
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1

1

Journal of

Language
Modelling
volume 5 issue 2
september 2017

Institute of Computer Science
Polish Academy of Sciences
Warsaw

Journal of
Language Modelling

volume 5 issue 2
september 2017

Editorials
An outline of type-theoretical approaches to lexical semantics 165

Robin Cooper, Christian Retoré

Articles
Scope ambiguities, monads and strengths 179
Justyna Grudzińska, Marek Zawadowski
Type Theories and Lexical Networks:

using Serious Games as the basis for Multi-Sorted Typed Systems 229
Stergios Chatzikyriakidis, Mathieu Lafourcade,

Lionel Ramadier, Manel Zarrouk
Interfacing language, spatial perception and cognition

in Type Theory with Records 273
Simon Dobnik, Robin Cooper

Individuation, reliability, and the mass/count distinction 303
Peter R. Sutton, Hana Filip

Quantification in frame semantics
with binders and nominals of hybrid logic 357

Laura Kallmeyer, Rainer Osswald, Sylvain Pogodalla
Factivity and presupposition in Dependent Type Semantics 385

Ribeka Tanaka, Koji Mineshima, Daisuke Bekki

1

journal of
language modelling

ISSN 2299-8470 (electronic version)
ISSN 2299-856X (printed version)
http://jlm.ipipan.waw.pl/

managing editor
Adam Przepiórkowski ipi pan

guest editors of this special issue
Robin Cooper University of Gothenburg

Christian Retoré Université de Montpellier & LIRMM

section editors
Elżbieta Hajnicz ipi pan

Agnieszka Mykowiecka ipi pan
Marcin Woliński ipi pan

statistics editor
Łukasz Dębowski ipi pan

Published by IPI PAN
Institute of Computer Science, Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Circulation: 100 + print on demand
Layout designed by Adam Twardoch.

Typeset in XƎLATEX using the typefaces: Playfair Display
by Claus Eggers Sørensen, Charis SIL by SIL International,

JLM monogram by Łukasz Dziedzic.
All content is licensed under

the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

editorial board

Steven Abney University of Michigan, usa
Ash Asudeh Carleton University, canada;
University of Oxford, united kingdom

Chris Biemann Technische Universität Darmstadt, germany
Igor Boguslavsky Technical University of Madrid, spain;

Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, russia

António Branco University of Lisbon, portugal
David Chiang University of Southern California, Los Angeles, usa

Greville Corbett University of Surrey, united kingdom
Dan Cristea University of Iași, romania

Jan Daciuk Gdańsk University of Technology, poland
Mary Dalrymple University of Oxford, united kingdom

Darja Fišer University of Ljubljana, slovenia
Anette Frank Universität Heidelberg, germany
Claire Gardent cnrs/loria, Nancy, france

Jonathan Ginzburg Université Paris-Diderot, france
Stefan Th. Gries University of California, Santa Barbara, usa

Heiki-Jaan Kaalep University of Tartu, estonia
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, germany

Jong-Bok Kim Kyung Hee University, Seoul, korea
Kimmo Koskenniemi University of Helsinki, finland

Jonas Kuhn Universität Stuttgart, germany
Alessandro Lenci University of Pisa, italy

Ján Mačutek Comenius University in Bratislava, slovakia
Igor Mel’čuk University of Montreal, canada

Glyn Morrill Technical University of Catalonia, Barcelona, spain

Stefan Müller Freie Universität Berlin, germany
Mark-Jan Nederhof University of St Andrews, united kingdom

Petya Osenova Sofia University, bulgaria
David Pesetsky Massachusetts Institute of Technology, usa
Maciej Piasecki Wrocław University of Technology, poland

Christopher Potts Stanford University, usa
Louisa Sadler University of Essex, united kingdom

Agata Savary Université François Rabelais Tours, france
Sabine Schulte im Walde Universität Stuttgart, germany

Stuart M. Shieber Harvard University, usa
Mark Steedman University of Edinburgh, united kingdom

Stan Szpakowicz School of Electrical Engineering
and Computer Science, University of Ottawa, canada
Shravan Vasishth Universität Potsdam, germany

Zygmunt Vetulani Adam Mickiewicz University, Poznań, poland
Aline Villavicencio Federal University of Rio Grande do Sul,

Porto Alegre, brazil
Veronika Vincze University of Szeged, hungary

Yorick Wilks Florida Institute of Human and Machine Cognition, usa
Shuly Wintner University of Haifa, israel

Zdeněk Žabokrtský Charles University in Prague, czech republic

An outline of type-theoretical approaches
to lexical semantics

Robin Cooper1 and Christian Retoré2
1 University of Gothenburg

2 Université de Montpellier & LIRMM

abstract
Keywords: lexical
semantics;
compositional
semantics; type
theory; lambda
calculus

We take the opportunity of the publication of some of the papers
of the ESSLLI workshop TYTLES (TYpe Theory and LExical Seman-
tics, ESSLLI 2015, Barcelona) to provide an overview of the possi-
bilities that type theory offers to model lexical semantics, especially
the type-theoretical frameworks that properly model compositional
semantics.

origins of this issue: esslli workshop on
type theory and lexical semantics ˀ2015ˁ

The program of the ESSLLI 2015 workshop held in Barcelona1 con-
sisted of twelve selected talks. The corresponding extended abstracts,
together with an introduction and a conclusion by the workshop or-
ganisers, are available on the web as Cooper and Retoré (2015); it
includes:
A. Introduction (slides), by Robin Cooper and Christian Retoré.
B. Justyna Grudzińska and Marek Zawadowski. A Puzzle about Long-

distance Indefinites and Dependent Type Semantics.
C. Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier

and Manel Zarrouk. Type Theories and Lexical Networks: Using Se-
rious Games as the Basis for Multi-Sorted Typed Systems.

1On 17 August 2017, while writing this introduction, we learnt about the
tragic attack in Barcelona, where some friends and colleagues live. We would
like to express our sympathy.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 165–178

Robin Cooper, Christian Retoré

D. Staffan Larsson. Perceptual Meaning in TTR Judgement-based Se-
mantics and Conceptual Spaces.

E. Simon Dobnik. Interfacing Language, Spatial Perception and Cogni-
tion in Type Theory with Records.

F. Peter Sutton and Hana Filip. Probabilistic Mereological TTR and the
Mass/Count Distinction.

G. Ellen Breitholtz. Are Widows Always Wicked? Learning Concepts
through Enthymematic Reasoning.

H. Bruno Mery. The Relative Complexity of Constraints in Co-Predi-
cative Utterances.

I. Daisuke Bekki and Miho Satoh. Calculating Projections via Type
Checking.

J. Laura Kallmeyer, Timm Lichte, Rainer Osswald, Sylvain Pogo-
dalla and Christian Wurm. Quantification in Frame Semantics with
Hybrid Logic.

K. Livy Real and Alexandre Rademaker. An Overview on Portuguese
Nominalisation.

L. Pepijn Kokke. Formalising type-logical grammars in Agda.
M. Seohyun Im and Chungmin Lee. A Developed Analysis of Type Co-

ercion Using Asher’s TCL and Conventionality.
N. Ribeka Tanaka, Koji Mineshima and Daisuke Bekki. Factivity and

Presupposition in Dependent Type Semantics.
O. Conclusion (slides), by Robin Cooper and Christian Retoré.
Some of these papers were submitted and some of these are now in-
cluded in this issue of the Journal of Language Modelling on Type theory
and lexical semantics.

Let us briefly present this fruitful connection of lasting interest.

1 a compositional view
of lexical semantics

The relation between lexical semantics and type theory is rather un-
natural if one thinks of lexical semantics as defined, e.g., in the arti-
cle Lexical Semantics in the Oxford Research Encyclopedia of Linguistics
(Geeraerts 2017):

[166]

Type-theoretical approaches to lexical semantics

Lexical semantics is the study of word meaning. Descrip-
tively speaking, the main topics studied within lexical se-
mantics involve either the internal semantic structure of
words, or the semantic relations that occur within the vo-
cabulary. Within the first set, major phenomena include pol-
ysemy (in contrast with vagueness), metonymy, metaphor,
and prototypicality. Within the second set, dominant topics
include lexical fields, lexical relations, conceptual metaphor
and metonymy, and frames.
If we have a look from the other side, i.e., philosophy of lan-

guage, where logic, compositional semantics and type theory live, the
connection is at least evoked as in these words from the entry on Word
Meaning in the Stanford Encyclopaedia of Philosophy (Gasparri and
Marconi 2016):

Word meaning has played a somewhat marginal role in
early contemporary philosophy of language, which was pri-
marily concerned with the structural features of sentences
and showed less interest in the format of lexical represen-
tations and in the nature of the word-level input to compo-
sitional processes. Nowadays, it is well-established that the
way we account for word meaning is bound to have a major
impact in tipping the balance in favor or against a given pic-
ture of the fundamental properties of human language. This
entry provides an overview of the way issues related to lexi-
cal meaning have been explored in analytic philosophy and a
summary of relevant research on the subject in neighboring
scientific domains.
So this survey, as well as the workshop, is devoted to the study

of lexical semantics in a compositional framework deriving – roughly
speaking – from Montague semantics and the lexical issues to be dealt
with are:

• word meaning in context (various forms of polysemy),
• relation between meanings,
• relation between lexical networks and lexical semantics.
Observe that from a logical viewpoint, relations between mean-

ings are naturally higher order relations which oblige us to go beyond

[167]

Robin Cooper, Christian Retoré

first order logic and type theories are naturally higher order – of course
reification à la Davidson is possible, but still rather unnatural and less
compositional.

Usual techniques for taking into account at least part of lexical se-
mantics are the descriptions using features (e.g. human/non-human),
argument structures which specify the nature of arguments to predi-
cates and the composition of word vectors that has been quite fash-
ionable recently although it obliges us to leave out some of the logical
structure involved in compositional semantics such as negation.

2 some aspects of lexical semantics
in compositional frameworks

2.1 Polysemy
Polysemy is the phenomenon that a single word or expression has sev-
eral readings. It is common to distinguish various forms of polysemy.

Simple polysemy might be viewed as the coincidence that a word
has several unrelated meanings, which in some contexts may be hard
to choose between, as in (1).
(1) a. The river flowed by the bank.

b. The bank is near the river.
c. The bank phoned me.

This should be distinguished from words that have several inter-
related meanings derived from a root meaning. An institution like a
journal or a town have such aspects, which are also called facets, as
shown in (2).
(2) a. The journal is printed on pink paper.

b. The journal hired a new commentator.
c. The journal is near the port.

Events are a special case of this, and they play a particular role
in semantics. Deverbals may refer to aspects of an action verb such as
the process, the result, the place or the material used, as in (3)–(4).
There is a rich literature on the topic, see, e.g., the references in Real
and Retoré (2014).
(3) a. The signature took three months.

b. The signature is unreadable.

[168]

Type-theoretical approaches to lexical semantics

(4) a. The building in front of my house took three months.
b. The building in front of my house is ugly.

There is a special form of polysemy where the two aspects are
strongly linked: one aspect does not exclude the other, on the contrary
you cannot have one without the other. This has some consequences
for the individuation process and the interpretation of the quantifiers,
as shown in (5).
(5) a. I carried all the books from the library to the attic.

b. I read all the books in the library.
There are examples that are hard to understand without the con-

text, which can be linguistic or extralinguistic, as in (6).
(6) a. I am parked behind a blue BMW.

b. The ham sandwich asked for a coffee.
2.2 Co-predication
Given that compositional semantics is quite interested in the logical
structure of sentences, it is normal that it has been studying how one
can conjoin the properties of a word, properties which may concern
only a single aspect of this word, as in (7)–(10).
(7) Dinner was delicious but took ages. (event/food)
(8) * The salmon we had for lunch was lightning fast. (animal/food)
(9) a. I left my preferred book on logic on the table. (physi-

cal/information)
b. I carried the books from the shelf to the attic since I already

read them. (physical/information)
(10) a. Liverpool is a poor town and an important harbour. (peo-

ple/geographic)
b.* Liverpool defeated Chelsea and is an important harbour.

(football/geographic)
It can be observed that in some thematic contexts or contrasts a

priori infelicitous co-predication may become felicitous.
(11) a. Barcelona won four champions leagues and organised the

olympiads.

[169]

Robin Cooper, Christian Retoré

b. Libourne, a small south-west town, defeated Lille.
Deverbals rarely allow co-predications on their different facets,

as discussed in Real and Retoré (2014) and at the workshop, in Livy
Real’s talk.

3 integrating lexical semantics into
a compositional and computational

framework
Standard lexical semantics, including distributional semantics as used
in natural language processing, involving big data, machine learning,
information retrieval, and so on, is mainly concerned with what a sen-
tence or a text is about in terms of empirically grounded word mean-
ings. For instance, word vectors are derived from the cooccurrences
of words in texts. They are especially good for the study of semantic
similarity: the cosine measure of similarity or the products of vectors
by matrices may model the combination of a verb and its object or of
an adjective with a noun, etc.

Formal semantics is rather concerned with logical and pragmatic
relations: what a sentence (or discourse) asserts, denies, supposes, how
noun phrases and pronouns (co)refer to individuals and sets, in which
situations (or worlds) sentences are true. It is also concerned with the
interpretation of modality, aspect and tense. Usually intepretation as-
sumes that lexical meaning has been determined in some way exter-
nal to the semantics. It is carried out in two steps: word meanings are
combined according to syntactic analysis into a logical formula, which
is thereafter interpreted in terms of some semantics, usually possible
worlds semantics, although other interpretations of logical formulas
are possible, like situation semantics or game-theoretical semantics.

These two approaches are complementary, and an adequate the-
ory of semantics should take both into account. For instance, if one is
looking for an answer to the question whether Geach was a student of
Wittgenstein, one can find in the French Wikipedia (contradicting the
English version):
(12) In 1941, [Geach] married Elisabeth Anscombe, through whom

he got in contact with Wittgenstein. Although he never attended
the lectures of the latter, he was strongly influenced by him.

[170]

Type-theoretical approaches to lexical semantics

Both word meaning (“student of”, “to attend some lectures by”)
and sentence/discourse structure are needed to understand this text
(scope of the negative “never”, reference of pronouns like “he”,
“whom”, “the latter”, “his” and “him”).

In Human Machine Interaction large scale analysis on the fly is
not practical but proper understanding is still important. For instance,
if a parent says “the children want pizza” to some McDonald’s-like
automaton, the person who treats the order needs to know whether
to prepare one or several pizzas and in this case the system should
know that this has not been determined by the utterance and should
therefore ask for a clarification.
3.1 Pustejovsky’s generative lexicon: a framework for polysemy
Important and pioneering work on polysemy has been carried out
by Pustejovsky. Although those questions have been studied at least
since the 1970s (Apresjan 1974; Bierwisch 1979, 1983; Nunberg 1979,
1995; Cruse 1986; see, e.g., Lauer 2004 or Dölling 2018 for survey
and comparisons), Pustejovsky (1991, 1995) was the first to propose
a formal compositional framework for handling word meaning and
the transformation of word meaning in context.

The basic components of Pustejovsky’s approach are:
• a compositional (generative) view of word meaning,
• a formal framework: word meaning as complex feature structures
(he way they combine is less specified),

• computational tractability.
There are four levels in an entry of the generative lexicon:

• lexical typing structure: giving an explicit type for a word posi-
tioned within a type system for the language,

• argument structure: specifying the number and nature of argu-
ments to a predicate,

• event structure: defining the event type of the expression and any
subevent structure it may have,

• qualia structure: a structural differentiation of the predicative
force for a lexical item organised in four quale:

– formal: the basic category which distinguishes the meaning
of a word within a larger domain,

[171]

Robin Cooper, Christian Retoré

– constitutive: the relation between an object and its con-
stituent parts,

– telic: the purpose or function of the object, if there is one,
– agentive: the factors involved in the object’s origins or “com-
ing into being”.

Types play an important role in the generative lexicon. There are
base types organised as an ontology. Functional types are also used,
in particular, in the argument structure.

To sum up, the generative lexicon is the first compositional se-
mantic framework that integrates some aspects of lexical meaning.
Some of the structures and notions involved in this framework are
fully formalised, but not all of them. For instance, the structure of the
entries is completely formalised. Nevertheless some aspects remain to
be made precise, such as the set of base types and their ontology. When
it comes to the way lexical items combine, the composition modes and
rules are mainly described in terms of examples, whereas automated
semantic analysis would require a general procedure as well as a pre-
cise correspondence between syntactic operations and semantic rules.
So onemaywonder whether this framework is already able to compute
the semantics of a whole complex sentence, or of a small discourse.

It is worth noticing that some important parts of the generative
lexicon can be learnt, in particular the qualia structure (Claveau et al.
2003). It is still an open question whether other fields than qualia
structure can be learnt.

3.2 Lexical semantics and compositionality
3.2.1 Selectional restrictions
One way to start addressing lexical issues in compositional semantics
concerns selectional restrictions, as in (13).
(13) The chair barked.
(14) Dictionary: “barks” is said of an animal, usually a dog.

A commonly adopted idea is that infelicitous semantic composi-
tion is a type mismatch: a predicate P over A entities (a function from
objects of type A to propositions or truth values) is applied to an entity
t of type B with B ̸= A:

[172]

Type-theoretical approaches to lexical semantics

PA→prop(tB)

as it is the case in example (13):
Barkanimal→prop(the chair)physical object

This constraint needs to be relaxed in certain contexts. While (13)
sounds strange, (15a) is much easier to interpret and (15b) provides a
naturally occurring example.
(15) a. I was so late for registration that the secretary barked at me.

b. Bow Wow barked at on Twitter for claiming he flies
private (https://www.cnet.com/news/bow-wow-barked-at-on-

twitter-for-claiming-he-flies-private/, 27/8/2017)
Observe that meaning transfers are idiosyncratic. In French you

can say that either a tyre or a car is “punctured”, as in (16a) and
(16b). Correspondingly, in English you can say that a tyre or a car has
a puncture, as in (16c). However, while you can say that a tyre is flat
or punctured, as in (16d), in English you cannot say that a car is flat
or punctured, as in (16e).
(16) a. Le

The
pneu
tyre

est
is

crevé.
punctured.

b. Ma
My

voiture
car

est
is

crevée.
punctured.

My car has a puncture.
c. My tyre/car has a puncture.
d. My tyre is flat/punctured.
e.#My car is flat/punctured.

Idiosyncratic phenomena can even be observed in the same lan-
guage. Indeed some words with the same ”ontological type” may have
different meanings. For instance in French, of two words designating
a set of students, namely classe (class/classroom) and promotion (year
group) only classe may mean classroom.
(17) a. La

The
classe
class

de
of

CP
1st-year

a été
was

repeinte
repainted

pendant
during

les
the

vacances.
holidays.

[173]

Robin Cooper, Christian Retoré

b.#La
The

promotion
year-group

2015
2015

a été
was

repeinte
repainted

pendant
during

les
the

vacances.
holidays.

One issue is whether adaptation of word meaning to context
should be word-driven or type-driven. A related issue is whether the
base types should be related to ontological classes or to linguistic be-
haviours, different answers being developed by Asher (2011), Retoré
(2014), Kinoshita et al. (2017), Chatzikyriakidis and Luo (2017), Mery
and Retoré (2017).

4 using types for lexical semantics

There are three broad areas relating to the lexicon represented in the
papers here which suggest that a type-theoretical approach can be
useful. These are:

• dynamic aspects of the lexicon,
• use of dependent types,
• probability.

We will discuss each of these in turn.
4.1 Dynamic aspects of the lexicon
There is general agreement in these papers that lexical meaning is to be
treated dynamically. This idea relates, of course, to the original work
on the generative lexicon and notions of coercion. But it also relates
to the fact that we are constantly learning new words and meanings
for words, that lexical meaning is in flux.

In type-theoretical approaches there is a focus on the types of
objects rather than the sets of objects (witnesses or inhabitants) which
belong to those types. In introducing types we attempt to define the
conditions under which an object would belong to the type rather than
simply associating a set of objects with the type. This means that we
can adapt a type theory to models where the set of witnesses of a type
may change dynamically over time, without the type itself thereby
changing. It introduces the possibility of modelling how we observe
new witnesses of a type as we discover more of the world. This is

[174]

Type-theoretical approaches to lexical semantics

different from a Montagovian notion of sense: a function from possible
worlds and times to extensions. If you discover a new object at a given
world and time, then the Montagovian sense is different.

Another dynamic aspect offered by a type theory is that the type
associated with a word can change over time. Many modern type the-
ories offer a notion of structured types (such as record types) which
allows us to give an account of change not available in a Montago-
vian sense. For example, a record type can be changed by adding or
removing a field whereas in a Montagovian sense the only structure
we have is that of the set of ordered pairs which is the function from
world-time pairs to extensions.

Papers relating to some kind of dynamic aspect of types in this
issue are those by Chatzikyriakidis et al. and Dobnik et al.

The notion of structured type figures indirectly in the paper by
Kallmeyer et al. The notion of frame which they introduce in terms
of hybrid logic relates intuitively to the notion of frame in terms of
record types discussed in Cooper (2016). It would be interesting, for
example, to explore whether the expressions of hybrid logic can be
thought of as record types modelling event types.

4.2 Dependent types
Dependent types are parametrised types which return a type depend-
ing on what objects are provided for their parameters. They can be
thought of a functions from objects to types. A classical use of de-
pendent types is for donkey anaphora, as first presented in Sundholm
(1986) and discussed in Ranta (1994). However, a number of other
uses have been pointed out in the literature. In the papers in this issue
their use is discussed for presupposition (Tanaka et al.).

4.3 Probability
In standard type theory judgements that objects are of a given type are
categorical: either an object is of a type or it is not. However, it seems
intuitive that agents make probabilistic judgements: it is probable that
a given object is of a given type, but it is not certain. Cooper et al.
(2015) proposed a probabilistic type theory that could be used for
natural language semantics and in this issue Sutton et al. apply this to
the analysis of the mass/count distinction.

[175]

Robin Cooper, Christian Retoré

5 conclusion

This special issue represents a broad span of approaches using different
type theories but, as we have tried to point out in this introduction,
they share a number of common assumptions and goals. This bodes
well for future research on type theory and lexical semantics.

references
Juri Apresjan (1974), Regular Polysemy, Linguistics, 14:5–32.
Nicholas Asher (2011), Lexical Meaning in context – a web of words, Cambridge
University press.
Manfred Bierwisch (1979), Wörtliche Bedeutung - eine pragmatische
Gretchenfrage, in G. Grewendorf, editor, Sprechakttheorie und Semantik,
pp. 119–148, Surkamp, Frankfurt.
Manfred Bierwisch (1983), Semantische und konzeptuelle Repräsentation
lexikalischer Einheiten, in R. Ru̇z̆ick̆a and W. Motsch, editors,
Untersuchungen zur Semantik, pp. 61–99, Akademie-Verlag, Berlin.
Stergios Chatzikyriakidis and Zhaohui Luo (2017), On the Interpretation of
Common Nouns: Types Versus Predicates, in Stergios Chatzikyriakidis and
Zhaohui Luo, editors, Modern Perspectives in Type Theoretical Semantics,
pp. 43–70, Springer.
Vincent Claveau, Pascale Sébillot, Cécile Fabre, and Pierrette Bouillon
(2003), Learning Semantic Lexicons from a Part-of-Speech and Semantically
Tagged Corpus Using Inductive Logic Programming, Journal of Machine Learning
Research, 4:493–525.
Robin Cooper (2016), Frames as Records, in Annie Foret, Glyn Morrill,
Reinhard Muskens, Rainer Osswald, and Sylvain Pogodalla, editors,
Formal Grammar: 20th and 21st International Conferences FG 2015, Barcelona,
Spain, August 2015, Revised Selected Papers FG 2016, Bozen, Italy, August 2016,
Proceedings, number 9804 in LNCS, pp. 3–18, Springer.
Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson (2015),
Probabilistic Type Theory and Natural Language Semantics, Linguistic Issues in
Language Technology, 10(4):1–45.
Robin Cooper and Christian Retoré (2015), Extended abstracts of the ESSLLI
2015 workshop TYTLES: Types Theory and Lexical Semantics, HAL Archives
Ouvertes, https://hal.archives-ouvertes.fr/hal-01584832.
D.A. Cruse (1986), Lexical semantics, Cambridge textbooks in linguistics,
Cambridge University Press, ISBN 9780521276436,
http://books.google.fr/books?id=xDSBaet2uSsC.

[176]

Type-theoretical approaches to lexical semantics

Johannes Dölling (2018), Systematic polysemy, in Lisa Matthewson, Cécile
Meier, Hotze Rullmann, and Thomas Ede Zimmermann, editors, The
Blackwell Companion to Semantics, Blackwell.
Luca Gasparri and Diego Marconi (2016), Word Meaning, in Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy, Metaphysics Research
Lab, Stanford University, spring 2016 edition, https:
//plato.stanford.edu/archives/spr2016/entries/word-meaning/.
Dirk Geeraerts (2017), Lexical Semantics, in Oxford Research Encyclopedia of
Linguistics, Oxford University Press,
doi:10.1093/acrefore/9780199384655.013.29,
http://linguistics.oxfordre.com/view/10.1093/acrefore/
9780199384655.001.0001/acrefore-9780199384655-e-29.
Eriko Kinoshita, Koji Mineshima, and Daisuke Bekki (2017), An Analysis of
Selectional Restrictions with Dependent Type Semantics, in Setsuya
Kurahashi, Yuiko Ohta, Sachiyo Arai, Ken Satoh, and Daisuke Bekki,
editors, New Frontiers in Artificial Intelligence - JSAI-isAI 2016 Workshops, LENLS,
HAT-MASH, AI-Biz, JURISIN and SKL, Kanagawa, Japan, November 14-16, 2016,
Revised Selected Papers, volume 10247 of Lecture Notes in Computer Science,
pp. 19–32, Springer.
Sven Lauer (2004), A Comparative Study Of Current Theories Of Polysemy In
Formal Semantics, Master’s thesis, Cognitive science Osnabrück - Computational
Linguistics, http://cogsci.uni-osnabrueck.de/~CL/.
Bruno Mery and Christian Retoré (2017), Classifiers, Sorts, and Base Types in
the Montagovian Generative Lexicon and Related Type Theoretical Frameworks
for Lexical Compositional Semantics, in Stergios Chatzikyriakidis and
Zhaohui Luo, editors, Modern Perspectives in Type Theoretical Semantics,
pp. 163–188, Springer.
Geoffrey Nunberg (1979), The Non-Uniqueness of Semantic Solutions:
Polysemy, Linguistic and Philosophy, 3:143–184.
Geoffrey Nunberg (1995), Transfers of meaning, Journal of semantics,
12(2):109–132.
James Pustejovsky (1991), The Generative Lexicon, Computational Linguistics,
17(4):409–441.
James Pustejovsky (1995), The generative lexicon, M.I.T. Press.
Aarne Ranta (1994), Type-Theoretical Grammar, Clarendon Press, Oxford.
Livy Real and Christian Retoré (2014), Deverbal semantics and the
Montagovian generative lexicon ΛT yn, Journal of Logic Language and
Information, doi:10.1007/s10849-014-9187-y, 10.1007/s10849-014-9187-y.
Christian Retoré (2014), The Montagovian Generative Lexicon ΛT yn: a Type
Theoretical Framework for Natural Language Semantics, in Ralph Matthes

[177]

Robin Cooper, Christian Retoré

and Aleksy Schubert, editors, 19th International Conference on Types for Proofs
and Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 202–229, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, ISBN 978-3-939897-72-9, ISSN 1868-8969,
doi:10.4230/LIPIcs.TYPES.2013.202.
Göran Sundholm (1986), Proof Theory and Meaning, in Dov Gabbay and
Franz Guenthner, editors, Handbook of Philosophical Logic, Vol. III, Reidel,
Dordrecht.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[178]

Scope ambiguities, monads and strengths

Justyna Grudzińska1 and Marek Zawadowski2
1 Institute of Philosophy, University of Warsaw, Warsaw, Poland
2 Institute of Mathematics, University of Warsaw, Warsaw, Poland

abstract
Keywords: scope
ambiguity,
continuation
monad, strength

In this paper, we will discuss three semantically distinct scope assign-
ment strategies: traditional movement strategy, polyadic approach,
and continuation-based approach. Since generalized quantifiers on a
set X are elements of C (X), which is the value of the continuation
monad C on X , quantifier phrases are interpreted as C -computations,
in all three approaches. The main goal of this paper is to relate the
three strategies to the computational machinery connected to the
monad C (strength and derived operations). As will be shown, both
the polyadic approach and the continuation-based approach make
heavy use of monad constructs. In the traditional movement strategy,
monad constructs are not used but we still need them to explain how
the three strategies are related and what can be expected of them with
regard to handling scopal ambiguities in simple sentences.

1 multiʿquantifier sentences and three
scopeʿassignment strategies

Multi-quantifier sentences can be ambiguous, with different readings
corresponding to how various quantifier phrases (QPs) are semanti-
cally related in the sentence. For example,
(1) Every girl likes a boy
admits of the subject wide-scope reading (S > O) where each girl likes
a potentially different boy, and the object wide-scope reading (O > S)
where there is one boy whom all the girls like. As the number of QPs in
a sentence increases, the number of distinct readings also increases.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 179–227

Justyna Grudzińska, Marek Zawadowski

Thus a simple sentence with three QPs admits of six possible read-
ings, and in general a simple sentence with n QPs will be (at least) n!
ways ambiguous (we only consider readings where QPs are linearly
ordered – what we will call asymmetric readings). In this paper, we
will discuss three semantically distinct scope-assignment strategies:
Strategy A: Traditional movement strategy (Cooper 1983; May 1978;
Montague 1973).

Strategy B: Polyadic approach (Keenan 1992, 1987; May 1985;
Van Benthem 1989; Zawadowski 1989).

Strategy C: Continuation-based approach (Barker 2002; Barker and
Shan 2014; Bekki and Asai 2009; De Groote 2001; Kiselyov and
Shan 2014).

In all three strategies, QPs are interpreted as generalized quantifiers.
A generalized quantifier on a set X is of type C (X) = (X → t)→ t (with
t = {true, false}). The main difference between the three approaches
lies in the semantic operations used to compute the truth-value of the
relevant multi-quantifier sentences.

1.1 Strategy A
Strategy A has been implemented in various ways, using May’s QR
(1978), Montague’s Quantifying In Rule (1973), or Cooper Storage
(1983). In this strategy, the scope relations for multi-quantifier sen-
tences like (1) are derived by applying quantifiers to the predicate (of
type P (X × Y) = (X × Y)→ t) one by one – the later the quantifier is
introduced, the wider its scope. In the terminology to be adopted in
this paper, strategy A makes use of what we will call, after Mostowski,
partial mos-operations:

mosY :C (Y)×P (X × Y) −→P (X)
defined by a lambda term as:

mosY = λQ:C (Y).λc:P (X×Y).λx:X .Q(λy:Y .c(x , y));

and total mos-operations:

mosX :C (X)×P (X) −→ t

[180]

Scope ambiguities, monads and strengths

defined by a lambda term as:

mosX = λQ:C (X).λc:P (X).Q(c).

Strategy A can be straightforwardly extended to account for sentences
involving three or more QPs (by allowing permutations of QPs).
1.2 Strategy B
Strategy B involving polyadic quantification was introduced and de-
veloped in the works of May (1985), Keenan (1987, 1992), Zawad-
owski (1989) and Van Benthem (1989). In this strategy, the scope re-
lations for multi-quantifier sentences like (1) can be derived by turning
a sequence of quantifiers into a polyadic quantifier, using what we will
call left and right pile′up-operations (also known as iterations):

pile′upl ,pile′upr :C (X)×C (Y) −→C (X × Y)

defined, for M ∈ C (X) and N ∈ C (Y), by lambda terms as:
pile′upl(M , N) = λc:P (X×Y).M(λx:X .N(λy:Y c(x , y))

and
pile′upr(M , N) = λc:P (X×Y).N(λy:Y .M(λx:X c(x , y)).

The polyadic quantifier thus formed is only then applied to the pred-
icate. Again, strategy B can be straightforwardly extended to account
for sentences involving three or more QPs (by allowing permutations
of QPs).
1.3 Strategy C
Strategy C, the most recent, involves continuations and was first pro-
posed in the works of Barker (2002) and De Groote (2001), and
then further developed and modified in the works of Barker and
Shan (2014), Kiselyov and Shan (2014) and Bekki and Asai (2009).
Continuation-based strategies can be divided into two groups: those
that locate the source of scope-ambiguity in the rules of semantic com-
position, and those that attribute it to the lexical entries for the quan-
tifier words. In this paper, we consider only the first group: operation-
based approaches (as in Barker 2002). In this strategy, a predicate
gets lifted (‘continuized’), i.e. a predicate of type X → t will be lifted

[181]

Justyna Grudzińska, Marek Zawadowski

to an expression of type C (X → t) = ((X → t) → t) → t; etc. Scope
relations for multi-quantifier sentences like (1) are derived by first
combining the lifted predicate with the object QP, and then merging
the result thus obtained with the subject QP, using the so-called CPS
transforms:1

CPSl(ev),CPSr(ev) :C (X)×C (X → Y) −→C (Y)
given, for M ∈ C (X) and N ∈ C (X → Y), by

CPSl(ev)(M , N) = λc:P (Y).M(λx:X .N(λg:X→Y .c(g x)))

and
CPSr(ev)(M , N) = λc:P (Y).N(λg:X→Y .M(λx:X .c(g x))).

Strategy C can be seen as a compelling alternative to the traditional
movement strategy (Strategy A), and the polyadic approach (Strategy
B), for a uniform non-movement (in situ) analysis of quantifiers. How-
ever, it cannot be straightforwardly extended to account for sentences
involving three QPs.
As will be explained below, a generalized quantifier on a set X is

an element of C (X), the value of the continuation monad C on X . In
this paper, we will show that the continuation monad can be taken as a
common basis for the three scope-assignment strategies just described.
This will allow us to present these strategies against a uniform back-
ground and explicitly spell out the semantic operations used in each
strategy. Two of the three strategies, B and C, use strength: the ad-
ditional structure that exists on the continuation monad. This shows
that the pile′up operations employed in the now widely accepted and
well-understood strategy B, and the CPS operations employed in the
less popular strategy C, considered more difficult, are in fact very
close in spirit. We thus hope that our results will help to make the
continuation-based strategy more popular.
The remaining part of this paper is organized as follows. We first

introduce the notion of monad, starting with some informal remarks,
1 In standard categorial grammar approaches, the scope relations for multi-

quantifier sentences like (1) can be obtained via higher-order verb types
(Hendriks 1993). For a comparison of standard type-shifting approaches and
continuation-based strategies, see e.g. Barker and Shan (2014).

[182]

Scope ambiguities, monads and strengths

followed by a definition, and examples relevant to linguistics. We then
introduce the continuation monad itself. Next, we define the notion of
bi-strong monads, and show how the relevant algebraic operations
(pile′ups, T -transforms and, in particular, CPS-transforms) are to be
derived from strengths. Then we precisely state three specific imple-
mentations of the scope-assignment strategies: the traditional move-
ment strategy (as implemented in May 1978), the polyadic approach
(as in May 1985), and the continuation-based approach (as proposed
in Barker 2002). With this background, we can explain how the three
strategies are related, and what can be expected of them with regard
to handling scopal ambiguities in simple sentences. An appendix con-
tains the relevant proofs.

2 monads and strengths
It is widely accepted that the notion of monad (also called ‘triple’) was
first introduced in 1958 by Godement under the name of ‘standard
construction’ (Godement 1958). It was soon realized that any pair of
adjoint functors gives rise to amonad. Later, in 1965, it was discovered
independently by Kleisli (1965) and by Eilenberg et al. (1965) that any
monad is induced by an adjunction. For many years, the Eilenberg-
Moore algebras were the most popular with mathematicians. It was
Moggi who in 1989 used monads to build semantics for programming
languages (Moggi 1991). Soon afterwards, Wadler employed monads
to model side-effects in functional programming (Wadler 1990). In
these new applications, the Kleisli algebras gained more importance.
In both cases, monads are used to extend the notion of a function. After
such a prelude, it did not take long for these ideas to be adopted in
linguistics. The Kleisli construction can be thought of as an extension
of a function/transformation f :

f : X −→ Y

between two sets, X and Y , which somehow reflects the fact that such
a transformation is not considered as a mere mapping of arguments
to values, but that there is also a particular computational process
related to this association. This process, when applied to an element
x of the domain set X , can indeed result in returning a value f (x) of
the codomain set Y . But it can also provide a more involved result

[183]

Justyna Grudzińska, Marek Zawadowski

belonging to a set T (Y), related in some way, but possibly bigger (or
even much bigger) than Y itself. Thus we can think about such an
extended2 transformation between X and Y as a mere function:

f : X −→ T (Y)

from the set X to the extension T (Y) of the set Y . This seems to be
an intuitively clear and simple idea, but then we need to see whether
we can still work with such ‘extended functions’ as we can with or-
dinary functions. The answer varies depending on how demanding
we are. The minimum (which should be adequate for most purposes)
that we should expect from these ‘extended functions’ is that they
compose, that this composition should be associative, and that there
should be ‘extended functions’ that act as if they were ‘doing noth-
ing’ (i.e. like identities). Once we agree that these expectations are
natural, we can try to specify the reasonable condition to guarantee
this for construction T , i.e. that T should be a monad. Then the unit
(return) ηX : X → T (X) acts as an identity on X , and the multiplica-
tion µZ : T 2(Z) → T (Z), together with the fact that T is a functor,
can be used to define the composition of the two ‘extended functions’,
f : X −→ T (Y) and g : Y → T (Z), as follows:

X T (Y)
f

T 2(Z)
T (g)

T (Z)
µZ

The conditions imposed on T ensure that ηX is in fact the identity on
X and that the composition thus defined is associative.
It is fair to say that the above is a short mathematician’s intro-

duction to monads, as used by computer scientists. In fact, the very
notion of monad is usually formulated differently by computer sci-
entists. This is, we think, due to the fact that the actual computa-
tion of the set T (Y) even for the finite set Y can easily be infinite.
This can be taken as a form of potential infinity. But then the sec-
ond iteration T (T (Y)) = T 2(Y), needed to express the multiplication
µ, is even more challenging (since it requires applying the functor T
to an already potentially complicated set T (Y)). The computer scien-
tists’ solution to this problem is to consider the combined operation
bind : T (X) → (X → T (Y)) → T (Y) (instead of the multiplication µ),

2 In some degenerate cases, the set T (Y) might even be smaller than Y .

[184]

Scope ambiguities, monads and strengths

which never uses the second iteration of T . No matter how we de-
fine the monad T , the Kleisli category is the same. The potential gain
from this extension for linguistics is that some processes which could
not be described as compositional processes, applying (ordinary) func-
tions to arguments, can become compositional after all, if we relax our
notion of function to the ‘extended function’ we described above. The
so-called continuation semantics for natural language, or ‘strategy C’
in this paper, is an illustration of such a phenomenon.
2.1 Monads – definition and examples
For unexplained notions related to category theory, we refer the reader
to standard textbooks on the subject. We shall be exclusively working
in the Cartesian closed category of sets Set. The category Set of sets
has sets as objects. A morphism in Set from an object (set) X to an
object (set) Y is a function3 f : X −→ Y from X to Y . A monad on
Set is a triple (T,η,µ) where T : Set −→ Set is an endofunctor (the
underlying functor of the monad), η : 1Set −→ T and µ : T 2 −→ T are
natural transformations (the first from the identity functor on Set to
T , the second from the composition of T with itself to T) making the
following diagrams commute:

T

1T

T T 2
ηT

µ 1T

T
T (η)

T 2 Tµ

T 3 T 2
µT

T (µ) µ

These diagrams express the essence of the algebraic calculations. We
shall explain their meaning while describing the list monad below. The
symbols η and µ are often referred to as the unit and multiplication of
the monad, respectively, while T is its functor part. When η and µ are
clear from the context, it is customary to refer to the whole monad
(T,η,µ) as T .
Before we focus on the continuation monad, the main notion of

computation considered in this paper, we shall illustrate the concept
3We always consider functions with specified domains and codomains. For a

pedantic reader, a function can be thought of as a triple 〈X , Y, f 〉, such that X and
Y are sets and f is a subset of the product X × Y , which is total and univalued.

[185]

Justyna Grudzińska, Marek Zawadowski

with some examples also relevant to linguistics (see e.g. Charlow 2014,
and Shan 2002).

Examples of monads
1. The Identity monad is the simplest possible monad, but it is not
very interesting. In this case, the functor T and the natural trans-
formations η and µ are identities. For this monad, the notion of
a T -computation in X is just an element of X , as the function
f : X −→ T (Y) is just f : X −→ Y .

2. The Maybe monad is the simplest non-trivial monad. The functor
T sends every set X to the set T (X) = X + {⊥} (the disjoint sum of
X and singleton {⊥}), and every function f : X −→ Y to a function
T (f) : T (X) −→ T (Y), such that, for x ∈ T (X):

T (f)(x) =

�
x if x ∈ X
⊥ if x =⊥

So T adds to X an additional element ⊥, called bottom or nothing.
The component at X of the natural transformation η is a function
ηX : X −→ X + {⊥}, such that ηX (x) = x , i.e. it sends x to the
same x but in the set X + {⊥}. The component at X of the natural
transformation µ is a function µX : X + {⊥,⊥′} −→ X + {⊥}, such
that, for x ∈ X + {⊥,⊥′}:

µX (x) =

�
x if x ∈ X
⊥ if x =⊥ or x =⊥′

i.e. it sends x in X to the same x , and two bottoms ⊥ and ⊥′ in
T 2(X) to the only bottom ⊥ in T (X).
For this monad, the notion of a T -computation in X consists of
elements of X , and an additional computation ⊥, which says that
we do not get a value in X . The function X −→ T (Y) carries the
same information as a partial function X ,→Y . So this monad al-
lows partial computations to be treated as total computations.

3. The Exception monad is less trivial than the maybe monad. We
are given a fixed set of exceptions E and, for a set X , the monad
functor is T (X) = X + E, i.e. the disjoint union of X and E. If E
is empty, it is the identity monad; if E is a singleton, then it is
a maybe monad; otherwise is it like the maybe monad but with
many options for nothingness.

[186]

Scope ambiguities, monads and strengths

4. The List monad or monoid monad is even more interesting than
the previous monad, and we shall work it out in detail. It is not
needed for the applications in the paper but it provides some in-
sights before we move on to the continuation monad. To any set
X , the list monad functor associates the set T (X) of (finite) words
over X (treated as an alphabet). This includes the empty word ϵ.
To a function f : X −→ Y , the functor T associates the func-
tion T (f) : T (X) −→ T (Y), sending the word x1 x2 . . . xn over X
to the word f (x1) f (x2) . . . f (xn) over Y . The component at X of
the natural transformation η is a function ηX : X −→ T (X), such
that ηX (x) = x , i.e. it sends the letter x to the one-letter word x
in T (X). The component at X of the natural transformation µ is
a function µX : T 2(X) −→ T (X). Note that T 2(X) = T (T (X)) is
the set of words whose letters are words over the alphabet X .
Thus it can be thought of as a list of lists. Applying µX to such
a list of lists flattens it to a single list. A three-letter word t =
(x1 x2)(x3 x4 x5)ϵ is a typical element of T 2(X). The result of flat-
tening T is the list µX (T) = x1 x2 x3 x4 x5 in T (X). We can think
of a word w as a term/word/computation u = y1 y2 y3, in which
we intend to substitute the term v1 = x1 x2 for variable y1, the
term v2 = x3 x4 x5 for variable y2, and the term v3 = ϵ for vari-
able y3, i.e. u[y1\v1, y2\v2, y3\v3]. Now the multiplication µ can
be thought of as an actual substitution. With this interpretation,
one can understand the intuitions behind the monad diagrams.
In the left triangle, an element of T (X), say x1 x2 x3, is mapped
through ηT (X) to a single-letter word (x1 x2 x3) and µX flattens it
back to x1 x2 x3, as required for the triangle to commute. In other
words, the substitution y[y\v] results in v. In the right triangle,
the map T (ηx) sends, say x1 x2 x3, to the letter word (x1)(x2)(x2),
with each letter being a single-letter word. Thus, again, flattening
such a list gives x1 x2 x3 back, as required. In other words, the sub-
stitution y1 y2 y3[y1\x1, y2\x2, y3\x3] results in x1 x2 x3. The com-
mutation of the square diagram, in this case, expresses the fact
that, if we have a list of lists of lists and we flatten it in two differ-
ent ways, starting either with the upper two levels of lists, or with
the lower two levels, and then we flatten the results again to get
the ordinary lists over X in T (X), these lists coincide. On a more
conceptual level, this square expresses the fact that evaluation

[187]

Justyna Grudzińska, Marek Zawadowski

commutes with substitution. In this sense, these diagrams capture
the essence of all algebraic calculations.
For this monad, the notion of a T -computation in X consists
of words over X to be evaluated/multiplied in a monoid when
elements of X will be (interpreted) in a monoid. The function
f : X −→ T (Y) is just a function f : X −→ T (Y) sending elements
of X to words over Y . So this monad allows a list of values for a
given input.

2.2 Notation
Before we explain the notion of computation that accompanies the
continuation monad, we restate the monad in a more functional way.
To do this, we need to introduce some form of notation. As Set is a
Cartesian closed category, it is customary to denote functions between
sets using λ notation. One can think of it as if we were to work in the
internal language of Set, i.e. λ theory, where all functions have their
names represented. For sets X and Y , we shall use X ×Y to denote the
binary product of X and Y , and X → Y to denote the set of functions
from X to Y . As is customary, we associate → to the right, i.e. X →
Y → Z means X → (Y → Z), and this set is naturally bijective with
(X × Y)→ Z . If we have a function:

f : X × Y −→ Z ,

then by:
λy:Y . f : X −→ Y → Z

we denote its exponential adjunction, i.e. the function from X to the set
of functions Y → Z , such that, for an element x ∈ X , λy:Y . f (x) is a func-
tion from Y to Z such that, for an element y ∈ Y , (λy:Y . f)(x)(y) is by
definition equal to f (x , y). Note that, in the expression (λy:Y . f)(x)(y),
the first occurrence of y is an occurrence of a variable (as it is part of
the name of a function), whereas the second occurrence of y in this
expression denotes an element of the set Y .
Then πi will denote the projection on i-component from the prod-

uct. Any function σ : {1, . . . m} −→ {1, . . . , n} induces a generalized
projection denoted:

πσ = 〈πσ(1), . . . ,πσ(m)〉 : X1 × . . .× Xn −→ Xσ(1) × . . .× Xσ(m).

[188]

Scope ambiguities, monads and strengths

We will use this notation mainly when σ is bijective, i.e. when πσ is
just a permutation of the component for the product.
We have a fixed set of truth values t = {true, false}. We shall use

the usual (possibly infinitary) operations on this set. For a set X , we
write P (X) = X → t, i.e. the (functional) powerset of X .

2.3 Continuation monad
The Continuation monad, the most important for us, is denoted C .
Its functor part (also denoted C), at the level of objects, is just a
twice-iterated power-set construction, i.e. for set X , C (X) = P 2(X).
At the level of morphisms, it is an inverse image of an inverse image,
i.e., function f : X −→ Y induces an inverse image function between
powersets:

P (f) = f −1 :P (Y) −→P (X)
h 7→ h ◦ f ,

in λ-notation,
P (f) = λh:P (Y).λx:X .h(f x).

Taking again an inverse image function, we have

C (f) =P (f −1) :C (X) −→C (Y)
Q 7→Q ◦ f −1,

in λ-notation:
C (f)(Q) = λh:P (Y).Q(λx:X .h(f x)),

for Q ∈ C (X).
The unit ηX : X −→C (X) is given by:

ηX (x) = λh:P (X).h(x), for x ∈ X .

The multiplication µX : C 2(X) −→ C (X) can be explained in terms
of η:

µX =P (ηP (X)) :P 4(X) −→P 2(X).

In other words, µX (F) :P (X) −→ t is a function such that:

µX (F)(h) =F (ηP (X)(h))

[189]

Justyna Grudzińska, Marek Zawadowski

for
F :P 3(X) −→ t and h : X −→ t.

In λ-notation, we write:
µX (F)(h) =F (λD:C (X).D(h)).

Now we can look at the notion of computation related the con-
tinuation monad. Consider the function:

f : X −→C (Y).
By exponential adjunction (uncurrying), it corresponds to a function:

f ′ :P (Y)× X −→ t

and again, by exponential adjunction (currying), it corresponds to a
function:

f ′′ :P (Y) −→P (X).
Thus a C -computation from X to Y is a function that sends functions
from P (Y) = Y → t to functions in P (X). So instead of having for
a given element x ∈ X a direct answer to the question what is the
value of f at x , i.e. the element f (x) in Y , we are given for every
continuation function c : Y −→ t a value in the answer type t that
could be thought of as c(f (x)) (if there were an element in Y that
could be reasonably called f (x)). We can draw a picture illustrating
the situation:

X Yf ?
tc

f (c)

Instead of ‘procedure’ f ? computing y ’s from x ’s (that we do not have),
we provide a continuation f (c) for any continuation (of the computa-
tion) c. If f ? were indeed a genuine function f ? : X −→ Y , then f (c)
would be the composition c ◦ f ?.
2.4 Bi-strong monads
As noted in Moggi (1991), a monad has to be strong, in order to have
a well-behaved notion of computation.4 Fortunately, all monads on

4As the notion of strength is new in this context, we shall briefly recall its
history. There are three manifestations of strength on a functor. Historically, the

[190]

Scope ambiguities, monads and strengths

Set are strong. More precisely, all monads on Set can be canonically
equipped with two strengths, left and right, and these strengths are
compatible in a precise technical sense. This additional structure on
the continuation monad will be essential when we analyze the mean-
ing of multi-quantifier sentences.
Let (T,η,µ) be a monad on Set. The left strength is a natural trans-

formation with components:
stl

X ,Y : T (X)× Y −→ T (X × Y)

for sets X and Y , making the following two diagrams commute:

T (X)× Y × Z T (X × Y × Z)
stl

X ,Y×Z

T (X × Y)× Z

stl
X ,Y × 1 stl

X×Y,Z

and
X × Y

ηX × 1 ηX×Y

T 2(X)× Y T (T (X)× Y)
stl

T (X),Y

T (X)× Y T (X × Y)
stl

X ,Y

µX × 1 µX×Y

T 2(X × Y)
T (stl

X×Y)

The right strength is a natural transformation with components:
str

X ,Y : X × T (Y) −→ T (X × Y)

for sets X and Y , making the following two diagrams commute:
first one was the notion of enrichment of a functor (c.f. Eilenberg and Kelly 1966).
Tensorial strength (i.e., natural transformation of type X⊗T (Y) −→ T (X⊗Y) used
in this paper) was introduced in Kock (1970) and further developed in Kock
(1972). Cotensorial strength (i.e., natural transformation of type T (X → Y) −→
X → T (Y)) introduced in Kock (1971) has also proved useful in some contexts. In
symmetric monoidal closed categories, these concepts are equivalent (c.f. Kock
(1971)).

[191]

Justyna Grudzińska, Marek Zawadowski

X × Y × T (Z) T (X × Y × Z)
str

X×Y,Z

X × T (Y × Z)

1× str
Y,Z str

X ,Y×Z

and
X × Y

1×ηY ηX×Y

X × T 2(Y)) T (X × T (Y))str
X ,T (Y)

X × T (Y) T (X × Y)
str

X ,Y

1×µY µX×Y

T 2(X × Y)
T (str

X×Y)

The monad (T,η,µ) on Set together with two natural transforma-
tions stl and str of right and left strength is a bi-strong monad if, for
any sets X , Y , Z , the following square commutes:

T (X × Y)× Z T (X × Y × Z)
stl

X×Y,Z

X × T (Y)× Z X × T ((Y × Z)
1X × stl

Y,Z

str
X ,Y × 1Z str

X ,Y×Z

As we already mentioned, each monad (T,η,µ) on Set is bi-strong.
We shall define the right and left strength. Fix sets X and Y . For x ∈ X
and y ∈ Y , we have functions:

l y : X −→ X × Y, and rx : Y −→ X × Y,

such that:
l y(x) = 〈x , y〉, and rx(y) = 〈x , y〉.

The left and right strength:

stl
X ,Y : T (X)× Y −→ T (X × Y) and str

X ,Y : X × T (Y) −→ T (X × Y)

[192]

Scope ambiguities, monads and strengths

are given respectively for x ∈ X , s ∈ T (X), y ∈ Y and t ∈ T (Y) by:
stl

X ,Y (s, y) = T (l y)(s) and str
X ,Y (x , t) = T (rx)(t).

When it does not lead to confusion, we drop the indices X ,Y .
It is not difficult to verify that the above defines left (stl) and

right (str) strength on the monad T . Since for any x ∈ X and z ∈ Z , the
following square commutes:

Y × Z X × Y × Zrx

Y X × Y
rx

lz lz

they are compatible and make the monad T bi-strong. Note that these
strengths are related by the following diagram:

Y × T (X) T (Y × X)
str

Y,X

T (X)× Y T (X × Y)
stl

X ,Y

T (〈π2,π1〉) 〈π2,π1〉

Examples of strength on monads in Set
1. Maybe monad. The left strength stl

X ,Y : (X +{⊥})×Y −→ (X ×Y)+
{⊥} is given by:

stl(x , y) =

� ⊥ if x =⊥
〈x , y〉 otherwise.

Right strength is similar.
2. List monad. The left strength stl : T (X)× Y −→ T (X × Y) is given
by:

stl(x⃗ , y) =

�
ϵ if x⃗ = ϵ
〈x1, y〉, . . . , 〈xn, y〉 if x⃗ = x1, . . . , xn.

Right strength is similar.

[193]

Justyna Grudzińska, Marek Zawadowski

3. Continuation monad. We shall describe the strength morphisms
by lambda terms. The left strength is:

stl = λN:C (X).λy:Y .λc:P (X×Y).

N(λx:X .c(x , y)) :C (X)× Y −→C (X × Y)

and the right strength is:

str = λx:X .λM:C (Y).λc:P (X×Y).

M(λy:Y .c(x , y)) : X ×C (Y) −→C (X × Y).

2.5 Combining computations in arbitrary monad T on Set
Using both strengths, we can define two pile′up natural transforma-
tions, left and right. For any sets X and Y , the left pile up pile′upl

X ,Y is
defined from the diagram:

T (X × T (Y)) T 2(X × Y)
T (str

X ,Y)

T (X)× T (Y) T (X × Y)
pile′upl

X ,Y

stl
X ,T (Y) µX×Y

In the above diagram, the function pile′upl
X ,Y is defined as a com-

position of three operations: the first takes the T -computation on X
‘outside’ to be a computation on X × T (Y), the second takes the T -
computation on Y ‘outside’ to be a T -computation on X×Y . In this way,
we have T -computations coming from X on T -computations coming
from Y on X×Y . Now the last morphism µX×Y flattens these two levels
to one, i.e. the T -computation on T -computations to T -computations.
The right pile up pile′upr

X ,Y is defined from the diagram:

T (T (X)× Y) T 2(X × Y)
T (stl

X ,Y)

T (X)× T (Y) T (X × Y)
pile′upr

X ,Y

str
T (X),Y µX×Y

This operation takes the T -computations in reverse order and so they
pile up in the opposite way.

[194]

Scope ambiguities, monads and strengths

If these pile′up operations agree for all sets X and Y , the monad is
called commutative. In our list of monads, both the identity and maybe
monads are commutative. The exception, list and continuation mon-
ads are not commutative. Most monads, including the continuation
monad C , are not commutative. It should be noted that even if the
monad T is not commutative, both lift morphisms agree for pairs in
which at least one component comes from the actual value (not an
arbitrary T -computation). In other words, the functions:

pile′upl
X1,X2

T (X1)× T (X2) T (X1 × X2)
pile′upr

X1,X2

are equalized by both the following morphisms:
X1 × T (X2) T (X1)× T (X2)

ηX1
× 1

and
T (X1)× X2 T (X1)× T (X2)

1×ηX2

Both pile′upl and pile′upr are associative. All this is shown in the
Appendix.

Examples of pile′up-operations
1. Maybe monad. The left and right pile′ups coincide in this case, as
in any commutative monad. We have
pile′upl

X ,Y = pile′upr
X ,Y : (X + {⊥})× (Y + {⊥′}) −→ (X × Y) + {⊥}

given by:

pile′upl(x , y) = pile′upr(x , y) =

� ⊥ if {x , y} ∩ {⊥,⊥′} ̸= ;
〈x , y〉 otherwise.

2. List monad. The left pile’up pile′upl : T (X)× T (Y) −→ T (X × Y) is
given by:

pile′upl(〈x1 . . . xn〉, 〈y1 . . . ym〉) =
= 〈x1, y1〉〈x1, y2〉 . . . 〈x1, ym〉〈x2, y1〉 . . . 〈xn, ym−1〉〈xn, ym〉

and the right pile’up pile′upr : T (X) × T (Y) −→ T (X × Y) is
given by:

pile′upr(〈x1 . . . xn〉, 〈y1 . . . ym〉) =
= 〈x1, y1〉〈x2, y1〉 . . . 〈xn, y1〉〈x1, y2〉 . . . 〈xn−1, ym〉〈xn, ym〉.

[195]

Justyna Grudzińska, Marek Zawadowski

3. Continuation monad. Both pile′up operations:
pile′upl ,pile′upr :C (X)×C (Y) −→C (X × Y)

can be defined, for M ∈ C (X) and N ∈ C (Y), by lambda terms,
such as:

pile′upl(M , N) = λc:P (X×Y).M(λx:X .N(λy:Y c(x , y))

and
pile′upr(M , N) = λc:P (X×Y).N(λy:Y .M(λx:X c(x , y)).

