
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ŉ ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ŉ ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1

1

Journal of

Language
Modelling
volume 6 issue 2
december 2018

Institute of Computer Science
Polish Academy of Sciences
Warsaw

Journal of
Language Modelling

volume 6 issue 2
december 2018

Editorials
A special issue on statistical and logical models of meaning 223

Glyn Morrill, Mehrnoosh Sadrzadeh

Articles
Graded hyponymy for compositional distributional semantics 225

Dea Bankova, Bob Coecke, Martha Lewis, Dan Marsden
A proof-theoretic approach

to scope ambiguity in compositional vector space models 261
Gijs Jasper Wijnholds

Combining logical and distributional methods
in type-logical grammars 287

Richard Moot
Static and dynamic vector semantics

for lambda calculus models of natural language 319
Mehrnoosh Sadrzadeh, Reinhard Muskens

Squibs and discussions
A note on movement in logical grammar 353

Glyn Morrill

External reviewers 2016–2018 365

1

journal of
language modelling

ISSN 2299-8470 (electronic version)
ISSN 2299-856X (printed version)
http://jlm.ipipan.waw.pl/

managing editor
Adam Przepiórkowski ipi pan

guest editors of this special issue
Glyn Morrill Universitat Politècnica de Catalunya

Mehrnoosh Sadrzadeh Queen Mary University of London

section editors
Elżbieta Hajnicz ipi pan

Agnieszka Mykowiecka ipi pan
Marcin Woliński ipi pan

statistics editor
Łukasz Dębowski ipi pan

Published by IPI PAN
Institute of Computer Science, Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Circulation: 100 + print on demand
Layout designed by Adam Twardoch.

Typeset in XƎLATEX using the typefaces: Playfair Display
by Claus Eggers Sørensen, Charis SIL by SIL International,

JLM monogram by Łukasz Dziedzic.
All content is licensed under

the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

editorial board

Steven Abney University of Michigan, usa
Ash Asudeh Carleton University, canada;
University of Oxford, united kingdom

Chris Biemann Technische Universität Darmstadt, germany
Igor Boguslavsky Technical University of Madrid, spain;

Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, russia

António Branco University of Lisbon, portugal
David Chiang University of Southern California, Los Angeles, usa

Greville Corbett University of Surrey, united kingdom
Dan Cristea University of Iași, romania

Jan Daciuk Gdańsk University of Technology, poland
Mary Dalrymple University of Oxford, united kingdom

Darja Fišer University of Ljubljana, slovenia
Anette Frank Universität Heidelberg, germany
Claire Gardent cnrs/loria, Nancy, france

Jonathan Ginzburg Université Paris-Diderot, france
Stefan Th. Gries University of California, Santa Barbara, usa

Heiki-Jaan Kaalep University of Tartu, estonia
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, germany

Jong-Bok Kim Kyung Hee University, Seoul, korea
Kimmo Koskenniemi University of Helsinki, finland

Jonas Kuhn Universität Stuttgart, germany
Alessandro Lenci University of Pisa, italy

Ján Mačutek Comenius University in Bratislava, slovakia
Igor Mel’čuk University of Montreal, canada

Glyn Morrill Technical University of Catalonia, Barcelona, spain

Stefan Müller Freie Universität Berlin, germany
Mark-Jan Nederhof University of St Andrews, united kingdom

Petya Osenova Sofia University, bulgaria
David Pesetsky Massachusetts Institute of Technology, usa
Maciej Piasecki Wrocław University of Technology, poland

Christopher Potts Stanford University, usa
Louisa Sadler University of Essex, united kingdom

Agata Savary Université François Rabelais Tours, france
Sabine Schulte im Walde Universität Stuttgart, germany

Stuart M. Shieber Harvard University, usa
Mark Steedman University of Edinburgh, united kingdom

Stan Szpakowicz School of Electrical Engineering
and Computer Science, University of Ottawa, canada
Shravan Vasishth Universität Potsdam, germany

Zygmunt Vetulani Adam Mickiewicz University, Poznań, poland
Aline Villavicencio Federal University of Rio Grande do Sul,

Porto Alegre, brazil
Veronika Vincze University of Szeged, hungary

Yorick Wilks Florida Institute of Human and Machine Cognition, usa
Shuly Wintner University of Haifa, israel

Zdeněk Žabokrtský Charles University in Prague, czech republic

A Special Issue
on Statistical and Logical

Models of Meaning

Glyn Morrill1 and Mehrnoosh Sadrzadeh2
1 Department of Computer Science,Universitat Politècnica de Catalunya

2 School of Electronic Engineering and Computer Science,
Queen Mary University of London

In this special issue we collect five papers derived from the
workshop on Statistical and Logical Models of Meaning (SaLMoM)
celebrated 11th–15th July 2016 as part of the North American Sum-
mer School in Logic, Language and Information at Rutgers University.
The workshop addressed fundamental problems of the interplay of
syntax, traditional logical semantics, and contemporary distributional
semantics. Speakers, in the order of presentation, were Mehrnoosh
Sadrzadeh, Gemma Boleda, Laura Rimell, Glyn Morrill, Richard Moot,
Jules Hedges, Mark Steedman, Gijs Wijnholds, Kyle Richardson, Dim-
itri Kartsaklis, Martha Lewis, Reinhard Muskens, and Nicholas Asher
(https://sites.google.com/site/statlogmeaning/workshop-program).

Since the time of Richard Montague's semantic analysis of phe-
nomena such as quantification around 1970, logical semantics based
on lambda calculus and type theory has been a stable paradigm for
the characterization of natural language truth conditions (via model
theory) and, to a lesser extent, entailment (via proof theory), with
the two in principle related by metalogical properties such as sound-
ness and completeness. More recently, statistical semantics has used
massive computational corpora to revindicate prior methods such as
distributional semantics which models the semantics of a word by the
words which locally cooccur with it. At the present time these dis-
tinct paradigms appear to represent approaches which are radically
distinct, yet both valid. The central objective of this volume is to air
options to contrast and possibly reconcile and bring together logical
and statistical semantics such as distributional semantics.

Journal of Language Modelling Vol 6, No 2 (2018), pp. 223–224

Glyn Morrill, Mehrnoosh Sadrzadeh

Standardly, linguistics identifies dictionary semantics for linguis-
tic study. But in practice language is used for reasoning without a
clear distinction between such linguistic knowledge and world knowl-
edge. A classical problem in real reasoning is that of establishing and
combining the relevant roles of encyclopedic or world knowledge and
linguistic semantic knowledge. The article by Bankova et al. analyses
entailment in distributional semantics in relation to this issue.

The article by Wijnholds addresses the classical covert movement
phenomenon of quantification in logical syntactic calculi with statis-
tical semantics building on a categorical compositional distributional
approach that uses bialgebras to model generalised quantifiers.

The article by Moot proposes weighted logical syntactic proof
rules integrating distributional and logical semantics and suggests
ways to compare proofs by applying vector similarity measures in-
duced from their weights; the latter are mined from proof banks.

Lambda calculus logical semantic representation is a lingua franca
of logical semantics. The article by Muskens and Sadrzadeh presents
possible ways for a systematic development of distributional semantics
for lambda calculus models of natural language. For this purpose they
adopt also lambda grammar syntax, but inessentially, and in this way
they furnish proposals which are widely applicable. Their approach
allows them to use dynamic logic to reason about admittance of sen-
tences by corpora using concepts similar to those in Heim's context
logic.

The squib by Morrill discusses details of logical grammar in rela-
tion to the covert movement of relativization and the overt movement
of quantification.

The order of papers and a brief description of them are as follows:
1. Bankova et al: entailment in distributional semantics using den-

sity matrices,
2. Gijs Wijnholds: scope ambiguity in compositional distributional

semantics,
3. Richard Moot: weighted proof rules for distributional + logical

semantics,
4. Reinhard Muskens and Mehrnoosh Sadrzadeh: vector semantics

for lambda calculus and its logic,
5. Glyn Morrill: a note on movement in logical grammar.

[224]

Graded hyponymy for compositional
distributional semantics

Dea Bankova1, Bob Coecke1, Martha Lewis2, and Dan Marsden1
1 Quantum Group, University of Oxford

2 ILLC, University of Amsterdam

abstract
Keywords:
categorical
compositional
distributional
semantics,
computational
linguistics,
entailment,
density operator

The categorical compositional distributional model of natural lan-
guage provides a conceptually motivated procedure to compute the
meaning of a sentence, given its grammatical structure and the mean-
ings of its words. This approach has outperformed other models in
mainstream empirical language processing tasks, but lacks an effec-
tive model of lexical entailment. We address this shortcoming by ex-
ploiting the freedom in our abstract categorical framework to change
our choice of semantic model. This allows us to describe hyponymy as
a graded order on meanings, using models of partial information used
in quantum computation. Quantum logic embeds in this graded order.

1 introduction
Finding a formalization of language in which the meaning of a sen-
tence can be computed from the meaning of its parts has been a long-
standing goal in formal and computational linguistics.
Distributional semantics represents individual word meanings as

vectors in finite dimensional real vector spaces. On the other hand,
symbolic accounts of meaning combine words via compositional rules
to form phrases and sentences. These two approaches are in some
sense orthogonal. Distributional schemes have no obvious composi-
tional structure, whereas compositional models lack a canonical way
of determining the meaning of individual words. In Coecke et al.
(2010), the authors develop the categorical compositional distribu-
tional model of natural language semantics. This model exploits the

Journal of Language Modelling Vol 6, No 2 (2018), pp. 225–260

Dea Bankova et al.

shared categorical structure of pregroup grammars and vector spaces
to provide a compositional structure for distributional semantics. It
has produced state-of-the-art results in measuring sentence similar-
ity (Kartsaklis et al. 2012; Grefenstette and Sadrzadeh 2011), effec-
tively describing aspects of the human understanding of sentences.
A satisfactory account of natural language should incorporate a

suitable notion of lexical entailment. Until recently, categorical com-
positional distributional models of meaning have lacked this crucial
feature. In order to address the entailment problem, we exploit the
freedom inherent in our abstract categorical framework to change
models. We move from a pure state setting to a category used to de-
scribe mixed states and partial knowledge in the semantics of cate-
gorical quantum mechanics. Meanings are now represented by den-
sity matrices rather than simple vectors. We use this extra flexibil-
ity to capture the concept of hyponymy, where one word may be
seen as an instance of another. For example, red is a hyponym of
colour. The hyponymy relation can be associated with a notion of
logical entailment. Some entailment is crisp, for example: dog en-
tails animal. However, we may also wish to permit entailments of
differing strengths. For example, the concept dog gives high support
to the concept pet, but does not completely entail it: some dogs are
working dogs. The hyponymy relation we describe here can account
for these phenomena. Some crisp entailment can be seen as encod-
ing linguistic knowledge. The kind of entailment we are interested
in here is, in general, about the properties that objects have in the
world, rather than grammatically based entailment. In particular, we
explicitly avoid downward-monotone contexts such as negation. We
do, however, examine the hyponymy between an adjective-noun com-
pound and the head noun. We should also be able to measure entail-
ment strengths at the sentence level. For example, we require that
Cujo is a dog crisply entails Cujo is an animal, but that the statement
Cujo is a dog does not completely entail Cujo is a pet. Again, the re-
lation we describe here will successfully describe this behaviour at
the sentence level. Closely related to the current work are the ideas
in Balkır (2014), Balkır et al. (2016), and Sadrzadeh et al. (2018). In
this work, the authors develop a graded form of entailment based
on von Neumann entropy and with links to the distributional inclu-
sion hypotheses developed by Geffet and Dagan (2005). The authors

[226]

Compositional graded hyponymy

show how entailment at the word level carries through to entail-
ment at the sentence level. However, this is done without taking ac-
count of the grading. In contrast, the measure that we develop here
provides a lower bound for the entailment strength between sen-
tences, based on the entailment strength between words. Some of the
work presented here was developed in the first author’s MSc thesis
(Bankova 2015).
An obvious choice for a logic built upon vector spaces is quan-

tum logic (Birkhoff and von Neumann 1936). Briefly, this logic
represents propositions about quantum systems as projection op-
erators on an appropriate Hilbert space. These projections form
an orthomodular lattice where the distributive law fails in gen-
eral. The logical structure is then inherited from the lattice struc-
ture in the usual way. In the current work, we propose an order
that embeds the orthomodular lattice of projections, and so con-
tains quantum logic. This order is based on the Löwner ordering
with propositions represented by density matrices. When this or-
dering is applied to density matrices with the standard trace nor-
malization, no propositions compare, and therefore the Löwner or-
dering is useless as applied to density operators. The trick we use
is to develop an approximate entailment relationship which arises
naturally from any commutative monoid. We introduce this in gen-
eral terms and describe conditions under which this gives a graded
measure of entailment. This grading becomes continuous with re-
spect to noise. Our framework is flexible enough to subsume the
Bayesian partial ordering of Coecke and Martin (2011) and pro-
vides it with a grading. A procedure is given for determining the
hyponymy strength between any pair of phrases of the same overall
grammatical type. The pair of phrases can have differing lengths.
So, for example, we can compare ‘blond men’ to ‘men’, as these
are both noun phrases. This is possible because within categori-
cal compositional semantics, phrases of each type are reduced to
one common space according to their type, and can be compared
within that space. Furthermore, this notion is consistent with hy-
ponymy at the word level, giving a lower bound on phrase hy-
ponymy.
Density matrices have also been used in other areas of dis-

tributional semantics such as Kartsaklis (2015), Piedeleu (2014),

[227]

Dea Bankova et al.

Piedeleu et al. (2015), and Blacoe et al. (2013). Quantum logic is used
in (Widdows and Peters 2003) and Rijsbergen (2004).
Entailment is an important and thriving area of research within

distributional semantics. The PASCAL Recognising Textual Entailment
Challenge (Dagan et al. 2006) has attracted a large number of re-
searchers in the area and generated a number of approaches. Previ-
ous lines of research on entailment for distributional semantics in-
vestigate the development of directed similarity measures which can
characterize entailment (Weeds et al. 2004; Kotlerman et al. 2010;
Lenci and Benotto 2012). Geffet and Dagan (2005) introduce a pair
of distributional inclusion hypotheses, where if a word v entails another
word w, then all the typical features of the word v will also occur
with the word w. Conversely, if all the typical features of v also oc-
cur with w, v is expected to entail w. Clarke (2009) defines a vec-
tor lattice for word vectors, and a notion of graded entailment with
the properties of a conditional probability. Rimell (2014) explores the
limitations of the distributional inclusion hypothesis by examining
the properties of those features that are not shared between words.
An interesting approach in Kiela et al. (2015) is to incorporate other
modes of input into the representation of a word. Measures of en-
tailment are based on the dispersion of a word representation, to-
gether with a similarity measure. All of these look at entailment at
the word level.
Attempts have also been made to incorporate entailment mea-

sures with elements of compositionality. Baroni et al. (2012) exploit
the entailment relations between adjective-noun and noun pairs to
train a classifier that can detect similar relations. They further develop
a theory of entailment for quantifiers. The approach that we propose
here has the characteristic that it can be applied to more types of
phrases and sentences than just adjective-noun and noun-noun type
phrases.
Another approach to compositional vector-based entailment is the

use of deep neural networks to represent logical semantics, as in Bow-
man et al. (2015), for example. The drawback with the use of this sort
of method is that the transparency of the compositional method is lost:
the networks may indeed learn how to represent logical semantics but
it is not clear how they do so. In contrast, the method we propose has
a clear basis in formal semantics and links to quantum logic.

[228]

Compositional graded hyponymy

2 categorical compositional
distributional meaning

Compositional and distributional accounts of meaning are unified
in Coecke et al. (2010), constructing the meaning of sentences from
the meanings of their component parts using their syntactic structure.

2.1 Pregroup grammars
In order to describe syntactic structure, we use Lambek’s pregroup
grammars (Lambek 1997). Within the standard categorical composi-
tional distributional model, it is possible to move to other forms of
categorial grammar, as argued in Coecke et al. (2013). This is due to
the fact that the category of finite-dimensional vector spaces is par-
ticularly well-behaved, and so grammars with greater or lesser struc-
ture may be used. A pregroup (P,≤, ·, 1, (−)l , (−)r) is a partially ordered
monoid (P,≤, ·, 1) where each element p ∈ P has a left adjoint pl and
a right adjoint pr , such that the following inequalities hold:

(1) pl · p ≤ 1≤ p · pl and p · pr ≤ 1≤ pr · p
Intuitively, we think of the elements of a pregroup as linguistic types.
The monoidal structure allows us to form composite types, and the
partial order encodes type reduction. The important right and left ad-
joints then enable the introduction of types requiring further elements
on either their left or right respectively.
The pregroup grammar PregB over an alphabet B is freely con-

structed from the atomic types inB . In what follows we use an alpha-
bet B = {n, s}. We use the type s to denote a declarative sentence and
n to denote a noun. A transitive verb can then be denoted nrsnl . If a
string of words and their types reduces to the type s, the sentence is
judged grammatical. The sentence John kicks cats is typed n (nrsnl) n,
and can be reduced to s as follows:

n (nrsnl) n≤ 1 · snl n≤ 1 · s · 1≤ s

This symbolic reduction can also be expressed graphically, as shown
in Figure 1. In this diagrammatic notation, the elimination of types by
means of the inequalities n · nr ≤ 1 and nl · n≤ 1 is denoted by a ‘cup’.
The fact that the type s is retained is represented by a straight wire.

[229]

Dea Bankova et al.
Figure 1:

A transitive sentence in the graphical calculus
John kicks cats

n s nnr nl

2.2 Compositional distributional models
The symbolic account and distributional approaches are linked by the
fact that they are both compact closed categories. This compatibility
allows the compositional rules of the grammar to be applied in the
vector space model. In this way, we can map syntactically well-formed
strings of words into one shared meaning space.
A compact closed category is a monoidal category in which for each

object A there are left and right dual objects Al and Ar , and corre-
sponding unit and counit morphisms ηl : I → A⊗ Al , ηr : I → Ar ⊗ A,
εl : Al ⊗ A→ I , εr : A⊗ Ar → I such that the snake equations hold:

(1A⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εr ⊗ 1A) ◦ (1A⊗ηr) = 1A

(εl ⊗ 1Al) ◦ (1Al ⊗ηl) = 1Al (1Ar ⊗ εr) ◦ (ηr ⊗ 1Ar) = 1Ar

The underlying poset of a pregroup can be viewed as a com-
pact closed category with the monoidal structure given by the pre-
group monoid, and εl ,ηl ,ηr ,εr the unique morphisms witnessing the
inequalities of (1).
Distributional vector space models live in the category FHilb of

finite dimensional real Hilbert spaces and linear maps. FHilb is com-
pact closed. Each object V is its own dual and the left and right unit
and counit morphisms coincide. Given a fixed basis {|vi〉}i of V , we
define the unit by η : R → V ⊗ V :: 1 7→ ∑i |vi〉 ⊗ |vi〉 and counit by
ε : V ⊗ V → R ::

∑
i j ci j |vi〉 ⊗ |v j〉 7→∑i cii. Here, we use the physicists’

bra-ket notation, for details see Nielsen and Chuang (2011).
2.3 Graphical calculus
The morphisms of compact closed categories can be expressed in a
convenient graphical calculus (Kelly and Laplaza 1980) which we will
exploit in the following sections. Objects are labelled wires, and mor-
phisms are given as vertices with input and output wires. Composing
morphisms consists of connecting input and output wires, and the ten-
sor product is formed by juxtaposition, as shown in Figure 2.

[230]

Compositional graded hyponymy

f g
g

f
f

f g f g

A

A

B

B

C

A

B

A

B

C

A

B

C

D

A

B

C

D
⊗

◦ =

= f ∗ =
A

B

A

B

f

Figure 2:
Monoidal graphical calculus

By convention the wire for the monoidal unit is omitted. The mor-
phisms ε and η can then be represented by ‘cups’ and ‘caps’ as shown
in Figure 3. The snake equations can be seen as straightening wires,
as shown in Figure 4.

εl εr

ηrηl

Figure 3:
Compact structure graphically

A Al A = A A Ar A = A

AlAlAlAr = A =Ar ArA

Figure 4:
The snake equations

2.4 Grammatical Reductions in Vector Spaces
Following Preller and Sadrzadeh (2011), reductions of the pregroup
grammarmay bemapped onto the category FHilb of finite dimensional
Hilbert spaces and linear maps using an appropriate strong monoidal
functor Q:

Q : Preg→ FHilb

Strong monoidal functors automatically preserve the compact closed
structure. For our example Preg{n,s}, we must map the noun and

[231]

Dea Bankova et al.

sentence types to appropriate finite dimensional vector spaces:
Q(n) = N Q(s) = S

Composite types are then constructed functorially using the corre-
sponding structure in FHilb. Each morphism α in the pregroup is
mapped to a linear map interpreting sentences of that grammatical
type. Then, given word vectors |wi〉 with types pi, and a type reduc-
tion α : p1, p2, . . . , pn → s, the meaning of the sentence w1w2 . . . wn is
given by:

|w1w2 . . . wn〉=Q(α)(|w1〉 ⊗ |w2〉 ⊗ . . .⊗ |wn〉)
For example, as described in Section 2.1, transitive verbs have type
nrsnl , and can, therefore, be represented in FHilb as a rank 3 space
N ⊗ S ⊗ N . The transitive sentence John kicks cats has type n(nrsnl)n,
which reduces to the sentence type via εr ⊗ 1s ⊗ εl . So representing
|kicks〉 by:

|kicks〉=∑
i jk

ci jk |ei〉 ⊗ |s j〉 ⊗ |ek〉

using the definitions of the counits in FHilb we then have:
|John kicks cats〉= εN ⊗ 1S ⊗ εN (|John〉 ⊗ |kicks〉 ⊗ |cats〉)

=
∑
i jk

ci jk 〈John|ei〉 ⊗ |s j〉 ⊗ 〈ek|cats〉

=
∑

j

∑
ik

ci jk 〈John|ei〉 〈ek|cats〉 |s j〉

Diagrammatically,
John kicks cats

=

John

kicks

cats

The category FHilb is actually a †-compact closed category.
A †-compact closed category is a compact closed category with an
additional dagger functor that is an identity-on-objects involution, sat-
isfying natural coherence conditions. In the graphical calculus, the
dagger operation “flips diagrams upside-down”. In the case of FHilb

[232]

Compositional graded hyponymy

the dagger sends a linear map to its adjoint, and this allows us to
reason about inner products in a general categorical setting, so that
meanings of sentences may be compared using the inner product to
calculate the cosine distance between vector representations.
The abstract categorical framework we have introduced allows

meanings to be interpreted not just in FHilb, but in any †-compact
closed category. We will exploit this freedom when we move to den-
sity matrices. Detailed presentations of the ideas in this section are
given in Coecke et al. (2010) and Preller and Sadrzadeh (2011) and
an introduction to relevant category theory in Coecke and Paquette
(2011).

3 density matrices in categorical
compositional distributional semantics

3.1 Positive operators and density matrices
The methods outlined in Section 2 can be applied to the richer setting
of density matrices. Density matrices are used in quantum mechan-
ics to express uncertainty about the state of a system. For unit vec-
tor |v〉, the projection operator |v〉 〈v| onto the subspace spanned
by |v〉 is called a pure state. Pure states can be thought of as giv-
ing sharp, unambiguous information. In general, density matrices are
given by a convex sum of pure states, describing a probabilistic mix-
ture. States that are not pure are referred to as mixed states. Necessary
and sufficient conditions for an operator ρ to encode such a mixture
are:
• ∀v ∈ V. 〈v|ρ|v〉 ≥ 0,
• ρ is self-adjoint,1
• ρ has trace 1.

Operators satisfying the first two axioms are called positive operators.
The third axiom ensures that the operator represents a convex mixture
of pure states. Relaxing this condition gives us different choices for
normalization.

1As we are dealing with real-valued positive operators, this condition is nec-
essary.

[233]

Dea Bankova et al.

3.2 Representing words as positive matrices
Within standard distributional semantics, words are represented as
vectors, where the values on specific dimensions correspond to some
function of the frequency with which they co-occur with the words
represented by the basis vectors. The vector space induced can be
modified or reduced using singular value decomposition or other tech-
niques, where the basis vectors no longer have specific meanings. In
order to represent words as density matrices, we first observe that each
word vector has a corresponding pure matrix:

|cat〉 7→ |cat〉 〈cat|
Words which are more general can be built up by taking sums

over pure matrices. We can think of the meaning of the word pet as
represented by:
⟦pet⟧=pd |dog〉 〈dog|+ pc |cat〉 〈cat|+ pt |tarantula〉 〈tarantula|+ . . .

where ∀i.pi ≥ 0 and
∑

i

pi = 1

In general, we consider the meaning of a word w to be given by
a collection of unit vectors {|wi〉}i, where each |wi〉 represents an in-
stance of the concept expressed by the word. Each |wi〉 is weighted
by pi ∈ [0,1], such that ∑i pi = 1. These describe the meaning of w as
a weighted combination of exemplars. Then the density operator:

⟦w⟧=∑
i

pi |wi〉 〈wi |

represents the word w.
This is an extension of the distributional hypothesis. The coeffi-

cients pi may be determined as a function of the frequency with which
each word represented by a pure matrix co-occurs with the word rep-
resented by ⟦w⟧, for example.
3.3 The CPM construction
Applying Selinger’s CPM construction (Selinger 2007) to FHilb pro-
duces a new †-compact closed category in which the states are positive
operators. This construction has previously been exploited in a linguis-
tic setting in Kartsaklis (2015), Piedeleu et al. (2015), and Balkır et al.
(2016).

[234]

Compositional graded hyponymy

Throughout this section C denotes an arbitrary †-compact closed
category.
Definition 1 (Completely positive morphism). A C -morphism φ :
A∗ ⊗ A→ B∗ ⊗ B is said to be completely positive (Selinger 2007) if there
exists C ∈ Ob(C) and k ∈ C (C ⊗ A, B), such that φ can be written in the
form:

(k∗ ⊗ k) ◦ (1A∗ ⊗ηC ⊗ 1A)

Identity morphisms are completely positive, and completely pos-
itive morphisms are closed under composition in C , leading to the
following:
Definition 2. If C is a †-compact closed category then CPM(C) is a
category with the same objects as C and its morphisms are the completely
positive morphisms.
The †-compact structure required for interpreting language in our

setting lifts to CPM(C):
Theorem 1. CPM(C) is also a †-compact closed category. There is a
functor:

E :C → CPM(C)
k 7→ k∗ ⊗ k

This functor preserves the †-compact closed structure, and is faithful “up
to a global phase” (Selinger 2007).

3.4 Diagrammatic calculus for CPM(C)
As CPM(C) is also a †-compact closed category, we can use the graphi-
cal calculus described in Section 2.3. By convention, the diagrammatic
calculus for CPM(C) is drawn using thick wires. The corresponding di-
agrams in C are given in Table 1.
In the vector space model of meaning the transition between syn-

tax and semantics was achieved by using a strong monoidal functor
Q : Preg→ FHilb. Language can be assigned semantics in CPM(FHilb)
in an entirely analogous way via a strong monoidal functor:

S : Preg→ CPM(FHilb)

[235]

Dea Bankova et al.
Table 1:

Table of diagrams in CPM(C) and C CPM(C) C
E(ε) = ε∗ ⊗ ε ε : A∗ ⊗ A∗ ⊗ A⊗ A→ I
A∗ A A∗ A∗ A A

ε : |ei〉 ⊗ |e j〉 ⊗ |ek〉 ⊗ |el〉 7→ 〈ei |ek〉 〈e j |el〉

E(η) = η∗ ⊗η η : I → A⊗ A⊗ A∗ ⊗ A∗

A∗ A A∗ A∗ A A

η : 1 7→∑i j |ei〉 ⊗ |e j〉 ⊗ |ei〉 ⊗ |e j〉

f2f1

A C

B D

f2f1

A∗ C∗ C A

B∗ D∗ D B

f1 ⊗ f2 : A∗ ⊗ C∗ ⊗ C ⊗ A→ B∗ ⊗ D∗ ⊗ D⊗ B

Definition 3. Let w1, w2 . . . wn be a string of words with corresponding
grammatical types t i in PregB . Suppose that the type reduction is given
by t1, . . . tn

r−→ x for some x ∈ Ob(PregB). Let ⟦wi⟧ be the meaning of
word wi in CPM(FHilb), i.e. a state of the form I → S(t i). Then the mean-
ing of w1w2 . . . wn is given by:

⟦w1w2 . . . wn⟧= S(r)(⟦w1⟧⊗ . . .⊗ ⟦wn⟧)
We now have all the ingredients to derive sentence meanings

in CPM(FHilb).
Example 1. We firstly show that the results from FHilb lift to CPM(FHilb).
Let the noun space N be a real Hilbert space with basis vectors given
by {|ni〉}i, where for some i, |ni〉 = |Clara〉 and for some j, |n j〉 = |beer〉.
Let the sentence space be another space S with basis {|si〉}i. The verb |likes〉
is given by:

|likes〉=∑
pqr

Cpqr |np〉 ⊗ |sq〉 ⊗ |nr〉

[236]

Compositional graded hyponymy

The density matrices for the nouns Clara and beer are in fact pure states
given by:
⟦Clara⟧= |ni〉 〈ni | and ⟦beer⟧= |n j〉 〈n j |

and similarly, ⟦likes⟧ in CPM(FHilb) is:
⟦likes⟧= ∑

pqr tuv

Cpqr Ctuv |np〉 〈nt | ⊗ |sq〉 〈su| ⊗ |nr〉 〈nv |

The meaning of the composite sentence is simply (ϵN ⊗ 1S ⊗ ϵN) applied
to (⟦Clara⟧⊗ ⟦likes⟧⊗ ⟦beer⟧) as shown in Figure 5, with interpretation
in FHilb shown in Figure 6.
Clara likes beer

S NN NN

Figure 5:
A transitive sentence in CPM(C)

N S N ′ N ′ N ′NNN N ′ S

Clara likes beer Figure 6:
A transitive sentence in C with pure states

In terms of linear algebra, this corresponds to:
⟦Clara likes beer⟧= φ(⟦Clara⟧⊗ ⟦likes⟧⊗ ⟦beer⟧)

=
∑
qu

Ciq jCiu j |sq〉 〈su|

This is a pure state corresponding to the vector ∑q Ciq j |sq〉.
However, in CPM(FHilb) we can work with more than the pure

states.
Example 2. Let the noun space N be a real Hilbert space with basis vectors
given by {|ni〉}i. Let:

|Annie〉=∑
i

ai |ni〉 , |Betty〉=
∑

i

bi |ni〉 , |Clara〉=
∑

i

ci |ni〉

[237]

Dea Bankova et al.

|beer〉=∑
i

di |ni〉 , |wine〉=
∑

i

ei |ni〉
and with the sentence space S, we define:

|likes〉=∑
pqr

Cpqr |np〉 ⊗ |sq〉 ⊗ |nr〉

|appreciates〉=∑
pqr

Dpqr |np〉 ⊗ |sq〉 ⊗ |nr〉
Then, we can set:
⟦the sisters⟧= 1

3
(|Annie〉 〈Annie|+ |Betty〉 〈Betty|+ |Clara〉 〈Clara|)

⟦drinks⟧= 1
2
(|beer〉 〈beer|+ |wine〉 〈wine|)

⟦enjoy⟧= 1
2
(|like〉 〈like|+ |appreciate〉 〈appreciate|)

Then, the meaning of the sentence:
s = The sisters enjoy drinks

is given by:⟦s⟧= (ϵN ⊗ 1S ⊗ ϵN)(⟦the sisters⟧⊗ ⟦enjoy⟧⊗ ⟦drinks⟧)
Diagrammatically, this is shown in Figure 7.

Figure 7:
A transitive sentence in C with impure states

N S N ′ N ′ N ′NNN N ′ S

The sisters enjoy drinks

The impurity is indicated by the fact that the pairs of states are con-
nected by wires (Selinger 2007).

4 predicates and entailment
If we consider a model of (non-deterministic) classical computation, a
state of a set X is just a subset ρ ⊆ X . Similarly, a predicate is a sub-
set A⊆ X . We say that ρ satisfies A if:

ρ ⊆ A

[238]

Compositional graded hyponymy

which we write as ρ ⊩ A. Predicate A entails predicate B, written A |= B,
if for every state ρ:

ρ ⊩ A ⇒ ρ ⊩ B

Clearly this is equivalent to requiring A⊆ B.

4.1 The Löwner order
As our linguistic models derive from a quantum mechanical formal-
ism, positive operators form a natural analogue for subsets as our pred-
icates. This follows ideas in D’Hondt and Panangaden (2006) and ear-
lier work in a probabilistic setting in Kozen (1983). Crucially, we can
order positive operators (Löwner 1934).
Definition 4 (Löwner order). For positive operators A and B, we define:

A⊑ B ⇐⇒ B − A is positive

If we consider this as an entailment relationship, we can follow
our intuitions from the non-deterministic setting. Firstly, we introduce
a suitable notion of satisfaction. For positive operator A and density
matrix ρ, we define ρ ⊩ A as the positive real number tr(ρA).
This generalizes satisfaction from a binary relation to a binary

function into the positive reals. We then find that the Löwner order
can equivalently be phrased in terms of satisfaction as follows:
Lemma 1 (D’Hondt and Panangaden 2006). Let A and B be positive
operators. A⊑ B if and only if for all density operators ρ:

ρ ⊩ A ≤ ρ ⊩ B

Linguistically, we can interpret this condition as saying that ev-
ery noun, for example, satisfies predicate B at least as strongly as it
satisfies predicate A.

4.2 Quantum logic
Quantum logic (Birkhoff and von Neumann 1936) views the projection
operators on a Hilbert space as propositions about a quantum system.
As the Löwner order restricts to the usual ordering on projection op-
erators, we can embed quantum logic within the poset of projection
operators, providing a direct link to existing theory.

[239]

Dea Bankova et al.

