
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ð ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ð ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
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Introduction to the special issue
on simplicity in grammar learning

Roni Katzir1, Timoth J. O’Donnell2, and Ezer Rasin1
1 Tel Aviv University
2 McGill University

Simplicity has long been central to philosophy of science, at least
in the sense that all things being equal, a more parsimonious theory
is better than a more complex one. In modern linguistics simplicity
has played a particularly prominent role, with explicit discussion in
Chomsky 1951, 1965, Halle 1962, Chomsky and Halle 1968, andmuch
subsequent work. The prominence of simplicity in linguistic theory re-
flects the importance of learning in this domain: children acquiring a
language must choose between many different grammars compatible
with the input data, and an intriguing possibility is that their choice,
perhaps like that of the scientist, is affected by considerations of sim-
plicity.

The present special issue considers the place of simplicity in
grammar learning, focusing on recent computational and theoreti-
cal linguistic work but very much building on earlier foundations. In
addition to discussing the use of simplicity, the papers in this collec-
tion touch on some of the challenges involved in turning simplicity
from a guiding intuition into a concrete tool. For example, to what
extent would such a tool be limited by the observation that simplicity
is always stated with respect to a specific frame of reference? Which,
if any, of the various notions of simplicity that have been proposed
could support successful grammar learning, and would such a notion
adequately model how children generalize from the primary linguis-
tic data? Do observed typological generalizations regarding simplicity
in linguistic systems arise from general considerations of stability of
simple grammars under repeated iterations of learning across gener-
ations, or is there (also) a direct pressure for simplicity? Our hope is
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that the papers in this issue both advance the understanding of these
questions and serve as an invitation to debate them further.

The paper by Chomsky discusses a fundamental observation in
treatments of simplicity: that simplicity must always be stated with
respect to a concrete frame of reference. This observation highlights
an arbitrariness or subjectivity that might be seen as an obstacle to
the scientific use of simplicity. A striking insight of early generative
grammar, however, was that in the hands of the cognitive scientist
this frame-dependence is in fact an asset rather than a liability. In
particular, the very dependence on a frame of reference that makes
simplicity subjective also makes it possible to reason from typolog-
ical and acquisitional generalizations to underlying representational
frameworks, providing evidence for those frameworks that make the
observed generalizations simple. The paper situates several major the-
oretical developments in generative linguistics – ranging from early
work to very recent additions, and including theorizing about the evo-
lution of universal grammar itself – within the context of simplicity-
based considerations.

The paper by Rasin, Berger, Lan, Shefi, and Katzir discusses the
right notion of simplicity for grammar learning in light of different no-
tions that have been proposed in the literature. In particular, it con-
siders both grammar simplicity, as in the evaluation metric of early
generative grammar, and simplicity of describing the data, which is
closely related to the Subset Principle and to Maximum Likelihood
approaches. The paper concludes that neither notion is adequate on
its own but that a notion that combines them in a certain way – as
in Solomonoff’s theory of induction, Kolmogorov Complexity, and the
principle of Minimum Description Length (MDL) – is adequate and
could provide the child with a criterion for comparing hypotheses that
seems to match linguistic intuitions in various cases. It illustrates the
use of this criterion with an implemented MDL learner for phonolog-
ical rule systems, reporting simulation results on small corpora that
present well-known morpho-phonological challenges from the litera-
ture.

The paper by Prickett takes a different perspective on simplicity
and grammar learning by associating complexity with layers in the
hierarchy of formal languages. The paper considers evidence from ex-
periments of artificial grammar learning that suggests a bias for hy-
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potheses that reside on lower rungs of the hierarchy over hypotheses
that are higher and require greater weak generative power. The paper
provides evidence that the implicit learning bias of a specific recurrent
neural network is compatible with this kind of preference.

The paper by Johnson, Gao, Smith, Rabagliati, and Culbertson
looks at simplicity in morphological paradigms in light of a distinc-
tion due to Ackerman and Malouf (2013) between e(numerative) and
i(ntegrative) complexity. E-complexity tracks the number of surface
distinctions in a paradigm and varies greatly across paradigms. I-com-
plexity is a measure of how predictable the elements of a paradigm
are from the form of a representative element and has been argued
by Ackerman and Malouf to be consistently low across paradigms. As
Ackerman and Malouf note, the typological generalization might be
related to learning, though this relation could in principle be indirect
and arise from the fact that predictable paradigms might be more sta-
ble to intergenerational transmission than unpredictable paradigms.
Using both an artificial grammar learning experiment and simulations
with RNNs, and using specific information-theoretic formulations of
e- and i-complexity, Johnson et al. ask whether there is a more direct
learning preference for simpler paradigms. They indeed report such
a preference but conclude that it is greater for the typologically vari-
able e-complexity than for the typologically stable i-complexity. They
also explore the relation between the two notions of complexity across
artificially-generated paradigms and find an inverse relation between
the two.

The final paper in this special issue, by Lambert, Rawski, and
Heinz, looks at grammar learning through the prism of yet another
notion of complexity: that of resource (specifically, space and time)
complexity. The paper provides a systematic exploration of represen-
tations and learning algorithms that vary in terms of their resource
complexity, drawing a connection between the possible combinations
of representations and algorithms on the one hand and the subregular
hierarchy in phonological typology (Heinz and subsequent work) on
the other hand.

[ 3 ]
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Simplicity and the form of grammars

Noam Chomsky
Massachusetts Institute of Technology

University of Arizona

ABSTRACT
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The goal of theory construction is explanation: for language, theory
for particular languages (grammar) and for the faculty of language FoL
(the innate endowment for language acquisition). A primitive notion
of simplicity of grammars is number of symbols, but this is too crude.
An improved measure distinguishes grammars that capture genuine
properties of language from those that do not. The theory of FoL must
meet the empirical conditions of learnability (under extreme poverty
of stimulus), and evolvability (given the limited but not insignificant
evidence available). Recent work provides promising insights into how
these twin conditions may be satisfied.

There is a close relation between the two concepts in the title –
which also happens to be the title of the first talk I gave as a gradu-
ate student and the topic of my first paperMorphophonemics of Modern
Hebrew (MMH; Chomsky 1949/1951)1 – concerns that have remained
salient for me to the present. The relation becomes clear when we con-
sider the goals of the theory of language. Pursuing the relation more

1An improved 1951 version was published in 1979. I bring up this text, a
student paper not intended for publication, because it is the first extensive study
of these topics, and the last at any such level of detail. It soon became obvious
that the effort was far too ambitious though the general concerns persisted in new
forms, even some of the measures of simplicity outlined, as discussed below.

Journal of Language Modelling Vol 9, No 1 (2021), pp. 5–15



Noam Chomsky

closely gives a good deal of insight into the nature and development
of linguistic theory, and also provides a more principled basis for ele-
ments of common practice.

As in other domains, the primary goal of theories of language is
to explain in the best way the data that constitute the subject matter
of the theory, along with determining just what is the relevant subject
matter.2 The concept “best way” is traditionally (and plausibly) un-
derstood in terms of simplicity/economy. And when spelled out, these
notions are necessarily relative to the formal nature of the system un-
der consideration.

In his investigations of these topics, Nelson Goodman – with
whom I was studying at the time – observed that “The motives for
seeking economy in the basis of a system are much the same as the
motives for constructing the system itself ”; “To seek truth is to seek a
true system, and to seek system at all is to seek simplicity” (Goodman
1943, 1955).

From a somewhat different perspective, Herman Weyl drew es-
sentially the same conclusions: “The assertion that nature is gov-
erned by strict laws is devoid of all content if we do not add the
statement that it is governed by mathematically simple laws… That
the notion of law becomes empty when an arbitrary complication
is permitted was already pointed out by Leibniz in his Metaphysi-
cal Treatise… The astonishing thing is not that there exist natural
laws, but that the further the analysis proceeds…, the finer the ele-
ments to which the phenomena are reduced, the simpler – and not
the more complicated, as one would originally expect – the fun-
damental relations become and the more exactly do they describe
the actual occurrences” (Weyl 1932, cited by Roberts and Watumull
2015).

In a similar vein, Galileo held that nature is simple and it is the
task of the scientist to demonstrate that in particular cases – a quasi-
empirical claim, but so powerfully verified over the centuries that it
is fair to adopt the precept.

There are many similar observations by distinguished figures, for
good reasons. If we are serious about linguistic theory we can hardly

2Not given a priori. Just what constitutes a language L is in part a matter of
decision. What data belong to L is theory-driven, a familiar matter.
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ignore the question of finding a way to measure its simplicity, which
will, transparently, depend on the form it assumes.

For language, there is an additional reason to suppose that the
basic system is quite simple. There is mounting evidence that the
core elements of the faculty of language (FoL) emerged pretty much
along with modern humans and haven’t changed since, hence emerged
rather suddenly in evolutionary time (Berwick and Chomsky 2016;
Huybregts 2017). If so, one would expect that they would have as-
sumed a simple form.