The calculations for these operations are in the Appendix.
Thus in the case of the continuation monad, ‘piling up’ computa-
tions one on top of the other is nothing but putting (interpreta-
tions of) quantifiers (= computations in the continuation monad)
in order, either the first before the second or the second before
the first.

2.6 T -transforms on arbitrary monad T on Set
There are two (binary) T -transformations, right and left. For a function
f : X × Y −→ T (Z), the left T -transform is defined as the composition:

T (X × Y) T 2(Z)
T (f)

T (X)× T (Y) T (Z)
TRl ,T

X ,Y (f)

pile′upl µZ

and the right T -transform is defined as the composition:

T (X × Y) T 2(Z)
T (f)

T (X)× T (Y) T (Z)
TRr ,T

X ,Y (f)

pile′upr µZ

The most popular T -transforms are for the evaluation morphism:
ev : X × (X → Y) −→ Y

but there are also other morphisms with useful transforms.

[196]

Scope ambiguities, monads and strengths

Examples of T -transforms and in particular CPS-transforms
1. The evaluation map ev : X × (X → Y) −→ Y gives rise to applica-
tion transforms:

TRl ,T
(ev),TRr ,T (ev) : T (X)× T (X → Y) −→ T (Y).

When T is the continuation monad C , they are the usual CPS-
transforms CPSl(ev),CPSr(ev) : C (X) × C (X → Y) −→ C (Y)
given by:

CPSl(ev)(M , N) = λh:P (Y).M(λx:X .N(λg:X→Y .h(g x)))

for M ∈ C (X) and N ∈ C (X → Y).The right transform is similar.
2. Various evaluation maps are typically defined as maps from a
product. Thus they give rise to various T -transforms. We list some
of them below, mainly to introduce notation that will be used
later. The definitions are given by lambda terms.
(a) Left evaluation:

epsl
X = λh:P (X).λx:X .h(x) :P (X)× X −→ t;

(b) Right evaluation:
epsr

X = λx:X .λh:P (X).h(x) : X ×P (X) −→ t;

(c) Left partial evaluation:

epsl ,X
Y (epsl

Y) = λc:P (X×Y).λy:Y .λx:X .c(x , y) :

P (X × Y)× Y −→P (X);
(d) Right partial evaluation:

epsr ,X
Y (epsr

Y) = λy:Y .λc:P (X×Y).λx:X .c(x , y) :

Y ×P (X × Y) −→P (X).
3. What we call Mostowski maps are maps similar to epses that
are the algebraic counterpart of the interpretation of generalized
quantifiers by Mostowski. Again, we give a definition for total and
partial case.
(a) Left Mostowski:

mosl
X = λQ:C (X).λc:P (X).Q(c) :C (X)×P (X) −→ t;

[197]

Justyna Grudzińska, Marek Zawadowski

(b) Right Mostowski:
mosr

X = λc:P (X).λQ:C (X).Q(c) :P (X)×C (X) −→ t;

(c) Left partial Mostowski:
mosl

Y = λQ:C (Y).λc:P (X×Y).λx:X .Q(λy:Y .c(x , y)) :

C (Y)×P (X × Y) −→P (X);
(d) Right partial Mostowski:
mosr

Y = λc:P (X×Y).λQ:C (Y).λx:X .Q(λy:Y .c(x , y)) :

P (X × Y)×C (Y) −→P (X).

3 scopeʿassignment strategies
Using the notions connected to the continuation monad introduced
above, we shall now precisely state and compare three strategies (A,
B, and C) for determining the meaning of multi-quantifier sentences.
3.1 General remarks
In each strategy, the starting point is the surface structure tree of a
sentence. This tree is rewritten so as to obtain formal structure trees
that correspond to all the available meanings of the sentence. Finally,
we relabel those trees to obtain computation trees5 that provide the
semantics for the sentence in each of its readings.

5We think of computation trees by analogy with mathematical expressions,
e.g.

((2− 7)− 8) + ((12+ 5) : 7)

that can be represented as:
+

-
-

2 7
8

:
+

12 5
7

i.e. a labeled binary tree where the leaves are labeled with values and the internal
nodes are labeled with operations that will be applied in the computation to the
values obtained from the computations of the left and right subtrees.

[198]

Scope ambiguities, monads and strengths

Surface
Structure
Tree

rewriting
(disambiguation) Formal

Structure
Tree

relabelling
(interpretation) Computation

(Semantic)
Tree

Rewriting. Scope-assignment strategies can be divided into two fami-
lies: movement analyses (rewriting rules include QR, Predicate Col-
lapsing, and possibly Rotation) and in situ analyses (no rewriting
rules). Below we define three rewrite rules on trees: QR Rule, Predi-
cate Collapsing, and Rotation.
• QR (Quantifier Raising) Rule

– applies when we have a chosen QP in a leaf of a tree;
– adjoins QP to S;
– indexes S with the variable bound by the raised QP.

L

α β

QP

7→ Sx

QP L

α β

x
(L-label, α-subtree, β-subtree.)

• Predicate Collapsing
– applies when all the leaves under the node labeled S are la-
beled with variables (not QPs);

– collapses the whole subtree with the root S to a single leaf
labeled with the variables x1, x2, x3 from the leaves under
the S-node.

S
x1 β

x2 x3

7→
S

-x1-x2-x3-

• Rotation
– applies to a tree with two nodes labeled with S’es super-
scripted with some variables: the mother labeled S x⃗ and its
right daughter labeled S y⃗ ;

[199]

Justyna Grudzińska, Marek Zawadowski

– it rotates left the subtree with the root labeled S x⃗ ;
– the root of this subtree is labeled S x⃗ y⃗ and the (new) left
daughter is labeled Polyadic.

S x⃗

α S y⃗

β γ

7→ S x⃗ y⃗

Polyadic
α β

γ

(α-subtree, β-subtree, γ-subtree.)
Relabelling. In each scope-assignment strategy, the leaves in the
computation tree have the same labels: QPs are interpreted as
C -computations, and predicates are interpreted as usual or lifted. The
main difference between the three approaches consists in the shape of
the formal structure trees and the operations (epses, moses, pile′ups,
CPSes) used as labels for the inner nodes of the computation trees.

3.2 Strategy A
In the traditional movement strategy (as implemented in May 1978)
• Surface structure trees are rewritten (disambiguated) as formal
structure trees (Logical Forms) via:
– QR Rule;
– Predicate Collapsing.

• Formal structure trees (LFs) are relabelled as computation trees
as follows:
– Sx (root of a subtree representing a formula) is interpreted as
a suitably typedmos-operation (the only operation allowed);

– S (leaf of a tree) is interpreted as a predicate;
– QP (leaf of a tree) is interpreted as a generalized quantifier
∥Q∥ quantifying over a set X (i.e. as a C -computation on X).

We will illustrate each strategy with examples involving one, two and
three QPs.
Sentence with one QP, e.g. Every kid (most kids) entered.
(A1) Surface structure tree:

[200]

Scope ambiguities, monads and strengths

S
QP VP

V
(A1) Formal structure tree (LF) and the corresponding computation
tree:

Sx

QP S

– x –

mosl
X

∥Q∥(X) ∥P∥

The computation tree in (A1) gives rise to the following general map:

strat1
A :

C (X)×P (X)

t

mosl
X

In this case, there is one such map, so strategy A yields one reading
for a sentence with one QP.
Sentence with two QPs, e.g. Every girl likes a boy.
(A2) Surface structure tree:

S

QP1 VP
Vt QP2

(A2) Formal structure tree (LF) and the corresponding computation
tree:

Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) S

-x1-x2-

mosl
Xσ(1)

∥Qσ(1)∥(Xσ(1)) mosl
Xσ(2)

∥Qσ(2)∥(Xσ(2)) ∥P∥

[201]

Justyna Grudzińska, Marek Zawadowski

The computation tree in (A2) gives rise to the following general map,
with σ ∈ S2 (where S2 is the set of permutations of the set {1,2}):

strat2,σ
A :

C (X1)×P (X1 × X2)×C (X2)

〈π̄σ(1), π̄σ(2),π2〉

C (Xσ(i))π̄σ(i)

C (Xσ(1))×C (Xσ(2))×P (X1 × X2)

1×mosl
Xσ(2)

C (Xσ(1))×P (Xσ(1))

t

mosl
Xσ(1)

where π̄σ(i) is the projection on the 1st factor if σ(i) = 1, and on the
3rd factor if σ(i) = 2, i.e. as it should be. This convention will be used
in all similar diagrams without any further explanations.
There are two such maps corresponding to the two permuta-

tions σ of {1,2}. These maps are different in general. Thus strategy A
yields two (both) asymmetric readings for a sentence with two QPs.
Sentence with three QPs, e.g. Some teacher gave every student most
books.
(A3) Surface structure tree:6

S

QP1 VP

V’
Vdt QP2

QP3

6 In this paper, we adopt the structure postulated by Chomsky (1993).

[202]

Scope ambiguities, monads and strengths

(A3) Formal structure tree (LF) and the corresponding computation
tree:

Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) Sxσ(3)

QPσ(3) S

-x1-x2-x3-

mosl
Xσ(1)

∥Qσ(1)∥(Xσ(1)) mosl
Xσ(2)

∥Qσ(2)∥(Xσ(2)) mosl
Xσ(3)

∥Qσ(3)∥(Xσ(3)) ∥P∥

The computation tree in (A3) gives rise to the following general map,
with σ ∈ S3 (where S3 is the set of permutations of the set {1,2, 3}):

strat3,σ
A :

C (X1)×P (X1 × X2 × X3)×C (X2)×C (X3)

〈π̄σ(1), π̄σ(2), π̄σ(3),π2〉

C (Xσ(1))×C (Xσ(2))×C (Xσ(3))×P (X1 × X2 × X3)

1× 1×mosl
Xσ(3)

C (Xσ(1))×C (Xσ(2))×P (. . .×ÖXσ(3) × . . .)

1×mosl
Xσ(2)

C (Xσ(1))×P (Xσ(1))

t

mosl
Xσ(1)

[203]

Justyna Grudzińska, Marek Zawadowski

There are six such maps corresponding to the six permutations σ of
{1,2,3}. These maps are different in general. Thus strategy A yields
6 asymmetric readings for a sentence with three QPs.

3.3 Strategy B
In the polyadic approach (as implemented in May 1985):
• Surface structure trees are rewritten (disambiguated) as formal
structure trees (Polyadic Logical Forms) via:
– QR Rule;
– Predicate Collapsing;
– Rotation.

• Formal structure trees (PLFs) are relabelled as computation trees
as follows:
– Polyadic (root of a subtree representing a polyadic quantifier)
is interpreted as a suitably typed pile′up-operation (we can
choose whether to use only pile′upl or pile′upr and then stick
to that decision).

– Sx , S, QP are interpreted as above.

Sentence with one QP, e.g. Every kid (most kids) entered.
(B1) Surface structure tree:

S
QP VP

V
(B1) Formal structure tree (PLF) and the corresponding computation
tree:

Sx

QP S

– x –

mosl
X

∥Q∥(X) ∥P∥

The computation tree in (B1) gives rise to the following general map:

[204]

Scope ambiguities, monads and strengths

strat1
B :

C (X)×P (X)

t

mosl
X

In this case, there is one such map, so strategy B yields one reading
for a sentence with one QP.
Sentence with two QPs, e.g. Every girl likes a boy.

(B2) Surface structure tree:
S

QP1 VP
Vt QP2

(B2) Formal structure tree (PLF) obtained from LF in (A2) via rotation:
Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) S

-x1-x2-

7→ Sxσ(1) xσ(2)

Polyadic

QPσ(1) QPσ(2)

S

-x1-x2-

and the corresponding computation tree:
mosl

X1×X2

pile′upl

∥Qσ(1)∥(Xσ(1)) ∥Qσ(2)∥(Xσ(2))

∥P∥

The computation tree in (B2) gives rise to the following general
map, with σ ∈ S2:

[205]

Justyna Grudzińska, Marek Zawadowski

strat2,σ
B :

C (X1)×P (X1 × X2)×C (X2)

〈π̄σ(1), π̄σ(2),π2〉

C (Xσ(1))×C (Xσ(2))×P (X1 × X2)

pile′upl × 1

C (Xσ(1) × Xσ(2))×P (X1 × X2)

C (πσ−1)× 1

C (X1 × X2)×P (X1 × X2)

t

mosl
X1×X2

There are two such maps, corresponding to the two permutations σ
of {1,2} combined with a pile′upl -operation (here, we can also choose
to use both pile′ups instead and no permutations at all). These maps
are different in general. Thus strategy B yields two (both) asymmetric
readings for a sentence with two QPs.

Sentence with three QPs, e.g. Some teacher gave every student most
books.

(B3) Surface structure tree:
S

QP1 VP

V’
Vdt QP2

QP3

[206]

Scope ambiguities, monads and strengths

(B3) Formal structure tree (PLF) obtained from LF in (A3) via rotation:

Sxσ(1)

QPσ(1) Sxσ(2)

QPσ(2) Sxσ(3)

QPσ(3) S

-x1-x2-x3-

7→ Sxσ(1)

QPσ(1) Sxσ(2) xσ(3)

Polyadic

QPσ(2) QPσ(3)

S

-x1-x2-x3-

7→ Sxσ(1) xσ(2) xσ(3)

Polyadic

QPσ(1) Polyadic′

QPσ(2) QPσ(3)

S

-x1-x2-x3-

and the corresponding computation tree:

[207]

Justyna Grudzińska, Marek Zawadowski

mosl
X1×X2×X3

pile′upl

∥Qσ(1)∥(Xσ(1)) pile′upl

∥Qσ(2)∥(Xσ(2)) ∥Qσ(3)∥(Xσ(3))

∥P∥

The computation tree in (B3) gives rise to the following general map,
with σ ∈ S3:

strat3,σ
B :

C (X1)×P (X1 × X2 × X3)×C (X2)×C (X3)

〈π̄σ(1), π̄σ(2), π̄σ(3),π2〉

C (Xσ(1))×C (Xσ(2))×C (Xσ(3))×P (X1 × X2 × X3)

1× pile′upl × 1

C (Xσ(1))×C (Xσ(2) × Xσ(3))×P (X1 × X2 × X3)

pile′upl × 1

C (Xσ(1) × Xσ(2) × Xσ(3))×P (X1 × X2 × X3)

C (πσ−1)× 1

C (X1 × X2 × X3)×P (X1 × X2 × X3)

t

mosl
X1×X2×X3

[208]

Scope ambiguities, monads and strengths

There are six such maps, corresponding to the six permutations σ of
{1, 2, 3} combined with a pile′upl -operation (here, we can also choose
to use pile′upr instead). These maps are different in general. Thus
strategy B yields 6 asymmetric readings for a sentence with three QPs.
3.4 Strategy C
In the continuation-based strategy approach (as proposed in Barker
2002):
• A surface structure tree is rewritten as a formal structure tree via:

– no rewriting rules (formal structure trees are just surface
structure trees – this is what is understood by in situ).

• Relabelling formal structure trees (= surface structure trees) as
computation trees follows this procedure:
– S, VP, V’ (roots of a (sub)tree with some (possibly all) ar-
guments provided) are interpreted as suitably typed CPS-
operations (left and right);

– V, Vt, Vdt (leaves of a tree) are interpreted as ‘continuized’
predicates (1-, 2-, 3-ar y, respectively).

Sentence with one QP, e.g. Every kid (most kids) entered.
(C1) Surface structure tree and the corresponding computation tree:

S
QP VP

V

CPS?(epsr
X)

∥Q∥(X) Lift

∥P∥
The computation tree in (C1) gives rise to the following general map:

strat1
c :

C (X)×P (X)
1×ηP (X)

C (X)×CP (X)

C (t)
CPS?(epsr

X)

tevidt

[209]

Justyna Grudzińska, Marek Zawadowski

We use CPS? when it does not matter whether we apply CPSl or CPSr .
This is the case when one of the arguments is a lifted element (like
interpretations of predicates in this strategy). Strategy C yields one
reading for a sentence with one QP.
Sentence with two QPs, e.g. Every girl likes a boy.

(C2) Surface structure tree and the corresponding computation tree:
S

QP1 VP
Vt QP2

CPSϵ(epsr
X1
)

∥Q∥(X1) CPS?(epsl
X2
)

Lift

∥P∥
∥Q∥(X2)

The computation tree in (C2) gives rise to the following general map:

strat2,ϵ
C :

C (X1)×P (X1 × X2)×C (X2)

1×ηP (X1×X2) × 1

C (X1)×CP (X1 × X2)×C (X2)

1×CPS?(epsl
X2
)

C (X1)×CP (X1)

C (t)

CPSϵ(epsr
X1
)

tevidt

with ϵ ∈ {l, r}. Depending on whether we use CPSl or CPSr , we get
the relevant one of the two asymmetric readings for a sentence with
two QPs. Strategy C yields two readings for a sentence with two QPs,
corresponding to the two forms of CPS.

[210]

Scope ambiguities, monads and strengths

Sentence with three QPs, e.g. Some teacher gave every student most
books.
(C3) Surface structure tree and the corresponding computation tree:

S

QP1 VP

V’
Vdt QP2

QP3

CPSϵ(epsr
X1
)

∥Q∥(X1) CPSϵ
′
(epsl

X3
)

CPS?(epsl
X2
)

Lift

∥P∥
∥Q∥(X2)

∥Q∥(X3)

The computation tree in (C3) gives rise to the following general map:

strat3,ϵ′,ϵ
C :

C (X1)×P (X1 × X2 × X3)×C (X2)×C (X3)

1×ηP (X1×X2×X3) × 1× 1

C (X1)×CP (X1 × X2 × X3)×C (X2)×C (X3)

1×CPS?(epsl
X2
)× 1

C (X1)×CP (X1 × X3)×C (X3)

1×CPSϵ
′
(epsl

X3
)

C (X1)×CP (X1)

C (t)

CPSϵ(epsr
X1
)

tevidt

Strategy C provides four asymmetric readings for the sentence, such
that QP in subject position can be placed either first or last only

[211]

Justyna Grudzińska, Marek Zawadowski

(corresponding to the four possible combinations of the two forms
of CPS). Thus it yields four out of the six readings accounted for by
strategies A and B. Of course, it is a matter of empirical discovery
which readings are available for such sentences, and the status of the
two missing ‘interleaved’ interpretations (every > some > most and
most> some> every) is still under discussion.
The tables below summarize the main features of the three ap-

proaches.
Passing from Surface Structure Trees to Formal Structure Trees

Strategy A B C

Rewrite QR, QR, No rewrite rules
rules Predicate Predicate (in situ)

Collapsing Collapsing,
Rotation

Passing from Formal Structure Trees to Computation Trees
Strategy A B C

Relabelling S x 7→mos S x⃗ 7→mos
inner nodes

Polyadic 7→ S, VP, V ′ 7→
pile′up CPS

Relabelling S 7→ relation S 7→ relation V, V t, Vdt 7→
leaves continuized

relation

QP 7→ C -comp. QP 7→ C -comp. QP 7→ C -comp.

The semantics for sentences with intransitive or transitive verbs,
as defined by strategies A, B, and C, will be equivalent. The seman-
tics for sentences with ditransitive verbs, as defined by strategies A,
and B, will be equivalent, providing six asymmetric readings for the
sentence. The semantics for sentences with ditransitive verbs, as de-
fined by strategy C, will provide four asymmetric readings for the sen-
tence, such that QP in subject position can be placed either first or last
only, corresponding to four out of the six readings accounted for by
strategies A and B. The proofs are given in the Appendix.

[212]

Scope ambiguities, monads and strengths

4 conclusions and future work

We compared three scope-assignment strategies for simple multi-
quantifier sentences: the traditional movement strategy, the polyadic
approach, and the continuation-based approach. These strategies can
be viewed as instances of the same general pattern: first transform
the SS-tree of a sentence so as to obtain the shape of the computa-
tion tree, then relabel the leaves of that tree, with the interpretation
of lexical items (predicate and QPs), and the inner nodes, using al-
gebraic operations, and finally evaluate this computation in order to
get the truth value of the whole sentence. We have shown that while
the traditional movement strategy is very close to the original seman-
tics for the logic with generalized quantifiers due to Mostowski, the
polyadic approach and the continuation-based strategy are in fact cog-
nate in spirit, as they can both be defined using operations derived
from the strength of the continuation monad. As the polyadic strategy
is well-understood among linguists, we hope that our results will help
to make the continuation-based strategy more popular. With the con-
tinuation monad as a common basis for the three scope-assignment
strategies discussed, it is also easy to identify their relative merits
and weaknesses. Traditional and polyadic approaches cannot provide
a non-movement (in situ) analysis of quantifiers. The continuation-
based strategy is in situ but does not account for all the asymmetric
readings possible for sentences involving three QPs. As discussed in
Bekki and Asai (2009) and proved in this paper, it only provides four
out of the six readings possible for such sentences. In the sequel to this
paper, we show how to overcome this problem, keeping the resulting
strategy in situ (Grudzinska and Zawadowski 2016). We take the re-
sults of this work to be the first step towards an in situ semantics that
will be sufficient to account for the whole range of possible readings
for multi-quantifier sentences.

5 appendix

5.1 The continuation monad
In this subsection, we gather all the basic facts (sometimes repeated
from the text) of the continuation monad C on Set. We have an adjunc-
tion:

[213]

Justyna Grudzińska, Marek Zawadowski

Set Setop
P
P op

where both P and P op are the contravariant powerset functors7 with
the domains and codomains as displayed. In particular, for f : X −→ Y ,
the function P (f) = f −1 :P (Y) −→P (X) is given by:

f −1(h) = h ◦ f

for h : Y −→ t. Function ηX : X −→ C (X), the component at set X of
the unit of this adjunction η : 1Set −→PP op =C , is given by:

ηX (x) = λh:P (X).h(x).

Function ϵX : X −→ C (X), the component at set X of the co-unit of
this adjunction ϵ : 1Set −→ P opP , is given by (essentially the same
formula):

ϵX (x) = λh:P op(X).h(x)

for x ∈ X . The function C (f) : C (X) −→ C (Y), for Q : P (X) −→ t ∈
C (X), is a function C (f)(Q) :P (Y) −→ t given by:

C (f)(Q)(h) =Q(h ◦ f)

for h : Y −→ t.
The monad induced by this adjunction is the continuation monad.

Its multiplication is given by the co-unit of the above adjunction trans-
ported back to Set, i.e. µ=P op(ϵP). For X in Set, the function

µX :C 2(X) −→C (X)
is given by:

µX (R) =R ◦ηP (X) for R ∈C 2(X).

In λ-notation we write:

µX (F)(h) =F (λD:C (X).D(h)).
7Note that this is in contrast with the functor P , where P is the covariant

power-set functor.

[214]

Scope ambiguities, monads and strengths

The left strength for the monad C is:
stl :C (X)× Y −→C (X × Y)

for M ∈ C (X) and y ∈ Y , given by:
stl(M , y) = λc:P (X×Y).M(λx:X .c(x , y)) :P (X × Y) −→ t

and the right strength, for x ∈ X and N ∈ C (Y), is given by:
str(x , N) = λc:P (X×Y).N(λy:Y .c(x , y)) :P (X × Y) −→ t.

The left pile’up operation:
pile′upl :C (X)×C (Y) −→C (X × Y)

is the following composition:

C (X)×C (Y) C (X ×C (Y))stl C 2(X × Y)
C (str) C (X × Y)

µX×Y

where, for Q ∈ C (X), Q′ ∈ C (Y), c ∈ P (X ×C (Y)), we have:
stl(Q,Q′)(c) =Q(λx:X c(x ,Q))

and, for d ∈ C (X ×C (Y)), U ∈P C (X × Y), we have:
C (str)(d)(U) = d(U ◦ str).

Now, using the above formulas, we can calculate pile′upl as the
composition on Q ∈ C (X), Q′ ∈ C (Y), and c ∈ P (X × Y) as follows:

pile′upl(Q,Q′)(c) = µX×Y (C (str)(stl(Q,Q′)))(c)

=C (str)(stl(Q,Q′))(λD:C (X×Y)D(c))

= stl(Q,Q′)((λD:C (X×Y)D(c)) ◦ str)

=Q(λx:X ((λD:C (X×Y)D(c)) ◦ str)(x ,Q′))

=Q(λx:X ((λD:C (X×Y)D(c))(str(x ,Q′))

=Q(λx:X str(x ,Q′)(c))

=Q(λx:X Q′(λy:Y c(x , y)))

[215]

Justyna Grudzińska, Marek Zawadowski

Similarly, we can show that:
pile′upr(Q,Q′)(c) =Q′(λy:Y Q(λx:X c(x , y))).

One can easily verify that pile′up’s are related by:
pile′upr

X ,Y =C (π(2,1)) ◦ pile′upl
Y,X ◦π(2,1).

5.2 Some properties of pile′up operations
Lemma 5.1 (pile′up lemma) pile′ups on pairs where one element is
continuized agree and are equal to the corresponding strength.
Proof. We have to show that the functions:

pile′upl
X1,X2

T (X1)× T (X2) T (X1 × X2)
pile′upr

X1,X2

are equalized by both:
X1 × T (X2) T (X1)× T (X2)

ηX1
× T (1X2

)

and
T (X1)× X2 T (X1)× T (X2)

T (1X1
)×ηX2

and their composition with these functions is equal to strength mor-
phisms. Using the diagram:

T (X1 × X2) T (X1 × T (X2))T (1X1
×ηX2

)

T (X1)× X2 T (X1)× T (X2)
T (1X1

)×ηX2

stl
X1,X2

stl
T (X1),X2

T 2(X1 × X2)T (str
X1,X2
)

T (T (X1)× X2)
str

T (X1),X2

T (stl
X1,X2
)

T (X1 × X2)

µX1×X2

1T (X1×X2)

T (ηX1×X2
)

ηT (X1×X2)

ηT (X1)×X2

[216]

Scope ambiguities, monads and strengths

we shall show that:
pile′upr

X1,X2
◦ (T (1X1

)×ηX2
) = stl

X1,X2
= pile′upl

X1,X2
◦ (T (1X1

)×ηX2
).

The other cases are symmetric. We have:
pile′upr

X1,X2
◦(T (1X1

)×ηX2
) = (def of pile′upr)

= µX1×X2
◦T (stl

X1,X2
)◦str

T (X1),X2
◦(T (1X1

)×ηX2
) (η strong w.r.t. str)

= µX1×X2
◦T (stl

X1,X2
)◦ηT (X1)×X2

(η nat transf)

= µX1×X2
◦ηT (X1×X2)◦stl

X1,X2
(T monad)

= stl
X1,X2

To show the remaining equation, we can continue the penultimate
formula above as follows:
pile′upr

X1,X2
◦(T (1X1

)×ηX2
) = . . .= µX1×X2

◦ηT (X1×X2))◦stl
X1,X2

= (T monad)

= µX1×X2
◦T (ηX1×X2

)◦stl
X1,X2

(η strong w.r.t. str)

= µX1×X2
◦T (str

X1,X2
)◦T (1X1

×ηX2
)◦stl

X1,X2
(stl nat transf)

= µX1×X2
◦T (str

X1,X2
)◦stl

X1,X2
◦T (1X1

×ηX2
) (def of pile′upl)

= pile′upl
X1,X2
◦(T (1X1

)×ηX2
) ♢

Corollary 5.2 The left and right CPS-operation on pairs where one ele-
ment is continuized agree.
Proof. The corollary states that, for any sets X , Y , Z and a function
f : X × Y −→ Z , both morphisms:

X × T (Y) T (X)× T (Y)
ηX × 1

and
T (X)× Y T (X)× T (Y)

1×ηY

equalize the pair of morphisms:

CPSl(f)
T (X)× T (Y) Z

CPSr(f)

[217]

Justyna Grudzińska, Marek Zawadowski

This immediately follows from the above lemma and the definition of
CPSes. ♢
Using binary pile′up operations, we can define eight ternary

pile′up operations:
T (X1)× T (X2)× T (X3) −→ T (X1 × X2 × X3)

out of the following diagram:

T (X1)× T (X2)× T (X3)

T 2(X1 × X2)× T (X3) T (X1)× T 2(X2 × X3)

T 3(X1 × X2 × X3)

pile′upl pile′upr pile′upl pile′upr

pile′upl×1 pile′upr×1 1×pile′upl 1×pile′upr

However, both pile′upl and pile′upr operations are associative (Propo-
sition 5.3 below) and hence only six of them are different, in general.
Proposition 5.3 Both pile′upl and pile′upr operations are associative
on any monad on Set.
Proof. In fact, pile′upl and pile′upr are associative on any bi-strong
monad in the monoidal category. We shall show this fact for a monad
T on Set with canonical strength.
We need to show that:

pile′upr ◦ (pile′upr × 1) = pile′upr ◦ (1× pile′upr)

and
pile′upl ◦ (pile′upl × 1) = pile′upl ◦ (1× pile′upl)

But as pile′ups are mutually definable, either of these equalities readily
implies the other. We shall show the second equality. For sets X1, X2,
X3, using all the assumptions, we have:
pile′upl

X1×X2,X3
◦(pile′upl

X1,X2
×1T (X3)) =

[218]

Scope ambiguities, monads and strengths

= µX1×X2×X3
◦T (str

X1×X2,X3
)◦stl

X1×X2,T (X3)◦ (µX1×X2
× T (1X3

))

◦(T (str
X1,X2
)× 1T (X3)) ◦ (stl

X1,T (X2) × 1T (X3))

= µX1×X2×X3
◦T (str

X1×X2,X3
) ◦µX1×X2×T (X3)◦T (stl

X1×X2,T (X3))

◦ stl
T (X1×X2),T (X3) ◦ (T (str

X1,X2
)× T (1X3

)) ◦ (stl
X1,T (X2) × 1T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (stl
X1×X2,T (X3))

◦ (T (str
X1,X2
× 1X3

)) ◦ stl
T (X1×X2),T (X3) ◦ (stl

X1,T (X2) × 1T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (stl
X1×X2,T (X3))

◦ (T (str
X1,X2
× 1T (X3))) ◦ stl

X1,T (X2)×T (X3)

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (str
X1,X2×T (X3))

◦ T (1X1
× stl

X2,T (X3)) ◦ stl
X1,T (X2)×T (X3)

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1×X2,T (X3))◦T (str
X1,X2×T (X3))

◦ stl
X1,T (X2×T (X3)) ◦ (T (1X1

)× stl
X2,T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1,T (X2×X3))◦T 2(1X1
× str

X2,X3
)

◦ T (str
X1,X2×T (X3)) ◦ stl

X1,T (X2×T (X3)) ◦ (T (1X1
)× stl

X2,T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3)◦T 2(str

X1,T (X2×X3))◦T (str
X1,T (X2×X3))

◦ T (1X1
× T (str

X2,X3
)) ◦ stl

X1,T (X2×T (X3)) ◦ (T (1X1
)× stl

X2,T (X3))

= µX1×X2×X3
◦µT (X1×X2×X3) ◦ T 2(str

X1,T (X2×X3)) ◦ T (str
X1,T (X2×X3))

◦ stl
X1,T 2(X2×X3) ◦ (T (1X1

)× T (str
X2,X3
)) ◦ (T (1X1

)× stl
X2,T (X3))

= µX1×X2×X3
◦ T (str

X1,X2×X3
)◦ T (1X1

×µX2×X3
) ◦ stl

X1,T 2(X2×X3)

◦ (T (1X1
)× T (str

X2,X3
)) ◦ (T (1X1

)× stl
X2,T (X3))

= µX1×X2×X3
◦ T (str

X1,X2×X3
)◦ stl

X1,T (X2×X3) ◦ (T (1X1
)×µX2×X3

)

◦ (T (1X1
)× T (str

X2,X3
)) ◦ (T (1X1

)× stl
X2,T (X3))

= pile′upl
X1,X2×X3

◦(1T (X3)×pile′upl
X2,X3
) ♢

[219]

Justyna Grudzińska, Marek Zawadowski

5.3 Arity one: intransitive verbs
Proposition 5.4 The semantics for sentences with intransitive verbs, as
defined by strategies A, B, and C, will be equivalent.
Proof. In case of a sentence with an intransitive verb, the semantics
will be defined by the morphisms strat1

A, strat1
B, and strat1

C . We need
to show that they are equal. We have:

strat1
A =mosl

X = strat1
B.

strat1
C is the composition of the following morphisms:

C (X)×P (X) C (X)×CP (X)1×ηP (X) C (t)CPSl(epsr
X) t

evidt

Thus we need to show that this composition is equal to mosl
X . Con-

sider the following diagram:

C (X)×CP (X) C (t)

C (X)×P (X) t
mosl

X

1×ηP (X) evidt

C (X ×P (X))
pile′upl

X
C (epsr

X)

stl evepsr
X

The left triangle commutes, as a consequence of Lemma 5.1. To
see that the central triangle commutes, we take M ∈ C (X) and h ∈
P (X), and calculate:

evepsr
X
◦ str(Q, h) = evepsr

X
(λD:P (X×P (X))M(λx:X D(x , h)))

= M(λx:X epsr
X (x , h))

= M(λx:X h(x))

= N(h)

=mosl(N , h).

Finally, to see that the right triangle commutes, we take N ∈
C (X ×P (X)) and calculate:

evidt
◦C (epsr

X)(N) = evidt
(λc:P (t)N(c ◦ epsr

X))

= N(epsr
X)

= evepsr
X
(N).

[220]

Scope ambiguities, monads and strengths

Thus the whole diagram commutes, and hence strat1
C =mosl

X , as
required. ♢
The above proof also shows the following technical lemma.

Lemma 5.5 For any set X , the following diagram commutes:

C (X ×P (X)) C (t)C (epsr
X)

C (X)×P (X) t
mosl

X

stl evidt

5.4 Arity two: transitive verbs
Proposition 5.6 The semantics for sentences with transitive verbs, as de-
fined by strategies A, B, and C, will be equivalent, providing two asymmetric
readings for the sentence.
Proof. In the case of sentences with transitive verbs, the semantics will
be defined by morphisms strat2,σ

A , strat2,σ
B , and strat2,ϵ

C , with σ ∈ S2 =
{id2,τ} and ϵ ∈ {l, r}. We need to show the equalities:

strat2,σ
A = strat2,σ

B ,
for σ ∈ S2, and

strat2,id2
B = strat2,l

C , strat2,τ
B = strat2,r

C .

To show the first equality, with Q1 ∈ C (X1), Q2 ∈ C (X2), and
P ∈ P (X1 × X2), we have:
strat2,σ

A (Q1,Q2, P) =

=mosl
Xσ(1)(Qσ(1),mosl

Xσ(2)(Qσ(2), P))

=mosl
Xσ(1)(Qσ(1),λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .P(x1, x2)))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .P(x1, x2)))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .P(πσ−1(xσ(1), xσ(2)))))

= pile′upl(Qσ(1),Qσ(2))(P◦π−1)

=C (πσ−1)(pile′upl(Qσ(1),Qσ(2)))(P)

= strat2,σ
B (Q1,Q2, P)

[221]

Justyna Grudzińska, Marek Zawadowski

To show the remaining two equalities, let us first note that if either
σ = id2 and ϵ = l or σ = τ and ϵ = r, we have:

pile′upϵ =C (πσ−1) ◦ pile′upl ◦πσ.

Thus we shall assume the above equation relating σ with ϵ, and, with
Q1 ∈ C (X1), Q2 ∈ C (X2), and P ∈ P (X1 × X2), we obtain:8

strat2,ϵ
C =

= evidt
◦CPSϵ(epsr

X1
)◦(1×CPS?(epsr

X2
))◦(1×1×ηP (X1×X2))

= evidt
◦C (epsr

X1
)◦pile′upϵ◦(C (1)×C (epsr

X2
))◦(1×pile′up?)◦(1×1×η)

= evidt
◦C (epsr

X1
)◦C (1×epsr

X2
)◦pile′upϵ◦(1×pile′up?)◦(1×1×η)

= evidt
◦C (epsr

X1×X2
)◦pile′upϵ◦(1×pile′up?)◦(1×1×η)

= evidt
◦C (epsr

X1×X2
)◦pile′up?◦(pile′upϵ×1)◦(1×1×η)

= evidt
◦C (epsr

X1×X2
)◦pile′up?◦(1×η)◦(1×pile′upϵ)

= evidt
◦C (epsr

X1×X2
)◦stl◦(1×pile′upϵ)

= evidt
◦C (epsr

X1×X2
)◦stl◦(C (πσ−1)×1)◦(pile′upl×1)◦(πσ×1)

=mosl
X1×X2
◦(C (πσ−1)×1)◦(pile′upl×1)◦(πσ×1)

= strat2,σ
B

In the above calculations, we used the definition of CPSes, the
naturality of pile′upϵ, the relations between eps morphisms, the asso-
ciativity of pile′upϵ (Proposition 5.3), the properties of product mor-
phisms, the pile′up lemma, and finally, Lemma 5.5.
Here and below, CPS?, pile′up? stands for either CPSl , pile′upl or

CPSr , pile′upr ,whichever is more convenient at the time, as it does not
influence the end result. ♢

8The diagram illustrating these calculations would be too big to fit on a page
but the reader is encouraged to draw one.

[222]

Scope ambiguities, monads and strengths

5.5 Arity three: ditransitive verbs
Proposition 5.7 The semantics for sentences with ditransitive verbs, as
defined by strategies A and B, will be equivalent, providing six asymmetric
readings of the sentence.
Proof. In the case of sentences with ditransitive verbs, the semantics
will be defined by the morphisms strat3,σ

A , strat3,σ
B , and strat2,ϵ

C , with
σ ∈ S3 and ϵ ∈ {l, r}. We need to show the equalities:

strat3,σ
A = strat3,σ

B ,

for σ ∈ S3.
The calculations are similar to those for transitive verbs. We

present them for completeness. With Q1 ∈ C (X1), Q2 ∈ C (X2), Q3 ∈
C (X3), and P ∈ P (X1 × X2 × X3), we have:

strat3,σ
A (Q1,Q2,Q3, P) =

=mosl
Xσ(1)(Qσ(1),mosl

Xσ(2)(Qσ(2),mosl
Xσ(3)(Qσ(3), P)))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .Qσ(3)(λxσ(3):Xσ(3) .P(x1, x2, x3))))

=Qσ(1)(λxσ(1):Xσ(1) .Qσ(2)(λxσ(2):Xσ(2) .Qσ(3)(

λxσ(3):Xσ(3) .P(πσ−1(xσ(1), xσ(2), xσ(3))))))

= pile′upl(Qσ(1),pile′upl(Qσ(2),Qσ(3)))(P◦πσ−1)

=C (πσ−1)(pile′upl(Qσ(1),pile′upl(Qσ(2),Qσ(3))))(P)

= strat2,σ
B (Q1,Q2,Q3, P)

as required. ♢
Proposition 5.8 The semantics for sentences with ditransitive verbs, as
defined by strategy C, provides four asymmetric readings of the sentence,
such that QP in subject position can be placed either first or last only. Thus
they correspond to four out of the six readings accounted for by strategies
A and B.
Proof. In the case of sentences with ditransitive verbs, the semantics,
according to strategies B and C, are defined by the morphisms strat3,σ

B ,

[223]

Justyna Grudzińska, Marek Zawadowski

strat3,ϵ,ϵ′
C , respectively. As we shall show, these morphisms are equal

whenever σ ∈ S3 is related to the pair 〈ϵ′,ϵ〉 ∈ {l, r}2 via the relation:
pile′upϵ

′ ◦ (1× pile′upϵ) =C (πσ−1) ◦ pile′upl ◦ (1× pile′upl) ◦πσ
As pile′upl leaves the order intact and pile′upr swaps the order,

we can see that we have the following correspondence:

σ 〈ϵ′,ϵ〉
(1,2,3) 〈l, l〉
(1,3,2) 〈l, r〉
(2,3,1) 〈r, l〉
(3,2,1) 〈r, r〉
(2,1,3) −
(3,1,2) −

Thus we shall assume that σ is related to the pair 〈ϵ,ϵ′〉, and, with
Q1 ∈ C (X1), Q2 ∈ C (X2), Q3 ∈ C (X3), and P ∈ P (X1 × X2 × X3), we
obtain:9

strat3,ϵ′,ϵ
C =

= evidt
◦CPSϵ

′
(epsr

X1
)◦(1×CPSϵ(epsr

X2
))◦(1×1×CPS?(epsr

X3
))

◦(1× 1× 1×η)
= evidt

◦C (epsr
X1
)◦pile′upϵ

′◦(C (1)×C (epsr
X2
))◦(1×pile′upϵ)

◦(C (1)×C (1)×C (epsr
X3
)) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)

= evidt
◦C (epsr

X1
)◦(C (1×epsr

X2
))◦pile′upϵ

′◦(C (1)×C (1×epsr
X3
))

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1
)◦(C (1×epsr

X2
))◦(C (1×1×epsr

X3
))◦pile′upϵ

′

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦pile′upϵ
′

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
9The diagram illustrating these calculations would again be too big to fit on

a page, but the reader is encouraged to draw one.

[224]

Scope ambiguities, monads and strengths

= evidt
◦C (epsr

X1×X2×X3
)◦pile′upϵ

′

◦(1× pile′upϵ) ◦ (1× 1× pile′up?) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦pile′upϵ
′

◦(1× pile′up?) ◦ (1× pile′upϵ × 1) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦pile′up?

◦(pile′upϵ
′ × 1) ◦ (1× pile′upϵ × 1) ◦ (1× 1× 1×η)

∗
= evidt

◦C (epsr
X1×X2×X3

)◦pile′up?◦(C (πσ−1)×C (1))
◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1) ◦ (1× 1× 1×η)
= evidt

◦C (epsr
X1×X2×X3

)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (1× 1× 1×η) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1××η) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦pile′up?

◦(pile′upl × 1) ◦ (1× 1×η) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦pile′up?

◦ (1×η) ◦ (pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦C (πσ−1×1)◦stl l

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= evidt
◦C (epsr

X1×X2×X3
)◦stl l◦(C (πσ−1)×C (1))

◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

=mosl
X1×X2×X3

◦(C (πσ−1)×C (1))
◦(pile′upl × 1) ◦ (1× pile′upl × 1) ◦ (πσ × 1)

= strat3,σ
B

[225]

Justyna Grudzińska, Marek Zawadowski

In the above calculations, we used the definition of CPSes, the
naturality of pile′ups (four times in three non-consecutive steps!),
the relations between eps morphisms, the associativity of pile′ups
(Proposition 5.3), the relations between σ and 〈ϵ′,ϵ〉 in the equation
marked with ∗ ∗=, the properties of product morphisms (three consec-
utive steps), the pile′up lemma, the naturality of strength, and finally,
Lemma 5.5. ♢

6 acknowledgments
This article is funded by the National Science Center on the basis of de-
cision DEC-2016/23/B/HS1/00734. The authors would like to thank
the anonymous reviewers for valuable comments.

references
Chris Barker (2002), Continuations and the nature of quantification, Natural
language semantics, 10(3):211–242.
Chris Barker and Chung-chieh Shan (2014), Continuations and natural
language, volume 53, Oxford Studies in Theoretical Linguistics.
Daisuke Bekki and Kenichi Asai (2009), Representing covert movements by
delimited continuations, in JSAI International Symposium on Artificial Intelligence,
pp. 161–180, Springer.
Simon Charlow (2014), On the semantics of exceptional scope, Ph.D. thesis,
New York University.
Noam Chomsky (1993), Lectures on government and binding: The Pisa lectures, 9,
Walter de Gruyter.
Robin Cooper (1983), Quantification and semantic theory, Dordrecht: Reidel.
Philippe De Groote (2001), Type raising, continuations, and classical logic, in
Proceedings of the thirteenth Amsterdam Colloquium, pp. 97–101.
Samuel Eilenberg and G Max Kelly (1966), Closed categories, in Proceedings
of the Conference on Categorical Algebra, pp. 421–562, Springer.
Samuel Eilenberg, John C Moore, et al. (1965), Adjoint functors and triples,
Illinois Journal of Mathematics, 9(3):381–398.
Roger Godement (1958), Topologie algébrique et théorie des faisceaux,
volume 13, Hermann Paris.
Justyna Grudzinska and Marek Zawadowski (2016), Continuation
semantics for multi-quantifier sentences: operation-based approaches, arXiv
preprint arXiv:1608.00255.

[226]

Scope ambiguities, monads and strengths

Herman Hendriks (1993), Studied flexibility: Categories and types in syntax and
semantics, Institute for Logic, Language and Computation.
Edward L Keenan (1987), Unreducible n-ary quantifiers in natural language,
in Generalized quantifiers, pp. 109–150, Springer.
Edward L Keenan (1992), Beyond the Frege boundary, Linguistics and
Philosophy, 15(2):199–221.
Oleg Kiselyov and Chung-chieh Shan (2014), Continuation hierarchy and
quantifier scope, in Formal Approaches to Semantics and Pragmatics,
pp. 105–134, Springer.
Heinrich Kleisli (1965), Every standard construction is induced by a pair of
adjoint functors, Proceedings of the American Mathematical Society,
16(3):544–546.
Anders Kock (1970), Monads on symmetric monoidal closed categories, Archiv
der Mathematik, 21(1):1–10.
Anders Kock (1971), Closed categories generated by commutative monads,
Journal of the Australian Mathematical Society, 12(04):405–424.
Anders Kock (1972), Strong functors and monoidal monads, Archiv der
Mathematik, 23(1):113–120.
Robert May (1978), The grammar of quantification., Ph.D. thesis, Massachusetts
Institute of Technology.
Robert May (1985), Logical Form: Its structure and derivation, volume 12, MIT
press.
Eugenio Moggi (1991), Notions of computation and monads, Information and
computation, 93(1):55–92.
Richard Montague (1973), The proper treatment of quantification in ordinary
English, in Approaches to natural language, pp. 221–242, Springer.
Chung-chieh Shan (2002), Monads for natural language semantics, arXiv
preprint cs/0205026.
Johan Van Benthem (1989), Polyadic quantifiers, Linguistics and Philosophy,
12(4):437–464.
Philip Wadler (1990), Comprehending monads, in Proceedings of the 1990
ACM conference on LISP and functional programming, pp. 61–78, ACM.
Marek Zawadowski (1989), Formalization of the feature system in terms of
preorders, Feature System for Quantification Structures in Natural Language [3],
pp. 155–175.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[227]

Type Theories and Lexical Networks:
using Serious Games as the basis for

Multi-Sorted Typed Systems*

Stergios Chatzikyriakidis1, Mathieu Lafourcade2, Lionel Ramadier3, and
Manel Zarrouk4

1 Centre for Linguistic Theory and Studies in Probability (CLASP), Department of
Philosophy, Linguistics and Theory of Science, University of Gothenburg;

Open University of Cyprus
2 LIRMM, University of Montpellier
3 Radiology Dept. CHU Montpellier

4 National University of Ireland, Galway

abstract

Keywords: Lexical
Networks,
JeuxDeMots,
Type Theory,
Type Ontologies,
Formal Semantics,
Natural Language
Inference

In this paper, we show how a rich lexico-semantic network which has
been built using serious games, JeuxDeMots, can help us in grounding
our semantic ontologies in doing formal semantics using rich or mod-
ern type theories (type theories within the tradition of Martin Löf).
We discuss the issue of base types, adjectival and verbal types, hy-
peronymy/hyponymy relations as well as more advanced issues like
homophony and polysemy. We show how one can take advantage of
this wealth of lexical semantics in a formal compositional semantics
framework. We argue that this is a way to sidestep the problem of de-
ciding what the type ontology should look like once a move to a many
sorted type system has been made. Furthermore, we show how this
kind of information can be extracted from a lexico-semantic network
like JeuxDeMots and inserted into a proof-assistant like Coq in order
to perform reasoning tasks.

*The first author supported by a grant from the Swedish Research Council for
the establishment of the Centre for Linguistic Theory and Studies in Probability
(CLASP) at the University of Gothenburg.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 229–272

Stergios Chatzikyriakidis et al.

1 introduction

Modern Type Theories (MTTs), i.e. Type Theories within the tradi-
tion of Martin-Löf (1975); Martin-Löf (1984), have become a major
alternative to Montague Semantics (MS) in the last twenty years.
A number of influential approaches using MTTs have been proposed
throughout this period (Ranta 1994; Luo 2011; Retoré 2014; Cooper
et al. 2014), showing that the rich typing system offered by these
approaches (type many-sortedness, dependent types, type universes
among other things) has considerable advantages over simple typed
systems predominantly used in mainstream formal semantics. A fur-
ther important aspect for considering the use of MTTs over tradi-
tional Montagovian frameworks concerns the proof-theoretic nature
of the former but not of the latter.1 This latter fact makes MTTs
a suited formal semantics language to perform reasoning tasks, as
these are exemplified for example in work on inference using proof-
assistant technology (Chatzikyriakidis and Luo 2014b,a; Bernardy
and Chatzikyriakidis 2017). However, this expressiveness of typing
comes with a cost. For example, how does one decide on the base
types to be represented? On the one hand, we do have a way to get
a more fine-grained type system unlike the monolithic domain of en-
tities found in MS, but on the other hand, constructing such a type
ontology is not at all a straightforward and easy task. Different ap-
proaches and assumptions have been put forward w.r.t this issue. For
example Luo (2011, 2012); Chatzikyriakidis and Luo (2017b) pro-
posed to treat CNs as types, in effect arguing that every CN is a type
(roughly a one to one correspondence between common nouns and
types). Approaches like Retoré (2014) on the other hand, take a more
moderate view and build their typing ontology according to classifier
systems, i.e. the intuitions for deciding which types are to be repre-
sented or not are taken from classifier systems found in a number of
natural languages. On the other hand, work in lexical-semantic net-
works have provided us with structured lexicons specifying elaborate

1At least in the way it is employed in the Montagovian setting, simple type
theory can be viewed as model theoretic. However, there is interesting work on
the proof theory of simple type theory. The higher order theorem prover LEO-
II Benzmüller et al. (2007) is an example of such work. We are grateful to an
anonymous reviewer for pointing this out to us.

[230]

Serious Games as the basis for Multi-Sorted Typed Systems

lexical and semantic relations. A classic such case is e.g. WordNet
Fellbaum (1998). A very promising line of research in lexico-semantic
network construction concerns networks which are built collabora-
tively by using Games with a Purpose (GWAPs). This is the case of the
Lexical Network JeuxDeMots (JDM) (Lafourcade 2007b). JDM is con-
structed through many GWAPs along with a contributive tool (Diko)
which allows players/users to contribute directly and to browse the
knowledge base.
Given this background, what we want to propose in this paper is

the grounding of our semantic ontologies, as well as any other infor-
mation needed in order to perform reasoning tasks using MTT seman-
tics, in JDM. In order to do this, we present some first thoughts on
how such an endeavour can be accomplished by looking at the way a
translation procedure from JDM to MTTs can be performed. Issues to
be discussed include the domain of base types, instances of these types,
adjectival and verbal types, hyponymy/hypernomy relations, as well
as more advanced issues like homophony and polysemy.We then show
how one can exploit this translation procedure by extracting this infor-
mation from JDM in order to feed a reasoning device that implements
an MTT. We show some easy cases of inference that are taken care of
via a combination of the lexical semantics information extracted from
JDM and the proof theoretic power of MTTs (performed by the proof-
assistant Coq) and further show how JDM can actually help us in order
to reason with cases where reasoning with implicit premises is at play.
The structure of the paper is as follows: in Section 2, the JDM project
is described as well as the produced lexical network. In Section 3, we
describe two main endogenous inference mechanisms (deductive and
inductive scheme), followed by a discussion on the annotation of re-
lations between terms. Then, in Section 4, we discuss the building of
type ontologies using information from JDM and propose a number
of translation procedures between JDM and an MTT. The section also
includes a brief intro to MTT semantics, highlighting aspects of the
theory that will play a role in this paper the most. Lastly, in Section 5
we look at the possibility of performing natural language inference
tasks using MTT semantics powered by information drawn from JDM.
We present a number of inference cases that rely mostly on lexical-
semantic information taken by JDM and the proof-theoretic power of
MTT semantics using the proof-assistant Coq.

[231]

Stergios Chatzikyriakidis et al.

2 building a lexical network

JeuxDeMots2, a project launched in September 2007, aims to build
a large lexico-semantic network (Lafourcade 2007a). The network is
composed of terms (nodes or vertices) and typed relations (links be-
tween nodes). It contains terms and possible refinements in the same
spirit as WordNet synsets (Miller 1995), although being organized as
decision trees. There are more than 80 different relation types which
occurrences are directed, weighted, and possibly annotated (Lafour-
cade et al. 2015).

2.1 GWAPs
The game JeuxDeMots is a two player GWAP (Game With A Purpose,
see von Ahn and Dabbish 2008), where people are supposed to earn
and collect words. The main mechanism whereby this goal is achieved
is the provision of lexical and semantic associations to terms proposed
by the system.
When a Player (let’s call him/her A) starts a game, a term T, along

with some instructions concerning the type of lexical relation (e.g. syn-
onym, antonym, domain, etc.), is displayed. The term T could have
been chosen from the database by the system or offered to be played
by other players. Player A has a limited amount of time (around 60 sec-
onds) to enter terms which, to his/her mind, are relevant w.r.t. both
the term T and the lexical relation. The maximum number of terms a
player can enter is limited, thus encouraging the player to think care-
fully about his/her choices. A screenshot of the user interface is shown
in Figure 1.
The very same term T, along with the same set of instructions,

will be later given to another player, Player B, for whom the process
is identical. In order to make the game more entertaining, the two
players score points for words they both choose. Score calculation is
explained in Lafourcade (2007a) and was designed to increase both
precision and recall in the construction of the database. The more
‘original’ a proposition given by both players is, the more it is re-
warded. Figure 2 shows an end of game with collected rewards. An-
swers given by both players are displayed and those common to both
players, as well as their scores, are highlighted.

2http://www.jeuxdemots.org

[232]

Serious Games as the basis for Multi-Sorted Typed Systems

Figure 1: Screenshot of an ongoing game with the target verb fromage (cheese).
Several propositions have been given by the user and are listed on the right
hand side

Figure 2: Screenshot of the game result with the target noun fromage. Proposals
of both players are displayed, along with points won by both

[233]

Stergios Chatzikyriakidis et al.

For a target term T, common answers from both players are in-
serted into the database. Answers given by only one of the two players
are not, thus reducing noise and the chance of database corruption.
The semantic network is, therefore, constructed by connecting terms
by typed and weighted relations, validated by pairs of players. These
relations are labeled according to the instructions given to the players
and weighted according to the number of pairs of players who choose
them. Initially, prior to putting the game online, the database was pop-
ulated with nodes. However if a pair of players suggests a non-existing
term, the new node is added to the database.
In the interest of quality and consistency, it was decided that the

validation process would involve anonymous players playing together.
A relation is considered valid if and only if it is given by at least one
pair of players. This validation process is similar to that presented by
von Ahn and Dabbish (2004) for the indexing of images, by Lieberman
et al. (2007) and von Ahn et al. (2006) to collect common sense knowl-
edge, and Siorpaes and Hepp (2008) for knowledge extraction. As far
as we know, this technique has never been used for building seman-
tic networks. Similar Web-based systems already exist in NLP, such
as Open Mind Word Expert (Mihalcea and Chklovski 2003), which
aims to create large sense-tagged corpora with the help of Web users,
and SemKey Marchetti et al. (2007), which makes use of WordNet and
Wikipedia to disambiguate lexical forms referring to concepts, thus
identifying semantic keywords.
For the design of JeuxDeMots, we could have chosen to take

into account all of the players’ answers according to their frequency
from the very outset. The database would have grown much quicker
this way, but to the detriment of quality. The rationale behind this
choice was to limit the impact of fanciful answers or errors due to
misinterpreted instructions or terms. The integration of rarer terms
and expressions is slower; nevertheless, these terms are added to the
database eventually, once the more common solutions have been ex-
hausted, thanks to the process of creating taboo terms. Once a relation
with term T has been proposed by a large number of pairs of players,
it becomes taboo. During a game, taboo terms are displayed along
with term T, discouraging (but not forbidding) players from enter-
ing them. In this way, players are encouraged to make other, more
original choices. Therefore, more infrequent terms eventually find

[234]

Serious Games as the basis for Multi-Sorted Typed Systems

their way into the database, and the chances of error are reduced to
a minimum.
Even if a relation becomes taboo, its weight can, and does, evolve.

However, this tends to be done slowly as the relation is proposed to
the players less often. It is important to allow relation weights to con-
tinue to evolve, as we can hardly consider such a relation as com-
plete. Eventually, a given term can become taboo when involved in
several different relation types. The fact that taboo relations continue
to evolve is essential, otherwise the weights of two given relations
could become equal and then information about the relative strength
relations would be lost.
The approach presented here complements that developed by

Zock and Bilac (2004) and Zock and Schwab (2008) who tried to
create an index based on the notion of association to assist users in
navigating the Web or elsewhere, or to help a person find a word on
the tip of their tongue. Their approach is bottom-up, i.e. the terms
are known (based on word proximity in corpora), but the nature of
the link isn’t. This has to be inferred, which is far from an easy task.
In our case, we provide one of the two terms, term T as well as the
relation type. It is the target terms which interest us. Our approach is
top-down.
Some other games3 complement the main game of JDM. Their

purpose is to cross validate the information collected in the main
game, or to accelerate the relation harvesting for some specific types
of relations. For instance, there are games for collecting word polarity
(positive, negative, and neutral), for sentiments associated with words,
guessing games, sorting games, location preposition games, and so on.
Since September 2007, around 1.5 million matches have been

played for JDM, a total of 25 000 hours of cumulative playing. More
than 250 million matches have been played for the other games of the
JDM platforms.4

2.2 Direct crowdsourcing
Playing games in order to fill the lexical network is a kind of indirect
crowdsourcing, where people (players) do not negotiate their contri-

3http://imaginat.name/JDM/Page_Liens_JDMv1.html
4http://www.jeuxdemots.org/jdm-about.php

[235]

Stergios Chatzikyriakidis et al.

bution beforehand. In some cases, direct crowdsourcing (with negoti-
ation between contributors) is desirable. Indeed, some lexical relation
might be complicated enough to be playable without some linguis-
tic knowledge. This is for example the case for telic role, which is
the goal/purpose of an object (or action). For instance, a butcher knife
has the telic role of cutting meat. It is to be differentiated from the in-
strument of a predicate, which indicates what can be done with the
object. A butcher knife could be used to stab someone, but this is not
its telic role.
In some other cases (depending on each term), a given relation

might not be productive enough to be playable. For example, the can
produce relation for cow could reasonably be milk, but there are not
many other answers.
All theses considerations lead to the need of a more direct crowd-

sourcing interface. The Diko5 service allows to visualize and con-
tribute to the JDM lexical network. A voting mechanism is at the
core of the validation (or invalidation) of proposed relations between
terms.