4.3 A general setting for approximate entailment
We can build an entailment preorder on any commutative monoid,
viewing the underlying set as a collection of propositions. We then
write A |= B and say A entails B if there exists a proposition D such
that A+ D = B. If our commutative monoid is the powerset of some
set X , with union the binary operation and unit the empty set, then
we recover our non-deterministic computation example from the pre-
vious section. If, on the other hand, we take our commutative monoid
to be the positive operators on some Hilbert space, with addition of
operators and the zero operator as the monoid structure, we recover
the Löwner ordering.
In linguistics, we may ask ourselves: does dog entail pet? Naïvely,

the answer is clearly no, not every dog is a pet. This seems too crude
for realistic applications though, most dogs are pets, and so we might
say dog entails pet to some extent. This motivates our need for an ap-
proximate notion of entailment.
For proposition E, we say that A entails B to the extent E if:

A |= B + E

We think of E as a error term, for instance in our dogs and pets exam-
ple, E adds back in dogs that are not pets. Expanding definitions, we
find A entails B to extent E if there exists D such that:
(2) A+ D = B + E

From this more symmetrical formulation it is easy to see that for ar-
bitrary propositions A, B, proposition A trivially entails B to extent A,
as by commutativity:

A+ B = B + A

It is therefore clear that the mere existence of a suitable error term is
not sufficient for a weakened notion of entailment. If we restrict our
attention to errors in a complete meet semilattice EA,B, we can take the
lower bound on the E satisfying equation (2) as our canonical choice.
Finally, if we wish to be able to compare entailment strengths globally,
this can be achieved by choosing a partial orderK of “error sizes” and
monotone functions:

EA,B

κA,B−−→K
sending errors to their corresponding size.

[240]

Compositional graded hyponymy

For example, if A and B are positive operators, we take our com-
plete lattice of error terms EA,B to be all operators of the form (1− k)A
for k ∈ [0, 1], ordered by the size of 1−k. We then take k as the strength
of the entailment, and refer to it as k-hyponymy.
In the case of finite sets A, B, we take EA,B = P (A), and take the

size of the error terms as:
cardinality of E
cardinality of A

measuring “how much” of A we have to supplement B with, as indi-
cated in the shaded region below:

B

A

In terms of conditional probability, the error size is then:
P(A | ¬B)

These general error terms are strictly more general than the k-hypo-
nymy.

5 hyponymy in categorical compositional
distributional semantics

Modelling hyponymy in the categorical compositional distributional
semantics framework was first considered in Balkır (2014). She in-
troduced an asymmetric similarity measure called representativeness
on density matrices based on quantum relative entropy. This can be
used to translate hyponym-hypernym relations to the level of positive
transitive sentences. Our aim here will be to provide an alternative
measure which relies only on the properties of density matrices and
the fact that they are the states in CPM(FHilb). This will enable us
to quantify the strength of the hyponymy relationship, described as
k-hyponymy. The measure of hyponymy that we use has an advan-
tage over the representativeness measure. Due to the way it combines
with linear maps, we can give a quantitative measure to sentence-level
entailment based on the entailment strengths between words, whereas
representativeness is not shown to combine in this way.

[241]

Dea Bankova et al.

5.1 Properties of hyponymy
Before proceeding with defining the concept of k-hyponymy, we give
two properties of hyponymy that can be captured by our newmeasure.
• Asymmetry. If A is a hyponym of B, then usually, B is not a hy-
ponym of A.
• Pseudo-transitivity. If X is a hyponym of Y and Y is a hyponym
of Z, then X is a hyponym of Z. However, if the hyponymy is not
perfect, then we get a weakened form of transitivity.
The measure of hyponymy that we described above and named k-

hyponymy will be defined in terms of density matrices – the containers
for word meanings. The idea is then to define a quantitative order on
the density matrices, which is not a partial order, but does give us an
indication of the asymmetric relationship between words.

5.2 Ordering positive matrices
A density matrix can be used to encode the precision that is needed
when describing an action. In the sentence I took my pet to the vet,
we do not know whether the pet is a dog, cat, tarantula, and so
on. The sentence I took my dog to the vet is more specific. We then
wish to develop an order on density matrices so that dog, as rep-
resented by |dog〉 〈dog| is more specific than pet as represented by⟦pet⟧. This ordering may then be viewed as an entailment rela-
tion, and entailment between words can lift to the level of sen-
tences, so that the sentence I took my dog to the vet entails the sen-
tence I took my pet to the vet. Note that we do not require that the sen-
tences have exactly the same structure. For example, we would like
I took my brown dog to the vet to entail I took my dog to the vet, and we
would expect this to happen because brown dog should entail dog.
We now define our notion of approximate entailment, following

the discussions of Section 4.3:
Definition 5 (k-hyponym). We say that A is a k-hyponym of B for a
given value of k in the range (0,1] and write A²k B if:

0⊑ B − kA

Note that such a k need not be unique or even exist at all.

[242]

Compositional graded hyponymy

Definition 6 (kmax hyponym). kmax is the maximum value of k ∈ (0,1]
for which we have A²kmax

B.
In general, we are interested in the maximal value kmax for which

k-hyponymy holds between two positive operators. This kmax value
quantifies the strength of the entailment between the two operators.
In what follows, for operator Awe write A+ for the corresponding

Moore-Penrose pseudo-inverse and supp(A) for the support of A.
Lemma 2 (Balkır 2014). Let A, B be positive operators.

supp(A) ⊆ supp(B) ⇐⇒ ∃k.k > 0 and B − kA≥ 0

Lemma 3. For positive self-adjoint matrices A, B such that:
supp(A) ⊆ supp(B)

B+A has non-negative eigenvalues.
We now develop an expression for the optimal k in terms of the

matrices A and B.
Theorem 2. For positive self-adjoint matrices A, B such that:

supp(A) ⊆ supp(B)

the maximum k such that B − kA ≥ 0 is given by 1/λ where λ is the
maximum eigenvalue of B+A.
Proof. We wish to find the maximum k for which

∀|x〉 ∈ Rn. 〈x | (B − pA) |x〉 ≥ 0

Since supp(A) ⊆ supp(B), such a k exists. We assume that for k = 1,
there is at least one |x〉 such that 〈x | (B − kA) |x〉 ≤ 0, since otherwise
we’re done. For all |x〉 ∈ Rn, 〈x | (B−kA) |x〉 increases continuously as k
decreases. We therefore decrease k until 〈x | (B− kA) |x〉 ≥ 0, and there
will be at least one |x0〉 at which 〈x0| (B−kA) |x0〉= 0. These points are
minima so that the vector of partial derivatives ∇〈x0| (B − k0A) |x0〉 =
2(B − k0A) |x0〉= −→0 (requires B, A self-adjoint).
Therefore B |x0〉 = k0A |x0〉, and so 1/k0B+B |x0〉 = B+A |x0〉. Since

B+B is a projector onto the support of B and supp(A) ⊆ supp(B), we
have:

1/k0 |v0〉= B+A |v0〉
where |v0〉= B+B |x0〉, i.e., 1/k0 is an eigenvalue of B+A.

[243]

Dea Bankova et al.

Now, B+A has only non-negative eigenvalues, and in fact any pair
of eigenvalue 1/k and eigenvector |v〉 will satisfy the condition B |v〉=
kA |v〉. We now claim that to satisfy ∀|x〉 ∈ Rn. 〈x | (B − kA) |x〉 ≥ 0, we
must choose k0 equal to the reciprocal of the maximum eigenvalue λ0

of B+A. For a contradiction, take λ1 < λ0, so 1/λ1 = k1 > k0 = 1/λ0.
Then we require that ∀|x〉 ∈ Rn. 〈x | (B− k1A) |x〉 ≥ 0, and in particular
for |v0〉. However:

〈v0| (B − k1A) |v0〉 ≥ 0 ⇐⇒ 〈v0|B |v0〉 ≥ k1 〈v0|A |v0〉
⇐⇒ k0 〈v0|A |v0〉 ≥ k1 〈v0|A |v0〉
contradiction, since k0 < k1

We therefore choose k0 equal to 1/λ0 where λ0 is the maximum eigen-
value of B+A, and 〈x | (B − k0A) |x〉 ≥ 0 is satisfied for all |x〉 ∈ Rn.
5.3 Properties of k-hyponymy
• Reflexivity: k-hyponymy is reflexive for k = 1.
• Symmetry: k-hyponymy is neither symmetric nor anti-symmetric.
• Transitivity: k-hyponymy satisfies a version of transitivity. Sup-
pose A²k B and B ²l C . Then A²kl C , since:

B ⊑ kA and C ⊑ lB =⇒ C ⊑ klA

by transitivity of the Löwner order.
For the maximal values kmax, lmax, mmax such that A²kmax B, B ²lmax
C and A²mmax C , we have the inequality mmax ≥ kmaxlmax.
• Continuity: For A ²k B, when there is a small perturbation to A,
there is a correspondingly small decrease in the value of k. The
perturbation must lie in the support of B, but can introduce off-
diagonal elements.

Theorem 3. Given A ²k B and density operator ρ such that supp(ρ) ⊆
supp(B), then for any ϵ > 0 we can choose a δ > 0 such that:

A′ = A+δρ =⇒ A′ ²k′ B and |k− k′|< ϵ
Proof of Theorem 3. We wish to show that we can choose δ such that
|k − k′| < ϵ. We use the notation λmax(A) for the maximum eigen-
value of A. A′ = A + δρ satisfies the condition of Theorem 2, that

[244]

Compositional graded hyponymy

supp(A′) ⊆ supp(B), since suppose |x〉 ̸∈ supp(B). supp(A) ⊆ supp(B), so
|x〉 ̸∈ supp(A) and A |x〉= 0. Similarly, ρ |x〉= 0. Therefore (A+ρ) |x〉=
A′ |x〉= 0, so |x〉 ̸∈ supp(A′).
By Theorem 2 we have:

k =
1

λmax(B+A)
, and k′ = 1

λmax(B+A′)

(3) k− k′ = λmax(B+A′)−λmax(B+A)
λmax(B+A′)λmax(B+A)

We may treat the denominator of (3) as a constant. We expand the nu-
merator and apply Weyl’s inequalities (Weyl 1912). These inequalities
apply only to Hermitian matrices, whereas we need to apply these to
products of Hermitian matrices. Since B+, A, and ρ are all real-valued
positive semidefinite, the products B+A and B+ρ have the same eigen-
values as the Hermitian matrices A

1
2 B+A

1
2 and ρ 1

2 B+ρ
1
2 . Now:

λmax(B+A′)−λmax(B+A) = λmax(B+A+δB+ρ)−λmax(B+A)

≤ λmax(B+A) +δλmax(B+ρ)−λmax(B+A)

= δλmax(B+ρ)≤ δλmax(B+)λmax(ρ)≤ δλmax(B+)

Therefore:

(4) k− k′ ≤ δ λmax(B+)
λmax(B+A′)λmax(B+A)

so that given ϵ, A, B, we can always choose a δ to make k− k′ ≤ ϵ.
5.4 Scaling
When comparing positive operators, in order to standardize themagni-
tudes resulting from calculations, it is natural to consider normalizing
their trace so that we work with density operators. Unfortunately, this
is a poor choice when working with the Löwner order as distinct pairs
of density operators are never ordered with respect to each other, i.e.,
for density operators σ, τ, σ ⊑ τ⇒ σ = τ. Another option is to bound
operators as having maximum eigenvalue 1, as suggested in D’Hondt
and Panangaden (2006). With this ordering, the projection operators
regain their usual ordering and we recover quantum logic as a subor-
der of our setting.

[245]

Dea Bankova et al.

Our framework is flexible enough to support other normalization
strategies. The optimal choice for linguistic applications is left to fu-
ture empirical work. Other ideas are also possible. For example we
can embed the Bayesian order (Coecke and Martin 2011) within our
setting via a suitable transformation on positive operators as follows:
1. Diagonalize the operator, choosing a permutation of the basis vec-
tors such that the diagonal elements are in descending order.

2. Let di denote the i th diagonal element. We define the diagonal of
a new diagonal matrix inductively as follows:

d ′0 = d0 d ′i+1 = d ′i ∗ di+1

3. Transform the new operator back to the original basis.
Further theoretical investigations of this type are left to future work.
5.5 Representing the order in the ‘Bloch disc’
The Bloch sphere, Bloch (1946), is a geometrical representation of
quantum states. Very briefly, points on the sphere correspond to pure
states, and states within the sphere to impure states. Since we consider
matrices only over R2, we disregard the complex phase which allows
us to represent the pure states on a circle. A pure state cos(θ/2) |0〉+
sin(θ/2) |1〉 is represented by the vector (sin(θ), cos(θ)) on the circle.
We can calculate the entailment factor k between any two points

on the disc. Figure 8 shows contour maps of the entailment strengths
for the state with Bloch vector v = (3

4 sin(π/5), 3
4 cos(π/5)), using the

maximum eigenvalue normalization.

6 results on compositionality
This section provides results and examples on how the notion of hy-
ponymy we have proposed interacts with the compositionality out-
lined in Section 2. We firstly give an example showing that phrases of
different lengths can be compared. We then give a theorem and exam-
ple to show that our notion of hyponymy ‘lifts’ to the sentence level,
and that the k-values are preserved in a very intuitive fashion.
6.1 k-hyponymy in phrases of varying length
We can calculate the extent to which any pair of sentences or phrases
are hyponyms of each other. We go back to the simple example in

[246]

Compositional graded hyponymy

|0〉

|0〉−|1〉p
2

0.2

0
.2

0.2

0.2

0
.2

0
.2

0.2
0.4

0
.4

0.4

0.4

0
.4

0.4 0.6

0
.6

0.6

0
.6

0.6 0.8

0
.8

0.8

0
.8

1

1

|0〉+|1〉p
2

|1〉

Figure 8:
Entailment strengths
in the Bloch disc for the state
with Bloch vector v

the introduction, comparing ‘blond men’ to ‘men’. Suppose our vector
space has basis vectors |blond〉, |brunette〉, |male〉, |female〉. Then the
word ‘men’ can be given by:
⟦men⟧= 1

3
(|blond〉 〈blond|+ |brunette〉 〈brunette|+ |male〉 〈male|)

signifying that we are agnostic over all vectors with dimensions
|blond〉, |brunette〉, |male〉.
The adjective ‘blond’ is viewed as an operator which takes nouns

to blond nouns. This is given by the following:⟦blondadj⟧= (|blond〉 ⊗ |blond〉)(〈blond| ⊗ 〈blond|)
+ (|blond〉 ⊗ |brunette〉)(〈brunette| ⊗ 〈blond|)
+
∑

i, j ̸∈{blond,brunette}
(|i〉 ⊗ |i〉)(〈 j| ⊗ 〈 j|)

Then ⟦blond men⟧= (1N⊗N ⊗ εN⊗N)(⟦blondadj⟧⊗ ⟦men⟧)
=

2
3
|blond〉 〈blond|+ 1

3
|male〉 〈male|

Then if Carlos is described by the pure state
|Carlos〉= 1p

2
(|blond〉+ |male〉)

[247]

Dea Bankova et al.

we have ⟦Carlos⟧= |Carlos〉 〈Carlos|²k ⟦blond men⟧
for k = 4

9 by Theorem 2. For Janette described by the pure state|Janette〉= 1p
2
(|blond〉+ |female〉), we have
⟦Janette⟧= |Janette〉 〈Janette|²k ⟦blond men⟧

for k = 0, since supp(⟦Janette⟧) ̸⊆ supp(⟦blond men⟧).
An obvious line of enquiry here is to consider how to build this

type of adjective operator computationally. One strategy might be
to extend the linear regression approach from Baroni and Zamparelli
(2010) and Grefenstette et al. (2013), having built representations of
‘noun’ and the noun phrase ‘blond noun’. Techniques for building den-
sity matrix representations of nouns are described in Sadrzadeh et al.
(2018).
6.2 Sentence k-hyponymy
We can show that the application of k-hyponymy to various phrase
types holds in the same way. In this section we provide a general proof
for varying phrase types. We adopt the following conventions:
• A positive phrase is assumed to be a phrase in which individual
words are upwardly monotone in the sense described by (Barwise
and Cooper 1981; MacCartney and Manning 2007). This means
that, for example, the phrase does not contain any negations, in-
cluding words like not.
• The length of a phrase is the number of words in it, not counting
definite and indefinite articles.

Theorem 4 (Sentence k-hyponymy). Let Φ and Ψ be two positive phrases
of the same length and grammatical structure, expressed in the same noun
spaces N and sentence spaces S. Denote the words of Φ, in the order in
which they appear, by A1, . . . , An. Similarly, denote these in Ψ by B1, . . . , Bn.
Let their corresponding density matrices be denoted by ⟦A1⟧, . . . ,⟦An⟧
and ⟦B1⟧, . . . ,⟦Bn⟧ respectively. Suppose that ⟦Ai⟧ ²ki

⟦Bi⟧ for i ∈
{1, . . . , n} and some ki ∈ (0,1]. Finally, let φ be the sentence meaning
map for both Φ and Ψ, such that φ(Φ) is the meaning of Φ and φ(Ψ) is the
meaning of Ψ. Then:

φ(Φ)²k1···kn
φ(Ψ)

[248]

Compositional graded hyponymy

so k1 · · · kn provides a lower bound on the extent to which φ(Φ) en-
tails φ(Ψ).
Proof of Theorem 4. First of all, we have ⟦Ai⟧²ki

⟦Bi⟧ for i ∈ {1, . . . , n}.
This means that for each i, we have positive matrices ρi and non-
negative reals ki such that ⟦Bi⟧= ki⟦Ai⟧+ρi. Now consider the mean-
ings of the two sentences. We have:

φ(Φ) = ϕ(⟦A1⟧⊗ . . .⊗ ⟦An⟧)
φ(Ψ) = φ(⟦B1⟧⊗ . . .⊗ ⟦Bn⟧)

= φ ((k1⟦A1⟧+ρ1)⊗ . . .⊗ (kn ⟦An⟧+ρn)

= (k1 · · · kn)φ(⟦A1⟧⊗ . . .⊗ ⟦An⟧) +φ(P)
where P consists of a sum of tensor products of positive matrices,
namely:

P =
∑

S⊂{1,...,n}

n⊗
i=1

σi

where:

σi =

(
ki⟦Ai⟧ if i ∈ S

ρi if i ̸∈ S
(5)

Then we have:

φ(Ψ)− (k1 . . . kn)φ(Φ) = φ(P)≥ 0

since P is a sum of tensor products of positive matrices, and φ is a
completely positive map. Therefore:

φ(Φ)²k1···kn
φ(Ψ)

as required.
Intuitively, this means that if (some of) the words of a sentence Φ

are k-hyponyms of (some of) the words of sentence Ψ, then this hy-
ponymy is translated into sentence hyponymy. Upward-monotonicity
is important here, in particular as introduced by some implicit quan-
tifiers. It might be objected that dogs bark should not imply pets bark.
If the implicit quantification is universal, then this is true, however

[249]

Dea Bankova et al.

the universal quantifier is downward monotone in the first argu-
ment, and therefore does not conform to the convention concern-
ing positive phrases. If the implicit quantification is existential, then
some dogs bark does entail some pets bark, and the problem is averted.
Discussion of the behaviour of quantifiers and other word types is
given in, for example, Barwise and Cooper (1981) or MacCartney and
Manning (2007).
The quantity k1 · · · kn is not necessarily maximal, and indeed usu-

ally is not. As we only have a lower bound, zero entailment strength
between a pair of components does not imply zero entailment strength
between entire sentences.
Corollary 1. Consider two sentences:

Φ=
⊗

i

⟦Ai⟧ Ψ =
⊗

i

⟦Bi⟧
such that for each i ∈ {1, . . . , n} we have ⟦Ai⟧ ⊑ ⟦Bi⟧, i.e. there is strict
entailment in each component. Then there is strict entailment between the
sentences φ(Φ) and φ(Ψ).

Proof of Corollary 1. Since ki = 1 for each i = {1, . . . , n},
φ(Φ)²k1···kn

φ(Ψ) =⇒ φ(Φ)²1 φ(Ψ)

=⇒ φ(Φ)≤ φ(Ψ)

We consider a concrete example. Suppose we have a noun space N
with basis {|ei〉}i, and sentence space S with basis {|x j〉} j We consider
the verbs nibble, scoff and the nouns cake, chocolate:

nibble
,

scoff
,
cake

,
chocolate

where these nouns and verbs are pure states. The more general eat and
sweets are given by:

eat
=

1
2

 nibble
+

scoff

[250]

Compositional graded hyponymy

sweets
=

1
2

 cake + chocolate

Then
scoff

²1/2

eat
and

cake
²1/2

sweets

We consider the sentences:

s1

=

John scoffs cake

,

s2

=

John eats sweets

and as per Theorem 4, we will show that ⟦s1⟧ ²kl ⟦s2⟧ where kl =
1
2 × 1

2 =
1
4 . Expanding ⟦s2⟧ we obtain:

s2

=
1
4

John scoffs cake

+

John scoffs choc

+

John nibbles cake

+

John nibbles choc
Therefore:

s2

− 1
4

s1

=
1
4

John scoffs choc

+

John nibbles cake

+

John nibbles choc

[251]

Dea Bankova et al.

We can see that ⟦s2⟧− 1
4⟦s1⟧ is positive by positivity of the individual

elements and the fact that positivity is preserved under addition and
tensor product. Therefore ⟦s1⟧²kl ⟦s2⟧ as required.
7 a toy experiment

To investigate the effectiveness of the model we perform a toy ex-
periment using a simplified version of the model. We use the dataset
introduced in Balkır et al. (2016). This dataset consists of pairs of sim-
ple sentences annotated by humans as to whether the first sentence
entails the second. Example pairs are:
recommend development |= suggest improvement
progress reduce |= development replace

The first sentence is rated highly by humans for entailment, whereas
the second has lower ratings. The sentences are either noun-verb or
verb-noun, and they are of the same type within the pairs.
We use simplified models of composition which we detail as fol-

lows. The first model is a baseline, where we use only the verb to
predict the entailment between the two sentences. For the second and
third models, we use the notion of a Frobenius algebra. As described
in Kartsaklis et al. (2012), we can ‘lift’ lower-order vectors and tensors
to higher-order ones. This means that we can obtain a representation
for the verb by lifting a density matrix representation. This has the im-
portant aspect that the dimensionality needed to represent the word is
greatly reduced. In the category CPM(FHilb), there are two Frobenius
algebras we can use. The first equates to a pointwise multiplication of
the noun and the verb, and the second is expressed by

ρ(s) = ρ(n)1/2ρ(v)ρ(n)1/2

where ρ(s), ρ(n), and ρ(v) indicate density matrices for the sentence,
noun, and verb respectively.
The last model we examine is an additive model. In general, addi-

tion of two positive operators will not be a morphism in CPM(FHilb).
However, in the particular case where the operators are density ma-
trices, we can design a morphism that will implement addition. We
give this morphism diagrammatically in Figure 9.

[252]

Compositional graded hyponymy

+ = +

Figure 9:
Morphism
implementing
addition of
density matrices

To build density matrices for the nouns and verbs, we firstly
collect a set of hyponyms for each word. To do this, we use Word-
Net (Miller 1995) via the Natural Language ToolKit (nltk) package in
Python (Bird et al. 2009). We traverse the WordNet graph below each
word to a depth of 8, and collect lemma names of every hyponym
encountered. We then use GloVe vectors (Pennington et al. 2014) to
build representations of each word as follows. Firstly, note that in
fact the majority of the hyponyms encountered in WordNet were not
present in the off-the-shelf GloVe dataset. Approximately 47,000 hy-
ponyms were found across all words in the sentence pairs, of which
approximately 10,000 were in the GloVe dataset. To build the density
matrix representations for each word, we simply summed the density
matrices corresponding to each GloVe vector for each hyponym of the
word, and normalised. We added in some small random values along
the diagonal, uniformly distributed over [0,10−3) and renormalised.
This step is used to ensure that there is some minimal amount of en-
tailment between every word. After creating sentence vectors from the
composition of noun and verb vectors, we calculated the entailment
using the result from Theorem 2. We ran the experiments over 50, 100,
200, and 300 dimension vectors. We judged the results by computing
Spearman’s ρ between the generated results and the mean of the hu-
man judgements. The best results were obtained with 50 dimensional
vectors which we report in Table 2.

Model ρ p

Verb-only 0.268 > 0.25

Frobenius mult. 0.508 > 0.05

Frobenius n.c. 0.436 > 0.05

Additive 0.643 > 0.001

Inter-annotator 0.66 –

Table 2:
Results in the sentence entailment task

[253]

Dea Bankova et al.

All the compositional models beat the verb-only baseline. The
highest scoring model was the additive model, achieving close to inter-
annotator agreement. Note that the sentences were extremely simple,
and so it would be good to see how the commutative additive model
fares when presented with more complex sentences. The best results
from Balkır et al. (2016) were ρ = 0.66 for a vector-based model using
the Spearman’s ρ metric and our results are comparable. These vec-
tors were built using part-of-speech information which our model did
not use, so there is scope for improvement in that direction.

8 conclusion

Integrating a logical framework with compositional distributional se-
mantics is an important step in improving this model of language.
By moving to the setting of density matrices, we have described a
graded measure of hyponymy that may be used to describe the extent
of hyponymy between two words represented within this enriched
framework. This approach extends uniformly to provide hyponymy
strengths between two phrases of the same type. That type can be
any part of speech for which entailment makes sense, such as a noun
phrase, verb phrase, or sentence. This includes pairs of phrases with
differing numbers of words. We have also shown how a lower bound
on hyponymy strength of phrases of the same structure can be calcu-
lated from their components.
Whilst we have given a means for modelling hyponymy in a com-

positional manner, and provided results on how hyponymy strengths
compose, the task of integrating logical and distributional semantics is
extremely wide-ranging. We mention here a number of areas to which
we can start to contribute.
As mentioned in the introduction, some forms of crisp entailment

are based in grammatical structure. So, for example, some adjectives
interact with nouns to narrow down concepts, as in our example of
‘blond men’, and we therefore have that ‘blond men’ is a hyponym of
‘men’. Other adjectives should not operate in this way, such as former
in former president. This phenomenon is related to the notion of down-
ward monotone contexts and the inclusion of negative words like not,
or negative prefixes. At present, our model cannot effectively account
for downward-monotone phenomena. In order to do so, additional

[254]

Compositional graded hyponymy

structure, such as some form of involution, must be added to begin to
model these phenomena.
The area of grammatical kinds of entailment also includes phe-

nomena such as verb-phrase ellipsis. The framework developed here
is all within the category of pregroups, and in order to be able to
model more complex grammatical phenomena, we may need to move
to other grammar categories. This has started to be developed in Kart-
saklis et al. (2016) and we may therefore be able to use these methods
within our current model.
The area of quantification is an important one. Hedges and

Sadrzadeh (2016) have started to develop a theory of quantification
within this framework, and so this is an area is which extension could
be possible.
Another line of inquiry is to examine transitivity behaves. In some

cases entailment can strengthen. We had that dog entails pet to a cer-
tain extent, and that pet entails mammal to a certain extent, but that
dog completely entails mammal.
Our framework supports different methods of scaling the positive

operators representing propositions. Empirical work will be required
to establish the most appropriate method in linguistic applications.

acknowledgements

Bob Coecke, Martha Lewis, and Dan Marsden gratefully acknowledge
funding from AFOSR grant Algorithmic and Logical Aspects when
Composing Meanings. Martha Lewis gratefully acknowledges funding
from NWO Veni grant Metaphorical Meanings for Artificial Agents.

references

Esma Balkır (2014), Using Density Matrices in a Compositional Distributional
Model of Meaning, Master’s thesis, University of Oxford,
http://www.cs.ox.ac.uk/people/bob.coecke/Esma.pdf.
Esma Balkır, Mehrnoosh Sadrzadeh, and Bob Coecke (2016),
Distributional Sentence Entailment Using Density Matrices, in Mohammad T.
Hajiaghayi and Mohammad R. Mousavi, editors, Topics in Theoretical
Computer Science, volume 9541 of Lecture Notes in Computer Science, pp. 1–22,
Springer, Cham, https://doi.org/10.1007/978-3-319-28678-5_1.

[255]

Dea Bankova et al.

Dea Bankova (2015), Comparing Meaning in Language and Cognition:
P-Hyponymy, Concept Combination, Asymmetric Similarity, Master’s thesis,
University of Oxford,
http://www.cs.ox.ac.uk/people/bob.coecke/Dea.pdf.
Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh Shan
(2012), Entailment above the word level in distributional semantics, in
Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 23–32, Association for Computational Linguistics,
http://aclweb.org/anthology/E12-1004.
Marco Baroni and Roberto Zamparelli (2010), Nouns are Vectors,
Adjectives are Matrices: Representing Adjective-Noun Constructions in
Semantic Space, in Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pp. 1183–1193, Association for Computational
Linguistics, http://aclweb.org/anthology/D10-1115.
Jon Barwise and Robin Cooper (1981), Generalized Quantifiers and Natural
Language, Linguistics and Philosophy, 4:159–219.
Steven Bird, Ewan Klein, and Edward Loper (2009), Natural Language
Processing with Python: Analyzing Text with the Natural Language Toolkit, O’Reilly
Media, Inc.
Garrett Birkhoff and John von Neumann (1936), The Logic of Quantum
Mechanics, Annals of Mathematics, 37(4):823–843, ISSN 0003486X,
http://www.jstor.org/stable/1968621.
William Blacoe, Elham Kashefi, and Mirella Lapata (2013), A
Quantum-Theoretic Approach to Distributional Semantics, in Proceedings of the
2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 847–857,
Association for Computational Linguistics,
http://aclweb.org/anthology/N13-1105.
Felix Bloch (1946), Nuclear Induction, Phys. Rev., 70:460–474,
doi:10.1103/PhysRev.70.460,
https://link.aps.org/doi/10.1103/PhysRev.70.460.
Samuel R. Bowman, Christopher Potts, and Christopher D. Manning
(2015), Recursive Neural Networks Can Learn Logical Semantics, in Proceedings
of the 3rd Workshop on Continuous Vector Space Models and their Compositionality,
pp. 12–21, Association for Computational Linguistics,
doi:10.18653/v1/W15-4002, http://aclweb.org/anthology/W15-4002.
Daoud Clarke (2009), Context-theoretic Semantics for Natural Language: An
Overview, in Proceedings of the Workshop on Geometrical Models of Natural
Language Semantics, GEMS ’09, pp. 112–119, Association for Computational
Linguistics, Stroudsburg, PA, USA,
http://dl.acm.org/citation.cfm?id=1705415.1705430.

[256]

Compositional graded hyponymy

Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh (2013),
Lambek vs. Lambek: Functorial vector space semantics and string diagrams for
Lambek calculus, Annals of Pure and Applied Logic, 164(11):1079 – 1100, ISSN
0168-0072, https://doi.org/10.1016/j.apal.2013.05.009, special issue
on Seventh Workshop on Games for Logic and Programming Languages (GaLoP
VII).
Bob Coecke and Keye Martin (2011), A partial order on classical and
quantum states, in New Structures for Physics, pp. 593–683, Springer.
Bob Coecke and Éric Oliver Paquette (2011), Categories for the practising
physicist, in New Structures for Physics, pp. 173–286, Springer,
https://doi.org/10.1007/978-3-642-12821-9_3.
Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen J Clark (2010),
Mathematical Foundations for a Compositional Distributional Model of
Meaning, Linguistic Analysis, 36(1):345–384.
Ido Dagan, Oren Glickman, and Bernardo Magnini (2006), The PASCAL
Recognising Textual Entailment Challenge, in Joaquin Quiñonero-Candela,
Ido Dagan, Bernardo Magnini, and Florence d’Alché Buc, editors, Machine
Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification,
and Recognising Textual Entailment, volume 3944 of Lecture Notes in Computer
Science, pp. 177–190, Springer, Berlin, Heidelberg,
https://doi.org/10.1007/11736790_9.
Ellie D’Hondt and Prakash Panangaden (2006), Quantum Weakest
Preconditions, Mathematical Structures in Computer Science, 16(3):429–451,
https://doi.org/10.1017/S0960129506005251.
Maayan Geffet and Ido Dagan (2005), The Distributional Inclusion
Hypotheses and Lexical Entailment, in Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL’05), pp. 107–114, Association
for Computational Linguistics, http://aclweb.org/anthology/P05-1014.
Edward Grefenstette, Georgiana Dinu, Yi Zhang, Mehrnoosh Sadrzadeh,
and Marco Baroni (2013), Multi-Step Regression Learning for Compositional
Distributional Semantics, in Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013) – Long Papers, pp. 131–142, Association
for Computational Linguistics, http://aclweb.org/anthology/W13-0112.
Edward Grefenstette and Mehrnoosh Sadrzadeh (2011), Experimental
Support for a Categorical Compositional Distributional Model of Meaning, in
Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pp. 1394–1404, Association for Computational Linguistics,
http://aclweb.org/anthology/D11-1129.
Jules Hedges and Mehrnoosh Sadrzadeh (2016), A Generalised Quantifier
Theory of Natural Language in Categorical Compositional Distributional

[257]

Dea Bankova et al.

Semantics with Bialgebras, CoRR, abs/1602.01635,
http://arxiv.org/abs/1602.01635.
Dimitri Kartsaklis (2015), Compositional Distributional Semantics with Compact
Closed Categories and Frobenius Algebras, Ph.D. thesis, University of Oxford,
https://arxiv.org/abs/1505.00138.
Dimitri Kartsaklis, Matthew Purver, and Mehrnoosh Sadrzadeh (2016),
Verb Phrase Ellipsis using Frobenius Algebras in Categorical Compositional
Distributional Semantics, in DSALT Workshop, European Summer School on Logic,
Language and Information, https://www.eecs.qmul.ac.uk/~mpurver/
papers/kartsaklis-et-al16dsalt.pdf.
Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen Pulman (2012), A
Unified Sentence Space for Categorical Distributional-Compositional Semantics:
Theory and Experiments, in Proceedings of COLING 2012: Posters, pp. 549–558,
The COLING 2012 Organizing Committee,
http://aclweb.org/anthology/C12-2054.
Graham M. Kelly and Miguel L. Laplaza (1980), Coherence for compact
closed categories, Journal of Pure and Applied Algebra, 19:193 – 213, ISSN
0022-4049, https://doi.org/10.1016/0022-4049(80)90101-2.
Douwe Kiela, Laura Rimell, Ivan Vulić, and Stephen Clark (2015),
Exploiting Image Generality for Lexical Entailment Detection, in Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pp. 119–124, Association for Computational Linguistics,
doi:10.3115/v1/P15-2020, http://aclweb.org/anthology/P15-2020.
Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet (2010), Directional distributional similarity for lexical
inference, Natural Language Engineering, 16(4):359––389,
https://doi.org/10.1017/S1351324910000124.
Dexter Kozen (1983), A Probabilistic PDL, in David S. Johnson, Ronald
Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A.
Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and
Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium on
Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA,
pp. 291–297, ACM, https://doi.org/10.1145/800061.808758.
Joachim Lambek (1997), Type Grammar Revisited, in Alain Lecomte,
François Lamarche, and Guy Perrier, editors, Logical Aspects of
Computational Linguistics, Second International Conference, LACL ’97, Nancy,
France, September 22-24, 1997, Selected Papers, volume 1582 of Lecture Notes in
Computer Science, pp. 1–27, Springer, ISBN 3-540-65751-7,
https://doi.org/10.1007/3-540-48975-4_1.