The task of finding the simplest theory for language is posed at
two levels: for the theory of each language (its grammar), and for
the theory of FoL (UG, in contemporary terminology). FoL provides
the framework within which each language develops much as the
general faculty of human vision does for each individual visual sys-
tem, allowing considerable variation as classic experimental work
has shown. FoL must satisfy at least what has been called the Ba-
sic Property of language: it must provide mechanisms for a language
to generate an unbounded array of hierarchically structured expres-
sions in a form that can be interpreted at two interfaces with exter-
nal systems, at the conceptual-intentional level CI for expression of
thought and at the sensorymotor level SM for externalization in some
medium, typically sound. There are important asymmetries to which
we return.

More generally, UG must satisfy the condition of “explanatory
adequacy,” answering the question how a particular language can in
principle be acquired from the data available (Chomsky 1965). To do
so, UG must specify the “search space,” the class of possible languages
PL, along with a selection procedure SP that selects the correct gram-
mar (or set of grammars) for each language given relevant data.

These conditions become far more restrictive if we take a lan-
guage to be a property of the organism in accord with the “Biolinguis-
tic Program” BL, Massimo Piattelli-Palmarini’s term for the evolving
discipline.3 This was a departure from standard views,4 and partially
remains so. While sometimes regarded as contentious, it seems to
me that the legitimacy of the BL approach is obvious to the point of

3 Ibid. Lenneberg (1967), the classic exposition.
4For a sample, see Chomsky (2013).
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truism.5 If so, adoption of it raises no issue of substance but only one
of decision as to which concept of language we choose to consider, so
we can put it aside.

Adopting BL, explanatory adequacy requires the further condition
that PL-SP be feasible. They must provide a realistic abstract account
of language acquisition on the basis of the Primary Linguistic Data. In
particular, they must account for the huge gap between the data avail-
able and what the child knows. It was recognized from the early days
of work on generative grammar that this problem of Poverty of Stim-
ulus is enormous, and later investigations of what is known by a very
young child along with statistical study of the sparsity of data avail-
able have revealed that the problem is far more severe even than what
had been assumed.6 Accordingly, PL-SP must be sharply constrained.

Whether our concern is feasibility and BL or the weaker notion
of just explanation, the next problem is to spell out what we mean
by “simplicity.” For Goodman (1943), as the quote above indicates,
the answer reduced (mainly) to minimal number of primitives as the
basis for the constructional system under consideration. MMH was an
attempt to explore these ideas over a broader range. Language pro-
vides interesting cases, and the subject matter for MMH was a natu-
ral choice: the data are readily available and sufficiently intricate to
require richer notions of simplicity. Much richer, it became clear as
study of the dual problems of theory construction for language pro-
ceeded.

The form of grammars in MMH is a system of rewriting rules with
the conventional interpretation: the rule X → Y maps AXB to AYB.7
Exploring ways to measure simplicity, we can begin with the most
obvious idea: take SP to rank grammars by the number of symbols they
contain. While that seems a natural measure, it quickly becomes clear
that it is seriously inadequate. One reason is that the measure does

5Further, I think it can be argued that other concepts tacitly presuppose it.
6See Yang et al. 2017.
7MMH included a rudimentary syntax with optional unordered rules (ba-

sically what became phrase structure grammar) and a complex morphophone-
mics – part of externalization in current terms – with obligatory ordered
rules. The reasons for such distinctions only became clear much later; see
below.

[ 8 ]



Simplicity and the form of grammars

not distinguish between rule systems that express legitimate linguistic
generalizations from others that do not do so.8

Suppose for example that we have the rule sets (1), (1′):
(1) a. X→ YWB

b. X→ YW
(1′) a. X→ BWY

b. X→ YW
(1) expresses an expected configuration: B is optional in the con-

text YW .9 (1′) in contrast expresses no legitimate generalization.
But the number of symbols in each is 7. Counting symbols is clearly
too crude a measure. In MMH the distinction is captured with a no-
tational transformation taken to be part of the simplicity measure of
UG, mapping the rules of (1) to (2):
(2) X→ YW(B)

The notation is interpreted as: B is optional in the context YW .
No similar notation is provided by UG for (1′), not considered a le-
gitimate generalization – an empirical assumption about language, as
noted, but well confirmed. Under this notational transformation, the
simplicity measure of (1) is 4, capturing the intended distinction.

Consider a more complex configuration, very commonly found.
Suppose that X → Y before A and elsewhere X → Z.10 The set of
rewriting rules is (3):
(3) a. XA→ YA

b. XW→ ZW (for W ̸= A)
8What is taken to be a “legitimate linguistic generalization” is an empirical

hypothesis, subject to testing by examination of languages and by direct experi-
ment.

9E.g., the parenthesized optional element in such phrase structure grammar
configurations as VP→ Vtr NP (PP) “read the book (in the library).” In contrast,
we do not expect to find the rule set VP→ PP NP Vtr, VP→ Vtr NP (irrelevantly,
such outcomes might result from a series of rules). Or more marginally, “all (of)
the men,” “cyclic(al) rules,” [siŋ(g)r] (with g missing in some dialects, yielding
a singer/finger contrast).

10Voicing assimilation of final consonants as in wife-wives, sets of irregular
verbs, and innumerable other cases.
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The parenthesized phrase must be spelled out, listing all cases of
W ̸= A. The list is infinite, but even if we impose some sharp restric-
tion on W, the list is very long, and the number of symbols in the
expanded version of (3) gives a completely wrong simplicity measure
for a configuration that should be highly valued.

What is clearly the right answer requires several steps that are of
more general significance.11

First, we have to distinguish obligatory from optional rules, and
ordered from unordered rules. For the syntax – mapping to CI – the
normal case is unordered and optional, if such rules exist at all; they
may not (see below). For externalization to SM, the normal case of
rule systems (which are quite complex) is ordered and obligatory. The
configuration (3) falls within externalization.12

With these conventions in place, we can introduce the notational
transformation of (4), interpreted as (3):
(4) a. X→ Y / A

b. X→ Z
The simplicity measure is small, as it should be for this legitimate

generalization. The rules (3)–(4) state that X becomes Y before A, and
becomes Z elsewhere. This device is the familiar “elsewhere condi-
tion”: first list the exceptions, then the general rule for everything
else.13

From the early inquiries into generative grammar it was found
that rule ordering was still more intricate: with cyclic application of
rules and implicational relations, grammars are greatly simplified and
(accordingly) yield deeper explanations, while also providing the ba-

11These steps were all taken in MMH and commonly adopted in later work in
generative grammar.

12NB: “normal.” There are some exceptions on the periphery, like free varia-
tion. There are interesting questions about the tacit choices here but they do not
bear on the main points about simplicity and general architecture of grammar,
so I will put them aside.

13The elsewhere condition, which may trace back to classical India, has been
widely used in practice. It is also a core element of Charles Yang’s tolerance prin-
ciple, which has been highly successful in explaining when rules are productive
and establishing a firm core–periphery distinction. See Yang et al. 2017, and for
more extensive analysis Yang 2016.
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sis for compositionality of semantic interpretation, matters I will put
aside here (Chomsky et al. 1956; Chomsky and Halle 1968).

The notations and conventions in MMH, now common, provide a
reasonable step towards a feasible evaluation procedure: the simplicity
measure of a rule system is the number of symbols under the conven-
tions and notational transformations that capture legitimate linguistic
generalizations – all expressing empirical hypotheses about language.

In MMH, the main problem was to find the simplest ordering of
rules, which was quite deep. In those hand-computation days, the task
was impossible, so the analysis was restricted to finding a relative
minimum: a particular ordering with a lower measure (higher valued)
than any re-ordering of adjacent rules. The exercise illustrates some
of the problems of constructing UG, tasks challenging enough that
they have rarely been undertaken on any large scale.14 Note that the
complexities arise primarily (perhaps completely) in externalization,
a matter to which we return.

All of this is only the beginning, however. Another aspect of the
quest for feasibility is restricting the search space PL and constraining
the selection procedure SP. These topics have been the main concern
of the study of narrow syntax,15 generation of structures at the CI in-
terface. The topic is too rich to review here. I will briefly mention only
a few stages, keeping to one course of development, which I think is
on the right track.

Early generative grammar assumed that two systems of rules in-
teract: Phrase Structure Grammar PSG and Transformational Gram-
mar TG. Both were relatively unconstrained, yielding a huge search
space, remote from any hope for feasibility. Serious efforts to restrict
the search space began in the early 1960s. It was quickly recognized
that PSG permitted far too many options; there was, for example, noth-

14One of the last cases I know of is Sound Pattern of English (Chomsky and
Halle 1968). Later study of externalization, the primary locus of these issues,
took a different course that ignores the questions, and as far as I can see, cannot
accommodate them. See Chomsky 1995, p. 380.