2.3 Inside the JDM Lexical Network
As mentioned above, the structure of the lexical network we are build-
ing relies on the notions of nodes and relations between nodes, as it
was initially introduced in the end of 1960s by Collins and Quillian
(1969), developed in Sowa and Zachman (1992), used in the small
worlds by Gaume et al. (2007), and more recently clarified by Polguère
(2014). Every node of the network is composed of a label (which is
a term or an expression, or potentially any kind of string) grouping
together all of its possible meanings.
The relations between nodes are typed. Each type corresponding

to specific semantics that could be more or less precise. Some of these
relations correspond to lexical functions, some of which have been
made explicit by Mel’cuk and Zholkovsky (1988) and Polguère (2003).
We would have liked our network to contain all the lexical functions
defined by Mel’cuk, but, considering the principle of our software,
JDM, this is not viable. Indeed, some of these lexical functions are too
specialized and typically aim at some generative procedure (instead of

5http://www.jeuxdemots.org/diko.php

[236]

Serious Games as the basis for Multi-Sorted Typed Systems

automatic text analysis and understanding), as in our case. For exam-
ple, we can consider the distinction between the Conversive, Antonym,
and Contrastive functions, a distinction that could be made through
annotations for a quite generic antonym relation. Mel’cuk also con-
siders function refinements, with lexical functions characterized as
“wider” or “narrower”. Given that JDM is intended for users who are
“simple Internet users” and not necessarily experts in linguistics, such
functions could be wrongly interpreted. Furthermore, some of these
functions are clearly too poorly lexicalized, that is, very few terms
feature occurrences of such relations. This is, for example, the case of
the functions of ‘Metaphor’ or ‘Functioning with difficulty’.
JDM has a predefined list of around 80 relation types, and players

cannot define new types by themselves. These types of relations fall
into several categories:
• Lexical relations: synonymy, antonymy, expression, lexical fam-

ily. These types of relations are about vocabulary and lexicalization.
• Ontological relations: generic (hyperonymy), specific (hypo-

nymy), part of (meronymy), whole of (holonymy), mater/substance,
instances (named entities), typical location, characteristics and rele-
vant properties.
• Associative relations: free associations, associated feelings,

meanings, similar objects, more and less intense (Magn and anti-
Magn). These relations are rather about subjective and global knowl-
edge; some of them can be considered phrasal associations.
• Predicative relations: typical agent, typical patient, typical in-

strument, location where the action takes place, typical manner, typi-
cal cause, typical consequence etc. These relations are about types of
relations associated with a verb (or action noun) as well as the values
of its arguments (in a very wide sense).
Some relation types are specific to some noun classes. For exam-

ple, for a noun referring to an intellectual piece of work (book, novel,
movie, piece of art, etc.), the relation of author is defined. In case of a
medical entity, targets and symptoms are defined.
Some outgoing relations for the French word fromage are shown

below:
fromage → r_associated 800 → lait
fromage → r_associated 692 → camembert
fromage → r_associated 671 → chèvre

[237]

Stergios Chatzikyriakidis et al.

fromage → r_associated 580 → vache
fromage → r_associated 571 → gruyère
fromage → r_associated 460 → brebis
fromage → r_associated 419 → roquefort
fromage → r_isa 310 → produit laitier
fromage → r_associated 257 → produit laitier
fromage → r_associated 221 → brie
fromage → r_hypo 214 → gruyère
fromage → r_meaning 205 → produit laitier
fromage → r_hypo 204 → brie
fromage → r_associated 201 → dessert
fromage → r_associated 201 → fromage blanc
fromage → r_locution 199 → fromage de brebis
fromage → r_patient-1 199 → manger
fromage → r_locution 195 → fromage de tête
fromage → r_hypo 189 → fromage blanc
fromage → r_isa 189 → aliment
fromage → r_raff_sem 183 → fromage > produit laitier
fromage → r_isa 182 → ingrédient
fromage → r_lieu 182 → pizza
fromage → r_carac 180 → puant
fromage → r_sentiment 177 → envie
fromage → r_consequence 173 → puer du bec
fromage → r_holo 171 → pizza
fromage → r_associated 168 → laitage
fromage → r_hypo 167 → fromage de vache
fromage → r_hypo 163 → fromage double crème
fromage → r_hypo 163 → fromage à pâte pressée cuite
fromage → r_part_of 163 → lipide
fromage → r_part_of 161 → croûte
fromage → r_lieu :160 → plateau à fromage
fromage → r_carac 160 → odorant
fromage → r_associated#0:154 → raclette
fromage → r_locution :154 → dommage fromage
fromage → r_associated 149 → cancoillotte
fromage → r_locution 148 → faire tout un fromage
fromage → r_locution :148 → fromage analogue
fromage → r_locution :148 → fromage de synthèse

[238]

Serious Games as the basis for Multi-Sorted Typed Systems

fromage → r_hypo 148 → fromage à pâte dure
fromage → r_similar 148 → substitut de fromage
fromage → r_hypo#8:147 → emmental
…

2.4 Refinements
Word senses (or usages) of a given term T are represented as standard
nodes T>glose1, T>glose2, ..., T>glosen which are linked with re-
fine(ment) relations. Glosses are terms that help the reader to identify
the proper meanings of the term T. For example, consider the French
term frégate (Eng. frigate):
• frégate→refine→frégate>navire
• frégate>navire →refine→ frégate>navire>ancient
• frégate>navire →refine→ frégate>navire>modern

• frégate→refine→frégate>bird
A frigate can be a ship or a bird (both English and French have

the same ambiguity for this word), and as a ship it can either be an
ancient ship (with sails) or a modern one (with missiles and such).
As can be seen in the above example, word refinements are organized
as a decision tree, which can have some advantages over a flat list of
word meanings for lexical disambiguation.
A given word sense is treated as any standard term; it can be

played regularly. The general polysemous term contains (in principle)
the union set of all possible relations given by the senses. In practice,
we proceed the other way around, trying to distribute relations from
the appropriate term to the proper senses.
2.5 Negative relations
A given relation is weighted, and the weight could be negative. A neg-
ative weight is only the result of some contributive process (i.e. it is
never an outcome of the games) where volunteers add information to
the lexical network. The purpose of negative weights is to give some
foundation to the inhibitory process that allows us to reject (instead of
select) some given meaning during a Word Sense Disambiguation task.
• frégate>navire →refine→ coque (Eng. hull)
• frégate>bird →refine<0→ coque

[239]

Stergios Chatzikyriakidis et al.

Consider the sentence (in English): The frigate had her hull breached.
Obviously, the negative relations immediately forbid the frigate from
being a bird in this sentence. Hence, negative relations are of primary
interest for representing contrastive phenomena among the various
senses of a given term.

2.6 Aggregate nodes
The JDM lexical network also contains aggregate nodes that are in-
ferred from the set of relations produced by players and contributors.
An aggregate (node) is a node that encompasses either:
• a predicate (a verb) + one argument, like for example:
lion [agent] eat,
eat [patient] salad.

• a noun + one feature, like for example:
cat [carac] black,
cat [location] sofa,
rabbit [made-of] chocolate.
Aggregates can be combined recursively, for example (parenthe-

ses are given for for the purpose of readability):
A :: (cat [carac] black) [agent] eat
B :: (cat [carac] black) [agent] (eat [patient]mouse)
The motive of such aggregate nodes is to associate information

(through relations) with some contextualized items:
• A →patient→ bird
• B →location→ garden
The choice of aggregate node depends on the weight of the re-

lations in the lexical network. An automated process will randomly
select some relations and propose them as the aggregate to the play-
ers. Those which are selected for playing are dubbed as interesting
and reified (instantiated as node) in the lexical network. For example,
the relation:

soldier →agent→ kill
it could lead to the aggregated node:
soldier [agent] kill

[240]

Serious Games as the basis for Multi-Sorted Typed Systems

can be proposed to player with various relation types to fill, as pa-
tient, location, manner, instrument, etc.
2.7 Some figures
By February 2017, the JDM lexical network contained roughly 67 mil-
lion relations between more than 1 million nodes. Around 24 000
terms are refined into 65 000 word senses (word usages). More than
800 000 relations are negative and can be used as inhibitory items. The
generic ‘associated ideas’ relations represent around 25% of the rela-
tion total. Annotations (see below) represent around 4.5% of the to-
tal. Informational relations (like part-of-speech, some conceptual val-
ues like human, alive, place, substance, artifact, etc.) stand
for 20%.

3 inferring and annotating relation
Inference is the process of proposing new relations on the basis of the
actual contents of the network. Simple procedures tend to provide cor-
rect but mostly irrelevant results. In Sajous et al. (2013) an endogenous
enrichment of Wiktionary is done with the use of a crowdsourcing
tool. A similar approach of using crowdsourcing has been consider-
ing by (Zeichner et al. (2012)) for evaluating inference rules that are
discovered from texts.
In what follows, we describe two endogenous inference mecha-

nisms which assist the annotation spreading, although other schemas
are running in the inference engine, producing new relations and de-
riving benefit from the produced annotations (Zarrouk 2015).
3.1 Inference
In order to increase the number of relations inside the JDM network,
an inference engine proposes relations to be validated by other human
contributors (or experts in the case of specialized knowledge). The
core ideas about inferences in our system are the following:
• as far as the engine is concerned, inferring is deriving candidate
conclusions (in the form of relations between terms) from previ-
ously known ones (existing relations);
• candidate inferences may be logically blocked regarding the pres-
ence or absence of some other relations;

[241]

Stergios Chatzikyriakidis et al.

• candidate inferences can be filtered out on the basis of a strength
evaluation.

3.1.1 Deductive scheme
The first type of inference we are describing is the deduction or top-
down scheme, which is based on the transitivity of the ontological
relation is-a (hypernym). If a term A is a kind of B and B holds a
relation R with C, then we can expect that A holds the same relation
with C. The scheme can be formally written as follows:
(1) A

is−a−−→ B ∧ B
R−→ C ⇒ A

R−→ C

If we consider a term Twith a set of weighted hypernyms, for each
hypernym, the inference engine deduces a set of inferences. Those
inference sets are not disjoint in the general case, and the weight of a
proposed inference in several sets is the incremental geometric mean
of each occurrence.
Of course, the scheme above is far too naive, especially consider-

ing the resource we are using. Indeed, B may be, possibly, a polyse-
mous term and ways to block inferences that are certainly wrong can
be devised. If there are two different meanings of term B that hold be-
tween the first and the second relation (Figure 3), then the inference
is most likely wrong.

Figure 3:
Triangular inference scheme with logical
blocking based on the polysemy of B

Moreover, if one of the premises is tagged as true but irrelevant,
then the inference is blocked. It is possible to assess a confidence level
for each produced inference in a way that dubious inferences can be
filtered out. The weight w of an inferred relation is the geometric mean
of the weight of premises. If the second premise has a negative value,

[242]

Serious Games as the basis for Multi-Sorted Typed Systems

the weight is not a number and the proposal is discarded. As the geo-
metric mean is less tolerant of small values than the arithmetic mean,
inferences which are not based on two valid relations (premises) are
unlikely to go through.
3.1.2 Induction scheme
As for the deductive inference, induction exploits the transitivity of
the relation is-a. If a term B is a hypernym of A and A holds a relation
R with C, then we might expect that B could hold the same type of
relation with C.
(2) A

is−a−−→ B ∧ A
R−→ C ⇒ B

R−→ C

This schema is a generalization inference. The global processing is
similar to the one applied to the deduction scheme and similarly some
logical and statistical filtering may be undertaken. The term joining
the two premises is possibly polysemous. If the term A presents two
distinct meanings which hold respectively of the premises (Figure 4),
then the inference done from that term may be probably wrong.

Figure 4:
Induction scheme. Central Term A may be
polysemous with meanings holding premises,
thus inducing a probably wrong relation

3.2 Relation annotations
JDM is a combined lexical semantic network (i.e one containing both
general knowledge but also specialist domain knowledge). Besides
being typed, relations are weighted and directed. In general, and espe-
cially in cases of specialized knowledge, the correlation between the
weight of the relation and its importance is not strict. This is why it
seems interesting to introduce annotations for some relations as these
can be of great help in such areas as medicine, for instance.

[243]

Stergios Chatzikyriakidis et al.

In information retrieval, this annotation can be helpful to the
users. For instance, in the field of medicine, practitioners may want
to know if the characteristic of a given pathology is rare or frequent.
For example, the relation between measles and children is frequent and
as such will be available in the network.
3.3 Annotation values
These annotations will have a filter function in the inference scheme.
The types of annotations are of various kinds (mostly frequency and
relevance information). The different main annotation labels are:
• frequency annotations: very rare, rare, possible, frequent, always
true;
• usage annotations: often believed true, language misuse;
• quantifier: any number like 1, 2, 4, etc. or many, few;
• qualitative: pertinent, irrelevant, inferable, potential, preferred.
Concerning language misuse, a doctor can use the term flu (ill-

ness) instead of virus of influenza: it is a misuse of language as the doc-
tor makes use of a “language shortcut”. The annotation often believed
true is applied to a wrong relation. This is very often considered true,
for instance, spider (is-a/often believed true) insect. This kind of anno-
tation could be used to block the inference scheme. Qualitative anno-
tation relates to the inferable status of a relation, especially concerning
inference. The pertinent annotation refers to a proper ontological level
for a given relation. For instance: living being (charac/pertinent) alive
or living being (can/pertinent) die. Another case concerns synonyms:
in this case, it may be relevant to choose a preferred synonym, as in
the case of hepatocellular carcinoma (preferred), HCC, malignant hep-
atoma.
The annotation inferable is used when a relation is inferable (or

has been inferred) from an already existing relation. For example: cat
(charac/inferable) alive because cat (is-a) living being.
The annotation potential may be used for terms above the

pertinent ones in the ontological hierarchy, for example: bird (has-
part/always true) wings and animal (has-part/potential) wings.
Finally, the annotation irrelevant is used for a valid relation that

is considered as too far below the pertinent level, for example, animal
(has-part/irrelevant) atoms.

[244]

Serious Games as the basis for Multi-Sorted Typed Systems

The annotation quantifier represents the number of parts of an
object. Each human has two lungs so the quantifier relation there is 2.
This kind of annotation is not necessarily a numeral, but can be more
or less a subjective value, e.g. few, many, etc.
The annotation frequency can be of five different types: always

true, frequent, possible, rare and exceptional. There are also two quali-
tative types (pertinent and irrelevant).
The first annotations have been introducedmanually, but with the

help of the inference scheme, they will spread through the network.
We assign empirical values to each annotation’s label: 4 to always
true, 3 to frequent, 2 to possible, 1 to rare and 0 to the rest of the
annotations. These allow us to select annotations to facilitate or block
an inference scheme.
The annotation possible is a special case. Depending of the con-

figuration of the system, it may block (stricter approach) or not block
(lenient approach) the inference mechanism. If a system is lenient, we
may obtain many inference proposals that might be wrong (high re-
call, low precision). On the other hand, if a system is strict, we reduce
the risk of wrong proposals, but at the cost of missing adequate ones
(low recall, high precision).

4 from jdm to mtts

In this section, we show how we can exploit the richness of the lexico-
semantic information found in JDM, in order to decide on the typ-
ing ontology and assign types to objects in a compositional semantics
framework that is richly typed. But before we get into this discussion,
a very brief intro to MTT semantics.
4.1 A gentle and brief intro to MTT semantics
We use the term Modern Type Theory (MTT) to refer to a variant of
a class of type theories as studied by Martin-Löf (1975); Martin-Löf
(1984) and others, which have dependent types, inductive types and
other powerful and expressive typing constructions. In this paper, we
are going to employ one of these variants, namely the Unified Theory
of dependent Types (UTT) complemented with the coercive subtyping
mechanism (Luo 1994, 1999; Luo et al. 2012). Given the different typ-
ing constructions found in MTTs, various interpretations of linguistic

[245]

Stergios Chatzikyriakidis et al.

semantics might be different than what we usually find in traditional
Montagovian formal semantics based on simple type theory.

4.1.1 Common nouns as types and subtyping
A key difference between MTT-semantics and Montague semantics
(MS) lies in the interpretation of common nouns (cns). In Montague
(1974), the underlying logic, i.e. Church’s simple type theory (Church
1940), is ‘single-sorted’ in the sense that there is only one type, e,
of all entities. The other types such as the type of truth values, i.e.
t, and the function types generated from types e and t do not stand
for types of entities. Thus, no fine-grained distinctions between the
elements of type e exist, and as such all individuals are interpreted
using the same type. For example, John and Mary have the same type
in simple type theory, i.e. the type e of individuals. An MTT, on the
other hand, can be regarded as a ‘many-sorted’ logical system in that
it contains many types. In this respect, MTTs can make fine-grained
distinctions between individuals and use those different types to inter-
pret subclasses of individuals. For example, one can have John : man
andMary : woman, where man and woman are different types. Another
very basic difference between MS and MTTs is that common nouns in
MTTs (cns) are interpreted as types (Ranta 1994) rather than sets or
predicates (i.e., objects of type e→ t) as in MS. The cns man, human,
table and book are interpreted as types man, human, table and book,
respectively. Then, individuals are interpreted as being of one of the
types used to interpret cns.
This many-sortedness has the welcome result that a number

of semantically infelicitous sentences, which are however syntacti-
cally well-formed, like e.g. the ham sandwich walks can be explained
easily. This is because a verb like walks will be specified as being of
type Animal → Prop while the type for ham sandwich will be food or
sandwich:6

6This is of course based on the assumption that the definite NP is of a lower
type and not a Generalized Quantifier. Furthermore, the idea that common nouns
should be interpreted as types rather than predicates has been argued in Luo
(2012) on philosophical grounds as well. There, Luo argues that the observation
found in Geach (1962) according to which common nouns, in contrast to other
linguistic categories, have criteria of identity that enable them to be compared,
counted or quantified, has an interesting link with the constructive notion of

[246]

Serious Games as the basis for Multi-Sorted Typed Systems

(3) the ham sandwich : food
(4) walk : human→ Prop
Interpreting cns as types rather than predicates has also a signifi-

cant methodological implication: compatibility with subtyping. For in-
stance, one may introduce various subtyping relations by postulating a
collection of subtypes (physical objects, informational objects, eventu-
alities, etc.) of the type Entity (Asher 2012). It is a well-known fact that
if cns are interpreted as predicates as in the traditional Montagovian
setting, introducing such subtyping relations would cause problems
given that the contravariance of function types would predict that if
A < B, then B → Prop < A→ Prop would be the case. Substituting A
with type man and B with type human, we come to understand why
interpreting CNs as predicates is not a good idea if we want to add a
coercive subtyping mechanism.
The subtyping mechanism used in the MTT endorsed in this paper

is that of coercive subtyping (Luo 1999; Luo et al. 2012). Coercive
subtyping can be seen as an abbreviation mechanism: A is a (proper)
subtype of B (A< B) if there is a unique implicit coercion c from type
A to type B and, if so, an object a of type A can be used in any context
CB[_] that expects an object of type B: CB[a] to be legal (well-typed)
and equal to CB[c(a)].
To give an example: assume that both man and human are base

types. One may then introduce the following as a basic subtyping re-
lation:
(5) man< human
4.1.2 Σ-types, Π-types and universes
In this subsection, the dependent types Σ and Π. as well as universes
are briefly introduced.
Dependent Σ-types. One of the basic features of MTTs is the use of De-
pendent Types. A dependent type is a family of types that depend
set/type: in constructive mathematics, sets (types) are not constructed only by
specifying their objects but they additionally involve an equality relation. The
argument is then that the interpretation of cns as types in MTTs is explained and
justified to a certain extent. Extensions and further theoretical advances using
the cns as types approach can be found in Chatzikyriakidis and Luo (2017b).

[247]

Stergios Chatzikyriakidis et al.

on some values. The constructor/operator Σ is a generalization of
the Cartesian product of two sets that allows the second set to de-
pend on the values of the first. For instance, if human is a type and
male : human → Prop, then the Σ-type Σh : human. male(h) is intu-
itively the type of humans who are male.
More formally, if A is a type and B is an A-indexed family of types,

then Σ(A, B), or sometimes written as Σx:A.B(x), is a type, consisting
of pairs (a, b) such that a is of type A and b is of type B(a). When B(x)
is a constant type (i.e., always the same type no matter what x is),
the Σ-type degenerates into the product type A× B of non-dependent
pairs. Σ-types (and product types) are associated projection operations
π1 and π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of type
Σ(A, B) or A× B.
The linguistic relevance of Σ-types can be directly appreciated

once we understand that in their dependent case Σ-types can be used
to interpret linguistic phenomena of central importance, like adjecti-
val modification (see for example Ranta 1994). To give an example,
handsome man is interpreted as Σ-type (6), the type of handsome men
(or more precisely, of those men together with proofs that they are
handsome):
(6) Σm : man. handsome(m)
where handsome(m) is a family of propositions/types that depends on
the man m.
Dependent Π-types. The other basic constructor for dependent types is
Π.Π-types can be seen as a generalization of the normal function space
where the second type is a family of types that might be dependent
on the values of the first. A Π-type degenerates to the function type
A→ B in the non-dependent case. In more detail, when A is a type and
P is a predicate over A, Πx:A.P(x) is the dependent function type that,
in the embedded logic, stands for the universally quantified proposi-
tion ∀x:A.P(x). For example, the following sentence (7) is interpreted
as (8):
(7) Every man walks.
(8) Πx : man.walk(x)

Π-types are very useful in formulating the typings for a number
of linguistic categories like VP adverbs or quantifiers. The idea is that

[248]

Serious Games as the basis for Multi-Sorted Typed Systems

adverbs and quantifiers range over the universe of (the interpretations
of) cns and as such we need a way to represent this fact. In this case,
Π-types can be used, universally quantifying over the universe cn.
Example (9) is the type for VP adverbs7 while (10) is the type for
quantifiers:
(9) ΠA : cn. (A→ Prop)→ (A→ Prop)
(10) ΠA : cn. (A→ Prop)→ Prop

Further explanations of the above types are given after we have intro-
duced the concept of type universe below.
Type Universes. An advanced feature of MTTs, which will be shown
to be very relevant in interpreting NL semantics in general, is that
of universes. Informally, a universe is a collection of (the names of)
types put into a type (Martin-Löf 1984).8 For example, one may want
to collect all the names of the types that interpret common nouns into
a universe cn : Type. The idea is that for each type A that interprets a
common noun, there is a name A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting
the overlines and the operator Tcn by simply writing, for instance,
[[man]] : cn.
Having introduced the universe cn, it is now possible to explain

(9) and (10). The type in (10) says that for all elements A of type
cn, we get a function type (A→ Prop) → Prop. The idea is that the
element A is now the type used. To illustrate how this works let us
imagine the case of the quantifier some which has the typing in (10).
The first argument we need has to be of type cn. Thus some human is

7This was proposed for the first time in Luo (2011).
8There is quite a long discussion on what properties these universes should

have. In particular, the debate is largely concentrated on whether a universe
should be predicative or impredicative. A strongly impredicative universe U of
all types (with U : U and Π-types) has been shown by Girard (1971) to be para-
doxical, and as such logically inconsistent. The theory UTT we use here has only
one impredicative universe Prop (representing the world of logical formulas) to-
gether with infinitely many predicative universes which as such avoids Girard’s
paradox (Luo 1994).

[249]

Stergios Chatzikyriakidis et al.

of type (human → Prop) → Prop given that the A here is human : cn
(A becomes the type human in (human→ Prop)→ Prop). Then given a
predicate like walk : human→ Prop, we can apply some human to get
some human : Prop.
4.2 Getting MTT typings from JDM
In this section, we will show how we can define a translation proce-
dure between JDM and MTTs, in order to base our typing judgments
and other related lexico-semantic information in JDM. We show some
basic examples in which this can be done.
4.2.1 Base types and instances of base types
MTTs, as already said, are many-sorted systems in that they involve
a multitude of types rather than just one monolithic type e domain of
entities. In the accounts proposed by Luo (2011, 2012), every com-
mon noun is associated with a base type. What this idea amounts to,
among other things, is that in this approach, CNs are base types and as
such, are clearly separated in terms of their formal status with either
adjectives or intransitive verbs. The type of CNs, likeMan, Human and
Animal is cn, the universe of common nouns.
The idea is then to extract these base types from common nouns

in JDM (terms in JDM). POS tagging of JDM will provide information
about which words are the common nouns. What we further have to
do in getting the base types, is to exclude instances of terms (for ex-
ample John as an instance of Man) in order to distinguish between
instances of terms and the terms themselves (CNs).9 This can be done
by excluding named entities (NEs). The second part of the conjunction
takes care of that by not allowing A to be an instance, i.e. an NE:10
(11) ∀A.POS(N , A)∧¬(Ins(A))⇒ A:cn.

9This does not mean that we are not interested in instances. On the contrary.
What we are saying here is that this rule distinguishes between CNs and instances
of these CNs (the difference between a type like Man and an instance of this type,
e.g. John). There will be a separate rule to derive instances.

10Note that modified CNs are also going to be of type cn. To give an example,
consider the analysis of adjectival modification. In MTTs, this would be a Σ type,
where the first component would be an element A of type cn and the second
projection a predicate over A. The first projection is defined as a coercion, and
thus the modified CN can be used as being of type cn. For more information on
this, please refer to (Chatzikyriakidis and Luo 2013, 2017a) for more information.

[250]

Serious Games as the basis for Multi-Sorted Typed Systems

Hyponym and hypernym (noted as isa in JDM) relations naturally
correspond to subtypes and supertypes. We only use the subtype rela-
tion in order to provide a translation procedure:
(12) ∀A, B.Hyp(A, B)⇒ A< B:cn.

(13) ∀A, B.Hyper(A, B)⇒ B < A:cn.

This basically means that as soon as you have, let us say, a hy-
ponym relation, e.g. Hyp(A, B), this will be translated into a type-
theoretic judgment of the following form:
(14) A< B:cn
If we want to be more meticulous, we first have to judge A and B

as being of type cn and then we can further add the subtype relation.
Moving on to synonyms, these can be defined using equality:11

(15) ∀A, B.Syn(A, B)⇒ A= B:cn.

Synonymicity is not only relevant for CNs but for other linguistic
categories. We can encode this intuition as follows:
(16) ∀A, B.Syn(A, B)⇒ A= B:C(CLType)
The above rule can declare synonymous words that have the same

type via the equality relation. The type itself belongs in the universe
LType. LType can be seen as a universe of linguistic types. The main
intuition is that it includes the types instantiated in linguistic seman-
tics (CN, adjectival and verbal types, types for quantifiers etc.). The
interested reader is directed to Chatzikyriakidis and Luo (2012) for
more details as well as some of the introduction rules for LType).
For instances of terms, such as proper names, we define the fol-

lowing:12
(17) ∀A.∃B.Ins(A, B)⇒ A:B

This means that if A is an instance of B, then A is of type B.
For example, if Einstein is an instance of person, then what we get is

11Of course, this will treat A and B as perfect synonyms. We make this simple-
minded assumption in this paper, even though perfect synonyms do not really
exist in natural language.

12Note that here we overload the notation and sometimes treat Ins as an one
place predicate and sometimes like a two place predicate.

[251]

Stergios Chatzikyriakidis et al.

Einstein:person with person:cn. In more detail, the procedure is as fol-
lows: given an instance A of a term B, first you declare B:cn and then
judge the instance A to be of that type, i.e. B. This is the easy straight-
forward case and assumes that every instance will be an instance of
one term. However, things are more complicated in practice. Given
that JDM is a very elaborate lexical network, proper names will be
instances of many terms (and thus, in MTT terms, types). To give an
example: in the case of a proper name like Einstein, what we get is a
number of terms from JDM that Einstein is an instance of: physicist,
scientist, human individual. The question is which one do we choose.
This is not an easy question to answer. One option would be to go for
the term that is the most specific. But how do we define this? One way
to do this, and given the discussion on relations of hyponymy, is to de-
fine it by saying that the term chosen should not have any subtypes
in the given entry. For example individual will have subtypes (scien-
tist, and also physicist) scientist (physicist). In this case, we are left with
physicist. This is one way to do it. Note that given subtyping, we do
get that Einstein is also an instance of the supertypes. This is a viable
solution provided that all the terms are somehow connected in terms
of subtyping. But there might be discontinuous relations. For example,
imagine the case of the term man. Let us assume that Einstein is an in-
stance of this term (surprisingly the term does not arise in JDM). Now,
physicist and scientist are not subtypes ofman. In this case, it seems that
one has to make a decision about the type of Einstein based on those
two types. It seems to us that in principle one should be able to make
use of both types depending on the context. How one disambiguates is
another issue however. Another way to do this is to assume that such
instances are complex types, and treat them as disjoint union types in
type-theoretical terms. Doing so will mean that Einstein will be of the
following complex type physicistman:
(18) physicistman= physicist+man
(19) Einstein:physicist+man
Now, in this situation one can have such a complex case without

actually resorting to context. The correct type will be disambiguated
according to what is needed. In case a term of type man is needed like
in Einstein was a bachelor, then the type man is going to be used. In
cases like Einstein was a well-known physicist, the type physicist is to be

[252]

Serious Games as the basis for Multi-Sorted Typed Systems

used. Note that this relies on the assumption that a subtyping mech-
anism is at play which will provide us with the following subtyping
relations:
(20) physicistman<man
(21) physicistman< physicist
In this context, a more general way of translating these cases into

MTTs would be as follows:

∀A, D.∃B, C .Ins(A, B)⇒
¨
A:B iff Ins(A, D) ∧ B<D
A:B+C, iff Ins(A, C)∧ Ins(A, D) → ¬ (B<D ∨ C<D)

The first case is trivial. The second case says that each A that is
an instance of type B has the type B + C , in case it is also an instance
of C and for every other type D that A is an instance of, it is not the
case that either B or C are subtypes of D.
4.2.2 Predicates and world knowledge information
The next question is, how can one extract information on the type of
predicates, like for example verbs. JDM provides loads of information
with every word, for example characteristics, synonyms, antonyms,
collocations. For verbs, agent, patient and thematic relations in general
are defined. This is particularly helpful for a rich type theory like the
one used here, since predicates also make use of type many-sortedness.
Thus, walk will be defined as being a function from type animal to
propositions, black from type object to propositions and so on:
(22) walk:animal→ Prop
(23) black:object→ Prop
The information in JDM is enough to provide MTT typings for

predicates as well. In JDM, as already said, one can look at seman-
tic relations like action,patient, dubbed as predicative relations in the
classification given in the previous section, and various other such re-
lations. For example, man appears as the agent of a number of verbs
that express actions, e.g. question. But, the most helpful relation is the
inverse agent/theme/patient relation, agent−1. This relation returns a
list of terms (and instances of terms) that can function as the agent
for the action denoted by the verb. For example, the verb question will

[253]

Stergios Chatzikyriakidis et al.

involve among others teacher, mother, child, daugther, person, human.
How can we make sense in order to provide typings in MTTs? There
is a straightforward way to do this. What we need is to find the most
general term, i.e. the term of which all the other terms are hyponyms.
Instances of terms are not needed in this process.13

(24) ∀A, B.∃C .Ag(A, B)∧ (Hyp(A, C)∨ (A= C))⇒ B:C → Prop
However, things may be less straightforward than that simply be-

cause there exists no term in the agent−1 relation that is a supertype
of all the others. In this case, we see two plausible options: a) intro-
duce a supertype or b) split the refinements into different classes. For
example in case we have refinements human, man, pilot, vehicle, car,
bike, we can split this into class A = pilot,man < human and class
B = bike, car< vehicle and propose an overloaded polysemous type for
the verb in question, with two different typings, human → Prop and
vehicle→ Prop. As far as the supertype is concerned, the suggestion is
that we go for a default supertype, which will be the supertype of all
types. For example in the work of Chatzikyriakidis and Luo (2014a),
this type is object. We can think of such a type, no matter whether we
agree that this should be type object or not (denoted as Toptype below).
Then, with these considerations in mind, we may want to update the
previous correspondence:

∀A, B.Ag(A, B)⇒
(B:C → Prop iff ∃ C.((Hyp(A,C)∧ Ag(C,B))∨ (A=C))
B:D→ Prop iff ¬∃C .(Hyp(A, C) ∧ D = TopType)

The first condition says that if A is the agent of predicate B (ex-
pressed by an adjective here), then in case there is a type C that is also
the agent of B, it is a supertype of A as well as a supertype of all other
types that are agents of B,14 or if C is actually A, then the type for the
adjective will just be a predicate over C . In case there is no hypernym
of A, we choose as our type a predicate over the Toptype (the type of
which all other types are subtypes).

13The formula reads as follows: for all A and B, where A is an agent of B (so
B is a predicate), if there exists a C such than all A are either hyponyms of C or
are equal to C, the predicate C → Prop is returned.

14This last bit is not actually encoded in the rule for formatting reasons. The
following condition is implicit: ∀ E.Ag(E,B)→Hyp(E,C).

[254]

Serious Games as the basis for Multi-Sorted Typed Systems

Moving on to adjectives, similar processes can be defined. How-
ever, this time we look at another relation, called carac (characteris-
tic) that denotes a characteristic of a term. For example, for grand,
we find the characteristics chose and homme, ‘object’ and ‘man’ respec-
tively among others. There are two ways to assign types for adjectives
here: a) propose a type using the same reasoning for predicates above
or b) propose a polymorphic type extending over a universe which
includes the most general type found satisfying the characteristic in
question (e.g. blackness, bigness, etc.), along with its subtypes:15

(25) ∀A, B.∃C .Car(A, B)∧ (Hyp(A, C)∨ (A= C))⇒ C → Prop
(26) ∀A, B.∃C .Car(A, B)∧ (Hyp(A, C)∨ (A= C))⇒ ΠU:cnC .U → Prop
Using a polymorphic universe in terms of inference will suffice in

order to take care of the class of adjectives known as subsective (e.g.
skilful), while for intersective adjectives (e.g. black) a non-polymorphic
type is needed. This, along with the use of Σ types for modified, by
adjectives, CNs (e.g. black man, skillful surgeon etc.) will suffice to take
care of the basic inferential properties of the two classes of adjectives
Chatzikyriakidis and Luo (2013, 2017a) for more details on this anal-
ysis). However, as in the case of verbs, more should be said in order to
take care of the complications already discussed for verbs previously.
Taking these issues into consideration, the updated rule is as follows:

∀A, B.Car(A, B)⇒
(B:C → Prop iff ∃ C.((Hyp(A,C)∧ Ag(C,B))∨ (A=C))
B:D→ Prop iff ¬∃C .(Hyp(A, C) ∧ D = TopType)

∀A, B.Car(A, B)⇒
(B:ΠU:CNC U → Prop iff ∃ C.((Hyp(A,C)∧ Ag(C,B))∨ (A=C))
B:ΠU:CND U → Prop iff ¬∃C .(Hyp(A, C) ∧ D = TopType)

The above two rules are for intersective and subsective adjectives.
Hyponymy relations between adjectives can be encoded as meaning
postulates.
(27) ∀A, B.POS(adj, A)∧ POS(Adj, B)∧Hyp(A, B)⇒∀x:C .A(x)→ B(x)
where A, B:C → Prop

15For example the universe U:cnC will contain the type C along with its sub-
types.

[255]

Stergios Chatzikyriakidis et al.

Due to the abundance of information that JDM has to offer, one can
further encode different sorts of information in the form of axioms or
definitions. For example the has_part relation, in effect a mereological
relation, can be translated as a part of relation with part_of:object →
object → Prop and follow a translation procedure along standard as-
sumptions for mereology for formal semantics16. There are manymore
interesting relations in JDM, like for example the collocation relation,
(locution in JDM) or the magnifying and its inverse anti-magnifying
relation, magn and anti-magn respectively. Now, there is no clear way
of what we can do with these relations. One can of course just encode
a similar relation in the type-theoretic language used, but the question
is what do we gain in terms of reasoning for example, by doing so. For
instance, looking at the entry for homme ’man’, we see a number of
collocations like homme grande and homme libre. The collocations that
involve adjectival modification most of the times give rise to subsec-
tive inferences. For example a great man is a man and a free man is
also a man. It would be tempting in this respect to treat these cases as
subtypes of the term. In this case, we allow some non-compositionality
and treat collocations as involving one word. Of course, this will not
give us the correct results in all cases. For example, think of the term
objet ‘object’. Among the collocations in the category discussed, e.g.
object du désir or objet de curiosité, there are also collocations like pro-
grammation orientée objet ‘object oriented programming’ that will give
us the wrong results if we go the subtyping route. One can however
decide on whether to take such a stance based on the amount of col-
locations that can be correctly captured in going the subtype route in
relation to those that are not. This is a complex issue with which we
will not deal in this paper.

4.2.3 Polysemy
The next issue we want to look at is polysemy, more specifically the
translation process in case of polysemous terms. First of all, we have
to note here that JDM does not distinguish between homophony and
polysemy in the sense these are usualy understood in the literature
on formal semantics (e.g. bank as homophonous and book as polyse-
mous). For JDM, there is only one term to refer to both homophony

16For an overview see Champollion and Krifka (2016).

[256]

Serious Games as the basis for Multi-Sorted Typed Systems

and polysemy, and this is polysemy. This is what we are going to
use here as well, a single notion for all cases where different mean-
ings associated with a given word are found. For JDM, there is this
first level where words with more than one meaning (irrespective of
whether the meanings are related or not) are dubbed as polysemous,
and then additional levels of refinement are provided. In MTTs, as in
formal semantics in general, there are different treatments with re-
spect to cases of homophony and cases of polysemy. For example, in
Luo (2011), homophony is treated via local coercions (local subtyp-
ing relations), while logical polysemy (cases like book) via introducing
dot-types, types that encode two senses that do not share any compo-
nents (Luo 2010). It is a difficult task to be able to translate from a
polysemous term identified in JDM to the correct mapping in MTTs.
However, there are some preliminary thoughts on how this can be
achieved. First of all, let us look at some cases of polysemy identi-
fied in JDM that would not be considered such cases in mainstream
formal semantics. For example the term individual is marked as poly-
semous in JDM. The reason for this is that JDM goes into more detail
than what most formal semantics theories do. For example, JDM dis-
tinguishes different meanings of individual with respect to its domain
of appearance, e.g. a different notion of individual is found in the do-
main of statistics, a different one in the domain of biology, and so on.
This level of fine-grainedness is usually not found in formal semantics.
However, there is no reason why we should not go into this level of
detail in MTTs. In order to encode domains, we use type theoretic con-
texts as these have been used by Ranta (1994); Chatzikyriakidis and
Luo (2014c), among others. The idea is that a relation can appear in
different domains. If this is the case, then different relations might be
at play depending on the domain. For example, different refinements
of a term might be possible in a domain A than in a domain B.17

(28) ∀A, C .Domain(C)∧ POS(N , A) in C ∧¬(Ins(A))⇒ A:cn in ΓC

17An anonymous reviewer asks how does the equation help us in using this
information. The idea is that as soon as the conditions are satisfied, i.e. there is a
relevant domain for a given type declaration, then this declaration is made inside
the relevant type theoretic context, e.g. the context of zoology, philosophy, etc.
In the case of Coq, this can be done by introducing local sections.

[257]

Stergios Chatzikyriakidis et al.

The above example identifies a noun, which is not an instance, in
a domain C and declares this to be of type cn in context ΓC . All this in-
formation such as POS, domain and instance status is part of the JDM
network. To give an example, take the term French term fracture (frac-
ture) in JDM. This is associated with a number of different domains,
let us mention two here, géologie and médicine. This will basically add
the term fracture into two different contexts where the relations be-
tween fracture and other terms in the given context might differ in
the different contexts. For example, one might have a term B being a
subtype of fracture in one domain but not in the other:
What about other cases of polysemy like book or bank? One way

to look at the translation process in these cases is the following: in
case a term is dubbed polysemous in JDM, we look at the semantic
refinements and introduce all these refinements as subtypes of the
initial term:
(29) ∀A, C .POS(N , A)∧¬(Ins(A))∧Ref(A, C)⇒ A< C:cn

Now in order to decide whether we are going to use local coer-
cions or dot-types we proceed as follows: the types that participate in
dot-types are limited and enumerable:18 some of these include phy,
info, event, inst among others. We can thus create such a set of refine-
ments that can be senses of a dot-type. Call this set dot refinements, DR.
Now, in case the refinements happen to be members of this set then
we can form a dot-type out of the individual refinements:
(30) ∀A, B, C .POS(N , A)∧Ref(A(B, C)) ∈ DR⇒ A:CN < B • C

Other cases of polysemy that should be taken into consideration
involve cases where the two meanings are associated with different
types (e.g. cases like run). In this case, we have at least two verbal
meanings with a different verbal arity as well as a different cn argu-
ment. An easy way to do this is to just overload the types to take care
of situations like these. For example, in Luo (2011), the polysemy of

18An anonymous reviewer asks how these types are chosen. This is not an
easy question. For the needs of this paper, and given that dot-types have specific
properties compared to other polysemous terms, the types comprising the dot-
types are limited. We enumerate these types based on existing theoretical work
on co-predication by Pustejovsky (1995) and Asher (2008), among others.

[258]

Serious Games as the basis for Multi-Sorted Typed Systems

run is assumed to be captured using a Unit type which allows us to
overload the type with the two different typings:
(31) run1 : human→ Prop
(32) run2 : human→ institution→ Prop
With this last note, we will move on to look how information from

JDM can be used in order to perform reasoning tasks. What we are
going to do is to look at simple cases of lexical semantics information
extraction from JeuxdeMots, their direct translation to MTT semantics
feeding the proof-assistant Coq. Reasoning is then performed using the
assistant.

5 jdm, mtts and reasoning using
proofʿassistants

Coq is an interactive theorem prover (proof-assistant). The idea behind
it and proof-assistants in general is simple and can be roughly summa-
rized as follows: one uses Coq in order to check whether propositions
based on statements previously pre-defined or user defined (defini-
tions, parameters, variables) can be proven or not. Coq is a depen-
dently typed proof-assistant implementing the calculus of Inductive
Constructions (CiC, see Coq 2007). This means that the language used
for expressing these various propositions is an MTT. To give a very
short example of how Coq operates, let us say we want to prove the
following propositional tautology in Coq:
(33) ((P ∨Q)∧ (P → R)∧ (Q→ R))→ R

Given Coq’s typed nature we have to introduce the variables P,Q, R
as being of type Prop (P,Q, R:Prop). To get Coq into proof mode, we
have to use the command Theorem, followed by the name we give to
this theorem, followed by the theorem we want to prove:
(34) Theorem A: ((P ∨Q)∧ (P → R)∧ (Q→ R))→ R

This will put Coq into proof mode:
Theorem A:((P\/Q)/\(P -> R)/\(Q->R))->R.
1 subgoal
============================
(P\/Q)/\(P -> R)/\(Q -> R)->R

[259]

Stergios Chatzikyriakidis et al.

Now, we have to guide the prover to a proof using its pre-defined
proof tactics (or we can define our own). For the case under considera-
tion, we first introduce the antecedent as an assumption using int ro:19

A < intro.
1 subgoal
H :(P \/ Q)/\(P -> R)/\(Q -> R)
============================
R

We split the hypothesis into individual hypothesis using destruct:20

destruct H. destruct H0.
1 subgoal
H : P \/ Q
H0 : P -> R
H1 : Q -> R
============================
R

Now, we can apply the elimination rule for disjunction which will
basically result in two subgoals:

elim H.
2 subgoals
H : P \/ Q
H0 : P -> R
H1 : Q -> R
============================
P -> R
subgoal 2 is:
Q -> R

The two subgoals are already in the hypotheses. We can use the
assumption tactic that matches the goal in case an identical premise
exists, and the proof is completed:

19This tactic moves the antecedent of the goal into the proof context as a
hypothesis.
20After destructing H, we get H0 as H0:(P → R)∧ (Q ∧ R).

[260]

Serious Games as the basis for Multi-Sorted Typed Systems

assumption. assumption.
1 subgoal
H : P \/ Q
H0 : P -> R
H1 : Q -> R
============================
Q -> R
Proof completed.

Now, as we have already said, Coq implements an MTT. In this re-
spect, Coq ‘speaks’ an MTT so to say. It is also a powerful reasoner,
i.e. it can perform elaborate reasoning tasks. These two facts open up
the possibility of using Coq for reasoning with NL using MTT seman-
tics. Indeed, earlier work has shown that Coq can be used to perform
very elaborate reasoning tasks with very high precision (Mineshima
et al.; Bernardy and Chatzikyriakidis 2017). To give an example, con-
sider the case of the existential quantifier some. Quantifiers in MTTs
are given the following type, where A extends over the cn (this is
reminiscent of the type used for VP adverbs):

(35) ΠA : cn. (A→ Prop)→ (A→ Prop)

We provide a definition based on this type, giving rather standard
semantics for the existential quantifier (in Coq notation):

Definition some:=fun(A:CN)(P:A->Prop)=>exists x:A,P x.

This says that given an A of type cnand a predicate over A, there
is an x:A such that P holds of x . Imagine, now, that we want to see the
consequences of this definition. For example we may want to check
whether John walks implies that some man walks or that some man walks
implies that some human walks. We define, following our theoretical
assumptions about cns, man and human to be of type cn and declare
the subtyping relation man < human. The subtyping relations in Coq
are declared by first introducing them as axioms and then coercing
them:

Parameter man human: CN
Axiom mh: man -> human. Coercion mh: man >-> human.

[261]

Stergios Chatzikyriakidis et al.

This is all we need to get the above inferences. These assumptions
suffice to prove these inferences in Coq. We formulate the theorem and
put Coq into proof mode:
Theorem EX: walk John-> (some man) walk.

Unfold the definition for some and use intro
EX < intro.
1 subgoal
H : walk John
============================
exists x : man, walk x

Using the exists tactic to substitute x for John. Using assumption
the theorem is proven. Now, what we want to show is that we can
actually use JDM to extract lexical and typing information, translate
this information into MTT semantics in the form of Coq code and then
perform reasoning tasks. Let us look at the following example:
(36) John Fitzgerald Kennedy ate some gruyère
Suppose, now, that we further want to check whether the follow-

ing is true:
(37) John Fitzgerald Kennedy ate some gruyère ⇒ John Fitzgerald

Kennedy ate some cheese
Let us see whether we can extract this information from JDM.

We use the JDM XML version, and further use simple Python code to
extract the relevant information and turn it into Coq code. We first
extract all the synonyms and subtypes of cheese and translate them to
MTT semantics (in Coq code). The result is more than 200 subtypes for
cheese (fromage in French), among them the type for gruyère. What the
code does is that it first declares all subtypes to be of type cn and then
further declares them to be subtypes of the cn in question (cheese in
our case. The result is something like this (we use the first 5 subtypes
to illustrate this):
Parameter gruyere:CN.
Parameter brie:CN.
Parameter kiri:CN.

[262]

Serious Games as the basis for Multi-Sorted Typed Systems

Parameter camembert:CN.
Axiom Gruyere:gruyere -> fromage.
Coercion Gruyere:gruyere>-> fromage.
Axiom Brie:brie->fromage.Coercion Brie:brie>->fromage.
Axiom Kiri:kiri->fromage.Coercion Kiri:kiri>->fromage.
Axiom Camembert:camembert->fromage.
Coercion Camembert:camembert>-> fromage.

The next step is to extract information about John Fitzgerald Ken-
nedy. The only thing needed here is to extract the information for the
instances of the type man (homme in French). Simple coding in Python
can extract all the subtypes for man as well as its instances, declaring
them as being of type man. What we get in doing so is the following
(we only show the information relevant to our example):
Parameter man: CN.
Parameter John Fitzgerald Kennedy: man.

The next step is extracting the information for the verb eat (manger
in French). Here we use a more simple and less elegant way of extract-
ing the function types than we have described in the previous section.
We first chose 6 very basic types, woman, man, human, animal, food,
object. If any of these types is present as an agent argument (starting
hierarchically from type object and all the way down to the other
types), it is added as an argument to the function type. Thus, in case
of a predicate which has an object agent, the type object→ Prop is re-
turned. The other types, even if present, are neglected. If object is not
present, the next type is checked and so on. Doing so, we end up with
the type Animal → food → Prop for eat. Cheese is of course a subtype
of food (we get this from the hyponyms of food), and human of animal.
So, the only thing left is a definition of the quantifier. Quantifiers and
related elements can perhaps be assumed to belong to a closed set of
words that can be given their semantics manually. This is what we do
here by manually providing a definition for some. With this in place,
what we get is the following information for Coq (only the relevant
code to the example is shown):
Definition CN:= Set.
Definition some:= fun(A:CN)(P:A->Prop)=>exists x:A,P x.
Parameters man woman human animal food object: CN.

[263]

Stergios Chatzikyriakidis et al.

Axiom Man:man->human. Coercion Man:man>->human.
Axiom Human: human->animal.Coercion Human:human>->animal.
Axiom Animal: animal->object.
Coercion Animal: animal>->object.
Axiom Food: food->object.Coercion food:food>->object.
Axiom Woman: woman->human. Coercion Woman:woman>->human.
Parameter gruyere: CN.
Axiom Gruyere: gruyere->fromage.
Coercion Gruyere:gruyere>-> fromage.
Parameter John_Fitzgerald_Kennedy: human.

This is in fact enough to work through the inference we are inter-
ested in. Of course, this is not a very elaborate example, but it is a nice
way to exemplify how information from a lexical network can be used
in a compositional semantics framework to perform reasoning tasks.
Note, that a number of other inferences also follow from the previous
example:
(38) John Kennedy ate some gruyère⇒ some man ate some gruyère.
(39) John Kennedy ate some gruyère⇒ John Kennedy ate some food.
Let us look at another example:

(40) The frigate had its hull breached.
In this example, what we need to predict is that the bird sense

cannot be used. On the contrary, we should predict that the ship sense
is required. First of all, the way this is achieved in JDM is via using
negative weights as we have mentioned in chapter 2. We will now see
that compositional semantics can further help us in this task. We start
with the assumption that frigate is not yet refined or can be either
a bird or a ship. The next thing we have is an NP with a possessive
pronoun. Following Ranta (1994), we assume a pronominalization and
a genitive rule. The two rules are shown below (adapted from Ranta
(1994):21

A:cn a:A(PRON(A,a):A
PRON(A,a) = a:A

A:cn B:cn C(x:A, y:B) a:Ab:B c:C(a, b)(Gen(A,B(x,y),C(x,y),a,b,c):B
Gen(A,B(x,y),C(x,y),a,b,c=b):B

21Ranta (1994) uses type Set instead of cn that we are using.

[264]

Serious Games as the basis for Multi-Sorted Typed Systems

The result of sugaring in English will be A’s B. The pronominal-
ization rule will depend on the type that A will take. For example
Pron(man, a) will return he, Pron(woman, a) she and Pron(object, a) it.
Returning to our example, the possessive its is a combination of the
two rules we have presented, i.e. Pron and Gen. As we have said, the
semantics for pronouns will depend on the value for cn. This is also
the case obviously for its. Let us assume that A takes the value frigate.
This will give us:
(41) Gen(frigate,hull(x , y), C(x , y),Pron(frigate, a), b hull, c):hull.
The C relation is an underspecified relation, since it can take dif-

ferent values, given the semantic polysemy of the genitive. Assuming
that the relation involved in our example is one of meronymy, what
we get is an elaboration of C(a, b) to has_part(a, b). Now, notice that
JDM provides meronymy relation refinement between two objects, of
which one is a ship and the other a hull, but not between a bird and
a hull. Specifically, supplies us with the following information (trans-
lated into MTT semantics):
(42) ∀a:ship.∃b:hull.has_part(a)(b)
But not:

(43) ∀a:bird.∃b:hull. has_part(a)(b)
Parsing The frigate had its hull breached, what we get is the follow-

ing (simplified):
(44) breached(the(ship, a))(Gen(ship,hull(x , y),has_part(x , y),

Pron(ship, a), b:hull, c))

Now, we can assume that the negative weight amounts to the
negation of the has_part relation:
(45) ∀a:bird¬(∃b:hull.(has_part(a)(b)))
If now, we substitute with bird and given the information associ-

ated with hull as a refinement of bird, what we will get is a contradic-
tion:
(46) breached(the(ship, a))(Gen(bird,hull(x , y),has_part(x , y),

Pron(ship, a), b:hull, c))∧∀a:bird.¬(∃b:hull.(has_part(a)(b)))

[265]

Stergios Chatzikyriakidis et al.

If we have a system that can spot contradictions between informa-
tion derived from lexical semantics (in our case the negative weight
translating into a meaning postulate) and information derived for se-
mantic compositionality, we might use this in order to disambiguate
word senses as well. For example, one can define a ranking algorithm
that will rank the senses of a given word in a sentence depending on
whether they give rise to contradictions between lexical semantics in-
formation and information derived for semantic compositionality. In
this manner, one can seek to define a combined strategy to disam-
biguate using insights from both the lexical network itself as well as
the formal system in which this information is encoded.
5.1 Reasoning with missing premises: enthymematic reasoning
It is a well-known fact that natural language inference (NLI) is not
only about logical inference. Better put, logical inference is only part
of NLI. Other kinds of non-logical inferencing is going in NLI, e.g. im-
plicatures, presuppositions, or enthymematic reasoning to name a few.
The latter form of reasoning is particularly important for the scope of
this article, since enthymematic reasoning is basically deriving con-
clusions from missing premises or implicit premises. Consider the fol-
lowing classic case of an enthymeme:
(47) Socrates is human, therefore he is mortal
In this example, there is an implicit premise at play, namely that

all humans are mortal. This is not given however. It is somehow pre-
supposed as part of the general world knowledge. What would be in-
teresting to see is to check whether such implicit arguments can be
retrieved via the richness of a network like JDM. Indeed, this can be
done. In particular, the entry formortal in JDM, specifies human as one
of its hyponyms. So, extracting lexical relations for humanwill also ex-
tract the synonym relation. Thus, it is easy to get the inference we are
interested in. The same kind of information that can lead to retrieving
the implicit argument in further examples like the ones shown below
can be found using the richness of a network like JDM:22
(48) He coughs. He is ill.
22We are rather simplifying here, given that in JDM there is more than one

relation between human and mortal. One finds the hyponym relation, the syn-
onym relation as well as the characteristic relation (mortality as a characteristic

[266]

Serious Games as the basis for Multi-Sorted Typed Systems

(49) She has a child, thus she has given birth.

Of course, it would be naive to think that enthymematic infer-
ence can be dealt with in full via using only information present in a
lexical network, no matter how rich that network is. We are not sug-
gesting anything like this. The interested reader that wants to have a
deeper look at the issue of enthymemes and reasoning with them in
a type-theoretic framework is directed to Breitholtz (2014). For the
needs of this paper, it is enough to mention that at least some cases
of enthymemes can be captured via a combination of lexical seman-
tics information taken from a rich lexical network like JDM and their
feeding to a richly typed logical system like the one we are endorsing
in this paper.

6 conclusion

In this paper we have looked at the way one can use information
from a rich GWAP lexical network in order to construct typing on-
tologies for NL in rich type theories. Rich or modern type theories
offer us elaborate typing structures and type many-sortedness, where
the monolithic domain of individuals is substituted by a multitude of
types. The problem that is created however, given this context, con-
cerns which types need to be represented and which not, as well as
the criteria that one uses in order to reach to such a decision. In this
paper, we have proposed that one does not have to take such a de-
cision but rather leave this information flow from a lexical network,
in our case a rich GWAP network, JDM. We have proposed an initial
way of doing this, namely extracting information from JDM w.r.t. to
base types for common nouns as well as the types for other categories
like verbs and adjectives. We have also proposed to use MTTs for sev-
eral other types of information obtained from such a rich network.
Lastly, we have initiated a discussion on how one can further use this
of humans). From a logical point of view, it cannot be the case that two terms are
both synonyms and hyponyms. Furthermore, as one of the reviewer’s notes, the
synonym relation in JDM seems to be assymetrical, otherwise one would expect
things like pandas are human to be inferred. This raises a more general issue, i.e.
handling potentially contradictory information in the network. This is something
that we will definitely explore in the future.