[258]

Compositional graded hyponymy

Alessandro Lenci and Giulia Benotto (2012), Identifying hypernyms in
distributional semantic spaces, in *SEM 2012: The First Joint Conference on
Lexical and Computational Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012), pp. 75–79, Association for
Computational Linguistics, http://aclweb.org/anthology/S12-1012.
Karl Löwner (1934), Über monotone Matrixfunktionen, Mathematische
Zeitschrift, 38(1):177–216.
Bill MacCartney and Christopher D. Manning (2007), Natural Logic for
Textual Inference, in Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, RTE ’07, pp. 193–200, Association for
Computational Linguistics, Stroudsburg, PA, USA,
http://dl.acm.org/citation.cfm?id=1654536.1654575.
George A. Miller (1995), WordNet: A Lexical Database for English,
Communinications of the ACM, 38(11):39–41, ISSN 0001-0782,
doi:10.1145/219717.219748,
http://doi.acm.org/10.1145/219717.219748.
Michael A. Nielsen and Isaac L. Chuang (2011), Quantum Computation and
Quantum Information: 10th Anniversary Edition, Cambridge University Press,
New York, NY, USA, 10th edition, ISBN 1107002176, 9781107002173.
Jeffrey Pennington, Richard Socher, and Christopher Manning (2014),
Glove: Global Vectors for Word Representation, in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1532–1543, Association for Computational Linguistics,
doi:10.3115/v1/D14-1162, http://aclweb.org/anthology/D14-1162.
Robin Piedeleu (2014), Ambiguity in Categorical Models of Meaning, Master’s
thesis, University of Oxford,
http://www.cs.ox.ac.uk/people/bob.coecke/Robin.pdf.
Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh
Sadrzadeh (2015), Open System Categorical Quantum Semantics in Natural
Language Processing, in Lawrence S. Moss and Pawel Soboci’nski, editors,
6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, June
24-26, 2015, Nijmegen, The Netherlands, volume 35 of LIPIcs, pp. 270–289,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, ISBN 978-3-939897-84-2,
https://doi.org/10.4230/LIPIcs.CALCO.2015.270.
Anne Preller and Mehrnoosh Sadrzadeh (2011), Bell States and Negative
Sentences in the Distributed Model of Meaning, Electronic Notes in Theoretical
Computer Science, 270(2):141 – 153, ISSN 1571-0661,
https://doi.org/10.1016/j.entcs.2011.01.028, proceedings of the 6th
International Workshop on Quantum Physics and Logic (QPL 2009).

[259]

Dea Bankova et al.

C. J. van Rijsbergen (2004), The Geometry of Information Retrieval, Cambridge
University Press, New York, NY, USA, ISBN 0521838053.
Laura Rimell (2014), Distributional Lexical Entailment by Topic Coherence, in
Proceedings of the 14th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 511–519, Association for Computational
Linguistics, doi:10.3115/v1/E14-1054,
http://aclweb.org/anthology/E14-1054.
Mehrnoosh Sadrzadeh, Dimitri Kartsaklis, and Esma Balkir (2018),
Sentence entailment in compositional distributional semantics, Annals of
Mathematics and Artificial Intelligence, 82(4):189–218,
https://doi.org/10.1007/s10472-017-9570-x.
Peter Selinger (2007), Dagger Compact Closed Categories and Completely
Positive Maps: (Extended Abstract), Electronic Notes in Theoretical Computer
Science, 170:139 – 163, ISSN 1571-0661,
https://doi.org/10.1016/j.entcs.2006.12.018, proceedings of the 3rd
International Workshop on Quantum Programming Languages (QPL 2005).
Julie Weeds, David Weir, and Diana McCarthy (2004), Characterising
Measures of Lexical Distributional Similarity, in COLING 2004: Proceedings of
the 20th International Conference on Computational Linguistics,
http://aclweb.org/anthology/C04-1146.
Hermann Weyl (1912), Das asymptotische Verteilungsgesetz der Eigenwerte
linearer partieller Differentialgleichungen (mit einer Anwendung auf die
Theorie der Hohlraumstrahlung), Mathematische Annalen, 71(4):441–479.
Dominic Widdows and Stanley Peters (2003), Word vectors and quantum
logic: Experiments with negation and disjunction, in Proceedings of Mathematics
of Language 8, pp. 141–154.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[260]

A proof-theoretic approach
to scope ambiguity

in compositional vector space models

Gijs Jasper Wijnholds
School of Electronic Engineering and Computer Science,

Queen Mary University of London

abstract
Keywords: proof
theory, scope
ambiguity,
compositional
vector space
models, bialgebra

We investigate the extent to which compositional vector space mod-
els can be used to account for scope ambiguity in quantified sentences
(of the form Every man loves some woman). Such sentences containing
two quantifiers introduce two readings, a direct scope reading and
an inverse scope reading. This ambiguity has been treated in a vec-
tor space model using bialgebras by Hedges and Sadrzadeh (2016)
and Sadrzadeh (2016), though without an explanation of the mecha-
nism by which the ambiguity arises. We combine a polarised focussed
sequent calculus for the non-associative Lambek calculus NL, as de-
scribed in Moortgat and Moot (2011), with the vector-based approach
to quantifier scope ambiguity. In particular, we establish a procedure
for obtaining a vector space model for quantifier scope ambiguity in
a derivational way.

1 introduction

There is a long standing tradition in formal semantics on composition-
ality: in order to separate the meaning of basic elements (lexical se-
mantics) from the construction of higher-level meaning (derivational
semantics) one assigns a homomorphism from a syntactic algebra to
a semantic algebra. Having been rigorously formalised by Montague
in his seminal papers (Montague 1970, 1973), these ideas have been
made concrete in the field of grammar, where syntactic types are

Journal of Language Modelling Vol 6, No 2 (2018), pp. 261–286

Gijs Jasper Wijnholds

mapped onto semantic types so that any derivation gives rise to a
meaning recipe. Traditionally, meaning is taken to be a linear lambda
term that evaluates to a truth value.

Ongoing research on distributional semantics, based on the idea
that word meaning is defined relative to a word’s context, has revealed
an appealing way to incorporate type-logical grammar into distribu-
tional models (Coecke et al. 2010). This approach, also known as the
DisCoCat approach (Distributional Compositional Categorical mod-
els), treats compositionality in the Montagovian style as a functorial
passage from syntactic types and proofs to vectors and linear maps.
Given that this line of research is still in its early phase, there is much
to be done to formalise details of the model, give accounts for semantic
phenomena, and evaluate the effectiveness of the chosen approach.

Though traditional categorial syntax and semantics go hand in
hand, some aspects of the set-theoretic formal semantics get lost in
the switch to a vector space model of meaning. First, the interpreta-
tion of constants that one can appeal to in formal semantics are not
directly available in a vector-based setting; a logical word like “not”
can be computed in the formal setting by taking set complement, but
negating a vector or matrix is not trivial.1 Similarly, for coordinators
like “and” and “or” the standard set intersection and union are not
available in a vectorial setting. One could replace intersection by vec-
tor multiplication and union by vector summation, but in the presence
of concrete distributional vectors it is not clear that such operations
indeed perform well in an experimental setting. Second, the DisCoCat
approach assumes a tight categorical correspondence between a syn-
tactic formalism and the concrete vector semantics: when we want to
stay in the realm of finite dimensional vector spaces, we are dealing
with a compact closed category; to model a categorial grammar as a
category, one needs to fully explicate its proof-theoretic logical and
structural rules, an exposition that is not trivially available for any
categorial system.2 Another issue with this categorical treatment is

1Although there is work on simulating negation in a tensor-based setting
(Grefenstette 2013), it is not clear what negation really means in a distributional
setting. For instance, an alternative view is to treat distributional negation as
conversational (Kruszewski et al. 2016).

2For instance, the composition and type-raising combinators one finds in
Combinatorial Categorial Grammar (Steedman 2000) don’t easily translate into

[262]

Scope ambiguity in compositional vector space models

that a simple vector-based model does not have the non-linearity that
some models would assume. As an example, allowing a non-linearity
in lexical lambda terms or as a syntactic mechanism means the copy-
ing of material which is not possible with all vectors. We discuss this
issue in more detail in the rest of the paper.

Some of the above issues have been addressed in recent work
by Sadrzadeh et al. (2013), Hedges and Sadrzadeh (2016), Sadrzadeh
(2016), giving accounts of subject/object relativisation, generalised
quantifiers, and quantifier scope. In Sadrzadeh et al. (2013), the mean-
ing of pronoun relative clauses is explained by using Frobenius alge-
bras in the lexicon, and assigning different pregroup grammar types
to the subject relative pronoun “who” and the object relative pro-
noun “whom”. Two different derivations then naturally arise, giv-
ing an intersectional meaning to subject relative clauses of the type
“Men who like Mary”, and object relative clauses such as “Men whom
Mary likes”. Such an approach does not lend itself to certain Germanic
languages where the ambiguity has to be derivational: in Dutch, the
subject relative and object relative interpretations above share the
surface form “Mannen die Marie mogen”.3 To deal with this issue
without specifying lexical alternatives, i.e. different possible typings of
the relative pronoun “die”, Moortgat and Wijnholds (2017) provide a
derivational account that results in the same intersective vector space
meaning as the ones of Sadrzadeh et al. (2013).

An element that lacks in the results obtained so far on quanti-
fier scope ambiguity is a detailed discussion of the derivational pro-
cess, giving rise to ambiguities. Quantifier scope ambiguity as opposed
to pronoun relativisation is more pressing as the former exists in En-
glish and does not come from the lexicon, but rather from different
ways of reading the same surface form. The account of Hedges and
Sadrzadeh (2016) explores the use of bialgebras to represent quanti-
fiers, using context free grammars as the syntactic engine; its follow
up (Sadrzadeh 2016) discusses scope ambiguity but assumes the am-
biguity to be given before detailing the direct scope and inverse scope
readings of phrases of the shape “Every man loves some woman”. In
a standard category, and the Displacement Calculus of Morrill et al. (2011) sub-
sumes its structural rules in the rules of the system (Valentín 2014).

3 “Die” can mean “who”, “whom”, “that”, “mogen” is an inflection of
“like”.

[263]

Gijs Jasper Wijnholds

order to explain how the ambiguity comes about, we need to detail
the syntactic process, and integrate it with a vector-based semantics.

Our goal in this paper, then, is to pave the way to fully explain
compositionality in vector space models of meaning while also tak-
ing into account the desirable mechanisms of e.g. Frobenius algebras
and bialgebras. The contribution of this paper is to show how we can
represent quantifier scope ambiguity in a derivational manner, fully
determined by the syntactic process combined with a suitable lexical
semantics.

We will make use of a polarised non-associative Lambek calculus,
and use focussing as a technique to gain control over the space of se-
quent derivations. A continuation-passing-style translation from syntac-
tic types into semantic objects then gives rise to the expected reading
for quantifier scope ambiguity. This technique has been worked out
by Moortgat and Moot (2011) (following Bernardi and Moortgat 2010
and Bastenhof 2012), but has not, until now, been put in the context
of vector space models.

This paper is structured as follows: in Section 2, we briefly dis-
cuss quantifier scope ambiguity and its apparent non-linearity. Next,
in Section 3 we define the basic, compositional DisCoCat model. We
proceed to review quantifier scope ambiguity in vector space models
in Section 4, and show in Section 5 how we can derive quantifier scope
ambiguity in a compositional way using a polarised focussed sequent
calculus that is interpreted in a vector space model. We conclude in
Section 6 by explaining how our results can be further expanded and
we introduce some potential new areas of investigation.

2 quantifier scope ambiguity
There seems to be an intrinsic non-linearity associated with quanti-
fiers. Consider the word “all” in a phrase “all men sleep”. One way of
modelling the universal quantification in the phrase is to let “all” refer
to an operation that decides whether the set of “men” is a subset of
those entities that are sleeping, i.e. if “men” refers to some set A, and
“sleep” to some set B, then “all men sleep” computes whether A ⊆ B.
This can be given an alternative definition:

[all] (A)(B) =

(
1 if A= A∩ B

0 otherwise

[264]

Scope ambiguity in compositional vector space models

When one tries to give this interpretation in terms of a λ-term, the
usual approach is to model both “men” and “sleep” as a characteristic
function of a set of entities, where “all” is given a non-linear λ-term:

JallK= λP.λQ.(∀ (λx .(P x)→ (Q x)))

This λ-term will effectively decide whether A ⊆ B, or alternatively
whether A = A∩ B. Both the modellings sacrifice linearity in a sense:
where the first, relational interpretation needs to use A as an operand
to the intersection operation and as an argument to decide equality,
the second interpretation has to copy the variable x to decide whether
everything in the universe satisfying the property P also satisfies Q.
We argue that this required non-linearity that is introduced by allow-
ing non-linear λ-terms to be inserted through the lexicon, is exactly
the same kind of non-linearity that is introduced to vector space mod-
els by means of bialgebra operations. It has been argued before that
modelling quantification in vector space models forces one to use non-
linear maps (Grefenstette 2013). However, this issue has been partially
resolved by Hedges and Sadrzadeh (2016) by admitting a powerset
structure to the basis vectors of the model. The then obtained bialge-
bra operations are linear in the algebraic sense, but non-linear in terms
of typing information. That is, they allow for copying a resource X into
a resource X⊗X and deleting a resource in the opposite direction. That
this kind of operation would jeopardize a Lambek-style grammar for-
malism is immediate as the bialgebra operations would correspond to
contraction and expansion, respectively. Our argument will proceed
by claiming that a continuation-passing-style translation that allows
for lexical insertion of non-linear λ-terms can instead be interpreted
by means of the bialgebra operations of Hedges and Sadrzadeh (2016).

3 compositional distributional semantics

Compositional distributional semantics in a categorical setting takes a
mathematically rigorous approach to compositionality. Much like tra-
ditional Montagovian semantics, there is a syntactic algebra involved
that provides grammaticality by means of a proof system, in this case
it can be either a pregroup grammar or the Lambek calculus (Lambek
1958, 1997). The semantic algebra is, in the basic setup, the category of

[265]

Gijs Jasper Wijnholds

finite dimensional vector spaces, denoted FVect: content words are as-
signed a vector that represents its position in the space of word mean-
ings, obtained through some method of co-occurrence extraction on a
corpus. Whenever a sequence of words, annotated with their syntac-
tic types, leads to a derivation that proves grammaticality, the proof
term associated with that derivation provides a linear map on the vec-
tors associated with basic words which, after evaluation, gives us the
phrase meaning of that sequence of words.

3.1 Lambek grammars
We make the model sketched above concrete by giving the relevant
definitions. These are based on work by Wijnholds (2014) in combi-
nation with the work of Coecke et al. (2013).
Definition 1 (Lambek types). Given a set T of basic types, the set of
Lambek types F(T) is the smallest set such that:
1. If p ∈ T then p ∈ F(T),
2. If A, B ∈ F(T) then A⊗ B, A\B, B/A∈ F(T).

We proceed to define a Lambek calculus in terms of a labelled deduc-
tive system, i.e. we use the notation of an inference system to show
how proofs are derived:
Definition 2 (Non-associative Lambek calculus). The (non-associative,
non-unitary) Lambek calculus NL over T is given by the types in F(T) and
the proofs generated by the following (labelled) inference system:

1A : A→ A Ax
f : A→ B g : B→ C

g ◦ f : A→ C T

f : A⊗ B→ C
Â f : A→ C/B

R1
f : A⊗ B→ C
Ã f : B→ A\C R2

g : A→ C/B

Â-1 g : A⊗ B→ C
R1-1 g : B→ A\C

Ã-1 g : A⊗ B→ C
R2-1

One can show that monotonicity laws for each of the connectives are
derived rules of inference:

f : A→ C g : B→ D
f ⊗ g : A⊗ B→ C ⊗ D

M⊗

[266]

Scope ambiguity in compositional vector space models

f : A→ C g : B→ D
g/ f : B/C → D/A

M/

f : A→ C g : B→ D
f \g : C\B→ A\D M\

where we have:
f ⊗ g := Â-1 ((ÂÃ-1 ((Ã 1C⊗D) ◦ g)) ◦ f)

g/ f := Â (g ◦ (Ã-1 ((ÃÂ-1 1B\C) ◦ f)))

f \g := Ã (g ◦ (Â-1 ((ÂÃ-1 1C\B) ◦ f)))

Leaving aside the issue of global associativity and its desirability from
a linguistic perspective, we note how it can be added using two addi-
tional axioms:

aA,B,C : (A⊗ B)⊗ C → A⊗ (B ⊗ C)
Ass

a-1A,B,C : A⊗ (B ⊗ C)→ (A⊗ B)⊗ C
Ass-1

The categorical version of the Lambek calculus can be obtained by im-
posing the relevant standard equivalences on proofs, amongst others
stipulating that composing with the identity proof is a vacuous opera-
tion, and that all two-way inference rules are isomorphims. For more
detail we refer the reader to Wijnholds (2014).

In order to make grammaticality judgments to sequences of
words, we need a lexicon assigning types to words over an alpha-
bet. For the sake of completeness we define the lexicon as a relation,
but in the remainder of this paper we will freely abuse notation and
treat the lexicon as if it were a function.
Definition 3 (Lexicon). Let Σ be a finite, non-empty set of words (an
alphabet). A lexicon over Σ is a relation δ ⊆ Σ× F(T).
Definition 4 (Lambek grammar). Given a set of basic types T , a Lambek
grammar over T is a triple (Σ,δ, S) where Σ is an alphabet, δ is a lexicon
over T , and S ∈ F(T) is a distinguished goal type.
Definition 5 (Grammaticality). Given a Lambek grammar (Σ,δ, S) over
T , we say that a sequence of words w1...wn over Σ is grammatical iff there
is a merged sequence W1 ⊗W2...⊗Wn (where for each i we have wiδWi),
and there exists a proof of W1 ⊗W2...⊗Wn→ S in the Lambek calculus.

[267]

Gijs Jasper Wijnholds

The presented definitions so far give a procedure to obtain a proof of
sentencehood for a sequence of words. Moreover, there might be sev-
eral proofs of the same sequence of words. This may be desirable (in
cases of derivational ambiguity) or not (in the case proof-theoretic re-
dundancy, e.g. the successive to and fro use of two-way rules). In the
categorical variant of the Lambek calculus, we can simply take the
proofs of sentencehood of a sequence to be the hom-set of morphisms
Hom(W1⊗W2...⊗Wn, S). This produces fewer proofs as unnecessary am-
biguity of the proof system is brought down by categorical equations.
The structure of the (non-associative) Lambek calculus NL is that of a
biclosed magmatic category.4

3.2 Finite dimensional vector space models
Lambek grammars are easily interpretable in vector space semantics,
as vector spaces enjoy compact closure – a weaker variant of the bi-
closure of the Lambek calculus. We define the category FVect and
show that it enjoys compact closure:
Definition 6 (Compact Closure). A compact closed category is a mono-
idal category C with dual objects Al , Ar for every object A in C and addi-
tional morphisms:

Al ⊗ A
εl

A−→ I
ηl

A−→ A⊗ Al

A⊗ Ar ε
r
A−→ I

ηr
A−→ Ar ⊗ A

that satisfy the yanking properties:5
(idA⊗ εl

A) ◦ (ηl
A⊗ idA) = idA (εr

A⊗ idA) ◦ (idA⊗ηr
A) = idA

(ηl
A⊗ idAl) ◦ (idAl ⊗ηl

A) = idAl (idAr ⊗ηr
A) ◦ (ηr

A⊗ idAr) = idAr

In the category of finite dimensional vector spaces FVect we have that
the dual space A∗ is isomorphic to A when we fix a basis (which is the
case for concrete models). The ε and η maps, now reduced to just two
maps, are given by:

ε :=
∑

i j ci j(vi ⊗ v j) 7→∑i j ci j〈vi | v j〉

η := 1 7→∑i(vi ⊗ vi)

4A magmatic category is a weaker version of a monoidal category: the tensor
has no unit and is not necessarily associative. See Wijnholds (2017).

5Note that we left out the hidden associativity morphism.

[268]

Scope ambiguity in compositional vector space models

In concrete vector models, we will have vectors learnt for content
words. For instance, the noun phrases “John” and “Mary” can be in-
terpreted as vectors −→n1 ,−→n3 ∈ N, respectively. This means that they
are essentially single points in a vector space. Setting the sentence
space to be the real numbers, a transitive verb such as “loves” would
live in the vector space N ⊗ R ⊗ N, and would carry information
about the degree with which individuals love one another. In vector
terms: ∑

i j

ci j(
−→ni ⊗ 1⊗−→n j)

The ci j is the respective degree for any pair of individuals i, j. The
meaning of the phrase “John loves Mary” should then reduce by
taking the inner product of the noun phrases with the verbs to
give: ∑

i j

ci j〈−→n1 | −→ni 〉〈−→n j | −→n3〉
In the next section, we show how to relate derivations in a Lambek
grammar to concrete computations in a vector space model.

3.3 Interpretation
Given that the compact closedness of FVect instantiates the closure
of the Lambek calculus, we can easily interpret proofs in a Lambek
grammar in a vector space model by passing from words and their
lexical types to vectors in a homomorphically obtained vector space.
Any proof of grammaticality will be interpreted through the η and ε
maps:
Definition 7 (Interpretation). Let (Σ,δ, S) be a Lambek grammar over
T . An interpretation is a pair of maps I0 : F(T)→ FVect, I1 : Σ→ δ(Σ),
where δ(Σ) is the relational image of δ, such that I0 respects typing and I1

respects lexical type assignment. That is,
I0(A⊗ B) = I0(A\B) = I0(A/B) = I0(A)⊗ I0(B)

and
I1(w) =

−→v iff wδW and −→v ∈ I0(W)

An interpretationmap sends words to vectors that respect the syntactic
types associated with those words. We need to give a vectorial inter-
pretation of proofs as well, in order to know how to compute meanings

[269]

Gijs Jasper Wijnholds

of a tuple of vectors. The identity proof and transitivity of proofs car-
ries over to the identity map on vector spaces and the composition
of linear maps. The remaining rules of residuation are interpreted as
shown below:

f ′ : I0(A)⊗ I0(B)→ I0(C)�
f ′ ⊗ idI0(B)

� ◦ �idI0(A) ⊗ηI0(B)

�
: I0(A)→ I0(C)⊗ I0(B)

R1

f ′ : I0(A)⊗ I0(B)→ I0(C)�
idI0(A) ⊗ f ′
� ◦ �ηI0(A) ⊗ idI0(B)

�
: I0(B)→ I0(A)⊗ I0(C)

R2

g ′ : I0(A)→ I0(C)⊗ I0(B)�
idI0(C) ⊗ εI0(B)

� ◦ �g ′ ⊗ idI0(B)

�
: I0(A)⊗ I0(B)→ I0(C)

R1-1

g ′ : I0(B)→ I0(A)⊗ I0(C)�
εI0(A) ⊗ idI0(C)

� ◦ �idI0(A) ⊗ g ′
�

: I0(A)⊗ I0(B)→ I0(C)
R2-1

It is a nice puzzle for the reader to verify that by the yanking equations,
we preserve isomorphicity of residuation, for example one can show
that the interpretation of Â-1Â f is equal to the interpretation of f .

3.4 Illustration
Recall that we have vectors for “John”, “Mary” and “loves” and we
have an intended meaning of the phrase “John loves Mary”. We take
a Lambek grammar over the set of basic types {np, s}, where np will
be interpreted as N and s will be mapped to R. We define a lexicon as
follows:

w δ(w) I1(w) I0(δ(w))

“John” np n1 N

“Mary” np n3 N

“loves” (np\s)/np
∑

i j ci j(
−→ni ⊗ 1⊗−→n j) N⊗R⊗N

Given that Ã-1Â-1 (1(np\s)/np) proves the grammaticality of “John loves
Mary”, the associated meaning computation will be:

[270]

Scope ambiguity in compositional vector space models

(εN ⊗ idR) ◦ (idN ⊗ ((idN⊗R ⊗ εN) ◦ (idN⊗R⊗N ⊗ idN)))

(−→n1 ⊗∑i j ci j(
−→ni ⊗ 1⊗−→n j)⊗−→n3)

= (εN ⊗ idR) ◦ (idN⊗N⊗R ⊗ εN)(
−→n1 ⊗∑i j ci j(

−→ni ⊗ 1⊗−→n j)⊗−→n3)

= (εN ⊗ idR)(
−→n1 ⊗∑i j ci j(

−→ni ⊗ 〈−→n j | −→n3〉))
=
∑

i j ci j〈−→n1 | −→ni 〉〈−→n j | −→n3〉
= c13

This result is exactly the intended meaning we wanted to obtain. Note
that the result of the computation relies on the fact that the content
words in the vector space model are taken to be the basis vectors,
hence they are orthogonal. The result c13 indicates the distributional
strength of John loving Mary in a corpus that the vectors have been
learnt from. Until now, we have neglected discussion about function
words: logical words, relative pronouns, and quantifiers are not intu-
itively represented well by co-occurrence data. The logical word “and”
may occur with many different words, but that statistic does not tell
us much about the meaning of the word. So, although all the basic op-
erations from a Lambek grammar are directly interpretable in vector
space models, more advanced semantic phenomena lack an explana-
tion in the simple models.

4 quantifier scope ambiguity
in vector space models

In this section we review the use of bialgebras in vector space models
as exhibited by Hedges and Sadrzadeh (2016) and Sadrzadeh (2016)
and show how the two scope readings can be obtained. The treatment
of quantifiers in vector space models relies on the use of powersets: as
long as we can know of our vector space that its basis vectors are given
by the powerset of some set A, we can perform additional operations
on the vector space.
Definition 8 (Bialgebra). Given a symmetric monoidal category (C ,⊗,
I ,σ), a bialgebra on an object X in C is a tuple of maps:

X
δX−→ X ⊗ X

µX−→ X

X
ιX−→ I

ζX−→ X

[271]

Gijs Jasper Wijnholds

that satisfy the conditions of a monoid for (X ,µ,ζ) and a comonoid for
(X ,δ, ι) and furthermore satisfy the bialgebra axioms:

ι ◦µ = ι ⊗ ι
δ ◦ ζ = ζ⊗ ζ
ι ◦ ζ = idI

δ ◦µ = (µ⊗µ) ◦ (idX ⊗σ⊗ idX) ◦ (δ⊗δ)
The last of the four equations tells us that in a bialgebra, the order
of copying and merging is irrelevant given that we can switch copies
by means of the symmetry of the category. What is interesting to note
is that any powerset P(U) bears a bialgebra structure if we consider
the Cartesian product to be the tensor and the singleton set {⋆} as the
identity object. What follows is that any vector space over a powerset,
denoted VP(U), carries a bialgebra structure. Both bialgebras are given
below:

A
δ⇔ A× A |A〉 δ7→ |A〉 ⊗ |A〉

A× B
µ⇔ A∩ B |A〉 ⊗ |B〉 µ7→ |A∩ B〉

A
ι⇔ {⋆} |A〉 ι7→ 1

{⋆} ζ⇔ U 1
ζ7→ |U〉

The existence of a bialgebra on powerset vector spaces allows for a
neat treatment of quantification. Given that nouns and noun phrases
are represented as vectors on a powerset, universal quantification and
existential quantification are treated as:

|A〉 JallK7→ ∑
A⊆B⊆U

|B〉
|A〉 JsomeK7→ ∑

B s.t.
A∩B ̸=;
|B〉

To get a feel for how the meaning of a quantified sentence should be
computed according to Hedges and Sadrzadeh (2016), we show the
example of “all men sleep”, which gets assigned the meaning:

εVP(U)
◦ (JallK⊗µVP(U)

) ◦ (δVP(U)
⊗ idVP(U)

)(|JmenK〉 ⊗ |JsleepK〉)
= εVP(U)

◦ (JallK⊗µVP(U)
)(|JmenK〉 ⊗ |JmenK〉 ⊗ |JsleepK〉)

= εVP(U)
(
∑

JmenK⊆B⊆U
|B〉 ⊗ |JmenK∩ JsleepK〉)

=
∑

JmenK⊆B⊆U
〈B|JmenK∩ JsleepK〉

= 〈JmenK|JmenK∩ JsleepK〉
[272]

Scope ambiguity in compositional vector space models

Although this approach works for statements with a single quantifier,
it fails to deliver both readings for a doubly quantified statement such
as “every student likes some teacher” as the computations for the sub-
ject and object quantifiers will be independent of each other. Hence,
both readings will collapse to the same meaning. This lack of explana-
tory power of the model is amended in a subsequent paper (Sadrzadeh
2016), where the implicit quantified variable is passed on to the com-
putation of the second quantifier. A transitive verb such as “likes” is
modelled as an element:

JlikesK=∑
i j

ci j(|Ai〉 ⊗ |A j〉)

in VP(U) ⊗ VP(U), and we can model the forward image of an element
in U as: JlikesaK=∑

i j

wi j〈{a} | Ai〉|A j〉

The backward image is computed similarly by taking the inner product
of −→va with −→v j . This construction now allows for both readings of “every
student likes some teacher”, though there is no procedure given to
obtain these readings through a syntactic process.

5 quantifier scope ambiguity
using focussing and polarisation

Focussing is a proof-theoretic technique stemming from the work of
(Andreoli 2001) that aims to eliminate redundancy from regular se-
quent systems. Focussed proof search proceeds by distinguishing those
formulas that enjoy invertible introduction rules (asynchronous for-
mulas), and those that do not (synchronous formulas). Asynchronous
formulas are decomposed in a backward chaining proof search until
there is no more decomposition possible. Then, one of the synchronous
formulas is selected to be put in focus, after which the process of
decomposition continues. This implies that now only the number of
synchronous formulas determines the number of distinct proofs. This
approach has been applied to the Lambek-Grishin calculus, a sym-
metric extension of the Lambek calculus, by Bernardi and Moort-
gat (2010), and is worked out in more detail by Moortgat and Moot
(2011).

[273]

Gijs Jasper Wijnholds

In order to obtain a compositional Montagovian semantics from
a display style presentation of focussed proofs for the Lambek-Grishin
calculus, Bastenhof (2012) applies a polarisation technique, whereby
formulas are assigned either positive or negative polarity. Atomic for-
mulas are assigned an arbitrary polarity; the choice of this bias affects
the set of proofs obtained. The polarity also influences semantics: un-
der the continuation semantics of Bernardi and Moortgat (2010), a
negative formula will be negated in its interpretation. Though the fo-
cussing and polarisation approaches are described by Bernardi and
Moortgat (2010) and Bastenhof (2012), respectively, here we follow
the focussed sequent presentation of Moortgat and Moot (2011).

We start by defining polarity of types:
Definition 9 (Polarity). Given a set of basic types T , a polarity assign-
ment on types is a map pol : F(T)→ {−,+} that assigns to the types in T
an arbitrary polarity but fixes the polarity for complex types:

pol(A⊗ B) = +

pol(A\B) = −
pol(B/A) = −

Given a Lambek grammar G over a set T , grammaticality is de-
fined similarly to Definition 5, where the set of proofs is given by the
underlying proof system. The only difference is that the final sequent
should have the consequent formula in focus. Any proof is encoded by
its abstract label, according to the abstract sequent system defined in
Figure 1.

5.1 CPS translation
The translation of types and proofs given by Moortgat and Moot
(2011) into a target semantic algebra is a two-step process:

source
NL⊗,\,/

I−→
continuation
semantics
LP⊗,⊥

J−→ target
FVect

Instead of considering a proof to be a simple transformation of values
(the assumptions) to a value (the conclusion), we consider a proof to
be a continuation, a function that awaits an evaluation context to com-
pute a final value. The intermediate semantics is the Lambek calculus

[274]

Scope ambiguity in compositional vector space models
Focused types are positive

Ax(A, x) | x : A⇒ A
Ax

M | X [x : A]⇒ Y

) (M , x , A) | X [A]⇒ Y
)

M | X ⇒ A
* (M ,α) | X ⇒ α : A

*

Focused types are negative

CoAx(A,α) | A ⇒ α : A
CoAx

M | X [A]⇒ Y
((M , x) | X [x : A]⇒ Y

(

M | X ⇒ α : A

+ (M ,α) | X ⇒ A
+

M | X [A]⇒ Z N | Y ⇒ B

/L(M , N) | X [A/B • Y]⇒ Z
/L M | X • x : B⇒ α : A

/R(M , x ,α,β) | X ⇒ β : A/B
/R

M | X [x : A• y : B]⇒ Y
⊗L(M , x , y, z) | X [z : A⊗ B]⇒ Y

⊗L
M | X ⇒ A N | Y ⇒ B

⊗R(M , N) | X • Y ⇒ A⊗ B
⊗R

M | Y ⇒ B N | X [A]⇒ Z

\L(M , N) | X [Y • B\A]⇒ Z
\L M | x : B • X ⇒ α : A

\R(M , x ,α,β] | X ⇒ β : B\A \R

Figure 1:
Focussed
labelled sequent
system for NL

with permutation and negation, LP⊗,⊥, a system that only uses a prod-
uct operation but introduces a negation. Furthermore, permutation
of resources is allowed to compensate for the lack of directionality
without the /,\ connectives. We will define a direct mapping from
source to target, to skip the administrative details of the intermediate
semantics.

In order to replicate the effect of the negation in LP⊗,⊥, we use
vector spaces over sets; given some type A, we define its interpretation
to be a vector space over a set. In this way, we enjoy the bialgebras
defined over those vector spaces. First, a type W is mapped to some
set A, using the Cartesian product and powerset operations. Then, the
final interpretation of a type will be the vector space over the given
set, VA. We get the intended tensor products on spaces due to the fact
that VA×B

∼= VA⊗ VB.

