sider the following diagram:

mos'y

CX)x P (X)

1 x nﬂ(X) st Vepsr evld

EX)x €2 (X) r CX xPX)) o~ ()
pile’ up x ¢ (eps’x)

The left triangle commutes, as a consequence of Lemma 5.1. To
see that the central triangle commutes, we take M € ¢(X) and h €
#(X), and calculate:

EVepsr, O St'(Q, ) = eVepsr, (AD.p(x x 9 (x))M (Ax x D(x, h)))
= M(Ax.xeps' x(x,h))
= M(Ax.xh(x))
=N(h)
=mos! (N, h).

Finally, to see that the right triangle commutes, we take N €

€ (X x (X)) and calculate:

eviq, © 6(eps'x)(N) = evyy (Ac.pN(coeps’y))
= N(eps'x)
= eVepsr, (N).
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Thus the whole diagram commutes, and hence straté =mos!y, as
required. <
The above proof also shows the following technical lemma.

Lemma 5.5 For any set X, the following diagram commutes:

mos'y

CX)xPX)———t
Stl evidt

E(X x 2 (X)) ”

(epsy) ¢

5.4 Arity two: transitive verbs

Proposition 5.6 The semantics for sentences with transitive verbs, as de-
fined by strategies A, B, and C, will be equivalent, providing two asymmetric
readings for the sentence.

Proof. In the case of sentences with transitive verbs, the semantics will
be defined by morphisms strat’, strat>’, and strati’g, witho €S, =
{id,, 7} and ¢ € {l,r}. We need to show the equalities:

2,0 _ 2,0
strat,” = straty”,
for o €S,, and

2,idy __ 2,1 2,1 2,r
stratB = stratC , stratB = stratc .

To show the first equality, with Q; € €¥(X;), Q, € ¥(X,), and
P e #(X; x X,), we have:

stratj’U(Ql,Qz, p)=

= moslxm) (Qoq)s mOSlxg(z) (Qo(2),P))

= moslxgm(Qg(l), AXo(1):x,0) Ro@ (AXo(2):x, 0, -P (X1, X2)))
= Qo (1) (AXo(1):x, 1) Qo(2)(AX o 2):x, ) -P (X1, X2)))

= Qo (1) (AX5(1):x, 1) Qu(2)(AX 0 (2):x, ) P (o1 (X0 (1), X0 (2)))))
= pile’up' (Qu(1), Qu(z))(Por™)

= G (75-)(pile’up' (Qu1), Qo2))(P)

= straté’U(Ql, Q,,P)
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To show the remaining two equalities, let us first note that if either
o =1idy, and ¢ =1 or 0 = 7 and ¢ = r, we have:

pile’up’ = €(n,) o pile'up' o 7,,.

Thus we shall assume the above equation relating o with ¢, and, with
Q, € 6(X;), Q, € 6(X,), and P € 2(X; x X,), we obtain:®

straté’s =

= ev;4, 0CPS*(eps’y, )o(1xCPS’ (eps’x ))o(1x1XNgpx, xx,))

= ev;4,0% (eps’y, opile'up®o( € (1)x 6 (eps’y,))o(1xpile’up’)o(1x1xn)
= ev;q,06(eps’y Jo6(1xeps’y )opile'up®o(1 xpile’up’)o(1x1xn)

= ev,4,06(eps’, x, )opile’up®o(1xpile'up’Jo(1x 1xn)

= ev;4,0% (eps’, x,)opile’up’o(pileup® x 1)o(1x 1x1n)

= ev,4,0%(eps’, ., )opile’up’ o(1xn)o(1xpile’up")

= ev;4,06(eps’x, xx, )ost'o(1xpile’up®)

= €7,4,06(eps'x, xx, )ost'o( % (115-1)x 1)o(pile’up' x1)o(rr, x1)

= mosZXl «x, 0 (6 (1 51)% 1)o(pile’up’ x 1)o(m,x1)

— 2,0
= stratB

In the above calculations, we used the definition of CPSes, the
naturality of pile’up®, the relations between eps morphisms, the asso-
ciativity of pile’up® (Proposition 5.3), the properties of product mor-
phisms, the pile’up lemma, and finally, Lemma 5.5.

Here and below, CPS’, pile’up’ stands for either CPS., pile’upl or
CPS’, pile’up’ ,whichever is more convenient at the time, as it does not
influence the end result. <>

8 The diagram illustrating these calculations would be too big to fit on a page
but the reader is encouraged to draw one.
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5.5 Arity three: ditransitive verbs

Proposition 5.7 The semantics for sentences with ditransitive verbs, as
defined by strategies A and B, will be equivalent, providing six asymmetric
readings of the sentence.

Proof. In the case of sentences with ditransitive verbs, the semantics
will be defined by the morphisms strati"’, stratg"’, and strati’s, with
o €85 and ¢ € {l,r}. We need to show the equalities:

3,0 _ 3,0
stratA —stratB ,

for o €8s.

The calculations are similar to those for transitive verbs. We
present them for completeness. With Q; € 4 (X;), Q, € ¥(X,), Q5 €
%(X3), and P € 2 (X; x X, X X3), we have:

strat;? (Q,,Q,,Qs, P) =

= moslxg(l)(Qg(l), mOSle(z) (Qo(2)s m051x0(3)(Qa(3): P)))
= Qo(1)(AXo(1):x, 1) QRo(2)(AX0(2):x, ) Ro(3) (AX(3):x, )P (X1, X2, X3))))
= Qo()(AXo(1):x, ) Qo) (AX5(2):x, ) Ru(3)(
AX(3):%, ) P (o1 (Xo(1): X0 (2), X0 (3))))))
= pile’up' (Qu(r), Pile’up' (Qu(z), Qo)) (Pory1)
= 6 (n51)(Pile'up' (Qo(1y, Pile'up' (Qu2), Qo s)))(P)

= Stratﬁ’U(Q]; QZ: QB’ P)

as required. ¢

Proposition 5.8 The semantics for sentences with ditransitive verbs, as
defined by strategy C, provides four asymmetric readings of the sentence,
such that QP in subject position can be placed either first or last only. Thus
they correspond to four out of the six readings accounted for by strategies
A and B.