[267]

Stergios Chatzikyriakidis et al.

richness of information, especially common knowledge information,
in order to deal with aspects of inference. On the one hand you have a
wealth of lexical-semantic relations and on the other, a very rich and
expressive compositional framework with powerful reasoning mech-
anisms. The result one would aim at, given this situation, is a combi-
nation of these two aspects in order to perform reasoning tasks with
NLI. We have discussed some simple reasoning examples using the
Coq proof-assistant, a proof-assistant that implements an MTT. Infor-
mation is extracted from JDM and then translated into Coq code (thus
into an MTT variant). The results are promising, showing a potential
to deal with important aspects of NL reasoning. Furthermore, some
easy cases of reasoning under implicit premises, i.e. enthymematic in-
ference, were also shown to be captured via retrieving the implicit
premises as lexical information associated with words appearing in
the explicit premises. It is our hope that this work will initiate a more
active discussion on the need for more fine grained frameworks for
formal semantics as well as an active dialogue between people work-
ing on lexical networks and type theoretical (or logical in general)
semantics from both a theoretical and an implementational point of
view.

references
Nicholas Asher (2008), A type driven theory of predication with complex
types, Fundamenta Informaticae, 84(2):151–183.
Nicholas Asher (2012), Lexical Meaning in Context: a Web of Words, Cambridge
University Press.
Christoph Benzmüller, Frank Theiss, and Arnaud Fietzke (2007), The
LEO-II Project, in Automated Reasoning Workshop.
Jean-Philippe Bernardy and Stergios Chatzikyriakidis (2017), A
Type-Theoretical system for the FraCaS test suite: Grammatical Framework
meets Coq, ms, University of Gothenburg.
http://www.stergioschatzikyriakidis.com/uploads/1/0/3/6/
10363759/iwcs_bercha.pdf.
Ellen Breitholtz (2014), Enthymemes in Dialogue: A micro-rhetorical approach,
Ph.D. thesis, University of Gothenburg.
Lucas Champollion and Manfred Krifka (2016), Mereology, in Paul
Dekker and Maria Aloni, editors, Cambridge Handbook of Semantics,
pp. 369–388, Cambridge University Press.

[268]

Serious Games as the basis for Multi-Sorted Typed Systems

Stergios Chatzikyriakidis and Zhaohui Luo (2012), An Account of Natural
Language Coordination in Type Theory with Coercive Subtyping, in
Y. Parmentier and D. Duchier, editors, proceedings of Constraint Solving and
Language Processing (CSLP12). LNCS 8114, pp. 31–51, Orleans.
Stergios Chatzikyriakidis and Zhaohui Luo (2013), Adjectives in a modern
type-theoretical setting, in G. Morrill and J.M Nederhof, editors,
Proceedings of Formal Grammar 2013. LNCS 8036, pp. 159–174.
Stergios Chatzikyriakidis and Zhaohui Luo (2014a), Natural Language
Inference in Coq, Journal of Logic, Language and Information., 23(4):441–480.
Stergios Chatzikyriakidis and Zhaohui Luo (2014b), Natural Language
Reasoning Using proof-assistant technology: Rich Typing and beyond, in
Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language
Semantics (TTNLS), pp. 37–45.
Stergios Chatzikyriakidis and Zhaohui Luo (2014c), Using Signatures in
Type Theory to Represent Situations, Logic and Engineering of Natural Language
Semantics 11. Tokyo.
Stergios Chatzikyriakidis and Zhaohui Luo (2017a), Adjectival and
Adverbial Modification: The View from Modern Type Theories, Journal of Logic,
Language and Information, 26(1):45–88.
Stergios Chatzikyriakidis and Zhaohui Luo (2017b), On the Interpretation of
Common Nouns: Types Versus Predicates, pp. 43–70, Springer International
Publishing.
Alonzo Church (1940), A Formulation of the Simple Theory of Types, J.
Symbolic Logic, 5(1).
Allan M Collins and M Ross Quillian (1969), Retrieval time from semantic
memory, Journal of verbal learning and verbal behavior, 8(2):240–247.
Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson (2014),
A probabilistic rich type theory for semantic interpretation, in Proceedings of the
EACL 2014 Workshop on Type Theory and Natural Language Semantics (TTNLS),
pp. 72–79.
Coq 2007 (2007), The Coq Proof Assistant Reference Manual (Version 8.1), INRIA,
The Coq Development Team.
Christiane Fellbaum (1998), WordNet: An Electronic Lexical Database, MIT
press.
Bruno Gaume, Karine Duvignau, and Martine Vanhove (2007), Semantic
associations and confluences in paradigmatic networks, in Martine Vanhove,
editor, Typologie des rapprochements sémantiques, p. (on line), John Benjamins
Publishing Company.
Peter Geach (1962), Reference and Generality: An examination of some Medieval
and Modern Theories, Cornell University Press.

[269]

Stergios Chatzikyriakidis et al.

Jean-Yves Girard (1971), Une extension de l’interpretation fonctionelle de
Gödel à l’analyse et son application à l’élimination des coupures dans et la
thèorie des types, in proceedings of the 2nd Scandinavian Logic Symposium.
North-Holland, Amsterdam, pp. 63–92.
Mathieu Lafourcade (2007a), Making people play for Lexical Acquisition., in
SNLP 2007, 7th Symposium on Natural Language Processing. Pattaya, Thailande,
13-15 December 2007.
Mathieu Lafourcade (2007b), Making people play for Lexical Acquisition
with the JeuxDeMots prototype, in SNLP’07: 7th international symposium on
natural language processing, p. 7.
Mathieu Lafourcade, Alain Joubert, and Nathalie. Le Brun (2015), Games
with a Purpose (GWAPS), Focus Series in Cognitive Science and Knowledge
Management, Wiley, ISBN 9781848218031.
Henry Lieberman, Dustin Smith, and Alea Teeters (2007), Common
Consensus: a web-based game for collecting commonsense goals., in Workshop
on Common Sense for Intelligent Interfaces, ACM Conferences for Intelligent User
Interfaces (IUI 2007), Honolulu.
Zhaohui Luo (1994), Computation and Reasoning: A Type Theory for Computer
Science, Oxford University Press.
Zhaohui Luo (1999), Coercive subtyping, Journal of Logic and Computation,
9(1):105–130.
Zhaohui Luo (2010), Type-Theoretical Semantics with Coercive Subtyping,
Semantics and Linguistic Theory 20 (SALT20), Vancouver.
Zhaohui Luo (2011), Contextual analysis of word meanings in type-theoretical
semantics, Logical Aspects of Computational Linguistics (LACL’2011). LNAI 6736.
Zhaohui Luo (2012), Common Nouns as Types, in LACL’2012, LNCS 7351.
Zhaohui Luo, Sergei Soloviev, and Tao Xue (2012), Coercive subtyping:
theory and implementation, Information and Computation, 223:18–42.
Andrea Marchetti, Maurizio Tesconi, Francesco Ronzano, Marco
Rosella, and Salvatore Minutoli (2007), SemKey: A Semantic Collaborative
Tagging System, in Tagging and Metadata for Social Information Organization
Workshop, WWW07.
Per Martin-Löf (1975), An Intuitionistic Theory of Types: predicative part, in
H.Rose and J.C.Shepherdson, editors, Logic Colloquium’73.
Per Martin-Löf (1984), Intuitionistic Type Theory, Bibliopolis.
Igor Mel’cuk and Andrei Zholkovsky (1988), The Explanatory
Combinatorial Dictionary, in Martha Walton Evens, editor, Relational Models of
the Lexicon: Representing Knowledge in Semantic Networks, pp. 41–74, Cambridge
University Press, Cambridge.

[270]

Serious Games as the basis for Multi-Sorted Typed Systems

Rada Mihalcea and Timothy Chklovski (2003), Building sense tagged
corpora with volunteer contributions over the Web, in RANLP, volume 260 of
Current Issues in Linguistic Theory (CILT), pp. 357–366, John Benjamins,
Amsterdam/Philadelphia.
George A. Miller (1995), WordNet: A Lexical Database for English, Commun.
ACM, 38(11):39–41.
Koji Mineshima, Yusuke Miyao, and Daisuke Bekki (), Higher-order logical
inference with compositional semantics, in Proceedings of EMNLP15,
pp. 2055–2061.
Richard Montague (1974), Formal Philosophy, Yale University Press, collected
papers edited by R. Thomason.
Alain Polguère (2003), Collocations et fonctions lexicales : pour un modèle
d’apprentissage., Revue Française de Linguistique Appliquée, E(1):117––133.
Alain Polguère (2014), From Writing Dictionaries to Weaving Lexical
Networks, International Journal of Lexicography, 27(4):396––418.
James Pustejovsky (1995), The Generative Lexicon, MIT.
Aarne Ranta (1994), Type-Theoretical Grammar, Oxford University Press.
Christian Retoré (2014), The Montagovian Generative Lexicon Lambda Ty: a
Type Theoretical Framework for Natural Language Semantics, in Ralph
Matthes and Aleksy Schubert, editors, 19th International Conference on
Types for Proofs and Programs (TYPES 2013), volume 26 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 202–229, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, ISBN
978-3-939897-72-9, ISSN 1868-8969,
doi:http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.202,
http://drops.dagstuhl.de/opus/volltexte/2014/4633.
Franck Sajous, Emmanuel Navarro, Bruno Gaume, Laurent Prévot, and
Yannick Chudy (2013), Semi-automatic enrichment of crowdsourced
synonymy networks: the WISIGOTH system applied to Wiktionary, Language
Resources and Evaluation, 47(1):63–96.
Katharina Siorpaes and Martin Hepp (2008), Games with a Purpose for the
Semantic Web, 23:50–60, ISSN 1541-1672, doi:10.1109/MIS.2008.45,
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4525142.
John Sowa and John Zachman (1992), Extending and Formalizing the
Framework for Information Systems Architecture, IBM Systems Journal,
31(3):590–616.
Luis von Ahn and Laura Dabbish (2004), Labeling Images with a Computer
Game, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, pp. 319–326, ACM, New York, NY, USA.

[271]

Stergios Chatzikyriakidis et al.

Luis von Ahn and Laura Dabbish (2008), Designing games with a purpose,
Commun. ACM, 51(8):58–67.
Luis von Ahn, Mihir Kedia, and Manuel Blum (2006), Verbosity: a game for
collecting common-sense facts, in CHI, pp. 75–78, ACM.
Manel Zarrouk (2015), Endogeneous Consolidation of Lexical Semantic
Networks, Theses, Université de Montpellier.
Naomi Zeichner, Jonathan Berant, and Ido Dagan (2012), Crowdsourcing
inference-rule evaluation, in Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Short Papers-Volume 2, pp. 156–160,
Association for Computational Linguistics.
Michael Zock and Slaven Bilac (2004), Word lookup on the basis of
associations: from an idea to a roadmap., in Proceedings of the Workshop on
Enhancing and Using Electronic Dictionaries, Association for Computational
Linguistics., pp. 29–35.
Michael Zock and Didier Schwab (2008), Lexical Access Based on
Underspecified Input, in Proceedings of the Workshop on Cognitive Aspects of the
Lexicon, COGALEX ’08, pp. 9–17, Association for Computational Linguistics,
Stroudsburg, PA, USA.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[272]

Interfacing language,
spatial perception and cognition
in Type Theory with Records

Simon Dobnik and Robin Cooper
Department of Philosophy, Linguistics & Theory of Science (FLOV)
Centre for Linguistic Theory and Studies in Probability (CLASP)

University of Gothenburg, Sweden

abstract
Keywords: spatial
language, Type
Theory with
Records (TTR),
computational
framework

We argue that computational modelling of perception, action, lan-
guage, and cognition introduces several requirements of a formal se-
mantic theory and its practical implementations in situated dialogue
agents. Using examples of semantic representations of spatial descrip-
tions we show how Type Theory with Records (TTR) satisfies these
requirements and provides a promising knowledge representation sys-
tem for situated agents.

1 introduction

In this paper, we consider the treatment of spatial language from the
perspective of a robot learning spatial concepts and classifying situa-
tions according to the spatial relations holding between objects while
interacting with a human conversational partner. We start from our ex-
perience of building such agents and a conclusion that there is a need
for a unified knowledge representation system that connects theories
of meaning from formal semantics to practical implementations. We
suggest that the type-theoretic notion of judgement is important and
that a type theory such as TTR (Type Theory with Records) is advan-
tageous because it can be used to model both the low level perceptual
judgements of the robot as well as the conceptual judgements associ-
ated with spatial relations. This is distinct from previous approaches

Journal of Language Modelling Vol 5, No 2 (2017), pp. 273–301

Simon Dobnik, Robin Cooper

(discussed in Section 3) where the low level perceptual processing is
carried out in an entirely different system to that used for semantic
processing. An advantage we claim for our approach is that it facil-
itates the construction of types which have components relating to
both low level and high level processing.
In Section 2, we give an overview of the problem area before de-

scribing some of the approaches that have been taken in Section 3.
We then give a brief intuitive account of the tools we are using from
TTR in Section 4 and give some examples of how this relates to under-
standing spatial descriptions (as our focus is on knowledge represen-
tation) in Section 5. Finally, in Section 6, we offer some conclusions
and perspectives for future work. An implementation of examples in
this paper is available on https://github.com/GU-CLASP/pyttr/
blob/master/lspc.ipynb.

2 computational modelling of spatial
language

We approach the study of spatial descriptions from the perspective of
building computational models for situated agents which we have im-
plemented so far, the typical problems and the ad-hoc solutions taken
when representing multi-sourced information. Spatial language is cen-
tral for situated agents as these must resolve their meaning and refer-
ence to visual scenes when being involved in conversations with hu-
mans. In such conversations humans would use locational information
to identify objects (the chair to the left of the table), describe directed
action (pick up the red cube near the green one) or give route instructions
(go down this corridor nearly towards its end and then take the second door
to your right). However, interfacing language and perception is not
only the domain of applications that involve language-based interac-
tion with humans. There is an emerging trend in robotics where infor-
mation represented in language is used as assistance to visual search
(Sjöö 2011; Kunze et al. 2014). Robots are typically equipped with
several sensors that allow creation of perceptual representations at
different levels of abstraction. Creating and classifying for all repre-
sentations all the time is therefore a computationally expensive task.
In the domain of visual object recognition, a system would have to em-
ploy all image classifiers on every observation it makes even if most

[274]

Language, spatial perception and cognition in TTR

of these classifiers would not yield a match in these situations. For ex-
ample, the robot is in a corridor and is applying classifiers that would
recognise objects found in a kitchen. Having background knowledge
about the likely distribution of objects would allow it to prioritise cer-
tain classifications. The ontology capturing this knowledge may be
static or dynamically built through interaction (Dobnik and Kelleher
2016). In the latter case humans programme the robot through lan-
guage (Lauria et al. 2002).
Cross-disciplinary research has shown that spatial language is de-

pendent on several contextual factors that are part of an agent’s in-
teraction with the environment through perception and other agents
through dialogue, for example geometrical arrangement of the scene
(Regier and Carlson 2001), the type of objects referred to and their
interaction (Coventry et al. 2001; Dobnik and Kelleher 2013, 2014),
visual and discourse salience of objects (Kelleher et al. 2005), align-
ment in dialogue (Watson et al. 2004; Dobnik et al. 2015), and gesture
(Tutton 2013) among others.
The geometrical arrangement of scenes is captured in spatial tem-

plates or potential fields. These can be captured experimentally by plac-
ing the target object in various locations around the landmark object
and asking participants for judgements whether a particular spatial
relation holds (Logan and Sadler 1996; Dobnik and Åstbom 2017).
The semantics of spatial templates may be approximated to functions
(Gapp 1994a,b) or expressed as a general function with trainable pa-
rameters as in the case of the Attentional Vector Sum (AVS) model
(Regier and Carlson 2001). Figure 1 shows a spatial template for the
description in front of relating a table and a chair. Spatial templates
capture gradience of semantics of spatial descriptions in terms of an-
gles and distances from the location and the orientation of the land-
mark object. There are regions where native speakers would judge the
relation holds to a high degree, for example for the placement of chairs
A and D, and regions where the relation holds to a lesser degree, the
placement of chairs C and E, or does not hold at all, the placement of
chair F. A particular scene may be matched by several spatial descrip-
tions. Spatial templates are far from being fixed or universally applica-
ble. In addition to angle and distance, several contextual parameters
can be incorporated, for example the presence of distractor objects
(Costello and Kelleher 2006), object occlusion (Kelleher et al. 2011),

[275]

Simon Dobnik, Robin Cooper
Figure 1:

The chair is in front of the desk

A

B

DESK

D
E

C

F

or the function itself can be learned from a dataset of perceptual ob-
servations and descriptions as a classifier (Roy 2002; Dobnik 2009).
Scene geometry is not the only meaning component of spatial de-

scriptions. Spatial relations are also expressing other non-geometric
aspects of how we view the relation between the landmark and the
target objects. For example, a description such as Alex is at her desk
might not only mean that Alex is proximal to her desk. Instead, we
might interpret the description that she is sitting in her chair facing a
computer screen and working. In literature, such aspects of meaning
are known as functional aspects (Coventry and Garrod 2005) because
they are dependent on the function of interacting objects: what are
they used for, how do they interact with each other, and how they
can be manipulated? In order to understand the interaction of ob-
jects, one needs to observe what will happen to scenes. Coventry et al.
(2005) model functional aspects of meaning as dynamic-kinematic rou-
tines captured by several stacked recurrent neural networks that take
both visual and language input data. Modelling different takes on the
scene and the relations into which the target and the landmark ob-
jects enter leads to the development of qualitative spatial ontologies
(Bateman et al. 2010) and logics such as (Zwarts and Winter 2000;
Cohn and Renz 2008) which are similar to Allen’s interval algebra for
temporal reasoning (Allen 1983).
Spatial descriptions are also sensitive to changing linguistic con-

text that arises in linguistic interaction. One such example is the coor-
dination of referring expressions (Garrod and Doherty 1994). Projec-
tive spatial descriptions such as to the left of and behind require setting

[276]

Language, spatial perception and cognition in TTR

Katie: Please tell me, where is the darker box? Figure 2:
Assignment of FoR in dialogue

a perspective or the frame of reference (FoR) which can be modelled
as a set of three orthogonal axes fixed at some point (the location of
the landmark object) and oriented in a direction determined by the
viewpoint (Maillat 2003). The viewpoint can be any conversational
participant or object in the scene (for this reason such FoR assignment
is known as relative FoR1) that has an identifiable front and back which
introduces considerable referential ambiguity of projective spatial de-
scriptions. Alternatively, a scene can also be described from a global
bird’s eye perspective, e.g. North of, in which case we talk about ex-
trinsic FoR assignment. The FoR may be specified overtly such as from
your point of view but frequently it is omitted and its resolution is relied
upon the dynamics of conversation, among other things.
Figure 2 shows a virtual scene involving a conversational part-

ner, Katie, facing us at the opposite side of the room. What FoR would
we use to continue the conversation? How would the FoR be assigned
over several utterances and conversational role changes? Would con-
versational partners align with a particular FoR or would they tend
to change it frequently – and what are the conditions licensing such
change? What other factors in addition to linguistic conversation con-
tribute to the assignment of FoR? Can a system learn from human as-
signments of FoR and successfully demonstrate its knowledge in a new

1We do not distinguish intrinsic FoR as this is relative FoRwhere the viewpoint
is the landmark object.

[277]

Simon Dobnik, Robin Cooper

conversation with a human? We investigate the strategies of FoR as-
signment in dialogue, both restricted and free, in (Dobnik et al. 2014)
and (Dobnik et al. 2015) respectively.
The preceding discussion demonstrates that the semantics of spa-

tial descriptions involves meaning representations at three distinct
levels none of which have been so far captured in a single repre-
sentational framework which could be employed with situated con-
versational agents. (i) Geometric representations involve grounding
symbols in perceptual observations (Harnad 1990), (ii) integrating of
functional knowledge involves lexical and compositional semantics,
and (iii) FoR assignment involves both of the previous steps and prag-
matics of conversation. Modelling the semantics of spatial descriptions
thus raises several open questions. How is an agent able to determine
the sense and reference (Frege 1948)2 of spatial descriptions? The for-
mer relates to what components of lexical meaning are involved and
the latter relates to how expressions relate to contextual features aris-
ing from perceptual and discourse contexts. A model of grounding is
required: how are perceptual and conceptual domains bridged (ref-
erence) and how is information from contextual features fused into
bundles of meaning representations (sense)? The resulting framework
should possess sufficient formal accuracy and expressiveness of repre-
sentations for modelling human language and reasoning to capture
notions such as logical entailment, scoping properties, underspecifi-
cation, hierarchical organisation of meaning and structure, composi-
tionality of structure for words, sentences and utterances, recursion,
feature unification, and others. The framework should also include a
learning theory concerning how an agent is able to adapt or learn its
representations in new physical and conversational contexts (Cooper
et al. 2015; Dobnik and Kelleher 2016).

3 computational frameworks

3.1 A classical view of vision and language
Figure 3 shows a typical approach to modelling language and vision.
We start by building a model of the perceptual scene which captures
its geometrical representation. In this example, the robot starts with a

2The paper was first published in 1892.

[278]

Language, spatial perception and cognition in TTR

1.

' .

,•

I
., �'I-..

.. ·/
l

..

. ,,

•

� .. , ... _

/

1At

.).,,,.�,.
. � �� ..

/r /

..

, ••

I

-�---.

' ,,r

:frfd
,.,...,,

\�

z

'/

- -

-,.
f

{

_____,,,.., __ . ":

(., _......._. ...

'--. ./

I , • ,
..J t "-•

�t��L-

•

J ,..,
_,;.<·

2. ∀x∀y[supports(y,x) ∧ contiguous(surface(x), surface(y)) → on1(x ,y)]
3. The newspaper is on the table

Figure 3:
Grounding
language in
perception

SLAM map (Dissanayake et al. 2001) which contains clouds of points
in 3-dimensional coordinate space. The perceptual model is then con-
nected to a formal conceptual representation of the scene which in
this example is expressed in first-order logic. An important and chal-
lenging issue here is to find a mapping between a reasonably accurate
geometric representation of a scene with continuous parameters (lo-
cations in the coordinate space and angles of orientation) to cognitive
categories that are reflected in language. The mapping between two
such domains thus results in vagueness. The formal representation is
then mapped to the linguistic expression. The mapping between the
layers is typically learned from datasets of collected observations with
machine learning. For example, in (Dobnik 2009) we learn classifiers
that map representations from SLAM maps to words, thus skipping an
intermediate representational layer. Matuszek et al. (2012a) present
a method where also the intermediate semantic representation is in-
cluded: linguistic expressions are grounded in compositional seman-
tic forms which are grounded in perception. Finally, natural language
does not only need to be grounded in perception but also in the robotic
control language (Matuszek et al. 2012b).
3.2 Model-theoretic Montague semantics
Classical model-theoretic or Montague semantics uses higher order
logic (Montague 1974; Dowty et al. 1981; Blackburn and Bos 2005;
Bird et al. 2009) which provides the required and desired formal accu-
racy and expressiveness of a representation system. It accounts for how
meaning representations of words are composed in the form of higher

[279]

Simon Dobnik, Robin Cooper

order functions to form meaning representations of sentences. The
functional composition of constituents allows us to translate between
sentence constituent structure and its logical representation as shown
in Figure 4. The final logical forms of spatial prepositions are slightly
more complicated than presented in this example and due to their con-
text dependency a single description or utterance (surface form) may
resolve to several representations as discussed in (Miller and Johnson-
Laird 1976; Herskovits 1986), for example on(x ,y)1: object(x) ∧
object(y) ∧ supports(y,x) ∧ contiguous(surface(x),surface(y)) and
on(x ,y)2: object(x) ∧ object(y) ∧ contiguous(boundary(x),y). How-
ever, dealing with these two issues separately, we are able to derive
their compositional representation along the same lines as in Figure 4.
In model-theoretic semantics the expression’s reference is de-

termined by an assignment, a valuation function between linguistic
strings and entities (or sets of tuples of entities) in a model. The model
is agent external and fixed. The valuation returns true if an entity or
a relation between entities denoted by an expression can be found
in the model, otherwise it returns false. While it would be possible
to represent the referential semantics of on in a model by listing a
set of all coordinates of locations where this spatial description ap-
plies, this referential representation of meaning is cumbersome as the
model would have to include an assignment for every scale, for every
spatial relation, for every pair of objects. Since angles and distances
in a coordinate system are continuous measures this means that such
sets would be infinite. The model also does not straightforwardly rep-
resent gradience and vagueness of spatial descriptions. In order to do
that one would have to resort to the notion of possible worlds (Las-
siter 2011) which introduces further computational complexity (for
discussion see (Cooper et al. 2015, Section 1.1, p.3ff)).
As discussed earlier both vagueness and gradience of spatial lan-

guage are captured in computational models as spatial templates or
potential fields. While spatial templates can be thought of as refer-
ential overlays of regions induced experimentally (as a set of points
where participants consider a particular spatial relation to apply), po-
tential fields capture the notion that such regions can be generalised
as functions. However, as argued in (Lappin 2013) these functions
do not represent objects in a model (or extensions or the referential
meaning of these descriptions) but rather they capture their sense or

[280]

Language, spatial perception and cognition in TTR
S

λ
P
[∃x
[ch
air
(x
)∧

P
(x
)]
](
λ

x[
∃z[
tab
le(

z)
∧l
eft
(x

,z
)]
])

∃x
[ch
air
(x
)∧
λ

x[
∃z[
tab
le(

z)
∧l
eft
(x

,z
)]
](

x)
]

∃x
[ch
air
(x
)∧
∃z[
tab
le(

z)
∧l
eft
(x

,z
)]
]

NP
λ

Q
[λ

P
[∃x
[Q
(x
)∧

P
(x
)]
]]
(λ

x[
ch
air
(x
)]
)

λ
P
[∃x
[λ

x[
ch
air
(x
)]
(x
)∧

P
(x
)]
]

λ
P
[∃x
[ch
air
(x
)]
]

De
t

λ
Q
[λ

P
[∃x
[Q
(x
)∧

P
(x
)]
]]

a

N
λ

x[
ch
air
(x
)]

ch
air

VP
λ

X
[λ

x[
X
(λ

y[
lef
t(x

,y
)]
)]
](
λ

P
[∃x
[ta
ble
(x
)∧

P
(x
)]
])

λ
x[
λ

P
[∃x
[ta
ble
(x
)∧

P
(x
)]
](
λ

y[
lef
t(x

,y
)]
)]

λ
x[
∃x
[ta
ble
(x
)∧
λ

y[
lef
t(x

,y
)]
(x
)]
]

λ
x[
∃z[
tab
le(

z)
∧l
eft
(x

,z
)]
]

V
λ

X
[λ

x[
X
(λ

y[
lef
t(x

,y
)]
)]
]

is-
lef
t-o
f

NP
λ

Q
[λ

P
[∃x
[Q
(x
)]
]]
(λ

x[
tab
le(

x)
])

λ
P
[∃x
[λ

x[
tab
le(

x)
](

x)
∧P
(x
)]
]

λ
P
[∃x
[ta
ble
(x
)∧

P
(x
)]
]

De
t

λ
Q
[λ

P
[∃x
[Q
(x
)∧

P
(x
)]
]]

a

N
λ

x[
tab
le(

x)
]

tab
le

Fig
ur
e4
:A
ch
air
is
lef
to
fa
tab
le

[281]

Simon Dobnik, Robin Cooper

intension specifying in what ways a description relates to perceptual
observations. Knowing this function, we can check whether a particu-
lar spatial relation associated with the function applies to a particular
pair of objects and to what degree. The notion of applying a function
from perceptual observations to words (or the other way around) rep-
resenting the meaning of words is also known as grounding these words
in perception (Harnad 1990).
The model-theoretic approach to semantics assumes that a model

is derived through some external process and therefore pre-given, that
it is complete and represents a state of affairs at a particular temporal
snapshot (Fagin et al. 1995). In practice, however, complete models
may be rarely observable and we must deal with partial models. We
must also account for the fact that we may incrementally observe
more and more of the world and we have to update the model with
new observations, sometimes even correct representations that we
have already built in the light of new evidence. Finally, the world
is not static itself as new objects and events continually come into
existence. Imagine a robot (and indeed such robots were used in the
early days of robotics) with a pre-programmed static model of the
world. Every minute change in the world would render it useless
as there would be a discrepancy between its representation of the
world and the actual world. Modern robotic models used in locali-
sation and map building are incrementally learned or updated over
time by taking into account robot’s perceptional observations and
motion and errors associated with both (Dissanayake et al. 2001).
An important consequence of this is that the model of the world a
robot builds is individual to a particular robot’s life-span and expe-
rience. Two robots experiencing the same world will have slightly
different models. Of course, the more they experience the world, the
more similar their models will be. It is conceivable that humans learn
meanings in the same way. However, doing so they are equipped
with yet another tool to overcome individual inconsistencies in their
model. They can use linguistic dialogue interaction to resolve such
inconsistencies in the form of repair (Pickering and Garrod 2004). In
robotics, several models that explore learning language through in-
teraction have been built which include (Steels and Belpaeme 2005;
Skočaj et al. 2011; Ivaldi et al. 2014), also related to spatial cogni-
tion (Steels and Loetzsch 2009). We describe a system for the mod-

[282]

Language, spatial perception and cognition in TTR

elling of semantic concept learning through dialogue interaction in
(Dobnik and de Graaf 2017).

3.3 Models used in robotics
In building situated conversational agents, several systems have been
proposed but none of them capture all of the requirements discussed
in Section 2. For example, semiotic schemas (Roy 2005) represent the
lexical meaning of words as directed graphs composed of nodes that,
in turn, represent sequences of perceptual observations and classifica-
tion events as shown in Figure 5. The meaning/sense of an object is
defined in terms of what can be experienced with the sensors and actu-
ators of a robot. The reference is determined by embedding a semiotic
schema with the actual sensory readings. For example, a cup can be
experienced and classified either through visual or haptic modalities.
The location of the sensory readings determines the location of the ob-
ject. Semiotic schemas represent a very attractive model of grounded
lexical semantics of words, but how such semiotic schemas compose
to form larger linguistic structures is left unaccounted for.
Quite frequently, grounded representations are arranged into lay-

ers. This is related to the fact that in practical applications several
distinctive sub-systems are used that are stacked into a pipeline. For
example, in the layered approach of (Kruijff et al. 2007), here sum-
marised in Figure 6, the lowest level consists of a feature map which
directly relates to laser sensors. Here, features are sets of points which
can be connected to lines which represent walls. The next level is a
navigation graph. As the robot moves around space, it creates nodes.

cup

focus visual
sensor

focus gripper

visual sensing

touch sensing

classify colour

classify shape

sense
location

sense
location

location

Figure 5:
A simplified
semiotic schema

[283]

Simon Dobnik, Robin Cooper
Figure 6:

A layered approach

Points/features

Waypoints/navigation

Topological map/areas

Conceptual ontology/object relations

If the robot can move directly between two nodes, a connection is
made and, on the basis of several such connections, a navigation graph
is created. Groups of nodes may be identified whereby two groups are
only connected through a single node in each group. Such nodes are
gateway nodes and indicate passages between different areas or doors.
From such a topology of nodes, a topological map can be hypothesised
such that it identifies enclosed spaces, corridors, kitchens, and rooms.
The information about the spaces can be further augmented with lin-
guistic information from the ontology, for example what objects are
found in kitchens. In this approach one needs to design interfaces be-
tween representational levels in the pipeline. Most frequently, repre-
sentations and operations at each level are distinct from each other.
A question we would like to explore is whether representations at dif-
ferent levels can be generalised by taking inspiration from the way
humans assign, learn, and reason with meaning. A unified meaning
representation would allow interactions between modalities that are
required in modelling human cognition but are difficult to implement
in a layered pipeline architecture.

4 type theory with records ˀttrˁ

Type Theory with Records (TTR) (Cooper 2012) builds on the tradi-
tion of classical formal semantics (and therefore captures the notion of
compositionality) but at the same time, drawing on insights from sit-
uation semantics, addresses the outstanding questions related to per-
ception discussed in the preceding paragraphs. It starts from the idea
that information is founded on our ability to perceive and classify the
world, that is to perceive or judge objects and situations as being of

[284]

Language, spatial perception and cognition in TTR

Types of sensor
events

Types of spatial
situations

Types

Types of
utterance events

Figure 7:
A unified view: types all over the place

types. All information can be represented as types (Figure 7) which
makes type assignment an abstract theory of cognition and percep-
tion. Having a single representational layer allows information fusion
between perception, conceptual knowledge and linguistic communi-
cation which is an important requirement for modelling spatial de-
scriptions.
Types are intensional – that is, there can be distinct types which

have identical extensions. For example, the type of situations in which
an object, a, is to the left of another object, b, in symbols left(a,b), can
have exactly the same witnesses as the type of situations in which b
is to the right of a, right(b,a), without requiring that the two types
be identical. For some more discussion of the intensional nature of
types in TTR see (Cooper 2017). This allows us to relate linguistic
propositions to types, the so-called propositions as types dictum which
is standard in type theories deriving from the original work of Martin-
Löf (Martin-Löf 1984; Nordström et al. 1990). The notion of truth is
linked to judgements that an object a is of type T (a : T). As in standard
Martin-Löf type theories, a type is true just in case it has some witness.
Thus, the type of situations left(a,b) is true just in case there is some
situation where a is to the left of b.
We can furthermore seek to operationalise the types as com-

putable functions (Lappin 2013) or classifiers (Larsson 2015), rather
than associating them with sets of witnesses as in the standard defini-
tion of TTR (Cooper in prep, 2012). Under this view, we can consider
an agent to have access to a particular type inventory as a resource.
Different agents can have access to different type resources which can

[285]

Simon Dobnik, Robin Cooper

be dynamically revised, both in terms of learning new types and in
modifying the witness conditions in terms of classifiers, which can
change as the result of the agent’s experience of new situations (Dob-
nik et al. 2013; Larsson 2015). In order for communication between
agents to be possible, they must converge on sufficiently similar type
resources. This convergence is in part enabled by the fact that the
agents exist in similar environments and have similar perceptual ap-
paratus to classify features in the environment. But in addition it is
important that the agents be able to use language to communicate
with each other about their classification of features in the environ-
ment. For example, an agent may receive linguistic information which
provides a classification which is at variance from that given by its
perceptual apparatus or, in linguistic communication between agents,
corrective feedback might be used to express a variance in judgement
by two agents.
This is perhaps a novel view in linguistic semantics and compu-

tational linguistics but it relates to a standard view in mobile robotics
(Dissanayake et al. 2001) where a map of an environment is con-
structed dynamically as a robot moves around in it and features are
constructed on the basis of clouds of points in 3D space where the
robot’s sensors indicate that something is present. In our terms, this
would correspond to recognising the physical presence of an object
and assigning a particular type to it.
In such a learning scenario, it is natural to consider the role of

probabilistic judgements, that is, the judgement that an object a is of
type T with probability p instead of the standard categorical judge-
ments to be found in type theory. For a proposal of how this might
be incorporated into TTR see (Cooper et al. 2015). This means that an
agent can determine a degree of belief that a particular situation is of
a particular type. For example, the probability that a situation is to
be classified as one where an umbrella is over a person may vary with
respect to both geometric configuration and the degree to which the
umbrella is protecting the person from rain (Coventry et al. 2001).
In contrast to the classical Montagovian semantic framework

which employs a variant of the simple theory of types, TTR introduces
an extended set of basic types (for example Ind and Real that corre-
spond to the basic conceptual categories individuals and real numbers.
However, it is also a rich type system which, in addition to basic types,

[286]

Language, spatial perception and cognition in TTR

contains complex types constructed from types and other objects,
among them ptypes constructed from predicates and their arguments,
such as left(a,b), and record types, such as, x : Ind

y : Ind
e : left(x,y)


whose witnesses would be any record with three fields labelled by
x , y and e, respectively (and possibly more fields with other labels)
such that the x-field contains an object a of type Ind, the y-field con-
tains an object b of type Ind and the e-field contains an object of type
left(a,b). For a detailed characterisation of record types in TTR see
(Cooper in prep, 2012). Record types in TTR are used to model, among
other things, lexical content and dialogue information states. For our
present purposes, the structured nature of record types allows us to
combine in a single object the kind of multi-source information needed
for robotics and the modelling of spatial descriptions representing a
bridge between what might be thought of in other approaches as the
sub-symbolic domain of perception and the symbolic domain of high
level conceptual analysis.
The structured nature of record types in TTR allows representa-

tion of several kinds of formal structural relations which has impli-
cations for inference of representations containing multi-sourced in-
formation. Record types (and the corresponding records) can be com-
pared with each other. Consider the following example. If

Relation=


x : Ind
y : Ind
c1 : target(x)
c2 : landmark(y)


and

Left =


x : Ind
y : Ind
c1 : target(x)
c2 : landmark(y)
c3 : left(x,y)


then Left ⊑ Relation where ⊑ denotes the subtype relation (Cooper
2012, p.295). Similarly, record types allow identification of depen-

[287]

Simon Dobnik, Robin Cooper

dencies using dependent types. The notation like target(x) within the
context of the record type above is an abbreviation for a tuple of ob-
jects 〈λv:Ind . target(v), 〈x〉〉 where the first element is a dependent
type, a function mapping objects to a type, and the second element is
a sequence of paths to the arguments of this function within a record
type. Finally, both Ind and target(x) are component types of record types
Relation and Left which means that the latter types are representations
of thematic relations between individuals and properties found in lan-
guage (Lin and Murphy 2001; Estes et al. 2011).

5 types of spatial descriptions

In the remainder of the paper, we discuss how our empirical inves-
tigations of learning geometric meanings of spatial descriptions with
situated robots (Dobnik 2009; Dobnik and de Graaf 2017), learning
functional meanings of prepositions from collections of image descrip-
tions (Dobnik and Kelleher 2013, 2014), and modelling of reference
frame assignment in conversation (Dobnik et al. 2014, 2015) can be
captured in the TTR framework.
The idea is that TTR can be seen as an abstract model of cog-

nition and perception (Cooper 2012, in prep) which can be used to
model both the linguistic behaviour of humans as well as perception
based on sensor readings in artificial agents. It is important to note
that robots have different perceptual apparatus than humans, both in
the number and the nature of sensors. It follows that their sensors will
give rise to different types of information at the lowest sensory level.
However, these sensory types can be related to types corresponding
to concepts which are similar enough to conceptual types internalised
by humans to allow communication between the two. Nevertheless,
the type system an agent can acquire is constrained by the agent’s
perceptual apparatus. We cannot, for example, expect an agent inca-
pable of colour perception to successfully make judgements about the
colour concepts available to a human, however much we may talk to
the agent or train it on objects of different colours. It simply does not
have the required sensors and classifiers to distinguish the appropriate
situations.
There are two main aspects of theoretical interest with the ap-

proach we suggest:

[288]

Language, spatial perception and cognition in TTR

1. The notion of judgement from type theory can be used to model
both the kind of low level perceptual discrimination carried out
by classifiers in robotic systems and the high level conceptual clas-
sification including the truth of propositions which are important
for linguistic semantics. Thus, it offers the possibility of a unified
approach to both.

2. Given the kind of structured types that are proposed in a system
like TTR it is not only possible to express relations between the
low level and high level types but even to have a low level percep-
tual type and a high level conceptual type as components within
a single type and even to have one type depend on the other. This
gives a very different perspective on the cognitive makeup of sit-
uated agents than that given by the kind of layered approaches
discussed in Section 3, where the different layers involve entirely
different systems.

In the next section we will give examples which illustrate this.

5.1 Types of objects
Figure 8 shows an example of bridging between perceptual and con-
ceptual domains for object recognition. Step 1 shows a record of type
PointMap which is produced by SLAM (for details see (Dobnik et al.
2013)). The type PointMap is a subtype of a type that represents a list
of records containing three real numbers modelling points in three-
dimensional space. A point map is a list (or a set) of points that a robot
is tracking in space. TTR allows function types one of which is exem-
plified in the object detection function in Step 2. This function maps an
object of type Pointmap to a type that represents a set of records spec-
ifying (1) the reg(ion) occupied by the object (a sub-pointmap) and
(2) a property which is modelled as a pfun which maps an individual
to a type, in this case a ptype or a predicate type. The purpose of this
function type is to associate a perceptual object and some property,
thus to pair two kinds of information. The property functions take ob-
jects of type Individuals to types of individuals having some property.
The target record type of the main function type does not yet con-
strain any individuals that this property could be assigned to nor does
this record type correspond to a situation. In Step 3 we introduce an
individuation function which takes records of associated perceptual

[289]

Simon Dobnik, Robin Cooper
Figure 8:
From

perceptional to
conceptional

domain

1. A point is a record with three coordinates:

Point =
 x : Real
y : Real
z : Real


A point map is a list of points: PointMap= list(Point)

[
 x = 34
y = 24
z = 48

,
 x = 56
y = 78
z = 114

,…] : PointMap
2. A property is a function from individuals to a type:
Ppty = (Ind→Type)
λx :Ind . chair(x) : Ppty
An object detection function is a function from a point map to
a set of records containing a sub-point map of the original and
a property associated with it:
ObjectDetector = (Pointmap → set(

� reg : Pointmap
pfun : Ppty

�
))

3. Individuation function

IndFun= (
� reg : Pointmap
pfun : Ppty

�
→
 a : Ind
loc : Type
c : Type

)
λr:
�reg:Pointmap
pfun:Ppty
�
.
 a : Ind
loc : location(a, r.reg)
c : r.pfun(a)

 : IndFun

Perceptual dom
ain

C
onceptual dom

ain

objects and properties and yields a type of situation involving an in-
dividual located at a certain location and having this property. This
type therefore represents a cognitive take on a situation.
In this example, the mappings between the types are modelled

with functions but in practice (some) associations would be learned.
For example, Harnad (1990) argues that grounding, associating per-
ceptual and conceptual domains, can only be accomplished through
classification. In (Dobnik 2009), decision tree and Naïve Bayes classi-
fiers are learned to classify between point clouds and spatial descrip-
tions. Here, the associating function that the classifier has learned is
in the domain of the hypothesis space of each learning algorithm and
is therefore quite complex. Larsson (2015) introduces a perceptron
model to TTR and Cooper et al. (2015) give the type system, includ-
ing function types, a Bayesian interpretation. The latter allows direct
propagation of Bayesian probabilistic beliefs between the types while

[290]

Language, spatial perception and cognition in TTR

the observed type probabilities can be trained based on the agent’s
observations.
5.2 Types of spatial situations
Spatial descriptions, e.g. over and above are sensitive to classes of
interacting objects and the contribution of such functional world-
knowledge versus geometric knowledge for the semantics is different
from one spatial preposition to another (Coventry et al. 2001; Coven-
try and Garrod 2005; Coventry et al. 2005). While previous work
attempted to determine the contribution of each modality experimen-
tally, Dobnik and Kelleher (2013, 2014) extract functional informa-
tion from a large corpus of text describing images. Image descriptions
are constrained by the properties of the visual scene shown in the
image, both perceptual (geometric arrangement of the scene) and
functional (the nature and interaction of objects shown there). Both
kinds of information will be reflected in the text describing the image,
in a particular choice of descriptions that annotators used. Building
lexical models of word co-occurrence thus allows us to capture func-
tional interactions between prepositions and targets and landmarks.
In (Dobnik and Kelleher 2013) we capture the strength of associa-
tion between a preposition and different target-landmark pairs with
log-likelihood ratio. In (Dobnik and Kelleher 2014), we generalise the
types of targets and landmarks of a particular spatial preposition by
ascending in a WordNet hierarchy (Fellbaum 1998). This allows us
to generate patterns of prepositional use such as the following: per-
son.n.01 under tree.n.01, shirt.n.01 under sweater.n.01, and person.n.01
under body of water.n.01. Labels such as person.n.01 indicate the la-
bels given to the generalised synsets in the WordNet hierarchy. The
patterns indicate types of spatial situations that the under relation
applies to. Importantly, each of these patterns corresponds to quite
a different arrangement of target and landmark objects and without
such functional knowledge it would be difficult to capture a single spa-
tial template that would not over-generate. The functional knowledge
represented in these types thus constrains sub-sets of spatial situations
for which individual spatial templates can be learned.
Figure 9(a) shows a TTR function that maps ontological knowl-

edge from one ontological category to another. This is a similar func-
tion to pfun in the object detection function shown in Figure 8. It as-

[291]

Simon Dobnik, Robin Cooper
Figure 9:

Representing
functional
knowledge

(a) λr:
�a:Ind
c:person(a)
�
.organism(r.a)

(b) If s :
 a : Ind
loc : location(a,π)
c : person(a)


then ∃s′ [s′ : organism(s.a)]

signs the individual of the type in the domain of the function a partic-
ular property λr.organism(r). Figure 9(b) shows how associative rea-
soning is captured in TTR. Having a meaning postulate in Figure 9(a)
an agent can make a conclusion that a situation s of the first type (the
left hand side of the If-then rule) requires that there is also a situation
of the second type (the right hand side of the same rule).
Each type of situation representing a spatial pattern involves a

different interplay of geometric and conceptual knowledge spanning
the domain of point clouds and “logical” individuals. Figure 10 shows
the conceptual constraints on the target and landmark objects limiting
top-down a subset of spatial situations over which individual types of
spatial relations are built. Hence, the resulting spatial template spatial-
templateunder1

is a distinct pytpe classifier from spatial-templateunder2
.

In the generation step, the function in Figure 10 takes account of con-
ceptual properties of objects that could be obtained by computing rele-
vant hypernyms such as person and furniture and an associated spatial
template that relates the point clouds associated with them. It then

Figure 10:
Spatial templates

sensitive to
object function λr:


o1 :
 a : Ind
reg : Pointmap
c : person(a)


o2 :
 a : Ind
reg : Pointmap
c : artefact(a)


st : spatial-templateunder1

(o1.reg,o2.reg)


.under1(r.o1.a,r.o2.a)

λr:


o1 :
 a : Ind
reg : Pointmap
c : person(a)


o2 :
 a : Ind
reg : Pointmap
c : body-of-water(a)


st : spatial-templateunder2

(o1.reg,o2.reg)


.under2(r.o1.a,r.o2.a)

[292]

Language, spatial perception and cognition in TTR

generates a type of situation which involves a conceptual spatial rela-
tion between individuals.
5.3 Types of dialogue information states
TTR can also be used to model dialogue by representing types of infor-
mation states (IS). Agents in conversation align with the primed frame
of reference (FoR) and continue to use it (Dobnik et al. 2014). How-
ever, such alignment is only local and depends on the nature of the
dialogue that agents are engaged in and other contextual factors of the
conversation such as the perceptual properties of the scene or the task
that agents are performing (Dobnik et al. 2015). Dobnik et al. (2014)
study the properties of local FoR alignment over several turns of con-
versation in the constrained environment (Figure 2). The experiment
captures participants’ understanding of the agreed FoR and therefore
alignment. In Game 1, a virtual conversational partner generates an
unambiguous description that refers only to one of the objects. The
participant must then click on that object. Here, the system primes the
participant for a particular FoR. In Game 2, the system generates an
ambiguous description which may refer to several objects. Again, the
participant must click on one of the target objects but this time they
must decide on a particular FoR assignment. Will this be aligned with
the previous turn pair or will they assume a new strategy? Game 3 is
identical to Game 2 and it tests if the priming from Game 1 is persis-
tent over several games. In Game 4, the speaker-hearer roles reverse:
the system selects an object and the participant must describe it using
a particular FoR assignment. The role of this game is to test whether
priming will persist if the conversational roles change.
The preceding interaction is formalised as a probabilistic model

of FoR assignment over several local turns of conversation. This model
is then applied in a generation experiment. Here, the system is making
assumptions about the human conversational partner and is trying to
align with them to the extent captured in the previous experiment. In
Game1, the system chooses an object and a human primes the system
by generating an unambiguous description. In Game 2, a human se-
lects a box and the system generates a description using its FoR model.
The human then confirms if the description is a good one. Game 3 is
identical to Game 2. In Game 4 a human chooses a box. The system
asks the user to describe it and also generates a description for itself.

[293]

Simon Dobnik, Robin Cooper

A match between the human description and the system-generated
description is compared. The results show a good agreement between
humans and the system (≥ 82.76% for Game 4).
The model of FoR assignment predicts, for example, that speakers

initiating conversation tend to be egocentric. Figure 11 shows two
types of information states (ISs). When Alex is planning the utterance
The chair is to the left of the table her information state would be of
the type shown in (a). Information states represent information that
is private to the agent, and information that the agent believes is a
part of the common ground with another conversational participant
or shared. In the shared part of the IS in (a), there is a pointer to the
object in focus. The object is stored in the private part of the IS as each
agent builds its own objects. Σi is a type returned by an individuation
function on the basis of the pointmap that the agent has constructed.
The agent also has a private belief that they are one of the objects and
a belief that two particular objects are in the left relation. Crucially, at
this stage, the FoR origin is assigned to the object corresponding to the

(a) sAlex0 :



priv :



objs:


o0:Σ0

o1:Σ1

o2:Σ2

o3:Σ3


bel:
�cme=�c:me(⇑2objs.o0.a)

�:Type
cleft=
�c:left(⇑2objs.o2.a, ⇑2objs.o3.a)

�:Type
�

for-origin=objs.o0.a:Ind
agenda= [
�move:Assertion
cont=⇑2bel.cleft:Type

�
]:list(DMove)


shared:�cin-focus:⇑priv.objs.o2.a

�



(b) sSam1 :



priv :

objs:

o0:Σ0

o1:Σ1

o2:Σ2

o3:Σ3


bel :�cme=�c:me(⇑2objs.o1.a)

�:Type �



shared:


speaker=⇑priv.objs.o0.a:Ind
cin-focus:⇑priv.objs.o2

latest-move:
�speaker=⇑2priv.objs.o0.a:Ind
cont=�c:left(⇑3priv.objs.o2.a, ⇑3priv.objs.o3.a)

�:Type
�

for-origin=speaker: Ind




Figure 11: Types of dialogue information states

[294]

Language, spatial perception and cognition in TTR

individual having this IS. A double arrow ⇑2 indicates that the path
refers to the container-type which the current type is a dependent type
of, the superscript indicates the depth of embedding. Notation such as
label=value : Type as in for-origin=objs.o0.a : Ind represents singleton
types where the value stands for a manifest field.
The model of FoR assignment also predicts that hearers assume

that speakers are egocentric. Figure 11(b) shows Sam’s IS accommo-
dating Alex’s utterance. After Alex has made an utterance, the shared
part of the IS is expanded through accommodation. There is informa-
tion about the latest move: the speaker and the content of the move.
Since Sam is a hearer of the utterance, he assumes that the FoR is
identical to the speaker of the previous utterance as predicted by our
probabilistic model. In this example, we assume that agents use iden-
tical labels for objects. However, it is not necessary or indeed possible
that they have identified the same objects. In future work, we plan to
investigate how agents resolve such differences using language, in par-
ticular what mechanisms of clarification and repair are used in such
cases (Purver et al. 2003).

6 conclusion

In this paper, we outlined an application of type theory to natu-
ral language semantics in the framework called Type Theory with
Records or TTR which allows to relate semantics to action, percep-
tion, and cognition. We used TTR to represent different components
of analysis of spatial descriptions. TTR is naturally suited for this
task as it treats meaning being based on perception and interaction.
Perception and conceptual reasoning can be related within one uni-
fied approach. The framework also points to similarities between
linguistic and non-linguistic learning. We will be testing practical
implementations of TTR with situated agents in our forthcoming
work based on the framework described in (Dobnik and de Graaf
2017). The expressiveness of the type theoretic framework is asso-
ciated with high computational cost. In order to make the frame-
work computationally more tractable, we are investigating mecha-
nisms of attention from psychological research which allow us to
contextually restrict the type judgements a situated agent has to make
(Dobnik and Kelleher 2016).

[295]

Simon Dobnik, Robin Cooper

One aspect of spatial meaning which we have not discussed in this
paper is the gradability of types like left(a,b). For example, a would
be judged to be left of b with a high probability if the two objects
were close to each other. However, the probability of this judgement
would decrease if a is much closer to the observer than b. This suggests
exploring the use of probabilistic judgements in TTR as described in
(Cooper et al. 2015) in our future work.

acknowledgements
This paper was supported in part by the project Networks and Types
(Vetenskapsrådet/Swedish Research Council project VR 2013-4873).

references
James F Allen (1983), Maintaining knowledge about temporal intervals,
Communications of the ACM, 26(11):832–843.
John A. Bateman, Joana Hois, Robert Ross, and Thora Tenbrink (2010), A
linguistic ontology of space for natural language processing, Artificial
Intelligence, 174(14):1027–1071.
Steven Bird, Ewan Klein, and Edward Loper (2009), Natural language
processing with Python, O’Reilly, http://nltk.org/book/.
Patrick Blackburn and Johan Bos (2005), Representation and inference for
natural language. A first course in computational semantics, CSLI Publications.
Anthony G. Cohn and Jochen Renz (2008), Qualitative Spatial Representation
and Reasoning, in Vladimir Lifschitz Frank van Harmelen and Bruce
Porter, editors, Handbook of Knowledge Representation, volume 3 of
Foundations of Artificial Intelligence, chapter 13, pp. 551–596, Elsevier.
Robin Cooper (2012), Type theory and semantics in flux, in Ruth Kempson,
Nicholas Asher, and Tim Fernando, editors, Handbook of the Philosophy of
Science, volume 14 of General editors: Dov M Gabbay, Paul Thagard and John
Woods, Elsevier BV.
Robin Cooper (2017), Adapting Type Theory with Records for Natural
Language Semantics, in Stergios Chatzikyriakidis and Zhaohui Luo, editors,
Modern Perspectives in Type-Theoretical Semantics, number 98 in Studies in
Linguistics and Philosophy, pp. 71–94, Springer.
Robin Cooper (in prep), Type theory and language: from perception to
linguistic communication,
https://sites.google.com/site/typetheorywithrecords/drafts, draft
of book chapters.

[296]

Language, spatial perception and cognition in TTR

Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson (2015),
Probabilistic Type Theory and Natural Language Semantics, Linguistic Issues in
Language Technology — LiLT, 10(4):1–43.
Fintan J. Costello and John D. Kelleher (2006), Spatial prepositions in
context: the semantics of near in the presence of distractor objects, in
Proceedings of the Third ACL-SIGSEM Workshop on Prepositions, Prepositions ’06,
pp. 1–8, Association for Computational Linguistics, Stroudsburg, PA, USA.
Kenny R. Coventry, Angelo Cangelosi, Rohanna Rajapakse, Alison
Bacon, Stephen Newstead, Dan Joyce, and Lynn V. Richards (2005),
Spatial Prepositions and Vague Quantifiers: Implementing the Functional
Geometric Framework, in Christian Freksa, Markus Knauff, Bernd
Krieg-Brückner, Bernhard Nebel, and Thomas Barkowsky, editors, Spatial
Cognition IV. Reasoning, Action, Interaction, volume 3343 of Lecture Notes in
Computer Science, pp. 98–110, Springer Berlin Heidelberg.
Kenny R. Coventry and Simon C. Garrod (2005), Spatial prepositions and
the functional geometric framework. Towards a classification of
extra-geometric influences, Functional features in language and space: Insights
from perception, categorisation and development, pp. 163–173.
Kenny R. Coventry, Mercè Prat-Sala, and Lynn Richards (2001), The
interplay between geometry and function in the apprehension of Over, Under,
Above and Below, Journal of Memory and Language, 44(3):376–398.
M. W. M. G Dissanayake, P. M. Newman, H. F. Durrant-Whyte,
S. Clark, and M. Csorba (2001), A solution to the simultaneous localization
and map building (SLAM) problem, IEEE Transactions on Robotic and
Automation, 17(3):229–241.
Simon Dobnik (2009), Teaching mobile robots to use spatial words, Ph.D. thesis,
University of Oxford: Faculty of Linguistics, Philology and Phonetics and The
Queen’s College, Oxford, United Kingdom,
http://www.dobnik.net/simon/documents/thesis.pdf.
Simon Dobnik and Amelie Åstbom (2017), (Perceptual) grounding as
interaction, in Volha Petukhova and Ye Tian, editors, Proceedings of Saardial
– Semdial 2017: The 21st Workshop on the Semantics and Pragmatics of Dialogue,
pp. 1–9, Saarbrücken, Germany.
Simon Dobnik, Robin Cooper, and Staffan Larsson (2013), Modelling
Language, Action, and Perception in Type Theory with Records, in Denys
Duchier and Yannick Parmentier, editors, Constraint Solving and Language
Processing: 7th International Workshop, CSLP 2012, Orléans, France, September
13–14, 2012, Revised Selected Papers, volume 8114 of Lecture Notes in Computer
Science, pp. 70–91, Springer Berlin Heidelberg.
Simon Dobnik and Erik de Graaf (2017), KILLE: a Framework for Situated
Agents for Learning Language Through Interaction, in Jörg Tiedemann, editor,

[297]

Simon Dobnik, Robin Cooper

Proceedings of the 21st Nordic Conference on Computational Linguistics
(NoDaLiDa), volume 131 of Linköping Electronic Conference Proceedings and
NEALT Proceedings Series Vol. 29, pp. 1–10, Northern European Association for
Language Technology (NEALT), Linköping University Electronic Press,
Gothenburg, Sweden.
Simon Dobnik, Christine Howes, and John D. Kelleher (2015), Changing
perspective: Local alignment of reference frames in dialogue, in Christine
Howes and Staffan Larsson, editors, Proceedings of goDIAL – Semdial 2015:
The 19th Workshop on the Semantics and Pragmatics of Dialogue, pp. 24–32,
Gothenburg, Sweden.
Simon Dobnik and John D. Kelleher (2013), Towards an automatic
identification of functional and geometric spatial prepositions, in Proceedings of
PRE-CogSsci 2013: Production of referring expressions – bridging the gap between
cognitive and computational approaches to reference, pp. 1–6, Berlin, Germany.
Simon Dobnik and John D. Kelleher (2014), Exploration of functional
semantics of prepositions from corpora of descriptions of visual scenes, in
Proceedings of the Third V&L Net Workshop on Vision and Language, pp. 33–37,
Dublin City University and the Association for Computational Linguistics,
Dublin, Ireland.
Simon Dobnik and John D. Kelleher (2016), A Model for Attention-Driven
Judgements in Type Theory with Records, in Julie Hunter, Mandy Simons,
and Matthew Stone, editors, JerSem: The 20th Workshop on the Semantics and
Pragmatics of Dialogue, volume 20, pp. 25–34, New Brunswick, NJ USA.
Simon Dobnik, John D. Kelleher, and Christos Koniaris (2014), Priming
and Alignment of Frame of Reference in Situated Conversation, in Verena
Rieser and Philippe Muller, editors, Proceedings of DialWatt – Semdial 2014:
The 18th Workshop on the Semantics and Pragmatics of Dialogue, pp. 43–52,
Edinburgh.
David R Dowty, Robert Eugene Wall, and Stanley Peters (1981),
Introduction to Montague semantics, D. Reidel Pub. Co., Dordrecht, Holland.
Zachary Estes, Sabrina Golonka, and Lara L Jones (2011), Thematic
Thinking: The Apprehension and Consequences of Thematic Relations, in Brian
Ross, editor, The Psychology of Learning and Motivation, volume 54,
pp. 249–294, Burlington: Academic Press.
Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi
(1995), Reasoning about knowledge, MIT Press, Cambridge, Mass.
Christiane Fellbaum (1998), WordNet: an electronic lexical database, MIT Press,
Cambridge, Mass.
Gottlob Frege (1948), Sense and Reference, The Philosophical Review,
57(3):209–230.