[275]

Gijs Jasper Wijnholds

Definition 10 (Type interpretation). Given a set of basic types T and
a basic interpretation map I0 : T → Set, the type interpretation is a map
I1 : F(T)→ Set defined as follows:
1. For basic types p ∈ T we have:

I1(p) =

(
I0(p) if pol(p) = +

P(I0(p)) if pol(p) = −
2. For complex types, the interpretation depends both on the polarity of

subtypes and the connective involved:
A B I1(A⊗ B) I1(A\B) I1(B/A)
− − P(I1(A))× P(I1(B)) P(I1(A))× I1(B) I1(B)× P(I1(A))
− + P(I1(A))× I1(B) P(I1(A))× P(I1(B)) I1(B)× I1(A)
+ − I1(A)× P(I1(B)) I1(A)× I1(B) P(I1(B))× P(I1(A))
+ + I1(A)× I1(B) I1(A)× P(I1(B)) P(I1(B))× I1(A)

3. We stipulate that for any type A, its interpretation I1(A) is lifted to
the vector space spanned by its elements, that is we define the final
interpretation I2 : F(T)→ FVect as I2(W) = VI1(W).

Definition 11 (Word interpretation). Given a Lambek grammar (Σ,δ, S)
over a set of basic types T and an interpretation map I2 : F(T)→ I2(δ(Σ)),
where δ(Σ) is the relational image of Σ under the lexicon, and I2(δ(Σ)) is
the image under interpretation (i.e. vector spaces), the word interpretation
is a map I3 that respects the following:

I3(w) ∈ I2(W) iff wδW and pol(W) = +

I3(w) ∈ I2(W)→ R iff wδW and pol(W) = −
That is, words with a positive type are translated as vectors, while words
with a negative type are translated as linear maps.

As an example, if we define the associated vector space of the
type np to be U and n to be P(U), then the interpretation of a noun
like “student” will be a constant I3(“student”) ∈ VP(U), whereas a word
like “all” that is typed np/n will be a linear map:

I3(“all”) ∈ VP(U) ⊗ VP(U)→ R
We proceed to define how we interpret proof terms. The intuitive

idea is that a proof term is translated into a linear map which will sub-
sequently be applied to the word interpretations of its antecedents.

[276]

Scope ambiguity in compositional vector space models

Though the proof system builds up terms with potentially unbound
variables, we require for grammaticality (see above) that the conclu-
sion formula be in focus; this means that the only unbound variables
in the proof term are those of the antecedent formula, which will be
substituted by word interpretations.
Definition 12 (Proof term interpretation). Given a proof in the focussed
sequent calculus for NL, there is a proof term that encodes the proof. We
define the interpretation of a proof by giving the translation of proof terms
into linear maps:

Ax(A, x)
I4
=⇒ x ∈ I3(A)

CoAx(A,α)
I4
=⇒ α ∈ I3(A)

) (M , x , A)
I4
=⇒ |{x ∈ I3(A)|I4(M) ̸= 0}〉

((M , x)
I4
=⇒ x(I4(M))

* (M ,α)
I4
=⇒ α(I4(M))

+ (M ,α)
I4
=⇒ α 7→ I4(M)

/L(M , N)
I4
=⇒ I4(M)⊗ I4(N)

/R(M , x ,α,β)
I4
=⇒ I4(M)[β → α⊗ x]

⊗L(M , x , y, z)
I4
=⇒ I4(M)[z→ x ⊗ y]

⊗R(M , N)
I4
=⇒ I4(M)⊗ I4(N)

\L(M , N)
I4
=⇒ I4(M)⊗ I4(N)

\R(M , x ,α,β)
I4
=⇒ I4(M)[β → x ⊗α]

Finally, as the interpretation is a continuation-passing-style trans-
lation, we will end up with a map that needs an evaluation context be-
fore finishing computation. So, given that a proof gives a linear map,
we apply it to the identity map, and we instantiate the unbound vari-
ables with the relevant word interpretations.

5.2 Deriving quantifier scope ambiguity
Quantifier scope ambiguity as exemplified by the phrase “Every stu-
dent likes some teacher”, is already shown to be obtainable using the
two-step translation process of Bernardi and Moortgat (2010) in a
Lambek-Grishin grammar, and in a Lambek grammar (Moortgat and
Moot 2011). Here, we alter the latter example given to translate into

[277]

Gijs Jasper Wijnholds

the vector space model as employed by Hedges and Sadrzadeh (2016)
and Sadrzadeh (2016) to show that both readings (narrow/wide and
wide/narrow) can be obtained and give exactly the kind of meaning
we would expect from a vector space model. This means that we can
obtain the intended meaning in a derivational way. What is more,
given that we have both a grammar available and we have learned
concrete vectors, the process can potentially be fully automated. Each
word has to be associated with a syntactic type, and we have to give
a word interpretation mapping the words to a vector or linear map.
We assume a set of basic types {np, n, s} where s is the distinguished
goal type. Polarity assignment is handled by stipulating that np and
n are positive, and s is negative. Basic types np and n are interpreted
as U and P(U), respectively, and s gets translated to R. The syntactic
types and the word interpretation are given by the following table:

w δ(w) ⌈w⌉
every np/n εVP(U)

◦ (JallK⊗µVP(U)
) ◦ (δVP(U)

⊗ idVP(U)
) ◦σ

student n JstudentK
likes (np\s)/np −→a ⊗ f ⊗−→b 7→ f (J(likesb)aK)
some np/n εVP(U)

◦ (JsomeK⊗µVP(U)
) ◦ (δVP(U)

⊗ idVP(U)
) ◦σ

teacher n JteacherK
As a reminder, we also note the vectorial interpretation of lexical con-
stants in the word interpretation:

JallK(|A〉) =
∑

A⊆B⊆U
|B〉

JsomeK(|A〉) =
∑

B⊆U s.t.
A∩B ̸=;

|B〉

JstudentK = |A〉 for some A⊆ U

JteacherK = |B〉 for some B ⊆ U

JlikesK =
∑
i j

ci j(|Ai〉 ⊗ 1⊗ |A j〉 for each Ax ⊆ U

The two proofs that we get from the focussed sequent calculus are
displayed in Figures 2 and 3 (without labelling).

[278]

Scope ambiguity in compositional vector space models

a : np⇒ np
Ax

s ⇒ α : s
CoAx

a : np • np\s ⇒ α : s
\L

b : np⇒ np
Ax

a : np • ((np\s)/np • b : np)⇒ α : s
/L

a : np • (z : (np\s)/np • b : np)⇒ α : s
(

a : np • (z : (np\s)/np • np)⇒ α : s
) teacher

w : n⇒ n
Ax

a : np • (z : (np\s)/np • (np/n •w : n))⇒ α : s
/L

a : np • (z : (np\s)/np • (u : np/n •w : n))⇒ α : s
(

np • (z : (np\s)/np • (u : np/n •w : n))⇒ α : s
) student

y : n⇒ n
Ax

(np/n • y : n) • (z : (np\s)/np • (u : np/n •w : n))⇒ α : s
/L

(x : np/n • y : n) • (z : (np\s)/np • (u : np/n •w : n))⇒ α : s
(

(x : np/n
every

• y : n
student

) • (z : (np\s)/np
likes

• (u : np/n
some

•w : n)
teacher

)⇒ s
+

Figure 2: Proof for wide over narrow scope

b : np⇒ np
Ax

s ⇒ α : s
CoAx

b : np • np\s ⇒ α : s
\L

a : np⇒ np
Ax

b : np • ((np\s)/np • a : np)⇒ α : s
/L

b : np • (z : (np\s)/np • a : np)⇒ α : s
(

np • (z : (np\s)/np • a : np)⇒ α : s
) student

y : n⇒ n
Ax

(np/n • y : n) • (z : (np\s)/np • a : np)⇒ α : s
/L

(x : np/n • y : n) • (z : (np\s)/np • a : np)⇒ α : s
(

(x : np/n • y : n) • (z : (np\s)/np • np)⇒ α : s
) teacher

w : n⇒ n
Ax

(x : np/n • y : n) • (z : (np\s)/np • (np/n •w : n))⇒ α : s
/L

(x : np/n • y : n) • (z : (np\s)/np • (u : np/n •w : n))⇒ α : s
(

(x : np/n
every

• y : n
student

) • (z : (np\s)/np
likes

• (u : np/n
some

•w : n)
teacher

)⇒ s
+

Figure 3: A proof for narrow over wide scope

[279]

Gijs Jasper Wijnholds

If we take the proof term for the first proof and translate this into
a vectorial map we get:
(1a) α 7→ x (|{a ∈ U | u (|{b | z (a⊗α⊗ b) ̸= 0}〉 ⊗w) ̸= 0}〉 ⊗ y)

For the second proof term, we get a slightly different map:
(2a) α 7→ u (|{a ∈ U | x (|{b | z (b⊗α⊗ a) ̸= 0}〉 ⊗ y) ̸= 0}〉 ⊗w)

The unfolded maps are quite intimidating so the complete computa-
tion is taken up in the Appendix. Here we just note that the two maps
reduce to the readings shown below:

(1b) 〈JstudentK | JstudentK∩ {a ∈ U | ∑
B⊆U s.t.JteacherK∩B ̸=;

〈B | JteacherK∩ C〉}〉〉

where C = {b ∈ U |J(likesb)aK ̸= 0}

(2b)
∑

B⊆U s.t.JteacherK∩B ̸=;
〈B | JteacherK∩ {a ∈ U | 〈JstudentK | JstudentK∩ D〉 ̸= 0}〉

where D = {b ∈ U | J(likesa)bK ̸= 0}

We can see that these interpretations will give different results de-
pending on the instantiation of the vectors. In fact, these interpre-
tations correspond to the result of Sadrzadeh (2016). This effectively
shows that quantifier scope ambiguity can be achieved in vector space
models by the use of appropriate proof-theoretic notions.

6 concluding remarks
In this paper, we elaborated on quantifier scope ambiguity in compo-
sitional distributional models of meaning. In particular, the approach
of Moortgat and Moot (2011) using a continuation-passing-style trans-
lation for a polarised and focussed proof system for the Lambek cal-
culus was combined with the approach to generalised quantifiers of
Hedges and Sadrzadeh (2016). The result is fully derivational and pro-
vides a fully worked out compositional way to obtain two readings
for phrases of the type “Every student likes some teacher”, thereby re-
solving the issue of manually assigning appropriate meaning vectors
to such phrases.

[280]

Scope ambiguity in compositional vector space models

Although we illustrate this with examples of two generalised
quantifiers in a sentence, the approach works for a single quantifier,
and since the applied strategy exploits the combinatorial choices of
the proof system (focus on the first quantifier and then on the sec-
ond one, or vice versa) we expect the approach to generalise to more
quantifiers, though the possibility of overgeneration needs to be in-
vestigated.

As for experimental validation, since the writing of this paper,
it has been recognised that using a powerset construction in vector
spaces, to be able to make use of bialgebras, may not be very feasible
in practical models: having a powerset as a basis may lead to an expo-
nential blowup in vector space size, and could potentially give sparsity
issues. One approach to deal with this could be to use fuzzy quantifi-
cation (Zadeh 1983), which has already been explored by Dostal and
Sadrzadeh (2016).

Another interesting avenue is to work out how several phenomena
involving the copying of linguistic material can be analysed in a com-
positional distributional model. Coordination and pronoun relativisa-
tion have been given an account using Frobenius algebras over vector
spaces (Kartsaklis 2016; Sadrzadeh et al. 2013), where the Frobe-
nius operations allow one to express elementwise multiplication on
arbitrary tensors. In future work we hope to analyse ellipsis, a phe-
nomenon for which it can be argued that copying has to be part of the
syntactic process. Rules of controlled copying, then, can be interpreted
using the Frobenius or bialgebra operations. A first step has already
been taken by Kartsaklis et al. (2016), and we wish to approach the
problem from the type-logical perspective.

7 acknowledgments

I am grateful for a range of insightful discussions with Michael Moort-
gat on the focussing for the Lambek calculus, and various perspec-
tives on (non-)linearity. Furthermore, I would like to thankMehrnoosh
Sadrzadeh and Dimitri Kartsaklis for the many short and long discus-
sions on Frobenius algebras and bialgebras. Finally, I am grateful for
technical comments from Paulo Oliva, and the anonymous reviewers
of JLM. I was supported by a QueenMary Principal Studentship during
the writing of this paper. All remaining errors are my own.

[281]

Gijs Jasper Wijnholds

a
pp

e
n
d
ix

(1
a)
α
7→

x
(
|{a
∈U
|u
(
|{b
∈U
|z
(a
⊗α
⊗b
)̸=

0}〉
⊗w
)̸=

0}〉
⊗y
)

W
hic

h,
aft

er
lex

ica
lin

ser
tio

ng
ive

s
α
7→
⌈ev

ery
⌉(
|{a
∈U
|⌈s

om
e⌉
(
|{b
∈U
|⌈l

ike
s⌉(

a
⊗α
⊗b
)̸=

0}〉
⊗⌈

tea
ch
er⌉
)̸=

0}〉
⊗⌈

stu
de
nt⌉
)

Un
fol

din
gt

he
de
fin

iti
on

an
di

ns
ert

ing
the

ide
nti

ty
ma

pg
ive

s

ε
V P
(U
)
◦� Ja

llK⊗
µ

V P
(U
)

� ◦�
δ

V P
(U
)
⊗i

d V
P
(U
)�

◦σ
� � �� a
∈U
|ε

V P
(U
)
◦� Jso

me
K⊗µ

V P
(U
)

� ◦�
δ

V P
(U
)
⊗i

d V
P
(U
)� ◦σ
� |{b
∈U
|J(li

ke
s b)

a
K̸=0
}〉⊗

Jteac
he
rK� ̸=

0	� ⊗
|Jstu

de
ntK〉�

=
ε

V P
(U
)
◦� Ja

llK⊗
µ

V P
(U
)� ◦
� δ V P(U

)
⊗i

d V
P
(U
)

� ◦σ
� � �� a
∈U
|
∑

B
⊆U

s.
t.

Jtea
ch

er
K∩B̸=

;〈B
|Jtea

ch
erK∩
{b
∈U
|J(lik

es
b
) a

K̸=0
}〉	� ⊗

Jstud
en
tK�

=
∑

Jstu
de

nt
K⊆C
⊆U
〈C
||Jst

ud
en
tK∩{

a
∈U
|
∑

B
⊆U

s.
t.

Jtea
ch

er
K∩B̸=

;〈B
|Jtea

ch
erK∩
{b
∈U
|J(lik

es
b
) a

K̸=0
}〉}
〉〉

[282]

Scope ambiguity in compositional vector space models

(2
a)
α
7→

u
(
|{a
∈U
|x
(
|{b
∈U
|z
(b
⊗α
⊗a
)̸=

0}〉
⊗y
)̸=

0}〉
⊗w
)

W
hic

h,
aft

er
lex

ica
lin

ser
tio

ng
ive

s
α
7→
⌈so

me
⌉(
|{a
∈U
|⌈e

ve
ry⌉
(
|{b
∈U
|⌈l

ike
s⌉(

b
⊗α
⊗a
)̸=

0}〉
⊗⌈

stu
de
nt⌉
)̸=

0}〉
⊗⌈

tea
ch
er⌉
)

Un
fol

din
gt

he
de
fin

iti
on

an
di

ns
ert

ing
the

ide
nti

ty
ma

pg
ive

s

ε
V P
(U
)
◦� Js

om
eK⊗

µ
V P
(U
)� ◦
� δ V P(U

)
⊗i

d V
P
(U
)

�
◦σ
�� � �¦ a

∈U
|ε

V P
(U
)
◦� Ja

llK⊗
µ

V P
(U
)� ◦
� δ V P(U

)
⊗i

d V
P
(U
)� ◦

σ
� |{b
∈U
|J(li

ke
s a)

b
K̸=0
}〉⊗

Jstud
en
tK� ̸=

0©¶ ⊗
Jteac

he
rK�

=
ε

V P
(U
)
◦(Jso

me
K⊗µ

V P
(U
))
◦(δ

V P
(U
)
⊗i

d V
P
(U
))
◦σ
�� � �¦ a

∈U
|
∑

Jstu
de

nt
K⊆B⊆

U
〈B
|Jstu

de
ntK∩
{b
∈U
|J(li

ke
s a)

b
K̸=0
}〉̸=

0©¶ ⊗
Jteac

he
rK�

=
∑

C
⊆U

s.
t.

Jtea
ch

er
K∩ C̸ =

;〈C
|Jtea

ch
erK∩

{a
∈U
|
∑

Jstu
de

nt
K⊆B⊆

U
〈B
|Jstu

de
ntK∩

{b
∈U
|J(li

ke
s a)

b
K̸=0
}〉̸=

0}〉

[283]

Gijs Jasper Wijnholds

references
Jean-Marc Andreoli (2001), Focussing and proof construction, Annals of Pure
and Applied Logic, 107(1):131–163,
doi:https://doi.org/10.1016/S0168-0072(00)00032-4.
Arno Bastenhof (2012), Polarized Montagovian semantics for the
Lambek-Grishin calculus, in Philippe de Groote and Mark-Jan Nederhof,
editors, 15th and 16th International Conference on Formal Grammar, volume
7395, pp. 1–16, Springer, Springer-Verlag Berlin Heidelberg,
doi:http://dx.doi.org/10.1007/978-3-642-32024-8.
Raffaella Bernardi and Michael Moortgat (2010), Continuation semantics
for the Lambek–Grishin calculus, Information and Computation, 208(5):397–416,
doi:https://doi.org/10.1016/j.ic.2009.11.005.
Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh (2013),
Lambek vs. Lambek: Functorial vector space semantics and string diagrams for
Lambek calculus, Annals of Pure and Applied Logic, 164(11):1079–1100,
doi:https://doi.org/10.1016/j.apal.2013.05.009.
Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark (2010),
Mathematical foundations for a compositional distributional model of meaning,
arXiv preprint arXiv:1003.4394, https://arxiv.org/pdf/1003.4394.
Matej Dostal and Mehrnoosh Sadrzadeh (2016), Many valued generalised
quantifiers for natural language in the DisCoCat model, Technical report, Czech
Technical University Prague and Queen Mary University of London,
https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/17382/
DisCoCat%20Maodel%20Paper%20M.Sadrzadeh.pdf.
Edward Grefenstette (2013), Towards a formal distributional semantics:
simulating logical calculi with tensors, in Proceedings of the Second Joint
Conference on Lexical and Computational Semantics, pp. 1–10, Association for
Computational Linguistics, http://aclweb.org/anthology/S13-1001.
Jules Hedges and Mehrnoosh Sadrzadeh (2016), A generalised quantifier
theory of natural language in categorical compositional distributional semantics
with bialgebras, arXiv preprint arXiv:1602.01635,
https://arxiv.org/pdf/1602.01635.
Dimitri Kartsaklis (2016), Coordination in categorical compositional
distributional semantics, arXiv preprint arXiv:1606.01515,
https://arxiv.org/pdf/1606.01515.
Dimitri Kartsaklis, Matthew Purver, and Mehrnoosh Sadrzadeh (2016),
Verb phrase ellipsis using Frobenius algebras in categorical compositional
distributional semantics, DSALT Workshop, European Summer School on Logic,
Language and Information, https://pdfs.semanticscholar.org/6c56/
137ffb008ee5f94a482e0c74e494d7f7bc04.pdf.

[284]

Scope ambiguity in compositional vector space models

Germán Kruszewski, Denis Paperno, Raffaella Bernardi, and Marco
Baroni (2016), There is no logical negation here, but there are alternatives:
Modeling conversational negation with distributional semantics, Computational
Linguistics, 42(4):637–660, doi:https://doi.org/10.1162/COLI_a_00262.
Joachim Lambek (1958), The mathematics of sentence structure, The American
Mathematical Monthly, 65(3):154–170,
doi:https://doi.org/10.1080/00029890.1958.11989160.
Joachim Lambek (1997), Type grammar revisited, in International Conference
on Logical Aspects of Computational Linguistics, pp. 1–27, Springer,
doi:https://doi.org/10.1007/3-540-48975-4_1.
Richard Montague (1970), English as a formal language, Linguaggi nella
Società e nella Tecnica.
Richard Montague (1973), The proper treatment of quantification in ordinary
English, in Approaches to Natural Language, pp. 221–242, Springer,
doi:https://doi.org/10.1007/978-94-010-2506-5_10.
Michael Moortgat and Richard Moot (2011), Proof nets for the
Lambek-Grishin calculus, arXiv preprint arXiv:1112.6384,
https://arxiv.org/pdf/1112.6384.
Michael Moortgat and Gijs Wijnholds (2017), Lexical and derivational
meaning in vector-based models of relativisation, Proceedings of the 21st
Amsterdam Colloquium, pp. 55–64, https:
//semanticsarchive.net/Archive/jZiM2FhZ/AC2017-Proceedings.pdf.
Glyn Morrill, Oriol Valentín, and Mario Fadda (2011), The displacement
calculus, Journal of Logic, Language and Information, 20(1):1–48,
doi:https://doi.org/10.1007/s10849-010-9129-2.
Mehrnoosh Sadrzadeh (2016), Quantifier scope in categorical compositional
distributional semantics, arXiv preprint arXiv:1608.01404,
https://arxiv.org/pdf/1608.01404.
Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke (2013), The
Frobenius anatomy of word meanings I: subject and object relative pronouns,
Journal of Logic and Computation, 23(6):1293–1317,
doi:https://doi.org/10.1093/logcom/ext044.
Mark Steedman (2000), The Syntactic Process, MIT Press.
Oriol Valentín (2014), The hidden structural rules of the discontinuous
Lambek calculus, in Categories and Types in Logic, Language, and Physics,
pp. 402–420, Springer, doi:https://doi.org/10.1007/978-3-642-54789-8_23.
Gijs Wijnholds (2014), Categorical foundations for extended compositional
distributional models of meaning, Master’s thesis, Universiteit van Amsterdam,
https://www.illc.uva.nl/Research/Publications/Reports/
reportlist/MoL-2014-22.text.pdf.

[285]

Gijs Jasper Wijnholds

Gijs Jasper Wijnholds (2017), Coherent diagrammatic reasoning in
compositional distributional semantics, in International Workshop on Logic,
Language, Information, and Computation, pp. 371–386, Springer,
doi:https://doi.org/10.1007/978-3-662-55386-2_27.
Lotfi A. Zadeh (1983), A computational approach to fuzzy quantifiers in
natural languages, Computers & Mathematics with Applications, 9(1):149–184,
ISSN 0898-1221, doi:http://dx.doi.org/10.1016/0898-1221(83)90013-5.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[286]

Combining logical and distributional
methods in type-logical grammars

Richard Moot
LIRMM, Montpellier University, CNRS

abstract
Keywords:
type-logical
grammar,
Lambek calculus,
theorem proving

We propose a low-level way of combining distributional and logical
ideas into a single formal system. This will be an instantiation of a
more general system, adding weights to proof rules. These weights will
not measure some sort of “confidence the proof is valid”, but rather
act as a way to prefer some proofs over others, where preference can
mean “easier to process (for humans)” or “more coherent (combining
words that make sense together)”. The resulting system of weighted
theorem proving can be implemented either as a best-first proof search
strategy or as a polynomial-time approximation of proof search for
NP-complete parsing problems.

1 introduction

Type-logical grammars (and formal semantics in general) are agnos-
tic about the meaning of atomic terms, such as those corresponding
to nouns and verbs (though not about the meaning corresponding to
words with logical content such as “not”, “and”, “all”, “which”). An-
other way to see this is that in standard formal semantics, entailment
only holds under strict identity of predicates. As a consequence, prac-
tical use of the output of a system computing such formal semantics
depends to a large extent on the available world knowledge (Bos and
Markert 2005), possibly stated in the form of additional axioms or
meaning postulates, stating that “pub’’ and “bar’’ (in one meaning of
the word) are synonyms, and that “good” and “bad” are antonyms, i.e.
“bad” entails “not good” and inversely.

Journal of Language Modelling Vol 6, No 2 (2018), pp. 287–317

Richard Moot

In contrast to formal semantics in the tradition of Montague, dis-
tributional or vector-based semantics take semantic similarity, as mea-
sured by word cooccurrences, as their basic notion. Systems using only
semantic similarity are agnostic about argument structure and agnos-
tic about the meaning of words with logical content. Given a vector of
a sequence of words, it is not a priori clear how to combine these into
the meaning of a phrase. In other words, vector space models are not
compositional by nature, although many ways of computing vector
space semantics for texts exist, and even the simplest models (adding
or averaging all vectors for the words in a larger text) can perform
well on a number of tasks (see Mitchell and Lapata 2010; Pham 2016,
for discussion).
Whereas compositional formal semantics, unless augmented by

specific lexical meanings or meaning postulates, concludes that “good”
and “bad” are unrelated unary predicates, vector semantics concludes
that “good” and “bad” are very similar. Other semantically similar
words are “animal” and “veterinarian”, and “sweater” and “warm”.
The absence of argument structure (who does what to whom) from
the vectors makes “animal” and “veterinarian” similar: even though
many sentences contain both words, these tend to be sentences where
the veterinarian treats or examines the animal, or where the owner
takes an animal to the veterinarian.
There appears to be some complementarity to these two ap-

proaches: formal semantics takes compositionality as its basic princi-
ple but has little to say about the meaning of individual predicates;
vector semantics takes the similarity of predicates as its basic concept
but then has little to say about compositionality and the words with
logical content.
In this paper, we will look at a low-level way of combining distri-

butional and logical ideas into a single formal system. This will be an
instantiation of a more general system, adding weights to proof rules.
These weights will not measure some sort of “confidence the proof
is valid”, but rather act as a way to prefer some proofs over others,
where preference can mean “easier to process (for humans)” or “more
coherent (combining words that make sense together)”. The resulting
system of weighted theorem proving can be implemented either as a
best-first proof search strategy or as a polynomial-time approximation
of proof search for NP-complete parsing problems.

[288]

Combining logical and distributional methods

2 type logical grammar
and formal semantics

Definition 2.1 (Type-logical grammar) Given a logic L with formu-
las F , a type-logical grammar over L is a tuple 〈Σ, Lex, goal, yield, h〉,
where
1. Σ is a set of words (the vocabulary of the language),
2. the lexicon Lex, is a function from w ∈ Σ to a (non-empty) subset

of F ,
3. goal, the set of goal formulas is a (non-empty) subset of F ,
4. yield is a function from antecedents of L to sequences of formulas,
5. h is a homomorphism from proofs in L to proofs in multiplicative

intuitionistic linear logic representing their “deep structure”.

Informally, a sentence is grammatical whenever the lexicon as-
signs each word in the sentence a formula, and these formulas produce
a derivable statement in the logic. More formally, we say a sentence
w1, . . . , wn is grammatical if for all i, wi ∈ Σ (each word is in the vo-
cabulary) and there is an Ai ∈ Lex(wi) (we choose, for each word, one
of the formulas assigned to it by the lexicon), there is a structure Γ
with yield(Γ) = A1, . . . , An, and there is a C ∈ goal such that the state-
ment Γ ⊢ C is a theorem of the logic L . A sentence is ungrammatical
otherwise.
Many authors choose the set {s} for goal (that is, the only valid

goal category is s, for sentence). However, for more elaborate gram-
mars, we may be interested not only in declarative sentences, but also
in yes-no questions, wh questions, imperatives, etc., and it seems rea-
sonable to allow such sentences to have a different type of meaning
from declarative sentences.
For the Lambek calculus (Lambek 1958), the logic is L, the yield

function is the identity function (since antecedents Γ of L are already
sequences of formulas), and h translates the Lambek calculus slashes
“/” and “\” to the multiplicative linear logic implication “⊸” (and the
product “•” to multiplicative conjunction “⊗”).
For multimodal type-logical grammars (Moortgat 1997), sequents

are of the form Γ ⊢ C where the antecedent Γ is a labelled tree with
unary and binary branches and with formulas as its leaves. The yield

[289]

Richard Moot
Figure 1:

Proof rules and
corresponding
lambda term
operations

A/B : M U→T B : N U

A : (MN)T
/E

B : N U B\A : M U→T

A : (MN)T
\E

. . . [B : xU]i....
A : M T

A/B : (λx .M)U→T /Ii

[B : xU]i
A : M T

B\A : (λx .M)U→T \Ii

function is simply the left-to-right sequence of formulas occurring as
its leaves (i.e. we use the standard definition of the yield of a tree).

2.1 The Lambek calculus
To makes this more concrete, we’ll instantiate the general type-
logical grammar framework to Lambek’s Syntactic Calculus, L (Lam-
bek 1958). Formulas of the Lambek calculus are inductively defined
from a set of atomic formulas, including np (noun phrase), n (common
noun), s (sentence) and pp (prepositional phrase). A formula in the
Lambek calculus is:
• an atomic formula,
• if A and B are formulas, then A/B (pronounced “A over B”, it looks
for a B formula to its right to produce an A), B\A (pronounced “B
under A”, it looks for a B formula to its left to produce an A) are
formulas.1

Figure 1 shows the natural deduction proof rules for the Lambek
calculus (and the associated lambda term assignments).
The elimination rule for “/”, labeled “/E” states that if we have a

proof with conclusion A/B which is assigned term M (of type U → T)
and a proof with conclusion B which is assigned term N (of type U),
then we can combine these two proofs to form a proof of A which is
assigned lambda-term (M N). The order of the premisses is important:
B must occur adjacent to and to the right of A/B. The elimination rule
for \ is left-right symmetric, with B occurring to the immediate left
of B\A.

1To keep the discussion simple, we do not present the natural deduction
proof rules for the product A• B, representing the concatenation of A and B.

[290]

Combining logical and distributional methods

The introduction rule, labeled “/I”, states that if we have a proof
of A with lambda-term M of some type T , which we have derived
while using a hypothesis B, which is assigned a variable x of type U
and which is the rightmost undischarged hypotheses of this proof,
then we can discharge this B hypothesis to derive A/B of type U → T
with term λx .M . The discharged hypothesis is co-indexed with the
rule, using an index i unique to the proof (for the Lambek calculus
without product, this index is strictly speaking superfluous, since the
leftmost and rightmost undischarged hypotheses are uniquely deter-
mined for each subproof). The introduction rule for \I is again left-
right symmetric, requiring B to be the leftmost undischarged hypo-
thesis.
We will write A1, . . . , An ⊢ C for a proof with undischarged hy-

potheses A1, . . . , An (in the given order) and conclusion C .
As an example, the following Lambek calculus proof shows that

“moons which Galileo discovered” is a noun n. To make the proof more
readable, the lexical entries have been indicated as the conclusions of
a rule Lex with the word occurring above it and the corresponding
formula assigned by the lexicon below it (we will add the lambda
terms later).

moons
n Lex

which
(n\n)/(s/np) Lex

Galileo
np Lex

discovered
(np\s)/np Lex

[np]1
np\s /E

s \E
s/np /I1

n\n /E

n \E

We can read off the lexical assignments from the undischarged
leaves of the proof above. So “discovered” is a transitive verb, looking
for a noun phrase (np, its object) to its right, then for a noun phrase (its
subject) to its left to form a sentence s. The relativiser “which” looks
for a complex formula s/np (that is a sentence missing a noun phrase
in its rightmost position) to its right and for a noun to its left. The
hypothetical np corresponds to a trace in mainstream syntactic theory.
A weakness of the Lambek calculus is that this analysis does not extend
to only slightly more complicated examples such as “moons which
Galileo discovered in 1610”, where the hypothetical noun phrase no

[291]

Richard Moot

longer occurs in a peripheral position. Many variants and extensions of
the Lambek calculus have been developed with the goal of solving this
and other problems (see, for example Moortgat 1997; Morrill 2011).
Given the lexicon, the phrase “moons which Galileo discovered”

is a noun n iff the following holds.
n, (n\n)/(s/np),np, (np\s)/np ⊢ n

The proof above shows this statement holds. Even though it is easy
to verify this proof is correct by inspecting each rule application, it
may not be immediately obvious how to find natural deduction proofs.
In the next section, we will present a proof search procedure for the
implicational fragment of Lambek calculus natural deduction.
2.2 Proof search in natural deduction
For our proof search procedure, the notion of result is useful.
Definition 2.2 Given a formula F , its result is the atomic subformula of
F defined as follows.

result(A) = A if A atomic
result(A/B) = result(A)

result(B\A) = result(A)

Essentially, the result is the atomic formula we obtain once we have
combined a formula with all its arguments. So the result of (np\s)/np
is s and the result of (n\n)/(s/np) is n. Proof search for a sequent
A1, . . . , An ⊢ C in natural deduction works as follows (a more precise
description can be found in Moot and Retoré 2012).
1. If C is a complex formula, apply the appropriate introduction rules
until we obtain an atomic formula p (this may add formulas to the
left of A1 and to the right of An).

2. Select an active hypothesis H of the proof such that result(H) = p
(that is, select a formula which eventually produces the current
atomic goal formula).