Proof. In the case of sentences with ditransitive verbs, the semantics,
according to strategies B and C, are defined by the morphisms stratg"’,
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strat:é’”’gl, respectively. As we shall show, these morphisms are equal
whenever o € S, is related to the pair (¢/,¢) € {I, r}? via the relation:

pile’upgl o (1 x pile’up®) = €(m,-1) o pile’up’ o (1 x pile’up’) o 71,

As pile’upl leaves the order intact and pile'up” swaps the order,
we can see that we have the following correspondence:

o (&', €)
(1,2,3) 1,1)
(1,3,2) {1,r)
(2,3,1) (r, 1)
(3,2,1) | (r,r)
(2,1,3) —
(3,1,2) —

Thus we shall assume that o is related to the pair (¢,¢’), and, with
Q; € 6(X1), Q; € 6(X,), Q3 € ¥(X3), and P € Z(X; x X, X X3), we
obtain:®

3,6 _
strat;” ” =

= evl-dtOCPS”/(epsrXI)O(l xCPS*(eps’y,))o(1x1 xCPS?(epsrXS))
o(Ix1x1xmn)

= 74,26 (eps”x, )opile’up’ o(6 (1)x % (eps’y,))o(1 xpile’up°)
o(6(1) x 6(1) x 6(eps’x,)) o (1 x 1 x pile'up’)o(1x1x1xmn)

= evy4,06(eps’ y, )o(6 (1xeps’y, ))opile'up’ o(€(1)x 6 (1xeps’y,))
o(1 x pile’up®) o (1 x 1 x pile’up’)o (1 x 1 x 1 x 1)

= V4,06 (eps’y, )o(€(1xeps’y,))o(6(1x1 XePerg))OPile/uPEI
o(1 x pile’up®) o (1 x 1 x pile’up’)o (1 x 1 x 1 x 1)

= eV;4,06 (eps’ x, ux,xx, )0pi1e/up£/

o(1 x pile’up?) o (1 x 1 x pile'up’)o (1 x 1 x 1 x 1)

9 The diagram illustrating these calculations would again be too big to fit on
a page, but the reader is encouraged to draw one.
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= eV;4,06 (eps’ x, ux,xx, Jopile'up®
o(1 x pile’up®) o (1 x 1 x pile’up’) o (1 x 1 x 1 x )
=e VidtOCg(ePsrx1 x Xy xXs )Opile’upe/
o(1 x pile’up’) o (1 x pile’up’ x 1)o (1x1x1xmn)
= ;4,06 (€pS'x, xx, xx, )oPile’up’
o(pile’'up® x 1)o (1 x pile’'up® x 1)o (1x1x1xn)
= €v,4,06(eps’y, xx, xx, )oPile'up’ o€ (1, 1)x €(1))
o(pile’up’ x 1) o (1 x pile’up’ x 1)o (m, x 1)o (1x1x1x1)
= V4,06 (eps’ x, ux,xx,)°C (51 % 1)0pile’up?
0(pile’upl x1)o (1 x pile’upl x1)o(myx1)o (I1x1x1xmn)
= 9,4, 06 (€DS"x, oy, x, )9 (g1 X 1)opile’up”
o(pile’up’ x 1) o (1 x pile'up' x 1)o (1x1x1xn)o(m, x 1)
= €v;4,0% (eps'x, xx,xx, )06 (1 x1)opile’up’
o(pile’up' x 1)o (1x xn)o (1 x pile‘up' x 1)o (7, x 1)
= V4,06 (eps’ x, xx,xx,)°C (51 % 1)0pile’up?
O(pile’upl x1)o (1x1xmn)o(lx pile’upl x1)o(m, x 1)
= evidto(g(epser xX, ><X3)o<g(ﬂ:o*1 x 1)Opile/up?
o (1 xn)o(pile’up’ x 1)o (1 x pile’up’ x 1)o (1, x 1)
= V4,06 (eps’ x, ux,xx,)° € (51 % 1)°Stll
o(pile’up’ x 1) o (1 x pile’up’ x 1) o (myx1)
= €,q, 0B (€PS x, )05t (% ()% 6 (1))
O(pile’upl x 1)o (1 x pile’upl x1)o(m, x 1)
= moséflx)(zsto((g(nUﬂ)X%(l))
0(pile’upl x1)o (1 x pile’upl x1)o(m, x 1)

_ 3,0
= stratB
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In the above calculations, we used the definition of CPSes, the
naturality of pile’ups (four times in three non-consecutive steps!),
the relations between eps morphisms, the associativity of pile ups
(Proposition 5.3), the relations between o and (¢’,¢) in the equation
marked with % =, the properties of product morphisms (three consec-
utive steps), the pile’'up lemma, the naturality of strength, and finally,
Lemma 5.5. &
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been built using serious games, JeuxDeMots, can help us in grounding
our semantic ontologies in doing formal semantics using rich or mod-
ern type theories (type theories within the tradition of Martin Lof).
We discuss the issue of base types, adjectival and verbal types, hy-
peronymy/hyponymy relations as well as more advanced issues like
homophony and polysemy. We show how one can take advantage of
this wealth of lexical semantics in a formal compositional semantics
framework. We argue that this is a way to sidestep the problem of de-
ciding what the type ontology should look like once a move to a many
sorted type system has been made. Furthermore, we show how this
kind of information can be extracted from a lexico-semantic network
like JeuxDeMots and inserted into a proof-assistant like Coq in order
to perform reasoning tasks.

“The first author supported by a grant from the Swedish Research Council for
the establishment of the Centre for Linguistic Theory and Studies in Probability
(CLASP) at the University of Gothenburg.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 229-272

Keywords: Lexical
Networks,
JeuxDeMots,

Type Theory,
Type Ontologies,
Formal Semantics,
Natural Language
Inference



Stergios Chatzikyriakidis et al.