[298]

Language, spatial perception and cognition in TTR

Klaus-Peter Gapp (1994a), Basic Meanings of Spatial Relations: Computation
and Evaluation in 3D Space, in Barbara Hayes-Roth and Richard E. Korf,
editors, AAAI, pp. 1393–1398, AAAI Press/The MIT Press.
Klaus-Peter Gapp (1994b), A computational model of the basic meanings of
graded composite spatial relations in 3D space, in Advanced geographic data
modelling. Spatial data modelling and query languages for 2D and 3D applications
(Proceedings of the AGDM’94), Publications on Geodesy 40, pp. 66–79,
Netherlands Geodetic Commission.
Simon Garrod and Gwyneth Doherty (1994), Conversation, co-ordination
and convention: An empirical investigation of how groups establish linguistic
conventions, Cognition, 53(3):181–215.
Stevan Harnad (1990), The symbol grounding problem, Physica D,
42(1–3):335–346.
Annette Herskovits (1986), Language and spatial cognition: an interdisciplinary
study of the prepositions in English, Cambridge University Press, Cambridge.
Serena Ivaldi, Sao Mai Nguyen, Natalia Lyubova, Alain Droniou, Vincent
Padois, David Filliat, Pierre-Yves Oudeyer, and Sigaud Olivier (2014),
Object Learning Through Active Exploration, IEEE Transactions on Autonomous
Mental Development, 6(1):56–72.
John D. Kelleher, Fintan J. Costello, and Josef van Genabith (2005),
Dynamically Structuring Updating and Interrelating Representations of Visual
and Linguistic Discourse, Artificial Intelligence, 167:62–102.
John D. Kelleher, Robert J. Ross, Colm Sloan, and Brian Mac Namee
(2011), The effect of occlusion on the semantics of projective spatial terms: a
case study in grounding language in perception, Cognitive Processing,
12(1):95–108.
Geert-Jan M. Kruijff, Hendrik Zender, Patric Jensfelt, and Henrik I.
Christensen (2007), Situated dialogue and spatial organization: what,
where... and why?, International Journal of Advanced Robotic Systems,
4(1):125–138, special issue on human and robot interactive communication.
Lars Kunze, Chris Burbridge, and Nick Hawes (2014), Bootstrapping
Probabilistic Models of Qualitative Spatial Relations for Active Visual Object
Search, in AAAI Spring Symposium 2014 on Qualitative Representations for Robots,
Stanford University in Palo Alto, California, US.
Shalom Lappin (2013), Intensions as Computable Functions, Linguistic Issues in
Language Technology, 9:1–12.
Staffan Larsson (2015), Formal semantics for perceptual classification,
Journal of Logic and Computation, 25(2):335–369.
Daniel Lassiter (2011), Vagueness as probabilistic linguistic knowledge, in
Proceedings of the international conference on vagueness in communication
(ViC’09), pp. 127–150, Springer-Verlag, Berlin, Heidelberg.

[299]

Simon Dobnik, Robin Cooper

Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein
(2002), Mobile robot programming using natural language, Robotics and
Autonomous Systems, 38(3–4):171–181.
Emilie L. Lin and Gregory L. Murphy (2001), Thematic relations in adults’
concepts, Journal of experimental psychology: General, 130(1):3–28.
Gordon D. Logan and Daniel D. Sadler (1996), A computational analysis of
the apprehension of spatial relations, in Paul Bloom, Mary A. Peterson, Lynn
Nadel, and Merrill F. Garrett, editors, Language and Space, pp. 493–530,
MIT Press, Cambridge, MA.
Didier Maillat (2003), The semantics and pragmatics of directionals: a case study
in English and French, Ph.D. thesis, University of Oxford: Committee for
Comparative Philology and General Linguistics, Oxford, United Kingdom.
Per Martin-Löf (1984), Intuitionistic Type Theory, Bibliopolis, Naples.
Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo,
and Dieter Fox (2012a), A joint model of language and perception for
grounded attribute learning, in John Langford and Joelle Pineau, editors,
Proceedings of the 29th International Conference on Machine Learning (ICML
2012), Edinburgh, Scotland.
Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox
(2012b), Learning to Parse Natural Language Commands to a Robot Control
System, in Proceedings of the 13th International Symposium on Experimental
Robotics (ISER).
George A. Miller and Philip N. Johnson-Laird (1976), Language and
perception, Cambridge University Press, Cambridge.
Richard Montague (1974), Formal Philosophy: Selected Papers of Richard
Montague, Yale University Press, New Haven, ed. and with an introduction by
Richmond H. Thomason.
Bengt Nordström, Kent Petersson, and Jan M. Smith (1990), Programming
in Martin-Löf’s Type Theory, volume 7 of International Series of Monographs on
Computer Science, Clarendon Press, Oxford.
Martin J. Pickering and Simon Garrod (2004), Toward a mechanistic
psychology of dialogue, Behavioral and Brain Sciences, 27(2):169–190.
Matthew Purver, Jonathan Ginzburg, and Patrick Healey (2003), On the
means for clarification in dialogue, in Current and new directions in discourse and
dialogue, pp. 235–255, Springer.
Terry Regier and Laura A. Carlson (2001), Grounding spatial language in
perception: an empirical and computational investigation, Journal of
Experimental Psychology: General, 130(2):273–298.
Deb Roy (2002), Learning visually-grounded words and syntax for a scene
description task, Computer speech and language, 16(3):353–385.

[300]

Language, spatial perception and cognition in TTR

Deb Roy (2005), Semiotic schemas: a framework for grounding language in
action and perception, Artificial Intelligence, 167(1-2):170–205.
Kristoffer Sjöö (2011), Functional understanding of space: Representing spatial
knowledge using concepts grounded in an agent’s purpose, Ph.D. thesis, KTH,
Computer Vision and Active Perception (CVAP), Centre for Autonomous
Systems (CAS), Stockholm, Sweden.
Danijel Skočaj, Matej Kristan, Alen Vrečko, Marko Mahnič, Miroslav
Janíček, Geert-Jan M. Kruijff, Marc Hanheide, Nick Hawes, Thomas
Keller, Michael Zillich, and Kai Zhou (2011), A system for interactive
learning in dialogue with a tutor, in IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS 2011, San Francisco, CA, USA.
Luc Steels and Tony Belpaeme (2005), Coordinating Perceptually Grounded
Categories Through Language: A Case Study For Colour, Behavioral and Brain
Sciences, 28(4):469–489.
Luc Steels and Martin Loetzsch (2009), Perspective Alignment in Spatial
Language, in Kenny R. Coventry, Thora Tenbrink, and John. A. Bateman,
editors, Spatial Language and Dialogue, Oxford University Press.
Mark Tutton (2013), A new approach to analysing static locative expressions,
Language and Cognition, 5:25–60.
Matthew E. Watson, Martin J. Pickering, and Holly P. Branigan (2004),
Alignment of reference frames in dialogue, in Proceedings of the 26th Annual
Conference of the Cognitive Science Society, Chicago, USA.
Joost Zwarts and Yoad Winter (2000), Vector Space Semantics: A
Model-Theoretic Analysis of Locative Prepositions, Journal of Logic, Language
and Information, 9:169–211.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[301]

Individuation, reliability, and the
mass/count distinction*

Peter R. Sutton and Hana Filip
Heinrich Heine University Düsseldorf

abstract
Keywords:
mass/count
distinction,
probabilistic
semantics,
individuation,
reliability,
semantic learning,
information
theory,
context-sensitivity,
Type Theory with
Records

Counting in natural language presupposes that we can successfully
identify what counts as one, which, as we argue, relies on how
and whether one can balance two pressures on learning nominal
predicates, which we formalise in probabilistic and information theo-
retic terms: individuation (establishing a schema for judging what
counts as one with respect to a predicate); and reliability (estab-
lishing a reliable criterion for applying a predicate). This hypothesis
has two main consequences. First, the mass/count distinction in nat-
ural language is a complex phenomenon that is partly grounded in a
theory of individuation, which we contend must integrate particular
qualitative properties of entities, among which a key role is played
by those that rely on our spatial perception. Second, it allows us to
predict when we can expect the puzzling variation in mass/count lex-
icalization, cross- and intralinguistically: namely, exactly when the
two learning pressures of individuation and reliability conflict.

1 introduction
This paper attempts to combine state of the art research on the
mass/count distinction in formal semantics with the cutting edge re-
search in Type Theory with Records that provides a unified represen-
tation of cognitive, perceptual, and linguistic information. This allows

*This research was funded by the German Research Association (DFG), CRC
991, project C09. We would like to thank the attendees of the TYTLES workshop
at ESSLLI 2015 and the CLASP research seminar. In particular, Robin Cooper,
Simon Dobnik, and Shalom Lappin for many helpful discussions.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 303–356

Peter R. Sutton, Hana Filip

us not only to unify two largely separate strands of research and enrich
both with our novel contributions, but also, and most importantly, to
further our understanding of the concept of individuation (what counts
as one) relative to a predicate, which, as we argue, is the fundamental
concept in countability research. The account proposed here covers a
number of the complex and puzzling data that pertain to cross- and in-
tralinguistic mass/count variation, which resist an adequate account
within the extant theories of the mass/count distinction in formal se-
mantics, to the best of our knowledge.
The outline of this paper is as follows. In Section 2, we introduce

the basis for our semantic formalism: Type Theory with Records (TTR,
Cooper 2012) and probabilistic type theory with records (prob-TTR
Cooper et al. 2015). In Section 3, we outline some of the most influ-
ential recent theories of the mass/count distinction in formal mere-
ological semantics, which are largely driven by the concept of indi-
viduation (what counts as one). Sections 4–7 focus on our new pro-
posal. In Section 4, we enrich prob-TTR with mereological assump-
tions (probM-TTR). We then show how this formalism can represent,
in detail, both qualitative and quantitative criteria for the application
of nominal predicates (inspired by Krifka (1989)).
Novelly, building on Dobnik et al. (2012), we model how rep-

resentations of spatial perceptual information in a given context can
inform and affect judgements about what counts as an individual (as
one) relative to a predicate. In Section 5, we relate the quantitative
and qualitative criteria to probabilistic learning and argue that the
ability to successfully individuate entities relative to a predicate, and
thereby establish a basis for counting, is essentially tied to how one
balances two learning pressures. The first is to establish a disjoint in-
dividuation schema for a predicate (individuation), the second is
to establish reliable criteria for applying a predicate (reliability). In
Section 6, we give a schema for the lexical entries of concrete nouns.
In Section 7, we show how mass and count encoding arises from

the balancing of individuation and reliability with respect to nominal
predicate learning. One of the advantages of our proposal over merely
mereological ones is that the interaction of these two learning pres-
sures also allows us to delimit the range of cases where one should
expect to find cross- and intralinguistic mass/count variation in natu-
ral language.

[304]

Individuation, reliability, and the mass/count distinction

2 background: probabilistic type theory
with records

2.1 Type Theory with Records
TTR integrates rich lexical semantic frame-based representations in
the sense of Fillmore (1975, 1976) (and elsewhere) with a composi-
tional semantics in the Frege-Montague tradition. As such, it is an ideal
theoretical framework to investigate the lexical semantics of nouns as
well as compositional (formal) properties of complex expressions. TTR
also integrates the insights of situation semantics insofar as situation
types (record types) are taken to be true of situations (records),
rather than being true at possible worlds. The idea is that an agent
judges whether a situation s, is of type T. Such judgements corre-
spond to type theoretic objects, namely Austinian propositions (Bar-
wise and Etchemendy 1987) inspired by Austin’s (1950/1979) idea
that to say something true (in indicative, non-generic cases at least)
is to refer to a particular situation with one’s utterance that is of the
type expressed by the sentence one uses. Sentences can be used to
express situation types, and utterances can refer to particular situa-
tions.
In the following, we present TTR as presented in Cooper (2012).

Record types, which are displayed in tabular format (1), are sets of
fields, i.e., ordered pairs, whose first member is a label (to the left of
the colon in (1)) and whose second member is a type (to the right of
the colon in (1)):

(1)
 x : T1

...
y : Tn


Records, which are displayed in tabular format (2), are sets of fields,
i.e., ordered pairs, whose first member is a label (to the left of the
‘=’ in (2)) and whose second member is a value for this label (to the
right of the colon in (2)):

(2)
 x = v1

...
y = vn



[305]

Peter R. Sutton, Hana Filip

An example of a record type is given in (3), which represents the
type of situation in which a cat purrs.

(3)
 x : Ind

scat : 〈λv.cat(v), 〈x〉〉
spurr : 〈λv.purr(v), 〈x〉〉


In the record type in (3), the first field contains a label x and a basic
type Ind. In TTR, there is a set of basic types, such as Ind for individual,
Time, and Loc (location). Predicates are functions. This can be seen
in the second field. The label scat is a label for a situation, and the
type contains a predicate which is a function from a value v to the
type of situation in which this value is a cat. It is important to note
that these predicates do not take labels as arguments, but rather the
values of labels. Labels function as pointers to values. We will use an
abbreviated conventional notation in this work, as illustrated in (4)
(Cooper 2012, p.11):

(4)
 x : Ind

scat : cat(x)
spurr : purr(x)


Records are the entities of which record types are true or false

(‘proofs’ of propositions in type-theoretic terminology, ‘witnesses’ in
a natural language setting). For example, (5) specifies a situation in
which there is an individual, felix, and two witnesses p and q. Wit-
nesses can be thought of as situations or parts of the world that make
type judgements true or false.

(5)
 x = felix

scat = p
spurr = q


Individuals in the domain are typed. The record in (5) will make

the proposition in (3)/(4) true iff:
felix is of type Ind,
p is a witness of cat(felix),
q is a witness of purr(felix).

An important aspect of TTR, however, is that it is a semantics that
reserves a role for judgements made by agents (see Section 2.2). If the

[306]

Individuation, reliability, and the mass/count distinction

type in (3)/(4) is T1 and the situation represented by (5) is s, an agent
may judge s to be of type T1, (s : T1). This judgement will be true iff
the above conditions hold.
Finally, natural language predicates denote properties of type [x :

Ind] → RecType, a function from records containing individuals, to a
record type. For example, a simplified representation of cat would be
as in (6):

(6) λr : [x : Ind].(

�
r.x : Ind
scat : cat(r.x)

�
)

In (6), r.x means that the value to be supplemented is the value
of x in r. Hence, if provided with a record [x = felix], (6) would, via
β-conversion, yield the proposition that felix is a cat in (7):
(7) �

scat : cat(felix) �
2.2 Probabilistic Type Theory with Records
The following two subsections summarise some of the key details of
probabilistic TTR from Cooper et al. (2014, 2015). The principal dif-
ference between prob-TTR and TTR is that judgements are graded as
opposed to categorical. Instead of a judgement s : T , which is true or
false, judgements hold with a probability p(s : T) = k ∈ [0,1], or the
probability that an agent will judge a situation s to be of type T . The
reason for introducing probabilities is to be able to model the inherent
gradience in the ways in which we classify parts of the world when we
apply predicates of natural language to them. This type of gradedness
is directly represented by the inherent gradedness in metalinguistic
uncertainty within the range [0,1].
A major advantage of prob-TTR is that one can model how proba-

bility values can be assigned, in a cognitively plausible way, and how
probability distributions can be updated via observation and semantic
learning. Witnessing how language is used provides localised informa-
tion that, over time, helps language learners build a probability distri-
bution that guides them how to use language and that approximates
the ‘true’ distribution which underpins how competent speakers use
language. This is in contrast to top-down probabilistic approaches that
assign (global) probability distributions over sets of possible worlds.
This issue is discussed in more depth in Cooper et al. (2015).

[307]

Peter R. Sutton, Hana Filip

Meet types and join types in prob-TTR respect the Kolmogorov
axioms for probability (Kolmogorov 1950):

p(a : T1 ∧ T2) = p(a : T1)× p(a : T2|a : T1)(8)
p(a : T1 ∨ T2) = p(a : T1) + p(a : T2)− p(a : T1 ∧ a : T2)(9)

2.3 Bayesian learning in prob-TTR
Assuming that agent–learners continually receive new evidence with
respect to how to correctly apply types to aspects of the world, this
can be modelled, in line with Bayesian approaches to cognition, as
continuous updates of the probability distributions in the light of new
evidence. The probability distributions of learners will gradually come
to be close to those of competent speakers. The way this is modelled
in prob-TTR is that agents maintain judgement sets.
In simple and intuitive terms, when an agent makes a judgement

about a given situation, an entry in the agent’s judgement set is made.
Entries in judgement sets record the probability that the encountered
situation is of some type. Members of judgement sets are what Cooper
et al. (2015) refer to as probabilistic Austinian propositions.1 For exam-
ple, the probabilistic Austinian proposition involving a cat purring,
judged with a probability of 0.9 would be:

(10)


sit = s1

sit-type =

 x : Ind
scat : cat(x)
spurr : purr(x)


prob = 0.9


Proposition (10) records a situation, a type and a probability value

for the judgement that the situation is of that type. The set of such
judgements, i.e., the set of probabilistic Austinian propositions, for

1Cooper et al. (2015) present a naive Bayesian learning model, a picture
that is highly simplified. (They state an intention to develop a more sophisti-
cated learning model.) On the simple model, agents are presented with discrete
situations, probabilistic judgements are made and the situation, situation type
and judgement value are recorded in the judgement set. A more plausible model
would have to incorporate the dynamic development of situations and how judge-
ments will very often be implicit.

[308]

Individuation, reliability, and the mass/count distinction

an agent A will be the set J. For a type T , JT is the set of Austinian
propositions j such that j.sit-type⊑ T :

(11) JT = { j| j ∈ J, j.sit-type= T}
The sum of probabilities associated with that type T in J is:

(12) ||T ||J =
∑
j∈JT

j.prob

Priors are calculated from sums over entries in the judgement set:

(13) priorJ(T) =
||T ||J∑
(J)

if ∑(J)> 0 and 0 otherwise.

It is worth contrasting this approach with more top-down mod-
els in terms of possible worlds. What this system provides, in con-
trast to more top-down models, is an explanation of how priors are
set. In probabilistic possible worlds-based approaches such as that of
Eijck and Lappin (2012), one must assume a set of priors over possi-
ble worlds from which priors for particular sentences/propositions are
calculated. On top of issues of computational tractability (discussed in
Cooper et al. (2015)), this approach leaves it unexplained on what ba-
sis the priors for possible worlds are calculated.
The judgement set also provides a simple way to estimate condi-

tional probabilities such as likelihoods and posteriors. For example,
suppose J were to contain the record in (10) and the record in (14):

(14)


sit = s2

sit-type =

�
x : Ind
scat : cat(x)

�
prob = 0.9


We could then calculate the probability of there being a situa-

tion in which something purrs given it is a cat. pJ,A is a probability
function with respect to a judgement set J, and an agent A. Condi-
tional probabilities are calculated in terms of a type theoretic version
of Bayes’ Rule:

(15) pJ,A(s : T1|s : T2) =
||T1 ∧ T2||J
||T2||J

[309]

Peter R. Sutton, Hana Filip

For the case in hand, this yields:

(16) pJ,A(s :

 x : Ind
scat : cat(x)
spurr: purr(x)

 | s :

�
x : Ind
scat: cat(x)
�
) =

0.9
0.9+ 0.9

= 0.5

which follows given that: x : Ind
scat : cat(x)
spurr : purr(x)

⊑ � x : Ind
scat : cat(x)

�

and that if T ⊑ T ′, then p(a : T ∧ T ′) = p(a : T ′). Intuitively, if two
situations involving cats are observed with equal probability, but only
one is a situation involving purring, then the probability of a situation
involving a purring cat, given it involves a cat should be 0.5.

3 background: vagueness, overlap,
mass/count variation and individuation

In this section, we briefly introduce some of the state of the art seman-
tic accounts of the mass/count distinction in concrete nouns.2 The ac-
counts we discuss here are all based on enriching formal semantics
with mereology (first proposed by Link (1983)). In mereological se-
mantics, domains of entities form a Boolean semilattice closed under
sum (⊔). That is to say: domains of entities are populated not just with
individuals (a, b, c), but also with sums of entities (a,⊔b, a⊔ b⊔ c etc.)
which are of the same semantic type. The use of mereology has, since
Link (1983), proved highly fruitful in analysing both plurality and the
count/mass distinction.
We highlight two key factors that have been proposed to play a

role in the mass/count distinction as part of a mereological semantics:
(i) vagueness (understood in terms of a kind of context-sensitivity)
(Chierchia 2010); (ii) disjointness vs. overlap at a context in a noun’s
denotation (Rothstein 2010; Landman 2011).

2For a more thorough critical analysis, see Sutton and Filip (2016a,b).

[310]

Individuation, reliability, and the mass/count distinction

3.1 Context sensitivity: vagueness and overlap
Chierchia’s (2010) main claim is that mass nouns are vague in a way
that count nouns are not. Mass nouns are uncountable, because they
lack stable atoms. Stable atoms are the entities in the denotation of
a noun that are atoms in every context relative to a ground context.
Ground contexts determine the entities that are denotations of a noun
at every context (but are not necessarily atoms). If a noun lacks stable
atoms (has only unstable individuals), then there is no entity that is
an atom in the denotation of the predicate at all contexts.
Nouns such as rice are vague in so far as the minimal entities in the

denotation of ricemay vary depending on context. Sometimes they are
sums of a few grains, sometimes single grains, half grains, or even rice
flour dust. Thus these quantities of rice are in the vagueness band of
rice. Chierchia (2010) models this vagueness with a supervaluationist
semantics. At some total precisifications of a ground context, c, single
grains are rice atoms. Where c∝ c′ means that c′ precisifies c; then at
some c′ such that c∝ c′, half grains are rice atoms. At some c′′ such
that c′ ∝ c′′, rice dust particles are rice atoms. There is, therefore,
no entity that is a rice atom at every total precisification of rice. The
denotation of rice lacks stable atoms, but counting is counting stable
atoms, and so rice is mass.
Rothstein (2010) focuses on providing a formal model of how

nouns such as fence and wall – which fail to denote entities with “nat-
ural units” in the sense of Krifka (1989) – nonetheless behave like
ordinary count nouns.3 Rothstein (2010) coins the term counting con-
text, and defines count nouns as typally distinct frommass nouns. Mass
nouns are of type 〈e, t〉. Count nouns, which are of type 〈e × k, t〉, de-
note sets of entity-context pairs (the entity denoted and the context in
which it counts as one). To take Rothstein’s example, suppose that a
square field is encircled by fencing. The question ‘How many fences
are there?’ has no determinate answer, but rather the answer depends
on what counts as one disjoint fence in a given context. In some con-

3However, Filip and Sutton (2017) argue that nouns such as fence are not
bona fide count nouns, since they are felicitous as bare singulars in some measure
constructions, for example, “You will need about 150 yards of fence per acre” (BNC).
Bona fide count nouns aremuch less felicitous in such constructions. For example,
#I read 10cm of book.

[311]

Peter R. Sutton, Hana Filip

texts, it would be natural to answer ‘four’: namely, one for each side of
the field. In other contexts, it would be more natural to answer ‘one’:
namely, one fence encircling the whole field. By indexing count nouns
to contexts, Rothstein can explain how there can be one single answer
to the question of how many fences there are in any particular con-
text, despite fence lacking natural atoms in its denotation, i.e., atoms
that are independent of counting-contexts. Countability, in Rothstein’s
view, is a matter of what might be dubbed disjointness at a counting
ccontext.
In Landman (2011), counting is a matter of non-overlap in a given

context. He defines a set of generators which contains “the things that
we would want to count as one” (Landman 2011, p. 26) relative to a
context. Formally, generator sets generate a noun’s whole denotation
under sum. If the elements in the generator set are non-overlapping,
as in the case of count nouns, then counting is sanctioned: counting
is counting elements in the generator set and there is only one way to
count. However, if generators overlap, as in the case of mass nouns,
counting goes wrong, because it leads to a number of different simul-
taneous counting results. Formally, this is modelled as maximally dis-
joint subsets which generate the superset under sum (variants). In the
above, “a number of different simultaneous counting results” equates
to a variation in cardinality across variants. One of Landman’s innova-
tions is to provide a new delimitation of the two cases when this hap-
pens: mess mass nouns like mud, and neat mass nouns like kitchenware
(a.k.a. ‘object’ or ‘fake’ mass nouns). A noun is a mess mass noun if,
at every world, its intension determines a regular generator set whose
set of minimal elements is overlapping. A noun is a neat mass noun if
its intension at every world specifies a regular generator set whose set
of minimal elements is non-overlapping.
Landman offers an ingenious solution to the perennial problems

posed by mass nouns like kitchenware, furniture, silverware and the like.
Let us take his paradigm example kitchenware:
“The teapot, the cup, the saucer, and the cup and saucer all
count as kitchenware and can all count as one simultaneously
in the same context. ... In other words: the denotations of
neat nouns are sets in which the distinction between singular
individuals and plural individuals is not properly articulated.”
(Landman 2011, pp. 34–35)

[312]

Individuation, reliability, and the mass/count distinction

The key idea here is that there are contexts which allow overlap in the
denotation of a noun N with respect to what counts as ‘one N’. In other
words, there are contexts in which, either one simply does not apply
an individuation schema, or, alternatively, the individuation schema
one applies fails to resolve overlap; in either case, overlap is not made
‘irrelevant’, and therefore counting goes wrong.

3.2 The puzzle of mass/count variation
All three of the aforementioned analyses of the mass/count distinction
make significant advances in accommodating the puzzling data that
display cross- and intralinguistic mass/count variation. However, each
account taken individually cannot accommodate the full range of such
data. We take five broad classes of nouns as cases in point. Two of
these, the prototypical cases, pose no problems for most accounts of
the mass/count distinction:

Prototypical objects: Examples in English are cat, car, boy, chair.
These nouns show a very strong intra- and crosslinguistic tendency
towards being count.4 They are not vague in Chierchia’s sense, not
counting context-sensitive in Rothstein’s sense, and not overlapping
in Landman’s sense.

Substances: Examples in English are mud, air, blood, slime. These
nouns show a very strong intra- and crosslinguistic tendency towards
being mass.5 They are vague in Chierchia’s sense, not indexed to
counting contexts in Rothstein’s semantics, and have overlapping min-
imal generators (are mess mass) in Landman’s sense.

Granulars: Examples in English are lentils, rice, oats, beans. These
nouns show a significant amount of variation in mass/count encoding
such as in (17) and (18):
(17) lentil-s+C ,P L; linse-n+C ,P L (German); lešta−C (Bulgarian);

čočka−C (Czech).
(18) oat-s+C ,P L, oatmeal−C ; kaura−C (Finnish);

kaurahiutale-et+C ,P L (Finnish, lit. oat. flake-s).
4There are some languages, such as Brazilian Portuguese, which also license

a non-coerced mass reading of many count nouns. See Pires de Oliveira and Roth-
stein (2011) for discussion.

5There are some languages, such as Yudja, which also license a non-coerced
count reading of many or even all mass nouns. See Lima (2014) for discussion.

[313]

Peter R. Sutton, Hana Filip

Granulars are vague in the sense of Chierchia (2010), but if vague-
ness were the only factor in mass/count encoding, these data could
not be accommodated.6 Rothstein’s account can introduce a typal dif-
ference between, for example, rice and lentils, but does not have the
formal tools to explain why a typal distinction should arise commonly
for these nouns, but not for, say, prototypical count nouns. Landman
(2011) faces a challenge, given that it is unclear why the English lentil,
for example, should be count, whereas its Bulgarian counterpart lešta
(‘lentil’) would presumably come out as either a neat or a mess mass
noun (depending on how Landman’s theory is applied to this case).
That is, it is unclear – given Landman’s account – why granulars should
license non-overlapping generators in some languages but overlapping
generators in others.

Collective artifacts: These nouns, examples of which in English are
furniture, kitchenware, footwear, equipment, show a significant amount
of variation in mass/count encoding, such as we see in (19) and (20):
(19) furniture−C ; huonekalu-t+C ,P L (Finnish);

meubel-s+C ,P L, meubilair−C (Dutch).
(20) kitchenware−C ; Küchengerät-e+C ,P L (German, lit. kitchen device-s).
Collective artifacts are recognised to be exceptions to a vagueness
based analysis of the mass/count distinction and as requiring a sepa-
rate source for their mass/count encoding (Chierchia 2010, pp. 136–
139). For Landman, collective artifacts constitute the key data points
for developing his theory, and to this goal, he focuses on Dutch exam-
ples like (19).
Although Landman’s theory is not explicitly intended to account

for cross-linguistic variation in mass/count encoding, it could be ex-
tended to do this job too. A possible line one could then adopt is that
mass/count variation is only licensed for neat nouns which can have
overlapping generators ‘simultaneously in the same context’. If neat
mass nouns have overlapping generators simultaneously in the same
context, and overlap means mass, then we may ask why the count
noun counterparts of neat mass nouns are count nouns. In Landman’s
analysis, they have non-overlapping generator sets. However, presum-

6Chierchia (2010) is aware of this problem; however it is only informally
addressed (Chierchia 2010, p.140).

[314]

Individuation, reliability, and the mass/count distinction

ably, at different contexts, exactly what counts as one can vary. For ex-
ample, in some contexts a vanity counts as one huonekalu (the Finnish
count noun counterpart of the English neat mass furniture); in other
contexts, it counts as at least two (the mirror and the table etc.).
If the count noun counterparts of neat mass nouns are context

sensitive with respect to what counts as one across contexts, then
arguably, the count nouns in (19) and (20) are counting context-
sensitive in the sense of Rothstein (2010) (just like fence). A possible
extension to Rothstein’s account is that one tends to find cross- and in-
tralinguistic mass counterparts of count nouns that are counting con-
text sensitive. Indeed, the link between these two classes suggests, to
us, that the explanation of why count/mass variation is found within
them should have a common explanation. We develop these lines of
thought in Section 7 in the light of the formal analysis we develop in
Sections 4-6.

Non-bounded objects: Examples in English are fence, wall. These
nouns are usually count in their morphologically simple form, but fre-
quently have derived mass counterparts:
(21) fence+C - fencing−C ; wall+C - walling−C

Chierchia (2010) argues that the count versions of these nouns are
not vague (with respect to their minimal countable entities), given that
the ground context is fixed (Chierchia 2010, pp. 122–123). As such,
the mass counterparts provide a challenge to a vagueness-only based
account.
Overlap/non-overlap based accounts may fare better when it

comes to non-bounded objects. Indeed, Rothstein’s and Landman’s ac-
counts could be extended in a similar way just outlined for collective
artifacts. Namely, the mass counterparts of count non-bounded object
nouns are neat mass (licensing a count counterpart), and the count
counterparts (fence) of mass non-bounded object nouns (fencing) are
counting context sensitive (licensing a mass counterpart). Indeed, the
link between the non-bounded objects and collective artifacts classes
suggests, to us, that the explanation of why count/mass variation is
found within them should have a common explanation.7 We pursue
this in Section 7.

7See Sutton and Filip (2016a) for in-depth discussion.

[315]

Peter R. Sutton, Hana Filip

In summary, two ways in which context is important emerge from
these three accounts. First, the extension of a noun may vary across
contexts with respect to its atomic elements (Chierchia 2010). Second,
the entities that ‘count as one’ in the denotation of a noun may vary
across contexts thereby yielding either a disjoint set of individuated
entities (Rothstein 2010), or an overlapping set in which all possible
individuated units appear simultaneously (Landman 2011).

3.3 Individuation and two criteria of applicability for nouns
Here we briefly review how both qualitative and quantitative criteria
for the application of noun predicates have been highlighted as impor-
tant for the semantics of the mass/count distinction and individuation.
Specifying these two criteria originates in the work of Krifka (1989),
but echoes of it percolate through his later work and that of others.
The majority of responses to Krifka’s work have focused on improv-
ing his representation of the quantitative criteria for the application of
count predicates. We will also detail how these qualitative and quan-
titative criteria come together to feed into an account of individuation
in the form of mereotopological properties (Grimm 2012).
Krifka (1989) proposed that the semantic representation of (con-

crete) count nouns involves two criteria of applicability: one qual-
itative, and one quantitative. For example, one/a cow has the fol-
lowing semantic representation: λn.λx .[COW(x) ∧ NU(COW)(x) =
n]. Intuitively, the quantitative criterion yields what counts as one
‘natural unit’ in the denotation of a given predicate, and is repre-
sented by means of NU, standing for a natural unit measure func-
tion. Natural unit functions are instances of extensive measure func-
tions and are used to form quantized predicates from cumulative
ones.8 The qualitative criterion of applicability, which is represented
by COW, qualitatively distinguishes cows from, say, cats, dogs and
other entities. In contrast, the semantic representation of (concrete)
mass nouns only contains the qualitative criterion of application. For
example, the semantic representation for water is: λx .[WATER(x)].
This amounts to the claim that there is a typal distinction between
mass and count nouns, such that only count nouns involve NU a
natural unit function. This is motivated by the fact that singular

8∀P[QUA(P)↔∀x , y[P(x)∧ P(y)→¬x < y]]

[316]

Individuation, reliability, and the mass/count distinction

count nouns, Krifka argues, have quantized reference, whereas mass
nouns do not.
The main responses to Krifka’s proposal (to be detailed below)

have focused on criticisms of his NU function; however something akin
to a distinction between qualitative and quantitative criteria remains
in most leading accounts (even if the quantitative criterion is often
given at a pretheoretical level). The position we will argue for, in line
with Grimm (2012), is that a more satisfactory account of individua-
tion requires specifying mereotopological properties.
Zucchi and White (1996, 2001) criticise Krifka’s claim that count

nouns are semantically quantized. Take, for example, fence, twig, line.
They have entities in their denotation whose proper parts also fall un-
der the denotation of fence, twig, line, hence they fail to be quantized.
They have a solution in terms of a “maximal participant” relative to
situation and a time. On theirMaximal Participant Approach, determin-
ers such as a/an encode a requirement that the entity bound by the
existential quantifier is the largest sum individual in the denotation
of the V predicate at the event time. On this view, Alex broke a twig
translates loosely as, a breaking event whose patient is maximal among
the individuals in the denotation of twig broken at the reference time. Cru-
cially, this does not require that the maximal twig entity is maximal
for other events and reference times. The effect, in simple terms, is to
make sure that the denotation of the noun is quantized relative to an
event and a time.
Whereas Zucchi and White (1996, 2001) emphasise the maximal

participant relative to an event and reference time, Rothstein (2010)
emphasises that what counts as one varies with counting context (Sec-
tion 3.1). However, on Rothstein’s account, what is ‘one’ is not de-
fined in terms of maximality. Take, for example, fencing around a
square field, where what counts as one fence need not be the whole
enclosure, in each context. Furthermore, fence does not denote natu-
ral units, since what counts as one varies with context. However, how
exactly the set of entities that can count as one are to be delimited
remains at a pretheoretical level.
Similarly, as per Landman’s account, as we saw in Section 3.2,

the only formal restriction on the set of entities that count as one
for a predicate is that this set generates the noun’s whole denota-
tion. But this means that the criteria deciding the membership of

[317]

Peter R. Sutton, Hana Filip

the set of entities that count as one also remain at a pretheoretical
level.
What matters the most for our proposal is that these accounts con-

verge on one key and valuable insight: namely, there is a non-trivial
concept ‘what counts as one’ that underlies the mass/count distinc-
tion, albeit treated as pre-theoretical.9 This insight in fact takes centre
stage in Grimm (2012). Grimm argues that mereology is insufficient
to define the notion of individual, and that mereology, therefore, must
be enriched with topological notions. Mereotopological properties of
concrete objects include their part-whole structure, spatial proximity,
size, disjointness, adjacency, and shape. Grimm’s mereotopological the-
ory uses mereotopological predicates in the lexical entries of nouns.
For example, for dog:
(22) [[dog]] := λxo[R(xo, Dog)∧MSSC(xo)]

This states that entities in the denotation of the singular count noun
dog are Maximally Strongly Self-Connected (MSSC). xo is an object
variable (as opposed to a kind variable). MSSC is a mereotopologi-
cal property. An mereological individual “is Maximally Strongly Self-
Connected relative to a property if (i) every (interior) part of the indi-
vidual is connected to (overlaps) the whole (Strongly Self-Connected)
and (ii) anything else which has the same property and overlaps it is
once again part of it (Maximality))” (Grimm 2012, p. 135).
Our account takes inspiration from Grimm (2012), but we will

connect mereotopological properties more directly to formal accounts
of perception. In particular, we will address the problematic data of
granulars like rice and lentils and argue that the conceptualisation of
mereotopological properties can arise out of more domain general per-
ceptual processes.
Instead, building on the suggestion in Krifka (1989) that the ap-

plication criteria of nouns consist of both a qualitative and a quantita-
tive criterion, we propose that qualitative criteria involve perceptual

9Although, arguably, Chierchia (2010) tries to derive ‘counting as one’ from
his supervaluationist semantics, he still assumes a pre-theoretical setting of the
‘ground context’ which, among other things, ensures that nouns such as mountain
and fence have stable atoms. On Chierchia’s (2010) account, different answers to
the question ‘How many fences are there?’ is attributed to their being different
ground contexts (Chierchia 2010, pp. 122–123).

[318]

Individuation, reliability, and the mass/count distinction

properties of objects, which subsume Grimm’s mereotopological prop-
erties, and functional properties of objects. This is not to say that there
are not other properties relevant to individuation, but perceptual and
functional properties form the most salient aspects of entities in the
denotation of concrete nouns. Here we focus on perceptual proper-
ties that concern the spatial organisation entities in the world, and as
a case study we take granulars, since granulars present problems for
previous theories (Section 3.2). To model this with probM-TTR, we
take as a foundation work done by Dobnik et al. (2012), because they
link spatial knowledge gained by perception with semantic knowledge
in a single TTR representation.

4 proposal: countability and probabilistic
mereological type theory with records

4.1 Probabilistic mereological Type Theory with Records
Thus far, the structure of objects of basic types has been left unspec-
ified. We assume a domain for physical entities that is structured as
a Boolean semi-lattice closed under sum. A part of such a domain is
given in Figure 1. As is standard in mereological semantics, we assume
the operation ⊔ and the relations <,≤.10

a b c d
a ⊔ ca ⊔ b a ⊔ d b ⊔ c b ⊔ d c ⊔ d

a ⊔ b ⊔ c a ⊔ b ⊔ d a ⊔ c ⊔ d b ⊔ c ⊔ d
a ⊔ b ⊔ c ⊔ d Figure 1:

Boolean semi-lattice
closed under join

This means that, formally, our enrichment of (prob-)TTR regards
the structure of the domain. The principal divergence from TTR and
prob-TTR is that we do not assume a basic type Ind, but instead only a
basic type of Stuff for physical entities and individuals; i.e. the type for
the whole physical domain. In terms of mereological semantics, this is
comparable to adopting the approaches of Krifka (1989) and Landman
(2016) who assume a domain unspecified for atomicity (non-atomic).
This contrasts with Link’s (1983) two domain approach (an atomic

10Part relation: ≤, where x ≤ y↔ x ⊔ y = x . Proper part relation <, where
x < y↔ x ≤ y ∧¬y ≤ x .

[319]

Peter R. Sutton, Hana Filip

domain for count nouns and a non-atomic domain for mass nouns),
and also with, for example, Chierchia (2010) and Rothstein (2010)
who assume a single atomic domain.
Upward closures of types are defined recursively:
Definition: ∗T (The upward closure of a type T under sum)
Where Type is the set of types:
1. for any T ∈ Type, ∗T ∈ Type

2. for any T ∈ Type, a : ∗T iff:
(i) a : T

(ii) or there is some b, c : ∗T such that b ⊔ c = a

For example, if a, b : T , then, by (i), a, b : ∗T , and by (ii), a ⊔ b : ∗T .
The advantage of using the tools of probM-TTR is that they will

allow us to provide a more nuanced proposal of what it means to
be an individual relative to a predicate than those which are found
in most mereological approaches to the mass/count distinction. Indi-
viduals relative to a predicate are what count as one relative to that
predicate (see Section 3.3). TTR provides us with the sufficient tools
to combine perceptual, functional, spatial and semantic information
within the same representational framework. This will allow us, for
example, to show how the same entities can count as a plurality, an
aggregate, or even be judged to count as an individual (as one). Such
subtle cognitive and perceptual details at the level of our representa-
tions allow us to give a formal characterisation of individuation that
captures intuitions which are left at the pre-theoretical level in other
approaches.
4.2 Qualitative types
The qualitative criteria for applying concrete noun concepts will vary
greatly from noun to noun not only in values for predicates (like
colour, shape, size) used to capture the criteria related to their
perceptual properties, or in values for predicates (like used-for-
grinding) related to their functional properties, but they will also
vary with respect to which kinds of criteria are relevant for their ap-
plication in the first place. Take, for instance, the contrast between
natural objects like apples, leaves, trees on the one hand, and artifacts
like cars, chairs, buildings, on the other. Whereas perceptual properties
(from the senses) may be relevant for identifying both natural objects

[320]

Individuation, reliability, and the mass/count distinction

and artifacts, functional properties will play a far bigger role in identi-
fying artifacts. A pile of cushions can count as a chair and a cardboard
box can function as a table if, in context, that pile of cushions can
aptly function as a chair and the cardboard box can aptly function as
a table. In contrast, it is harder to imagine a situation in which some
natural object that is not a carrot could count as a carrot even if it
fits the same functional role as a carrot does. For instance, even if one
uses beetroot or courgette instead of carrot to moisten a cake, one has
not, thereby, still made a carrot cake.11
We represent such perceptual and functional properties in terms

of an all-encompassing type as the one schematised in (23) and exem-
plified for rice in (24). In this respect, we build on a previous proposal
in Sutton and Filip (2016b). We assume a basic type Stuff that does not
distinguish between substances and individuals. Entities of this type
may or may not be a clearly demarcated and countable entity, i.e., an
individual in our sense.�

x : Stuff
sPpptys

: Ppptys(x)

�
(23) �

x : Stuff
sricepptys

: ricepptys(x)

�
(24)

Instances of the predicate Ppptys are placeholders for a wider number
of predicates that specify perceptual information such as colour, tex-
ture, and, especially for artifacts, functional information (e.g. what
activities these items are used for).
Here we wish to expand somewhat on what kind of informa-

tion the predicate Ppptys is a placeholder for, especially with respect
to granular nouns such as rice and lentil(s). To this end, for the rest
of this section we will focus on how qualitative perceptual – in partic-
ular mereotopological – properties of concrete objects facilitate their
classifications under concrete noun predicates (Grimm 2012). We will
show how this information can be included in TTR frames, and to this
goal, we will also make use of the work done in Dobnik, Cooper and

11 It is quite plausible that our discussion of perceptual and functional proper-
ties mirrors distinctions made in Pustejovsky (1995). For example, Pustejovsky’s
constitutive and formal roles seem to approximate our perceptual properties and
his telic and agentive roles seem to approximate our functional properties.

[321]

Peter R. Sutton, Hana Filip

Larsson (Dobnik et al. 2012) on the linking of semantic, perceptual
and world knowledge in a single TTR representation. Their focus is on
the interaction of the inputs from robot perceptual sensors with higher
level semantic representations of the robot’s environment.
The robot uses a sensor to build a map of points where each point

has been classified as being at a particular location in the robot’s en-
vironment (a point map). Points, in this context, are minimal readings
that the robot’s sensor makes; the robot builds up a map of its envi-
ronment by taking point readings. Point maps are represented along
the lines of the schema in (25) (Dobnik et al. 2012, p. 54).

(25) PointMap=


p1 : Point
. .
. .
. .
pn : Point


Such point maps are then used as the inputs to functions to define
bounded regions or volumes which envelop points. These are known
as convex hulls, i.e., regions or volumes, and are classified as individ-
uals. The convex hull of a set of points is the smallest convex region
containing that set of points. A simple representation of a 2D convex
hull of points is given in Figure 2.

Figure 2:
Simple example

of a 2D convex hull of 8 points

Formally, this is represented in (26) (Dobnik et al. 2012, p. 55).

(26) f :λr :PointMap(



a : Ind
p1 : r.Point
. .
. .
pn : r.Point
creg : region(a)
cinc : includes(a, 〈p1, ..., pn〉)
conv-hull : 〈pi , p j , pk〉
chulled : hulled(〈p1, ..., pn〉, conv-hull)


)

[322]

Individuation, reliability, and the mass/count distinction

It turns out that the above insights from Dobnik et al. (2012) allow
us to analyse the problematic data of granulars such as rice, lentils, peas,
which pose thorny problems for mereological accounts (Section 3).
The basic idea we pursue here is that stuff in the world can be con-

ceptualised in different ways based in part on its perceptual proper-
ties. Entities such as, for example, grains of rice can be conceptualised
in different ways; this reflects different ways of individuating or oth-
erwise grouping stuff with the relevant rice properties. We highlight
three such ways. Granular entities can be (i) individuated in terms of
single grains; (ii) grouped in terms of aggregates of grains (of some
amount or another); (iii) grouped in terms of bounded aggregates of
grains (portions of grains that form a discrete bounded region or vol-
ume in space). Substances such as mud, in contrast, cannot be individ-
uated in terms of anything like grains (mud does not come in clearly
perceptible units such as grains). However, stuff like mud can, similar
to aggregation, be amassed (stuff of some amount with the relevant
properties) and conceived of in terms of bounded amassments (stuff
with the relevant properties that forms some discrete bounded region
or volume in space).
We now outline how aggregation and bounded aggregation can

be represented in mereological TTR using representations inspired by
the work of Dobnik et al. (2012). We use rice as a working example.
Aggregates with respect to a predicate rice involve identifying some
plurality of entities each of which has the relevant properties for being
grains of rice and judging them to be an aggregate. Unlike Dobnik
et al.’s convex hulled regions, aggregates need not be grouped into a
single discrete region. This is outlined in (27).

(27) f :λr:

x1:Stuff
. .
. .
xn:Stuff

 (



crice_agg: riceagg(a)
r.x1 : Stuff
c1_col : white(r.x1)
c1_shape: grain_shaped(r.x1)
. .
. .
r.xn : Stuff
cn_col : white(r.xn)
cn_shape: grain_shaped(r.xn)
cagg : aggregate(a)
cinc : includes(a, 〈r.x1, ..., r.xn〉)


)

[323]

Peter R. Sutton, Hana Filip

The predicate aggregate is specified as containing some quantity of en-
tities each of which has some relevant properties (such as white colour
or being grain-shaped). This collection is then judged as being a rice
aggregate (riceagg). In other words, we can recast mereological sums
in terms of an aggregation of, in this case, entities with the requisite
rice-grain properties.
Alternatively, we can add extra restrictions on aggregates by re-

quiring that aggregate entities form ‘hulled regions’. That is to say
that we use the notion of a hulled volume or region as a means of rep-
resenting mereotopological sum entities. Our novel proposal is that
something akin to hulling, namely, carving out chunks or regions out
of the parts of the world and judging this region to be a bounded ag-
gregate (or alternatively a bounded amassment for substance denoting
nouns) could model a process of individuation that relies on the spa-
tial (mereotopological) properties of concrete objects: namely, proper-
ties having to do with their spatial proximity, disjointness, adjacency,
size and shape. This proposal not only capitalises on some insights in
Grimm (2012), but is also reminiscent of the longstanding proposals
in cognitive semantics (Jackendoff 1991; Talmy 2000) which empha-
sise spatial notions in the analysis of lexicalization patterns of mass
and count nouns.
In the frame in (28), we assume that mereotopological sums of

bounded entities may be represented via a similar mechanism to ‘re-
gion hulling’, namely, aggregating identified portions of stuff each of
which have certain physical properties.

(28) f :λr:

x1:Stuff
. .
. .
xn:Stuff

 (



crice_agg : ricebounded(a)
r.x1 : Stuff
c1_col : white(r.x1)
c1_shape : grain_shaped(r.x1)
. .
. .
r.xn : Stuff
cn_col : white(r.xn)
cn_shape : grain_shaped(r.xn)
creg : region(a)
cinc : includes(a, 〈r.x1, ..., r.xn〉)
conv-agg : 〈r.x i , r.x j , r.xk, ...〉
cb_agged : agg(〈r.x1, ..., r.xn〉, conv-agg)



)

[324]

Individuation, reliability, and the mass/count distinction

We can perceptually identify the collection of grains of rice as being
comprised of individual grains; however, at the same time this collec-
tion can be viewed as a bounded entity in a manner akin to hulling.
Importantly, just as with hulling collections of perceptual points to
identify entities, there will be restrictions on what kinds of collec-
tions of entities will be identified as bounded aggregates. One such
restriction will be that the entities that form the aggregate cannot be
too dispersed and so must be relatively clustered together. Such in-
tuitions also motivate how some of the mereotopological restrictions
on granular and collective aggregates in Grimm (2012) can be repre-
sented.12
The function in (28) mirrors that in (26); however the function

is from a record of a type of having more than one physical entity
(or bit of stuff), rather than in terms of perceived points. The function
determines a bounded aggregate then yields a new entity judged to
be of type ricebounded that ‘collates’ the physical entities in this region.
The bits of stuff have properties such as colour and shape. cinc labels a
function that selects which of these is to be included in the region. The
conv-agg tuple determines the entities around which the boundaries of
the convex aggregate will be ‘drawn’. cb_agged is the condition that all
the entities in the region are within the bounds of the boundary.
So, similarly to defining a convex hull in terms of perceived

points, this function defines a bounded aggregate in terms of entities
that have already been classified as physical entities.13 Intuitively, if
a situation contains many small entities (such as lentils or grains of
rice) that are in close proximity to one another, this function picks
them out as a convex aggregate – an aggregate falling within what is
judged to be a certain bounded area of space – and then classifies this
as ricebounded.
For substance denoting nouns such asmud or blood, a similar func-

tion could be defined. However, instead of aggregating grains into
bounded aggregates, it would hull stuff with the relevant properties
into a bounded amassment.

12Examples of collective aggregates in Grimm (2012) are names for insects
(found in swarms or groups) and berries. Examples of granular aggregates are
rice and sand.

13 It will be that something akin to (26) is also needed to classify what, in a
perceptual field, is to be identified as of the type Stuff , albeit at a ‘lower’ level.

[325]

Peter R. Sutton, Hana Filip

4.3 Quantitative functions relative to a predicate
Given a representation of the qualitative properties of an entity or
some collection of entities, we may assign some quantity value to the
entities of that type. This is the role of a quantitative function, which is
of the type in (29), a function from record types specifying qualitative
criteria for applicability to real numbers.

(29) fPquant
: (

�
x : Stuff
sPpptys

: Ppptys(x)

�
→ R)

Quantitative functions are relative to predicates (different functions
are defined for different predicates), since the same entity or entities
may count as ‘one’ relative to one predicate, but not another. For ex-
ample, 52 playing cards could be judged to have a quantity of 1 with
respect to a predicate deck of cards, but not with respect to the pred-
icate card (Link 1983). However, because we are not assuming a pre-
theoretical notion of individuation, how some stuff will be quantified
may depend on what counts as an individual relative to that predicate.
Our strategy is to derive individuation from a special case in which a
quantitative function outputs 1. Competing schemas for individuation
will be represented as competing quantitative functions. These com-
peting quantitative functions differ with respect to what perceptual
and functional properties are required to measure 1 (count as one).
For example, take the record type in the right hand side of (27) as
compared to the one below in (30).

(30)
x1 : Stuff

c1_col : white(x1)
c1_shape : grain_shaped(x1)


There is more than one possible way to try to individuate the stuff or
collections of stuff with rice-like properties (being white, grain shaped
etc.). We give three cases by way of example.

Case 1: One possible quantitative function would output a value 1
for the type in (30). This function would individuate single grains.
Applied to something like the type in (27), which contains multiple
entities with the requisite properties that have been judged to be an
aggregate, this function could use, for example, the approximate size
of the aggregate to output an approximate quantity value. We do not
assume that these functions are mere cardinality functions. In fact, it

[326]

Individuation, reliability, and the mass/count distinction

would be cognitively implausible to do so. Take the case of some col-
lections of rice grains. For larger collections that have been judged to
be aggregates (Section 4.2), we do not assume that the quantity value
will reflect the number of rice grains exactly, since we are not in a po-
sition to know this without explicitly counting. However, for small
numbers of grains, such as an aggregate entity comprised of three
grains, this function could return a value where the output number of
the function equals the number of grains. Whether the output of the
quantitative function reflects the exact number of grains or some ap-
proximation, we suggest, could be grounded in the distinction found in
psychology between the approximate number system (ANS) and the par-
allel individuation system (PI) (Hyde and Spelke 2011, and references
therein). In brief, both of these systems are supposed to be developed
pre-linguistically. The difference between them is that PI operates ac-
curately in individuating entities, but is severely limited in terms of
number. It operates accurately up to about four entities, and is as-
sumed to involve the representation of all entities individually. ANS
works on much larger numbers of entities but is assumed to repre-
sent entities as collections, not individually. ANS works effectively as
a way of discerning differences in number between collections, but not
as an accurate representation of cardinality. If the quantitative func-
tion is constrained by these systems, its numerical output would be
an accurate measure of cardinality of pluralities up to about four en-
tities, but only an approximation of cardinality for larger collections
(about 5, about 10, ..., about 50, about 100). What the output of this
function is, we suggest, could be modeled in relation to factors such
as the size and density of the aggregate identified in the situation. So
an output of e.g. 1 would indicate exactly 1, but an output of e.g. 10,
would indicate approximately 10.

Case 2: An alternative quantitative function could individuate,
not single grains, but clusters, such that any (sufficiently large) ag-
gregates containing entities that are individually white, grain shaped,
etc., would measure 1. This function, applied to the type in (27) would
output 1, but applied to the type for a single grain in (30) would mea-
sure either a value less than one (or, alternatively, could be unde-
fined). This would allow for the possibility that overlapping collec-
tions of rice grains could each be judged to be an aggregate and so
each be measured by the quantitative function as one.

[327]

Peter R. Sutton, Hana Filip

Case 3: Another alternative quantitative function could individu-
ate, not single grains or aggregates, but bounded aggregates: any clus-
ters of entities that are individually white, grain shaped etc., but also
form a discrete bounded region would measure 1. This function, ap-
plied to the type in (28) would output 1. The additional boundedness
condition, in effect, treats any discrete regions filled with rice grains
as entities to be counted.
These cases represent different ways of individuating rice. The

first quantitative function ‘finds’ individual grains, and if more than
one is present approximates a quantity. The second function ‘finds’
collections of grains and groups them as an aggregate entity. The
third function ‘finds’ bounded regions or clusters of grains and groups
them as a bounded aggregate. In Sections 5–7, we will argue that
the fact that there can be competing individuation schemas can be
used in conjunction with information theoretic requirements, to ex-
plain count/mass lexicalization patterns cross- and intralinguistically.
The special case for the application of a quantitative function

will therefore be where the output is 1. In the case of cat this would
indicate a type of individual cats. For granular nouns such as rice or
lentils, this could be the type for individual grains of rice or individual
lentils.14 In this sense, the special case where a quantitative func-
tion returns a value of 1 marks the individuation schema for a
predicate. We introduce the following notational convention for the
special case to act as both an abbreviation and as an mnemonic for
this individuating role:

(31)

scat-ind :

scatqual
:
�

scatpptys
: catpptys(x)
�

fcat-quant : (
�

scatpptys
: catpptys(x)
�→ R)

fcat-quant(scatqual
) : R1




= [scat-ind : catInd(x)]

In other words, the type of situation in which for some predicate P,
a physical entity (or sum) is judged to have a quantity of ‘one’ is a
type of situation in which one judges that thing to be a P-individual.
To emphasise, this means that we do not take being an individual as
a basic notion, but rather as a classification task. We assume a basic

14We discuss other nouns in detail in Section 7.

[328]

Individuation, reliability, and the mass/count distinction

type of physical entities (and the upward closure of this type), but
which of these (collections of) physical entities are individuals is both
relative to a predicate and a non-trivial question.
An important restriction for any PInd predicate associated with a

count noun is that the entities of this type are disjoint (do not overlap
mereologically). In other words, an entity that is judged to be ‘one’ P-
individual cannot also be judged to be of some larger quantity value
with respect to P under the same individuation schema if that individ-
uation schema is to form the basis for grammatical counting.
4.4 Individuation schemas and learningto apply predicates in context
It is important to note that there may be cases where individuating, rel-
ative to a predicate and a quantitative function, may not always guar-
antee felicitous application of the predicate. Chierchia (2010) points
out that for many mass nouns, whether or not some entity falls under
the denotation of that noun can depend on the context. For example,
take a collection of around ten grains of rice. In the context of cooking
dinner, one can truly say “We have no rice” when the ten grains are
all that remains of a once full packet, and a child can felicitously say
“I have eaten all the rice” when only ten grains remain on the plate.
However, when around ten grains have fallen in the same context, we
can felicitously and truthfully state “I spilled some rice on the floor”.
Stating “There is rice in this dish” is felicitous and truthful, when ut-
tered by someone with a severe rice allergy, for example, even if it
contains only about ten grains of rice.
Assuming a quantitative function (labeled fPquant

) for a predicate P,
this kind of context sensitivity can be represented as the calculation of
conditional probabilities of the form in (32). The learner-agent Amust
identify which qualities (specified in the qualitative criterion type)
and which quantities of these entities (relative to an individuation
schema) maximise the probability of applying the predicate relative
to her judgement set J.