3. Our current sequent is of form A1, . . . , Ai−1, H, Ai+1, . . . , An ⊢ p and
we need to subdivide the formulas to the left of H (A1, . . . , Ai−1)
into m subsequences Γ1, . . . , Γm, where m is the number of argu-
ments H takes to its left, and we need to subdivide the formu-
las to the right of H (Ai+1, . . . , An) into k subsequences ∆1, . . . ,∆k

[292]

Combining logical and distributional methods

where k is the number of arguments H takes to its right (this fails
if H selects no arguments to its left and A1, . . . , Ai−1 is not empty,
and similarly if H has no arguments to its right and Ai+1, . . . , An is
not empty). We apply all elimination rules to H until we arrive
at atomic formula p, then recursively find the proofs from step 1
for each of the arguments: proofs Γq ⊢ Bq for arguments to the
left and proofs ∆r ⊢ Dr for arguments to the right. In the simplest
case with a single argument on the right and a single argument
on the left, H = (B\p)/D; there is no need for splitting the Ai fur-
ther and we simply try to find proofs for A1, . . . Ai−1 ⊢ B and for
Ai+1, . . . , An ⊢ D. Succeed if all recursive steps succeed. If not, try
other subdivisions of the hypotheses. Fail when there is no way
to divide the hypotheses such that all subproofs succeed.
The algorithm above has non-determinism in two places. The

first step is deterministic, but in the second step there may be sev-
eral choices for the atomic goal formula and in the third step there
may be several ways to split up the sequence of formulas (we need
multiple arguments either to the right or to the left for this).
As an example, the sequent n, (n\n)/(s/np),np, (np\s)/np ⊢ n has

an atomic conclusion, so nothing needs to be done for the first step.
For the second step, there is the choice of two formulas: either n (cor-
responding to “moons”) or (n\n)/(s/np) (corresponding to “which”).
The first choice fails immediately since there are still formulas to the
right which are not arguments of the formula producing the result (as
it is atomic). The second choice provides a formula looking for an s/np
to its right and an n to its left. Simply writing out the required elimi-
nation rules and separating the hypotheses produces the following.

moons
n Lex
.... δ1

n

which
(n\n)/(s/np) Lex

Galileo
np Lex

discovered
(np\s)/np Lex
.... δ2

s/np
n\n /E

n \E

We now need to complete the procedure recursively to find the
proofs δ1 and δ2. The first subproof is trivial: we are looking for a noun
and there is one, so δ1 is empty and the n premiss and the n conclusion

[293]

Richard Moot

of δ1 become the same formula occurrence. The second subproof has
a complex goal, so according to step 1 we apply the introduction rule
for “/” which produces the following.

moons
n Lex

which
(n\n)/(s/np) Lex

Galileo
np Lex

discovered
(np\s)/np Lex [np]1.... δ3s

s/np /I1

n\n /E

n \E

Our subproof δ3 requires us to prove np, (np\s)/np,np ⊢ s. Since s
is atomic and only the transitive verb has s as its goal, this produces
the following.

moons
n Lex

which
(n\n)/(s/np) Lex

Galileo
np Lex.... δ4

np

discovered
(np\s)/np Lex

[np]1.... δ5

np
np\s /E

s \E
s/np /I1

n\n /E

n \E

We can complete the proof by identifying the atomic noun phrases
in δ4 and in δ5. The given proof procedure is top-down and enumer-
ates eta-long beta-normal form proofs. In addition, different proofs
correspond to different meanings, that is, different proofs will have
different lambda terms assigned to them using the term assignment
of Figure 1. This correspondence between natural deduction proofs
and lambda-terms is the well-known Curry-Howard correspondence.
It is not an isomorphism for the Lambek calculus, since not all intu-
itionistic proofs have a corresponding Lambek calculus proof. Even
stronger, not all multiplicative intuitionistic linear logic proofs have a
corresponding Lambek calculus proof: the Lambek calculus is a logic
without contraction and weakening, like linear logic, but also without
the exchange rule.
Adding the term assignment of Figure 1 produces the following

proof.

[294]

Combining logical and distributional methods

moons
n : m

Lex
which

(n\n)/(s/np) : w
Lex

Galileo
np : g Lex

discovered
(np\s)/np : d

Lex
[np : x]1

np\s : (d x)
/E

s : ((d x) g)
\E

s/np : λx .((d x) g)
/I1

n\n : (w (λx .((d x) g)))
/E

n : ((w (λx .((d x) g)))m)
\E

Each lexical assumption of the proof is assigned a unique variable
(in the example above, this variable is the first letter of the correspond-
ing word for the convenience of the reader) and these have exactly one
free occurrence in the final term (these are linear lambda terms, since
each abstraction binds exactly one variable as well). The lexicon as-
signs both a formula and a corresponding lambda term to each lexical
entry. Computing the formal semantics corresponds to replacing each
word by its lexical semantics. In the current case, ignoring complica-
tions such as tense and the plural, many words have a trivial meaning
assignment, so we replace m by the constant moone→t (or, if we prefer,
by its eta expansion λx e.moon(x)), d by the constant discovere→(e→t), g
by the constant Galileoe. The crucial case is the lexical assignment for
“which”, for which we replace w by λQe→tλP e→tλy e.(P y)∧(Q y). Mak-
ing all lexical substitutions in our original term ((w (λx .((d x) g)))m)
produces the following term.

((λQλPλy.((P y)∧ (Q y))) (λx .((discover x)Galileo)))moon

We apply beta-reduction by substituting λx .((discover x)Galileo) for Q,
which produces the following.

(λPλy.((P y)∧ ((λx .((discover x)Galileo)) y)))moon

A second beta-reduction replaces x by y as follows.

(λPλy.((P y)∧ ((discover y)Galileo)))moon

The final beta-reduction replaces P by moon to produce the following
normal form.

λy.((moon y)∧ ((discover y)Galileo))

[295]

Richard Moot

According to the standard notational conventions of Montague seman-
tics (Gamut 1991), this corresponds to the following more natural
term.

λy.(moon(y)∧ discover(Galileo, y))

That is, the y such that they are moons andwere discovered by Galileo.

2.3 Proof nets
Type-logical grammars generally have multiple proof systems which
are provably equivalent (in the sense that they derive the same the-
orems). Having multiple proof systems available is a great benefit,
because meta-theoretical properties are often easier to prove in one
system than in another.
Even though natural deduction is a nice proof system producing

proofs which are fairly easy to read and which have a direct connec-
tion to the semantics, we will introduce a second proof system, proof
nets, which makes some aspects of proof combinatorics easier to see2.
Proof nets are a proof system introduced for linear logic by Gi-

rard (1987). Proof nets represent proofs as (hyper)graphs, where the
vertices are (polarized) formulas and the hyperlinks represent a con-
nection between the main formula of a rule and its immediate subfor-
mulas. The links for the Lambek calculus are shown in Table 1. The
formulas above a link are its premisses whereas the formulas below it
are its conclusions. The axiom link, on the top left of Table 1 has no
premisses and two conclusions (the order between them is irrelevant),
whereas the cut link, on the top right, has two premisses (in any order)
and no conclusions). The cut link is presented only for completeness,
since the Lambek calculus satisfies cut elimination, we never need to
use a cut link when using proof nets for proof search.
The links for the negative implications correspond to the natural

deduction elimination rules, though the complex formula is the con-
clusion of the link and the main premiss of the elimination rule. The
links for the positive implications correspond to the introduction rules,
with the withdrawn hypothesis as the negative premiss of the rule.
Positive and negative formulas correspond essentially to un-

negated and negated formulas (as in the classical equivalences be-
2Another advantage of proof nets is that, unlike natural deduction, adding

the product rules to the proof net calculus presents no complications.

[296]

Combining logical and distributional methods

−
A

+
A

−
A

+
A

−
B \ A

+
B

−
A

+
B \ A

+
A

−
B

−
A/ B

−
A

+
B

+
A/ B

−
B

+
A

Table 1:
Links for Lambek
calculus proof
structures

tween B → A ≡ ¬B ∨ A and ¬(B → A) ≡ B ∧ ¬A). In the context of
linear logic, polarities function as a restriction on classical formulas
to ensure the intuitionistic restriction to a single conclusion. The dis-
tinction between solid and dotted links corresponds to the distinction
between a logical conjunction (solid) and a logical disjunction (dot-
ted). This distinction plays a key role in deciding the correctness of
proof structures below.
Given a statement A1, . . . , An ⊢ C , we obtain a proof frame by un-

folding the formulas according to the logical links on the bottom row
of Table 1, using the negative unfolding for the Ai and the positive
unfolding for C , until we reach the atomic formulas. We then connect
the atomic formulas by means of the axiom link shown on the top left
of Table 1. We need to respect the linear order of the premisses for the
logical links (and the linear order of the formulas in the sequent), but
the axiom link can connect a positive and a negative atom in either
order.
Figure 2 shows the formula unfolding corresponding to “moons

which Galileo discovered”. The occurrences of the atomic formulas
have been numbered to allow easy reference to them; these numbers
are not a formal part of the proof structure. We saw the natural deduc-
tion proof for this noun in Section 2.1. When all axioms of a formula
unfolding have been linked we call the resulting structure a proof struc-
ture. Not all proof structures correspond to proofs. The proof structures
which do are proof nets. As we will see, we can distinguish proof nets
from other proof structures just by looking at properties of the graph.
For the formula unfolding, it is immediately clear what the search

space for potential proofs is: we need to find a 1-1 matching between
positive and negative occurrences of the same atomic formula. So for
Figure 2, we need to match the positive s1 to the negative s2 (there

[297]

Richard Moot
Figure 2:
Formula

unfolding for
“moons which

Galileo
discovered”

−
(n \ n)/(s / np)

−
n \ n

+
n2

−
n3

+
s / np

−
np1

+
s1

−
n1

−
np2

−
(np \ s)/np

−
np \ s +

np4

+
np3

−
s2

+
n4

moons which Galileo discovered

−
n1

−
n3

+
n2

+
n4

−
np1

−
np2

+
np3

+
np4

−
s2

+
s1

is only one possible solution here), the two positive n’s to the two
negative ones, and the two positive np’s to the two negative ones. The
squares at the bottom of Figure 2 summarise the possibilities.
For Lambek calculus proof nets, the matching of atomic formu-

las must be planar. Planarity corresponds to non-commutativity of the
logic and it therefore holds for the Lambek calculus but not for its ex-
tensions. Given that there is only one possibility for s, planarity con-
strains the possible axiom connections for the np formulas: when the
two s formulas have been connected, the negative np2 corresponding to
“Galileo” can only be connected to the leftmost (subject) noun phrase
np3 of “discovered” since connecting it to the rightmost (object) noun
phrase would force the link to cross the s axiom link. Similarly, the
negative np1 of “which” can only be linked to the object np4 of “dis-
covered” when we require a planar connection.
Finally, there are two planar matchings possible between the two

positive and the two negative nouns: we either connect the negative
n1 of “moons” to the positive n2 of “which” and the negative n3 of
“which” to the positive goal n4, or vice versa (we had the same choice
for natural deduction proof search in Section 2.2).
However, only one of these two possibilities produces a proof net.

There are many graph-theoretical ways to characterise the proof nets
among other proof structures. One simple way, due to Danos (1990),
uses the graph contractions shown in Figure 3.
We first remove all formula information from a proof structure,

replacing formula occurrence by unique vertex indices v0, v1, . . ., then

[298]

Combining logical and distributional methods

vi

v j

vi

v j

⇒p

vi

v j

vi⇒c

Figure 3:
Contractions for proof nets

applying the contractions. A proof structure is a proof net iff it con-
tracts to a single vertex using these contractions. The condition on
the rightmost contraction is that the two vertices are distinct. In other
words, if the proof structure has a cycle containing only solid links,
then we can use this contraction to reduce this cycle to a self-loop,
but we can never eliminate it. Similarly, the contractions only shorten
paths, but do not create new ones. Therefore, if a proof structure is
disconnected, it will never contract to a single point. The leftmost re-
duction corresponds to the dotted links for the positive implications
and it essentially requires us to “join” the two premisses of the link.
As the previous discussion suggests, the contraction criterion is quite
close to the more well-known acyclicity and connectedness condition
(Danos and Regnier 1989). However, the contraction condition has
the advantage of allowing a compact representation of intermediate
structures in proof search, and is therefore more suitable for proof
search (Moot 2017).
With this in mind, it is clear that of the two possible connections

between the n formulas, connecting the two n formulas of “which” to-
gether produces a cycle of solid links, and therefore a structure which
doesn’t contract to a point. In addition, connecting the noun “moons”
to the goal formula produces an axiom link disconnected from the
rest of the structure. Therefore, the structure shown in Figure 4 is the
only proof net given this sequence of formulas. It is easy to verify it
contracts to a point given the contractions of Figure 3. One way of
proceeding is eliminating all “dangling” links (that is, links connect-
ing a single vertex to the rest of the structure). When such links have
been recursively removed, we end up with the pair of dotted links and
a solid path between the positive s and the negative np of this dot-
ted link. We can contract this path to a single vertex, producing the
correct configuration for contracting the pair of dotted links and ap-
ply the final contraction to the resulting solid link to produce a single
vertex.

[299]

Richard Moot
Figure 4:

Proof net for
“moons which

Galileo
discovered”

−
(n \ n)/(s / np)

−
n \ n

+
n

−
n

+
s / np

−
np +

s

−
n

−
np

−
(np \ s)/np

−
np \ s +

np

+
np −

s

+
n

moons which Galileo discovered

3 combinatorics and complexity

Using type-logical grammars for computing the meaning of sentences
and using the resulting meaning for different tasks (entailment, ques-
tion answering, etc.) has the following bottlenecks.
1. Lexical lookup. For wide-coverage grammars, the number of for-
mulas that the lexicon assigns to many common words is rather
large.

2. Proof combinatorics. Finding a proof (or the best proof for some
numerical definition of best) is NP-complete for most type-logical
grammars.

3. Meaning computation. Computing the meaning of a sentence is
done by substituting lexical lambda terms and then normalis-
ing the resulting simply typed lambda term. Normalising simply
typed lambda terms is known to be of non-elementary complex-
ity.

4. Meaning use. Questions of logical entailment between sentences
are undecidable, even in the first-order case.
The focus of the rest of this article will be on Item 2, proof com-

binatorics, but I will offer some brief remarks on the other items.

A probabilistic lexicon The number of lexical formulas per word is a
major problem for real-world applications. However, when we fix a
set of possible formulas and have enough examples of sentences with
the correct formula assignment, we can define a probability model

[300]

Combining logical and distributional methods

over words, together with a limited amount of context (typically the
two preceding and succeeding words). This general approach is called
supertagging (Bangalore and Joshi 2011) and it has been applied suc-
cessfully to many formalisms including type-logical grammars (Moot
2010, 2014b, presents supertaggers for multimodal type-logical gram-
mars for Dutch and for French).
Since the topic of supertagging has been discussed at length else-

where and provides good, practical solutions to the problem of lexical
ambiguity we will not elaborate on it here.

Meaning computation Schwichtenberg (1982) shows that normalis-
ing simply typed lambda terms has non-elementary worst-case com-
plexity. This complexity result essentially exploits recursive copy-
ing. However, there are many implementations of the simply typed
lambda calculus for computational linguistics which perform rather
efficiently, and this in spite of the fact that, in general, little effort is
spent on optimising the implementation of the normalisation compo-
nent. We claim that the meaning recipes necessary for the lexicon are
all terms of soft linear logic, and hence can be reduced in polynomial
time (Lafont 2004; Baillot and Mogbil 2004). This accounts for the
observed fact that lambda term normalisation is not a real bottleneck
in practice (Moot and Retoré 2016).

Logical entailment Given that logical entailment is undecidable in
general, there are two basic strategies:
1. We can use an off-the-shelf theorem prover (generally using some
time limit) and simply see whether it finds a proof. Bos and Mark-
ert (2005) use this approach (as well as some more approximative
measures).

2. We can use an incomplete but decidable logical fragment for com-
puting entailment. Abzianidze (2017) uses this approach.
In both cases, the result is a high-precision but low-recall system

(that is, when the system produces an answer, it is usually right, but
there are many correct answers for which no proofs are found). The
main bottleneck to improving recall is adding a logical formalisation
of a sufficient amount of world knowledge (without reducing prover
performance), a classic problem in artificial intelligence.

[301]

Richard Moot

4 weighted proof systems

Given a sequent Γ ⊢ C , the formula unfolding into a proof frame gives
a compact representation of the proof combinatorics for the given se-
quent. We can combine positive and negative occurrences of the same
atomic formulas until we obtain a proof structure. An atomic formula
a with n positive and n negative occurrences (the number of positive
and negative occurrences for each atomic formula must be equal if
the sequent is derivable; this is called the count check) corresponds
to an n× n matrix, and a potential reading for this sequent, that is a
proof structure, is a perfect matching between positive and negative
occurrences.
When we fill the matrix with weights (we will discuss some dif-

ferent ways of computing these weights below), it becomes possible to
compute the best proof structure according to these weights. We can
either use best-first search, connecting the “best’’ axiom links first for
each local choice, or use a k-best proof structure computation, comput-
ing the k total links which are the best globally. Given that computing
the k-best proof structures this way can be done in polynomial time
(Kuhn 1955), there is no guarantee that the best proof structure is ac-
tually a proof net (unless P=NP). However, we can use a polynomial
k-best system as an incomplete approximation of proof search.
Given two atomic formulas a1 and a2 of the same type (n, np, s)

but of opposite polarity there are different ways of assigning a weight
to the possible axiom link between them.
1. We can use the distance between words as weight, using dis-
tance 0 when the two atomic formulas are subformulas of the
same formula occurrence, distance 1 between adjacent words, etc.

2. We can use a probability-like measure, estimated from proof nets
in a large corpus.

3. We can use the word similarity measure between w1 and w2.
We will discuss each of these alternative measures in turn in the

next sections.

4.1 Word distance
One simple metric to use is word distance, preferring axiom connec-
tions between closer words. This gives a strong preference to linking

[302]

Combining logical and distributional methods

atomic subformulas of the same formula, followed by linking atomic
subformulas of adjacent formulas.
Given a proof net with k axiom links, when processing this proof

net left-to-right performing axiom links as soon as possible, this will
mean each link of distance of n will cause the leftmost corresponding
atom to be open/unlinked for n steps. Measuring the number of open
axioms after each word has been proposed as a straightforward model
of human sentence processing which, in spite of its simplicity, makes a
number of correct predictions about processing (Johnson 1998; Mor-
rill 1998, 2011).
We illustrate this by examining the contrast between Dutch and

German verb clusters. Verb clusters in both Dutch and German can
have a sequence of verb arguments followed by a sequence of verbs
selecting these arguments. The difference between German and Dutch
is that German verbs select these arguments right-to-left (that is, the
leftmost verb selects the rightmost argument) and the Dutch verb se-
lect these arguments left-to-right (that is, the leftmost verb selects the
leftmost argument). This is illustrated by the following contrast.
(1) Wolfgang

Wolfgang
hat
has
die
the
Lehrerin
teacher

die
the
Murmeln
marbles

aufräumen
collect

helfen
help

Wolfgang helped the teacher collect the marbles
(2) Jantje

Jantje
heeft
has

de
the
lerares
teacher

de
the
knikkers
marbles

helpen
help

opruimen
collect

Jantje helped the teacher collect the marbles
Bach et al. (1986) find that, in an experimental setting, German sen-
tences like the one above are harder for German native speakers than
the Dutch sentences are for Dutch native speaker: although the dif-
ference is not very large, the German sentences are not only judged
as harder by the German speakers, but the German test subjects also
make more comprehension errors.
Figure 5 shows the proof net corresponding to sentence (1). The

noun phrases “die Lehrerin” and “die Murmeln” have been not been
treated as a combination of np/n and n but as a simple np to reduce
the size of the proof net. This will not affect the comparison with the
Dutch example.3

3Some other simplifications have been made: neither the German auxiliary
“hat” nor the Dutch auxiliary “heeft” can select a simple infinitive argument (i.e.

[303]

Richard Moot
Figure 5:

Proof net for
“Wolfgang hat
die Lehrerin die

Murmeln
aufräumen
helfen”

−
np

−
(np \ s)/inf

−
np \ s +

inf

+
np −

s

−
np

−
np

−
np \ inf

+
np

−
inf

−
inf \ (np \ inf)

+
inf

−
np \ inf

+
np

−
inf

+
s

Wolfgang hat dL dM aufrämen helfen
1 2 3 4 4 1

Computing the processing complexity using a proof net such as
the one shown in Figure 5 requires us to make some choices. We can
assume that the hearer knows to expect a sentence (and therefore put
the goal formula initially). Morrill (2011) chooses this option. We can
also keep the goal formula at the end, as done here.
There are some other potential complexity issues to take into ac-

count: some choices of lexical formulas and of axiom links lead to
failure and it is possible that this affects processing complexity (at
least it does so for a computer implementation). The size of the par-
tial proof net constructed so far may also play a role (the size of the
contracted partial proof net according to the contractions of Figure 3
seems a good candidate for such a size measure).
Morrill and Johnson use the simplest solution here, measuring

complexity by the successful proof nets when processed left to right,
counting the number of unlinked axioms at each step.
Figure 5 shows a dotted column after each word, together with a

count of the number of axioms it crosses. In the example, after the first
word, “Wolfgang”, there is a single unlinked np, therefore the count is
1. After “hat”, the np of “Wolfgang” becomes linked but an unlinked
s and an unlinked inf are added, leaving a total of 2 unlinked atoms.

we have “Die Lehrerin hat die Murmeln aufgeräumt”, with a past participle rather
than an infinitive); they only take an infinitive argument when this infinitive
itself selects for another infinitive. This can be solved either by adding features
or by distinguishing the atomic types. Bach et al. (1986) note that for German
(but not for Dutch) both grammar textbooks and speakers disagree over whether
the final verb should be an infinitive or a past participle.

[304]

Combining logical and distributional methods

−
np

−
(np \ s)/inf

−
np \ s +

inf

+
np −

s

−
np

−
np

−
np \ inf

+
np

−
inf

−
(np \ inf)/inf

+
inf

−
np \ inf

+
np

−
inf

+
s

Jantje heeft dl dk helpen opruimen
1 2 3 4 3 1

Figure 6:
Proof net for
“Jantje heeft de
lerares de
knikkers helpen
opruimen”

In general, the complexity profile of verb clusters in German (and in
Dutch) rises when the arguments of the verbs in the cluster are en-
countered (the noun phrases “die Lehrerin” and “die Murmeln”), then
descends when the verbs start selecting their arguments. This provides
an explanation for why these sentences quickly become unacceptable
with multiple levels of embedding.
The complexity profile of Figure 5 has a maximum complexity

of 4 and a total complexity of 15.
To provide a proof net for the Dutch example (2), we need some-

what more complex proof net machinery, since the crossed dependen-
cies of Dutch cannot be handled by planar structures. Since these more
complicated proof nets do not affect our chosen complexity measure,
we will simply look at the complexity profile for the non-planar proof
net in Figure 6: this is not a Lambek calculus proof net, and we assume
a proof net calculus which allows only this structure for the example
sentence.
The complexity profiles of the two sentences are the same until

the first infinitive, but then the Dutch sentence has a slight advantage:
its maximum complexity, like the German example, is 4; but its total
complexity is 14, compared to 15 for the German example. This ad-
vantage becomes somewhat more pronounced when we add a third
and a fourth verb.
These examples are interesting because many known psycholin-

guistic facts, even some fairly subtle ones like shown here, are a direct
consequence of rather minimal assumptions about a model of process-
ing. Morrill (2011) presents many other examples.

[305]

Richard Moot

4.2 Corpus estimation
Given a sequent, it is not hard to define a probability distribution over
its proof structures: to obtain such a probability distribution we sim-
ply need to fill the n×n matrix for each atomic formula in such a way
that all rows and all columns sum to 1. In other words, each atomic
formula is assigned a probability distribution over the atomic formu-
las of opposite polarity. For example, looking to Figure 6, for a full
proof search the negative np corresponding to ‘Jantje’ can be linked
to the positive np of ‘heeft’, the positive np of ‘helpen’ and the pos-
itive np of ‘opruimen’ and the sum of these probabilities must be 1.
Similarly, the positive np of ‘heeft’ can be linked to the negative np
of ‘Jantje’, the negative np of ‘de lerares’ and the negative np of ‘de
knikkers’.
Mathematically, it is much harder to define a probability dis-

tribution over proof nets. When we define a probability distribution
over proof structures, we assign a non-zero probability to structures
which do not correspond to proofs. Even though it makes sense a priori
to want non-proofs to have zero probability, this entails that an un-
derivable sequent should fail to be assigned a probability distribution
at all, since no axiom link can contribute to a proof. However, this
means assigning probabilities becomes an NP-hard problem, since we
would be able to decide derivability of a sequent from the success or
failure of computing a probability distribution.
Accepting the assignment of non-zero probability to axiom links

which are not part of any proof is comparable to probabilistic context-
free grammar parsers assigning non-zero probability to constituents
which cannot be part of a derivation of the complete string.
The question for probability assignment is how likely is the nth

atomic formula of word w1 to combine with the kth atomic formula
of w2 (with some form of backoff, for example to the two part-of-
speech tags). In general, we can use well-known statistical methods
(Berger et al. 1996) to compute a probability function from any combi-
nation of properties from formulas, words and context. This possibility
has so far been little explored in the context of type-logical grammars.
In terms of assigning weights to atomic formulas, this is not funda-

mentally different from the other weighted approaches discussed here.
It has the advantage over the other methods that it can distinguish be-
tween different arguments of the same formula (neither the distance

[306]

Combining logical and distributional methods

measure nor the vector similarity measure does this). However, it has
the disadvantage that it requires a large amount of annotated data to
estimate the probabilities.

4.3 Vector similarity
An advantage of using vector similarity rather than a large corpus of
parsed text is that it is much easier to obtain the former than it is
to obtain the latter: a high-quality parsed corpus of sufficiently large
size requires an enormous effort in times of person-hours; on the other
hand, computing word vectors can be done automatically and, using
the enormous amount of text available on the internet, on a scale un-
realistic for any manual method. Computing word vectors from the
web still requires an important effort in crawling, cleaning, duplicate
detection, etc., but nowhere near the person-hours needed to manu-
ally annotate a similar size corpus, something especially relevant for
under-resourced languages: as discussed by Kilgarriff and Grefenstette
(2003), even ‘smaller’ languages such as Icelandic, Basque, Latin and
Esperanto have over 50 million words of text available according to
conservative estimates. For many of the most-used languages on the
internet, cleaned-up and (automatically) annotated versions of this
content are freely available and can be used to extract word vectors
(Baroni et al. 2009).
Weighting axiom links according to the similarity of the words

given by distributional semantics means preferring connections be-
tween words with related meanings (this appears to be close to the
notion of discourse coherence as used by Asher and Lascarides 2003,
only in a more shallow, syntactic context).
Even though this basic idea is easily stated, implementing it re-

quires making some choices. While distributional semantic similarity
is easily defined for two words, defining it for two complex expressions
is essentially the compositionality problem for vector space semantics.
A simple solution would be to choose the vector sum for composi-

tion, and this already performs surprisingly well on several similarity
tasks. However, the vector sum approach is ill-adapted to preferences
in type-logical proofs: given that we need to match the atomic subfor-
mulas of all words in a sentence in any case, and given that the vector
sum operation is associative and commutative, this would not allow

[307]

Richard Moot

us to distinguish between different word groupings (or even between
different word orders).
We therefore need a slightly more sophisticated method for com-

bining vector similarity with proof rules. We adapt the basic idea of
lexicalised parsing with context-free grammars and use a head word
for each expression — the verb for a verb phrase, the noun for a
noun phrase, etc. In the context of type-logical grammar, we there-
fore specify the following general principles, as sort of type-logical
equivalences to the head percolation principles of Magerman (1994):
1. the head of a lexical hypothesis is the word itself,
2. the head of the combination of A/A with A and of A with A\A is
the head of A

3. the head of np/n with n (resp. pp/np with np) is the head of the
noun n (resp. the head of the noun phrase np)

4. the head of other formulas A/B and B\A, with A ̸= B, is the head
of A.
Moreover, for the semantic assignments in a type-logical lexicon,

we can distinguish between the lexical entries whose semantic content
is purely logical (using only the logical constants like “¬” “∧”, “∀”, and
a few other predicates whose meaning is invariant across models, like
“=”and “<”) and those whose semantic content is not (these typically
contain predicates like “love” and “book” corresponding to the lexical
entry itself).4
The basic elements in our formal setup are now triples contain-

ing a formula, a head word, and vector distance weight, with each lex-
ical entry starting with the word lemma as its head and distance
zero. For each elimination rule, the new head word is defined by the
propagation rules above (it is the head of the argument when the
functor is a modifier, a determiner or a preposition, and the head
of the functor otherwise) and the weight is updated by adding the
weights of the two premisses and additionally adding the distance
of the two head words according to the vector model. The rule be-

4This contrast is unfortunately not as sharp as we would like it to be: while
it is simple to see “all” and “some” as purely logical, it is much less easy to see
how other words such as “few” and “many” can be interpreted in terms of purely
logical operators.

[308]

Combining logical and distributional methods

low presents a general elimination rule operating on triples (with
“⊸” generalising over both “/” and “\”) according to this descrip-
tion.

〈w1, h1, A⊸ B〉 〈w2, h2, A〉
〈w1 +w2 + d(h1, h2), h, B〉 ⊸ E

From a purely logical point of view (that is, looking only at the
third element of the triple), this rule operates just like a normal elim-
ination rule. The head h of the conclusion will be either h1 or h2 de-
pending on the head propagation rules described above. The weight
computation uses a distance measure d computing the distance be-
tween the two head words and simple addition. Nothing in partic-
ular hinges on the use of “+” here; any function monotone in both
its arguments can be used here. Many choices are also possible for
the distance measure d, but in the examples below we use the sim-
ple cosine measure which is the most commonly used for distribu-
tional similarity. The cosine measure produces 1 when the vectors
point in the exact same direction, 0 when the vectors are orthog-
onal.5 This ensures the highest-weight proof combines the nearest
vectors.
For the introduction rules, it is somewhat more difficult to define

the proper elements for the discharged hypothesis of the rule. We can
simply choose zero for its weight, but it is unclear what the proper
head word for a hypothesised constituent is. One simple solution is
to assign the empty word ε to such hypotheses and stipulate that the
empty word has distance zero to all other words (i.e. for all w, d(ε, w) =
d(w,ε) = 0). This would give the following introduction rule.

〈0,ε, B〉....〈w, h, A〉
〈w, h, B ⊸ A〉 ⊸ I

We can also use a somewhat more sophisticated rule for subproofs
of the following form.

5 In principle, we can have -1 when the vectors point in the exact oppo-
site direction, although many methods are guaranteed to obtain positive vectors
only.

[309]

Richard Moot

....〈w1, h1, (B ⊸ A)⊸ C〉

[〈0,h1, B〉]k....〈w2, h2, A〉
〈w2, h2, B ⊸ A〉 ⊸ Ik

〈w1 +w2, h1, C〉 ⊸ E

Where for relative pronouns A = s, B = np and C = n\n, and for
generalised quantifiers A= s, B = np and C = s. Essentially, h1 is prop-
agated from the left premiss of the elimination rule to the hypothesis
of the introduction rule. This works well since the head word of a de-
terminer phrase (of type (np ⊸ s)⊸ s) is its noun, and similarly, the
noun argument of the relative pronoun is semantically identical to the
extracted noun phrase B = np.
As a concrete example, a French fragment like “concert de piano

gratuit”, like its English translation “free piano concert”, has two pos-
sible readings, one where there is a piano concert which is free and
one where a free piano is used to give a concert. This type of ambi-
guity, although somewhat reduced by noun/adjective agreement, is
quite common in the French Treebank (Abeillé et al. 2003) and ap-
parently a difficult construction both for journalists and annotators.
Treating this example according the the method described above pro-
vides the following (to reduce horizontal space, we have used w1, w2

and w3 for the weight terms to be discussed later).6

concert
〈0, concert,n〉 Lex

de
〈0,de, (n\n)/n〉 Lex

piano
〈0,piano,n〉 Lex

〈w1,piano,n\n〉 /E

〈w2, concert,n〉 \E gratuit
〈0, gratuit,n\n〉 Lex

〈w3, concert,n〉 \E

The weight w1 of the proof showing “de piano” is of type n\n is
equal to the weight of its to premisses (both zero) plus the distance
between the heads of the two premisses of the rule, “de” and “piano”
in our case, which have a distance of 0.0740, so we conclude w1 is
0.0740. We can now compute the weight of the proof showing “concert
de piano” to be of type n by combining the weight 0 of “concert” with

6Here and elsewhere, all weights are computed used the models provided by
Fauconnier (2016) at http://fauconnier.github.io/#software

[310]

Combining logical and distributional methods

the weight 0.0740 of “de piano” and adding the distance between the
two head words “concert” and “piano’, which is 0.4398 (that is, these
words are fairly close) to arrive at w2 = 0.5138. Finally, we combine
this n with the adjective “gratuit” to compute the final weight w3 by
adding the previously computed w2 to 0 (the weight of “gratuit”) and
adding the distance between “concert” and “gratuit”, which is 0.1921.
This gives us a total weight w3 of 0.7059 for this reading (note that
this number is not a probability and meaningful only in comparison
to similarly computed numbers).
The second proof looks as follows.

concert
〈0, concert,n〉 Lex

de
〈0,de, (n\n)/n〉 Lex

piano
〈0,piano,n〉 Lex

gratuit
〈0, gratuit,n\n〉 Lex

〈w1,piano,n〉 \E
〈w2,piano,n\n〉 /E

〈w3, concert,n〉 \E
Even though the second reading uses the exact same words, it

combines them in a different way, and this affects the weight calcu-
lations. We now combine “piano’ and “gratuit” first, to obtain w1 =
0+0+d(piano, gratuit) = 0.0695. We then combine this result with “de”
and calculate w2 = 0+ w1 + d(de,piano) = 0.0695+ 0.0740 = 0.1435.
Finally, we combine the previous result with “concert” and calculate
w3 = 0+w2 + d(concert,piano) = 0.1435+ 0.4398= 0.5833.
These calculations show a preference for the first reading, where

the concert is free rather than the piano. The key difference between
the two readings is that d(concert, gratuit) > d(piano, gratuit), whereas
the other computed terms are equal.
We can use the same method to compute “voir la fille avec les

lunettes” (to see the girl with the glasses), since d(voir, lunettes) >
d(fille, lunettes), which gives a preference for “voir ... avec les lunettes”
over “fille avec les lunettes”.
Using semantic relatedness like this is, of course, not without its

defects. For example, the verb phrase “saw the star with the telescope”
is structurally identical to the example above, but has only one plau-
sible reading, where “with the telescope” is a verb phrase modifier.
However, “star” and “telescope” are closer semantically than “girl”
and “telescope” are. The problem here is essentially that semantic vec-
tor similarity as we are using it here doesn’t give us any information
about argument structure.