1 INTRODUCTION

Modern Type Theories (MTTs), i.e. Type Theories within the tradi-
tion of Martin-Lof (1975); Martin-Lof (1984), have become a major
alternative to Montague Semantics (MS) in the last twenty years.
A number of influential approaches using MTTs have been proposed
throughout this period (Ranta 1994; Luo 2011; Retoré 2014; Cooper
et al. 2014), showing that the rich typing system offered by these
approaches (type many-sortedness, dependent types, type universes
among other things) has considerable advantages over simple typed
systems predominantly used in mainstream formal semantics. A fur-
ther important aspect for considering the use of MTTs over tradi-
tional Montagovian frameworks concerns the proof-theoretic nature
of the former but not of the latter.! This latter fact makes MTTs
a suited formal semantics language to perform reasoning tasks, as
these are exemplified for example in work on inference using proof-
assistant technology (Chatzikyriakidis and Luo 2014b,a; Bernardy
and Chatzikyriakidis 2017). However, this expressiveness of typing
comes with a cost. For example, how does one decide on the base
types to be represented? On the one hand, we do have a way to get
a more fine-grained type system unlike the monolithic domain of en-
tities found in MS, but on the other hand, constructing such a type
ontology is not at all a straightforward and easy task. Different ap-
proaches and assumptions have been put forward w.r.t this issue. For
example Luo (2011, 2012); Chatzikyriakidis and Luo (2017b) pro-
posed to treat CNs as types, in effect arguing that every CN is a type
(roughly a one to one correspondence between common nouns and
types). Approaches like Retoré (2014) on the other hand, take a more
moderate view and build their typing ontology according to classifier
systems, i.e. the intuitions for deciding which types are to be repre-
sented or not are taken from classifier systems found in a number of
natural languages. On the other hand, work in lexical-semantic net-
works have provided us with structured lexicons specifying elaborate

1 At least in the way it is employed in the Montagovian setting, simple type
theory can be viewed as model theoretic. However, there is interesting work on
the proof theory of simple type theory. The higher order theorem prover LEO-
II Benzmiiller et al. (2007) is an example of such work. We are grateful to an
anonymous reviewer for pointing this out to us.
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lexical and semantic relations. A classic such case is e.g. WordNet
Fellbaum (1998). A very promising line of research in lexico-semantic
network construction concerns networks which are built collabora-
tively by using Games with a Purpose (GWAPs). This is the case of the
Lexical Network JeuxDeMots (JDM) (Lafourcade 2007b). JDM is con-
structed through many GWAPs along with a contributive tool (Diko)
which allows players/users to contribute directly and to browse the
knowledge base.

Given this background, what we want to propose in this paper is
the grounding of our semantic ontologies, as well as any other infor-
mation needed in order to perform reasoning tasks using MTT seman-
tics, in JDM. In order to do this, we present some first thoughts on
how such an endeavour can be accomplished by looking at the way a
translation procedure from JDM to MTTs can be performed. Issues to
be discussed include the domain of base types, instances of these types,
adjectival and verbal types, hyponymy/hypernomy relations, as well
as more advanced issues like homophony and polysemy. We then show
how one can exploit this translation procedure by extracting this infor-
mation from JDM in order to feed a reasoning device that implements
an MTT. We show some easy cases of inference that are taken care of
via a combination of the lexical semantics information extracted from
JDM and the proof theoretic power of MTTs (performed by the proof-
assistant Coq) and further show how JDM can actually help us in order
to reason with cases where reasoning with implicit premises is at play.
The structure of the paper is as follows: in Section 2, the JDM project
is described as well as the produced lexical network. In Section 3, we
describe two main endogenous inference mechanisms (deductive and
inductive scheme), followed by a discussion on the annotation of re-
lations between terms. Then, in Section 4, we discuss the building of
type ontologies using information from JDM and propose a number
of translation procedures between JDM and an MTT. The section also
includes a brief intro to MTT semantics, highlighting aspects of the
theory that will play a role in this paper the most. Lastly, in Section 5
we look at the possibility of performing natural language inference
tasks using MTT semantics powered by information drawn from JDM.
We present a number of inference cases that rely mostly on lexical-
semantic information taken by JDM and the proof-theoretic power of
MTT semantics using the proof-assistant Coq.
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2 BUILDING A LEXICAL NETWORK

JeuxDeMots?, a project launched in September 2007, aims to build
a large lexico-semantic network (Lafourcade 2007a). The network is
composed of terms (nodes or vertices) and typed relations (links be-
tween nodes). It contains terms and possible refinements in the same
spirit as WordNet synsets (Miller 1995), although being organized as
decision trees. There are more than 80 different relation types which
occurrences are directed, weighted, and possibly annotated (Lafour-
cade et al. 2015).

2.1 GWAPs

The game JeuxDeMots is a two player GWAP (Game With A Purpose,
see von Ahn and Dabbish 2008), where people are supposed to earn
and collect words. The main mechanism whereby this goal is achieved
is the provision of lexical and semantic associations to terms proposed
by the system.

When a Player (let’s call him/her A) starts a game, a term T, along
with some instructions concerning the type of lexical relation (e.g. syn-
onym, antonym, domain, etc.), is displayed. The term T could have
been chosen from the database by the system or offered to be played
by other players. Player A has a limited amount of time (around 60 sec-
onds) to enter terms which, to his/her mind, are relevant w.r.t. both
the term T and the lexical relation. The maximum number of terms a
player can enter is limited, thus encouraging the player to think care-
fully about his/her choices. A screenshot of the user interface is shown
in Figure 1.

The very same term T, along with the same set of instructions,
will be later given to another player, Player B, for whom the process
is identical. In order to make the game more entertaining, the two
players score points for words they both choose. Score calculation is
explained in Lafourcade (2007a) and was designed to increase both
precision and recall in the construction of the database. The more
‘original’ a proposition given by both players is, the more it is re-
warded. Figure 2 shows an end of game with collected rewards. An-
swers given by both players are displayed and those common to both
players, as well as their scores, are highlighted.