(32) pJ,A(r :

�
x : Stuff
sP: P(x)
�
| r :


sPqual

:

�qualitative
criterion type
�

fPquant
: (

�qualitative
criterion type
�
)→ N

i : N
fpquant

(sPqual
): Ni

)

[329]

Peter R. Sutton, Hana Filip

We assume the data for these judgements come from, in part, witness-
ing competent speakers’ judgements with regard to applying predi-
cates. We now give a simple example for rice.
Suppose that a learner is exposed to two situations in which an

adult speaker provides her with evidence for how to make rice judge-
ments. Furthermore, the agent is employing a schema/quantitative
function that individuates single grains. In smaking dinner, there are, by
the agents’ estimations, approximately 10 grains (say at the bottom of
a packet). The adult speaker may say, looking at the packet, Oh no! We
have no rice left. This constitutes evidence that the small quantity of
around 10 grains is not sufficient to count as rice. In sallergy, a similar
quantity of grains falls into the soup. The soup is for someone with a
rice allergy and the adult speaker says Oh no! Rice fell into the soup.
This constitutes evidence that the small quantity of around 10 grains
is sufficient to count as rice.
In terms of learning data, these utterances in context provide con-

flicting information as to whether or not a collection of around ten
grains counts as rice. For the case we just informally described, this
could result in a judgement set containing the probabilistic Austinian
propositions in Figure 3. The figure itself contains judgements for dif-
ferent situations (labelled sit). These situations are meant to repre-
sent the contexts just described. The idea is that the quantity of grains

Figure 3:
Possible (partial)

judgement set for around
10 grains of rice.

j1 =



sit =smaking dinner

sit-type=


x :Stuff
srice :¬rice(x)
sricequal

:

�
srice.col : white(x)
...

�
fricequant

(sricequal
):N10


prob =0.9



j2 =



sit =sallergy

sit-type=


x :Stuff
srice :rice(x)
sricequal

:

�
srice.col : white(x)
...

�
fricequant

(sricequal
):N10


prob =0.9



[330]

Individuation, reliability, and the mass/count distinction

to count as rice could vary across these contexts. The situation types
assign a measure to stuff with the relevant rice properties (such as
colour) and a condition that the stuff is rice. The probability values
represent the extent to which the situations are of that type.
We assume that the learner has learned these judgements directly

from the competent speaker and so attributed a high value (0.9) to
all of them.15 Using the prob-TTR version of Bayes’ rule (15), these
judgements then allow the calculation of the probability of something
being rice, given that it has a quantitative function value (relative to
rice) of 10. This is shown in (33).16

(33) pJ,A(s : [srice : rice(x)] | s :

sricequal
:

�
srice.col : white(x)
...

�
fricequant

(sricequal
):N10



=

wwwwww[srice : rice(x)]∧
sricequal

:

�
srice.col : white(x)
...

�
fricequant

(sricequal
):N10

wwwwww
Jwwwwww

sricequal
:

�
srice.col : white(x)
...

�
fricequant

(sricequal
):N10

wwwwww
J

=
0.9

0.9+ 0.9
= 0.5

Given the judgements in Figure 3, the result is 0.5. A gloss on
the importance of this value is that the learner has as much reason
to believe that the predicate rice can be applied to around 10 grains
of rice as she does for not thinking so, given her judgement set. By
“around 10”, we mean that the output of the quantitative function
may only approximate actual numbers of grains for quantities above
that which can be directly quantified via the PI (parallel individuation)
cognitive system (Section 4.3).

15 In a more sophisticated model, reflected in the probability value should be
that the evidence for smaking dinner is indirect (making smaking dinner : ¬rice less
certain). A promising route would be to adopt something akin to Lassiter’s rep-
resentation of indirect evidence in terms of Bayesian networks (Lassiter 2016).

16We assume, following Cooper et al. (2015), that negation is classical. In-
stances of [x : Stuff] have been suppressed for brevity.

[331]

Peter R. Sutton, Hana Filip

However, across contexts in which there are much larger quanti-
ties of grains present, the judgement set may be far more consistent.
For example, a learner will rarely experience a whole packet of rice
not being judged as rice, i.e., not falling under the predicate rice, and
so is far more confident about classifying larger amounts of rice as rice.
In short, in this way we capture the observation by Chierchia (2010)
that when it comes to classifying with granular nouns like rice, quan-
tity matters. Independently of context, one may not be safe to classify
ten grains as rice, but one could, with high confidence, classify a packet
of rice as rice.
This means that, although an individuation function for rice that

identifies single grains does succeed in identifying disjoint (potentially
countable) entities, it is not wholly reliable when applied across con-
texts to establish, with a high degree of certainty, when to apply the
predicate rice. A more reliable schema could be found by opting for an
individuation schema that picks out larger collections of rice grains.
Such a move could end up failing to properly individuate disjoint en-
tities suitable for counting, however (since larger collections overlap).
In Section 5, we will show how this tension can be formally captured
within probM-TTR.

5 the learning pressures of reliability and
individuation

Given the insights of formal (mereological) theories (Section 3), we
propose that in addition to identifying a reliable criterion for applying
a predicate, learners also seek to identify an individuation schema for
a predicate. This means that pressures on nominal predicate learning
will be at least twofold:
(i) Reliability: to establish with a high degree of certainty when
to apply a predicate.

(ii) Individuation: to establish (if possible) an individuation
schema for a predicate.

In some cases, these two pressures will operate in unison, for exam-
ple, for cat, accurately judging a situation to contain one or more cat-
individuals is a very good ground to judge those entities as falling
under the number neutral predicate cat. However, as we shall argue,

[332]

Individuation, reliability, and the mass/count distinction

this is not always the case for other predicates. For example, individ-
ual rice grains are the clearly individuable units for counting rice, but
the presence of a single grain is not a reliable criterion for applying
rice since there are many contexts in which a single grain is not a suf-
ficient quantity to count as rice. Furthermore, we argue in Section 7
that tensions between these two pressures generate exactly the cases
where we find cross- and intralinguistic mass/count variation.
5.1 Formalising the requirement of reliability
Reliability is a pressure on a learner to find a set of properties that
reliably predict when to apply a predicate. We have proposed that
these properties include both qualitative and quantitative criteria. Re-
liability itself is therefore a balance between using a PInd predicate,
the upward closure of which (∗PInd) includes too much in P; and us-
ing a PInd predicate, the upward closure of which (∗PInd) includes too
little in P. Of course, the ideal balance means using a PInd predicate
that neither includes too much nor too little in P. In other words, the
most reliable individuating predicate will be one that maximises the
conditional probabilities in (34) and (35).17

Max j(p(s :
�

sP : P(x)
� | s :
�

sP-ind : ∗PInd j
(x)
�
))(34)

Max j(p(s :
�

sP-ind : ∗PInd j
(x)
� | s :
�

sP : P(x)
�
))(35)

Maximising the probability in (34) means that being a P-individual
or a sum of P-individuals is a very strong indicator of being a P. This
militates against the over-inclusivity of PInd j

. Maximising the proba-
bility in (35) means that being a P is a very strong indicator of being
a P-individual or a sum of P-individuals. This militates against the
under-inclusivity of PInd j

. Balancing these two (optimally maximising
both probabilities) should result in as close an approximation of P
and ∗PInd as possible. In the trivial case, this would just be to use P as
PInd. However, in most cases, doing this would fail to individuate any
entities at all.
To make this clearer, take the three simple cases which are graph-

ically represented in Figure 4. (i) This represents the case where the
application conditions for the predicate are perfectly matched to the
application conditions for the upward closure of the PInd predicate,

17The specifications of x : Stuff here and further below are omitted for brevity.

[333]

Peter R. Sutton, Hana Filip
Figure 4:

Maximising both
conditional

probabilities vs.
maximising one.

(i)
P, I1

(ii)
I2

P

(iii)
P

I3

P =
�

sP : P(x)
� (solid line) and

I j =
�

sP-ind : ∗PInd j
(x)
� (dotted line)

therefore both conditional probabilities (34) and (35) are maximised.
(ii) This represents the case where there are some things which are
P individuals or sums thereof that are not correctly judged as P. This
means the the probability in (35) is maximised, but the probability in
(34) is not. (iii) This represents the case where there are some things
which are correctly judged as P which are not P individuals or sums
thereof. This means that the probability in (34) is maximised, but the
probability in (35) is not.

5.2 Formalising the requirement of individuation
The pressure that can push in the opposite direction to reliabil-
ity is individuation. This pressure can be derived from a more gen-
eral pressure towards informativeness (Piantadosi et al. 2011). The
main idea in the context of countability is that disjoint individuation
schemas/predicates PInd have minimum entropy with respect to de-
termining counting results compared with predicates that are not dis-
joint. The reason for this, building on Landman’s (2011) insights, is
that when we have an overlapping set of entities, there are multiple
answers to the question ‘how many?’. Uncertainty over how many
things (relative to a predicate) there are equates to a higher level of
entropy compared with a single answer.
In order to formally capture the pressure towards individuation,

we will define a probabilistic notion of disjointness of a type, and then
relate this to minimising entropy (with respect to the disjoint variants
of a type). The (probabilistic) notion of disjointness which will be used
below is a condition for the maximal individuation of PInd predicates.
This follows the standard mereological notion of disjointness, but adds
the condition that the only relevant entities are those that are of the

[334]

Individuation, reliability, and the mass/count distinction

relevant type with sufficient amounts of certainty. We formalise ‘suf-
ficient degree of certainty’ using a probability threshold θ .
A type T is mereologically pairwise disjoint relative to a prob-
ability threshold θ iff:
∀x , y[(p(x : T)≥ θ ∧ p(y : T)≥ θ)→¬∃z[z ≤ x ∧ z ≤ y]]

In words, any two entities, taken pairwise, that are of a type with a
probability above the threshold cannot share a part with one another.
Disjoint types have only one maximally disjoint subtype (akin to

variants in Landman (2011)), namely the type itself. For types that
are not disjoint, one can form, possibly multiple, maximally disjoint
subtypes. For example, if a, b, a⊔b : T , then, relative to a, b, a⊔b, there
are two maximally disjoint subtypes v1 and v2 such that a, b : v1 and
a ⊔ b : v2, but where a ⊔ b :/v1 and a, b :/v2.
The pressure of individuation can be modelled as pushing towards

the use of a disjoint PInd type. At a first pass, we could, therefore,
suggest that the pressure of individuation is a requirement merely to
minimise entropy as in (36).

(36) Min j

�−∑
vi∈V

p(vi |PInd j
)× log p(vi |PInd j

)
�

Here, entropy values give the average amount of information needed
to determine a specific counting result. For example, assuming an
equal distribution over variants, and a base-2 logarithm, numbers of
variants and entropy values would be as follows:18

Number of variants 1 2 4 8 16
Entropy 0 1 2 3 4

The effect is that minimising entropy pushes towards a disjoint PInd

predicate because disjoint predicates have an entropy of 0.
However, the definition in (36) misses some details. As we have

seen, there are nouns such as fence, twig, line which display context-
sensitivity with respect to what counts as a single individual (focused
on by Zucchi and White (1996, 2001) and Rothstein (2010)). If the

18For example, if there are four variants such that p(v1|PInd j
) = p(v2|PInd j

) =
p(v3|PInd j

) = p(v4|PInd j
) = 0.25, then the surprisal for each variant equals 0.25×

log2 0.25= −0.5 and entropy equals −(−0.5+−0.5+−0.5+−0.5) = 2.

[335]

Peter R. Sutton, Hana Filip

Rothstein-type analysis for such nouns is correct, then, at every (de-
fault) context, there will only be a disjoint set of fence entities, even if
across contexts, these entities overlap. The denotations of prototypical
count nouns, such as cat and chair, intuitively, have inherently indi-
viduated denotations, unlike the denotations of count nouns such as
fence that require context to identify countable entities in their denota-
tion. We should, therefore, include, in the calculation for minimising
entropy, some cost C that increases entropy in relation to the number
of admissible (disjoint) PInd predicates. This is given in (37).

(37) Min j

�−�∑
vi∈V

p(vi |PInd j
)× log p(vi |PInd j

)
�
+ C
�

To give an example, let us compare three cases. Context general
PInd predicates are predicates that can be applied to correctly individ-
uate Ps across all contexts.
(i) A context general, disjoint PInd predicate. This will apply to

nouns with individuation schemas that pick out naturally atomic,
clearly disjoint objects. In this case, there is only one variant, PInd itself,
so log p(vi |PInd j

)) = 0, and there is only one PInd predicate, so C = 0.
Applying (37) gives an entropy value of 0.
(ii) A context general, not-disjoint PInd predicate with, for in-

stance, four variants. This will apply to nouns such as furniture,
which, following the analysis in Landman (2011), have denotations
in which what counts as one overlaps in the same context. If the four
variants are equally probable, conditional on PInd, this would make∑

vi∈V p(vi |PInd j
)× log p(vi |PInd j

)) = 2. There is only one PInd predicate,
so C = 0. The total entropy value will thus be 2 (see footnote 18).
(iii) A collection of two disjoint PInd predicates that each only

apply in specific contexts. This will apply to nouns, such as fence
and huonekalu (‘furniture’, Finnish, count), where what counts as
one varies from context to context. Each context-specific PInd predi-
cate is disjoint and has only one variant (itself), so ∑vi∈V p(vi |PInd j

)×
log p(vi |PInd j

) = 0 for each j. However, given that there are, in this
simple example, two PInd predicates (one for some contexts, the other
for the other contexts), one of which must be chosen in each context,
there is some cost added. The final result will be the value of C .19

19Arguably, C should itself be sensitive to the probability that a context selects

[336]

Individuation, reliability, and the mass/count distinction

On its own, individuation pushes towards finding a single disjoint
PInd predicate and sticking with it across contexts. However, if individ-
uation were the only factor, then any arbitrary disjoint PInd predicate
would suffice as an individuation schema, since there would be no
requirement for this schema to reliably identify Ps. Clearly, the up-
ward closure of this predicate type should predict, with reasonable
certainty, when to apply P. This is what the competing pressure of
reliability ensures.

5.3 Summary of reliability and individuation
Considered independently, the pressures of individuation and reliability
are each insufficient to capture a good criterion for applying a pred-
icate P. Reliability alone would not ensure adequate informativeness
for individuation (entropy would be high, on the assumption made
here that disjoint individuation schemas/predicates PInd have mini-
mum entropy compared to predicates that are not disjoint). Individu-
ation on its own would not ensure adequate reliability (what counts
as one P in some contexts is not a reliable indicator for what counts as
one P in another, hence a single individuation schema will not reliably
indicate what counts as P across contexts).
In Sections 6–7, we will see that some nouns allow a ready balance

between these pressures. These nouns will turn out to be those that are
fairly stably lexicalized as count cross-linguistically e.g. cat and chair.
Other nouns will exemplify how these two pressures can be in direct
conflict. Resolution of this conflict can only come by prioritising one
pressure or the other. In these cases, the count/mass encoding of the
noun will reflect which pressure is prioritised, and most importantly,
as we argue, predicts the variation in mass/count encoding across dif-
ferent languages (e.g., the mass noun furniture and the Finnish count
noun huonekalu (‘furniture’)) as well as within a particular language.
In yet a third case, we will argue that individuation cannot really be
satisfied. This case motivates the ‘stubborn’ encoding of nouns as mass,
as we find with prototypical mass nouns, such as mud and blood.
a particular PInd predicate. For example, there should, reasonably, be a lower cost
for a situation where the same individuation schema is selected 99 percent of the
time, versus the situation in which two schemas are equally probable. We leave
inclusion of such factors to further work.

[337]

Peter R. Sutton, Hana Filip

6 the semantics of concrete nouns in
probmʿttr

Some recent theories of the mass/count distinction propose to rep-
resent lexical entries of nouns as pairs where one projection of the
pair determines the standard denotation of a noun and the other de-
termines the counting base and/or individuation schema to apply to
that noun (Rothstein 2010; Landman 2011, 2016; Sutton and Filip
2016a). In keeping with this general idea, we represent lexical entries
of common nouns as a complex frame in which there are two record
types.
One specifies the situation type for the predicate being learned,

for instance, cat(x), which is a number neutral predicate a learner
associates with situations in which competent speakers make judge-
ments that something is a cat or that some things are cats. We label
this spred. The learner simultaneously learns how such number neutral
predicates correspond to the perceptual and functional properties of
the objects they witness competent speakers referring to.
Representations of such perceptual and functional properties are

encoded in the other part of the lexical entry which we label sc_base.
This specifies the counting base for this predicate and includes both
the quantitative and qualitative criteria of application for the number
neutral predicate in the sense of Krifka (1989). The disjointness of this
type is what enters into calculations regarding individuation (Section
5.2). The upward closure of this type is what enters into the reliabil-
ity calculations (Section 5.1). The motivation for this bipartite lexical
structure is that a learner requires both kinds of information in order
to learn how to use natural language predicates such as cat.
A schema for a noun entry is given in (38). In the frame-based

representation offered by TTR, these two record types feature as parts
of the same complex type and so can be abstracted over so as to receive
the same values when applied to a record containing some physical
entity (e.g. an entity such as felix labelled x in the record r in (38)).

(38) λr : [x : Stuff]. p(

 spred :

� Rec. type for predicate
(contains label r.x)

�
sc_base :

� Rec. type for counting base
(contains label r.x)

�
)

[338]

Individuation, reliability, and the mass/count distinction

We also adopt the basic structure for a common noun lexical entry
in prob-TTR given by Cooper et al. (2015)20 for which the result of
applying a record of the requisite type is the probability of the relevant
record type.
The simplest case is that of prototypical count nouns such as

woman, cat, chair, car. They are associated with a record type that
includes the relevant number neutral predicate, and a record type for
the counting base which contains the relevant PInd predicate. For ex-
ample, the entry for cat is given in (39), and the entry for cats is given
in (40).
(39) [[cat]] = λr : [x : Stuff].p(

�
spred :
�

scat : cat(r.x)
�

sc_base : [scatInd
: catInd(r.x)]

�
)

(40) [[cats]] = λr : [x : Stuff].p(

�
spred :
�

scat : cat(r.x)
�

sc_base : [scatInd∗ : ∗catInd(r.x)]

�
)

This structure for the semantics of concrete nouns also encodes
our conception of the semantic learning of these nouns as being guided
by the establishment, if possible, of a counting base, namely the type
labeled sc_base which may then serve as reliable criteria for applying
the type labelled spred. For cases such as cat, this is relatively straight-
forward, because being of the type of a cat individual is a reliable
criterion for applying the number neutral predicate cat (39).

Reliability: On the assumption that a suitably accurate individu-
ation schema for cats can be found, the upward closure of this pred-
icate will be a highly reliable indicator of when to use the predicate
cat. That is to say, there are very few instances of things having the
requisite properties of being a cat individual or of a cat sum for which
the judgement cat(x) would be inappropriate (recall that we assume
that the predicate type cat(x) is number neutral). Likewise, there are
relatively few mispredications (relatively few cat judgements made by
competent speakers to refer to entities without the properties of be-
ing cat individuals (or sums thereof)). Hence, such a catInd predicate
would yield high conditional probabilities of the sort in (41) and (42).

p(r : [scat : cat(x)] | r : [scat-ind : ∗catInd(x)]) = high(41)
p(r : [scat-ind : ∗catInd(x)]) | r : [scat : cat(x)] = high(42)

20Cooper et al. use pTTR.

[339]

Peter R. Sutton, Hana Filip

Individuation: Furthermore, whatever schema yields the highest
balance of these probabilities will be a predicate type that is disjoint
(it will be the type for individual cats). This means that it will satisfy
the entropy minimisation requirement as in (43).21

(43) −∑
vi∈V

p(vi |catInd)× log p(vi |catInd) = 0

With reliability and individuation acting in unison, the lexical en-
try in (39) is predicted. It has a disjoint counting base, which consti-
tutes a part of the lexical entry for a count noun. This account further
predicts that lexicalisations for the cat predicate will be stably count.
However, there are nouns for which it is less straightforward

to establish a counting base, because the learning pressures of reli-
ability and individuation conflict. In these cases, we argue, there are
two ways of conceptualising a referent, one in which individuation
is paramount, in which case the result is a count noun, and another
in which reliability is paramount, in which case the result is a mass
noun. We connect the source of this conflict between reliability and
individuation to the types of context sensitivity that play a key role in
the theories of the mass/count distinction in Chierchia (2010), Roth-
stein (2010) and Landman (2011), which we discussed in Section 3.
In the next section, we offer a probM-TTR proposal of how context
sensitivity can impact the weighting of individuation and reliability
in generating predictions about variation in mass/count lexicalization
patterns.

7 mass/count variation: the effects
of context sensitivity on

individuation and reliability

Contemporary mereological theories of the mass/count distinction
converge on the idea that the concepts on which the distinction is
based are context-sensitive in one way or another. However, the
proposals differ with respect to the degree and nature of the rele-
vant context-sensitivity. In particular, Rothstein (2010) and Landman
(2011) emphasise disjointness and overlap, which we argue can be
interpreted as generating a conflict between the learning pressures of

21We omit the cost C when C = 0.

[340]

Individuation, reliability, and the mass/count distinction

reliability and individuation (or, alternately, as generating compet-
ing requirements on the nature of lexical predicate’s meaning). An-
other source of conflict between the learning pressures of reliability
and individuation stems from what Chierchia (2010) calls ‘vagueness’.
However, we suggest this would be more aptly considered a form of
context-sensitivity (in a sense we explain below).
Crucially, we argue that the way these conflicts are resolved

tracks differences in count/mass lexicalisation of nouns, and hence
the specific resolution strategies could serve as a motivation for the
lexicalisation of nouns as mass or count, both within a particular lan-
guage and crosslinguistically.
Let us first consider the notion of disjointness. As in Landman

(2011), we assume that there is a grammatical counting function
which is sensitive to disjointness. In our account, the counting function
is of the type in (44) and applies to the record type in a lexical entry
labeled sc_base, which captures the idea that what is counted are the en-
tities of the type in the counting base. Hence, for a counting function
fcount and probability threshold θ , we propose a type restriction:
(44) fcount,θ : (RecType∧Disjθ → R)
This type restriction means that the counting function is only defined
for types that are disjoint relative to some probability threshold and
outputs a real number.
The notion of context used in Rothstein (2010) is that of a ‘count-

ing context’. Counting contexts are subsets of the domain, i.e., a set
of entities that count as atoms, as one, in a particular context, which
are then intersected with the root noun denotation of a noun to form
a disjoint set, in ‘default’ cases. As a formal device, this representa-
tion has the right motivation and effect for nouns such as fence. How-
ever, there are two weak points of Rothstein’s account that we improve
upon. First, both counting contexts and individuation remain at a pre-
theoretical level in Rothstein’s account. Second, Rothstein (2010) ef-
fectively subsumes prototypical count nouns like cat as a special case
of context-sensitive count nouns like fence, for which there just hap-
pens to be no variation in what counts as one across contexts. Intu-
itively, what is one cat is stable across all contexts, but what is one
fence varies with context. Our formalism improves on Rothstein’s idea
of counting contexts by modelling them as contexts in which some in-

[341]

Peter R. Sutton, Hana Filip

dividuation schema is used, where the different individuation schemas
that are licensed in a given context are grounded in our account of se-
mantic learning. As a result, we can explain and better motivate why
there is only one licensed individuation schema for nouns such as cat,
but multiple such schemas for nouns such as fence.
7.1 Mass/count variation in collective artifacts
The term ‘collective artifacts’ here refers to nouns which denote col-
lections of entities like, for example, furniture and kitchenware. The
main point of this section is to show that the way in which nouns for
collective artifacts denote in context allows for two distinct ways of
forming concepts. One is compatible with counting, and the other is
not. Therefore, we should expect to find variation in mass/count en-
coding in this class. A good example is the mass noun furniture in En-
glish and the count noun huonekalu-t+C,PL (‘furniture’) in Finnish. What
ultimately motivates whether a noun, say, furniture is mass in English,
and not count, may well be wholly conventional (guided by, for exam-
ple, etymological factors). Here, we focus on the issue of variation in
mass/count encoding, which is separate from the question why, say,
furniture is mass in English, which we leave aside here.
When it comes to collective artifacts, we propose that it is reason-

able to assume that what counts as one item of furniture will largely be
derived from the function of the relevant item and to a lesser degree
from its perceptual qualities. A vanity, formed of a mirror and a table,
has a joint function qua item of furniture, so plausibly counts as a sin-
gle item. However, the mirror and the dressing table each have its own
function and each can stand and be used as an individual item of fur-
niture in its own right. Likewise, we see similar patterns crosslinguis-
tically, even when collective artifacts are lexicalized as count nouns.
For example, what counts as one for the count noun huonekalu (‘furni-
ture’, Finnish) varies with context in the same way as for the English
furniture.
The kind of contextual variation that we observe with respect to

what counts as one for furniture or for huonekalu presents a learning
challenge to our basic picture of learning an individuation schema for
a given noun predicate. Recall that individuation schemas are mod-
elled as the type for which a quantitative function outputs 1. They
apply to functionally – and also perceptually – characterised situation

[342]

Individuation, reliability, and the mass/count distinction

types (of the qualitative criterion type) and are used to individuate the
entities within a situation (record) relative to a predicate. A learning
challenge arises because the same entity, the vanity, plausibly counts
as one item of furniture in one schema and as two items of furniture
in another. But that means that no single function should be able to
output both of these results for a situation (record) containing a van-
ity. Put simply, witnessing the same kind of item being treated as one
thing in one situation, and two (or more) things in other situations, is
evidence that there is more than one felicitous individuation schema
for furniture.
In other words, we have a case such as the one outlined in Sec-

tion 5, in which a learner has evidence for multiple context-specific in-
dividuation schemas. This generates a conflict between the two learn-
ing pressures of individuation and reliability. Take furniture, for in-
stance. Opting for a single individuation schema would keep stable
what is individuated as one item of furniture in every situation, but
it is not a reliable way of individuating, since one single schema will
wrongly individuate in some situations. For example, a schema that
individuates a table and amirror as two entities will be incorrect in cir-
cumstances where they should count as one item of furniture, a vanity.
Faced with this challenge, a learner has two strategies available:

namely, either to learn to apply a different schema depending on the
situation, or to form a single complex join type based on all licensed
schemas. For example, if PIndi

is a licensed individuation schema, a
more generally applicable type would be the join type formed of all
such schemas. This is shown in (45).
(45) PIndjoin

= PInd1
∨ PInd2

∨ ...∨ PIndn

The kind of context sensitivity that affects what counts as one for
collective artifacts gives rise to two alternative ways of encoding the
semantics of a furniture-like noun. We now detail these with respect
to the formal characterisations of reliability and individuation.
First, one can opt for a complex join schema, and so have a reli-

able indicator of when to apply the noun predicate in most (possibly
all) contexts. This is indicated by the high conditional probabilities in
(46) and (47). Given an individuating predicate that is the join of all
contextually specific ones, the upward closure of this predicate will
closely track how one should apply the predicate furn.

[343]

Peter R. Sutton, Hana Filip

p(r :
�
sfurn : furn(x)� |r :

�
sfurn-ind : ∗furnIndjoin

(x)
�
) = high(46)

p(r :
�
sfurn-ind : ∗furnIndjoin

(x)
�
)|r :
�
sfurn : furn(x)�= high(47)

Obviously, an individuating predicate that is the join of all contex-
tually specific ones cannot individuate or yield a disjoint type which
can support determinate counting results in a specific situation, due to
overlaps of the individuals picked by different individuation schemas
of that join individuating predicate. This captures Landman’s (2011)
intuition that overlapping entities can “simultaneously in the same
context” count as one. As shown in (48), the fact that there are a num-
ber of different ways to resolve overlap in respect to what counts as
one item of furniture leads to a comparatively high level of entropy.

(48) −∑
vi∈V

p(vi |furnIndjoin
)× log p(vi |furnIndjoin

) = high

Second, one can make the selection of one’s individuation schema
context sensitive, i.e. apply individuation schemas that may vary from
situation to situation. However, as shown in (49) and (50), this has
a negative effect on reliability. Although the probability of furn is
high given the upward closure of any specific individuating predicate
furnIndci

, the inverse conditional probability is lower than in the com-
plex join individuation schema, because most particular schemas will
exclude those bits of furniture that are parts of that which count as
one under a different individuation schema. For example, if an agent
has an individuation schema that classifies a vanity (table and mirror)
as one item of furniture, then this will exclude its parts from count-
ing as one. However, this means that the probability of applying this
particular schema given a furn judgement will be lower than for the
context general join-type case, since the context specific schema (for
vanity) will not be reliable for situations in which the table and mir-
ror should count as two items of furniture. This lowers the conditional
probability in (50).

p(r :
�
sfurn : furn(x)� | r :

�
sfurn-ind : ∗furnIndci

(x)
�
) = high(49)

p(r :
�
sfurn-ind : ∗furnIndci

(x)
�
) | r :
�
sfurn : furn(x)�= lowish(50)

[344]

Individuation, reliability, and the mass/count distinction

However, the entropy value is arguably lower than in the single
join schema case. That is, in the case of a single join schema, every
specific schema will yield an entropy value of 0, since each one is a
disjoint predicate, but since there are many such schemas, the task
of determining the right one in context incurs a cost C (see case (iii)
in Section 5.2). This is shown in (51). Provided that the cost value is
lower than the entropy value for the join type in (48), the specific case
will fare better at minimising entropy (maximising individuation).
(51) − �∑

v j∈V

∑
ci∈C

p(v j |furnIndci
)× log p(v j |furnIndci

)
�
+ C = C

In summary, if one tries to maximise reliability, the context general
join-type individuation schema wins out over adopting a number of
context specific ones. However, if one minimises entropy, selecting a
context specific schema wins out over the context general join-type
individuation schema.
This creates a tension. One simple outcome is merely to prioritise

either reliability (and thereby encode a context general join-type in-
dividuation schema), or prioritise individuation (and thereby encode
a context specific schema). Choosing the former strategy results in a
counting base that is not disjoint. This means, as per our Landman-
inspired account of the mass-count distinction, that the resulting lexi-
cal entry is one for a mass noun. Choosing the latter strategy results in
a counting base that is disjoint. This means that the resulting lexical
entry is one for a count noun, as in the case of the Finnish singular
count noun huonekalu. The results of these two strategies are given in
(52) and (53).

(52) [[furniture]]ci = λr : [x : Stuff] .p(

�
spred :[sfurn : furn(r.x)]
sc_base:[sfurnInd

: furnIndjoin
(r.x)]

�
)

(53) [[huonekalu]]ci = λr:[x : Stuff] .p(

�
spred :
�
sfurn : furn(r.x)�

sc_base:[sfurnInd
: furnIndci

(r.x)]

�
)

The lexical entry for furniture in (52) has a generalized schema as the
base, but this will not yield a noun suitable for counting, since furnIndjoinwill not be a disjoint type (both the vanity and the mirror and table
that comprise the vanity will be of this type). However, the lexical
entry for huonekalu in (53) will yield a count noun, since every single
individuation schema furnIndci

will be disjoint.

[345]

Peter R. Sutton, Hana Filip

7.2 Mass/count variation in non-bounded objects
The explanation we have just used to motivate the variation in the
mass/count encoding of collective artifacts across different languages
(e.g., furniture (mass) versus huonekalu (count) ‘furniture’, Finnish) can
also be applied to motivate the intralinguistic variation exhibited by
pairs such as fence (count) and fencing (mass), which constitute a well-
defined semantic subclass we dub here ‘non-bounded objects.’ The en-
try for fence is given in (54) and the entry for fencing is given in (55).

(54) [[fence]]ci = λr : [x : Stuff] .p(

�
spred :[sfence : fence(r.x)]
sc_base:[sfenceInd

: fenceIndci
(r.x)]

�
)

(55) [[fencing]]ci = λr:[x : Stuff] .p(

�
spred :[sfence : fence(r.x)]
sc_base:[sfenceInd

: fenceInd join
(r.x)]

�
)

Across situations, fence is interpreted relative to a context specific
individuation schema fenceIndci

where ci is selected depending on the
situation. From this it follows that individuation is maximised, but not
reliability. In a given context, fenceIndci

is disjoint, and so defined for
counting, which leads to the desirable prediction that the exact result
of counting the same stretch of fencing may result in different answers
across situations.
In contrast, fencing applies the same individuation schema across

situations, namely, one that is defined in terms of a join individua-
tion schema type fenceInd join

, which consists of a number of individua-
tion schemas. But this means that it is not disjoint. Take, for example,
Rothstein’s square field example, where the sum of four fence sides
is of type fenceInd join

, but so too are the four fence-sides taken indi-
vidually, whereby the former overlaps with the latter. But this means
that the question ‘How many fences are there?’ has two different pos-
sible answers: ‘one’ or ‘four’. In this sense, non-disjoint types are not
countable, and so fencing is mass (Landman 2011).
7.3 Mass/count variation in granulars
In Section 5, we outlined how, for small quantities of rice, an agent
may be left with a high degree of uncertainty whether or not to judge
it as satisfying the predicate rice. If, as observed by Chierchia (2010),
quantity of grains is a major factor affecting the applicability of a pred-
icate like rice to a collection of entities, then we should also expect

[346]

Individuation, reliability, and the mass/count distinction

the amount of uncertainty along an axis of quantity to be relatively
smooth (graded).
For nouns that are context sensitive in this way, a learning chal-

lenge arises. We argued, in Section 5, that semantic learning for con-
crete nouns is largely governed by two pressures. One is to ascertain
a consistent and reliable criterion for the application of a noun; the
other is to establish what, if anything, the individuable units in the
noun’s denotation are, which is a prerequisite for counting. In simple
cases, identifying the individuable units in a noun’s denotation is to
identify what the minimal entities are to license applying a predicate.
This is the case for prototypical count nouns such as cat. If one has
either a single cat, or a sum of single cats, one can correctly use the
noun cat of them.
It is precisely the context sensitivity of granular nouns, such as rice

and lentils, which provides a compelling argument in support of relia-
bility and individuation as two pressures on semantic learning impli-
cated in the acquisition of the mass/count distinction, because learn-
ing of granulars pushes reliability and individuation in opposite direc-
tions. The denotations of granulars contain perceptually individuable
units (e.g., single rice grains, or single lentils). However, having either
a single grain of rice or a single lentil does not always license that the
noun rice or lentil(s) can be felicitously applied to them. This is be-
cause there are many contexts in which single grains of rice or single
lentils, or even small quantities of rice grains or lentils are insufficient
in quantity to count as rice or lentil(s). Hence, individuating in terms
of grains loses reliability.
One way to increase reliability is to make the quantitative func-

tion one that identifies aggregates of entities with the requisite prop-
erties such as colour, shape, etc., especially if the sizes of these ag-
gregates are those most predictive of the appropriate conditions for
using the relevant predicate. The most diagnostic sizes of aggregates
will be those that are frequently encountered and have a high correla-
tion with correct application of the relevant predicate. For example, if,
say, spoonfuls, bowlfuls and packets of lentils are the most frequently
encountered aggregates of lentils and almost always get judged to be
lentils by competent speakers, then if an aggregate of lentils is a spoon-
ful, a bowlful or a packet of lentils in size, then one has very good
reason to apply lentils to that aggregate. Furthermore, if someone has

[347]

Peter R. Sutton, Hana Filip

used the term lentils one has good reason to expect it to refer to such
a frequently encountered aggregate size. Doing this would satisfy the
pressure to establish a reliable criterion; however, it would do so at
the expense of satisfying the individuation pressure.
We label the individuating predicate that is based on such single-

grain properties lentilInd_gr. This schema will not provide good results
for one aspect of reliability such as the conditional probability in (56),
because small quantities of lentils are not good predictors for when
to make a lentil judgement. In many contexts, larger quantities are
required to count as lentils. With respect to the inverse conditional
probability (57), it fares better, since the upward closure of the pred-
icate which picks out single lentils will match the conditions for ap-
plying lentil in all but the cases where sub-grain parts of lentils count
as lentils.

p(r : [slentil : lentil(x)] |r :
�
slentil-ind : ∗lentilInd_gr(x)

�
) = lowish(56)

p(r :
�
slentil-ind : ∗lentilInd_gr(x)

�
)|r : [slentil : lentil(x)] = highish(57)

The individuating predicate lentilInd_gr maximises individuation, how-
ever. It applies to single lentils, which are disjoint. This means
that there is only one variant, the predicate itself, hence en-
tropy is 0.

−∑
vi∈V

p(vi |lentilInd_gr)× log p(vi |lentilInd_gr) = 0(58)

So, adopting lentilInd_gr maximises individuation, but does so at the
expense of reliability.
The alternative strategy is to choose a schema that is more re-

liable, namely in terms of aggregates (which were formally charac-
terised in Sections 4.2-4.2). Instead of individuating only in terms
of single grains, one could instead use a schema that identifies the
sizes of aggregates of grains that are most diagnostic of when to apply
the predicate lentil (a join type of the most diagnostic lentil aggre-
gate sizes). Call this lentiljoin_agg. As formalised in (60), the lentiljoin_agg

predicate may also miss out on some cases where very small collec-
tions of lentils count as lentils (which indicates that our representation
is missing some element of further context-sensitivity for granulars).
However, it will do better with respect to predicting when to apply

[348]

Individuation, reliability, and the mass/count distinction

lentil, given the schema as shown in (59). This is because the cases
where there are insufficient amounts of lentils to make a lentil judge-
ment will also be cases where it is insufficient to make a lentiljoin_agg

judgement.
p(r : [slentil : lentil(x)] |r :

�
slentil-ind : ∗lentiljoin_agg(x)

�
) = high(59)

p(r :
�
slentil-ind : ∗lentiljoin_agg(x)

�
)|r : [slentil : lentil(x)] = highish(60)

However, the aggregating strategy fares badly with respect to indi-
viduation. A join individuating predicate that identifies aggregates
of some minimum sizes is not disjoint because e.g. spoonful sized
aggregates form proper parts of e.g. bowlful sized aggregates. Such
join types have multiple maximally disjoint variants. Therefore, each
context specific schema yields a higher entropy value than in the
lentilInd_gr case:

−∑
vi∈V

p(vi |lentiljoin_agg)× log p(vi |lentiljoin_agg) = high(61)

Neither of the two alternatives for individuation schemas can
satisfy both pressures of individuation and reliability. LentilInd_gr min-
imises entropy, thereby maximising individuation, but does not max-
imise reliability. Lentiljoin_agg maximises reliability, but does not max-
imise individuation. As in the furniture and fence cases, this tension
can result in two kinds of lexical entries involving the same number-
neutral type lentil. Equation (62) uses lentilInd_gr, has a disjoint counting
base, and so is the entry for a count noun such as the English lentil.
Equation (63) uses lentiljoin_agg, does not have a disjoint counting base,
and so is the entry for a mass noun such as the Czech čočka (‘lentil’).

[[lentil]] = λr : [x : Stuff].p(

�
spred :[slentil : lentil(r.x)]
sc_base:[slentil-ind : lentilInd_gr(r.x)]

�
)(62)

[[čočka]] = λr : [x : Stuff].p(

�
spred :[slentil : lentil(r.x)]
sc_base:[slentil-ind : lentiljoin_agg(r.x)]

�
)(63)

7.4 Mass/count stability in substances, liquids and gasses
When it comes to mass nouns like mud, blood, and air, similarly to
granulars, the quantity of a substance has an impact on the applica-

[349]

Peter R. Sutton, Hana Filip

bility of the noun in a way that varies with context. For example, a
speck of mud on one’s shoes could count as mud in a scientific clean
room context, but not in a context where one is entering a garden
shed. The principal difference between substances and granulars is in
the perceptual properties of their references. Whereas in the granular
case, there are clearly individuable entities which could be judged to
be of some PInd type (e.g. lentilInd_gr), substances lack any such thing.
This means that, of the strategies so far considered, there is only

one type individuation schema one might try to use, namely an amass-
ment, the substance noun counterpart to an aggregating schema, that
individuates in terms of a join of amassments of stuff with mud prop-
erties which are, jointly, the best indicators of when to apply mud. In a
similar vein to the granulars case we have considered, the amassment
schemas would fare well with respect to reliability ((64) and (65)).

p(r : [smud :mud(x)] |r :
�
smud-ind : ∗mudjoin_amass(x)

�
) = high(64)

p(r :
�
smud-ind : ∗mudjoin_amass(x)

�
)|r : [smud :mud(x)] = highish(65)

Individuation is militated against with such a schema, however,
since there is a high number of admissible (disjoint) variants and pre-
sumably none of them will be particularly weighted over the others:

−∑
vi∈V

p(vi |mudjoin_amass)× log p(vi |mudjoin_amass) = high(66)

On the face of it, it may look as though this strategy is the only
viable one. It maximises reliability, but does so at the expense of indi-
viduation. This leads us to expect most languages to develop a lexical
entry for mud with an overlapping counting base, thus lexicalized with
a mass noun. This is the case in English as in (67).

(67) [[mud]]ci = λr:[x : Stuff].p(

�
spred :[smud :mud(r.x)]
sc_base:[smud-ind :mudjoin_amass(r.x)]

�
)

Our account, therefore predicts relative stability in the mass lexical-
ization of substance, liquid and gas denoting nouns crosslinguistically.
However, we might ask if there is any way one could boost in-

dividuation, even for noun concepts which denote substances such
as mud and blood. A clue for what kind of strategy might do this
comes from languages like Yudja as reported in Lima (2014, 2016,

[350]

Individuation, reliability, and the mass/count distinction

a.o.). In Yudja, different sizes/portions of substances such as blood
can be directly counted provided that they are contextually disjoint.
Lima’s (2014) analysis of Yudja relies on mereotopological concepts
from Grimm (2012), and specifically on the concept of Maximal Self
Connectedness (MSC) which is the property of countable entities. In-
formally, “an entity is self-connected means that whenever we parti-
tion this entity into two parts, these two parts are connected to each
other.” (Lima 2014, p. 140)
We formalise this in terms of bounded amassments (Section 4.2),

namely, identifying, at a perceptual level, distinct bounded regions
formed from stuff with the requisite properties. For example, an indi-
viduation schema such as bloodbounded applies to stuff with blood prop-
erties that also forms a bounded region; namely, a disjoint part of
space containing blood. As such, the bloodbounded predicate will indi-
viduate as there will not be multiple variants (e.g. a drop of blood will
not be formed of disjoint bounded drops of blood). Namely, we have
zero entropy as shown in (68).

−(∑
v j∈V

p(v j |bloodbounded)× log p(v j |bloodbounded)) = 0(68)

However, although being a bounded region of e.g. blood may be a re-
liable indicator for applying blood (69), being blood may not be a re-
liable indicator for being a bounded region of blood or a sum thereof,
since blood (and other substances) do not always come in bounded
portions. This translates into a lowering of the conditional probabil-
ity in (70).

p(r : [sblood : blood(x)] |r : [sblood-ind : ∗bloodbounded(x)]) = high(69)
p(r : [sblood-ind :∗bloodbounded(x)])|r :[sblood : blood(x)] = not high(70)

Yudja does not have a rich lexicalized measurement system (aside
from loan words (Lima p.c.)). The result is that the only way to quan-
tify stuff (be it intuitively individuated or not) is by direct counting.22
Languages with such relatively rare characteristics could therefore be
ones which adopt a strategy of individuating any bounded, disjoint
amounts of stuff with the relevant perceptual (or functional) prop-
erties (e.g. colour, consistency, etc.). This strategy, applied across the

22We are grateful to S. Rothstein for raising the possibility of this connection.

[351]

Peter R. Sutton, Hana Filip

board to substance denoting nouns, could result in there being no gen-
uine mass nouns in such languages, as is reported to be the case in
Yudja (Lima 2014).
Substance denoting noun entries would, therefore, look like that

for apeta (‘blood’, Yudja), as in (71), and would be count.

(71) [[apeta]]ci = λr :[x : Stuff].p(

�
spred :[sblood :blood(r.x)]
sc_base:[sblood-ind :bloodbounded(r.x)]

�
)

8 conclusion and summary
The formalism we have developed as a mereological enrichment of
prob-TTR can be justified independently of issues surrounding the
mass/count distinction. With respect to probabilistic semantics, there
is increasing recognition that semantic, pragmatic, and knowledge
representations, in order to be cognitively plausible, should be able
to reflect gradience in judgements, and be consistent with a tractable
account of semantic learning. Mereology is widely used in semantics
for modelling plurality, tense, and aspect as well as the mass/count
distinction. Using these formal tools, we tried to flesh out the intu-
ition of Krifka (1989) that applying nouns involves both qualitative
and quantitative criteria. We sketched how some properties, such as
the size and boundedness of an aggregate of rice grains, could be mod-
elled in a manner inspired by work on linking TTR representations to
perceptual inputs, and how spatial perception is one factor in guid-
ing the quantitative process of individuating entities. We have also
shown how probM-TTR naturally accommodates cutting edge ideas on
the semantics of the mass/count distinction, and, significantly, we are
able to offer a unified explanation of why some classes of nouns dis-
play a wide amount of cross and intralinguistic mass/count variation
while others do not; namely, as the result of balancing the pressures
of individuation and reliability in semantic learning. Sometimes these
pressures align (prototypical objects), sometimes they do not (collective
artifacts, non-bounded objects, and granulars) and sometimes individu-
ation cannot easily be prioritised at all (substances).
This yields four semantic classes of nouns which pattern differ-

ently with respect to the distribution their nouns have over the two
grammatical properties mass and count. These are summarised in
Table 1 and elaborated on below.

[352]

Individuation, reliability, and the mass/count distinction

Noun class Properties of counting base Mass/count
variation

Prototypical objects Disjoint, single individuation schema
across contexts

Rare

Collective artifacts &
non-bounded objects

Multiple, disjoint, context specific
schemas or a single multiplicity of
overlapping schemas

Common

Granulars Disjoint schema picking out single
grains, or overlapping schema amass-
ing aggregates of grains (e.g., spoon-
fuls, bowlfuls)

Common

Substances Usually, an overlapping schema that
groups frequently encountered amass-
ments of stuff. Sometimes a schema
that identifies contextually provided
bounded amassments

Rare

Table 1:
Summary of
noun classes and
their properties

Prototypical objects: The types that pick out the individuable en-
tities in the denotations of prototypical object nouns are also highly
consistent indicators of when to apply the nouns. The pressures of in-
dividuation and reliability work in the same direction, i.e., they con-
verge on the count encoding. We, therefore, have no reason to expect
much variation from the count encoding, cross- and intralinguistically.

Collective artifacts and non-bounded objects: The context-sensitivity
of nouns in these classes affects the reliability with which any single
individual predicate type applies. For example, across contexts, a sum
of fence pieces can count as one fence, or two fences; and a pestle and
mortar can count as one item of kitchenware or two items of kitchen-
ware. This means that any particular individuation schema will unre-
liably determine the extension. To prioritise individuation, multiple
individuation schemas, each indexed to a context, can be used. This
yields count nouns such as fence, and Küchengeräte (‘kitchenware’ Ger-
man). Alternatively, to prioritise reliability, all individuation schemas
can be merged together. This yields a non-disjoint schema, and so mo-
tivates the encoding of nouns, such as fencing and kitchenware, as mass
nouns.

Granulars: Context-sensitivity with granular noun denotations has
an effect on what quantities of the relevant stuff are needed to qualify
for that stuff to fall under a given noun denotation. Granular nouns
tend to be easily perceptually individuable (in terms of salient indi-

[353]

Peter R. Sutton, Hana Filip

vidual grains), but given that single grains are not always enough to
qualify as falling under a given noun denotation across all contexts,
the type for single grains, that prioritises individuation, is inconsistent
as a basis for applying a noun. Prioritising individuation yields a count
noun encoding, which is commonly presupposed by pluralisation, e.g.
lentils, oats, kaurahiutale-et (‘oatmeal’, Finnish). On the other hand,
prioritising reliability yields a non-disjoint individuation schema, and
so leads to a mass noun encoding, as in oatmeal, kaura (‘oats’, Finnish),
čočka (‘lentils’, Czech).

Substances: Context-sensitivity also has an effect on amounts of
quantities (e.g., of substances, liquids, and gases) reaching a certain
threshold to qualify as falling under a given noun (e.g., mud, blood,
and air). However, the perceptual qualities of the denotations of these
nouns does not easily enable the prioritisation of individuation that
could be achieved for count granular nouns. If individuation cannot
easily be prioritised, then we should expect to find more cases where
reliability will be. Therefore, we expect a heavy tendency towards
mass encoding for these nouns.

references

J. L. Austin (1950/1979), Truth, in J. O. Urmson and G. J. Warnock,
editors, Philosophical Papers, Third Edition, pp. 117–133, Oxford University
Press, Oxford, Originally in: Symposium: Truth, Proceedings of the Aristotelian
Society, Vol. 24 (1950).
Jon Barwise and John Etchemendy (1987), The Liar: An Essay on Truth and
Circularity, Oxford University Press USA.
Gennaro Chierchia (2010), Mass Nouns, Vagueness and Semantic Variation,
Synthese, 174:99–149.
Robin Cooper (2012), Type Theory and Semantics in Flux, in R. Kempson,
T. Fernando, and N. Asher, editors, Philosophy of Linguistics, Handbook of the
Philosophy of Science, pp. 271–323, Elsevier.
Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson (2014),
A Probabilistic Rich Type Theory for Semantic Interpretation, Proceedings of the
EACL 2014 Workshop on Type Theory and Natural Language Semantics.
Robin Cooper, Simon Dobnik, Staffan Larsson, and Shalom Lappin (2015),
Probabilistic Type Theory and Natural Language Semantics, LILT, 10(4).

[354]

Individuation, reliability, and the mass/count distinction

Simon Dobnik, Robin Cooper, and Staffan Larsson (2012), Modelling
language, action, and perception in type theory with records, in Constraint
Solving and Language Processing, pp. 70–91, Springer Berlin Heidelberg.
Jan van Eijck and Shalom Lappin (2012), Probabilistic Semantics for Natural
Language, in P. Christoff, N. Gierasimszuk, A. Marcoci, and S. Smets,
editors, Logic and Interactive Rationality Volume 2, pp. 17–35, University of
Amsterdam: ILLC.
Hana Filip and Peter Sutton (2017), Singular Count NPs in Measure
Constructions, manuscript, to be presented at SALT 2017.
Charles J. Fillmore (1975), An Alternative to Checklist Theories of Meaning,
Proceedings of the First Annual Meeting of the Berkeley Linguistics Society,
1:123–131.
Charles J. Fillmore (1976), Frame semantics and the nature of language,
Annals of the New York Academy of Sciences, 280(1):20–32, ISSN 1749-6632.
Scott Grimm (2012), Number and Individuation, PhD Dissertation, Stanford
University.
Daniel C. Hyde and Elizabeth S. Spelke (2011), Neural signatures of number
processing in human infants: evidence for two core systems underlying
numerical cognition, Developmental Science, 14(2):360–371, ISSN 1467-7687,
doi:10.1111/j.1467-7687.2010.00987.x,
http://dx.doi.org/10.1111/j.1467-7687.2010.00987.x.
Ray Jackendoff (1991), Parts and Boundaries, Cognition, 41:9–45.
A. Kolmogorov (1950), Foundations of probability, Chelsea Publishing, New
York.
Manfred Krifka (1989), Nominal Reference, Temporal Constitution and
Quantification in Event Semantics, in Renate Bartsch and J. F. A. K. van
Benthem and P. van Emde Boas, editor, Semantics and Contextual Expression,
pp. 75–115, Foris Publications.
Fred Landman (2011), Count Nouns – Mass Nouns – Neat Nouns – Mess
Nouns, The Baltic International Yearbook of Cognition, 6:1–67.
Fred Landman (2016), Iceberg Semantics for Count Nouns and Mass Nouns:
The evidence from portions, The Baltic International Yearbook of Cognition Logic
and Communication, 11:1–48.
Daniel Lassiter (2016), Must, knowledge, and (in)directness, Natural Language
Semantics, 24(2):117–163, ISSN 1572-865X, doi:10.1007/s11050-016-9121-8,
http://dx.doi.org/10.1007/s11050-016-9121-8.
Suzi Lima (2014), All notional mass nouns are count nouns in Yudja,
Proceedings of SALT, 24:534–554.

[355]

Peter R. Sutton, Hana Filip

Suzi Lima (2016), Container constructions in Yudja: locatives, individuation
and measure, The Baltic International Yearbook of Cognition Logic and
Communication, 11:1–40.
Godehard Link (1983), The Logical Analysis of Plurals and Mass Terms: A
Lattice-Theoretic Approach, in P. Portner and B. H. Partee, editors, Formal
Semantics - the Essential Readings, pp. 127–147, Blackwell.
S. Piantadosi, H. Tily, and E. Gibson (2011), The communicative function
of ambiguity in language, PNAS, 108(9):3526–3529.
Roberta Pires de Oliveira and Susan Rothstein (2011), Bare singular noun
phrases are mass in Brazilian Portugese, Lingua, 121:2153–2175.
James Pustejovsky (1995), The Generative Lexicon, MIT Press.
Susan Rothstein (2010), Counting and the Mass/Count Distinction, Journal of
Semantics, 27(3):343–397, doi:10.1093/jos/ffq007.
Peter R. Sutton and Hana Filip (2016a), Mass/Count Variation, a
Mereological, Two-Dimensional Semantics, The Baltic International Yearbook of
Cognition Logic and Communication, 11:1–45.
Peter R. Sutton and Hana Filip (2016b), A probabilistic, mereological
account of the mass/count distinction, LNCS 10148, Proceedings of TbiLLC 2015,
p. To appear.
Leonard Talmy (2000), Toward a Cognitive Semantics – Vol. 1, The MIT Press.
Sandro Zucchi and Michael White (1996), Twigs, Sequences and the
Temporal Constitution of Predicates, in Teresa Galloway and Justin Spence,
editors, Proceedings of SALT 6, pp. 223–270, Linguistic Society of America.
Sandro Zucchi and Michael White (2001), Twigs, Sequences and the
Temporal Constitution of Predicates, Linguistics and Philosophy, 24(2):223–270.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[356]

Quantification in frame semantics with
binders and nominals of hybrid logic*

Laura Kallmeyer1, Rainer Osswald1, and Sylvain Pogodalla1,2
1 Heinrich Heine Universität, Düsseldorf, Germany

2 INRIA, Villers-lès-Nancy, France
Université de Lorraine, LORIA, Vandœuvre-lès-Nancy, France

CNRS, LORIA, Vandœuvre-lès-Nancy, France

abstract
Keywords: Frame
semantics,
quantification,
hybrid logic,
Abstract
Categorial
Grammar

This paper aims to integrate logical operators into frame-based se-
mantics. Frames are semantic graphs that allow lexical meaning to be
captured in a fine-grained way but that do not come with a natural
way to integrate logical operators such as quantifiers. The approach
we propose stems from the observation that modal logic is a power-
ful tool for describing relational structures, including frames. We use
its hybrid logic extension in order to incorporate quantification and
thereby allow for inference and reasoning. We integrate our approach
into a type theoretic compositional semantics, formulated within Ab-
stract Categorial Grammars. We also show how the key ingredients
of hybrid logic, nominals and binders, can be used to model semantic
coercion, such as the one induced by the begin predicate. In order to
illustrate the effectiveness of the proposed syntax-semantics interface,
all the examples can be run and tested with the Abstract Categorial
Grammar development toolkit.

1 frames and lexical semantics
Frames emerged as a representation format of conceptual and lexi-
cal knowledge (Fillmore 1977; Barsalou 1992; Löbner 2014a). They

*This work was supported by the INRIA sabbatical program and by the CRC
991 “The Structure of Representations in Language, Cognition, and Science”
funded by the German Research Foundation (DFG).

Journal of Language Modelling Vol 5, No 2 (2017), pp. 357–383

Laura Kallmeyer et al.

are commonly presented as semantic graphs with labelled nodes and
edges, such as the one in Figure 1, where nodes correspond to entities
(individuals, events, …) and edges correspond to (functional or non-
functional) relations between these entities. In Figure 1 all relations
except part-of are meant to be functional.

Figure 1:
Frame for the
meaning of the

man walked to the
house (adapted
from Kallmeyer

and Osswald
2013)

l0

motion
l1

man

path

walking

l2

house

agent

mover

pathmanner

endp at-regionpart-of

goal

Structuring the knowledge as frames offers a fine-grained and sys-
tematic decomposition of meaning. This conception of frames is how-
ever not to be confused with the somewhat simpler FrameNet frames,
although the former can help to capture the structural relations of the
latter (see Osswald and Van Valin 2014).

Frames can be formalized as extended typed feature structures
(Petersen 2007; Kallmeyer and Osswald 2013) and specified as models
of a suitable logical language, the labelled attribute-value description
(LAVD) language. Such a language allows for the composition of lexical
frames on the sentential level by means of an explicit syntax-semantics
interface (Kallmeyer and Osswald 2013).