15Broadly construed, syntax incorporates all internal symbolic computation,
including externalization to phonetic form and logical syntax, often called for-
mal semantics. For reasons discussed elsewhere, human language may not have
semantics in the technical sense based on reference/denotation.
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ing to bar the vast array of “crazy rules” such as NP→ V PP, and the
symbols used were themselves illegitimate, tacitly incorporating struc-
tural relations that must be spelled out (why NP?). PSG was therefore
abandoned in favor of X-bar theory, sharply restricting the options for
grammars.16

Though it wasn’t recognized at the time, X-bar theory had rich
consequences, some not explored seriously until recent years. Unlike
PSG, X-bar theory (also TG as it developed) yields pure structures,
without linear order or other organization. Hence resort to X-bar the-
ory introduces a sharp distinction between (i) narrow syntax, con-
sisting of X-bar theory and TG and yielding CI representations, and
(ii) externalization of syntactic structure to the sensorimotor system
SM (typically phonetic form PF). As noted, externalization appears to
be the locus of the apparent complexity, variety, and mutability of
language – not surprisingly. Externalization relates two systems that
are entirely independent, both in character and evolutionary history:
language proper and SM. Establishing that relation is a complex cog-
nitive process that can be carried out in many ways. In particular,
it must deal with the mismatch between narrow syntax, a system of
pure structure, and SM, which imposes a requirement of linear order
for reasons that have nothing to do with language.17 There must, it
seemed, be a “head parameter” that each L has to set one way or an-
other (V-Object for English, Object-V for Japanese, etc.). Along with
other work of the 1970s, including radical simplification of TG, that
led to a new conception of the form of language, the Principles and
Parameters (P&P) framework, with fixed principles of UG that deter-
mine PL and parameters that have to be set in acquisition of language,
the latter restricted largely to externalization (perhaps completely, we
might someday learn).

The problems of simplicity of grammars and of UG are accord-
ingly reshaped. A crucial problem is to find a feasible search process
through the set of parameters, and to determine their status: how did
they evolve? How are they captured in UG and stored in the brain?

16Too far, it was later realized. See Chomsky (2013), opening directions I will
put aside though they bear directly on explanatory adequacy and simplicity.

17Sign language, using the options available in visual space, permits some-
what different devices.
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The “head parameter” suggests possible answers. It is, strictly speak-
ing, not a parameter. It is not part of UG, did not evolve, and is not
internally stored. Rather, it expresses a mismatch between two inde-
pendent systems: language proper and SM. The mismatch must be re-
solved in acquisition, but is not part of grammar.

Recent work by Ian Roberts (Roberts 2019), supported by rich
empirical evidence from a wide range of typologically different lan-
guages, suggests a radical solution to these problems. It provides a fea-
sible search procedure and concludes that parameters altogether are
not part of UG (hence did not evolve and are not stored) but rather
emerge in the course of acquisition in predictable ways.

Meanwhile work in the “Minimalist Program” has subjected the
principles of the P&P systems to much closer analysis, reducing gener-
ation in narrow syntax to the simplest combinatorial operation (binary
set-formation, called “merge”). That step turns out to incorporate and
unify earlier proposals and to yield solutions to long-standing puzzles
and new ones discovered along the way, along with suggestions as to
how language evolved.18 One conclusion reverses the general view
(mine included) concerning compositionality and displacement: that
compositionality (provided by PSG and its descendants) is unproblem-
atic and displacement (handled by TG) is a curious “imperfection” of
language that has to be explained away somehow. It turns out that
the opposite is true. Displacement is the simplest and unproblematic
case, and composition beyond displacement requires an explanation
in terms of special properties of language. All of these developments
bear directly on our topic here.

Without further elaboration, even a brief review of the course of
research in generative grammar since its modern origins reveals that
the concepts of simplicity and form of grammar have been closely re-
lated throughout, that measuring simplicity is an essential task and is
no simple matter, and that inquiry into this relation has led to sub-
stantial insight into the general nature of language, with a promise of
more to come.

18See note 3. For more general discussion, see Chomsky (2015).
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A linguistic theory reaches explanatory adequacy if it arrives at a
linguistically-appropriate grammar based on the kind of input avail-
able to children. In phonology, we assume that children can succeed
even when the input consists of surface evidence alone, with no correc-
tions or explicit paradigmatic information – that is, in learning from
distributional evidence. We take the grammar to include both a lexi-
con of underlying representations and a mapping from the lexicon to
surface forms. Moreover, this mapping should be able to express op-
tionality and opacity, among other textbook patterns. This learning
challenge has not yet been addressed in the literature. We argue that
the principle of Minimum Description Length (MDL) offers the right
kind of guidance to the learner – favoring generalizations that are
neither overly general nor overly specific – and can help the learner
overcome the learning challenge. We illustrate with an implemented
MDL learner that succeeds in learning various linguistically-relevant
patterns from small corpora.
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1 INTRODUCTION

As part of language acquisition, the child needs to acquire many dif-
ferent aspects of the morpho-phonology of their language. If the child
is learning English, for example, they will need to learn that in ‘cats’,
pronounced [khæts], the aspiration of the initial [k] and the voiceless-
ness of the final [s] are no accident: in English, voiceless stops such as
[k] are always aspirated in this position (roughly, syllable-initially in a
stressed syllable), and the expression of the plural morpheme is always
the voiceless [s] after a voiceless stop such as [t]. Thus, the child will
need to learn that imaginable forms such as [kæts] or [khætz] are not
possible in the language. These pieces of knowledge come from a very
large – possibly unbounded – set of possible choices that languages
can make and that children must be able to acquire. Moreover, chil-
dren are capable of acquiring at least some linguistic knowledge of this
kind from distributional cues alone, without access to analyzed forms
or paradigms and without negative evidence. The result is a nontrivial
learning task that is challenging even in relatively simple cases such
as deterministic, surface-true phonotactics (as in the aspiration pat-
tern of English) or alternations providing useful information (such as
the voicing pattern concerning the /z/ suffix in English). The learning
challenge is even more pronounced in cases of optional phonologi-
cal processes and of opaque interactions of phonological processes. A
theory that addresses this challenge can be said to have reached ex-
planatory adequacy (Chomsky 1965). To date, no general solution to
this challenge has been provided in the literature.

In this paper, we propose a response to the learning challenge in
terms of a certain kind of simplicity metric. The simplicity metric will
follow the principle of Minimum Description Length (MDL; Rissanen
1978), which incorporates both the idea of grammar simplicity (as in
the evaluation metric of early generative phonology) and that of re-
strictiveness (or how easy it is for the grammar to capture the data).
The representational framework that we use for our discussion will be
that of rule-based phonology, which offers a particularly direct handle
on the representation of both optionality and opacity. We wish to em-
phasize, however, that our focus in this paper is the learning approach
– namely, the MDL metric – and how it guides the learner given a rep-
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resentational framework rather than the representational framework
itself. In order to illustrate how the MDL metric can guide the learner
toward appropriate hypotheses, we present several simulations that
start with a small corpus of unanalyzed surface forms – generated from
artificial grammars based on morpho-phonological patterns in various
languages – and arrive at a full grammar including a lexicon of under-
lying representations (URs), a morphological segmentation of forms
into morphemes and their attachment possibilities, and different kinds
of phonological rules (both obligatory and optional) and their ordering
(including both transparent and opaque interactions). While it might
seem that these different aspects of morpho-phonological knowledge
call for a fragmented learning approach, with specialized learners for
the different sub-tasks, we will show how the MDL evaluation metric
allows all of them to be acquired in a unified way.

We start, in Section 2, by reviewing the challenge of explana-
tory adequacy in phonology. In Section 3, we present the MDL met-
ric in the context of rule-based phonology and specify a concrete set
of representations for phonological grammars and their MDL costs.
In Section 4, we present proof-of-concept learning simulations with
optionality, rule interaction (including opacity), and interdependent
phonology and morphology. Section 5 discusses previous work on
learning in phonology and its relation to the goals of this paper. Sec-
tion 6 concludes the paper.

2EXPLANATORY ADEQUACY
IN PHONOLOGY

An explanatorily adequate linguistic theory accounts for how the child
arrives at a descriptively-adequate grammar based on the primary lin-
guistic data (Chomsky 1965, pp. 25–27). The present paper focuses on
this learning challenge in phonology. In Section 3, we argue that com-
bining a suitable theory of phonological representations with the gen-
eral principle of MDL goes beyond all other proposals in the literature
in terms of approaching the goal of explanatory adequacy. Before that,
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in the present section, we briefly outline certain aspects of explana-
tory adequacy in phonology that will be important for evaluating our
claim below.