2http://www.jeuxdemots.org
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Figure 1: Screenshot of an ongoing game with the target verb fromage (cheese).
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For a target term T, common answers from both players are in-
serted into the database. Answers given by only one of the two players
are not, thus reducing noise and the chance of database corruption.
The semantic network is, therefore, constructed by connecting terms
by typed and weighted relations, validated by pairs of players. These
relations are labeled according to the instructions given to the players
and weighted according to the number of pairs of players who choose
them. Initially, prior to putting the game online, the database was pop-
ulated with nodes. However if a pair of players suggests a non-existing
term, the new node is added to the database.

In the interest of quality and consistency, it was decided that the
validation process would involve anonymous players playing together.
A relation is considered valid if and only if it is given by at least one
pair of players. This validation process is similar to that presented by
von Ahn and Dabbish (2004) for the indexing of images, by Lieberman
et al. (2007) and von Ahn et al. (2006) to collect common sense knowl-
edge, and Siorpaes and Hepp (2008) for knowledge extraction. As far
as we know, this technique has never been used for building seman-
tic networks. Similar Web-based systems already exist in NLP, such
as Open Mind Word Expert (Mihalcea and Chklovski 2003), which
aims to create large sense-tagged corpora with the help of Web users,
and SemKey Marchetti et al. (2007), which makes use of WordNet and
Wikipedia to disambiguate lexical forms referring to concepts, thus
identifying semantic keywords.

For the design of JeuxDeMots, we could have chosen to take
into account all of the players’ answers according to their frequency
from the very outset. The database would have grown much quicker
this way, but to the detriment of quality. The rationale behind this
choice was to limit the impact of fanciful answers or errors due to
misinterpreted instructions or terms. The integration of rarer terms
and expressions is slower; nevertheless, these terms are added to the
database eventually, once the more common solutions have been ex-
hausted, thanks to the process of creating taboo terms. Once a relation
with term T has been proposed by a large number of pairs of players,
it becomes taboo. During a game, taboo terms are displayed along
with term T, discouraging (but not forbidding) players from enter-
ing them. In this way, players are encouraged to make other, more
original choices. Therefore, more infrequent terms eventually find
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their way into the database, and the chances of error are reduced to
a minimum.

Even if a relation becomes taboo, its weight can, and does, evolve.
However, this tends to be done slowly as the relation is proposed to
the players less often. It is important to allow relation weights to con-
tinue to evolve, as we can hardly consider such a relation as com-
plete. Eventually, a given term can become taboo when involved in
several different relation types. The fact that taboo relations continue
to evolve is essential, otherwise the weights of two given relations
could become equal and then information about the relative strength
relations would be lost.

The approach presented here complements that developed by
Zock and Bilac (2004) and Zock and Schwab (2008) who tried to
create an index based on the notion of association to assist users in
navigating the Web or elsewhere, or to help a person find a word on
the tip of their tongue. Their approach is bottom-up, i.e. the terms
are known (based on word proximity in corpora), but the nature of
the link isn’t. This has to be inferred, which is far from an easy task.
In our case, we provide one of the two terms, term T as well as the
relation type. It is the target terms which interest us. Our approach is
top-down.

Some other games® complement the main game of JDM. Their
purpose is to cross validate the information collected in the main
game, or to accelerate the relation harvesting for some specific types
of relations. For instance, there are games for collecting word polarity
(positive, negative, and neutral), for sentiments associated with words,
guessing games, sorting games, location preposition games, and so on.

Since September 2007, around 1.5 million matches have been
played for JDM, a total of 25 000 hours of cumulative playing. More
than 250 million matches have been played for the other games of the
JDM platforms. *

3

2.2 Direct crowdsourcing

Playing games in order to fill the lexical network is a kind of indirect
crowdsourcing, where people (players) do not negotiate their contri-

Shttp: //imaginat.name/JDM/Page_Liens_JDMv1.html
4http://www.jeuxdemots.org/jdm-about.php
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bution beforehand. In some cases, direct crowdsourcing (with negoti-
ation between contributors) is desirable. Indeed, some lexical relation
might be complicated enough to be playable without some linguis-
tic knowledge. This is for example the case for TELIC ROLE, which is
the goal/purpose of an object (or action). For instance, a butcher knife
has the telic role of cutting meat. It is to be differentiated from the IN-
STRUMENT of a predicate, which indicates what can be done with the
object. A butcher knife could be used to stab someone, but this is not
its telic role.

In some other cases (depending on each term), a given relation
might not be productive enough to be playable. For example, the CAN
PRODUCE relation for cow could reasonably be milk, but there are not
many other answers.

All theses considerations lead to the need of a more direct crowd-
sourcing interface. The Diko® service allows to visualize and con-
tribute to the JDM lexical network. A voting mechanism is at the
core of the validation (or invalidation) of proposed relations between
terms.

2.3 Inside the JDM Lexical Network

As mentioned above, the structure of the lexical network we are build-
ing relies on the notions of nodes and relations between nodes, as it
was initially introduced in the end of 1960s by Collins and Quillian
(1969), developed in Sowa and Zachman (1992), used in the small
worlds by Gaume et al. (2007), and more recently clarified by Polguére
(2014). Every node of the network is composed of a label (which is
a term or an expression, or potentially any kind of string) grouping
together all of its possible meanings.

The relations between nodes are typed. Each type corresponding
to specific semantics that could be more or less precise. Some of these
relations correspond to lexical functions, some of which have been
made explicit by Mel’cuk and Zholkovsky (1988) and Polgueére (2003).
We would have liked our network to contain all the lexical functions
defined by Mel’cuk, but, considering the principle of our software,
JDM, this is not viable. Indeed, some of these lexical functions are too
specialized and typically aim at some generative procedure (instead of

5 http://www.jeuxdemots.org/diko.php
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automatic text analysis and understanding), as in our case. For exam-
ple, we can consider the distinction between the Conversive, Antonym,
and Contrastive functions, a distinction that could be made through
annotations for a quite generic antonym relation. Mel’cuk also con-
siders function refinements, with lexical functions characterized as
“wider” or “narrower”. Given that JDM is intended for users who are
“simple Internet users” and not necessarily experts in linguistics, such
functions could be wrongly interpreted. Furthermore, some of these
functions are clearly too poorly lexicalized, that is, very few terms
feature occurrences of such relations. This is, for example, the case of
the functions of ‘Metaphor’ or ‘Functioning with difficulty’.