[311]

Richard Moot

This suggests the need for more sophisticated ways to combine
vector semantics, such as used by Baroni and Lenci (2010). In the
context of a real-world system, the lexicon is a probability distribution
over a finite set of formulas and therefore the highest-weight proof for
a sentence must be a combination of the probability over the formu-
las with the weight over the axioms. The right way of combining the
weights of the supertagger (a probability distribution over formulas)
with the vector weights needs to be determined empirically, of course.
Two simple possibilities are:
1. taking the best supertagger sequence for which a proof is found,
then finding the maximum weight proof for this sequence;

2. combine the supertagger probabilities with the weight of the
proof into a single weighted sum; that is, we treat finding the
relative importance of the two weights as a standard machine
learning objective to be determined empirically.
In the case of “voir l’étoile avec le téléscope” (see the star with

the telescope), the supertagger (Moot 2014b) strongly prefers adverbial
use of “with” over adjectival use (26.4% against 0.9%), a very strong
preference in favour of the preferred reading. Therefore, in a real-
world system this problem disappears unless the weighted sum gives
a very strong priority to the vector weight component.
4.4 Vector similarity and proof nets
We can adapt the above strategy with minor modifications to a proof
net parser. This is done by replacing atomic formulas by binary pred-
icates, where the first argument represents the head and the second
argument the weight. For weights, we use the real numbers with the
usual function “+” and the d(w1, w2) function computing the distance
between two words w1 and w2. Instead of having extra-logical head
percolation and weight computation principles, these now form a part
of the lexical entries (although these extra-logical principles would
explain many common patterns occurring in the lexical entries and
would make it possible to create an automatic compilation step adding
the head and weight arguments to a ‘standard’ lexicon). Using first-
order arguments has many applications, including as a solution for
the Dutch verb clusters we’ve seen in Section 4.1 (Moot 2014a). As
we use them here, these arguments are extra-grammatical and serve

[312]

Combining logical and distributional methods

lex(book) = n(book, 0)

lex(the) = np(X , w)/np(X , w)

lex(interesting) = n(X , w+ d(interesting, X))/n(X , w)

lex(read) = (np(X , w1)\s(read, w1+w2+d(w1, read)+d(w2, read))/np(Y, w2)

lex(which) = (n(X , w1)\n(X , w1 +w2))/(s(Y, w2)/np(X , 0)

lex(every) = (s(Y, w1 +w2)/(np(X , 0)\s(Y, w2)))/n(X , w1)

Table 2:
Lexical
assignments with
head word and
weight
computation
information

only as a way to compute preferences among different proofs using
the same formulas.
As before, atomic content words, like the noun “book” are as-

signed the entry n(book, 0). That is, the head constituent of the noun is
“book” itself and the weight assigned to this expression is zero. Table 2
lists some other lexical entries in the current context.
As shown in the table, the determiner “the” is assigned an en-

try simply copying both the head word and the weight, following the
principles of a purely logical word in the previous section.
An adjective such as “interesting” on the other hand copies the

head word, but adds the distance between the head word to the pre-
vious weight.7
Similarly, the transitive verb “read” adds both the distance be-

tween the verb and its subject and the distance between the verb and
its object to the weight of its two arguments.
The weighted entry for “which” requires some explanation. First

of all, the head word X of the resulting noun is the same as the head
of the argument noun (this behaviour is consistent with a noun mod-
ifier, and it makes, for example, “book which ...” behave the same as
“book” in this respect). Second, the extracted np, being a hypothetical
element, starts at weight 0 and shares the head with the noun argu-
ment. This approach therefore expects the long-distance dependency

7Modifiers of modifiers (e.g. adverbs like “very”) cannot be handled in the
same way as in the natural deduction based account of the previous section. Since
they modify the adjective or adverb they select, and since these no longer contain
this adjective or adverb as their head word, we can no longer compute the dis-
tance between e.g. “very” and “interesting”, and between “very” and “quickly”
since both “interesting” and “quickly” are not arguments of any of their atomic
subformulas. The natural deduction approach of the previous section assigns
heads to formulas with no requirement that these be atomic, and this provides a
potential benefit for these cases.

[313]

Richard Moot

between a noun and a relative clause to occur most likely between the
head noun and the verb which is semantically closest to it.
Compared to the standard proof net matching algorithm using

minimisation (or maximisation) of weight, we have now added com-
putation of weights to the matching process. This presents something
of a complication. However, since we need to do only simple computa-
tions (addition, vector cosine) in each cell of the matrices representing
the search space, this doesn’t make a big difference computationally.

4.5 Limitations
The current method doesn’t distinguish between object and subject
arguments and this is an important weakness.8 This limitation is es-
sentially a consequence of the division of labour between the distri-
butional and type-logical approaches: the type-logical component of
the system is solely responsible for word order while the distributional
component only tests for similarity between a verb and its argument,
taking neither grammatical nor structural considerations into account.
We therefore need either a more subtle similarity measure or another
way of distinguishing the likely relations between a verb and its dif-
ferent arguments.

5 conclusions and future work

We have given an overview of several methods of adding weights to
proof search in type-logical grammars. With the exception of Bonfante
and de Groote (2001), this possibility has been seldom discussed in the
type-logical grammar literature, to our surprise. We have given appli-
cations of weighted proof search to modelling human processing, to
finding parses most similar to those found in a given corpus, and to
finding parses which prefer grouping similar words together. These
methods still need to be thoroughly evaluated beyond the manually
calculated examples shown here. Fortunately, for many current type-
logical grammars and their theorem provers, the groundwork for in-
corporating weighted proof search has already been laid down. Given

8As discussed in Section 4.2, we can incorporate this when estimating prob-
abilities from a corpus, but not for the other methods discussed here, i.e. vector
similarity and word distance.

[314]

Combining logical and distributional methods

the many potential applications of weighted proof search, we look for-
ward to testing these methods against available data for parsing and
human processing.

references
Anne Abeillé, Lionel Clément, and François Toussenel (2003), Building a
Treebank for French, in Anne Abeillé, editor, Treebanks, volume 20 of Text,
Speech and Language Technology, pp. 165–187, Springer.
Lasha Abzianidze (2017), A natural proof system for natural language, Ph.D.
thesis, Tilburg University.
Nicolas Asher and Alex Lascarides (2003), Logics of Conversation, Cambridge
University Press.
Emmon Bach, Colin Brown, and William Marslen-Wilson (1986), Crossed
and Nested Dependencies in German and Dutch: A Psycholinguistic Study,
Language and Cognitive Processes, 1(4):249–262.
Patrick Baillot and Virgile Mogbil (2004), Soft Lambda-calculus: A
Language for Polynomial Time Computation, in Foundations of software science
and computation structures, pp. 27–41, Springer.
Srinivas Bangalore and Aravind Joshi (2011), Supertagging: Using Complex
Lexical Descriptions in Natural Language Processing, MIT Press, Cambridge,
Massachusetts.
Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros
Zanchetta (2009), The WaCky Wide Web: A Collection of Very Large
Linguistically Processed Web-Crawled Corpora, Language Resources and
Evaluation, 43(3):209–226.
Marco Baroni and Alessandro Lenci (2010), Distributional Memory: A
General Framework for Corpus-based Semantics, Computational Linguistics,
36(4):673–721.
Adam Berger, Stephen Della Pietra, and Vincent Della Pietra (1996), A
Maximum Entropy Approach to Natural Language Processing, Computational
Linguistics, 22(1):39–71.
Guillaume Bonfante and Philippe de Groote (2001), Stochastic Lambek
Categorial Grammars, in Geert-Jan Kruijff, Larry Moss, and Richard T.
Oehrle, editors, Proceedings of FGMOL 2001, volume 53 of Electronic Notes in
Theoretical Computer Science, Elsevier.
Johan Bos and Katja Markert (2005), Recognising Textual Entailment with
Logical Inference, in Proceedings of the 2005 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2005), pp. 628–635.

[315]

Richard Moot

Vincent Danos (1990), La logique linéaire appliquée à l’étude de divers processus
de normalisation (principalement du λ-calcul) [Linear logic applied to the study of
various normalisation processes (mainly of the lambda calculus)], Ph.D. thesis,
University of Paris VII.
Vincent Danos and Laurent Regnier (1989), The Structure of Multiplicatives,
Archive for Mathematical Logic, 28:181–203.
Jean-Philippe Fauconnier (2016), Acquisition de liens sémantiques à partir
d’éléments de mise en forme des textes : exploitation des structures énumératives
[Acquisition of semantic relations from text layout elements: exploitation of
enumerative structures], Ph.D. thesis, Université de Toulouse.
L. T. F. Gamut (1991), Logic, Language and Meaning, volume 2, The University
of Chicago Press.
Jean-Yves Girard (1987), Linear Logic, Theoretical Computer Science, 50:1–102.
Mark Johnson (1998), Proof Nets and the Complexity of Processing
Center-Embedded Constructions, Journal of Logic, Language and Information,
7(4):443–447.
Adam Kilgarriff and Gregory Grefenstette (2003), Introduction to the
Special Issue on the Web as Corpus, Computational Linguistics, 29:333–347.
Harold W. Kuhn (1955), The Hungarian Method for the Assignment Problem,
Naval Research Logistics Quarterly, 2:83–97.
Yves Lafont (2004), Soft Linear Logic and Polynomial Time, Theoretical
Computer Science, 318(1):163–180.
Joachim Lambek (1958), The Mathematics of Sentence Structure, American
Mathematical Monthly, 65:154–170.
David M. Magerman (1994), Natural language parsing as statistical pattern
recognition, Ph.D. thesis, University of Pennsylvania.
Jeff Mitchell and Mirella Lapata (2010), Composition in Distributional
Models of Semantics, Cognitive Science, 34:1388–1429.
Michael Moortgat (1997), Categorial Type Logics, in Johan van Benthem
and Alice ter Meulen, editors, Handbook of Logic and Language, chapter 2,
pp. 93–177, Elsevier/MIT Press.
Richard Moot (2010), Automated Extraction of Type-logical Supertags from
the Spoken Dutch Corpus, in Srinivas Bangalore and Aravind Joshi, editors,
Complexity of Lexical Descriptions and its Relevance to Natural Language
Processing: A Supertagging Approach, chapter 12, pp. 291–312, MIT Press,
Cambridge, Massachusetts.
Richard Moot (2014a), Extended Lambek Calculi and First-order Linear Logic,
in Claudia Casadio, Bob Coecke, Michael Moortgat, and Philip Scott,
editors, Categories and Types in Logic, Language, and Physics: Essays dedicated to

[316]

Combining logical and distributional methods

Jim Lambek on the Occasion of this 90th Birthday, number 8222 in Lecture Notes
in Artificial Intelligence, pp. 297–330, Springer, Heidelberg.
Richard Moot (2014b), A Type-logical Treebank for French, Journal of
Language Modelling, 2(2).
Richard Moot (2017), The Grail Theorem Prover: Type Theory for Syntax and
Semantics, in Zhaohui Luo and Stergios Chatzikyriakidis, editors, Modern
Perspectives in Type Theoretical Semantics, Springer.
Richard Moot and Christian Retoré (2012), The Logic of Categorial Grammars:
A Deductive Account of Natural Language Syntax and Semantics, number 6850 in
Lecture Notes in Artificial Intelligence, Springer, Heidelberg.
Richard Moot and Christian Retoré (2016), Natural Language Semantics and
Computability, Technical report, LIRMM.
Glyn Morrill (1998), Incremental Processing and Acceptability, Technical
Report LSI–98–46–R, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya.
Glyn Morrill (2011), Categorial Grammar: Logical Syntax, Semantics, and
Processing, Oxford University Press, Oxford.
The Nghia Pham (2016), Sentential Representations in Distributional Semantics,
Ph.D. thesis, University of Trento.
Helmut Schwichtenberg (1982), Complexity of Normalization in the Pure
Typed Lambda-Calculus, in The L. E. J. Brouwer Centenary Symposium,
pp. 453–457, North-Holland.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[317]

Static and dynamic vector semantics
for lambda calculus models

of natural language

Mehrnoosh Sadrzadeh1 and Reinhard Muskens2
1 School of Electronic Engineering and Computer Science,

Queen Mary University of London.
2 Department of Philosophy, Tilburg University

abstract
Keywords: simply
typed lambda
calculus, vector
semantics,
composition,
context update
potential,
dynamic logic

Vector models of language are based on contextual aspects of language
– distributions of words and how they co-occur in text. Truth condi-
tional models focus on logical aspects of language and on how words
combine to contribute to these aspects. In the truth conditional ap-
proach, there is a focus on the denotations of phrases. In vector mod-
els, the degree of co-occurrence of words in context determines how
similar their meanings are. The two approaches have complementary
virtues. In this paper we combine them and develop a vector seman-
tics for language, based on the typed lambda calculus. We provide two
types of vector semantics: a static one using techniques from the truth
conditional tradition, and a dynamic one with a form of interpretation
inspired by Heim’s context change potentials. We show, with exam-
ples, how the dynamic model can be applied to entailment between a
corpus and a sentence.

1 introduction

Vector semantic models, otherwise known as distributional models,
are based on the contextual aspects of language, i.e. the company
each word keeps, and patterns of use in corpora of documents. Truth
conditional models focus on the logical and denotational aspects of
language. They typically describe how words can be represented by

Journal of Language Modelling Vol 6, No 2 (2018), pp. 319–351

Mehrnoosh Sadrzadeh, Reinhard Muskens

functions over sets, and how these functions can be composed. Vector
semantics and truth conditional models are based on different philoso-
phies: one takes the stance that language is contextual, the other as-
serts that it is logical. In recent years, there has been much effort to
bring these two together. We have models based on a certain type
of grammatical representation, e.g. the pregroup model (Coecke et al.
2010), the Lambek Calculus model (Coecke et al. 2013), and the com-
binatorial categorial models (Krishnamurthy and Mitchell 2013; Mail-
lard et al. 2014). We also havemore concrete models that draw inspira-
tion from type theory, but whose major contribution lies in developing
concrete ways of constructing linear and multi-linear algebraic coun-
terparts for syntactic types, e.g. matrices and tensors (Grefenstette and
Sadrzadeh 2015; Baroni et al. 2014), and relational clusters (Lewis and
Steedman 2013).

What some of these approaches (Coecke et al. 2010; Krishna-
murthy and Mitchell 2013; Maillard et al. 2014) lack more than others
(Baroni et al. 2014; Lewis and Steedman 2013) is acknowledgement of
the inherent gap between contextual and truth conditional semantics:
they closely follow truth theoretic conditions to assign vector repre-
sentations to (readings of) phrases and sentences.1 Indeed, it is pos-
sible to develop a stand-alone compositional vector semantics along
these lines, but this will result in a static semantics. From the per-
spective of the underlying theory, it will also be quite natural to have
a vector semantics work in tandem with a dynamic theory, and let
the two modules model different aspects of meaning. Distributional
semantics is particularly apt at modelling associative aspects of mean-
ing, while truth-conditional and dynamic forms of semantics are good
at modelling the relation of language to reality, and also at modelling
entailment. It is quite conceivable that a theory combining the two
as separate modules will be simpler than trying to make one of the
approaches do things it was never intended for.

In this paper, we first sketch how an approach to semantics, de-
rived in many of its aspects from that pioneered by Montague (1974),
can be used to assign vector meanings to linguistic phrases. The theory
will be based on simply typed lambda calculus and, as a result, will

1Below, when we refer to phrases and sentences, strictly speaking, we mean
readings of phrases and sentences.

[320]

Lambdas and vectors

be neutral with respect to the linguist’s choice of syntax, in the sense
that it can be combined with any existing syntax-semantics interface
that assumes that the semantics is based on lambdas.2 Our reason
for using lambda calculus is that it directly relates our semantics to
higher order logic, and makes standard ways of treating long-distance
dependencies and coordination accessible to vector-based semantics.
This approach results in a semantics similar to those of the static ap-
proaches listed above. The reason for providing it is to show that a
lambda calculus model of language can be directly provided with a
straightforward vector semantics. As will be seen, abstract lambda
terms, which can be used as translations of linguistic expressions, have
much in common with the Logical Forms of these expressions, and the
lambda binders in them facilitate the treatment of long-distance de-
pendencies. The use of lambda terms also makes standard ways of
dealing with coordination accessible to distributional semantics. We
provide extensive discussion of this process, and examples where the
direct use of lambdas is an improvement on the above-listed static
approaches.

The above semantics does not have an explicit notion of context,
however. The second contribution of this paper is that, based on the
same lambda calculus model of natural language, we develop a dy-
namic vector interpretation for this type theory, where denotations
of sentences are “context change potentials”, as introduced by Heim
(1983). We show how to assign such a vector interpretation to words,
and how these interpretations combine so that the vectors of the sen-
tences containing them change the context, in a dynamic style similar
to that proposed by Heim. As context can be interpreted in differ-
ent ways, we work with two different notions of context in distribu-
tional semantics: co-occurrence matrices, and entity-relation graphs,

2Linguistic trees, for example, can be associated with the abstract lambda
terms considered below via type-driven translation (Partee 1986; Klein and Sag
1985; Heim and Kratzer 1998). But other syntactic structures can be provided
with them as well. In the framework of Lexical-Functional Grammar, abstract
lambda terms can be assigned to f-structures with the help of linear logic acting
as ‘glue’ (Dalrymple et al. 1993). In Combinatory Categorial Grammar, deriva-
tions can be associated with abstract lambda terms using combinators (Steedman
2000), while proofs in Lambek Categorial Grammar can be provided with them
by the Curry-Howard morphism (van Benthem 1986).

[321]

Mehrnoosh Sadrzadeh, Reinhard Muskens

encoded here in the form of cubes. Both of these are built from corpora
of documents and record co-occurrence between words: in a simple
neighbourhood window, in the case of co-occurrence matrices, and
in a window structured by grammatical dependencies, in the case of
an entity-relation cube. We believe our model is flexible enough for
other distributional notions of contexts, such as networks of gram-
matical dependencies. We show how our approach relates to Heim’s
original notion of ‘files’ as contexts. Other dynamic approaches, such
as update semantics (Veltman 1996) and continuation-based seman-
tics (de Groote 2006), can also be used; we aim to do this in the
future.

Compositional vector semantics is our goal, but the nature of this
paper is theoretical. So we shall not propose – from the armchair so
to speak – concrete representations of contexts and updates and a set
of concrete vector composition operations for combining phrases, or
concrete matrices or cubes that embody them. We thus leave exhaus-
tive empirical evaluation of our model to future work, but show, by
means of examples, how the notion of “admittance of sentences by
contexts” from the context update logic of Heim (1983) and Kart-
tunen (1974) can be applied to develop a relationship between ma-
trix and cube contexts and sentences, and how this notion can be
extended from a usual Boolean relation to one which has degrees,
based on the notion of degrees of similarity between words. As this no-
tion resembles that of “contextual entailment” between corpora and
sentences, we review the current entailment datasets that are main-
stream in distributional semantics and discuss how they can or can-
not be applied to test this notion, but leave experimental evaluation
to future work.

The lambda calculus approach we use is based on Lambda Gram-
mars (Muskens 2001, 2003), which were independently introduced as
Abstract Categorial Grammars (ACGs) in de Groote (2001). The the-
ory developed here, however, can be based on any syntax-semantics
interface that works with a lambda calculus semantics – our approach
is agnostic as to the choice of a syntactic theory.

This paper is the journal version of our previous short paper
(Muskens and Sadrzadeh 2016a) and extended abstract (Muskens and
Sadrzadeh 2016b).

[322]

Lambdas and vectors

2 lambda grammars

Lambda Grammars (Muskens 2001, 2003) were independently intro-
duced as Abstract Categorial Grammars (ACGs, de Groote 2001). An
ACG generates two languages, an abstract language and an object lan-
guage. The abstract language will simply consist of all linear lambda
terms (each lambda binder binds exactly one variable occurrence)
over a given vocabulary typed with abstract types. The object language
has its own vocabulary and its own types. We give some basic defini-
tions here, assuming familiarity with the simply typed λ-calculus.

If B is some set of basic types, we write TYP(B) for the smallest
set containing B such that (αβ) ∈ TYP(B) whenever α,β ∈ TYP(B).
Let B1 and B2 be sets of basic types. A function η from TYP(B1) to
TYP(B2) is said to be a type homomorphism if η(αβ) = (η(α)η(β)),
for all α,β ∈ TYP(B1). It is clear that a type homomorphism η with
domain TYP(B) is completely determined by the values of η for types
α ∈B .

Let us look at an example of a type homomorphism that can be
used to provide a language fragment with a classical Montague-like
meaning. Let B1 = {D, N , S} (D stands for determiner phrases, N for
nominal phrases, S for sentences), let B2 = {e, s, t} (e is for entities, s
for worlds, and t for truth-values), and let h0 be defined by: h0(D) = e,
h0(N) = est,3 and h0(S) = st. Then the types in the second column of
Table 1 have images under h0 as given in the fourth column. Addi-
tional information about the conventions used in Table 1 is given in a
footnote.4

We now define the notion of term homomorphism. If C is some set
of typed constants, we write Λ(C) for the set of all lambda terms with
constants only from C . The set of linear lambda terms over C is denoted
by Λ0(C). Let C1 be a set of constants typed by types from TYP(B1) and
let C2 be a set of constants typed by types from TYP(B2). A function
ϑ : Λ(C1)→ Λ(C2) is a term homomorphism based on η if η : TYP(B1)→
TYP(B2) is a type homomorphism and, whenever M ∈ Λ(C1):

3Association in types is to the right and outer parentheses are omitted; so est
is short for (e(st)), arguably a good type for predicates.

4 In Table 1, p is a variable of type st, while x is of type e. The variables w
and w′ are of type s, and P and P ′ are of type est. The constant K of type ess
denotes the epistemic accessibility relation.

[323]

Mehrnoosh Sadrzadeh, Reinhard Muskens
Table 1:

An Abstract Categorial
Grammar / Lambda
Grammar connecting
abstract terms with

Montague-like meanings

constant c type τ H0(c) h0(τ)

woman N woman est

man N man est

tall NN tall (est)est

smokes DS smoke est

loves DDS love eest

knows SDS λpλxλw.∀w′(K xww′→ pw′) (st)est

every N(DS)S λP ′λPλw.∀x(P ′xw→ P xw) (est)(est)st

a N(DS)S λP ′λPλw.∃x(P ′xw∧ P xw) (est)(est)st

• ϑ(M) is a term of type η(τ), if M is a constant of type τ;
• ϑ(M) is the n-th variable of type η(τ), if M is the n-th variable of
type τ;

• ϑ(M) = (ϑ(A)ϑ(B)), if M ≡ (AB);
• ϑ(M) = λy.ϑ(A), where y = ϑ(x), if M ≡ (λx .A).

Note that this implies that ϑ(M) is a term of type η(τ), if M is of type τ.
Clearly, a term homomorphism ϑ with domain Λ(C) is completely

determined by the values ϑ(c) for c ∈ C . This continues to hold if we
restrict the domain to the set of linear lambda terms Λ0(C). In order
to show how this mechanism can be used, let us continue with the
same example. Consider the (abstract) constants in the first column
of Table 1, typed by the (abstract) types in the second column. We
can now define a term homomorphism H0 by sending the constants in
the first column to their images in the third column, making sure that
these have types as in the fourth column. Since H0 is assumed to be a
type homomorphism, all lambda terms over the constants in the first
column will now automatically have images under H0. For example,
H0 sends the abstract term:5

((a woman)λξ((every man)(loves ξ)))

5We use the standard notation of lambda terms. The application of M to N is
written as (MN) (not as M(N)) and lambda abstractions are of the form (λX .A).
The usual redundancy rules for parentheses apply, but will often not be used in
abstract terms, in order to emphasise their closeness to linguistic expressions. In
some cases, to improve clarity, we will bend the rules and write M(N1, . . . , Nn)
for (MN1 . . . Nn) or A∧ B for ∧AB, for example.

[324]

Lambdas and vectors

(in which ξ is of type D), to a term βη-equivalent with:

λw∃y(woman yw∧∀x(man xw→ love y xw)) .

This term denotes the set of worlds in which some specific woman is
loved by all men.

This example sends abstract terms to translations that are close
to those of Montague (1974). While such translations obviously will
not serve as vector semantics, we will show in the next sections that
it is possible to alter the object language while retaining the general
translation mechanism. For more information about the procedure of
obtaining an object language from an abstract language, see de Groote
(2001) and Muskens (2003, 2010).

3 a static vector semantics

3.1 Vector interpretations for the object language
In order to provide an interpretation of our object language, the type
theory used must be able to talk about vectors over some field, for
which we choose the reals. We need a basic object type R such that,
in all interpretations under consideration, the domain DR of type R is
equal to or ‘close enough’ to the set of reals R, so that constants such
as the following (of the types shown) have their usual interpretation:6

0 : R

1 : R

+ : RRR

· : RRR

< : RRt

This can be done by imposing one of the sets of second-order axioms
in Tarski (1965). Given these axioms, we have DR = R in full models,
whereas we have non-standard models under the Henkin interpreta-
tion (Henkin 1950).

Vectors can now be introduced as objects of type IR, where I is
interpreted as some finite index set. Think of I as a set of words; if

6Constants such as +, ·, and < will be written between their arguments.

[325]

Mehrnoosh Sadrzadeh, Reinhard Muskens
Table 2:

Vector types
and their abbreviations

Type Math Abbreviation Letter Abbreviation Description
IR (I1R) V Vector
I IR I2R M Matrix
I I IR I3R C Cube
... ...

a word is associated with a vector v : IR, v assigns a real number
to each word, which gives information about the company the word
keeps. Since IR will be used often, we will abbreviate it as V . Similarly,
I IR, abbreviated as M , can be associated with the type of matrices, and
I I IR, abbreviated as C , with the type of cubes, and so on (see Table
2). In this paper, we work with a single index type, but one may also
consider cases with several index types, so that phrases of distinct
categories can live in their own space.

We need a toolkit of functions combining vectors, matrices, cubes,
etc. In the following definitions, r is of type R; i, j, and k are of type
I ; v and u are of type V ; m and c are of types M and C respectively;
and indices are written as subscripts, so vi is syntactic sugar for vi.

∗ := λrvi.r · vi : RV V

⊞ := λvui.vi + ui : V V V

⊙ := λvui.vi · ui : V V V

×1 := λmvi.
∑

j

mi j · v j : MV V

×2 := λcvi j.
∑

k

mi jk · vk : CV M

〈· | ·〉 := λuv.
∑

i

ui + vi : V VR

The reader will recognise ∗ as scalar product, ⊞ as pointwise addi-
tion, ⊙ as pointwise multiplication, ×1 and ×2 as matrix-vector and
cube-vector multiplication, and 〈· | ·〉 as the dot product. One can also
consider further operations, such as various rotation operations with
type ρ : V V V .
3.2 Abstract types and type and term homomorphisms
Let us assume again that our basic abstract types are D for determiner
phrases, S for sentences, and N for nominal phrases. But this time our

[326]

Lambdas and vectors

type and term homomorphisms will be chosen in a different way from
that used in Section 2. A very simple type homomorphism h can be
defined by:

h(D) = h(S) = h(N) = V .

So h assigns vectors to determiners, nominal phrases, and sentences.
There are other possibilities for the range of h and, in the following
section, we will sketch a more elaborate assignment in which a run-
ning context is used. The above simple h is chosen for the expository
purposes of this section.

In Table 3, we again provide abstract constants in the first column
and their abstract types in the second column; h assigns to these the
object types in the fourth column. Here, Z is a variable of type V V , and
v and u are of type V . As an example, consider the constant woman;
it has the abstract type N , and a term homomorphic image woman,
which is assigned the type V by h. We say that the translation of woman
is of type V . Similarly, the translations of tall and smoke are of type
V V , love and know are of type V V V , and those of every and a are of
type V V . The term homomorphism H is defined by letting its value for
any abstract constant in the first column be the corresponding object
term in the third column. Using this table, we automatically obtain
homomorphic images of any lambda term over the constants. But now
our previous example term:7

((a woman)λξ((every man)(loves ξ)))

is sent to a term that is βη equivalent with:

(love×2 (a×1 woman))×1 (every×1 man) .

In Table 3, nominal phrases like woman are represented by vec-
tors, adjectives and intransitive verbs like tall and smoke by matri-
ces, and transitive verbs (love) by cubes, as are constants like know.
Generalised quantifiers are functions that take vectors to vectors. The
composition operations used (×1 and ×2) are cube-vector and matrix-
vector instances of tensor contraction. There is still much debate as to

7The entry for man is no longer present in Table 3. But man can be treated
in full analogy to woman. In further examples we will also use constants whose
entries can easily be guessed.

[327]

Mehrnoosh Sadrzadeh, Reinhard Muskens
Table 3:

A fragment of static vector
semantics. Abstract

constants c are typed with
abstract types τ and their

term homomorphic images
H(c) typed by h(τ)

c τ H(c) h(τ)

woman N woman V

tall NN λv.(tall×1 v) V V

smokes DS λv.(smoke×1 v) V V

loves DDS λuv.(love×2 u)×1 v V V V

knows SDS λuv.(know×2 u)×1 v V V V

every N(DS)S λvZ .Z(every×1 v) V (V V)V

a N(DS)S λvZ .Z(a×1 v) V (V V)V

Table 4:
Term homomorphic

images H(c) for pointwise
addition and

multiplication, and matrix
multiplication as

composition operations

Addition Multiplication Matrix Multiplication
H(c) H(c) H(c)

woman woman woman

λv.(tall⊞ v) λv.(tall⊙ v) λv.(tall×1 v)

λv.(smoke⊞ v) λv.(smoke⊙ v) λv.(smoke×1 v)

λuv.(love⊞ u)⊞ v λuv.(love⊙ u)⊙ v λuv.(love×2 u)×1 v

λuv.(know⊞ u)⊞ v λuv.(know⊙ u)⊙ v λuv.(know×2 u)×1 v

λvZ .Z(every⊞ v) λvZ .Z(every⊙ v) λvZ .Z(every×1 v)

λvZ .Z(a⊞ v) λvZ .Z(a⊙ v) λvZ .Z(a×1 v)

the best operations for composing vectors. Mitchell and Lapata (2010)
consider pointwise addition and multiplication of vectors, while ma-
trix multiplication is used in Baroni and Zamparelli (2010). Such
operations are available to our theory. The table for these will have
a different H(c) column and will be the same in all other columns.
The H(c) columns for these models are given in Table 4.8

In this paper, we will not choose between these operations. In-
stead, we will explore how to combine such functions once an initial
set has been established (and validated empirically). Functions in the
initial set will typically combine vector meanings of adjacent phrases.
Like Baroni et al. (2014), who provide an excellent introduction to and
review of compositional vector semantics, our aim has been to pro-

8 In Table 4, we use the same typographical conventions for variables as in
Table 3, while, in its first two alternative columns, all constants written in sans
serif are taken to be of type V . In its third column, the types of these constants
(and in fact the whole column) are as in Table 3 again.

[328]

Lambdas and vectors

pose a general theory that also includes dependencies between non-
adjacent phrases, e.g., in topicalisation or relative clause formation.

4 dynamic vector semantics
with context change potentials

4.1 Heim’s files and distributional contexts
Heim describes her contexts as files that have some kind of information
written on (or in) them. Context changes are operations that update
these files, e.g. by adding or deleting information from the files. For-
mally, a context is taken to be a set of sequence-world pairs in which
the sequences come from some domain DI of individuals, as follows:

ctx ⊆ {(g, w) | g : N→DI , w a possible world}
We follow Heim (1983) here in letting the sequences in her sequence-
world-pairs be infinite, although they are best thought of as finite.

Sentence meanings are context change potentials (CCPs) in Heim’s
work, functions from contexts to contexts – given any context, a sen-
tence will transform it into a new context. In particular, a sentence S
comes provided with a sequence of instructions that, given any context
ctx, updates its information so that a new context results, denoted as:

ctx+S

The sequence of instructions that brings about this update is derived
compositionally from the constituents of S.

In distributional semantics, contexts are words somehow related
to each other via their patterns of use, e.g. by co-occurring in a neigh-
bourhood word window of a fixed size, or via a dependency relation.
In practice, one builds a context matrix M over R2, with rows and
columns labelled by words from a vocabulary Σ, and with entries tak-
ing values from R (for a full description see Rubenstein and Goode-
nough 1965). Thus, M can be seen as the set of its vectors:

{−→v | −→v : Σ→ R} ,

where each −→v is a row or column in M .

[329]

Mehrnoosh Sadrzadeh, Reinhard Muskens

If we take Heim’s domain of individuals DI to be the vocabulary
of a distributional model of meaning, that is DI := Σ, then a context
matrix can be seen as a quantized version of a Heim context:

{(−→g , w) | −→g : Σ→ R, w a possible world} .

Thus a distributional context matrix is obtainable by endowing Heim’s
contexts with R. In other words, we are assuming not only that a file
has a set of individuals, but also that these individuals take some kind
of values, e.g. from reals.

The role of possible worlds in distributional semantics is arguable,
as vectors retrieved from a corpus are not naturally truth conditional.
Keeping the possible worlds in the picture provides a mechanism to
assign a proposition to a distributional vector by other means and can
become very useful. We leave working with possible worlds to future
studies and in this paper only work with sets of vectors as our contexts,
as follows:

ctx ⊆ {−→g | −→g : Σ→ R, g ∈ M} .

Distributional versions of CCPs can be defined based on Heim’s intu-
itions and definitions. In what follows, we show how these instruc-
tions let contexts thread through vectorial semantics in a composi-
tional manner.
4.2 Dynamic type and term homomorphisms and their interpretations
On the set of basic abstract types D, S, N , a dynamic type homomor-
phism ρ that takes into account the contexts of words is defined as
follows:

ρ(N) = (V U)U , ρ(D) = V, ρ(S) = U .

Here, sentences are treated as context change potentials. They up-
date contexts, and we therefore assign the type U (for ‘update’) to
them. A context can be a matrix or a cube, so it can be of type
I2R or I3R. A sentence can then be of type (I2R)(I2R) or (I3R)(I3R).
We have previously abbreviated IR to V , I2R to M , and I3R to C .
The sentence type then becomes M M or CC . The notation U can ab-
breviate either, depending on whether we choose to model contexts
as cubes or as matrices. The concrete semantics obtained by each
choice will be discussed in more detail in Section 5 and Section 6,
respectively.