First, we follow Calamaro and Jarosz (2015) in assuming that chil-
dren can acquire significant aspects of phonological knowledge from
distributional evidence alone (that is, from surface forms alone, with-
out systematic negative evidence, direct information about underlying
representations, or other kinds of assistance). To be sure, children are
also exposed to a great deal of other information, including contextual
cues as to the meanings of words. Calamaro and Jarosz’s (2015) as-
sumption, which we adopt here, is simply that children can succeed in
phonological learning even when such additional information is not
present. Some support for this view comes from experimental work
that provides evidence for children’s ability to acquire key aspects of
morpho-phonology, including segmentation (Saffran et al. 1996), al-
lomorphy (Gerken et al. 2005), and phonological alternations (White
et al. 2008), all from distributional evidence. We note, in addition,
that non-distributional information such as morpheme meanings is
more limited in its ability to assist phonological learning than is often
assumed in the phonological learning literature. A common assump-
tion made in the literature is that semantic information can teach the
learner about the existence of phonological processes. On this com-
mon view, when the learner encounters two morphemes with differ-
ent phonological surface forms that have exactly the same meaning,
the learner knows that a phonological process is responsible for the
surface difference between them. Semantics is therefore assumed to
take the learner a long way towards learning the phonological gram-
mar. We believe that this view overestimates the utility of semantics
for the learner because it mistakenly ignores the possibility that two
morphemes with the same meaning are not related through phonolog-
ical processes: namely, it ignores the possibility of suppletion, where
two semantically identical forms are stored separately in the lexi-
con, without being derived from a common lexical entry through any
phonological process. Since nobody tells the learner when suppletion
is involved, the learner has to figure out the existence of phonolog-
ical processes itself. We assume that an explanatorily adequate the-
ory needs to account for this aspect of learning as well. However,
a more complete characterization of the evidence that children base
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their learning on, both in lab settings and during acquisition, awaits
further work.

Second, we assume that children can acquire their phonological
knowledge even in the face of nontrivial dependencies between mor-
phological segmentation and phonological processes, and we assume
that underlying representations may be abstract, in the sense of dif-
fering from surface forms even in the absence of conclusive evidence
from alternations. Moreover, we take the phonological knowledge that
children attain to involve various textbook properties such as opac-
ity and optionality. We discuss each of these aspects of phonological
knowledge and learning in turn.

Dependencies between morphological segmentation and phono-
logical processes exist in many affixes and alternations across lan-
guages. Vowel harmony in Turkish provides a particularly clear il-
lustration. Focusing on stems such as ip ‘rope’ and kız ‘girl’ and on the
suffixes for the genitive and the plural, the child’s input might consist
of surface forms such as ipler, kızlar, ipin, and kızın. If the child al-
ready knows that vowel harmony applies within such forms, they can
undo it and reason that ler and lar might be underlyingly identical
(and similarly for in and ın). This, in turn can guide the child toward
the correct morphological segmentation of the forms:

(1)
‘rope’ ‘girl’

Plural ip-ler kız-lar
Genitive ip-in kız-ın

Similarly, if the child already knows the morphological decom-
position of these forms, they can reason about the relation of ler and
lar (and similarly for in and ın), which can guide the child toward a
discovery of vowel harmony. However, if the child does not yet know
either about the process of vowel harmony or about the morpholog-
ical decomposition of the surface forms, they will face the challenge
of discovering both despite the bidirectional dependencies between
the two.

Abstract URs are URs that differ from their surface forms despite
insufficient evidence for the discrepancy from alternations. The extent
to which URs may be abstract was a matter of much debate in early
generative phonology. More recently, abstractness has been argued for
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by Alderete and Tesar (2002), McCarthy (2005), and Nevins and Vaux
(2007), among others (see also discussion in Krämer 2012). Here, we
will assume, conservatively, that abstractness is possible, illustrating
with a schematic example, based on an example from Alderete and
Tesar (2002), which was in turn modeled after the interaction of stress
and epenthesis in Yimas. In this example, stress in bisyllabic words is
generally initial, but there are some words, in all of which the first
vowel is [i], where stress falls on the second syllable. The following
table, showing three possible (and different) words and one impossible
form, illustrates:

(2)
Initial vowel = i Initial vowel = a

Initial stress píkut pákut
Pen-initial stress pikút *pakút

A familiar kind of analysis would posit a pattern of initial stress, where
an unstressed initial [i] is always epenthetic:
(3) /pkut/→ |pkút| → [pikút]
According to Alderete and Tesar (2002), however, this generalization
is acquired without support from alternations.

Finally, the acquired phonological knowledge should capture
speakers’ intuitions not just in simple cases but also in more com-
plex patterns, of which we focus here on two: optionality and opacity.
An example of optionality is the process of liquid deletion in French,
analyzed by Dell (1981) and discussed in some detail below, which
allows a word-final liquid to optionally delete in certain environments
(as in [tabl]∼[tab] for ‘table’). An example of opacity is the counter-
feeding interaction between nasal deletion and cluster simplification
in Catalan (Mascaró 1976). As the following illustrates, word-final
nasals sometimes delete in Catalan, as do post-nasal word-final stops,
but while the latter process creates an appropriate environment for
the former, cluster simplification does not lead to nasal deletion:

(4) kuzí ∼ kuzín-s ‘cousin.SG ∼ cousin.PL’
kəlén ∼ kəlént-ə ‘hot.MASC ∼ hot.FEM’

To summarize, we take the following to be requirements of any
theory that achieves explanatory adequacy in the domain of phonol-
ogy. It should allow for learning from distributional evidence alone. It
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should support the joint learning of morphological segmentation and
phonological processes and the learning of abstract URs. And it should
handle complex patterns such as optionality and opacity. To be sure,
this is just a starting point; we certainly do not wish to suggest that
these requirements are all there is to learning in phonology. However,
we do believe that it is a meaningful starting point that is relevant
for the evaluation of any theory that aims at explanatory adequacy in
phonology.

In Sections 3 and 4 below we show that the MDL principle, when
coupled with a suitable representational framework (for concreteness,
we will use rule-based phonology), favors hypotheses that seem appro-
priate with respect to the different aspects of the learning challenge
considered here. This makes MDL a promising candidate for the child’s
learning criterion. In Section 5 we argue that other approaches in the
literature on learning in phonology have yet to address central aspects
of the learning challenge.

3THE PRESENT WORK

The current section presents the assumptions behind our learning
model. One general assumption that we make is that the child chooses
between competing grammars using some kind of evaluation metric.
We start, in Section 3.1, by considering two evaluation metrics from
the literature – the evaluation metric of the Sound Pattern of English
(SPE; Chomsky and Halle 1968, p. 334), which aims for grammar
economy, and the subset principle, which aims for restrictiveness – in
the context of acquiring a single optional phonological rule. We will
see that in order to acquire the relevant rule, the child cannot follow
grammar economy alone or restrictiveness alone but must instead bal-
ance between the two. This balancing of economy and restrictiveness
is the essence of the MDL evaluation metric, and while we motivate it
here using one simple rule, the very same metric will serve as a good
guide for learning whole (though at present artificial) phonological
grammars, including the lexicon, the morphological segmentation of
forms into stems and affixes, a variety of phonological rules, and both
transparent and opaque rule interactions. In order to use the MDL
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evaluation metric as a part of an actual phonological learner, we need
to adopt explicit representations for phonological grammars. We do
this in Section 3.2, where we present the concrete representations
we assume and the costs they induce in terms of MDL. Section 3.3
presents a search procedure that will allow us to turn the MDL metric
into a full learner, and while our focus in this paper is the MDL metric
rather than the full learner, it is through reporting simulations with
the learner that we will be able to best illustrate the kind of guidance
provided by MDL (in Section 4).

3.1 The MDL criterion

French has an optional process of liquid-deletion word-finally follow-
ing an obstruent (Dell, 1981). The French-learning child, then, might
be exposed to surface forms such as [tabl] and [tab] for ‘table’ and
[katr] and [kat] for ‘four’ (but only [ɡar] and not *[ɡa] for ‘train sta-
tion’, since its liquid does not appear in the right environment for
deletion). Suppose that the child uses a simplicity metric such as the
one in SPE, which optimizes grammar economy. Restricting our at-
tention here and below to grammars that are licensed by Universal
Grammar (UG) and using |G| to notate the length of a grammar G, we
can state this metric as follows:1

(5) SPE EVALUATION METRIC: If G and G′ can both generate the
data D, and if |G|< |G′|, prefer G to G′

To see how we can use (5), we need to be precise about how | · | is
measured. Anticipating our discussion below, it will be convenient to
think of grammars as sitting in computer memory according to a given
encoding scheme – a scheme that is provided by UG – with |G| being
the number of bits taken up by G. In Section 3.2 we will present the
details of one specific encoding scheme and show how |G| is measured
within it. For now, however, we will set aside such details as we build
toward the MDL criterion.

1Here and below the grammar G will be taken to be not just the phonological
rules and their ordering but also the lexicon. Thus, by saying that a grammar G
generates the data D, we mean that every string in D can be derived as a licit
surface form from some UR in the lexicon and the ordered phonological rules.
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Early on, the child will store a separate UR for each surface form
of the alternating pairs: both /tabl/ and /tab/ for ‘table’; both /katr/
and /kat/ for ‘four’; both /arbr/ and /arb/ for ‘tree’; and so on (along
with a single /ɡar/ for ‘train station’). After seeing a few additional
alternating pairs of this kind, however, (5) will lead the child to con-
clude that for each such pair there is just one UR – /tabl/ for ‘table’,
/katr/ for ‘four’, /arbr/ for ‘tree’, and so on – and that an optional
phonological rule such as the following applies (where L stands for
liquid):2

(6) L→ ; (optional)
The rule in (6) adds complexity to the grammar, but this complex-

ity is more than offset by the savings obtained by the elimination of
all the L-less forms from the lexicon. Consequently, the overall size of
the grammar is shorter using (6), and (5) will favor the new grammar.