JDM has a predefined list of around 80 relation types, and players
cannot define new types by themselves. These types of relations fall
into several categories:

e Lexical relations: synonymy, antonymy, expression, lexical fam-
ily. These types of relations are about vocabulary and lexicalization.

¢ Ontological relations: generic (hyperonymy), specific (hypo-
nymy), part of (meronymy), whole of (holonymy), mater/substance,
instances (named entities), typical location, characteristics and rele-
vant properties.

e Associative relations: free associations, associated feelings,
meanings, similar objects, more and less intense (Magn and anti-
Magn). These relations are rather about subjective and global knowl-
edge; some of them can be considered phrasal associations.

¢ Predicative relations: typical agent, typical patient, typical in-
strument, location where the action takes place, typical manner, typi-
cal cause, typical consequence etc. These relations are about types of
relations associated with a verb (or action noun) as well as the values
of its arguments (in a very wide sense).

Some relation types are specific to some noun classes. For exam-
ple, for a noun referring to an intellectual piece of work (book, novel,
movie, piece of art, etc.), the relation of author is defined. In case of a
medical entity, targets and symptoms are defined.

Some outgoing relations for the French word fromage are shown
below:

fromage — r_associated 800 — lait

fromage — r_associated 692 — camembert

fromage — r_associated 671 — chévre
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fromage — r_associated 580 — vache

fromage — r_associated 571 — gruyére

fromage — r_associated 460 — brebis

fromage — r_associated 419 — roquefort

fromage — r_isa 310 — produit laitier

fromage — r_associated 257 — produit laitier
fromage — r_associated 221 — brie

fromage — r_hypo 214 — gruyére

fromage — r_meaning 205 — produit laitier
fromage — r_hypo 204 — brie

fromage — r_associated 201 — dessert

fromage — r_associated 201 — fromage blanc
fromage — r_locution 199 — fromage de brebis
fromage — r_patient-1 199 — manger

fromage — r_locution 195 — fromage de téte
fromage — r_hypo 189 — fromage blanc

fromage — r_isa 189 — aliment

fromage — r_raff sem 183 — fromage > produit laitier
fromage — r_isa 182 — ingrédient

fromage — r_lieu 182 — pizza

fromage — r_carac 180 — puant

fromage — r_sentiment 177 — envie

fromage — r_consequence 173 — puer du bec
fromage — r_holo 171 — pizza

fromage — r_associated 168 — laitage

fromage — r_hypo 167 — fromage de vache
fromage — r_hypo 163 — fromage double créme
fromage — r_hypo 163 — fromage a pate pressée cuite
fromage — r_part_of 163 — lipide

fromage — r_part_of 161 — crofite

fromage — r_lieu :160 — plateau a fromage
fromage — r_carac 160 — odorant

fromage — r_associated#0:154 — raclette
fromage — r_locution :154 — dommage fromage
fromage — r_associated 149 — cancoillotte
fromage — r_locution 148 — faire tout un fromage
fromage — r_locution :148 — fromage analogue
fromage — r_locution :148 — fromage de synthése
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fromage — r_hypo 148 — fromage a pate dure
fromage — r_similar 148 — substitut de fromage
fromage — r_hypo#8:147 — emmental

2.4 Refinements

Word senses (or usages) of a given term T are represented as standard
nodes T >glose;, T>glose,, ..., T>glose, which are linked with RE-
FINE(ment) relations. Glosses are terms that help the reader to identify
the proper meanings of the term T. For example, consider the French

term frégate (Eng. frigate):

o frégate—REFINE—frégate > navire
e frégate>navire >REFINE— frégate > navire > ancient
o frégate>navire > REFINE— frégate > navire >modern
o frégate—REFINE—frégate > bird

A frigate can be a ship or a bird (both English and French have
the same ambiguity for this word), and as a ship it can either be an
ancient ship (with sails) or a modern one (with missiles and such).
As can be seen in the above example, word refinements are organized
as a decision tree, which can have some advantages over a flat list of
word meanings for lexical disambiguation.

A given word sense is treated as any standard term; it can be
played regularly. The general polysemous term contains (in principle)
the union set of all possible relations given by the senses. In practice,
we proceed the other way around, trying to distribute relations from
the appropriate term to the proper senses.

2.5 Negative relations

A given relation is weighted, and the weight could be negative. A neg-
ative weight is only the result of some contributive process (i.e. it is
never an outcome of the games) where volunteers add information to
the lexical network. The purpose of negative weights is to give some
foundation to the inhibitory process that allows us to reject (instead of
select) some given meaning during a Word Sense Disambiguation task.

o frégate >navire -»REFINE— coque (Eng. hull)
e frégate>bird >REFINE _,— coque
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Consider the sentence (in English): The frigate had her hull breached.
Obviously, the negative relations immediately forbid the frigate from
being a bird in this sentence. Hence, negative relations are of primary
interest for representing contrastive phenomena among the various
senses of a given term.

2.6 Aggregate nodes

The JDM lexical network also contains aggregate nodes that are in-
ferred from the set of relations produced by players and contributors.
An aggregate (node) is a node that encompasses either:

e a predicate (a verb) + one argument, like for example:
lion [AGENT] eat,
eat [PATIENT] salad.

e anoun + one feature, like for example:
cat [CARAC] black,
cat [LOCATION] sofa,
rabbit [MADE-OF] chocolate.

Aggregates can be combined recursively, for example (parenthe-
ses are given for for the purpose of readability):

A :: (cat [CARAC] black) [AGENT] eat
B :: (cat [CARAC] black) [AGENT] (eat [PATIENT] mouse)

The motive of such aggregate nodes is to associate information
(through relations) with some contextualized items:

e A -»PATIENT— bird
e B -»LOCATION— garden

The choice of aggregate node depends on the weight of the re-
lations in the lexical network. An automated process will randomly
select some relations and propose them as the aggregate to the play-
ers. Those which are selected for playing are dubbed as interesting
and reified (instantiated as node) in the lexical network. For example,
the relation:

soldier -AGENT— kill

it could lead to the aggregated node:

soldier [AGENT] kill
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can be proposed to player with various relation types to fill, as PA-
TIENT, LOCATION, MANNER, INSTRUMENT, etc.