[330]

Lambdas and vectors

Update functions are presented in Table 5, where ρ is a type ho-
momorphism, i.e. ρ(AB) = ρ(A)ρ(B). Here, Z is a variable of type V U ,
Q is of type (V U)U , v of type V , c of type M , and p and q are of type U .
The functions F , G, I , and J are explained in the following paragraphs.
In the schematic entry for and, we write ρ(α) for ρ(α1) · · ·ρ(αn), if
α = α1 · · ·αn. Simple words such as names, nouns, adjectives, and
verbs are first assigned vectors, denoted by constants such as anna,
woman, tall, and smoke (all of type V). These are then used by the
typed lambda calculus given via H(a), in the third column, to build
certain functions, which will act as the meanings of these words in
context. The object types assigned by ρ are as follows:

Type of nouns : (V U)U
Type of adjectives : ((V U)U)(V U)U
Type of intransitive verbs : V U
Type of transitive verbs : V V U

The function Z updates the context of proper names and nouns
based on their vectors e.g. anna and woman. These are essentially
treated as vectors of type V , but, since they must be made capable
of dynamic behaviour, they are ‘lifted’ to the higher type (V U)U .

The function F of an adjective takes a vector for the adjective, e.g.
tall, a vector for its argument, e.g. v, and a vector for its context, e.g.
c, then updates the context, e.g. as in F(tall, v, c). The output of this
function is then lifted to the higher type, i.e. ((V U)U)((V U)U), via the
functions Z and Q, respectively.

a τ H(a) ρ(τ)

Anna (DS)S λZ .Z(anna) (V U)U

woman N λZ .Z(woman) (V U)U

tall NN λQZ .Q(λvc.Z vF(tall, v, c)) ((V U)U)(V U)U

smokes DS λvc.G(smoke, v, c) V U

loves DDS λuvc.I(love,u, v, c) V V U

knows SDS λpvc.pJ(know, v, c) UV U

every N(DS)S λQ.Q ((V U)U)(V U)U

who (DS)NN λZ ′QZ .Q(λvc.Z v(QZ ′c)) (V U)((V U)U)(V U)U

and (αS)(αS)(αS) λR′λRλXλc.R′X (RX c) (ρ(α)U)(ρ(α)U)(ρ(α)U)

Table 5:
A fragment of
dynamic vector
semantics.
Abstract
constants a
typed with
abstract types τ
and their term
homomorphic
images H(a)
typed by ρ(τ)

[331]

Mehrnoosh Sadrzadeh, Reinhard Muskens

Functions G and I update contexts of verbs; they take a vector for
the verb as well as a vector for each of its arguments, plus an input
context, and then return a context as their output. So, the function G
takes a vector for an intransitive verb, e.g. smoke, a vector v for its
subject, plus a context c, and returns a modified context G(smoke, v, c).
The function I takes a vector for a transitive verb, a vector for its
subject, a vector for its object, and a context, and returns a context.

The meanings of function words, such as conjunctions, relative
pronouns, and quantifiers, will not (necessarily) be identified with
vectors. The type of the quantifier every is ((V U)U)(V U)U , where its
noun argument has the required ‘quantifier’ type (V U)U . The lambda
calculus entry for ‘every’, λQ.Q, is the identity function; it takes a Q
and then spits it out again. The alternative would be to have an entry
similar to that of ‘tall’, but this would not make much sense. Content
words, and not function words, seem to be important in a distribu-
tional setting.

The word and is treated as a generalised form of function com-
position. Its entry is schematic, as and does not only conjoin sen-
tences, but also other phrases of any category. So the type of the ab-
stract constant connected with the word is (αS)(αS)(αS), in which
α can be any sequence of abstract types. Ignoring this generalisa-
tion for the moment, we obtain SSS as the abstract type for sentence
conjunction, with a corresponding object type UUU , and meaning
λpqc.p(qc), which is just function composition. This is defined such
that the context updated by and’s left argument will be further up-
dated by its right argument. So ‘Sally smokes and John eats bananas’
will, given an initial context c, first update c to G(Sally, smoke, c),
which is a context, and then update further with ‘John eats bananas’ to
I(eat, John,bananas, G(smoke,Sally, c)). This treatment of and is easily
extended to coordination in all categories. For example, the reader
may check that and admires loves (which corresponds to loves
and admires) has λuvc.I(admire, u, v, I(love, u, v, c)) as its homomorphic
image.

The update instructions pass through phrases and sentences com-
positionally. The sentence every tall woman smokes, for example, will
be associated with the following lambda expression:

(((every (tall woman)) smokes))

[332]

Lambdas and vectors

This in its turn has a term homomorphic image that is β-equivalent
with the following:

λc.G (smoke,woman, F(tall,woman, c))

which describes a distributional context update for it. This term de-
scribes an initial update of the context c according to the rule for the
constant tall, and then a second update according to the rule for the
constant smokes. As a result of these, the value entries at the cross-
ings of 〈tall, woman〉 and 〈woman, smokes〉 are increased. Much longer
chains of context updates can be ‘threaded’ in this way.

In the following, we give some examples. In each case, sentence
a is followed by an abstract term in b, thus capturing its syntactic
structure. The update potential that follows in c is the homomorphic
image of this abstract term.
(1) a. Sue loves and admires a stockbroker.

b. (a stockbroker)λξ.Sue(and admires loves ξ)

c. λc.I(admire, stockbroker, sue, I(love, stockbroker, sue, c))

(2) a. Bill admires but Anna despises every cop.
b. (every cop)

(λξ.and(Anna(despise ξ))(Bill(admire ξ)))
c. λc.I(despise, cop,anna, I(admire, cop,bill, c))

(3) a. The witch who Bill claims Anna saw disappeared.
b. the(who(λξ.Bill(claims(Anna(saw ξ))))witch)

disappears

c. λc.G(disappear,witch, I(see,witch,anna, J(claim,bill, c)))

5 co occurence matrix context
and its update

In this section, we assume that our contexts are the co-occurrence ma-
trices of distributional semantics (Rubenstein and Goodenough 1965).
Given a corpus of texts, a co-occurrence matrix has, for each of its
entries, the degree of co-occurrence between that word and neigh-
bouring words. The neighbourhood is usually a window of k words on
either side of the word. The update type U associated with sentences

[333]

Mehrnoosh Sadrzadeh, Reinhard Muskens

will thus take the form (I2R)(I2R), abbreviated to M M . That is, a sen-
tence will take a co-occurrence matrix as input, update it with new
entries, and return the updated matrix as output.

Since we are working with co-occurrence matrices, the updates
simply increase the degrees of co-occurrence between the labelling
words of the rows and columns of the matrix. In this paper, to
keep things simple, we work on a co-occurrence matrix with raw co-
occurrence numbers as entries. In this case, the update functions just
add 1 to each entry at each update step. This may be extended to
(or replaced with) logarithmic probabilistic entries, such as Pointwise
Mutual Information (PMI) or its positive or smoothed version PPMI,
PPMIα, in which case the update functions have to recalculate these
weighting schemes at each step (for an example, see Table 6). The cells
whose entries are increased are chosen according to the grammatical
roles of the labelling words. These are implemented in the functions
F, G, I , J , which apply the updates to each word in the sentence. Up-
dates are compositional, i.e. they can be applied compositionally to
the words within a sentence. This is evident as the updates induced
by words in a sentence are based on the grammatical roles of those
words, which act as glue.

More formally, the object terms corresponding to a word a update
a context matrix c with the information in a and the information in the
vectors of arguments u, v, · · · of a. The result is a new context matrix
c′, with different entry values, depicted below:

m11 · · · m1k

m21 · · · m2k...
mn1 · · · mnk

+ 〈a, u, v, · · · 〉=

m′11 · · · m′1k
m′21 · · · m′2k...
m′n1 · · · m′nk

The mi j and m′i j entries are described as follows:

• The function G(smoke, v, c) increases the entry value of mi j in c
by 1 in case i is the index of smoke and j is the index of its subject
v. In all other cases m′i j = mi j.

• The function I(love, u, v, c) increases the entry values of mi j, m jk,
and mik in c by 1 in case i is the index of loves, j is the index
of its subject u, and k the index of its object v. In all other cases
m′i j = mi j.

[334]

Lambdas and vectors

• The function F(tall, v, c) increases the entry value of mi j in c by 1
in case i is the index of tall and j is the index of its modified noun
v. In all other cases m′i j = mi j. The entry for tall in Table 1 uses
this function, but allows for further update of context.

• The function J(know, v, c) increases the entry value of mi j in c by 1
in case i is the index of know and j is the index of its subject v. In
all other cases m′i j = mi j. The updated matrix becomes the input
for further update (by the context change potential of the sentence
that is known).
As an example, consider the co-occurrence matrices depicted in

Figure 1. The initial matrix is a snapshot just before a series of up-
dates are applied. The rationale of this example is as follows: Anna
is a woman and so this word is not frequently found in the context
man; as a result, it has a low value of 100 at that entry; Anna loves
cats (and has some herself), so the entry at the context cat is 700;
she loves other things, such as smoking, and so there is a substantial

1 2 3 4 5
man cat loves fears sleeps

1 Anna 100 700 800 500 400
2 woman 500 650 750 750 600
3 tall 300 50 500 400 400
4 smokes 400 50 600 600 200
5 loves 350 250 ε 600 500
6 knows 300 50 200 250 270
a series of updates by
============⇒

F , G, I , and J

1 2 3 4 5
man cat loves fears sleeps

1 Anna 100 700 800 500 400
2 woman 500 650 750 750 600
3 tall 650 50 500 400 400
4 smokes 700 50 600 600 200
5 loves 550 750 ε 600 500
6 knows 600 250 450 510 700

Figure 1:
An example of updates
by functions F, G, I , J on
a co-occurrence matrix

[335]

Mehrnoosh Sadrzadeh, Reinhard Muskens

entry at the context loves; and so on. The entries of the other words,
i.e. tall, smokes, loves, knows, are also initialised to their distribu-
tional co-occurrence matrix vectors. When an entry ci j corresponds to
the same two words, e.g. when i and j are both love, as in the initial
matrix in Figure 1, we use ε to indicate a predefined fixed value.

The intransitive verb smokes updates the initial matrix in Figure
1, via the function G at the entries c4 j. Here, in principle, j can be 1
and 2, as both man and cat, in their singular or plural forms, could
have occurred as subjects of smokes in the corpus. Assuming that cats
do not smoke and that a reasonable number of men do, a series of,
for instance, 300 occurrences of smokes with the subject man, updates
this entry and raises its value from 400 to 700. Similarly, the adjective
tall updates the entries of the c3 j cells of thematrix via the function F ,
where j can in principle be 1 and 2, but since cats are not usually tall,
it only updates c31. Again, a series of, for example, 350 occurrences of
the adjective tall as themodifier of manwould raise this number from
300 to 650. The case for loves and function I is similar. For knows,
men know cats love mice, and love to play and be stroked, etc.; they
know that cats fear water and objects such as vacuum cleaners, and
that they sleep a lot. As a result, the values of all of the entries in
row 6, that is c61, c62, c63, c64 and c65, will be updated by function J , for
instance, to the values in the updated matrix.

6 entity relation cube context
and its update

A corpus of texts can be seen as a sequence of lexical items oc-
curring in the vicinity of each other, and can thus be transformed into
a co-occurrence matrix. It can also be seen as a sequence of entities

Figure 2:
Updates of

entries in an
entity relation

cube ci jk

entity relation

entity

+(a, u, v) =

c′i jkentity relation

entity
where c′i jk := ci jk + 1

[336]

Lambdas and vectors

related to each other via predicate-argument structures, which can
therefore be transformed into an entity relation graph. This can be
modelled in our setting by taking the contexts to be cubes, thus set-
ting S to have the update type U = (I3R)(I3R), abbreviated to CC . The
entity relation graph approach needs a more costly preprocessing of
the corpus, but it is useful for a systematic treatment of logical words
such as negation and quantification, as well as coordination.

An entity relation graph can be derived from a variety of re-
sources: a semantic network of concepts, a knowledge base such as
WordNet or FrameNet. We work with entities and relations extracted
from text. Creating such graphs from text corpora automatically has
been the subject of much recent research (see, for example, Yao et al.
2012, and Riedel et al. 2010, for a direct approach; see also Kamb-
hatla 2004, and Poon and Domingos 2009, for an approach based
on semantic parsing). The elements of an entity relation graph are
argument-relation-argument triples, sometimes referred to as relation
paths (Yao et al. 2012). Similarly to Lewis and Steedman (2013), we
position ourselves in a binary version of the world, where all rela-
tions are binary; we turn unary relations into binary ones using the
is-a predicate.

Similar to the matrix case, the object terms corresponding to a
constant a update a context cube c with the information in a and the
information in the vectors of arguments of a. The result is a new con-
text cube c′, with entry values greater than or equal to the originals,
as depicted in Figure 2.

The ci jk and c′i jk entries are similar to those in the matrix case, for
example:

• The function G(smoke, v, c) increases the entry value ci jk of c in
case i is the fixed index of is-a, j is the index of smoker, and k is
the index of v, the subject of smoke. Other entry values remain
unchanged.

• The function F(tall, v, c) increases the entry value ci jk of c in case
i is the fixed index of is, j is the index of tall, and k is the index of
v, the modified noun. Other entry values remain unchanged.

• The function denoted I(love, u, v, c) increases the entry value ci jk

of c in case i is the index of love, j is the index of its subject u, and k
is the index of its object v. Other entry values remain unchanged.

[337]

Mehrnoosh Sadrzadeh, Reinhard Muskens
Figure 3:

An example of
updates by

functions F, G, I
on an

entity-relation
cube

100

Anna is-a

smoker

update by G
=⇒

400
Anna is-a

smoker

50

Anna is

tall

update by F
=⇒ 280

Anna is

tall

200

Anna loves

cat

update by I
=⇒

Anna
350

loves

cat

As an example, consider the series of updates depicted in Figure 3.
Relative pronouns such as who update the entry corresponding to the
head of the relative clause and the rest of the clause. For example, in
the clause ‘the man who went home’, we update ci jk for i the index of
‘man’ as subject of the verb ‘went’ with index j and its object ‘home’
with index k (see also Section 4, example (3)). Propositional attitudes
such as ‘know’ update the entry value of ci jk for i the index of their
subject, j the index of themselves, and k the index of their proposition.
For instance, in the sentence ‘John knows Mary slept’, we update the
entry value for ‘John’, ‘know’ and the proposition ‘Mary slept’. The
conjunctive and is modelled as before (in Section 4, compare exam-
ples (1) and (2)).

Negation can be modelled by providing an abstract term not of
type SS with a term homomorphic image λpc.c .−pc of type UU , where
.− is pointwise subtraction of cubes (i.e. λcc′i jk.ci jk − c′i jk). The op-
eration denoted by this term first updates the context with the non-
negated sentence, after which the result is subtracted from the context
again.

[338]

Lambdas and vectors

7 logic for context change potentials
The logic for sentences as context change potentials has the following
syntax.

ϕ ::= p | ¬ϕ | ϕ ∧ψ
Disjunction and implication operations are defined using the De

Morgan duality.
ϕ ∨ψ := ¬(¬ϕ ∧¬ψ)
ϕ→ψ := ¬ϕ ∨ψ

This logic is the propositional fragment of the logic of context change
potentials, presented in Muskens et al. (1997), based on the ideas
of Heim (1983). Heim extends Karttunen’s theory of presuppositions
(Karttunen 1974) and defines the context change potential of a sen-
tence as a function of the context change potentials of its parts, an idea
that leads to the development of the above logic. The logic we consider
here is the same logic but without the presupposition operation.

We refer to the language of this logic as Lccp. For a context c, a
context change potential is defined as follows.

∥p∥(c) := c + ∥p∥
∥¬ϕ∥(c) := c −∥ϕ∥(c)
∥ϕ ∧ψ∥ := ∥ψ∥(∥ϕ∥(c))

It is easy to verify that:
∥ϕ ∨ψ∥ = ∥ψ∥(c)− ∥ψ∥(∥ϕ∥(c))

∥ϕ→ψ∥(c) = c − (∥ϕ∥(c)−∥ψ∥(∥ϕ∥(c))) .

Here, ∥ϕ∥ is the context change potential of ϕ and a function from
contexts to contexts. Whereas, for Heim, both contexts and context
change potentials of atomic sentences ∥p∥ are sets of valuations, for
us, contexts are co-occurrence matrices or entity relation cubes, and
context change potentials of atomic sentences are vectors. Thus, where
the context change potential operation (Heim 1983) simply takes the
intersection of a context and a context change potential c ∩ ∥p∥, we
perform an operation that acts on matrices/cubes rather than sets.
We use the update operation of term homomorphisms, defined in the
previous sections, and define a context change potential as follows.

[339]

Mehrnoosh Sadrzadeh, Reinhard Muskens

Definition 1. For S a sentence in Lccp, ∥S∥ its context change potential,
H(S) the term homomorphic image of S, and c a co-occurrence matrix or
an entity relation cube, we define:

∥S∥(c) := c +′ H(S)
c −H(S) := (c +′ H(S))−1 ,

for +′ the update operation defined on term homomorphisms and −′ its
inverse, defined as follows for matrices.

m11 · · · m1k

m21 · · · m2k...
mn1 · · · mnk

 +′ 〈a, u, v, · · · 〉=

m′11 · · · m′1k
m′21 · · · m′2k...
m′n1 · · · m′nk

for m′i j :=

(
1 mi j = 1

1 mi j = 0
m11 · · · m1k

m21 · · · m2k...
mn1 · · · mnk

 −′ 〈a, u, v, · · · 〉=

m′11 · · · m′1k
m′21 · · · m′2k...
m′n1 · · · m′nk

for m′i j :=

(
0 mi j = 1

0 mi j = 0

The definitions of +′ and −′ for cubes are similar.
The +′ operation updates the co-occurrence matrix in a binary

fashion: if the entry mi j of the matrix has already been updated and
thus has value 1, then a succeeding update will not increase the value
from 1 to 2 but will keep it as 1. Conversely, when the −′ operation
acts on an entry mi j which is already 0, it will not change its value,
but if it acts on a non-zero mi j, that is an mi j which has value 1, it will
decrease it to 0. The procedure is similar for cubes. The resulting ma-
trices and cubes will have binary entries, that is, they will either be 1
or 0. A 1 indicates that at least one occurrence of the roles associated
with the entries has previously been seen in the corpus; a 0 indicates
that none has been seen or that a role and its negation have occurred.

[340]

Lambdas and vectors

Fixing a bijection between the elements [1, n]×[1, k] of our matri-
ces and natural numbers [1, n×k] and between elements [1, n]×[1, k]×
[1, z] of the cubes and natural numbers [1, n×k×z], one can show that
c +′ H(S) is the table of a binary relation in the case of matrices, and
of a ternary relation in the case of cubes. Those entries (i, j) of the
matrices and (i, j, k) of the cubes that have a non-zero entry value are
mapped to an element of the relation. An example of this isomorphism
is shown below for a 2 × 2 matrix:�

1 0
1 1

�
7→

1 2
1 1 0
2 1 1

{(1,1), (2,1), (2, 2)} .

These binary updates can be seen as providing a notion of ‘contextual
truth’, that is, for example, a sentence S is true in a given a context c,
whenever the update resulting from s is already included in the matrix
or cube of its context, i.e. its update is one that does not change c.

As argued in Muskens et al. (1997), the semantics of this logic is
dynamic, in the sense that the context change potential of a sequence
of sentences is obtained by function composition, as follows:

∥S1, . . . , Sn∥(c) := ∥S1∥ ◦ · · · ◦ ∥Sn∥(c) .

Using this dynamic semantics, it is straightforward to show that:
Proposition 1. The context c corresponding to the sequence of sentences
S1, · · · , Sn, is the zero vector updated by that sequence of sentences:

c = ∥S1, . . . , Sn∥(0) ,

where ∥S∥(c) := c +H(S)

c −H(S) := (c +H(S))−1 .

In the case of co-occurrence matrices, c is the co-occurrence ma-
trix and 0 is the zero matrix. In the case of entity relation cubes, c is
the entity relation cube and 0 is the zero cube. We are using the usual
real number addition and subtraction on the mi j and ci jk entries of the
matrices and cubes:

m′i j := mi j + 1 m′i j := mi j − 1

c′i jk := ci jk + 1 c′i jk := ci jk − 1 .

We will refer to a sequence of sentences as a corpus.

[341]

Mehrnoosh Sadrzadeh, Reinhard Muskens

8 admittance of sentences by contexts
The notion of admittance of a sentence by a context was developed by
Karttunen (1974) for presuppositions, and extended by Heim (1983)
for context change potentials. We here define it as follows, for c a
context and ϕ a proposition of Lccp.

context c admits proposition ϕ ⇐⇒ ∥ϕ∥(c) = c

We use this notion and develop a similar notion between a corpus and
a sentence.
Definition 2. A corpus admits a sentence iff the context c (a co-
occurrence matrix or entity relation cube) built from it admits it.

Consider the following corpus:
Cats and dogs are animals that sleep. Cats chase cats and
mice. Dogs chase all animals. Cats like mice, but mice fear
cats, since cats eat mice. Cats smell mice and mice run from
cats.

It admits the following sentences:
Cats are animals.
Dogs are animals.
Cats chase cats.
Cats chase mice.
Dogs chase cats and dogs.

Note that this notion of admittance caters for monotonicity of infer-
ence. For instance, in the above example, from the sentences “Cats
[and dogs] are animals [that sleep]” and “Dogs chase all animals”, we
can infer that the context admits the sentence “Dogs chase cats”.

On the other hand, c does not admit the negation of the above,
for example it does not admit:

(*) Dogs do not chase cats.
(*) Dogs do not chase dogs.

It also does not admit the negations of derivations of the above or
negations of sentences of the corpus, for example, it does not admit:

(*) Cats are not animals.
(*) Dogs do not sleep.

[342]

Lambdas and vectors

The corpus misses a sentence asserting that mice are also animals.
Hence, c does not admit the sentence ‘dogs chase mice’. Some other
sentences that are not admitted by c are as follows:

(*) Cats like dogs.
(*) Cats eat dogs.
(*) Dogs run from cats.
(*) Dogs like mice.
(*) Mice fear dogs.
(*) Dogs eat mice.
One can argue that by binarizing the update operation and us-

ing +′ and −′ rather than the original + and −, we are losing the full
power of distributional semantics. It seems wasteful simply to record
the presence or absence of co-occurrence, rather than build context
matrices by counting co-occurrences. This can be overcome by work-
ing with a pair of contexts: a binarized one and a numerical one. The
binarized context allows a notion of admittance to be defined as be-
fore, and the numerical one allows the use of numerical values, e.g.
the degrees of similarity between words. The notion of word similarity
used in distributional semantics is a direct consequence of the distribu-
tional hypothesis, where words that often occur in the same contexts
have similar meanings (Firth 1957). Various formal notions have been
used to measure the above degree of similarity; amongst the success-
ful ones is the cosine of the angle between the vectors of the words. If
the vectors are normalised to have length 1, which we shall assume,
cosine becomes the same as the dot product of the vectors. One can
then use these degrees of similarity to assign a numerical value to the
admittance relation, e.g. as follows:

A pair of binary and numerical co-occurrence matrices c and
c′ admit a sentence s′ with degree d, if c admits s, and s′ is
obtained from s by replacing a word w of s with a word w′
such that w′ has the same grammatical role in s′ as w in s and
the degree of similarity between w and w′ is d, computed
from the numerical entries of c′.

Here, c admits s, and if there is a word in s that is similar to another
word w′, then if we replace w in s with w′ (keeping the grammatical
role that w had in s), the sentence resulting from this substitution,

[343]

Mehrnoosh Sadrzadeh, Reinhard Muskens
Table 6: The normalised co-occurrence matrix built from the example corpus
with the co-occurrence window taken to be occurrence within the same sentence

1 2 3 4 5 6 7 8
animal sleep chase like fear eat smell run

1- cats 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

2- mice 0 0 1
6

1
6

1
6

1
6

1
6

1
6

3- dogs 1
2

1
4

1
4 0 0 0 0 0

i.e. s′, is also admitted by c, albeit with a degree equal to the degree
of similarity between w and w′. This degree is computed using the
numerical values recorded in c′. The above can be extended to the
case where one replaces more than one word in s with words similar to
them. Then the degree of entailment may be obtained by multiplying
the degrees of similarity of the individually replaced words.

The normalised context matrix of our example corpus above is as
in Table 6, where for simplicity the co-occurrence window is taken to
be “occurrence within the same sentence”.

From the context matrix, one obtains the following degrees of
similarity.

cos(cats,mice) = 6×
�

1
6
× 1

8

�
=

1
8

cos(cats,dogs) =
�

1
2

�
× 2×
�

1
4
× 1

8

�
=

1
32

cos(dogs,mice) =
1
4
× 1

6
=

1
24

The corpus lacks an explicit sentence declaring that mice are also an-
imals. Hence, from the sentences of the corpus, the negation of ‘dogs
chase mice’ follows, which is a wrong entailment in the real world.
This wrong can now be put right, since we can replace the word ‘Cats’
in the admitted sentence ‘Cats are animals’ with ‘Mice’; as we have
cos(cats,mice) = 1

8 , thus obtaining the situation where c admits the
following, both with degree 1

8 :
Mice are animals.
Dogs chase mice.

[344]

Lambdas and vectors

These were not possible before. We also obtain admittance of the fol-
lowing sentences, albeit with a lower degree of 1

24 :
(*) Cats like dogs.
(*) Cats eat dogs.
(*) Dogs run from cats.

Some other examples are as follows, with a still lower degree of 1
32 :

(*) Dogs like mice.
(*) Mice fear dogs.
(*) Dogs eat mice.
Some of the above are as likely as those that were derived with

degree 1
8 . This is because the degrees come from co-occurrences in

corpora, and our corpus is quite limited. One hopes that the bigger the
corpus, the more reflective of the real world it will be. Another way
of improving word-based entailments is by using linguistic resources
such as WordNet, e.g. replacing words with their hypernyms.
8.1 Evaluating on existing entailment datasets
It remains to see if the notion of admittance of a sentence by a context
can be applied to derive entailment relations between sentences. In
future work, we will put this method to the test on inference datasets
such as FraCaS (Cooper et al. 1996), SNLI (Bowman et al. 2015), the
dataset in Zeichner et al. (2012), and the datasets in the RTE challenge.
The FraCaS inferences are logical and the lambda calculus models of
language should help in deriving them. As an example, consider the
fracas-013 test case:

fracas-013 answer: yes
P1 Both leading tenors are excellent.
P2 Leading tenors who are excellent are indispensable.
Q Are both leading tenors indispensable?
H Both leading tenors are indispensable.

In our setting, using the updates resulting from P1 and P2, one can
contextually derive H. In Zeichner et al. (2012), the similarity between
words is also taken into account. An example is the following entail-
ment between two sentences; this entailment was judged to be valid
with confidence by human annotators:

[345]

Mehrnoosh Sadrzadeh, Reinhard Muskens

Parents have great influence on the career development of
their children.
Parents have a powerful influence on the career development
of their children.
We can derive the above with a contextual entailment consist-

ing of a cube updated by just the above two sentences, with the de-
gree of similarity between ‘powerful’ and ‘great’, mined from the co-
occurrence matrix of a large corpus.

Judgements on the SNLI dataset are more tricky, as they rely on
external knowledge. For example, consider the entailment between
the following phrases:

A soccer game with multiple males playing.
Some men are playing a sport.

or the contradiction between the following:
A black race car starts up in front of a crowd of people.
A man is driving down a lonely road.
Deciding these correctly is a challenge for our framework. The

strength of our approach is in deciding whether a set of sentences
follows from a given corpus of texts, rather than in judging entailment
relations between a given pair or triple of sentences. Nevertheless, we
shall try to experiment with all these datasets.

9 conclusion and future directions
We showed how a static interpretation of a lambda calculus model of
natural language provides vector representations for phrases and sen-
tences. Here, the type of the vector of a word depended on its abstract
type, and could be an atomic vector, a matrix, or a cube, or a tensor
of higher rank. Combinations of these vary, based on the tensor rank
of the type of each word involved in the combination. For instance,
one could take the matrix multiplication of the matrix of an intransi-
tive verb with the vector of its subject, whereas for a transitive verb
the sequence of operations was a contraction between the cube of the
verb and the vector of its object, followed by a matrix multiplication
between the resulting matrix and the vector of the subject. A toolkit of
functions needed to perform these operations was defined. This toolkit
can be restated for types of tensors of higher order, such as I2R and I3R,

[346]

Lambdas and vectors

rather than the current IR, to provide a means of combining matrices,
cubes, and their updates, if needed.

We extended the above setting by reasoning about the notion of
context and its update, and developing a dynamic vector interpreta-
tion for the language of lambda terms. Truth conditional and vec-
tor models of language follow two very different philosophies. Vector
models are based on contexts, truth models on denotations. Our first
interpretation was static and based on truth conditions. Our second ap-
proach is based on a dynamic interpretation, where we followed the
context update model of Heim (1983), and hence is deemed the more
appropriate choice. We showed how Heim’s files can be turned into
vector contexts and how her context change potentials can be used to
provide vector interpretations for phrases and sentences. We treated
sentences as Heim’s context change potentials and provided update
instructions for words therein – including quantifiers, negation, and
coordination words. We provided two concrete realisations of con-
texts, i.e. co-occurrence matrices and entity relation cubes, and in each
case detailed how these context update instructions allow contexts to
thread through vector semantics in a compositional manner. With an
eye towards a large-scale empirical evaluation of the model, we de-
fined a notion of ‘contexts admitting sentences’ and degrees thereof
between contexts and sentences, and showed, by means of examples,
how these notions can be used to judge whether a sentence is entailed
by a cube context or by a pair of cube and matrix contexts. A large-
scale empirical evaluation of the model is currently underway.

Our approach is applicable to the lambda terms obtained via other
syntactic models, e.g. CCG, and Lambek grammars, and can also be
modified to develop a vector semantics for LFG. We also aim to work
with other update semantics, such as continuation-based approaches.
One could also have a general formalisation wherein both the static
approach of previous work and the dynamic one of this work cohabit.
This can be achieved by working out a second pair of type-term homo-
morphisms that will also work with Heim’s possible world part of the
contexts. In this setting, the two concepts of meaning: truth theoretic
and contextual, each with its own uses and possibilities, can work in
tandem.

An intuitive connection to fuzzy logic is imaginable, wherein one
interprets the logical words in more sophisticated ways: for instance,

[347]

Mehrnoosh Sadrzadeh, Reinhard Muskens

conjunction and disjunction take max and min of their entries, or add
and subtract them. It may be worth investigating if such connections
add to the applicability of the current model and, if so, make the con-
nection formal.

acknowledgements

We wish to thank the anonymous referees for their very valuable re-
marks. The anonymous referees of a short version of this paper, pre-
sented at LACL 2017, also gave excellent feedback. Carmela Chateau
Smith’s meticulous copy-editing considerably improved the readabil-
ity of the paper and the grammaticality of its phrasing. All remaining
errors are ours. The research for this paper was supported by the Royal
Society International Exchange Award IE161631.

references
Marco Baroni, Raffaella Bernardi, and Roberto Zamparelli (2014), Frege
in space: A program for compositional distributional semantics, Linguistic Issues
in Language Technology, 9:241–346.
Marco Baroni and Roberto Zamparelli (2010), Nouns are vectors, adjectives
are matrices: representing adjective-noun constructions in semantic space, in
Hang Li and Lluìs Màrquez, editors, Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’10, pp. 1183–1193,
Association for Computational Linguistics, Stroudsburg, PA,
http://aclweb.org/anthology/D10-1115.
Johan van Benthem (1986), Essays in Logical Semantics, Studies in Linguistics
and Philosophy 29, Reidel, Dordrecht.
Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher
Manning (2015), A large annotated corpus for learning natural language
inference, in Lluìs Màrquez, Chris Callison-Burch, and Jian Su, editors,
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’15, pp. 632–642, Association for Computational Linguistics,
Stroudsburg, PA, http://aclweb.org/anthology/D15-1075.
Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh (2013),
Lambek vs. Lambek: Functorial vector space semantics and string diagrams for
Lambek calculus, Annals of Pure and Applied Logic, 164(11):1079–1100.
Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark (2010),
Mathematical foundations for distributed compositional model of meaning,
Linguistic Analysis, 36:345–384.