As mentioned above, however, the actual process of L-deletion in
French is somewhat more specific than (6) suggests: L may be deleted,
but only in certain contexts. A more appropriate rule is the following,
in which L-deletion is restricted to word-final environments following
an obstruent:
(7) L→ ; /[−son] # (optional)

And unfortunately, as pointed out by Dell (1981), a child using (5)
will fail to acquire the appropriate context for the application of the
rule. That is, the child will prefer (6) to the more appropriate (7).
This is so since (a) both a grammar G using the unrestricted (6) and a
grammar G′ using the restricted (7) can generate the data; and (b) G is
shorter than G′ (since specifying the context in (7) adds to the gram-
mar’s length). By the SPE evaluation metric in (5), the child will prefer
G to G′, which is the wrong result. For example, a child using G will

2An even simpler grammar is one in which the lexicon includes just one,
empty UR and in which any segment can be inserted by an optional rule. Such a
grammar would be an extreme example of a very simple but wildly overgener-
ating grammar, and we could have used it instead of (6) to illustrate the perils
of minimizing |G| alone in our discussion below. In the interest of keeping the
presentation focused on deletion processes, however, we set this grammar aside
and start from (6).
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erroneously rule in L-deleted forms such as *[ɡa] for /ɡar/.3 More-
over, the child will never recover from this error: since the child sees
only positive evidence, they will never be forced to leave the simpler
but overly inclusive G.

The problem is quite general, as discussed by Braine (1971) and
Baker (1979), and goes well beyond phonology: a child guided solely
by a preference for grammar economy, as in the SPE evaluation met-
ric in (5), will fail to learn the contexts for optional rules. Just as in
the example of optional L-deletion, a grammar G in which an optional
rule R has no context will generally be both simpler and more inclu-
sive than a minimal variant G′ in which the optional rule does have
a context. If G′ is the correct grammar, both grammars will be able
to generate the input data: G′ since it is the correct grammar, and G
since its language – that is, the set of all licit forms according to the
lexicon and rules of G – is a superset of the language of G′. By (5),
then, the child will incorrectly prefer the simpler G to G′ and – since
the child will not receive negative evidence – will never recover from
this error.

One solution to this predicament – the one advocated by Dell
(1981) and adopted in much later work – is to change the evalua-
tion metric from one that favors simple grammars to one that favors
restrictive ones, where restrictiveness is captured in terms of subset-
hood: G is more restrictive than G′ if its language is a subset of the lan-
guage of G′.4 This solution, also known as the subset principle (Berwick

3 In fact, as mentioned in footnote 2, a preference for grammar economy will
lead the learner to even more extreme solutions if left unchecked. In particular,
consider a grammar (as in footnote 2) that has an optional epenthesis rule for
each segment that appears in the data and a lexicon that consists only of the
empty string. Such a grammar can generate the data and is extremely short to
state. Unless it is blocked by some other principle, this grammar will be preferred
by (5) to both G and G′.

4Other ways of cashing out the informal idea of restrictiveness have been pro-
posed in the literature. Within Optimality Theory (Prince and Smolensky 1993),
for example, restrictiveness is often interpreted as subsethood not of the lan-
guages of the original grammars G and G′ but rather of the languages of variants
of G and G′ in which the lexicon is replaced with the set Σ∗ of all possible strings
over the alphabet Σ in which the lexicon is written (see Smolensky 1996). The
MDL metric, which we will present and argue for below, implements restrictive-
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1985; Wexler and Manzini 1987; Hale and Reiss 2003, 2008), directs
the learner to never choose a grammar for a superset language when
a grammar for a proper subset is compatible with the data:5

(8) SUBSET EVALUATION METRIC: If G and G′ can both generate
the data D, and if the language of G is a proper subset of the
language of G′, prefer G to G′

A child following (8) will always choose from among the gram-
mars sanctioned by UG and whose language is compatible with the
data a grammar whose language is minimal in terms of subsethood.
Such a child will therefore avoid the overgeneralization problem. In
the case of optional L-deletion in French, the grammar with the un-
restricted (6) generates a language that is a strict superset of the one
with the restricted (7), and both grammars generate the data D; con-
sequently, the unrestricted (6) will be rejected and the restricted (6)
chosen, which is the correct result.

While choosing correctly between (6) and (7), the subset princi-
ple gives rise to a problem of undergeneralization – the mirror im-
age of the overgeneralization problem of the SPE simplicity metric –
and does not offer a general solution for learning. To see the problem
in the case of French L-deletion, consider the situation of a learner
who has heard a surface form such as [sabl] but, accidentally, has not
yet heard its L-elided variant [sab] (both for the UR /sabl/ ‘sand’). If
the learner has heard sufficiently many other pairs differing only in
whether they have a final liquid, we would expect them to adopt (7),
even if for /sabl/ only one member of the pair has been observed so
far. That is, we would like the learner to generalize beyond the data
in this case. But if the learner follows the subset principle, this will
not be possible: with (7), the language will include also the L-deleted
form [sab], which makes the language a strict superset of the language
of a grammar that does not generate [sab]. One example of such an

ness in yet another way, by comparing how easy it is to specify the actual input
data using G and G′: if the data can be more easily specified using G than using
G′, then G is the more restrictive grammar of the two.

5As Baker (1979) notes, Braine’s (1971) alternative to the SPE evaluation
metric, while stated in procedural terms, has a similar effect to a restrictiveness
metric.
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overly restrictive grammar is one without any deletion rules and with
a lexicon that has separate URs for each of the L-variants that have
been seen in the input data. For a learner that follows the subset prin-
ciple, the only way to avoid such an overly restrictive grammar is if
it is not licensed by UG. On most theories of UG, however, a memo-
rizing and overly specific grammar is perfectly capable of being rep-
resented. Consequently, the learner will fail to choose the correct and
more permissive (7). In other words, as long as UG makes available
overly restrictive grammars, a single accidental gap is enough to pre-
vent a learner following the subset principle from making what seems
like a reasonable generalization.

We have seen that minimizing |G|, as in the SPE evaluationmetric,
makes the child generalize; when left unchecked, however, it leads to
overgeneralization. Meanwhile, restrictiveness (as in the subset prin-
ciple) protects from overgeneralization, but on its own prevents useful
generalizations. It seems sensible, then, to try to balance the two prin-
ciples against each other: look for a grammar that is both reasonably
small and reasonably restrictive. This is exactly the idea behind Min-
imal Description Length (MDL; Rissanen 1978), which we will adopt
here.6 To make it work, however, we need to specify how we quantify
both grammar size and restrictiveness and how the two are balanced.
The insight of MDL – building on the work of Solomonoff (1964a,b),
Kolmogorov (1965), and Chaitin (1966) – is that we can think of re-
strictiveness as another simplicity criterion and combine it naturally
with grammar economy. As above, for grammar economy we will con-
sider G as sitting in computer memory according to a given encoding
– as specified by UG – and measure |G| in terms of how many bits the
storage of G takes up. Restrictiveness, meanwhile, will be thought of
in terms of how simple it is to describe the data, D, given the gram-
mar, G. We will use the notation D : G, somewhat loosely, for the
shortest description of D given G (loosely because there might be mul-
tiple such shortest descriptions), and we will notate the length of the
shortest description of D given G as |D : G|.7 To see how |D : G|

6See also the closely related idea of Minimal Message Length of Wallace and
Boulton (1968).

7 In what follows, we will consider D to be the actual data sequence that
the learner is exposed to. Consequently, D : G will be the description of those
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is measured given a grammar G, consider again the case of optional
L-deletion. Suppose that the learner has acquired a lexicon with the
single UR /tabl/ and an optional rule such as (6) or (7). To describe an
instance of the surface form [tabl] or the surface form [tab], we need
to first specify the UR /tabl/ and then specify whether L-deletion has
applied (for [tab]) or not (for [tabl]). Specifying the UR /tabl/ involves
a choice from among the URs. In general, the greater the number of
URs from which we choose, the longer the specification of the UR we
have selected. A convenient way of specifying such choices – and one
that will allow us to directly balance the length of D : G against that of
the grammar G – is using bits. A single bit encodes one binary choice,
and as the number of bits grows, the number of choices that can be
stated grows (exponentially) with it. For example, if there are just two
possible URs, we can specify the choice using one bit. With four URs
in the lexicon, we now need about two bits to specify each choice. And
so on.8 The optional L-deletion rule requires the further specification
of whether it applied or not, which can be stated as one additional bit
(perhaps 0 to specify that the rule did not apply and 1 to specify that
it did). These specifications for the different surface forms in the input
data D are accumulated to provide the complete D : G, the encoding
of the specific input data D given the grammar G.

actual input tokens given the grammar. This choice is made for concreteness
and in order to keep the presentation simple. A different possibility would be
to abstract away from individual tokens and consider only the types – that is,
the distinct surface forms – rather than the tokens. It is also possible to define
the restrictiveness factor |D : G| in terms of a combined measure of types and
tokens. We will not attempt to investigate these choices and their implications
for learning within this paper (see Goldwater et al. 2006, Endress and Hauser
2011, and Yang 2016 for relevant discussion).