2.7 Some figures

By February 2017, the JDM lexical network contained roughly 67 mil-
lion relations between more than 1 million nodes. Around 24 000
terms are refined into 65 000 word senses (word usages). More than
800 000 relations are negative and can be used as inhibitory items. The
generic ‘associated ideas’ relations represent around 25% of the rela-
tion total. Annotations (see below) represent around 4.5% of the to-
tal. Informational relations (like part-of-speech, some conceptual val-
ues like HUMAN, ALIVE, PLACE, SUBSTANCE, ARTIFACT, etc.) stand
for 20%.

3 INFERRING AND ANNOTATING RELATION

Inference is the process of proposing new relations on the basis of the
actual contents of the network. Simple procedures tend to provide cor-
rect but mostly irrelevant results. In Sajous et al. (2013) an endogenous
enrichment of Wiktionary is done with the use of a crowdsourcing
tool. A similar approach of using crowdsourcing has been consider-
ing by (Zeichner et al. (2012)) for evaluating inference rules that are
discovered from texts.

In what follows, we describe two endogenous inference mecha-
nisms which assist the annotation spreading, although other schemas
are running in the inference engine, producing new relations and de-
riving benefit from the produced annotations (Zarrouk 2015).

3.1 Inference

In order to increase the number of relations inside the JDM network,
an inference engine proposes relations to be validated by other human
contributors (or experts in the case of specialized knowledge). The
core ideas about inferences in our system are the following:

e as far as the engine is concerned, inferring is deriving candidate
conclusions (in the form of relations between terms) from previ-
ously known ones (existing relations);

¢ candidate inferences may be logically blocked regarding the pres-
ence or absence of some other relations;
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¢ candidate inferences can be filtered out on the basis of a strength
evaluation.

3.1.1 Deductive scheme

The first type of inference we are describing is the deduction or top-
down scheme, which is based on the transitivity of the ontological
relation is-a (hypernym). If a term A is a kind of B and B holds a
relation R with C, then we can expect that A holds the same relation
with C. The scheme can be formally written as follows:

1) A58 A BAc = alc

If we consider a term T with a set of weighted hypernyms, for each
hypernym, the inference engine deduces a set of inferences. Those
inference sets are not disjoint in the general case, and the weight of a
proposed inference in several sets is the incremental geometric mean
of each occurrence.

Of course, the scheme above is far too naive, especially consider-
ing the resource we are using. Indeed, B may be, possibly, a polyse-
mous term and ways to block inferences that are certainly wrong can
be devised. If there are two different meanings of term B that hold be-
tween the first and the second relation (Figure 3), then the inference
is most likely wrong.

Figure 3:
Triangular inference scheme with logical
blocking based on the polysemy of B

(3)R?: rejected

Moreover, if one of the premises is tagged as true but irrelevant,
then the inference is blocked. It is possible to assess a confidence level
for each produced inference in a way that dubious inferences can be
filtered out. The weight w of an inferred relation is the geometric mean
of the weight of premises. If the second premise has a negative value,
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the weight is not a number and the proposal is discarded. As the geo-
metric mean is less tolerant of small values than the arithmetic mean,
inferences which are not based on two valid relations (premises) are
unlikely to go through.

3.1.2 Induction scheme

As for the deductive inference, induction exploits the transitivity of
the relation is-a. If a term B is a hypernym of A and A holds a relation
R with C, then we might expect that B could hold the same type of
relation with C.

2) A5 A alc = B

This schema is a generalization inference. The global processing is
similar to the one applied to the deduction scheme and similarly some
logical and statistical filtering may be undertaken. The term joining
the two premises is possibly polysemous. If the term A presents two
distinct meanings which hold respectively of the premises (Figure 4),
then the inference done from that term may be probably wrong.

Figure 4:

Induction scheme. Central Term A may be
polysemous with meanings holding premises,
thus inducing a probably wrong relation

(3)R?: rejected

3.2 Relation annotations

JDM is a combined lexical semantic network (i.e one containing both
general knowledge but also specialist domain knowledge). Besides
being typed, relations are weighted and directed. In general, and espe-
cially in cases of specialized knowledge, the correlation between the
weight of the relation and its importance is not strict. This is why it
seems interesting to introduce annotations for some relations as these
can be of great help in such areas as medicine, for instance.
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In information retrieval, this annotation can be helpful to the
users. For instance, in the field of medicine, practitioners may want
to know if the characteristic of a given pathology is rare or frequent.
For example, the relation between measles and children is frequent and
as such will be available in the network.

3.3 Annotation values

These annotations will have a filter function in the inference scheme.
The types of annotations are of various kinds (mostly frequency and
relevance information). The different main annotation labels are:

¢ frequency annotations: very rare, rare, possible, frequent, always
true;

e usage annotations: often believed true, language misuse;
e quantifier: any number like 1, 2, 4, etc. or many, few;
e qualitative: pertinent, irrelevant, inferable, potential, preferred.

Concerning language misuse, a doctor can use the term flu (ill-
ness) instead of virus of influenza: it is a misuse of language as the doc-
tor makes use of a “language shortcut”. The annotation often believed
true is applied to a wrong relation. This is very often considered true,
for instance, spider (is-a/often believed true) insect. This kind of anno-
tation could be used to block the inference scheme. Qualitative anno-
tation relates to the inferable status of a relation, especially concerning
inference. The pertinent annotation refers to a proper ontological level
for a given relation. For instance: living being (charac/pertinent) alive
or living being (can/pertinent) die. Another case concerns synonyms:
in this case, it may be relevant to choose a preferred synonym, as in
the case of hepatocellular carcinoma (preferred), HCC, malignant hep-
atoma.

The annotation inferable is used when a relation is inferable (or
has been inferred) from an already existing relation. For example: cat
(charac/inferable) alive because cat (is-a) living being.