1.1 Logical representation of feature structures
The syntax-semantics interface of (Kallmeyer and Osswald 2013) relies
on a formal representation of semantic frames as base-labelled feature
structure with types and relations. This definition extends the standard
definition of feature structures in two respects. First, in addition to
features, proper relations between nodes can be expressed. Moreover,
it is not required that every node be accessible from a single root node
via a feature path; instead, it is required that every node be accessible
from one of the base-labelled nodes. Semantic frames defined in this
way can be seen as finite first-order structures which conform to a
signature consisting of a set Label∪Type of unary relation symbols and

[358]

Quantification in frame semantics

a set Feat∪Rel of binary relation symbols subject to the constraints that
the members of Label denote singletons, the members of Feat denote
functional relations, and that the above accessibility condition holds. In
the example frame of Figure 1, symbols inside nodes (l0, l1, …) indicate
base labels, symbols attached to nodes (man, motion, …) belong to
Type, members of Feat are marked by small caps (agent, endp, …),
and part-of is the only member of Rel occurring in this frame.

But the logical framework of (Kallmeyer and Osswald 2013) does
not provide means for explicit quantification. As a consequence, the
referential entities of the domain of discourse are implicitly treated as
definite, which is reflected by the naming of nodes l0, l1, etc.

Such relational structures can also easily be turned into Kripke
structures. Thus, semantic frames, or feature structures, provide a nat-
ural application domain for modal languages and, in particular, for
hybrid extensions because of the need to cope with node labels and
feature path re-entrancies (Blackburn 1993).
1.2 Semantic frames and hybrid logic
As Blackburn (1993) points out, attribute-value structures can be de-
scribed using the logical language of Hybrid Logic (HL, cf. Areces and
ten Cate 2007), an extension of the language of modal logic, well-
suited to the description of graph structures like the one of Figure 1.
HL introduces nominals, i.e., node names, that allow the logical formu-
las to refer to specific nodes of the graph. The nominal l0 for instance
refers to themotion node in Figure 1. It is then possible, for example, to
specify that the agent and the mover edges from the node l0 should
meet on the same node in Figure 1. This additional expressiveness of
HL over modal logic allows one to express node sharing in attribute
value structures (Blackburn 1993). HL is an established logical formal-
ism which has been extensively studied, in particular with respect to
the addition of variables for nodes, and the associated binders, that can
appear in the logical formulas. Its relation to attribute-value structures
and its expressiveness make it a natural candidate to relate quantified
expressions and frame semantics.

With respect to Kallmeyer and Osswald (2013), the approach we
propose here does not consider frames as “genuine semantic represen-
tations”. The one-to-one equivalence between the logical formulas of
the LAVD language of Kallmeyer and Osswald (2013) and the frames

[359]

Laura Kallmeyer et al.

as graph (or relational) structures relies on the existence of minimal
models for such formulas. While HL with nominals but without vari-
ables nor binders is very close to the LAVD language, it is not obvious
what the notion of minimal model of the latter becomes when using
quantification. Thus, we have a more traditional view where the sense
of an expression is a hybrid logical formula and its reference is com-
puted against models. The latter are the frames we wish to consider.
But, contrary to what happens with minimal models, they are then not
fully specified by the logical formulas which serve as frame descrip-
tions.

This move from encodings to models is closely related to the one
from feature value matrices, as directly encoding a graph, to descrip-
tions of admissible structures when negation or disjunction were intro-
duced (Blackburn 1993, see the end of Section 1).

1.3 Related work
Hybrid logic with nominals but without quantification over states was
already used to describe semantic dependency graphs by Baldridge
and Kruijff (2002). Natural language quantification is there encoded
using restr and body relations. However, it remains unclear how to
compute relations between such representations (e.g., how to check
that John kisses Mary holds in case every man kisses Mary holds). An
additional step of interpretation of the graphs seems to be required.

A similar approach is proposed by Kallmeyer and Richter (2014)
for quantification in frame semantics. In this approach, “quantifier
frames” also introduce restr and body attributes that point to nodes
(typically representing an entity and an event, respectively). But they
do not directly encode the truth conditions that would be associated
with a model-theoretic interpretation. Bridging the gap between the
quantifier frame and the model-theoretic interpretation requires the
additional extraction of a predicate-logical formula; this, in turn, can
be model-theoretically interpreted in order to compute the truth value
of the expression.

Baldridge and Kruijff (2002) and Kallmeyer and Richter (2014)
consider frames to be expressions that need to be further interpreted,
possibly as formulas of predicate logic that, in turn, can be given a
model-theoretic interpretation in a usual way.

[360]

Quantification in frame semantics

In the approach we presently propose, and contrary to these pre-
vious approaches, there is no quantifier frame as such. The frames
themselves are the models. The quantifiers are part of the formulas de-
scribing or constraining the frames (as models of the logical formulas)
that can make an expression true. The HL formulas are the expressions
to be interpreted as frames. But for the latter, no additional interpreta-
tion is required. The logical operators and the frames (as models) are
kept separate, following the approach suggested by Muskens (2013).

2 hybrid logic and semantic frames

2.1 Hybrid logic
We use the notations of Areces and ten Cate (2007).
Definition 1 (Formulas). Let Rel = Func ∪ PropRel be a set of func-
tional and non-functional relational symbols, Prop a set of proposi-
tional variables, Nom a set of nominals (node names), and Svar a set
of state variables. Let Stat= Nom∪ Svar.

The language of formulas Forms is defined as:

Forms ::=⊤ | p | s | ¬ϕ | ϕ1 ∧ϕ2 | 〈R〉ϕ | Eϕ | @sϕ | ↓ x .ϕ | ∃x .ϕ

where p ∈ Prop, s ∈ Stat, R ∈ Rel, x ∈ Svar, and ϕ,ϕ1,ϕ2 ∈ Forms.
Moreover, we define:

• A

ϕ ≡ ¬ E¬ϕ
• [R]ϕ ≡ ¬〈R〉¬ϕ
• ϕ⇒ψ≡ ¬ϕ ∨ψ

We call Aand [R] universal operators, and Eand 〈R〉 existential oper-
ators. The elements of Func will be written in small caps.

The 〈R〉 and [R] operators are the usual modal operators corre-
sponding to some accessibility relation R. The semantics of the new
operators are given in the definitions to come, but the intuition be-
hind them is as follows. The Eϕ formula states that somewhere in the
relational structure there is a node where ϕ holds. A

ϕ holds only if
ϕ holds at each node of the structure. The binder ↓ in ↓ x .ϕ gives the
name x to the current node, so that x can be referred to arbitrarily
deep in ϕ. The quantifier ∃x .ϕ does not change the evaluation node,

[361]

Laura Kallmeyer et al.

but states that some other node in the structure exists, is given the
name x , and is such that ϕ (that possibly refers to x) is true at the
current evaluation node. Finally, @sϕ states that ϕ holds at the node
named s. With this operator, it can be checked from any place in the
relational structure that the property ϕ holds at this specific node.
Definition 2 (Model). A model M is a triple 〈M , (RM)R∈Rel, V 〉 such
that M is a non-empty set, each RM is a binary relation on M , and the
valuation V : Prop ∪Nom −→ ℘(M) is such that if i ∈ Nom then V (i)
is a singleton. An assignment g is a mapping g : Svar −→ M . For an
assignment g, g x

m is an assignment that differs from g at most on x and
g x

m(x) = m. For s ∈ Stat, we also define [s]M ,g to be the only m such
that V (s) = {m} if s ∈ Nom and [s]M ,g = g(s) if s ∈ Svar.
Definition 3 (Satisfaction relation). LetM be a model, w ∈ M , and g
an assignment forM . The satisfaction relation is defined as follows:
M , g, w ⊨⊤
M , g, w ⊨ s iff w= [s]M ,g for s ∈ Stat
M , g, w ⊨ ¬ϕ iff M , g, w ̸ ⊨ϕ
M , g, w ⊨ ϕ1 ∧ϕ2 iff M , g, w ⊨ ϕ1 andM , g, w ⊨ ϕ2

M , g, w ⊨ 〈R〉ϕ iff there is a w′ ∈ M such that
RM (w, w′) andM , g, w′ ⊨ ϕ

M , g, w ⊨ p iff w ∈ V (p) for p ∈ Prop
M , g, w ⊨@sϕ iff M , g, [s]M ,g ⊨ ϕ for s ∈ Stat
M , g, w ⊨↓ x .ϕ iff M , g x

w, w ⊨ ϕ
M , g, w ⊨ ∃x .ϕ iff there is a w′ ∈ M such thatM , g x

w′ , w ⊨ ϕ
M , g, w ⊨ Eϕ iff there is a w′ ∈ M such thatM , g, w′ ⊨ ϕ

We can then check that M , g, w ⊨ A

ϕ iff ∀w′ M , g, w′ ⊨ ϕ. Ais
the universal modality. A

ϕ states that the property ϕ should hold at
each node of the model.
Definition 4 (Satisfaction and validity). A formula ϕ is:

• satisfiable if there is a modelM , and an assignment g onM , and
a state w ∈ M such thatM , g, w ⊨ ϕ

• globally true in a modelM under an assignment g if it is satisfiable
at all states of the model, i.e.,M , g, w ⊨ ϕ for all w ∈ M . We write
M , g ⊨ ϕ

• valid if for all modelsM and assignments g,M , g ⊨ ϕ.

[362]

Quantification in frame semantics

We can reformulate the frame of Figure 1 (Section 1) within this
framework. The Prop vocabulary we use in the HL formulas corre-
sponds to the unary relation symbols of Type used by Kallmeyer and
Osswald (2013) to represent frames (see Section 1.1). The Nom vocab-
ulary corresponds to the unary relation symbols of Label, and the Rel

vocabulary subsumes the Feat binary relations of Kallmeyer and Oss-
wald (2013). Note that the functionality of the members of Feat must
be enforced separately by axioms. The semantic frame of Figure 1
is then a model that satisfies the formula (1) at the element named
by l0. This formula also highlights the crucial role of nominals in this
setting. Several other formulas would be possible, but using an@ oper-
ator, here @v, is needed to specify that the at-region and the part-of
edges meet on the same node (the @l2 is not completely necessary to
describe the structure of Figure 1 but naturally arises in a composi-
tional computing of this representation).

(1) l0 ∧motion ∧ 〈agent〉(l1 ∧man) ∧ 〈mover〉l1∧
〈goal〉(l2 ∧ house) ∧ 〈manner〉walking∧
(∃v w.〈path〉(path∧ 〈endp〉v)∧

@l2(〈at-region〉w)∧@v(〈part-of 〉w))
2.2 Expressive power
According to the satisfaction relation definition, ↓ and ∃ bind node
variables without changing the current evaluation node. In addition
to E, Blackburn and Seligman (1995) introduce another quantifier Σ
for which the satisfaction relation also changes the evaluation node:1

M , g, w ⊨ Σx .ϕ iff ∃w′ M , g x
w′ , w′ ⊨ ϕ

This defines two independant families of operators: ↓ and ∃, and E

and Σ.2 However, using any two operators of both families (for in-
stance ↓and E, the “weakest” ones) is expressively equivalent to using
the most expressive fragment of the hybrid languages (the full hybrid
language).

1Blackburn and Seligman (1995) call Ethe somewhere operator, and write it
◊, and Ais the universal modality, written □.

2Note that ↓ can be defined in terms of ∃ by ↓ x .ϕ ≡ ∃x .x ∧ϕ and that Ecan
be defined in terms of Σ by Eϕ ≡ Σz.ϕ with z not occurring in ϕ.

[363]

Laura Kallmeyer et al.

It is usual to refer to the hybrid languages H (θ1, . . . ,θn) as the
extension of the modal language with nominals and the operators
θ1, . . . ,θn ∈ {↓,@, E,∃}. It is worth noting that even using the simplest
binder ↓ already causes the satisfiability problem for H (↓) to be un-
decidable (Areces et al. 1999) where the satisfiability problem corre-
sponds to answering the question whether given a formula ϕ, there is
a modelM , an assignment g and a node w such thatM , g, w ⊨ ϕ.

Nevertheless, there are syntactic restrictions on formulas that
make the satisfiability problem decidable. In particular, formulas of
the full hybrid language that do not contain the pattern “universal
operator scoping over a ↓ operator scoping over a universal opera-
tor” have a decidable satisfiability problem (ten Cate and Franceschet
2005). Such formulas are used by Kallmeyer et al. (2015).

But the formulas we use in the present paper do show this pattern.
On the other hand, they do not use the pattern “existential operator
scoping over a ↓ operator scoping over an existential operator”. For
such formulas, the validity problem is shown to be decidable (ten Cate
and Franceschet 2005). Although the validity problem for first-order
logic is undecidable, this result by itself does not really improve on
first-order logic representations. A more promising approach would
be to consider semantic restrictions of the underlying class of models.
For instance, (Schneider 2007) describes some classes where decid-
ability results hold. As we do not take advantage so far of the Frame
Semantics hypothesis that considers attributes to be functional, the
class of models with such a semantic restriction is a natural candidate
for studying the satisfiability problem. In any case, for every hybrid
language, testing a given formula against a given finite model is de-
cidable (Franceschet and de Rijke 2006).
2.3 Frame semantics with quantification
Since the models we are considering are semantic frames instead of
arbitrary first-order models, we first present some models in which
we consider the sentences (2a), (3a), and (4a). When the model is the
frame of Figure 2, we expect (2a) to be true. There indeed is a kissing
event with agent and theme attributes linking to persons named
(represented by the name attribute) John and Mary respectively. Ac-
cordingly, we wish to represent the semantics of (2a) by the hybrid
logic formula (2b).

[364]

Quantification in frame semantics

agent

name

the
me name

agent name
theme

age
nt

theme theme
kissing

person

John

person

Mary

kissing person Peter

kissing person

Sue

kissing

i0person

Paul

agent
n
a
m
e

n
a
m
e

Figure 2:
Quantification

On the other hand, (3a) is expected to be false as there is a person
named Paul who is agent of a single kissing event whose theme is a
person named Sue. The frame of Figure 2 indeed falsifies the formula
(3b) because we can find a node (namely, i0) at which man holds,3
but there is no kissing node from which we can both reach i0 through
an agent relation and, through a theme relation, a node at which
person∧ 〈name〉Mary also holds.

With the object wide scope reading, we also expect (4a) to be
false in the frame of Figure 2 because while the person named Paul
and Peter both are agent of kissing events, these events do not have
the same theme. However, with the subject wide scope reading, (4a)
is expected to be true in this frame.
(2) a. John kisses Mary

b. E(kissing∧ 〈agent〉(person∧ 〈name〉John)∧
〈theme〉(person∧ 〈name〉Mary))

(3) a. Every man kisses Mary
b. A

(↓ i.man⇒ E(kissing∧ 〈agent〉i∧
〈theme〉(person∧ 〈name〉Mary)))

(4) a. Every man kisses some woman
b. A

(↓ i.man⇒ E(↓ i′.woman∧
E(kissing∧ 〈agent〉i ∧ 〈theme〉i′)))

c. E(↓ i.woman∧ A

(↓ i′.man⇒
E(kissing∧ 〈agent〉i′ ∧ 〈theme〉i)))

3Actually, in Figure 2, only person holds at i0. We can have man hold as well
with the additional postulate that (person∧〈name〉Paul)⇒man, and similarly of
each node with a name attribute.

[365]

Laura Kallmeyer et al.
Figure 3:

Quantification
and node sharing

endp

path

manner
at-region

goal

agent

mover
name

path
mannermover

agent

goal

name

motion

path v1

walking

house
w

person
John

motion

v2

path
walking

person Peter

pa
rt

-o
f part-of

endp

(5a) shows how state storing with the ↓ operator correctly inter-
acts with the @ operator in order to describe node sharing. This sen-
tence is expected to be true (both readings) in the model given by the
frame of Figure 3.The frame semantics analysis of bounded motions
verbs in (Kallmeyer and Osswald 2013) requires the motion to have
a goal attribute. It is moreover required that the node reached is
the same as the one of the entity provided by the PP. We express this
requirement in the HL formulas (5b) and (5c):
1. by binding to the variable i′ a house node,
2. by binding to the variable g a node that is accessible from the

motion node via the 〈goal〉 relation,
3. and by stating that i′ and g should be the same node, i.e., g ∧ i′

should hold.
(5) a. Every man walked to some house

b. A

(↓ i.man⇒ (E(↓ i′.house∧
(∃a g. E(motion∧ 〈agent〉a ∧ 〈mover〉a ∧ 〈goal〉g∧
〈path〉path∧ 〈manner〉walking∧@a i∧
(∃r v w.event∧ 〈path〉(path∧ 〈endp〉v)∧
@r(〈at-region〉w)∧@v(〈part-of 〉w)∧@r(g ∧ i′)))))))

c. E(↓ i′.house∧ (A

(↓ i.man⇒
(∃a g. E(motion∧ 〈agent〉a ∧ 〈mover〉a ∧ 〈goal〉g∧
〈path〉path∧ 〈manner〉walking∧@a i∧
(∃r v w.event∧ 〈path〉(path∧ 〈endp〉v)∧
@r(〈at-region〉w)∧@v(〈part-of 〉w)∧@r(g ∧ i′)))))))

[366]

Quantification in frame semantics

Our goal is to compositonally associate each expression in natu-
ral language to an HL formula. This logical formula is to be checked
against the possible models, and the sentence is true w.r.t. a modelM
in case this model satisfies the logical formula. More precisely, given
a sentence s and its semantic representation JsK, we say that s is true iff
for all assignments g,M , g ⊨ JsK (i.e., JsK is globally true inM under
any assignment).

Note that we use several modal operators. Each of them describes
the accessibility relations corresponding to one of the attributes we
find in frames (agent, goal, etc.). They should not be confused with
other possible modal operators that are used for natural language se-
mantics (e.g., knowledge and belief, intensionality, etc.). Clarifying
the interaction between these different kinds of modal operators, for
instance following Blackburn and Rijke (1997), is an important issue.
But this goes beyond the scope of this paper and is left for future work.

3 syntaxʿsemantics interface with
abstract categorial grammars

In order to exemplify our approach to quantification in frame se-
mantics, we rely on the framework of Abstract Categorial Grammars
(ACG) (de Groote 2001). ACGs derive from type-theoretic grammars in
the tradition of Lambek (1958), Curry (1961), and Montague (1974).
Rather than being a grammatical formalism on their own, they pro-
vide a framework in which several grammatical formalisms may be
encoded (de Groote and Pogodalla 2004). Since our focus is on the
semantic modelling of quantification in frame semantics and its com-
positional account, we provide a Montague grammar based syntactic
modelling that is sufficient for our purpose. Integration of the mod-
elling of scope ambiguity in a TAG encoding (de Groote 2002) for
instance would require an embedding into an underspecified repre-
sentation language (Bos 1995; Pogodalla 2004; Kallmeyer and Romero
2008) that plays no role in the final interpretation of the logical for-
mula to be interpreted.
3.1 Abstract Categorial Grammars
The definition of an ACG is based on a small set of mathematical prim-
itives from type theory, λ-calculus, and linear logic. These primitives

[367]

Laura Kallmeyer et al.

combine via simple composition rules, offering ACGs good flexibility.
In particular, ACGs generate languages of linear λ-terms, which gen-
eralize both string and tree languages. Crucially, ACG provides the
user with direct control over the parse structures of the grammar, the
abstract language. Such structures are later interpreted by a morphism,
the lexicon, to get the concrete object language. A vocabulary is the
higher-order signature that defines the atomic elements (atomic types
and typed constants).

For sake of self-containedness, we review here the basic defini-
tions of ACGs.
Definition 5 (Types). Let A be a set of atomic types. The set T (A) of
implicative types built upon A is defined with the following grammar:

T (A) ::= A|T (A)⊸ T (A)|T (A)→ T (A)

The set of linear implicative types built upon A is defined with the
following grammar:

T 0(A) ::= A|T 0(A)⊸ T 0(A)

Definition 6 (Higher-order signatures). A higher-order signature Σ is a
triple Σ= 〈A, C ,τ〉 where:

• A is a finite set of atomic types;
• C is a finite set of constants;
• τ : C → T (A) is a function assigning types to constants.
A higher-order signature Σ = 〈A, C ,τ〉 is linear if the codomain of

τ is T 0(A).
Definition 7 (λ-Terms). Let X be an infinite countable set of λ-
variables. The set Λ(Σ) of λ-terms built upon a higher-order signature
Σ= 〈A, C ,τ〉 is inductively defined as follows:

• if c ∈ C then c ∈ Λ(Σ);
• if x ∈ X then x ∈ Λ(Σ);
• if x ∈ X and t ∈ Λ(Σ) and x occurs free in t exactly once, then
λox .t ∈ Λ(Σ);

• if x ∈ X and t ∈ Λ(Σ), then λx .t ∈ Λ(Σ);
• if t, u ∈ Λ(Σ) then (t u) ∈ Λ(Σ).

[368]

Quantification in frame semantics

Note there is a linear λ-abstraction (denoted by λo) and a (usual) in-
tuitionistic λ-abstraction (denoted by λ). There also are the usual no-
tions of α, β , and η conversions (Barendregt 1984).
Definition 8 (Typing judgment). Given a higher-order signature Σ,
the typing rules are given with an inference system whose judgments
are of the form: Γ ;∆ ⊢Σ t : α where:

• Γ is a finite set of non-linear variable typing declarations;
• ∆ is a finite set of linear variable typing declarations.

Both Γ and ∆ may be empty. If both of them are empty, we usually
write t : α (t is of type α) instead of ⊢Σ t : α. Moreover, we drop the
Σ subscript when the context permits. Table 1 gives the typing rules.

(const.)
Γ ;⊢Σ c : τ(c)

(lin. var.)
Γ ; x : α ⊢Σ x : α

(var.)
Γ , x : α;⊢Σ x : α

Γ ;∆, x : α ⊢Σ t : β (l. abs.)
Γ ;∆ ⊢Σ λox .t : α⊸ β

Γ ;∆1 ⊢Σ t : α⊸ β Γ ;∆2 ⊢Σ u : α (l. app.)
Γ ;∆1,∆2 ⊢Σ (t u) : β

Γ , x : α;∆ ⊢Σ t : β (abs.)
Γ ;∆ ⊢Σ λx .t : α→ β

Γ ;∆ ⊢Σ t : α→ β Γ ;⊢Σ u : α (app.)
Γ ;∆ ⊢Σ (t u) : β

Table 1:
Typing rules for
deriving typing
judgments

Remark. In the rule (app.), the linear context needs to be empty. Oth-
erwise, a linear variable occurring in u could be duplicated or removed
if the non-linear abstracted variable in t for which it substitutes in a
β-reduction is duplicated or removed.
Definition 9 (Lexicon). Let Σ1 = 〈A1, C1,τ1〉 and Σ2 = 〈A2, C2,τ2〉 be
two higher-order signatures,Σ1 being linear. A lexiconL = 〈F, G〉 from
Σ1 to Σ2 is such that:

• F : A1 → T (A2). We also note F : T 0(A1)→ T (A2) its homomor-
phic extension;4

• G : C1→ Λ(Σ2). We also note G : Λ(Σ1)→ Λ(Σ2) its homomorphic
extension;

4Such that F(α⊸ β) = F(α)⊸ F(β) and F(α→ β) = F(α)→ F(β)

[369]

Laura Kallmeyer et al.

• F and G are such that for all c ∈ C1, ⊢Σ2
G(c) : F(τ1(c)) is prov-

able.
We also use L instead of F or G.
Definition 10 (Abstract Categorial Grammar and vocabulary). An ab-
stract categorial grammar is a quadruple G = 〈Σ1,Σ2,L, S〉 where:

• Σ1 = 〈A1, C1,τ1〉 and Σ2 = 〈A2, C2,τ2〉 are two higher-order sig-
natures and Σ1 is linear. Σ1 is called the abstract vocabulary and
Λ(Σ1) is the set of abstract terms; similarly, Σ2 is called the object
vocabulary and Λ(Σ2) is the set of object terms.

• L : Σ1→ Σ2 is a lexicon.
• S ∈ T (A1) is the distinguished type of the grammar.

Given an ACG Gname = 〈Σ1,Σ2,Lname, S〉, we use the following nota-
tional variants for the interpretation of the type α (resp. the term
t): Lname(α) = β , Gname(α) = β , α :=name β , and JαKname = β (resp.
Lname(t) = u, Gname(t) = u, t :=name u, and JtKname = u). The subscript
may be omitted if clear from the context.
Definition 11 (Abstract and object languages). Given an ACG G , the
abstract language is defined by

A (G) = {t ∈ Λ(Σ1) | ⊢Σ1
t : S is derivable}

The object language is defined by

O (G) = {u ∈ Λ(Σ2) | ∃t ∈A (G) s.t. u=L(t)}
3.2 The syntax-semantics interface as ACG composition
The lexicon defines the way structures are interpreted. It plays a cru-
cial role in the way ACG models the syntax-semantics interface. The
basic idea is to have a given (abstract) structure interpreted either
as a surface form (e.g., a string) or as a meaning form (e.g., a logi-
cal formula). This boils down to having two interpretations that share
the same abstract vocabulary, hence mapping a single structure into
two different ones. This composition is illustrated by Gform and Gmeaning
sharing the Σabstract vocabulary in Figure 4.

[370]

Quantification in frame semantics

Λ(Σabstract)

Λ(Σform)

Gform

Λ(Σmeaning)

Gmeaning

Figure 4:
ACG composition for the
syntax-semantics interface

4 typeʿtheoretic semantics with frames
We now provide the type-theoretic syntax-semantics interface allow-
ing for a compositional building of the meanings. We use the archi-
tecture described in Figure 4. As we are concerned in this article with
semantic modelling and quantification rather than with parsing, we
use higher-order types for quantified noun-phrases.

All the following examples can be run and tested with the ACG
toolkit5 and the companion example files.6

4.1 The ACG of surface forms
At the abstract level, we use the signature defined with the type as-
signment of Table 2. It makes use of the usual syntactic types: NP, S,
N, and PP. Note that following the usual type-logical approach, deter-
miners have a higher-order type.

John,Mary : NP kisses : NP⊸ NP⊸ S
man,woman,house : N every, some : N⊸ (NP⊸ S)⊸ S

to, into : NP⊸ PP walked : PP⊸ NP⊸ S

Table 2:
Σabstract type
assignement

The object vocabulary of surface forms uses the standard mod-
elling of strings as λ-terms. It is built on Σform that contains a single
atomic type o, and the type σ (for strings) is defined by σ ∆

= o ⊸ o.
The concatenation is then defined as functional composition by ·+ ·=
λo f g.λoz. f (g z) : σ⊸ σ⊸ σ. It is associative, and it admits the iden-
tity function ε ∆= λox .x : σ as a neutral element. Σform also contains the
constants John,Mary, kisses, every,man . . . of type σ.

The ACG Gform is then defined using the interpretations given in
Table 3. The terms defined in Equations (6) correspond to the syntactic

5ACGtk can be downloaded and installed from http://calligramme.
loria.fr/acg/#Software.

6These files are available at https://hal.inria.fr/hal-01417853/
file/quantification-and-frames.zip.

[371]

Laura Kallmeyer et al.

derivations of the sentence for which we want to provide a semantic
representation. Their surface forms are given by Equations (7)–(12).

u2b = kisses Mary John

u3b = (every man) (λox .kisses Mary x)

u4b = (every man) (λox .(some woman) (λo y.kisses y x))

u4c = (some woman) (λo y.(every man) (λox .kisses y x))

u5b = (every man) (λox .(some house)(λo y.walked (to y) x))

u5c = (some house)(λo y.(every man) (λox .walked (to y) x))

(6)

u2b :=form John+ kisses+Mary(7)
u3b :=form every+man+ kisses+Mary(8)
u4b :=form every+man+ kisses+ some+woman(9)
u4c :=form every+man+ kisses+ some+woman(10)
u5b :=form every+man+walked+ to+ some+ house(11)
u5c :=form every+man+walked+ to+ some+ house(12)

Table 3:
Gform interpretation of the
abstract atomic types and

constants

John :=form John Mary :=form Mary
man :=form man woman:=form woman
house:=form house
to :=form λ

on.to+ n into :=form λ
on.into+ n

every :=form λ
on P.P (every+ n) some :=form λ

on P.P (some+ n)
kisses:=form λ

oo s.s+ kissed+ o walked :=form λ
op s.s+walked+ p

4.2 The ACG of meaning representations
In accordance with the ACG architecture of Figure 4, the syntax-
semantics interface relies on sharing the abstract language of the two
ACGs responsible for the surface interpretation on the one hand and
for the semantic interpretation on the other hand. The abstract vocab-
ulary we use is Σabstract, defined in the previous section.

Our goal is to associate every sentence with a hybrid-logical for-
mula. It’s important to note that we are not concerned with higher-
order hybrid logic in this work; not even first-order hybrid logic. The
binders and quantifiers we use only bind node variables, and not enti-
ties nor higher-order predicates. This contrasts with quantified hybrid

[372]

Quantification in frame semantics

logic (QHL) (Blackburn and Marx 2002). We do not directly adopt the
Hybrid Type Theory (HTT) proposed by Areces et al. (2011, 2014).
Contrary to what could be expected from (Gallin 1975) type theory
of higher-order modal logic, Areces et al. (2014) do not use a specific
type s to denote nodes (or worlds) and nominals are typed t as propo-
sitions.

We do introduce a specific type s for nominals, so that the set of
atomic types of Σmeaning is {s, t}. We also introduce a coercion operator
: s → t in order to use nominals as propositions in formulas. This
ensures we only build formulas of Forms. Table 4 shows the semantic
constants we use, including logical operators and quantifiers.
event,kissing,motion,person,John,Mary, . . . : t
〈agent〉, 〈theme〉, 〈mover〉, 〈part-of 〉, . . . : t ⊸ t

: s→ t
∧,⇒ : t ⊸ t ⊸ t

@ : s→ t ⊸ t
E,

A

: t ⊸ t
↓,∃ : (s→ t)⊸ t

Table 4:
Constant terms
of the semantic
language

We can now define Gmeaning using the interpretations of the atomic
types of the constants of Table 5. We follow Kallmeyer and Osswald
(2013) in the semantics and meaning decomposition of motion verbs.
S, NP,N :=meaning t PP :=meaning t ⊸ t
John :=meaning John
Mary :=meaning Mary
man :=meaning man
woman :=meaning woman
house :=meaning house
some :=meaning λ

oP Q. E(↓ i.P ∧ (Q (# i)))
every :=meaning λ

oP Q.

A

(↓ i.P ⇒ (Q (# i)))
kisses :=meaning λ

oo s. E(kissing∧ 〈agent〉s ∧ 〈theme〉o)
walked :=meaning λ

opp s.∃a g. E(motion∧ 〈agent〉(# a)∧ 〈mover〉(# a)
∧〈goal〉(# g)∧ 〈path〉path∧ 〈manner〉walking
∧@as ∧ (pp (# g)))

to :=meaning λ
on g.∃r v w.event∧ 〈path〉(path∧ 〈endp〉v)∧

@r〈at-region〉(# w)∧@v〈part-of 〉(# w)∧@r(g ∧ n)
into :=meaning λ

on g.∃r v w.event∧ 〈path〉(path∧ 〈endp〉v)∧
@r〈in-region〉(# w)∧@v〈part-of 〉(# w)∧@r(g ∧ n)

Table 5:
Semantic
interpretation of
the constants of
Σabstract

[373]

Laura Kallmeyer et al.

Remark. Nominal variables are allowed to occur non-linearly in se-
mantic terms. This is required, for instance, in order to specify that
a same nominal is reached from two different paths (see for instance
the variable a in JwalkedKmeaning in Table 5).

What the ACG framework does not express, though, are the lex-
ical or meaning postulates that can be added to the logical theory.
Such postulates are additional constraints that any model should also
satisfy and that do not depend on the actual semantic representation
that is being built. They include for instance the representation of the
ontology of propositions (types, in the frame semantics terminology)
such as: man ⇒ person, or any standard modal-logical axiom such as
□(p⇒ q)⇒ (□p⇒ □q).

It follows that the following equalities hold, where t2b is the term
in (2b), t3b is the term in (3b), etc., such that every nominal variable
is preceded by the # coercion operator:

Jkisses Mary JohnK = t2b(13) J(every man) (λox .kisses Mary x)K = t3b(14) J(every man) (λox .(some woman) (λo y.kisses y x))K = t4b(15) J(some woman) (λo y.(every man) (λox .kisses y x))K = t4c(16)

Table 5 shows the interaction of the storing operator with path
equalities. It compositionally derives from the verb and the preposi-
tion semantic interpretations. In the verb semantics, the path equal-
ities specify that the mover and the agent attributes of the event
are the same, and that the information provided by the pp argument
should hold for the goal g. In its semantics, the preposition con-
tributes on the one hand to the main event (as the event proposition
is evaluated at the current state) and on the other hand by specify-
ing that the g state (meant to be the target node of the verb that the
proposition modifies, here the target of the goal attribute) should be
identified to the n argument (the noun phrase which is argument of
the preposition). This leads to the interpretations (5b) and (5c) of (5a)
given in (17) and (18).

J(every man) (λox .(some house)(λo y.walked (to y) x))K = t5b(17) J(some house)(λo y.(every man) (λox .walked (to y) x))K = t5c(18)

[374]

Quantification in frame semantics

5 type coercion as existential
quantification

We now have two ingredients at our disposal: the decomposition of the
lexical semantics offered by frame semantics, and the power of binding
states. We illustrate how to combine them in order to model semantic
coercion. Sentence (19) shows how a predicate can take another event
predicate as argument. On the other hand, sentence (20) shows that
the same predicate can take a noun phrase as argument. In the latter
case, it instead conveys the meaning that the entity referred to by the
noun phrase should be part of some event. It is even the case that
if this event is not salient in the context, it can be inferred from the
lexicon, for instance using the qualia structure and the telic quale as
defined by the Generative Lexicon (Pustejovsky 1998), or a subclass
of the S2 lexical function in the framework of the Explanatory and
Combinatorial Lexicology (Mel’čuk et al. 1995; Polguère 2003).
(19) John began to read a book
(20) John began a book

We first model (19). The assumed syntactic constructions are
given by the extension of the Σabstract signature of Table 6 and by its
interpretation by Gform of Table 7.

Semantically, the idea is that events are structured (Moens and
Steedman 1988). We in particular consider the structures required
by aspectual predicates such as begin as in (Pustejovsky and Bouillon
1995). We structure the events with the notion of transition that has
an ante attribute and a post attribute (see Figure 5). When an event
has begun, it is set as the value of the post attribute. This is what the
interpretation of begin1 in Table 8 states. This interpretation also re-
quires the event argument to be a process (proc) or an accomplishment
(acc) (Im and Lee 2015).

begin1 : Sinf ⊸ NP⊸ S
begin2 : N P ⊸ NP⊸ S
to read : N P ⊸ Sinf

Table 6:
Extension of Σabstract

Sinf :=form σ

begin1 :=form λ
oc s.s+ began+ c

begin′2,begin2 :=form λ
oo s.s+ began+ o

to read :=form λ
oo.to+ read+ o

Table 7:
Interpretation of types and constants
of Σabstract by Gform

[375]

Laura Kallmeyer et al.
Figure 5:

Event structure
transitionante post

Table 8:
Interpretation of

types and
constants of

Σabstract by Gmeaning

Sinf :=meaning t ⊸ t
begin1 :=meaning λ

oc s. E(transition∧ 〈post〉((proc∨ acc)∧ (c s)))
begin′2 :=meaning λ

oo s. E(transition∧ 〈post〉
((proc∨ acc)∧ 〈agent〉s ∧ 〈ug〉o))

begin2 :=meaning λ
oo s. E(transition∧ 〈post〉

(↓s.(proc∨ acc)∧ 〈agent〉s∧
〈ug〉(o ∧ 〈proto 〉〈e-q 〉(↓s′.@s〈proto 〉(# s′)))))

to read :=meaning λ
oo s.reading∧ 〈agent〉s ∧ 〈theme〉o

(a book) (λo y.begin1 (to read y) John) :=forms

John+ began+ to+ read+ a+ book
(21)

(a book) (λo y.begin1 (to read y) John) :=meaning

E(↓ i.book∧ (E(transition
∧〈post〉((proc∨ acc)∧ reading

∧〈agent〉(person∧ 〈name〉John)
∧〈theme〉(# i)))))

(22)

With the provided ACGs, we can then compute the semantic in-
terpretation of the syntactic derivation associated with (19). Equa-
tion (21) shows that the syntactic derivation indeed corresponds to the
sentence, and Equation (22) shows its semantic interpretation. In or-
der to be true, the model should have a node i where book holds, and a
node where transition holds and from which there is a 〈post〉〈theme〉
path to i.

It is actually this path that we require to exist in the semantic
recipe for begin when used with a direct object. This requirement ap-
pears in the interpretation of begin′2 as given by Table 8 by specifying
that the event given as the value of the post attribute itself has an
undergoer (ug) that should target the direct object. This interpreta-
tion also accounts for the following constraints (Pustejovsky and Bouil-
lon 1995): the subject of begin is also the agent of the argument event,
and the latter is either a process or an accomplishment. Equations (23)
and (24) show the achieved effects from the derivation of (20).

(a book) (λo y.begin′2 y John) :=forms John+ began+ a+ book(23)

[376]

Quantification in frame semantics
(a book) (λo y.begin′2 y John) :=meaning

E(↓ i.book∧ E(transition
∧〈post〉((proc∨ acc)∧ 〈agent〉(person

∧〈name〉John)∧ 〈ug〉(# i))))

(24)

It is not specified, though, what kind of event it is: reading, writing,
etc. The latter lexically depends on the object. We want to model this
dependency by adding lexically determined conditions on the possible
models that make the formula true. We already met conditions in the
form of meaning postulates, such as (person ∧ 〈name〉Paul) ⇒ man.
The conditions we introduce now are different and also make use of
another feature of hybrid logic that we have not used so far: actual
nominals, and not only state variables. These nominals encode lexical
properties of the entities to be used in the meaning representation of
the lexical items.

So we introduce the nominals ibook, ireading, iwriting, itranslating . . . cor-
responding to the propositions (or types, in the frame semantics ter-
minology) book, reading,writing, translating . . . For each of these pairs,
the following schema holds:

(〈proto 〉ip)⇒ p(25)

If we additionally require that each node has a proto attribute, each
node in a frame should be associated with a prototypical node named
by a nominal, and the proposition that holds at the former can be
inferred from the latter.

We also encode that the ibook node is related through the e-q
(event quale) relation to some event nominals, requiring the postu-
lates of (26) to hold as well (see Figure 6).

@ibook〈e-q 〉ireading
@ibook〈e-q 〉iwriting

. . .

(26)

Remark (Nominals as prototypical entities). It is very important that
the postulates of (26) use nominals rather than properties. Stating
these postulates directly with propositions, such as book∧〈e-q 〉reading,
book∧〈e-q 〉wrting, etc., would amount to require any node where book
holds to relate to every (quale) events with an 〈e-q 〉 relation. These

[377]

Laura Kallmeyer et al.
Figure 6:

Qualia values associated to ibook ibook

ireading

e-q

iwriting

e-q
· · · itranslating

e-q

events would then be part of the model even if no linguistic element,
such as begin, triggers them.

We can now state the following condition on a node s that has o as
undergoer: when looking at the event quale of the prototype of o, if we
call this event quale s′, then s′ should be a prototype of s. Formula (27)
states this condition in hybrid logic terms. It is the formula used for the
interpretations of begin2 in Table 8. It can be paraphrased as follows:
if s is a state that has o as undergoer, we set s′ to be a quale event
associated to o, via a prototype of o. For instance, if book holds at o,
o∧〈proto〉 is ibook. Then s′ is one of the ireading, iwriting, etc. Say it is ireading.
@s〈proto 〉s′ finally ensures that the prototype of s is ireading. Together
with (25), we thus have that reading holds at s.
(27) ↓s.〈ug〉(o ∧ 〈proto 〉〈e-q 〉(↓s′.@s〈proto 〉s′))

Thus, as Equations (28) and (29) show, together with the postu-
lates (25) and (26), we have the semantic coercion of the object (here
a book) to its associated possible telic quales through the prototype
relation.

(a book) (λo y.begin2 y John) :=forms John+ began+ a+ book(28)

(a book) (λo y.begin2 y John) :=meaning

E(↓ i.book∧ E(transition
∧〈post〉(↓s.(proc∨ acc)∧ 〈agent〉(person

∧〈name〉John)
∧〈ug〉(# i ∧ 〈proto 〉〈e-q 〉(↓s′.@s〈proto 〉(# s′))))))

(29)

While accounting for the lexical knowledge, this approach makes
no use of a possible specific context where it is not required to use the
lexical information. For instance, (30) does not make sense without
any context, as ball does not come with a telic quale.

[378]

Quantification in frame semantics

(30) John began his ball
However, in a context that John was asked to paint a ball, for instance,
this information could be used to correctly interpret (30). Such an ac-
count could possibly be provided by making use of a selection operator
in some context, akin to the one proposed by de Groote (2006) and
Lebedeva (2012). The introduction of node binders should indeed al-
low us to propose such an approach to a continuation-based approach
to event context. In particular we may presuppose in the semantics of
begin2 the path conditions that apply to the object. If this property is
already satisfied (for instance by a painting event), nothing else hap-
pens beyond the retrieval of this event. Otherwise, the telic quale of
the object might be projected, possibly resulting in a failure if no pro-
totypical telic quale is available.

6 conclusion and perspectives

We used hybrid logic as a means to integrate logical operators with
frame semantics. We illustrated the approach with the modelling of
quantifier scopes. We embedded the proposed semantic representa-
tion within the Abstract Categorial Grammar framework in order to
show how to compositionally derive different quantifier scope read-
ings. We also showed how the key ingredients of hybrid logic, nomi-
nals, and binders can be used to model semantic coercion, such as the
one induced by the begin predicate.

Binding nodes also offers the possibility of using continuation se-
mantics in order to model a dynamic reference to events. In the par-
ticular case of semantic coercion, we plan to study how to integrate
the model we proposed with a representation of the context. The pro-
jection of the telic quale of some (object) entity would then depend
on the availability of some previously introduced events.

We also plan to take advantage of the semantic structuring in-
duced by frame semantics to account for representation and co-
predication of dot type objects. More generally, frame semantics offers
several ways to account for subtyping and meaning shifts. A first possi-
bility is to use an ontology by means of axioms (e.g., man⇒ person). A
second possibility is to use structural properties of frames, as proposed
for metonymy by Löbner (2014b). A third possibility is to combine
the two previous techniques as we propose in this article, encoding

[379]

Laura Kallmeyer et al.

the qualia structures in prototype frames and linking nodes to their
prototypes using axioms.

Finally, we plan to investigate the computational properties of
the framework we propose with respect to the hybrid inferential sys-
tems (Blackburn and Marx 2002) and the specific properties induced
by the frame models we consider, typically the functionality of the
attribute relations (Schneider 2007). Modal and hybrid logics indeed
generally provide better computability properties than first-order logic
in terms of decidability and complexity. Some of these properties
are lost when using quantification over nominals (see Section 2.2)
and recovering them using restrictions induced by frames on mod-
els would be interesting in order to provide semantic representations
with tractable automated reasoning capabilities.

references
Carlos Areces, Patrick Blackburn, Antonia Huertas, and María Manzano
(2011), Hybrid Type Theory: A Quartet in Four Movements, Principia,
15(2):225–247, doi: 10.5007/1808-1711.2011v15n2p225.
Carlos Areces, Patrick Blackburn, Antonia Huertas, and María Manzano
(2014), Completeness in Hybrid Type Theory, Journal of Philosophical Logic,
43(2-3):209–238, ISSN 0022-3611, doi: 10.1007/s10992-012-9260-4.
Carlos Areces, Patrick Blackburn, and Maarten Marx (1999), A Road-Map
on Complexity for Hybrid Logics, in Jörg Flum and Mario
Rodriguez-Artalejo, editors, Computer Science Logic: 13th International
Workshop, CSL’99 8th Annual Conference of the EACSL Madrid, Spain, September
20–25, 1999 Proceedings, pp. 307–321, Springer Berlin Heidelberg, doi:
10.1007/3-540-48168-0_22.
Carlos Areces and Balder ten Cate (2007), Hybrid logics, in Patrick
Blackburn, Johan Van Benthem, and Frank Wolter, editors, Handbook of
Modal Logic, volume 3 of Studies in Logic and Practical Reasoning, chapter 14,
pp. 821–868, Elsevier, doi: 10.1016/S1570-2464(07)80017-6.
Jason Baldridge and Geert-Jan Kruijff (2002), Coupling CCG and Hybrid
Logic Dependency Semantics, in Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics, pp. 319–326, Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA, doi:
10.3115/1073083.1073137, acl anthology: P02-1041.
Hendrik Pieter Barendregt (1984), The lambda calculus, volume 103 of
Studies in Logic and the Foundations of Mathematics, North-Holland.

[380]

Quantification in frame semantics

Lawrence Barsalou (1992), Frames, concepts, and conceptual fields, in
Adrienne Lehrer and Eva Feder Kittey, editors, Frames, fields, and contrasts:
New essays in semantic and lexical organization, pp. 21–74, Lawrence Erlbaum
Associates, Hillsdale.
Patrick Blackburn (1993), Modal Logic and Attribute Value Structures, in
Maarten de Rijke, editor, Diamonds and Defaults, volume 229 of Synthese
Library, pp. 19–65, Springer Netherlands, ISBN 978-90-481-4286-6, doi:
10.1007/978-94-015-8242-1_2.
Patrick Blackburn and Maarten Marx (2002), Tableaux for Quantified
Hybrid Logic, in Uwe Egly and Chritian G. Fermüller, editors, Automated
Reasoning with Analytic Tableaux and Related Methods: International Conference,
TABLEAUX 2002 Copenhagen, Denmark, July 30 – August 1, 2002 Proceedings,
pp. 38–52, Springer, Berlin, Heidelberg, doi: 10.1007/3-540-45616-3_4.
Patrick Blackburn and Maarten De Rijke (1997), Zooming In, Zooming Out,
Journal of Logic, Language and Information, 6(1):5–31, ISSN 0925-8531, doi:
10.1023/A%3A1008204403391.
Patrick Blackburn and Jerry Seligman (1995), Hybrid languages, Journal of
Logic, Language and Information, 4(3):251–272, doi: 10.1007/BF01049415.
Johan Bos (1995), Predicate Logic Unplugged, in Proceedings of the Tenth
Amsterdam Colloquium,
http://www.let.rug.nl/bos/pubs/Bos1996AmCo.pdf.
Haskell Brooks Curry (1961), Some Logical Aspects of Grammatical Structure,
in Roman Jakobson, editor, Structure of Language and its Mathematical Aspects:
Proceedings of the Twelfth Symposium in Applied Mathematics, pp. 56–68,
American Mathematical Society.
Philippe de Groote (2001), Towards Abstract Categorial Grammars, in
Association for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference, pp. 148–155,
acl anthology: P01-1033.
Philippe de Groote (2002), Tree-Adjoining Grammars as Abstract Categorial
Grammars, in Proceedings of the Sixth International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6), pp. 145–150, Università di
Venezia, http://www.loria.fr/equipes/calligramme/acg/
publications/2002-tag+6.pdf.
Philippe de Groote (2006), Towards a Montagovian account of dynamics, in
Masayuki Gibson and Jonathan Howell, editors, Proceedings of Semantics and
Linguistic Theory (SALT) 16, doi: 10.3765/salt.v16i0.2952.
Philippe de Groote and Sylvain Pogodalla (2004), On the expressive
power of Abstract Categorial Grammars: Representing context-free formalisms,
Journal of Logic, Language and Information, 13(4):421–438, doi:
10.1007/s10849-004-2114-x, hal open archive: inria-00112956.

[381]

Laura Kallmeyer et al.

Charles J. Fillmore (1977), The case for case reopened, in Peter Cole and
Jerrold M. Sadock, editors, Grammatical Relations, volume 8 of Syntax and
Semantics, pp. 59–81, Academic Press, New York.
Massimo Franceschet and Maarten de Rijke (2006), Model checking hybrid
logics (with an application to semistructured data), Journal of Applied Logic,
4(3):279–304, doi: 10.1016/j.jal.2005.06.010.
Daniel Gallin (1975), Intensional and Higher-Order Modal Logic, North-Holland.
Thomas Gamerschlag, Doris Gerland, Rainer Osswald, and Wiebke
Petersen, editors (2014), Frames and Concept Types, volume 94 of Studies in
Linguistics and Philosophy, Springer International Publishing, doi:
10.1007/978-3-319-01541-5.
Seohyun Im and Chunngmin Lee (2015), A Developed Analysis of Type
Coercion Based on Type Theory and Conventionality, in Robin Cooper and
Christian Retoré, editors, Type Theory and Lexical Semantics, ESSLLI 2015,
Barcelona, Spain, http://www.lirmm.fr/tytles/Articles/Im.pdf.
Laura Kallmeyer and Rainer Osswald (2013), Syntax-Driven Semantic
Frame Composition in Lexicalized Tree Adjoining Grammars, Journal of
Language Modelling, 1(2):267–330, doi: 10.15398/jlm.v1i2.61.
Laura Kallmeyer, Rainer Osswald, and Sylvain Pogodalla (2015),
Progression and Iteration in Event Semantics - An LTAG Analysis Using Hybrid
Logic and Frame Semantics, in Colloque de Syntaxe et Sémantique à Paris (CSSP
2015), hal open archive: hal-01184872.
Laura Kallmeyer and Frank Richter (2014), Quantifiers in Frame
Semantics, in Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Frank
Richter, editors, Formal Grammar, volume 8612 of Lecture Notes in Computer
Science, pp. 69–85, Springer, doi: 10.1007/978-3-662-44121-3_5.
Laura Kallmeyer and Maribel Romero (2008), Scope and Situation Binding
for LTAG, Research on Language and Computation, 6(1):3–52, doi:
10.1007/s11168-008-9046-6.
Joachim Lambek (1958), The Mathematics of Sentence Structure, American
Mathematical Monthly, 65(3):154–170.
Ekaterina Lebedeva (2012), Expression de la dynamique du discours à l’aide de
continuations, Ph.D. thesis, Université de Lorraine, in English.
Sebastian Löbner (2014a), Evidence for frames from human language, in
Gamerschlag et al. (2014), chapter 2, pp. 23–67, doi:
10.1007/978-3-319-01541-5_2.
Sebastian Löbner (2014b), Frames and metonymy – Shifting the center and
refocusing the frame, Concept Types and Frames in Language, Cognition, and
Science (CTF14), invited talk, http://www.sfb991.uni-duesseldorf.de/
fileadmin/Vhosts/SFB991/CTF14Abstr/Loebner_-_AK.pdf.
Igor A. Mel’čuk, André Clas, and Alain Polguère (1995), Introduction à la
lexicologie explicative et combinatoire, Éditions Duculot, Louvain-la-Neuve.

[382]

Quantification in frame semantics

Marc Moens and Mark Steedman (1988), Temporal Ontology and Temporal
Reference, Computational Linguistics, 14(2):15–28, acl anthology: J88-2003.
Richard Montague (1974), The Proper Treatment of Quantification in
Ordinary English, in Formal Philosophy: Selected Papers of Richard Montague,
Yale University Press, re-edited in “Formal Semantics: The Essential Readings”,
Paul Portner and Barbara H. Partee, editors. Blackwell Publishers, 2002.
Reinhard Muskens (2013), Data Semantics and Linguistic Semantics, in Maria
Aloni, Michael Franke, and Floris Roelofsen, editors, The dynamic,
inquisitive, and visionary life of ϕ, ?ϕ, and ◊ϕ, chapter 24, pp. 175–183,
Pumbo.nl,
http://www.illc.uva.nl/Festschrift-JMF/papers/23_Muskens.pdf.
Rainer Osswald and Robert D. Van Valin, Jr. (2014), FrameNet, Frame
Structure, and the Syntax-Semantics Interface, in Gamerschlag et al. (2014),
chapter 6, pp. 125–156, doi: 10.1007/978-3-319-01541-5_6.
Wiebke Petersen (2007), Representation of Concepts as Frames, The Baltic
International Yearbook of Cognition, Logic and Communication, 2:151–170,
http://user.phil-fak.uni-duesseldorf.de/~petersen/paper/
Petersen2007_proof.pdf.
Sylvain Pogodalla (2004), Computing Semantic Representation: Towards
ACG Abstract Terms as Derivation Trees, in Seventh International Workshop on
Tree Adjoining Grammar and Related Formalisms - TAG+7, pp. 64–71,
Vancouver, BC, Canada, hal open archive: inria-00107768.
Alain Polguère (2003), Lexicologie et sémantique lexicale, Les Presses de
l’Université de Montréal.
James Pustejovsky (1998), The Generative Lexicon, MIT Press.
James Pustejovsky and Pierrette Bouillon (1995), Aspectual Coercion and
Logical Polysemy, Journal of Semantics, 12(2):133–162, doi:
10.1093/jos/12.2.133.
Thomas Schneider (2007), The Complexity of Hybrid Logics over Restricted
Classes of Frames, Ph.D. thesis, University of Jena, Germany,
http://www.cs.man.ac.uk/~schneidt/publ/sch07_phd.pdf.
Balder ten Cate and Massimo Franceschet (2005), On the Complexity of
Hybrid Logics with Binders, in Luke Ong, editor, Computer Science Logic: 19th
International Workshop, CSL 2005, 14th Annual Conference of the EACSL, Oxford,
UK, August 22-25, 2005. Proceedings, pp. 339–354, Springer Berlin Heidelberg,
doi: 10.1007/11538363_24.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[383]

Factivity and presupposition
in Dependent Type Semantics

Ribeka Tanaka1, Koji Mineshima1,2, and Daisuke Bekki1,2
1 Ochanomizu University

2 CREST, Japan Science and Technology Agency

abstract
Keywords:
dependent type,
anaphora,
presupposition,
proof object,
factive verb

Dependent type theory has been applied to natural language semantics
to provide a formally precise and computationally adequate account
of dynamic aspects of meaning. One of the frameworks of natural lan-
guage semantics based on dependent type theory is Dependent Type
Semantics (DTS), which focuses on the compositional interpretations
of anaphoric expressions. In this paper, we extend the framework of
DTS with a mechanism to handle logical entailment and presuppo-
sition associated with factive verbs such as know. Using the notion
of proof objects as first-class objects, we provide a compositional ac-
count of presuppositional inferences triggered by factive verbs. The
proposal also gives a formal reconstruction of the type-distinction
between propositions and facts, and thereby accounts for the lexical
semantic differences between factive and non-factive verbs in a type-
theoretical setting.

1 introduction
Dependent Type Semantics (DTS, Bekki 2014) is a framework of nat-
ural language semantics based on dependent type theory (Martin-
Löf 1984; Nordström et al. 1990). In contrast to traditional model-
theoretic semantics, DTS is a proof-theoretic semantics, where in-
ference relations between sentences are characterized as provability
relations between semantic representations. One of the distinctive
features of DTS, as compared to other type-theoretical frameworks,
is that it is augmented with underspecified terms, so as to provide

Journal of Language Modelling Vol 5, No 2 (2017), pp. 385–420

Ribeka Tanaka et al.

a unified analysis of inference, anaphora and presupposition from a
logical/computational perspective. In contrast to previous work on
anaphora in dependent type theory (cf. Ranta 1994), DTS gives a fully
compositional account of inferences involving anaphora. It is also ex-
tended to the analysis of modal subordination (Tanaka et al. 2015).

In this paper, we provide the framework of DTS with a mechanism
to handle logical entailment and presupposition associated with fac-
tive verbs. We will mostly focus on the epistemic verb know. Although
there are numerous studies on factive verbs in natural language se-
mantics, they are usually based on model-theoretic approaches; it
seems fair to say that there has been little attempt to formalize in-
ferences with factivity from a proof-theoretical perspective. On the
other hand, various proof systems for knowledge and belief have been
studied in the context of epistemic logic (cf. Meyer and van der Hoek
2004). However, such systems are mainly concerned with knowledge
and belief themselves, not with how they are expressed in natural lan-
guages, nor with linguistic phenomena such as factivity presupposi-
tions. Our study aims to fill this gap by providing a framework that
explains logical entailment and presuppositions with factive verbs in
dependent type theory.

2 dependent type semantics

This section introduces the framework of DTS and explains how pre-
suppositions are handled in this framework. In Section 2.1, we provide
some necessary background on DTS, including the basics of dependent
type theory and the analysis of anaphora within this approach. One
of the important problems in the application of dependent type the-
ory to natural language semantics is how to represent common nouns
using the machinery of dependent types. Section 2.2 is devoted to dis-
cussing this problem. We give several reasons for preferring the view
that common nouns are represented as predicates rather than as types.
Given this background, Section 2.3 provides a compositional analysis
of presupposition in DTS.
2.1 Dependent type theory
In dependent type theory, there are two type constructors, Σ and Π,
which play a crucial role in forming the semantic representations for

[386]

Factivity and presupposition in Dependent Type Semantics

natural language sentences. The type constructor Σ is a generalized
form of the product type and behaves as an existential quantifier. An
object of type (Σx : A)B(x) is a pair (m, n) such that m is of type A and
n is of type B(m). Conjunction A∧B is a degenerate form of (Σx : A)B if
x does not occur free in B. The Σ-types are associated with projection
functions π1 and π2 that are computed with the rules π1(m, n) = m
and π2(m, n) = n, respectively. The type constructor Π is a generalized
form of the functional type and behaves as a universal quantifier. An
object of type (Πx : A)B(x) is a function f such that for any object a of
type A, f a is an object of type B(a). Implication A→ B is a degenerate
form of (Πx : A)B if x does not occur free in B. The inference rules
for Π-types and Σ-types are shown in the Appendix.1 Throughout the
paper, we will make use of the DTS-notation for Π-types and Σ-types
as shown in Figure 1.