8Exactly how many bits are needed for each choice will depend on the spe-
cific grammar G, relative to which the choices are made. In Section 3.2 we show
how D : G is stated relative to the grammars presented in that section. For similar
considerations regarding the measurement of |G| and |D : G| in bits but within
constraint-based phonology see Rasin and Katzir 2016. We further note that the
number of bits used for a given choice point need not be uniform. In general, the
optimal cost of each choice x in bits will be − lg P(x) (that is, minus the loga-
rithm base two of the probability of x). A fixed number of bits per choice point
is optimal only if the probability distribution at each choice point is uniform.
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We can now see how the motivation for restricting the context for
optional L-deletion can be stated in terms of simplicity. If L-deletion
were not optional – if it always applied or if it never applied – the
final bit would have been unnecessary for the specification of the rel-
evant surface forms: selecting a UR would have fully determined the
surface form. For URs like /tabl/ and /katr/, L-deletion is optional,
and the extra bit of the appropriate rule cannot be avoided. But for
/ɡar/ L-deletion never applies, so paying an extra bit for each occur-
rence is an unnecessary expense. The unrestricted (6) forces us to pay
this unnecessary expense: the optional rule is applicable whenever a
UR is chosen that contains liquids (and for each occurrence of a liq-
uid within such a UR), including URs such as /ɡar/ that do not allow
for L-deletion, so a bit specifying whether the rule applies is always
required, leading to D : G that is longer than needed. The more restric-
tive (7), on the other hand, makes us pay the extra bit only when an
appropriate UR such as /tabl/ is chosen but not when /ɡar/ is chosen.
Consequently, (7) leads to a shorter D : G.

Having recast the notion of restrictiveness in terms of simplicity
(specifically, the simplicity of D : G), we can directly combine it with
simplicity of grammar: instead of minimizing |G| alone, as in the SPE
evaluation metric, we can now minimize the sum of the two quanti-
ties, |G|+ |D : G|, thus balancing between the goal of a simple, general
grammar and a restrictive one.
(9) MDL EVALUATION METRIC: If G and G′ can both generate the

data D, and if |G|+ |D : G|< |G′|+ |D : G′|, prefer G to G′

Combining grammar economy with restrictiveness in terms of the
subset principle as stated in (8) is a nontrivial challenge. Combining
it with the reformulation of restrictiveness in terms of |D : G|, on the
other hand, is straightforward, as (9) shows. Moreover, the MDL quan-
tity |G|+ |D : G| has a direct interpretation in terms of quantities that
are arguably available to the learner, as discussed in Katzir 2014 and
Rasin and Katzir 2020. Grammars are stored in memory according
to the specifications provided by UG, and |G| is therefore simply the
amount of memory required to store G using this specification. As for
|D : G|, any given grammar G considered by the learner and compat-
ible with D can presumably be used to parse D, and if this parse is
stored in memory, its storage space is |D : G|. This makes |G|+ |D : G|
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nothing more than the overall storage space used for keeping G and
its (shortest) parse of D in memory. This makes MDL a natural evalua-
tion criterion that uses only quantities that are available to the learner
with minimal stipulation beyond what is already needed to represent
grammars and use them to parse the data.9

Let us now return to the L-deletion example and see how MDL
leads to an adequate level of generalization. As discussed above, stor-
ing a single UR for pairs like [tabl]/[tab] and [katr]/[kat] will shorten
|G| sufficiently (given a large enough number of such pairs) to justify
adding an optional rule of L-deletion to G, just as with the SPE evalu-
ation metric. As for the precise form of the rule, the simultaneous con-
sideration of both |G| and |D : G|, as in (9), will mean that the more
complex rule in (7) will eventually be chosen over the unrestricted (6),
despite its increased |G|. The reason is that after sufficiently many
instances of words like [ɡar] have been encountered, the savings in
terms of |D : G| obtained with (7) – since no bit will need to be spent
when a UR such as /ɡar/ is chosen – will more than outweigh the in-
crease in |G|. Figure 1 illustrates. The MDL metric in (9) thus allows
the child to generalize but protects them from overgeneralizing.

Note that, differently from the case of restrictiveness-only (as in
the subset principle), the MDL metric has the means to generalize be-
yond the data even in the face of certain gaps in the input. Consider
again the situation of a learner who has heard the form [sabl] but has
not (yet) heard its L-deleted variant [sab]. We saw earlier how this
kind of gap in the input data will prevent a restrictiveness-only learner
from generalizing correctly. For an MDL learner (that is, a learner that
relies on the MDL metric to choose between hypotheses), the added
restrictiveness of ruling out [sab] is weighed against the added com-
plexity in stating a grammar that does that while still accounting for

9A reviewer suggests combining |G| not with |D : G| but rather with
|L(G)|, the cardinality of the language of G. We note, however, that us-
ing |L(G)| as a proxy for restrictiveness will only be useful when the lan-
guage of the target grammar is finite, and this assumption is problematic even
within morpho-phonology due the possibility of unbounded processes of affix-
ation. And even if the languages under consideration are assumed to be fi-
nite, computing |L(G)| strikes us as significantly more challenging than using
|D : G|, a quantity that as just discussed is presumably already available to the
learner.
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11010011010011101100001011101︸ ︷︷ ︸
Lex=/tabl/,/tab/,/arbr/,/arb/,/ɡar/...

10︸︷︷︸
Rules=(none)︸ ︷︷ ︸

G

0100︸︷︷︸
4

1101︸︷︷︸
4

0111︸︷︷︸
4

0110︸︷︷︸
4

0100︸︷︷︸
4

1100︸︷︷︸
4

0110︸︷︷︸
4

...︸ ︷︷ ︸
D:G

010110010001︸ ︷︷ ︸
Lex=/tabl/,/arbr/,/ɡar/,...

1011101001︸ ︷︷ ︸
Rules=L→;︸ ︷︷ ︸

G

010 0︸ ︷︷ ︸
3+1

110 0 0︸ ︷︷ ︸
3+1+1

011 0 1︸ ︷︷ ︸
3+1+1

011 0︸ ︷︷ ︸
3+1

010 0︸ ︷︷ ︸
3+1

101︸︷︷︸
3

011 1 1︸ ︷︷ ︸
3+1+1

...︸ ︷︷ ︸
D:G

010110010001︸ ︷︷ ︸
Lex=/tabl/,/arbr/,/ɡar/,...

1001101110110︸ ︷︷ ︸
Rules=L→; /[−son] #︸ ︷︷ ︸

G

010 0︸ ︷︷ ︸
3+1

110︸︷︷︸
3

011 1︸ ︷︷ ︸
3+1

011︸︷︷︸
3

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

...︸ ︷︷ ︸
D:G

Figure 1: Schematic illustration of three hypotheses. (The order of URs in the
lexicon and of tokens in D : G are unrelated.) Introducing a naive lexicon (top), in
which [tabl] and [tab] have distinct URs results in a complex grammar. Capturing
optional L-deletion with (6) allows the grammar to be simplified (middle): the
complexity of the rule is outweighed by the savings of eliminating unnecessary
URs. Moreover, since there are now fewer URs than with the naive lexicon, each
UR can be specified more succinctly. However, an additional bit is needed for
specifying the actual surface form of each occurrence of L in a UR (for each
surface token of that UR). Finally, restricting the context of L-deletion, using (7),
allows us to limit the extra bit to just those URs that require it (bottom): /tabl/
but not /ɡar/

both [tabl] and [tab]. In the present case, a grammar that rules out
[sab] will be quite complex: it might dispense with L-deletion and re-
sort to memorizing each observed surface form using a separate UR;
or it might state a highly involved rule (or system of rules) that license
L-deletion in those forms where both variants of a pair has been ob-
served. Either way, the result will be a complex grammar that does not
justify the minimal savings obtained by not having to specify whether
L-deletion has applied for the single occasion when the UR /sabl/ was
chosen. (This is very different from the case of [ɡar], where prevent-
ing inappropriate L-deletion involved only a slight increase in gram-
mar size, and where there were sufficiently many relevant instances
of L in non-deleting environments to justify the added complexity.)
Consequently, the accidental gap arising from seeing an occurrence of
[sabl] without an instance of [sab] will not prevent the MDL learner
from keeping the rule of L-deletion in (9), thus generalizing beyond
the data, which seems to be the correct result.
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Suppose now that the learner sees not just one instance of [sabl]
but rather many instances, still without any instance of [sab]. In this
case, the absence of [sab] will start looking less like an accident of the
specific data sequence seen so far and more like a systematic fact of
French that needs to be captured. The MDL learner allows us to make
this intuition precise: with sufficiently many occurrences of [sabl], the
extra bit that is needed to state for each occurrence that /sabl/ does
not undergo optional L-deletion results in an increase to |D : G| that
is big enough to justify blocking L-deletion for this UR. How exactly
L-deletion is blocked will depend on the representations available to
the learner. For example, if these representations offer a general way
to mark exceptions to rules, the learner might choose to mark /sabl/
as an exception to L-deletion. If such a method is not available, the
learner might choose to block L-deletion in a more ad hoc way. For
example, the learner might decide to add a special segment at the end
of the UR (e.g., storing the relevant UR as /sablx/), thus preventing the
L under consideration from appearing in the right context for deletion,
along with a rule that deletes that special segment and is ordered after
L-deletion.
Before proceeding, we note that in the discussion above we as-

sumed that the input to the learner is a sequence of surface forms of
words in isolation. If further information is available to the learner,
such as the order of words in sentences or representations of scenes in
which words are uttered, the decision of the learner regarding which
forms to collapse using phonological rules can change. For example, a
learner considering a small portion of the English lexicon containing
‘spare’, ‘pear’, ‘spit’, ‘pit’, ‘stick’, ‘tick’, and similar pairs might mistak-
enly collapse these pairs with the aid of an optional rule of [s]-deletion
before [p] word-initially. By considering not just words in isolation
but also the linguistic and extra-linguistic contexts in which they ap-
pear, however, an MDL learner will be justified in moving to a more
complex grammar that does not collapse the relevant pairs but rather
represents them using distinct URs in the lexicon.