The annotation potential may be used for terms above the
pertinent ones in the ontological hierarchy, for example: bird (has-
part/always true) wings and animal (has-part/potential) wings.

Finally, the annotation irrelevant is used for a valid relation that
is considered as too far below the pertinent level, for example, animal
(has-part/irrelevant) atoms.
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The annotation quantifier represents the number of parts of an
object. Each human has two lungs so the quantifier relation there is 2.
This kind of annotation is not necessarily a numeral, but can be more
or less a subjective value, e.g. few, many, etc.

The annotation frequency can be of five different types: always
true, frequent, possible, rare and exceptional. There are also two quali-
tative types (pertinent and irrelevant).

The first annotations have been introduced manually, but with the
help of the inference scheme, they will spread through the network.
We assign empirical values to each annotation’s label: 4 to always
true, 3 to frequent, 2 to possible, 1 to rare and O to the rest of the
annotations. These allow us to select annotations to facilitate or block
an inference scheme.

The annotation possible is a special case. Depending of the con-
figuration of the system, it may block (stricter approach) or not block
(Ienient approach) the inference mechanism. If a system is lenient, we
may obtain many inference proposals that might be wrong (high re-
call, low precision). On the other hand, if a system is strict, we reduce
the risk of wrong proposals, but at the cost of missing adequate ones
(low recall, high precision).

4 FROM JDM TO MTTS

In this section, we show how we can exploit the richness of the lexico-
semantic information found in JDM, in order to decide on the typ-
ing ontology and assign types to objects in a compositional semantics
framework that is richly typed. But before we get into this discussion,
a very brief intro to MTT semantics.

4.1 A gentle and brief intro to MTT semantics

We use the term Modern Type Theory (MTT) to refer to a variant of
a class of type theories as studied by Martin-Loéf (1975); Martin-Lof
(1984) and others, which have dependent types, inductive types and
other powerful and expressive typing constructions. In this paper, we
are going to employ one of these variants, namely the Unified Theory
of dependent Types (UTT) complemented with the coercive subtyping
mechanism (Luo 1994, 1999; Luo et al. 2012). Given the different typ-
ing constructions found in MTTs, various interpretations of linguistic
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semantics might be different than what we usually find in traditional
Montagovian formal semantics based on simple type theory.

4.1.1 Common nouns as types and subtyping

A key difference between MTT-semantics and Montague semantics
(MS) lies in the interpretation of common nouns (CNs). In Montague
(1974), the underlying logic, i.e. Church’s simple type theory (Church
1940), is ‘single-sorted’ in the sense that there is only one type, e,
of all entities. The other types such as the type of truth values, i.e.
t, and the function types generated from types e and t do not stand
for types of entities. Thus, no fine-grained distinctions between the
elements of type e exist, and as such all individuals are interpreted
using the same type. For example, John and Mary have the same type
in simple type theory, i.e. the type e of individuals. An MTT, on the
other hand, can be regarded as a ‘many-sorted’ logical system in that
it contains many types. In this respect, MTTs can make fine-grained
distinctions between individuals and use those different types to inter-
pret subclasses of individuals. For example, one can have John : man
and Mary : woman, where man and woman are different types. Another
very basic difference between MS and MTTs is that common nouns in
MTTs (CNs) are interpreted as types (Ranta 1994) rather than sets or
predicates (i.e., objects of type e — t) as in MS. The CNs man, human,
table and book are interpreted as types man, human, table and book,
respectively. Then, individuals are interpreted as being of one of the
types used to interpret CNs.

This many-sortedness has the welcome result that a number
of semantically infelicitous sentences, which are however syntacti-
cally well-formed, like e.g. the ham sandwich walks can be explained
easily. This is because a verb like walks will be specified as being of
type Animal — Prop while the type for ham sandwich will be food or
sandwich:®

6 This is of course based on the assumption that the definite NP is of a lower
type and not a Generalized Quantifier. Furthermore, the idea that common nouns
should be interpreted as types rather than predicates has been argued in Luo
(2012) on philosophical grounds as well. There, Luo argues that the observation
found in Geach (1962) according to which common nouns, in contrast to other
linguistic categories, have criteria of identity that enable them to be compared,
counted or quantified, has an interesting link with the constructive notion of
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(3) the ham sandwich : food
(4) walk : human — Prop

Interpreting CNs as types rather than predicates has also a signifi-
cant methodological implication: compatibility with subtyping. For in-
stance, one may introduce various subtyping relations by postulating a
collection of subtypes (physical objects, informational objects, eventu-
alities, etc.) of the type Entity (Asher 2012). It is a well-known fact that
if cNs are interpreted as predicates as in the traditional Montagovian
setting, introducing such subtyping relations would cause problems
given that the contravariance of function types would predict that if
A < B, then B — Prop < A — Prop would be the case. Substituting A
with type man and B with type human, we come to understand why
interpreting CNs as predicates is not a good idea if we want to add a
coercive subtyping mechanism.

The subtyping mechanism used in the MTT endorsed in this paper
is that of coercive subtyping (Luo 1999; Luo et al. 2012). Coercive
subtyping can be seen as an abbreviation mechanism: A is a (proper)
subtype of B (A < B) if there is a unique implicit coercion ¢ from type
Ato type B and, if so, an object a of type A can be used in any context
¢z[_] that expects an object of type B: €z[a] to be legal (well-typed)
and equal to €z[c(a)].

To give an example: assume that both man and human are base
types. One may then introduce the following as a basic subtyping re-
lation:

(5) man < human

4.1.2 X-types, II-types and universes

In this subsection, the dependent types ¥ and II. as well as universes
are briefly introduced.