[348]

Lambdas and vectors

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox, Johan
Van Genabith, Jan Jaspars, Hans Kamp, David Milward, Manfred
Pinkal, and Massimo Poesio (1996), Using the framework, Technical Report
LRE 62-051 D-16, The FraCaS Consortium.
Mary Dalrymple, John Lamping, and Vijay Saraswat (1993), LFG
semantics via constraints, in Proceedings of the Sixth Conference on European
Chapter of the Association for Computational Linguistics, EACL ’93, pp. 97–105,
Association for Computational Linguistics, Stroudsburg, PA,
http://aclweb.org/anthology/E93-1013.
John Rupert Firth (1957), A synopsis of linguistic theory, 1930–1955, in
Studies in Linguistic Analysis, pp. 1–32, Blackwell, Oxford.
Edward Grefenstette and Mehrnoosh Sadrzadeh (2015), Concrete models
and empirical evaluations for the categorical compositional distributional
model of meaning, Computational Linguistics, 41:71–118.
Philippe de Groote (2001), Towards abstract categorial grammars, in
Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics and 10th Conference of the European Chapter of the Association for
Computational Linguistics, ACL ’01, pp. 252–259, Association for Computational
Linguistics, Stroudsburg, PA, http://aclweb.org/anthology/P01-1033.
Philippe de Groote (2006), Towards a Montagovian account of dynamics,
Semantics and Linguistic Theory, 16:1–16.
Irene Heim (1983), On the projection problem for presuppositions, in
Proceedings of the Second Annual West Coast Conference on Formal Linguistics,
pp. 114–125, reprinted in Portner and Partee (2002).
Irene Heim and Angelika Kratzer (1998), Semantics in Generative Grammar,
Blackwell textbooks in linguistics, Blackwell, Oxford, ISBN 0-631-19712-5.
Leon Henkin (1950), Completeness in the theory of types, Journal of Symbolic
Logic, 15:81–91.
Nanda Kambhatla (2004), Combining lexical, syntactic, and semantic
features with maximum entropy models for extracting relations, in Proceedings
of the ACL 2004 on Interactive Poster and Demonstration Sessions, ACLdemo ’04,
Association for Computational Linguistics, Stroudsburg, PA,
http://aclweb.org/anthology/P04-3022.
Lauri Karttunen (1974), Presupposition and linguistic context, Theoretical
Linguistics, 1(1–3):182–194.
Ewan Klein and Ivan Sag (1985), Type-driven translation, Linguistics and
Philosophy, 8(2):163–201.
Jayant Krishnamurthy and Tom Mitchell (2013), Vector space semantic
parsing: A framework for compositional vector space models, in Proceedings of

[349]

Mehrnoosh Sadrzadeh, Reinhard Muskens

the 2013 ACL Workshop on Continuous Vector Space Models and their
Compositionality, pp. 1–10, Association for Computational Linguistics,
Stroudsburg, PA, http://aclweb.org/anthology/W13-3201.
Mike Lewis and Mark Steedman (2013), Combined distributional and logical
semantics, Transactions of the Association for Computational Linguistics,
1:179–192, http://aclweb.org/anthology/Q13-1015.
Jean Maillard, Stephen Clark, and Edward Grefenstette (2014), A
type-driven tensor-based semantics for CCG, in Robin Cooper, Simon Dobnik,
Shalom Lappin, and Staffan Larsson, editors, Proceedings of the EACL 2014 on
Type Theory and Natural Language Semantics (TTNLS), pp. 46–54, Association for
Computational Linguistics, Stroudsburg, PA,
http://aclweb.org/anthology/W14-1406.
Jeff Mitchell and Mirella Lapata (2010), Composition in distributional
models of semantics, Cognitive Science, 34(8):1388–1439.
Richard Montague (1974), The proper treatment of quantification in ordinary
English, in Richmond Thomason, editor, Formal Philosophy. Selected Papers of
Richard Montague, pp. 247–270, Yale University Press, New Haven, CT.
Reinhard Muskens (2001), Categorial grammar and lexical-functional
grammar, in Miriam Butt and Tracy Holloway King, editors, Proceedings of the
LFG01 Conference, University of Hong Kong, pp. 259–279, CSLI, Stanford, CA,
http://cslipublications.stanford.edu/LFG/6/lfg01.html.
Reinhard Muskens (2003), Language, lambdas, and logic, in Geert-Jan
Kruijff and Richard Oehrle, editors, Resource-Sensitivity, Binding and
Anaphora, Studies in Linguistics and Philosophy, pp. 23–54, Kluwer, Dordrecht.
Reinhard Muskens (2010), New directions in type-theoretic grammars, Journal
of Logic, Language and Information, 19(2):129–136.
Reinhard Muskens and Mehrnoosh Sadrzadeh (2016a), Context update for
lambdas and vectors, in Maxime Amblard, Philippe De Groote, Sylvain
Pogodalla, and Christian Retoré, editors, Proceedings of the 9th International
Conference on Logical Aspects of Computational Linguistics (LACL 2016), volume
10054 of LNCS, pp. 247–254, Springer-Verlag, Berlin, Heidelberg.
Reinhard Muskens and Mehrnoosh Sadrzadeh (2016b), Lambdas and
vectors, in Workshop on Distributional Semantics and Linguistic Theory (DSALT),
28th European Summer School in Logic, Language and Information (ESSLLI), Free
University of Bozen-Bolzano.
Reinhard Muskens, Johan van Benthem, and Albert Visser (1997),
Dynamics, in Johan van Benthem and Alice ter Meulen, editors, Handbook
of Logic and Language, pp. 587–648, Elsevier.
Barbara Partee (1986), Noun phrase interpretation and type-shifting
principles, in Jeroen Groenendijk, Dick de Jongh, and Martin Stokhof,

[350]

Lambdas and vectors

editors, Studies in Discourse Representation and the Theory of Generalized
Quantifiers, pp. 115–143, Foris, Dordrecht.
Hoifung Poon and Pedro Domingos (2009), Unsupervised semantic parsing,
in Philipp Koehn and Rada Mihalcea, editors, Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing (EMNLP-9):
Volume 1, pp. 1–10, Association for Computational Linguistics, Stroudsburg, PA,
ISBN 978-1-932432-59-6, http://aclweb.org/anthology/D09-1001.
Paul Portner and Barbara Partee (2002), Formal Semantics: The Essential
Readings, Blackwell, Oxford.
Sebastian Riedel, Limin Yao, and Andrew McCallum (2010), Modeling
relations and their mentions without labeled text, in José Luis Balcázar,
Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Proceedings
of the 2010 European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD’10): Part III, volume 6323 of LNAI, pp. 148–163,
Springer-Verlag, Berlin, Heidelberg, ISBN 3-642-15938-9, 978-3-642-15938-1,
http://dl.acm.org/citation.cfm?id=1889788.1889799.
Herbert Rubenstein and John Goodenough (1965), Contextual correlates
of synonymy, Communications of the ACM, 8(10):627–633.
Mark Steedman (2000), The Syntactic Process, MIT Press.
Alfred Tarski (1965), Introduction to Logic and to the Methodology of Deductive
Sciences, Oxford University Press, Oxford, 3rd edition.
Frank Veltman (1996), Defaults in update semantics, Journal of Philosophical
Logic, 25(3):221–261.
Limin Yao, Sebastian Riedel, and Andrew McCallum (2012), Unsupervised
relation discovery with sense disambiguation, in Haizhou Li, Chin-Yew Lin,
Miles Osborne, Gary Geunbae Lee, and Jong C. Park, editors, Proceedings of
the 50th annual meeting of the Association for Computational Linguistics: long
papers – Volume 1, ACL ’12, pp. 712–720, Association for Computational
Linguistics, Stroudsburg, PA, http://aclweb.org/anthology/P12-1075.
Naomi Zeichner, Jonathan Berant, and Ido Dagan (2012), Crowdsourcing
inference-rule evaluation, in Haizhou Li, Chin-Yew Lin, Miles Osborne,
Gary Geunbae Lee, and Jong C. Park, editors, Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short Papers – Volume 2,
ACL ’12, pp. 156–160, Association for Computational Linguistics, Stroudsburg,
PA, http://aclweb.org/anthology/P12-2031.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[351]

A note on movement in logical grammar*

Glyn Morrill
Department of Computer Science, Universitat Politècnica de Catalunya

abstract
Keywords:
covert and overt
movement,
parasitic
extraction,
relativisation,
weak and strong
quantification

In this article, we make some brief remarks on overt and covert move-
ment in logical grammar. With respect to covert movement (e.g. quan-
tification), we observe how a treatment in terms of displacement
calculus interacts with normal modalities for intensionality to allow a
coding in logical grammar of the distinction between weak and strong
quantifiers (i.e. those that may or may not scope nonlocally such as
a and every respectively). With respect to overt movement (e.g. rel-
ativisation), we observe how displacement calculus can support a
coding of a linear filler-gap dependency similar to that employed in
lambda grammars, but we argue that this general approach does not
extend to either the multiplicity nor the island-sensitivity of parasitic
gaps, for which we advocate instead treatment in terms of a bracket-
conditioned contraction subexponential.

1 covert movement: quantification
Montague’s rule S14 of quantification (ignoring pronoun binding) can
be expressed as follows:

∆(N : x) ⇒ S:ω

∆(QP:χ) ⇒ S: (χ λxω)

That is quantifier phrases occupy nominal positions and take semantic
scope at the sentence level, applying to the lambda abstraction of the

*Research partially supported by an ICREA Acadèmia 2012, and by
SGR2014-890 (MACDA) of the Generalitat de Catalunya, and grants APCOM
TIN2014-57226-P and TIN2017-89244-R from MINECO (Ministerio de Econo-
mia, Industria y Competitividad). I am grateful to three reviewers for their valu-
able comments and suggestions.

Journal of Language Modelling Vol 6, No 2 (2018), pp. 353–363

Glyn Morrill

sentence context over the meaning of the nominal position occupied.
Montague’s rule allows any quantifier to take scope at the level of any
superordinate clause, correctly generating, for example, de re and de
dicto readings of:
(1) John thinks a spy sleeps.
But incorrectly overgenerating two readings of e.g.
(2) John thinks every spy sleeps.

In the logical rules of the calculus of Lambek (1958)∆(Γ) signifies
context configuration ∆ with a distinguished subconfiguration Γ :

Γ ⇒ B ∆(C) ⇒ D
/L

∆(C/B, Γ) ⇒ D

Γ , B ⇒ C
/R

Γ ⇒ C/B

Γ ⇒ A ∆(C) ⇒ D \L
∆(Γ , A\C) ⇒ D

A, Γ ⇒ C \R
Γ ⇒ A\C

∆(A, B) ⇒ D •L
∆(A•B) ⇒ D

∆ ⇒ A Γ ⇒ B •R
∆, Γ ⇒ A•B

∆(Λ) ⇒ A
I L

∆(I) ⇒ A
IR

Λ ⇒ I

Here, we allow the metalinguistic empty antecedent Λ, and we have
added the product unit I (such that I•A⇔ A and A⇔ A•I).

Using Lambek’s system requires lexical ambiguity to obtain both
sentence left-peripheral quantification (e.g. Everyone loves Mary) and
right-peripheral quantification (e.g. John loves someone):
(3) a: (S/(N\S))/CN:λxλy∃z[(x z)∧ (y z)]

a: ((S/N)\S)/CN:λxλy∃z[(x z)∧ (y z)]

every: (S/(N\S))/CN:λxλy∀z[(x z)→ (y z)]

every: ((S/N)\S)/CN:λxλy∀z[(x z)→ (y z)]

And would require still further lexical ambiguity for medial quantifi-
cation:
(4) John sent every student to Mary.

[354]

A note on movement

Moot and Retoré (2016) give a counting argument showing that in the
Lambek calculus no finite number of lexical entries can generate all
n! quantifier scoping proofs.

In the Lambek calculus, (\,•,/; ⇒) is a residuated triple:
(5) B ⇒ A\C iff A•B ⇒ C iff A⇒ C/B

The Lambek calculus is a logic of concatenation, with the inference of
the residuated triple {\,•,/} hinging on the metasyntactic concatena-
tive comma “,”. To account also for discontinuity, Morrill et al. (2011)
define the displacement calculus. In the displacement calculus, types
are sorted by naturals according to the number of points of discontinu-
ity their expressions contain. In addition to a residuated triple {\,•,/}
of continuous connectives, there are residuated discontinuous connec-
tives {↓k,⊙k,↑k} for which inference hinges on the metasyntactic in-
tercalation “ |k ” where the positive integer k indicates the point of
discontinuity in question counting from the left (it defaults to 1 under
omission.)

Configurations O are defined by the following (where the separa-
tor 1 marks points of discontinuity):
(6) O ::= Λ | T ,O

T ::= 1 | F0 | Fi>0{O : . . . : O︸ ︷︷ ︸
i O ′s

}

For a type A, its sort s(A) is the i such that A∈ Fi. For a configura-
tion Γ , its sort s(Γ) is |Γ |1, i.e. the number of points of discontinuity 1
which it contains.

Sequents are of the form:
(7) O ⇒ F such that s(O) = s(F)

The figure −→A of a type A is defined by:

(8) −→A =
 A if s(A) = 0

A{1 : . . . : 1︸ ︷︷ ︸
s(A) 1′s

} if s(A)> 0

Where Γ is a configuration of sort i and ∆1, . . . ,∆i are configura-
tions, the fold Γ ⊗〈∆1 : . . . :∆i〉 is the result of replacing the successive
1’s in Γ by∆1, . . . ,∆i respectively. Where Γ is of sort i, the hyperoccur-
rence notation ∆〈Γ 〉 abbreviates ∆0(Γ ⊗ 〈∆1 : . . . : ∆i〉), i.e. a context
configuration∆ (which is externally∆0 and internally∆1, . . . ,∆i) with

[355]

Glyn Morrill

a potentially discontinuous distinguished subconfiguration Γ (contin-
uous if i = 0, discontinuous if i > 0). Where ∆ is a configuration of
sort i > 0 and Γ is a configuration, the kth metalinguistic intercalation
∆ |k Γ , 1≤ k ≤ i, is given by:
(9) ∆ |k Γ =d f ∆⊗ 〈1 : . . . : 1︸ ︷︷ ︸

k−1 1’s
: Γ : 1 : . . . : 1︸ ︷︷ ︸

i−k 1’s
〉

That is ∆ |k Γ is the configuration resulting from replacing by Γ the kth
separator in ∆.

The logical rules of the displacement calculus are as follows,
where as we have said ∆〈Γ 〉 signifies a configuration ∆ with a poten-
tially discontinuous distinguished subconfiguration Γ :

Γ ⇒ B ∆〈−→C 〉 ⇒ D
/L

∆〈−−→C/B, Γ 〉 ⇒ D

Γ ,
−→
B ⇒ C

/R
Γ ⇒ C/B

Γ ⇒ A ∆〈−→C 〉 ⇒ D \L
∆〈Γ ,−−→A\C〉 ⇒ D

−→
A , Γ ⇒ C \R
Γ ⇒ A\C

∆〈−→A ,
−→
B 〉 ⇒ D •L

∆〈−−→A•B〉 ⇒ D

∆ ⇒ A Γ ⇒ B •R
∆, Γ ⇒ A•B

∆〈Λ〉 ⇒ A
I L

∆〈−→I 〉 ⇒ A
IR

Λ ⇒ I

Γ ⇒ B ∆〈−→C 〉 ⇒ D ↑k L
∆〈−−−→C↑kB |k Γ 〉 ⇒ D

Γ |k−→B ⇒ C ↑kR
Γ ⇒ C↑kB

Γ ⇒ A ∆〈−→C 〉 ⇒ D ↓k L
∆〈Γ |k−−−→A↓kC〉 ⇒ D

−→
A |k Γ ⇒ C ↓kR
Γ ⇒ A↓kC

∆〈−→A |k−→B 〉 ⇒ D ⊙k L
∆〈−−−→A⊙kB〉 ⇒ D

∆ ⇒ A Γ ⇒ B ⊙kR
∆ |k Γ ⇒ A⊙kB

∆〈1〉 ⇒ A
J L

∆〈−→J 〉 ⇒ A
JR

1 ⇒ J

[356]

A note on movement

Ξ〈−→A : x〉 ⇒ B:ψ
□L

Ξ〈−→□A: z〉 ⇒ B:ψ{∨z/x}
□×Ξ ⇒ A:ϕ

□R
□×Ξ ⇒ □A:∧ϕ

Ξ〈−→A : x〉 ⇒ B:ψ
■L

Ξ〈−→■A: x〉 ⇒ B:ψ

□×Ξ ⇒ A:ϕ
■R

□×Ξ ⇒ ■A:ϕ

Figure 1:
Normal modalities, where
□× marks a structure all the
types of which have main
connective a box

Then for all of left-peripheral and right-peripheral and medial
quantification à la Montague we require just single type assignments:

(10) a: ((S↑N)↓S)/CN:λxλy∃z[(x z)∧ (y z)]

every: ((S↑N)↓S)/CN:λxλy∀z[(x z)→ (y z)]

Hence the rule of S14 is lexicalised in a single lexical type.
Morrill (1990) and Hepple (1990) invoke semantically active (□)

and inactive (■) normal modalities respectively for grammatical do-
mains. These are normal (i.e. distributive) S4 modalities; the former
for semantic, e.g. intensional or temporal, domains, and the latter
for syntactic domains. Morrill (2015) combines these as shown in
Figure 1. Adding these to displacement calculus we can approach the
capture of clause-locality invoking sensitivity to intensionality:

(11) a:■(((S↑■N)↓S)/CN):λxλy∃z[(x z)∧ (y z)]

every:■(((S↑N)↓S)/CN):λxλy∀z[(x z)→ (y z)]

John:■N : j
sleep:□(N\S): sleep
spy:□CN: spy
thinks:□((N\S)/□S): think

A subordinate clause such as the complement of thinks is an intensional
domain □S and thus requires its elements to be modal at the moment
of □ proof. There is no problem when either a or every scopes locally
within an intensional domain such as the complement clause of thinks
since their lexical types, like all lexical types, are modal. But while the
hypothetical subtype ■N of a bears a modality, that N of every does
not, and so only the former can take wide scope out of its intensional
domain.

[357]

Glyn Morrill

2 overt movement: relativisation

In the ACG of de Groote (2001) or Lambda Grammar of Muskens
(2001b) a relative pronoun is assigned type:

λρλσ.σ+that+(ρ 0): (N−◦S)−◦CN−◦CN:λxλyλz[(y z)∧ (x z)]

But ACG has the KLM problem; see Muskens (2001a); Kubota (2010);
Kubota and Levine (2012); Moot (2014); and Kubota and Levine
(2015), section 4.1.2, whereby the nondirectional dependents of an
argument to a higher order functor can commute. This is because
⊢ A−◦B−◦C ⇒ B−◦A−◦C . For example, in TV coordination the natural
seeming translation of Lambek coordination would be to assign the
coordinator type:
λρ2λρ1λβλα.α+(ρ1 0 0)+and+(ρ2 0 0)+β: X−◦X−◦X ,

where X = N−◦N−◦S
Then
(12) John saw and praised Mary.
gets assigned the following readings which are all incorrect except the
first:
(13) “J saw M and J praised M”

“J saw M and M praised J”
“M saw J and J praised M”
“M saw J and M praised J”

The more general point is that all alternative terms overgenerate as
well, which is argued in Moot (2014).

In HTLG (Kubota and Levine 2012) there are both directional
Lambek connectives for continuity and a nondirectional linear connec-
tive for discontinuity. The KLM problem above is evaded by assigning
a TV coordinator the directed type:

and: (X\X)/X , where X = (N\S)/N
But directional (concatenative) and nondirectional (functional) types
cannot freely interweave in HTLG: interpreting concatenation as func-
tion composition only makes sense for functions from string position

[358]

A note on movement

to string position (i.e. simple strings) and not for more complex func-
tions; other things being equal, directed types cannot contain nondi-
rectional subtypes. Thus, other things being equal, the assignment of
a relative pronoun on the pattern of that above for lambda grammar
must be:

that: (CN\CN)↾(S↾N):λxλyλz[(y z)∧ (x z)]

with an outermost nondirectional slash because the argument has a
nondirectional slash to allow medial extraction. But this means there
is a potential KLM problem for the ↾(S↾N) argument. For example, to
generate the following we require or: (X ↾X)↾X , where X = CN↾(S↾N):
(14) animal that or person who John saw today
However, the same types overgenerate the following, where the right
node raised S↾N is medial in one or both of the disjuncts.
(15) a. *animal that outside or person who John saw today

b. *animal that or person who inside John saw today
c. *animal that outside or person who inside John saw today

In response to this, Yusuke Kubota (personal communication) sug-
gests that a relative pronoun be assigned type

that: (CN\CN)/̂ (S↾N):λxλyλz[(y z)∧ (x z)]

where ˆ is the defined connective “bridge” of displacement calculus.
That is, in this case the KLM problem would be resolved through the
use of an additional connective; however, note that while this use is
motivated by a desire to correct empirical predictions, it is a techni-
cally anomalous addition to HTLG.

In determiner gapping in HTLG, see Kubota and Levine (2013)
and Kubota and Levine (2016), there is a further remnant KLM prob-
lem (Kubota, personal communication):
(16) a. Most cats like Alpo and (most) dogs (like) Whiskas.

b. I like most cats and you (like) (most) dogs.
λρ2λρ1λϕλσ.((ρ1 ϕ) σ)+and+((ρ2 λχλψ(ψ χ)) 0): (X ↾X)↾X ,

where X = (S↾TV)↾Q
This overgenerates the following, where the determiner and the tran-
sitive verb orders are not consistent in the conjuncts:

[359]

Glyn Morrill

(17) *Most cats like Alpo and John (likes) (most) dogs.
(18) *John likes most dogs and (most) cats (like) Alpo.
This overgeneration arises because the left-to-right positions of the
two discontinuous dependencies are not identified. For an account
of gapping that includes determiner gapping without this problem,
in terms of a version of displacement calculus, see Morrill and Va-
lentín (2017); that formulation evades the overgeneration because in
displacement calculus the discontinuous dependents are indexed for
left-to-right position, allowing the parallel grammatical determiner
gapping of (16) but not the nonparallel ungrammatical cases (17)
and (18).

In displacement calculus, a relative pronoun can be assigned type:

that: (CN\CN)/((S↑N)⊙I):λxλyλz[(y z)∧ (π1 x z)]

or
that: (CN\CN)/̂ (S↑N):λxλyλz[(y z)∧ (x z)]

There is no KLM problem of any kind. However, we offer two reasons
to question any use of a discontinuous linear operator for relativisa-
tion.

First, let us observe that using displacement operators for both
quantification and relativisation risks running into an inconsistency.
This is as follows: on the one hand, quantifiers must be allowed to
scope out of, for example, subjects, which are (weak) islands, so to
treat quantification, displacement must be able to penetrate islands.
But then, on the other hand, the linear proposal for relativisation
above will fail to be sensitive to islands.

Second, nor do the linear proposals above take into account par-
asitic extraction:
(19) man that the friends of admire
Therefore, we suggest treatment of the mediality of extraction and
the potential for parasitic extraction not via an island-insensitive
discontinuous linear implication, but via a permutation and island-
conditioned contraction (but not weakening) subexponential; see Fig-
ure 2 which uses a stoup, as in Girard (2011), to store the structurally
modalised resources; this formulation is essentially like that of Mor-

[360]

A note on movement

Ξ(ζ⊎{A: x}; Γ1, Γ2) ⇒ B:ψ
!L

Ξ(ζ; Γ1, !A: x , Γ2) ⇒ B:ψ

!A⇒ B:ϕ
!R

!A⇒ !B:ϕ

Ξ(ζ; Γ1, A: x , Γ2) ⇒ B:ψ
!P

Ξ(ζ⊎{A: x}; Γ1, Γ2) ⇒ B:ψ

Ξ(ζ⊎{A: x}; Γ1, [{A: y}; Γ2], Γ3) ⇒ B:ψ
!Cbb

Ξ(ζ⊎{A: x}; Γ1, [[Γ2]], Γ3) ⇒ B:ψ{x/y}

Figure 2:
Exponentials

rill (2011) in that parasitic domains must be doubly bracketed in the
linguistic input.1

A relative pronoun is to bear the permutation and bracket-condi-
tioned contraction subexponential on its hypothetical subtype:

that: (CN\CN)/(!N\S):λxλyλz[(y z)∧ (x z)]

When this subtype has been lowered into the antecedent, it can be
moved into the local stoup by !L; then it can be copied into the stoups
of any number of (doubly bracketed) parasitic domains by !Cbb; then it
can be moved into any local host position by !P. The stoup contents of
the parasitic domains can themselves be copied into the stoups of any
number of doubly bracketed parasitic subdomains !Cbb and so forth,
and then into local subhost positions by !P.

The bracket conditioning of contraction ensures that parasitic
gaps can only appear within singly bracket modalized islands, hosted
by a non-island gap; a discontinuous linear operator can deliver nei-
ther such multiple binding nor such island-conditioning.

1And the formulation stands in contrast to Morrill (2017) which has the
contraction rule without brackets in the linguistic input:

Ξ(ζ⊎{A: x}; Γ1, [{A: y}; Γ2], Γ3) ⇒ B:ψ
!Cb

Ξ(ζ⊎{A: x}; Γ1, Γ2, Γ3) ⇒ B:ψ{x/y}
which gives rise to undecidability as shown in Kanovich et al. (2017), and which
furthermore overgenerates parasitic extraction in which a whole island domain
is a parasitic gap, such as the subject island in the example:

*man that likes
which counterexample is due to Stepan Kuznetsov (personal communication).

[361]

Glyn Morrill

The resulting picture, then, is one in which displacement calculus
is used to characterise the covert movement of quantification, includ-
ing employment of semantic modalities for the distinction between
strong and weak quantifiers, but in which an exponential modality
rather than a discontinuous linear operator is used for the overt move-
ment of relativisation, for the reasons given above.

references
Philippe de Groote (2001), Towards Abstract Categorial Grammars, in
Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics (ACL), Toulouse.
Jean-Yves Girard (2011), The Blind Spot, European Mathematical Society,
Zürich.
Mark Hepple (1990), The Grammar and Processing of Order and Dependency,
Ph.D. thesis, University of Edinburgh.
Max Kanovich, Stepan Kuznetsov, and Andre Scedrov (2017),
Undecidability of the Lambek calculus with subexponential and bracket
modalities, in Proc. FCT, volume 10472 of LNCS, pp. 326–340.
Yusuke Kubota (2010), (In)flexibility of Constituency in Japanese in Multi-Modal
Categorial Grammar with Structured Phonology, Ph.D. thesis, Ohio State
University.
Yusuke Kubota and Robert Levine (2012), Gapping as Like-Category
Coordination, in Denis Bechet and Alexander Dikovsky, editors, Logical
Aspects of Computational Linguistics, volume 7351 of Lecture Notes in Computer
Science, pp. 135–150, Springer Berlin Heidelberg, ISBN 978-3-642-31261-8,
http://dx.doi.org/10.1007/978-3-642-31262-5_9.
Yusuke Kubota and Robert Levine (2013), Determiner Gapping as
Higher-Order Discontinuous Constituency, in Glyn Morrill and Mark-Jan
Nederhof, editors, Formal Grammar: 17th and 18th International Conferences,
FG 2012, Opole, Poland, August 2012, Revised Selected Papers, FG 2013,
Düsseldorf, Germany, August 2013. Proceedings, pp. 225–241, Springer, Berlin,
Heidelberg, doi:10.1007/978-3-642-39998-5_14.
Yusuke Kubota and Robert Levine (2015), Against ellipsis: Arguments for the
direct licensing of ‘non-canonical’ coordinations, Linguistics and Philosophy,
38(6):521–576, doi:10.1007/s10988-015-9179-7.
Yusuke Kubota and Robert Levine (2016), Gapping as hypothetical
reasoning, Natural Language and Linguistic Theory, 34(1):107–156.
Joachim Lambek (1958), The mathematics of sentence structure, American
Mathematical Monthly, 65:154–170, doi:10.2307/2310058.

[362]

A note on movement

Richard Moot (2014), Hybrid Type-Logical Grammars, First-Order Linear
Logic and the Descriptive Inadequacy of Lambda Grammars, Technical report,
LaBRI (CNRS), Bordeaux University.
Richard Moot and Christian Retoré (2016), Natural Language Semantics and
Computability, https://arxiv.org/pdf/1605.04122.pdf.
Glyn Morrill (1990), Intensionality and Boundedness, Linguistics and
Philosophy, 13(6):699–726.
Glyn Morrill (2015), Structural Ambiguity in Montague Grammar and
Categorial Grammar, The Linguistic Review, 32(1):87–113,
doi:10.1515/tlr-2014-0017.
Glyn Morrill (2017), Grammar Logicised: Relativisation, Linguistics and
Philosophy, 40(2):119–163, doi:10.1007/s10988-016-9197-0, open access.
Glyn Morrill and Oriol Valentín (2017), A Reply to Kubota and Levine on
Gapping, Natural Language and Linguistic Theory, 35(1):257–270,
doi:10.1007/s11049-016-9336-x.
Glyn Morrill, Oriol Valentín, and Mario Fadda (2011), The Displacement
Calculus, Journal of Logic, Language and Information, 20(1):1–48,
doi:10.1007/s10849-010-9129-2.
Glyn V. Morrill (2011), Categorial Grammar: Logical Syntax, Semantics, and
Processing, Oxford University Press, New York and Oxford.
Reinhard Muskens (2001a), Categorial Grammar and Lexical-Functional
Grammar, in Proceedings of the LFG01 Conference, pp. 259–279, University of
Hong Kong.
Reinhard Muskens (2001b), Lambda Grammars and the Syntax-Semantics
Interface, in R. van Rooy and M. Stokhof, editors, Proceedings of the
Thirteenth Amsterdam Colloquium, pp. 150–155, Amsterdam.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[363]

external reviewers 2016 2018

The mainstay of any peer-reviewed journal are its reviewers, and JLM
is no exception here. Each paper is reviewed by at least 3 carefully se-
lected reviewers, including at least one representing the JLM Editorial
Board. To increase reviewing anonimity, we do not give the names of
the 32 JLM EB reviewers, but we would like to heartily thank them
for their hard and timely work. We also express our sincere gratitude
to the following 117 external reviewers for papers reviewed during
2016–2018:

Afra Alishahi
Tilburg University
Daniel Altshuler
Hampshire College
Doug Arnold
University of Essex
Mark Baker
Rutgers University;
The State University of New Jersey
Emily Bender
University of Washington
Alexandra Birch
University of Edinburgh
Henrik Björklund
Umeå Universitet
James Blevins
University of Cambridge
Paul Boersma
Universiteit van Amsterdam
Johan Bos
Rijksuniversiteit Groningen
Katarzyna Budzyńska
Instytut Filozofii i Socjologii PAN
Dylan Bumford
New York University
Milos Cernak
IEEE

Lucas Champollion
New York University
Stergios Chatzikyriakidis
Göteborgs Universitet
Khalid Choukri
European Langauge Resources
Association
Alexander Clark
King’s College London
Robin Cooper
Göteborgs Universitet
Ann Copestake
University of Cambridge
Berthold Crysmann
CNRS;
Université Paris 7 Denis Diderot
Natalie DelBusso
Rutgers University
Simon Dobnik
Göteborgs Universitet
Anaïd Donabedian
Institut National des Langues
et Civilisations
Katrin Erk
University of Texas at Austin
Christiane Fellbaum
Princeton University

[365]

Edward Flemming
Massachusetts Institute of Technology
Sean Fulop
California State University Fresno
Nina Gierasimczuk
Universiteit van Amsterdam
Carlos Gomez-Rodriguez
Universidade da Coruña
Thomas Graf
Stony Brook Univiersty
John Hale
Cornell University
Thomas Hanneforth
Universität Potsdam
Daniel Harbour
Queen Mary University of London
Petter Haugereid
Universitetet i Bergen
Jules Hedges
University of Oxford
Aurelie Herbelot
University of Cambridge; Universitat
Pompeu Fabra in Barcelona
Mans Hulden
University of Colorado
Adam Jardine
Rutgers University
Bryan Jurish
Berlin-Brandenburgische Akademie
der Wissenschaften
Sylvain Kahane
Université Paris Ouest – Nanterre
Simin Karimi
University of Arizona
Maciej Karpiński
Uniwersytet im. Adama Mickiewicza

Dimitrios Kartsaklis
Queen Mary University of London
Andre Kempe
Nuance Communications, Germany
Elma Kerz
Aachen University
Ezra Keshet
University of Michigan
Anna Kibort
University of Oxford
Katarzyna Klessa
Uniwersytet im. Adama Mickiewicza
Gregory Kobele
Universität Leipzig
Jacek Koronacki
Instytut Podstaw Informatyki PAN
Katarzyna Krasnowska
Instytut Podstaw Informatyki PAN
Yusuke Kubota
University of Tsukuba
Marco Kuhlmann
Linköpings Universitet
Daniel Lassiter
Stanford University
Lothar Lemnitzer
Berlin-Brandenburgische Akademie
der Wissenschaften
Robert Levine
Ohio State University
Hans-Heinrich Lieb
Freie Universität Berlin
John Lowe
University of Oxford
Zhaohui Luo
Royal Holloway, University of London
Veronika Lux-Pogodalla
ATILF CNRS

[366]

Andreas Maletti
Universität Stuttgart
Francesco Mambrini
Deutsches Archäologisches Institut,
Berlin Zentrale
Louise McNally
Universitat Pompeu Fabra
Chiara Melloni
Università degli Studi di Verona
Nazarre Merchant
Eckerd College
Paola Merlo
University of Geneva
Jens Michaelis
Universität Bielefeld
Marcin Miłkowski
Instytut Filozofii i Socjologii PAN
Richard Moot
CNRS; LIRMM;
Université de Montpellier
Lawrence Moss
Indiana University
Reinhard Muskens
Tilburg University
Günter Neumann
Deutsches Forschungszentrum
für Künstliche Intelligenz
Garrett Nicolai
University of Alberta
Wojciech Niemiro
Uniwesytet Warszawski
Denis Paperno
University of California, Los Angeles
Michal Peliš
Univerzita Karlova;
Filosofický ústav akademie věd ČR
Katya Pertsova
University of Carolina at Chapel Hill

Miriam R.L. Petruck
International Computer Science
Institute
Sylvain Pogodalla
INRIA Nancy-Grand Est;
Université de Lorraine; CNRS
Carl Pollard
Ohio State University
Laurette Pretorius
University of South Africa
Piotr Przybyła
University of Manchester
Daniel Quernheim
Universität Stuttgart
Livy Real
IBM research Sao Paolo
Christian Retoré
Université de Montpellier
Frank M. Richter
Universität Frankfurt
Laura Rimell
University of Cambridge
Serge Rosmorduc
Conservatoire National des Arts
et Métiers
Anna Rumshisky
University of Massachusetts Lowell
Josef Ruppenhofer
Institut für Deutsche Sprache
Jan Rybicki
Uniwersytet Jagieloński
Mehrnoosh Sadrzadeh
Queen Mary University of London
Benoît Sagot
INRIA; Université Paris 7
Sylvain Salvati
INRIA

[367]

Uli Sauerland
Leibniz-Zentrum Allgemeine
Sprachwissenschaft
Helmut Schmid
Ludwig-Maximilians-Universität
München
Richard Sproat
Google
Miloš Stanojević
University of Edinburgh
Jakub Szymanik
Universiteit van Amsterdam
Julia Taylor Rayz
Purdue University;
Purdue Polytechnic Institute
Ida Toivonen
Carleton University
Oriol Valentín
Universitat Politècnica de Catalunya
Menno Van Zaanen
Universiteit van Tilburg
Cristina Vertan
Universität Hamburg
Laure Vieu
Universite Paul Sabatier

Jürgen Wedekind
Københavns Universitet
Gijs Wijnholds
Queen Mary University of London
Alexander Williams
University of Maryland
Andrzej Wiśniewski
Uniwersytet im. Adama Mickiewicza
Jacek Witkoś
Uniwersytet im. Adama Mickiewicza
Alina Wróblewska
Instytut Podstaw Informatyki PAN
Leszek Wroński
Uniwersytet Jagielloński
Christian Wurm
Heinrich-Heine-Universität Düsseldorf
Anssi Yli-Jyrä
University of Helsinki
Annie Zaenen
Stanford University
Sina Zarrieß
Bielefeld University
Hendrik Zeevat
Universiteit van Amsterdam