The balancing of economy and restrictiveness has made MDL
– and the closely related Bayesian approach to learning – helpful
across a range of grammar induction tasks, in works such as Horning
(1969), Berwick (1982), Ellison (1994), Rissanen and Ristad (1994),
Stolcke (1994), Grünwald (1996), de Marcken (1996), Brent (1999),
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and Clark (2001), among others.10 Recently, Rasin and Katzir (2016)
have used MDL to show how phonological grammars can be acquired
distributionally within constraint-based phonology, and Rasin and
Katzir (2018, 2020) have discussed the acquisition of abstract URs
using MDL. The present work extends this approach, using rule-based
phonology as a concrete representational framework. In particular,
we will show how the same MDL metric that supported the correct
generalization in the case of the optional rule of L-deletion in French,
as discussed above, will support the acquisition of whole phonological
grammars, including the lexicon, the segmentation of forms into stems
and affixes, a variety of phonological rules, and both transparent and
opaque rule interactions. The simulations illustrating the use of MDL
for the acquisition of phonological grammars – at present, using small
corpora generated from artificial grammars – will be presented in
Section 4. Before that, in the remainder of the present section, we
describe the phonological representations that we assume, in order to
make explicit their contribution to the MDL score, and we describe the
search procedure we use to traverse the space of possible grammars.

3.2 Representations

As is standard, we assume that segments in phonological rules are
represented not atomically but as feature bundles.11 For convenience,
each simulation below works with a feature table that makes distinc-
tions that are relevant to the phenomenon at hand, but we remain
agnostic here as to whether learners start with a large innate table or
acquire language-specific tables at an earlier stage. To illustrate, the
feature table in Table 1 will be used for those simulations that are
based on English.

10MDL and Bayesian grammar induction are almost equivalent. There are
some differences, such as MDL’s use of the shortest encoding of D given G, which
corresponds to the maximal probability of a parse of D given G, while Bayesian
learning marginalizes over all parses. As far as we can tell, however, such differ-
ences are irrelevant to the examples discussed here, and we will treat MDL and
Bayesian inference as essentially the same for the purposes of this paper.

11 In principle, the same holds also for the lexicon, though in the implemen-
tation reported here, the representation of segments in the lexicon does not ex-
plicitly use feature bundles.
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Table 1: Feature table

cons voice cont coronal low high back son lateral labial strident
d + + + − − − − − − − −
t + − + − − − − − − − −
z + + + + − − − − − − +
s + − + + − − − − − − +
g + + − − − − − − − − −
k + − − − − − − − − − −
b + + − − − − − − − + −
p + − − − − − − − − + −
m + + − − − − − + − + −
n + + + − − − − + − − −
r + + + + − − − + − − −
l + + + + − − − + + − −
a − + + + + − + + − − −
o − + + + − − + + − − −
e − + + + − − − + − − −
i − + + + − + − + − − −
u − + + + − + + + − − −

3.2.1Phonological rules

Feature bundles based on feature tables such as the one in Table 1 are
used to state the phonological rules. The general form of rules is as
follows, where A, B are feature bundles or ;; X , Y are (possibly empty)
sequences of feature bundles; and optional? is a boolean variable spec-
ifying whether the rule is obligatory or optional (Figure 2).

A︸︷︷︸
focus

→ B︸︷︷︸
change

/ X︸︷︷︸
left context

Y︸︷︷︸
right context

(optional?) Figure 2:
Rule format

The following, for example, is an optional phonological rule of
vowel harmony that fronts a vowel before another front vowel when
the two are separated by arbitrarily many consonants, stated in text-
book notation in (10a) and in string notation (more convenient for the
purposes of the conversion to bits below, and using various delimiters,
marked with #with certain subscripts and discussed shortly) in (10b).
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(10) Vowel harmony rule
a. Textbook notation�−cons�→ �−back�/ �+cons�∗ �−cons−back

�
(optional)

b. String notation
−cons#rc−back#rc#rc+cons∗#b−cons# f −back#rc1#rc

As discussed informally in Section 3.1 above, determining both
|G| and |D : G| for purposes of MDL is done in bits, where each bit
represents a single binary choice. In the simple representations that
we use in this paper, all possible outcomes at any particular choice
point (whether binary or otherwise) are treated as equally easy to en-
code. For purposes of presentation, we will first discuss a particularly
simple representation in which at any given choice point, the different
outcomes are not just equally easy on average to encode but actually
have fixed, equal length codes. This will allow us to discuss the vari-
ous encodings in terms of fixed conversion tables in which if there are
n possible outcomes, each will be assigned a code whose length in bits
is dlg ne (that is, the logarithm base two of n, rounded up to the clos-
est integer). In our actual simulations, presented in Section 4, we will
deviate from the encoding presented below by allowing non-integral
code lengths, taking lg n rather than dlg ne as the code length for an
n-ary choice point.12
Within the simplified representational framework just described,

determining the length in bits of a single phonological rule for the
purposes of MDL is done by using a conversion table that states the
codes for the possible elements within phonological rules. An example
of a possible conversion table appears in Table 2.

12The reason for this change is that the encoding used in the current section,
using dlg ne, is highly sensitive to changes in which the number of outcomes at
a given choice point crosses a power of 2 (which is where dlg ne changes). By
taking lg n instead of dlg ne, this unhelpful sensitivity to powers of 2 is avoided.
On the other hand, using conversion tables with fixed code lengths, correspond-
ing to dlg ne, allows us to keep the presentation considerably simpler than if we
had to discuss lg n in terms of code lengths. We therefore keep the presentation-
ally simpler dlg ne for the current section and the more robust lg n for the actual
simulations.
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Symbol Code
# f (feature) 0000
#b (bundle) 0001
#rc (rule component) 0010
+ 0011
− 0100
* 0101

Symbol Code
cons 0110
voice 0111
velar 1000
back 1001
· · · · · ·

Table 2:
Conversion table
for rules

Using the conversion table in Table 2, we can encode the phono-
logical rule of vowel harmony (in (10) above) by converting each el-
ement in the string representation in (10b) into bits according to Ta-
ble 2 and concatenating the codes. To ensure unique readability, we
use delimiters to mark the end of the description of features within a
feature bundle (# f ), feature bundles within the left and right contexts
of a rule (#b), and the rule’s components (#rc ; in terms of the notation
in Figure 2, an occurrence of #rc occurs after each of A, B, X , Y , and
optional?). The following is the result, and its length is 73 bits:
(11) Vowel harmony rule (bit representation):

0100︸︷︷︸
−

0110︸︷︷︸
cons

0010︸︷︷︸
#rc

0100︸︷︷︸
−

1001︸︷︷︸
back

0010︸︷︷︸
#rc

0010︸︷︷︸
#rc

0011︸︷︷︸
+

0110︸︷︷︸
cons

0101︸︷︷︸
∗

0001︸︷︷︸
#b

0100︸︷︷︸
−

0110︸︷︷︸
cons

0000︸︷︷︸
# f

0100︸︷︷︸
−

1001︸︷︷︸
back

0010︸︷︷︸
#rc

1︸︷︷︸
1

0010︸︷︷︸
#rc

A phonological rule system is a sequence of phonological rules.
Since the encoding described above allows us to determine from the
bit representation where each rule ends, we can specify a phonological
rule system by concatenating the encodings of the individual rules
while maintaining unique readability with no further delimiters. The
ordering of the rules is the order in which they are specified, from left
to right. At the end of the entire rule system another #rc is added.

3.2.2Lexicon

The lexicon contains the UR of each morpheme. Since morphemes
combine selectively and in specific orders, some information about
morpheme combinations must be encoded. We encode this informa-
tion using Hidden Markov Models (HMMs), where morphemes are

[ 37 ]



Ezer Rasin et al.

listed in the emission table for specific states, and the possible combi-
nations are defined by state transitions. A simple example is provided
in Figure 3.