Π-types Σ-types
Standard notation (Πx : A)B(x) (Σx : A)B(x)

Notation in DTS (x: A)→ B(x)

�
x : A
B(x)

�
When x /∈ f v(B) A→ B

�
A
B

�

Figure 1:
Notation for Π-types and
Σ-types in DTS (f v(B)
means the set
of free variables in B)

Based on the Curry-Howard correspondence (Howard 1980), a
type can be regarded as a proposition and a term can be regarded
as a proof. Thus the judgement a : A can be read as “a is a proof of
proposition A”, as well as “a is a term of type A”. In this setting, the
truth of a proposition A is defined as the existence of a term of type A.
The term that serves as a proof of a proposition is called a proof term
and plays an important role in representing natural language sentences
in dependent type theory.

Since the work of Sundholm (1986) and Ranta (1994), depen-
dent type theory has been applied to the analysis of various dy-
namic discourse phenomena, providing a type-theoretic alternative to
model-theoretic frameworks such as Discourse Representation The-
ory (van der Sandt 1992; Kamp et al. 2011), Dynamic Predicate
Logic (Groenendijk and Stokhof 1991), and Dynamic Semantics (Heim

1For more details, readers can refer to Martin-Löf (1984) and Ranta (1994).

[387]

Ribeka Tanaka et al.

1983). For instance, according to the analysis presented in Sundholm
(1986) and Ranta (1994), a semantic representation for the donkey
sentence in (1) can be given as (2) in terms of dependent types.
(1) Every farmer who owns a donkey beats it.

(2)
u:

 x : farmer�
y : donkey
own(x , y)

� → beat(π1u,π1π2u)

The sentence (1) as a whole is a universal sentence, which is repre-
sented as aΠ-type. The restrictor farmer who owns a donkey is analyzed
as a Σ-type. A term u having this Σ-type would be a tuple (f , (d, o)),
where f is a term of type farmer, d is a term of type donkey, and
o is a proof-term of the proposition own(f , d). Recall that π1 and π2

are projection functions that take a pair and return the first and the
second element, respectively. Thus the terms π1u and π1π2u appear-
ing in the consequent of (2) pick up from u the term f of type farmer
and the term d of type donkey, respectively. In this way, via the proof
term u associated with the Σ-type, the discourse referents introduced
in the antecedent in (2) can be successfully passed to the subsequent
discourse. An advantage of dependent type theory over previous dy-
namic theories is that such an externally dynamic character of quan-
tification can be captured without any further stipulation; Σ-types and
Π-types, which are natural generalizations of existential and univer-
sal quantifiers in predicate logic, are equipped with the mechanism to
handle dynamic aspects of discourse interpretations.

The work by Sundholm and Ranta2 provides a foundation for ap-
plying the expressiveness of dependent types to problems in natural
language discourse interpretation such as donkey anaphora. However,
a problem remains: how can the semantic representation in (2) be sys-
tematically obtained from the sentence in (1)? From the viewpoint of
standard compositional semantics, the problem can be divided into
two tasks. The first is to deterministically map the sentence (1) into an

2Sundholm (1986) and Ranta (1994) only consider the so-called strong read-
ing of donkey sentences. There are some later works using dependent types that
treat other phenomena discussed in the dynamic semantics literature, in partic-
ular, Sundholm (1989) for the proportion problem. See also Tanaka et al. (2014)
and Tanaka (2014) for discussion of Sundholm’s analysis of donkey anaphora
and treatment of weak and strong readings within the framework of DTS.

[388]

Factivity and presupposition in Dependent Type Semantics

underspecified representation, a semantic representation that contains
an underspecified element corresponding to the pronoun in question.
The second task is to resolve anaphora. In our example, the underspec-
ified element needs to be resolved to π1π2u. The semantics satisfying
the requirement of compositionality must provide an explicit proce-
dure for these two tasks.

Dependent Type Semantics (Bekki 2014) provides such a proce-
dure. To give an explicit compositional mapping from sentences to
semantic representations, we adopt Combinatory Categorial Gram-
mar (CCG, Steedman 2000) as a syntactic framework. Note that, as
emphasized in Bekki (2014), DTS can be combined with other cate-
gorial grammars; see Kubota and Levine (2017) for a concrete pro-
posal that combines DTS with a type-logical grammar. In composi-
tional mapping, an anaphoric expression is mapped on to an under-
specified element. The process of resolving underspecification is for-
mulated as the process of type checking. Using the machinery of under-
specified semantics in DTS, we will give an analysis of presuppositions
in Section 2.3.
2.2 Common nouns: types or predicates?
There are two possible approaches to representing basic sentences like
A man entered in dependent type theory. One is the approach pro-
posed in Ranta (1994) and Luo (2012a,b), according to which com-
mon nouns like man are interpreted as types so that the sentence is
represented as (3) in our notation.
(3)
�

x : man
enter(x)
�

One problem with this approach is that it is not straightforward to an-
alyze predicational sentences, i.e., sentences containing predicate nom-
inals, such as (4a, b).3

(4) a. John is a man.
b. Bob considers Mary a genius.

One might analyze (4a) as a judgement john : man. However, a
judgement itself can neither be negated nor embedded under a log-

3See Mikkelsen (2011) for a useful overview of the syntax and semantics of
predicational sentences.

[389]

Ribeka Tanaka et al.

ical operator. Accordingly, it is not clear how to account for the fact
that a predicational sentence can be negated, as in (5a), or appear in
the antecedent of a conditional, as in (5b).
(5) a. John is not a man.

b. If John is a man, ….
Nor is it clear how to analyze a construction embedding a predica-
tional sentence as in (4b).

One might try to analyze be-verbs as the so-called “is-of identity”
along Russell-Montague lines (Russell 1919; Montague 1973). This en-
ables us to represent (4a) as a proposition, as in (6), rather than as a
judgement.

(6)
�

x : man
john=man x

�
Then, (5a) and (5b) can be represented as follows:

(7) a. ¬
�

x : man
john=man x

�
b.
�

x : man
john=man x

�
→ ·· ·

There are two problems with this approach, however. First, this
analysis predicts that the predicate nominal a man introduces a dis-
course referent in terms of Σ-types. Contrary to this prediction, a pred-
icate nominal cannot serve as an antecedent of an anaphoric pronoun
such as he or she (Kuno 1970; Mikkelsen 2005); hence it does not in-
troduce an individual discourse referent.4

The second problem is the interpretation of equality. In dependent
type theory, equality is relativised to some type A and the formation
rule requires the arguments of equality symbols to have type A:

4The form of the pronoun anaphoric on a predicate nominal in (i) must be it,
rather than him; the relative pronoun in (ii) must be which, not who (Kuno 1970;
Mikkelsen 2005).
(i) He is a fool, although he doesn’t look { it /*him }.
(ii) He is a gentleman, {which / *who} his brother is not.
See Fara (2001) for more discussion of the problems of the Russell-Montague
analysis of predicate nominals.

[390]

Factivity and presupposition in Dependent Type Semantics

(8)
A : type t : A u : A

t =A u : type =F

Accordingly, the proposition john =man x is well-formed only if
john : man is provable. This is also the case if the proposition is em-
bedded under a logical operator. It thus follows that under the Russell-
Montague analysis combined with the equality rule (8), not only the
positive sentence (6), but also the negation (7a) and the conditional
(7b) presuppose that John is a man. To rescue the common-nouns-
as-types view from this problem, one has to provide a more complex
analysis of logical operators such as negation and implication.5 How-
ever, the resulting theory would then become more complicated.

As an alternative approach, we interpret a common noun as a
predicate. Common nouns in argument position and in predicate po-
sition are both analyzed as predicates of type entity→ type.

(9) A man walks.
 u :

�
x : entity
man (x)
�

walk (π1u)


(10) John is a man. man(john)

This approach is in line with the traditional analysis of common nouns,
so we can integrate standard assumptions in formal semantics into
our framework. Moreover, since predicates do not introduce discourse
referents, we can explain the impossibility of referential anaphora to
predicate nominals.

Retoré (2014) suggests that common nouns can be interpreted
both as types and as predicates; for instance, using type entity, the
common noun animal interpreted as a type animal could be related
to a predicate animal∗ of type entity → type, via some suitably de-
fined mapping (·)∗ from one to another. The question of whether a
type system for natural language semantics needs to be enriched with
the structures of common nouns would ultimately depend on the treat-
ment of the lexical semantic phenomena it attempts to capture, such
as coercion and selectional restriction – phenomena that have been
widely discussed in the recent literature on type-theoretical seman-
tics (Asher 2011; Asher and Luo 2012; Bekki and Asher 2013; Retoré

5Some discussion of the treatment of negation in the context of dependent
type theory can be found in Chatzikyriakidis and Luo (2014).

[391]

Ribeka Tanaka et al.

2014; Kinoshita et al. 2016). But investigating this matter further is
beyond the scope of the present paper and we leave it to a future
study.

2.3 Analysis of presupposition in DTS
To handle anaphora and presupposition in a compositional setting,
DTS extends dependent type theory with a mechanism of context pass-
ing and underspecified terms.

Dependent Type Semantics distinguishes two kinds of proposi-
tions: static and dynamic propositions. Following the Curry-Howard
correspondence, we call an object of type type (i.e., the type of types)
a static proposition. A dynamic proposition is a function which maps
a proof term of the static proposition representing the preceding dis-
course to a static proposition. The basic idea is that for each (static)
proposition P, the information obtained up to that point is passed to
P as a proof term. Such a proof term is called a local context.

Dependent Type Semantics extends the syntax of dependent type
theory with an underspecified term @i, which is used to represent
anaphora and presupposition triggers.6 We show how it can provide
a compositional account of anaphora and presupposition. We take the
existence presupposition triggered by a definite description as a rep-
resentative example. Consider the following example.

(11) The book arrived.

The definite description the book here triggers the presupposition that
there is a book.7 We analyze the determiner the appearing in the sub-
ject position as having the CCG category (S/(S\N P))/N , and give a
semantic representation by using an underspecified term. The lexical

6Bekki (2014) provides an overview and comparison of previous ap-
proaches to representing underspecification in the context of dependent type
theory (Dávila-Pérez 1995; Krahmer and Piwek 1999; Piwek and Krahmer 2000).

7Here we take it that the uniqueness presupposition is not part of the con-
ventional meaning of a definite description but can be derived on pragmatic
considerations along the lines of Heim (1982). Although it is technically possible
to take the uniqueness implication as part of presupposition, the proof-search
procedure to find the antecedent of an underspecified term would then become
much more complicated.

[392]

Factivity and presupposition in Dependent Type Semantics

N • = entity→ δ→ type N •+c = type→ δ→ type
N P• = entity N P•+c = δ→ type
S• = δ→ type S

•
= δ→ type

(C1/C2)• = (C1\C2)• = C•2 → C•1

Figure 2:
Mapping
syntactic
categories to
semantic types9

entry for the can be specified as follows (a mapping (·)• from syntactic
categories to semantic types can be defined as in Figure 2).8

(12) the; (S/(S\N P))/N ; λn.λv.λc. v

�
π1

�
@i c ::

�
x : entity
nxc

���
c

Determiner the denotes a function that takes a predicate n denoted
by a restrictor and a predicate v denoted by a verb and returns a dy-
namic proposition, which is in turn a function from a local context c to
a (static) proposition. The local context c is passed to the underspec-
ified term @i as an argument. It is also sent to the predicates n and
v as an extra argument, because n and v may contain underspecified
terms.

The form M :: A is called type annotation and specifies that the
term M has type A. When an underspecified term @i is annotated with
a type A, that is, when we have @i :: A, the annotated type A represents
the presupposition triggered by this underspecified term. In (12), the
underspecified term with a local context, @ic, is annotated with a Σ-
type. This means that the underspecified term @i is a function that
takes a local context c as an argument and returns a term having the
annotated Σ-type. Given this type annotation, we see that @ic is a
pair of an entity x and a proof term for the proposition that x satisfies

8For the purpose of concreteness, we use a type-raised form of semantic rep-
resentations for determiners. The entry for the determiner the in the object posi-
tion can be given as follows:

the; ((S\N P)\((S\N P)/N P))/N ; λn.λv.λx .λc. v

�
π1

�
@i c ::

�
y : entity
nyc

���
xc

Although there are other possible syntactic analyses of determiners in object po-
sition (cf. Bekki 2014), this entry would ensure a concise derivation tree for
semantic composition.

9Subscripted +c is a syntactic feature for content noun. We represent N−c

and N P−c simply as N and N P, respectively. We also abbreviate other syntactic
features, which are not relevant to the discussion in this paper.

[393]

Ribeka Tanaka et al.

the predicate n given a local context c. In other words, the annotated
type represents the existence presupposition triggered by the definite
article. What is applied to the main predicate appearing in v is the first
projection of the obtained pair, i.e., a term of type entity.

The semantic representation for (11) is derived as follows.10

(13)
The

(S/(S\N P))/N

λn.λv.λc. v

�
π1

�
@1c ::

�
x : entity
nxc

���
c

book
N

λx .λc.book(x)

S/(S\N P)

λv.λc. v

�
π1

�
@1c ::

�
x : entity
book(x)
���

c

> arrived
S\N P

λx .λc.arrive(x)

S

λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
��� >

The underspecified term is indexed by a natural number i and each
number assigned to an underspecified term is mutually distinct. In the
above derivation, an underspecified term introduced by the has index
1. Here we assume that the predicate book is not context-sensitive
so that vacuous abstraction is involved as in λxλc.book(x); in such
a case, the input local context c is simply discarded in the body of
the semantic representation. As shown here, the term @1c in the fi-
nal representation is annotated with a Σ-type corresponding to the
proposition that there is a book. In this way, the annotated type repre-
sents the existence presupposition triggered by the definite description
the book.

10 In CCG derivation trees, we use two standard combinatory rules: forward
(>) and backward (<) function application rules.

X/Y : m Y : n
X : mn

>
Y : n X\Y : m

X : mn
<

For instance, the combinatory rule (>) means that an expression having a syn-
tactic category X/Y and a meaning m, combined with an expression having a
syntactic category Y and a meaning n, yields an expression having a category X
and a meaning mn. Each meaning is represented as a lambda term. See Steedman
(2000) for more details.

[394]

Factivity and presupposition in Dependent Type Semantics

The resolution of an underspecified term in a semantic represen-
tation A amounts to checking that A is well-typed in a given context.
More specifically, it is triggered by the following:
(14) Γ , δ : type ⊢ A : δ→ type

Here, Γ is a set of assumptions, called a global context, which repre-
sents the background knowledge; δ is the type of a local context (rep-
resenting the previous discourse); A : δ → type in the consequence
shows that A is a dynamic proposition in DTS, that is, a function map-
ping a given local context of type δ to a static proposition; (14) reflects
the requirement that the semantic representation of a (declarative)
sentence, i.e., a static proposition, must be of type type. This require-
ment is called the felicity condition of a sentence in DTS.

In the case of (11), the resolution process is launched by the fol-
lowing judgement:
(15) Γ , δ : type ⊢ λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

: δ→ type.

Assuming that arrive : entity → type is in the global context Γ , the
type of @1 is determined by the following derivation.11

(16)

arrive : entity→ type (CON)

@1 : δ→
�

x : entity
book(x)
�

c : δ
1

@1c :

�
x : entity
book(x)
� (ΠE)

�
@1c ::

�
x : entity
book(x)
��

:

�
x : entity
book(x)
� (ann)

π1

�
@1c ::

�
x : entity
book(x)
��

: entity
(ΣE)

arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

: type
(ΠE)

λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

: δ→ type
(ΠI),1

11Here we make use of the following rule, which ensures that one can obtain
the annotated term t :: A of type A from any term t : A.

t : A
(t :: A) : A

(ann)

See also the Appendix for other derivation rules.

[395]

Ribeka Tanaka et al.

The open branch of the derivation, repeated in (17), requires that in
order for the semantic representation in question to be well-typed,
one has to construct a proof term for the proposition that there is a
book. (This is due to the @-formation rule. See Definition 12 in the
Appendix.)

(17) @1 : δ→
�

x : entity
book(x)
�

In other words, if one assumes that (11) is a felicitous utterance, the
proposition that there is a book must be true. This requirement corre-
sponds to the existence presupposition of (11).

At the final stage of presupposition resolution, a proof search
is carried out to prove (17) and the underspecified term @1 is re-
placed by the constructed term. More specifically, the process of
anaphora/presupposition resolution is defined as follows (Bekki 2014).
(18) Suppose that Γ ⊢@i : A and Γ ⊢ M : A, where Γ is a global context

and A is a type. Then a resolution of @i by M under the context
Γ is an equation @i =A M .

In the example considered here, if a proof term for the presupposition
that there is a book is constructed, it can replace the underspecified
term @1. Such a proof construction is possible when, for instance, the
book appears in contexts as shown in (19a, b).
(19) a. If John ordered a book last week, the book will arrive today.

b. John ordered a book last week and the book arrived today.
In general, if S′ entails the presuppositions of S, constructions such as
S′ and S and If S′ then S do not inherit the presuppositions of S. In
such a case, it is said that the presupposition is filtered.

In DTS, examples such as (19a, b) can be handled in the follow-
ing way. First, the (somewhat simplified) semantic representation for
(19a) is derived as shown in (20). The type checking derivation for the
final representation of (20) is shown in (21). This derivation specifies
the type of @1. We can see that what is required for the representation
to be well-typed is to find a term substituted for @1 in (22).

[396]

Factivity and presupposition in Dependent Type Semantics
(2
0)

If
S/

S/
S

λ
p.
λ

q.
λ

c.
(v

:p
c)
→

q(
c,

v)

Jo
hn

N
P

joh
n

or
de
red

(S
\N

P
)/

N
P

λ
y.
λ

x.
λ

c.
or
de

r(x
,y
)

a
(S
\N

P
)\(
(S
\N

P
)/

N
P
)/

N

λ
n.
λ

v.
λ

x.
λ

c.

 u
:� y

:e
nt
ity

n
yc

�
v(
π

1
u)

x(
c,

u)

 
bo
ok N

λ
x.
λ

c.
bo

ok
(x
)

(S
\N

P
)\(
(S
\N

P
)/

N
P
)

λ
v.
λ

x.
λ

c.

 u
:� y

:e
nt
ity

bo
ok
(y
)

�
v(
π

1
u)

x(
c,

u)

 
>

S\
N

P

λ
x.
λ

c.

 u
:� y

:e
nt
ity

bo
ok
(y
)

�
or
de

r(x
,π

1
u)

 
<

S

λ
c.

 u
:� y

:e
nt
ity

bo
ok
(y
)

�
or
de

r(j
oh

n,
π

1
u)

 
<

S/
S

λ
q.
λ

c.

  v: 
u

:� y
:e
nt
ity

bo
ok
(y
)

�
or
de

r(j
oh

n,
π

1
u)

   →
q(

c,
v)

>
the

bo
ok

wi
lla

rri
ve

S

ar
ri

ve

� π 1�
@

1
c

::

� x:
en

tit
y

bo
ok
(x
)

���

λ
c.

  v: 
u

:

� x
:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

   →
ar

ri
ve

� π 1�
@

1
(c

,v
):

� x
:
en

tit
y

bo
ok
(x
)

���
>

[397]

Ribeka Tanaka et al.

(2
1)

. . . .
 u

:

� x
:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

  :ty
pe

ar
riv

e
:e
nt
ity
→

ty
pe

@
1

:   δ  u
:� x

:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

    
→
� x:

en
tit
y

bo
ok
(x
)

�c
:δ

2
t

: u
:� x

:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

 1

(c
,t
):

   δ  u
:� x

:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

    
(Σ

I)

@
1
(c

,t
):

� x:
en

tit
y

bo
ok
(x
)

�
(Π

E)

� @
1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

�� :� x
:
en

tit
y

bo
ok
(x
)

�(an
n)

π
1

� @
1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

�� :e
nt
ity

(Σ
E)

ar
ri

ve

� π 1�
@

1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

��� :ty
pe

(Π
E)

  t: 
u

:

� x:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

   →
ar

ri
ve

� π 1�
@

1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

��� :ty
pe

(Π
F
),

1

λ
c.

  t: 
u

:

� x:
en

tit
y

bo
ok
(x
)

�
or
de

r(j
oh

n,
π

1
u)

   →
ar

ri
ve

� π 1�
@

1
(c

,t
):

:� x
:
en

tit
y

bo
ok
(x
)

��� :δ
→

ty
pe

(Π
I)

,2

[398]

Factivity and presupposition in Dependent Type Semantics

(22) @1 :


δ u :

�
x : entity
book(x)
�

order(john,π1u)


→ � x : entity

book(x)
�

In this case, without using the information provided in the previous
discourse in δ, a proof of the proposition that there is a book can
be obtained from the antecedent of the conditional; one can find a
term that can replace @1, namely, λc.π1π2c.12 By replacing @1 with
the constructed term λc.π1π2c in the representation given in (20), we
can eventually obtain the following semantic representation for (19a),
which captures the intended reading.

(23)
t:
 u :

�
x : entity
book(x)
�

order(john,π1u)

→ arrive (π1π1 t)

Another well-known characteristic property of a presupposition is
that it projects out of embedded contexts such as negation and the an-
tecedent of a conditional. Thus, not only the positive sentence (11) but
also the negated sentence (24a) and the antecedent of a conditional
(24b) imply that there is a book.
(24) a. The book didn’t arrive. negation

b. If the book arrives, Susan will be happy. conditional
In DTS, (24a, b) can be given the following semantic representations.

(25) a. λc.¬arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���

b. λc.arrive

�
π1

�
@1c ::

�
x : entity
book(x)
���
→ happy (susan)

It can be shown that for the semantic representations (25a) and (25b)
to be well-typed, it is required to find a proof term for the proposi-
tion that there is a book. Thus, in order to prove that (25b) has type
δ→ type, one has to prove that the antecedent is of type type under
the given local context c. Since the antecedent in (25b) corresponds to
the proposition that the book arrived, this yields the derivation that

12When such a filtration does not occur, the entire sentence can have a presup-
position that is resolved by the information in δ (i.e., the information in the pre-
vious discourse) or by the information in the global context (background knowl-
edge).

[399]

Ribeka Tanaka et al.

contains the type checking process in (16) as a sub-derivation. Ac-
cordingly, it is correctly predicted that (24b) has the same existence
presupposition as the simple sentence in (11). Note that, in dependent
type theory, the negation ¬A is defined using the implication A→ ⊥,
which in turn is a degenerate form of a Π-type. Thus, the same expla-
nation applies to the case of negation in (24a) as well. In this way,
we can explain basic projection patterns of presuppositions within the
framework of DTS.13

Before moving on to the case of factive presuppositions, let us
mention one feature of underspecified terms in DTS; that is, an under-
specified term can occur inside a type annotation of another under-
specified term. This feature enables us to handle nested presupposi-
tions. As a typical example, consider a definite noun phrase such as the
book that he wrote. Omitting the details of compositional derivation, we
can assign the following semantic representation to this complex NP.

(26) λv.λc. v

π1

@1c ::

 x : entity� book(x)
write(@2c :: entity, x)

�  c
Here, the underspecified term @2, introduced by the pronoun he, oc-
curs inside the type annotation of the underspecified term @1 intro-
duced by the.14 In this case, one can resolve the most embedded under-
specified term @2 first and then resolve the outer underspecified term
@2 subsequently. A more detailed discussion of nested presupposition
is given in Bekki and Mineshima (2017).

3 analyzing factivity in dts

In this section, we provide an analysis of factive predicates in DTS.
We take the verb know as a representative of a factive predicate and
provide its semantic representation. We start by summarizing some
semantic properties of know, in comparison with the non-factive verb
believe.

13Bekki and Satoh (2015) provide a definition for decidable fragment of de-
pendent type theory with an underspecified term and formulate its type-checking
algorithm. They also provide an implementation of the algorithm.

14 It is also possible to add gender information associated with personal pro-
nouns as a presupposition. See Bekki and Mineshima (2017).

[400]

Factivity and presupposition in Dependent Type Semantics

3.1 Inferences with factive and non-factive verbs
The factive verb know and the non-factive verb believe show different
inference patterns with respect to the form of complements they take.
In what follows, we will focus on two types of complements, declara-
tive complements and NP-complements.

Consider the examples in (27), where the verbs know and believe
take a declarative complement.
(27) a. John knows that Mary is successful.

b. John believes that Mary is successful.
(28) Mary is successful.
(27a) implies (28), while (27b) does not. In the context of epistemic
logic (Hintikka 1962; Meyer and van der Hoek 2004), the inference
from (27a) to (28) has usually been treated as an instance of entail-
ment (hereafter, we use the notion “entailment” in the sense of logical
entailment). In the linguistics literature, by contrast, it has been widely
agreed that the inference from (27a) to (28) is not an entailment but a
presupposition (Kiparsky and Kiparsky 1970; Beaver 2001), as witness
examples in (29) and (30).
(29) a. John does not know that Mary is successful. negation

b. If John knows that Mary is successful, ... conditional
(30) a. If Mary is successful, John knows that she is.

b. Mary is successful, and John knows that she is.
The examples in (29a, b) show that the proposition in (28) projects out
of the embedded contexts; the examples in (30a, b) shows the filtering
of presupposition. Because the antecedent of (30a) or the first conjunct
of (30b) entails (28), the sentences do not inherit the presupposition
of know, in a similar way to (19a, b).

Another interesting difference between know and believe is shown
in (31), where they take an NP-complement of the form the N that P.
(31) a. John believes the rumor that Mary came.

⇒ John believes that Mary came.
b. John knows the rumor that Mary came.
̸⇒ John knows that Mary came.

[401]

Ribeka Tanaka et al.
Figure 3:

Entailments (⇒) and
presuppositions (Â)

associated with factive and
non-factive verbs (N refers
to a non-veridical content

noun)

K1 x knows that P Â P

K2 x knows the N that P ̸⇒ x knows that P

K3 x knows the N that P Â There is a N that P

B1 x believes that P ̸⇒ P

B2 x believes the N that P ⇒ x believes that P

B3 x believes the N that P Â There is a N that P

The non-factive verb believe licenses the inference from x Vs the N that
P to x Vs that P, where N is a (non-veridical) content noun, such as
rumor, story, and hypothesis, that takes a propositional complement; by
contrast, the factive verb know does not license this pattern of infer-
ence (Vendler 1972; Ginzburg 1995a,b; Uegaki 2016).

Figure 3 shows a summary of the inference patterns for know and
believe that we are concerned with in this paper. A remark is in order
regarding the non-entailment in K2. There is a class of content nouns
that does not follow the pattern in K2. A typical example is the con-
tent noun fact; “x knows the fact that P” entails “x knows that P”,
and vice versa. We call this class of nouns veridical content nouns and
distinguish them from non-veridical content nouns such as rumor and
story. The inference pattern in K2 only applies to non-veridical con-
tent nouns. We discuss the case of veridical content nouns at the end
of Section 3.3.

To predict these inference patterns in a compositional setting, one
needs to provide an adequate account of the lexical semantic differ-
ence between factive and non-factive verbs. One possible approach is
to consider the two types of verbs select for different semantic objects.
More specifically, it has been proposed by a number of authors that
the non-factive verb believe selects for a proposition, whereas the fac-
tive verb know selects for a fact (Vendler 1972; Parsons 1993; Ginzburg
1995a,b; King 2002). In the next section, we will explore such a se-
mantic analysis of factive and non-factive verbs within the framework
of DTS.

3.2 Declarative complements
We treat factive and non-factive verbs as predicates having different
semantic types. We analyze the non-factive verb believe as taking two

[402]

Factivity and presupposition in Dependent Type Semantics

arguments, a term of type entity and a proposition. In our notation,
the predicate believe has the following type:15

(32) believe : entity→ type→ type

By contrast, we analyze the factive verb know as taking three argu-
ments: (i) an entity representing the agent, (ii) a proposition that
serves as the content of knowledge, and (iii) a proof term of that propo-
sition. The predicate know has the following semantic type:
(33) know : entity→ (P: type)→ P→ type.

As mentioned in Section 2.1, the existence of a proof term a of
type P corresponds to the truth of proposition P. One may read
know(x)(P)(a) as the agent x obtains evidence a of the proposition P.

The standard analysis of know in formal semantics follows Hin-
tikka’s (1969) possible world semantics, which fails to capture the
notion of evidence or justification that has been traditionally asso-
ciated with the concept of knowledge. An advantage of dependent
type theory is that it is equipped with proofs as first-class objects and
thus enables us to analyze the factive verb know as a predicate over
a proof (evidence) of a proposition. Our analysis is also compatible
with Vendler’s view that know and believe select for different semantic
objects. Note that, in our approach, the notion of facts is not taken as
primitive but analyzed in terms of the notion of evidence of a propo-
sition.

The idea that a proof term of a proposition serves as an antecedent
of anaphor can be traced back to Ranta (1994), where under the as-
sumption that proofs are identified with events it is claimed that aspec-
tual verbs like stop presuppose the existence of a proof. Also, Krahmer
and Piwek (1999) brieflymentioned that the presuppositions triggered
by noun phrases like the fact that P can be treated in a similar way (see
also Section 3.3 for some discussion). Our claim is that the idea that
proof terms act as antecedents of anaphora can be applied to the pre-
suppositions of factive verbs in general.

15We leave open the possibility of decomposing the semantic representation
of belief sentences in terms of possible worlds. See Tanaka et al. (2015) for discus-
sion in the context of DTS. The problem of opacity and hyperintensionality (Fox
and Lappin 2005) is beyond the scope of the present paper.

[403]

Ribeka Tanaka et al.

To account for the presuppositional inferences summarized in
Section 3.1, we use the following lexical entry for know.16
(34) know; (S\N P)/S; λp.λx .λc.know(x)(pc)(@i c)

Here the argument p is a dynamic proposition expressed by the declar-
ative complement of know. The underspecified term @i takes a local
context c as an argument and requires one to construct a proof term of
type pc, i.e., to find evidence of the (static) proposition pc being true.
If such a proof term is constructed, it fills the third argument position
of the predicate know. In sum, the sentence x knows that P presup-
poses that there is a proof (evidence) of P and asserts that the agent x
obtains it, i.e., x has a proof (evidence) of the proposition P.

Let us illustrate with (27a) how to give a compositional analysis
of a construction containing know. The semantic representation for
(27a) is given by the following CCG derivation tree.
(35)

John
N P
john

knows
(S\N P)/S

λp.λx .λc.know(x)(pc)(@1c)

that
S/S
λP.P

Mary is successful
S

λc.successful(mary)
S

λc.successful(mary)
>

S\N P
λx .λc.know(x)(successful(mary))(@1c)

>

S
λc.know(john)(successful(mary))(@1c)

<

Then, the derivation (36) checks whether the semantic representation
is well-typed.The open branch ending up with δ→ successful(mary)
shows the presupposition of this representation, which is the factive
presupposition of (27a). In this way, we can correctly predict that
the presuppositional inference from (27a) to (28) holds. The inference
mechanism we described in Section 2.3 for the existence presupposi-
tion of definite descriptions can be extended for the case of know. In
particular, it is easy to see that the projection inference in (29) and
the filtering inference in (30) can be accounted for in the same way
as those in (24) and (19), respectively.

16 In (34), the underspecified term @i c is not annotated with its type pc, since
it is inferable from the type of the predicate know.

[404]

Factivity and presupposition in Dependent Type Semantics

(3
6)

kn
ow

:e
nt
ity
→
(P

:ty
pe
)

→
P
→

ty
pe

(C
O

N
)

joh
n:

en
tit
y
(C

O
N
)

kn
ow
(jo

hn
)

:(
P

:ty
pe
)→

P
→

ty
pe

(Π
E)

su
cc
es
sfu

l
:e
nt
ity
→

ty
pe

(C
O

N
)

ma
ry

:e
nt
ity

(C
O

N
)

su
cc
es
sfu

l(m
ar
y)

:ty
pe

(Π
E)

kn
ow
(jo

hn
)(
su
cc
es
sfu

l(m
ar
y)
)

:s
uc

ce
ssf

ul
(m

ar
y)
→

ty
pe

(Π
E)

@
1

:δ
→

su
cc
es
sfu

l(m
ar
y)

c
:δ

1

@
1
c

:s
uc

ce
ssf

ul
(m

ar
y)

(Π
E)

kn
ow
(jo

hn
)(
su
cc
es
sfu

l(m
ar
y)
)(

@
1
c)

:ty
pe

(Π
E)

λ
c.
kn

ow
(jo

hn
)(
su
cc
es
sfu

l(m
ar
y)
)(

@
1
c)

:δ
→

ty
pe

(Π
I)

,1

[405]

Ribeka Tanaka et al.

It is known that a sentence such as (37) poses the so-called binding
problem (Karttunen 1971; Karttunen and Peters 1979; Cooper 1983).
(37) A student regrets that she talked.
Here, the existential quantification introduced by a student binds the
pronoun she that appears in the presupposed content. This is an in-
stance of the nested presuppositions that we mentioned in Section 2.3.
In DTS, (37) can be given the semantic representation as shown in (38)
(where the semantic representation of regrets is analogous to that of
knows above). In this resulting representation, the Σ-type correspond-
ing to the subject a student binds the variable u in the second argument
of regret, which correponds to the type of @2(c, u) introduced by the
factive presupposition of regret. With the help of the type checking pro-
cedure, this enables us to capture the dependency between assertion
and presupposition.17

3.3 NP-complements
The analysis presented so far can be extended to the analysis of NP-
complements. Let us first take the case of believe. Consider the ex-
ample in (31a). The semantic representation of the definite NP the
rumor that Mary came appearing in the object position can be de-
rived as in (39). Since rumor is a content noun, we treat it as hav-
ing the syntactic category N+c with the syntactic feature +c. Cor-
respondingly, the predicate rumor is analyzed as a predicate over
propositions; its type is type → type. The semantic representation
of definite article the is given in the same way as the one in Sec-
tion 2.3 except that it combines with a predicate over propositions
(i.e., objects of type type), rather than with a predicate over enti-
ties.18

The semantic representation for the premise sentence in (31a) can
be derived as shown in (40). The resulting representation presupposes
that there is a rumor whose content is identified with come(mary).
This is the existence presupposition triggered by the NP-complement

17See Bekki and Mineshima (2017) for more details.
18Strictly speaking, to combine Σ-types with predicates over propositions re-

quires the notion of type hierarchy (Martin-Löf 1984). For ease of exposition, we
refer to the base type (type0) simply as type.

[406]

Factivity and presupposition in Dependent Type Semantics

(3
8)

A
S/
(S
\N

P
)/

N
λ

n.
λ

v.
λ

c.
 u

:� x
:e
nt
ity

n
xc

�
v(
π

1
u)
(c

,u
)

 
stu

de
nt

N
λ

x.
λ

c.
stu

de
nt
(x
)

S/
(S
\N

P
)

λ
v.
λ

c.

 u
:� x

:e
nt
ity

stu
de

nt
(x
)

�
v(
π

1
u)
(c

,u
)

 
>

reg
ret

s
(S
\N

P
)/

S
λ

p.
λ

x.
λ

c.
re
gr
et(

x)
(p

c)
(@

2
c)

tha
t

S/
S

λ
p.

p

sh
et

alk
ed

S
λ

c.
ta
lk(

@
1
c

::
en

tit
y)

S
λ

c.
ta
lk(

@
1
c

::
en

tit
y)

>

S\
N

P
λ

x.
λ

c.
re
gr
et(

x)
(ta

lk(
@

1
c

::
en

tit
y)
)(

@
2
c)

>

S

λ
c.

 u
:� x

:
en

tit
y

stu
de

nt
(x
)

�
re
gr
et(
π

1
u)
(t

al
k
(@

1
(c

,u
):

:e
nt
ity
))
(@

2
(c

,u
))

 
>

[407]

Ribeka Tanaka et al.

(3
9)

the
((

S\
N

P
)\(
(S
\N

P
)/

N
P +

c)
)/

N
+

c

:λ
n.
λ

v.
λ

x.
λ

c.

v� λc
′ .π

1

� @
1
c

::

� P
:ty

pe
nP

c

��� xc

ru
mo

r
N
+

c

λ
P

.λ
c.
ru
mo

r(P
)

tha
t

(N
+

c\N
+

c)
/S

:λ
p.
λ

n.
λ
P

.λ
c.

� P=
ty
pe

pc
nP

c

�
Ma

ry
ca
me

S
λ

c.
co
me
(m

ar
y)

N
+

c\N
+

c

λ
n.
λ
P

.λ
c.

� P=
ty
pe
co
me
(m

ar
y)

nP
c

�
>

N
+

c

λ
P

.λ
c.

� P=
ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�
<

(S
\N

P
)\(
(S
\N

P
)/

N
P +

c)

λ
v.
λ

x.
λ

c.
v  λc

′ .π
1

  @ 1
c

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
  xc

>

[408]

Factivity and presupposition in Dependent Type Semantics

(4
0) Jo
hn

N
P

joh
n

be
lie
ve
s

(S
\N

P
)/

N
P +

c

λ
p.
λ

x.
λ

c.
be

lie
ve
(x
)(

pc
)

the
ru
mo

rt
ha
tM

ary
ca
me

(S
\N

P
)\(
(S
\N

P
)/

N
P +

c)

λ
v.
λ

x.
λ

c.
v  λc

′ .π
1

  @ 1
c

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
  xc

S\
N

P

λ
x.
λ

c.
be

lie
ve
(x
)  π 1
  @ ic

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
 

<

S

λ
c.
be

lie
ve
(jo

hn
)  π 1
  @ ic

::

 P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
 

<

[409]

Ribeka Tanaka et al.

(cf. B3 in Figure 3). When this presupposition is satisfied, the resulting
semantic representation can be reduced to believe(john,P), where
we have P : type, P =type come(mary), and rumor(P). Thus, we can
derive the representation believe(john,come(mary)), which is the
representation for the conclusion in (31a). Hence, we can correctly
derive the entailment pattern B2 in Figure 3.

It should be noted that, in the case of (31a), the predicate
rumor does not contribute to the content of belief. By contrast,
(31b) shows that, in the case of the factive verb know taking an
NP-complement, the predicate rumor is part of the content of
knowledge ascribed to the agent. The premise sentence in (31b)
can be paraphrased as John knows that there is a rumor that Mary
came. To handle (31b), then, we use the following lexical en-
tries for the non-presuppositional use of the, which we refer to
by thepred .

(41) thepred (subject position);
(S/(S\N P+c))/N+c ; λn.λv.λc. v

�
λc′.
�

P : type
nPc

��
c

(42) thepred (object position);
((S\N P)\((S\N P)/N P+c))/N+c ; λn.λv.λx .λc. v

�
λc′.
�

P : type
nPc

��
xc

In contrast to the entry given in (12), thepred does not have existence
presupposition and passes the whole existential proposition (Σ-type)
to the main predicate.19

We take it that the existence presupposition associated with the
premise sentence in (31b) comes from the factive verb know. Using the
entry in (42), the semantic representation for the premise sentence in
(31b) can be derived as in (43). The semantic representation derived in
(43) presupposes that there is a rumor that Mary came and asserts that
John has evidence for it. This is clearly distinguished from the reading

19Such a non-presuppositional use of definite description is also needed to
handle examples such as The king of France does not exist, where the use of the
does not presuppose the existence of the king of France.

[410]

Factivity and presupposition in Dependent Type Semantics

(4
3) Jo
hn

N
P

joh
n

kn
ow

s
(S
\N

P
)/

N
P

λ
p.
λ

x.
λ

c.
kn

ow
(x
)(

pc
)(

@
1
c)

the
ru
mo

rt
ha
tM

ary
ca
me

(S
\N

P
)\(
(S
\N

P
)/

N
P
)

λ
v.
λ

x.
λ

c.
v  λc

′ . 
P

:ty
pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
xc

S\
N

P

λ
x.
λ

c.
kn

ow
(x
)  

P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
(@

1
c)

<

S

λ
c.
kn

ow
(jo

hn
)  

P
:ty

pe
� P=

ty
pe
co
me
(m

ar
y)

ru
mo

r(P
)

�  
(@

1
c)

<

[411]

Ribeka Tanaka et al.
Figure 4:

Inferences associated with
veridical content nouns

K4 x knows the fact that P ⇔ x knows that P

K5 x knows the fact that P Â There is a fact that P

K6 x knows the fact that P Â P

that John has evidence that Mary came, hence, we can account for the
non-entailment in (31b), schematically given as K2 in Figure 3.20

As noted in Section 3.1, veridical content nouns such as fact and
truth show a different entailment pattern from non-veridical content
nouns such as rumor and story. The relevant inference patterns are
summarized in Figure 4. The present analysis can naturally handle
these inference patterns as well. Consider (44):
(44) John knows the fact that Mary came.
In the same way as the derivation in (43), we can obtain the semantic
representation for (44):

(45) λc.know(john)
 P : type�

P=type come(mary)
fact(P)

�  (@1c)

The underspecified term @1 in (45) triggers the presupposition that
there is the fact that Mary came, which accounts for K5 in Figure 4. To
account for the other inference patterns, wemay posit two axioms. The
first axiom is the one concerning the lexical meaning of the veridical
content noun fact:
(46) Axiom 1 : (P: type)→ (fact(P)↔ P)

Using this axiom, one can construct a proof term of come(mary) from
the presupposition in (45), hence K6 in Figure 4 follows.

The second axiom we need is about the closure property of know:
(47) Axiom 2 : (x:entity)→ (P: type)→ (Q: type)→ (a:P)→

know(x)(P)(a)→ (f :P→Q)→ know(x)(Q)(f a)

The sentence John knows that Mary came can be compositionally as-
signed the semantic representation in (48), in the same way as the
derivation shown in (35).
20As pointed out by an anonymous reviewer, the current analysis allows the

combination of the verb know and the presuppositional the. This yields an unin-
tended reading for (31b) where it is presupposed that Mary came. Though this
undesirable reading could be blocked by involving a complicated syntactic anal-
ysis, we consider details of such an analysis as beyond the scope of this paper.

[412]

Factivity and presupposition in Dependent Type Semantics

(48) λc.know(john)(come(mary))(@2c)

It is easy to derive (48) from (45) given an initial context c. First,
assume that the presupposition in (45) is satisfied, that is, there is a
proof term substituted for @1 in (45). Using Axiom 1, we can con-
struct a proof term substituted for @2 in (48), that is, a proof term of
come(mary), as well as a proof term for the proposition in (49).

(49)
 P : type�

P=type come(mary)
fact(P)

� → come(mary)

Hence, applying Axiom 2, we can obtain a proof term of (48). The
other direction, i.e., the inference from (48) to (45), is derived in the
same manner. Thus we can account for the pattern in K4.

Note that the present analysis of the inference pattern in K6 is
different from what is suggested by Krahmer and Piwek (1999). These
authors briefly discuss the presupposition triggered by the factive con-
struction (be) annoyed by the fact that P. They treat this construction
as one complex predicate, assuming that its presupposition is P. In our
approach, know the fact that P is analyzed not as directly presupposing
that P, but as presupposing the existence of the fact whose content is
P. Under the present analysis, the inference in K6 is explained in terms
of the lexical knowledge concerning the content noun fact.

4 conclusion
This paper has attempted to provide an analysis of presuppositions
and factivity within the framework of DTS. Under our analysis, fac-
tive and non-factive verbs are assigned different semantic types: while
the non-factive predicate believe selects for a proposition as an object
argument, the factive predicate know takes a proof-object as an extra
argument. Using the machinery of underspecified semantics in DTS,
we have illustrated how to account for a variety of inferences concern-
ing factive and non-factive verbs.

Several open issues remain, most notably that of the interpreta-
tion of interrogative complements. It is acknowledged in the literature
that the factive verb know takes interrogative complements, whereas
the non-factive verb believe does not (Ginzburg 1995a,b; Egré 2008):
(50) a. John {knows, ∗believes} whether Ann or Bob came.

b. John {knows, ∗believes} who came.

[413]

Ribeka Tanaka et al.

Providing a detailed analysis of interrogative complements within our
proof-theoretic framework is left for another occasion.

acknowledgment
This paper is a revised and expanded version of a paper presented at
the TYpe Theory and LExical Semantics (TYTLES) workshop during
the 27th European Summer School in Logic, Language and Informa-
tion (ESSLLI 2015). We are grateful to Robin Cooper, Christian Re-
toré, and the audience of TYTLES workshop for helpful discussions.
We would also like to thank the three anonymous reviewers of this pa-
per for their valuable comments and suggestions. This work was sup-
ported by JST CREST Grant Number JPMJCR1301, Japan. The first
author acknowledges the financial support of the JSPS Grant-in-Aid
for JSPS Fellows Grant Number 15J11772.

appendix
Definition 1 (Alphabet for λΠΣ) An alphabet for λΠΣ is a 〈Var, Con〉,
where Var is a set of variables, and Con is a set of constants. Dependent
type semantics employs an alphabet as follows:

Var
de f≡ {x , y, z, u, v, ...}

Con
de f≡ {entity, book, arrive, ...}

Definition 2 (Preterms) The collection of preterms is recursively de-
fined as follows (where x ∈ Var and c ∈ Con, j = 1,2, i = 0,1, 2, ...).
Λ := x | c | @i | typei | Λ :: Λ | (x:Λ)→ Λ | λx .Λ | ΛΛ
|
�

x : Λ
Λ

�
| (Λ,Λ) | π j(Λ) | Λ=Λ Λ | reflΛ(Λ) | idpeel(Λ,Λ)

| ⊥ | ⊤ | caseΛ(Λ1, ...,Λn)

Definition 3 (Signature) A signatureσ is defined recursively as follows.
σ := () | σ, c : A

where () is an empty signature, c ∈ Con, A ∈ Λ s.t. ⊢σ A : typei for some
i ∈ N.

[414]

Factivity and presupposition in Dependent Type Semantics

Definition 4 (Context) A context is defined recursively as follows.

Γ := () | Γ , x : A

where () is an empty context, x ∈ Var, A ∈ Λ s.t. Γ ⊢σ A : typei for some
i ∈ N.
Definition 5 (Constant symbol rule) For any (c : A) ∈ σ,

c : A
(CON)

Definition 6 (Type rules) For any i ∈ N,
A : type i

A : type i+1
(typeI) type i : type i+1

(typeF)

Definition 7 (Π-type) For any i, j ∈ N,

A : type i

x : A
j

....
B : type i

(x: A)→ B : type i
(ΠF) , j

A : type i

x : A
j

....
M : B

λx .M : (x: A)→ B
(ΠI) , j

M : (x: A)→ B N : A
MN : B[M/x]

(ΠE)

Definition 8 (Σ-type) For any i, j ∈ N,

A : type i

x : A
j

....
B : type i�

x : A
B

�
: type i

(ΣF) , j M : A N : B[M/x]

(M , N) :

�
x : A
B

� (ΣI)

M :

�
x : A
B

�
π1(M) : A

(ΣE)

M :

�
x : A
B

�
π2(M) : B[π1(M)/x]

(ΣE)

Definition 9 (Bottom type) For any i ∈ N,

⊥ : type0
(⊥F)

M :⊥ C :⊥→ typei

caseM () : C(M)
(⊥E)

[415]

Ribeka Tanaka et al.

Definition 10 (Top type) For any i ∈ N,
⊤ : type0

(⊤F)
() :⊤ (⊤I)

M :⊤ C :⊤→ typei N : C()
caseM (N) : C(M)

(⊤E)

Definition 11 (Id-type) For any i ∈ N,
A : typei M : A N : A

M =A N : typei
(IdF)

A : type M : A
reflA(M) : M =A M

(IdI)

E : M1 =A M2 C : (x: A)→ (y: A)→ (x =A y → typei) N : (x: A)→ C x x(reflA(x))
idpeel(e, N) : C M1M2E

(IdE)

Definition 12 (@-formation rule) For any i, j ∈ N,
A : typei A true

@ j : A
(@F)

Definition 13 (Type annotation rule)
t : A

(t :: A) : A
(ann)

references
Nicholas Asher (2011), Lexical Meaning in Context: A Web of Words, Cambridge
University Press, Cambridge.
Nicholas Asher and Zhaohui Luo (2012), Formalisation of coercions in lexical
semantics, in E. Chemla, V. Homer, and G. Winterstein, editors,
Proceedings of Sinn und Bedeutung 17, pp. 63–80, Paris,
http://semanticsarchive.net/sub2012/.
David I. Beaver (2001), Presupposition and Assertion in Dynamic Semantics, CSLI
Publications, Stanford.
Daisuke Bekki (2014), Representing anaphora with dependent types, in
N. Asher and S. Soloviev, editors, Logical Aspects of Computational Linguistics:
8th International Conference, LACL 2014, Proceedings, volume 8535 of Lecture
Notes in Computer Science, pp. 14–29, Springer, Heidelberg.
Daisuke Bekki and Nicholas Asher (2013), Logical polysemy and subtyping,
in Y. Motomura, A. Butler, and D. Bekki, editors, New Frontiers in Artificial
Intelligence: JSAI-isAI 2012 Workshops, Revised Selected Papers, volume 7856 of
Lecture Notes in Computer Science, pp. 17–24, Springer, Heidelberg.

[416]

Factivity and presupposition in Dependent Type Semantics

Daisuke Bekki and Koji Mineshima (2017), Context-passing and
underspecification in Dependent Type Semantics, in S. Chatzikyriakidis and
Z. Luo, editors, Modern Perspectives in Type-Theoretical Semantics, volume 98 of
Studies in Linguistics and Philosophy, pp. 11–41, Springer, Heidelberg.
Daisuke Bekki and Miho Satoh (2015), Calculating projections via type
checking, in R. Cooper and C. Retoré, editors, ESSLLI proceedings of the
TYTLES workshop on Type Theory and Lexical Semantics ESSLLI2015, Barcelona.
Stergios Chatzikyriakidis and Zhaohui Luo (2014), Natural language
inference in Coq, Journal of Logic, Language and Information, 23(4):441–480.
Robin Cooper (1983), Quantification and Syntactic Theory, Reidel, Dordrecht.
Rogelio Dávila-Pérez (1995), Semantics and Parsing in Intuitionistic Categorial
Grammar, Ph.D. thesis, University of Essex.
Paul Egré (2008), Question-embedding and factivity, Grazer Philosophische
Studien, 77(1):85–125.
Delia Graff Fara (2001), Descriptions as predicates, Philosophical Studies,
102:1–42, originally published under the name “Delia Graff”.
Chris Fox and Shalom Lappin (2005), Foundations of Intensional Semantics,
Blackwell, Oxford.
Jonathan Ginzburg (1995a), Resolving questions, I, Linguistics and Philosophy,
18(5):459–527.
Jonathan Ginzburg (1995b), Resolving questions, II, Linguistics and Philosophy,
18(6):567–609.
Jeroen Groenendijk and Martin Stokhof (1991), Dynamic predicate logic,
Linguistics and Philosophy, 14(1):39–100.
Irene Heim (1982), The Semantics of Definite and Indefinite Noun Phrases, Ph.D.
thesis, University of Massachusetts, Amherst.
Irene Heim (1983), On the projection problem for presuppositions, in
M. Barlow, D. Flickinger, and M. Wescoat, editors, Proceedings of the
Second West Coast Conference on Formal Linguistics, pp. 114–125, Stanford
University Press, Stanford, CA.
Jaakko Hintikka (1962), Knowledge and Belief: An Introduction to the Logic of
the Two Notions, Cornell University Press, Ithaca, NY.
Jaakko Hintikka (1969), Semantics for propositional attitudes, in J. W.
Davis, D. J. Hockney, and W. K. Wilson, editors, Philosophical Logic,
volume 20 of Synthese Library, pp. 21–45, Reidel, Dordrecht.
William Alvin Howard (1980), The formulae-as-types notion of construction,
in J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pp. 480–490, Academic
Press, London.

[417]

Ribeka Tanaka et al.

Hans Kamp, Josef van Genabith, and Uwe Reyle (2011), Discourse
Representation Theory, in D. M. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 15, pp. 125–394, Springer, Heidelberg.
Lauri Karttunen (1971), Implicative verbs, Language, 47(2):340–358.
Lauri Karttunen and Stanley Peters (1979), Conventional implicatures, in
C. K. Oh and D. A. Dinneen, editors, Syntax and Semantics 11: Presupposition,
pp. 1–56, Academic Press, New York, NY.
Jeffrey C. King (2002), Designating propositions, The Philosophical Review,
111(3):341–371.
Eriko Kinoshita, Koji Mineshima, and Daisuke Bekki (2016), An analysis of
selectional restrictions with Dependent Type Semantics, in Proceedings of the
13th International Workshop on Logic and Engineering of Natural Language
Semantics (LENLS13), pp. 100–113, Kanagawa.
Paul Kiparsky and Carol Kiparsky (1970), Fact, in M. Bierwisch and K. E.
Heidolph, editors, Progress in Linguistics, pp. 143–173, de Gruyter Mouton,
Berlin.
Emiel Krahmer and Paul Piwek (1999), Presupposition projection as proof
construction, in H. Bunt and R. Muskens, editors, Computing Meaning: Volume
1, volume 73 of Studies in Linguistics and Philosophy, pp. 281–300, Kluwer
Academic Publishers, Dordrecht.
Yusuke Kubota and Robert Levine (2017), Scope parallelism in coordination
in Dependent Type Semantics, in M. Otake, S. Kurahashi, Y. Ota,
K. Satoh, and D. Bekki, editors, New Frontiers in Artificial Intelligence: JSAI-isAI
2015 Workshops, Revised Selected Papers, volume 10091 of Lecture Notes in
Artificial Intelligence, pp. 149–162, Springer, Heidelberg.
Susumu Kuno (1970), Some properties of non-referential noun phrases, in
R. Jakobson and S. Kawamoto, editors, Studies in General and Oriental
Linguistics. Presented to S. Hattori on Occasion of his Sixtieth Birthday,
pp. 348–373, TEC, Tokyo.
Zhaohui Luo (2012a), Common nouns as types, in D. Béchet and
A. Dikovsky, editors, Logical Aspects of Computational Linguistics: 7th
International Conference, LACL 2012, Proceedings, volume 7351 of Theoretical
Computer Science and General Issues, pp. 173–185, Springer, Heidelberg.
Zhaohui Luo (2012b), Formal semantics in modern type theories with coercive
subtyping, Linguistics and Philosophy, 35(6):491–513.
Per Martin-Löf (1984), Intuitionistic Type Theory. Notes by G. Sambin,
Bibliopolis, Naples.
John-Jules Ch Meyer and Wiebe van der Hoek (2004), Epistemic Logic for AI
and Computer Science, Cambridge University Press, Cambridge.

[418]

Factivity and presupposition in Dependent Type Semantics

Line Mikkelsen (2005), Copular Clauses: Specification, Predication and Equation,
John Benjamins, Amsterdam.
Line Mikkelsen (2011), Copular clauses, in C. Maienborn, K. von
Heusinger, and P. Portner, editors, Semantics: An International Handbook of
Natural Language Meaning, volume 2, pp. 1805–1829, de Gruyter Mouton,
Berlin.
Richard Montague (1973), The proper treatment of quantification in ordinary
English, in P. Suppes, J. Moravcsik, and J. Hintikka, editors, Approaches to
Natural Language, pp. 221–242, Kluwer Academic Publishers, Dordrecht.
Bengt Nordström, Kent Petersson, and Jan M. Smith (1990), Programming
in Martin-Löf’s Type Theory: An Introduction, Oxford University Press, Oxford.
Terence Parsons (1993), On denoting propositions and facts, Philosophical
Perspectives, 7:441–460.
Paul Piwek and Emiel Krahmer (2000), Presuppositions in context:
constructing bridges, in P. Bonzon, M. Cavalcanti, and R. Nossum, editors,
Formal Aspects of Context, volume 20 of Applied Logic Series, pp. 85–106, Kluwer
Academic Publishers, Dordrecht.
Aarne Ranta (1994), Type-Theoretical Grammar, Oxford University Press,
Oxford.
Christian Retoré (2014), The Montagovian generative lexicon ΛT yn: a type
theoretical framework for natural language semantics, in R. Matthes and
A. Schubert, editors, 19th International Conference on Types for Proofs and
Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in
Informatics, pp. 202–229, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, http://drops.dagstuhl.de/opus/volltexte/2014/4633/.
Bertrand Russell (1919), Introduction to Mathematical Philosophy, George Allen
& Unwin, London.
Mark Steedman (2000), The Syntactic Process, MIT Press, Cambridge, MA.
Göran Sundholm (1986), Proof Theory and Meaning, in D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume 3,
pp. 471–506, Reidel, Dordrecht.
Göran Sundholm (1989), Constructive generalized quantifiers, Synthese,
79(1):1–12.
Ribeka Tanaka (2014), A proof-theoretic approach to generalized quantifiers
in dependent type semantics, in R. de Haan, editor, Proceedings of the
ESSLLI2014 Student Session, pp. 140–151, Tübingen,
http://www.kr.tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf.
Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki (2015), Resolving
modal anaphora in Dependent Type Semantics, in T. Murata, K. Mineshima,

[419]

Ribeka Tanaka et al.

and D. Bekki, editors, New Frontiers in Artificial Intelligence: JSAI-isAI 2014
Workshops, Revised Selected Papers, pp. 83–98, Springer, Heidelberg.
Ribeka Tanaka, Yuki Nakano, and Daisuke Bekki (2014), Constructive
generalized quantifiers revisited, in Y. Nakano, K. Satoh, and D. Bekki,
editors, New Frontiers in Artificial Intelligence: JSAI-isAI 2013 Workshops, Revised
Selected Papers, volume 8417 of Lecture Notes in Computer Science, pp. 115–124,
Springer, Heidelberg.
Wataru Uegaki (2016), Content nouns and the semantics of
question-embedding, Journal of Semantics, 33(4):623–660.
Rob A. van der Sandt (1992), Presupposition projection as anaphora
resolution, Journal of Semantics, 9:333–377.
Zeno Vendler (1972), Res Cogitans: An Essay in Rational Psychology, Cornell
University Press, Ithaca, NY.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[420]