Dependent T-types. One of the basic features of MTTs is the use of De-
pendent Types. A dependent type is a family of types that depend

set/type: in constructive mathematics, sets (types) are not constructed only by
specifying their objects but they additionally involve an equality relation. The
argument is then that the interpretation of CNs as types in MTTs is explained and
justified to a certain extent. Extensions and further theoretical advances using
the CNs as types approach can be found in Chatzikyriakidis and Luo (2017b).
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on some values. The constructor/operator ¥ is a generalization of
the Cartesian product of two sets that allows the second set to de-
pend on the values of the first. For instance, if human is a type and
male : human — Prop, then the Y-type Xh : human. male(h) is intu-
itively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types,
then ¥(A, B), or sometimes written as Xx:A.B(x), is a type, consisting
of pairs (a, b) such that a is of type A and b is of type B(a). When B(x)
is a constant type (i.e., always the same type no matter what x is),
the X-type degenerates into the product type A x B of non-dependent
pairs. X-types (and product types) are associated projection operations
7, and 7, so that 7t;(a, b) = a and 7,(a, b) = b, for every (a, b) of type
%(A,B) or A x B.

The linguistic relevance of X-types can be directly appreciated
once we understand that in their dependent case X-types can be used
to interpret linguistic phenomena of central importance, like adjecti-
val modification (see for example Ranta 1994). To give an example,
handsome man is interpreted as X-type (6), the type of handsome men
(or more precisely, of those men together with proofs that they are
handsome):

(6) Xm:man. handsome(m)

where handsome(m) is a family of propositions/types that depends on
the man m.

Dependent TI-types. The other basic constructor for dependent types is
I1. II-types can be seen as a generalization of the normal function space
where the second type is a family of types that might be dependent
on the values of the first. A II-type degenerates to the function type
A — B in the non-dependent case. In more detail, when A is a type and
P is a predicate over A, I1x:A.P(x) is the dependent function type that,
in the embedded logic, stands for the universally quantified proposi-
tion Vx:A.P(x). For example, the following sentence (7) is interpreted
as (8):

(7) Every man walks.
(8) IIx : man.walk(x)

II-types are very useful in formulating the typings for a number
of linguistic categories like VP adverbs or quantifiers. The idea is that
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adverbs and quantifiers range over the universe of (the interpretations
of) CNs and as such we need a way to represent this fact. In this case,
I[I-types can be used, universally quantifying over the universe CN.
Example (9) is the type for VP adverbs’ while (10) is the type for
quantifiers:

(9) TIA:CN. (A— Prop) — (A— Prop)
(10) TA: CN. (A — Prop) — Prop

Further explanations of the above types are given after we have intro-
duced the concept of type universe below.

Type Universes. An advanced feature of MTTs, which will be shown
to be very relevant in interpreting NL semantics in general, is that
of universes. Informally, a universe is a collection of (the names of)
types put into a type (Martin-Lof 1984).8 For example, one may want
to collect all the names of the types that interpret common nouns into
a universe CN : Type. The idea is that for each type A that interprets a
common noun, there is a name A in CN. For example,

[man]l:cN and T.([[man]]) =[[man]].

In practice, we do not distinguish a type in CN and its name by omitting
the overlines and the operator T,y by simply writing, for instance,
[[man]] : CN.

Having introduced the universe CN, it is now possible to explain
(9) and (10). The type in (10) says that for all elements A of type
CN, we get a function type (A — Prop) — Prop. The idea is that the
element A is now the type used. To illustrate how this works let us
imagine the case of the quantifier some which has the typing in (10).
The first argument we need has to be of type CN. Thus some human is

7 This was proposed for the first time in Luo (2011).

8 There is quite a long discussion on what properties these universes should
have. In particular, the debate is largely concentrated on whether a universe
should be predicative or impredicative. A strongly impredicative universe U of
all types (with U : U and II-types) has been shown by Girard (1971) to be para-
doxical, and as such logically inconsistent. The theory UTT we use here has only
one impredicative universe Prop (representing the world of logical formulas) to-
gether with infinitely many predicative universes which as such avoids Girard’s
paradox (Luo 1994).
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of type (human — Prop) — Prop given that the A here is human : CN
(A becomes the type human in (human — Prop) — Prop). Then given a
predicate like walk : human — Prop, we can apply some human to get
some human : Prop.

4.2 Getting MTT typings from JDM

In this section, we will show how we can define a translation proce-
dure between JDM and MTTs, in order to base our typing judgments
and other related lexico-semantic information in JDM. We show some
basic examples in which this can be done.

4.2.1 Base types and instances of base types

MTTs, as already said, are many-sorted systems in that they involve
a multitude of types rather than just one monolithic type e domain of
entities. In the accounts proposed by Luo (2011, 2012), every com-
mon noun is associated with a base type. What this idea amounts to,
among other things, is that in this approach, CNs are base types and as
such, are clearly separated in terms of their formal status with either
adjectives or intransitive verbs. The type of CNs, like Man, Human and
Animal is CN, the universe of common nouns.

The idea is then to extract these base types from common nouns
in JDM (terms in JDM). POS tagging of JDM will provide information
about which words are the common nouns. What we further have to
do in getting the base types, is to exclude instances of terms (for ex-
ample John as an instance of Man) in order to distinguish between
instances of terms and the terms themselves (CNs).° This can be done
by excluding named entities (NEs). The second part of the conjunction
takes care of that by not allowing A to be an instance, i.e. an NE:!°

(11) YA.POS(N,A) A—(Ins(A)) = A:CN.

9 This does not mean that we are not interested in instances. On the contrary.
What we are saying here is that this rule distinguishes between CNs and instances
of these CNs (the difference between a type like Man and an instance of this type,
e.g. John). There will be a separate rule to derive instances.

10Note that modified CNs are also going to be of type CN. To give an example,
consider the analysis of adjectival modification. In MTTs, this would be a X type,
where the first component would be an element A of type CNand the second
projection a predicate over A. The first projection is defined as a coercion, and
thus the modified CN can be used as being of type CN. For more information on
this, please refer to (Chatzikyriakidis and Luo 2013, 2017a) for more information.
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Hyponym and hypernym (noted as isa in JDM) relations naturally
correspond to subtypes and supertypes. We only use the subtype rela-
tion in order to provide a translation procedure:

(12) VA,B.Hyp(A,B) = A < B:CN.
(13) VA, B.Hyper(A,B) = B < A:CN.

This basically means that as soon as 