Figure 3:
An HMM representation

of a lexicon

The HMM in Figure 3 defines a lexicon with two kinds of mor-
phemes: the stems /doɡ/ and /kat/, and the optional suffix /z/. As
with rules, description length is not calculated directly for the stan-
dard, graphical notation of the HMM but rather for a bit-string form.
As before, we start with an intermediate string representation for the
HMM, as presented in Figure 4 (derived from the concatenation of the
string representations for the different states, as listed in Table 3; the
delimiter #S marks the end of the list of outgoing edges from a state
and #w marks the end of each emitted word; another #w is added at
the end of each state). Within the simplified representational frame-
work described earlier, we convert the string to a bit-string using a
conversion table, as in Table 4. As before, all choices at a given point
are uniform, with the same code length for all possible selections at
that point (dlg ne if there are n possible choices). As discussed above,
the actual simulations presented in Section 4 use lg n rather than dlg ne
as the code length.

Table 3:
String representations

of HMM states
State Encoding string

q0 q0q1#S#w

q1 q1q2q f #Sdog#wkat#w#w

q2 q2q f #Sz#w#w

Figure 4:
String representation

of an HMM

q0q1#S#w#wq1q2q f #Sdog#wkat#w#wq2q f #Sz#w#w
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State Code
#S 000
q0 001
q1 010
q2 011
q f 100

Segment Code
#w 0000
a 0001
k 0010
d 0011
· · · · · ·

Table 4:
Conversion table for HMM

3.2.3Data given the grammar

Turning to the encoding of the data given the grammar, D : G, recall
that the generation of a surface form involves concatenating several
morphemes in a specific order and applying a sequence of phonolog-
ical rules. Given the grammar as described above, specifying a sur-
face form will therefore involve: (a) specifying the sequence of mor-
phemes (as a sequence of choices within the lexicon, repeatedly stat-
ing the code for a morpheme according to the table in the current
state followed by the code to make the transition to the next state);
and (b) specifying the code for each application of an optional rule.
Note that obligatory rules do not require any statement to make them
apply.

Given a surface form, we need to determine the best way to de-
rive it from the grammar in terms of code length. A naive approach
to this parsing task would be to try all the ways to generate a surface
form from the grammar. Even with simple grammars, however, this
approach can be unfeasible. Instead, we compile the lexicon and the
rules into a weighted finite-state transducer (FST) that allows us to ob-
tain the best derivation using dynamic programming. The compilation
of the rules relies on Kaplan and Kay (1994), and the FST is created
by combining the rules with the HMM representing the lexicon using
transducer composition.

Let us illustrate the encoding of best derivations in the case of
the form [khæts] – actually, of the simpler [kæts] – using the FSTs for
two simple grammars. First, consider the FST in Figure 5, which cor-
responds to a grammar with the lexicon in Figure 6 and no phonolog-
ical rules. Using this FST, encoding the word [khæts]/[kæts] requires
16 bits. The initial transition from q0 to q1 is deterministic and costs
zero bits. After that, each of the four segments costs four bits: three
bits to specify the segment itself (since there are eight outgoing edges
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Figure 5:
Naive FST

Figure 6:
Lexicon corresponding

to the naive FST

Figure 7:
Encoding of a surface form

using the naive FST

100︸︷︷︸
k

0︸︷︷︸
q2→q1

000︸︷︷︸
a

0︸︷︷︸
q2→q1

010︸︷︷︸
t

1︸︷︷︸
q2→q1

110︸︷︷︸
s

1︸︷︷︸
q2→q3

Table 5:
Conversion table
for naive FST

State q0 State q1 State q2

Arc Code Arc Code Arc Code
(–,q1) ε (a,q2) 000 (–,q1) 0

(o,q2) 001 (–,q3) 1
(t,q2) 010
(d,q2) 011
· · · · · ·

from q1) followed by one bit to specify the transition from q2 (loop
back to q1 or proceed to q3). The encoding, using the conversion table
in Table 5, is in Figure 7.13

13Specifying [khæts] requires handling the aspiration of the initial seg-
ment. Since the relevant rule is obligatory, the same number of bits is required
as for [kæts], though the FST is slightly more complex.
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Figure 8: A more complex FST

0︸︷︷︸
q1→q2

0︸︷︷︸
q6→q8

Figure 9:
Encoding of a surface form using the more complex FST

Consider now the more complex FST in Figure 8, which corre-
sponds to a grammar with the lexicon in Figure 3 and the English
voicing assimilation rule. This FST corresponds to a more restrictive
grammar: differently from the simpler FST in Figure 5, the present
FST can only generate a handful of surface forms. Consequently,
the present FST offers a shorter D : G. Specifically, since specifying
[khæts]/[kæts] requires making only two choices in the FST, both
of them binary, it allows us to encode the relevant string using only
2 bits, as in Figure 9.

3.3Search

Above we saw how encoding length, |G|+ |D : G|, is derived for any
specific hypothesis G. In order to use it for learning, the learner can
search through the space of possible hypotheses provided by UG and
look for a hypothesis that minimizes encoding length. We do not wish
to make any claims about the search that the human learner might
perform: our only claim in this paper concerns the MDL evaluation
metric as a promising guide in comparing hypotheses. However, in
order to show how this metric can guide the learner not just in the
minimal comparisons discussed above but also when the learner faces
a large space of possible hypotheses, we must combine the metric with
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some search procedure. Since the hypothesis space is big – infinitely
so in principle – an exhaustive search is out of the question, and a
less naive option must be used. For concreteness, we adopt a genetic
algorithm (GA), a general strategy that supports searching through
complicated spaces that involve multiple local optima (Holland 1975).

The search starts with a random population of hypotheses that are
generated by randomly selecting a lexicon and a set of ordered rules
for each hypothesis. Individual hypotheses are selected for the next
generation based on their fitness. The fitness of a hypothesis G equals
|G|+|D :G|, the encoding length derived for it. Once a set of hypotheses
is selected for the next generation, each pair of hypotheses is crossed-
over to produce two offspring which replace their parents, and each
offspring undergoes a random mutation to either its lexicon or its rule
set. The simulation ends after a specified number of generations. The
fittest hypothesis in the last generation is reported below as the final
grammar.14

4 SIMULATIONS

The present section provides several simulations in which the MDL
learner described in Section 3 is faced with unanalyzed data exhibit-
ing various linguistically-relevant patterns.15 We are not able to test
the learner on real-life corpora at this point: both the size of the rel-
evant part of the search space and the time it takes to parse each hy-
pothesis during the search grow rapidly with the size and complexity
of the corpus. Instead, we provide a proof-of-concept demonstration,
using small datasets generated by artificial grammars that incorporate
phonologically interesting dependencies. We return to this matter in
Section 6. To simulate a larger corpus, we multiply |D : G| by 10 in
the simulations reported below (the effect is similar to presenting the
learner with each word 10 times). The one exception to the multiplica-
tion of |D : G| by 10 is the simulations in Section 4.1 for which we use

14For a detailed discussion of the search procedure see Lan (2018).
15The code for the simulations is available at

https://github.com/taucompling/morphophonology_spe.
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different multipliers, as discussed below. Also with the exception of
Section 4.1, each simulation allowed for between 1 and 5 states in the
HMM, between 0 and 5 phonological rules, and between 0 and 2 fea-
ture bundles in both the left context and the right context of each rule.

Section 4.1 illustrates our learner’s acquisition of optionality, us-
ing a dataset based on the case of optional French L-deletion discussed
above. Section 4.2 uses a dataset based on /-z/-affixation in English
to illustrate the joint acquisition of affixation and phonological pro-
cesses. Section 4.3 extends the results of Section 4.2 by showing how
the learner can acquire two rules and their ordering in the case of
transparent rule interaction. Section 4.3 modifies the English-based
dataset to one that involves counterbleeding opacity and shows that
the MDL learner succeeds in this case as well. Section 4.5 shows that
the MDL learner succeeds on a case of counterfeeding opacity modeled
after the interaction of two processes in Catalan.

4.1Optionality

The first dataset shows a pattern modeled after French L-deletion
(Dell, 1981) and is designed to test the learner on the problem of re-
stricted optionality. As discussed in Section 3.1, the challenge for the
learner is to strike the right balance between economy and restrictive-
ness. The learner needs to generalize beyond the data and conclude
that for each pair like [tab]–[tabl] there is a single UR, and that a rule
of L-deletion optionally applies. But the learner must not overgen-
eralize and should restrict L-deletion to only apply after obstruents,
despite the added complexity of specifying the restricted environment
in the description of the rule.

The data presented to the learner in the present simulation con-
sisted of 91 words, including 33 collapsible pairs (since the task in
our simulations is the acquisition of a grammar from distributional
evidence alone, from the learner’s perspective the data are an unstruc-
tured sequence of surface forms: the learner does not know that surface
forms like [tab] and [tabl] are related in any way). A sample of the
data is given in (12).

(12) tab, tabl, arb, arbr, kapab, kapabl, parl, partir, final, aktif, . . .
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Gfinal =



RULES: R1 : [+liquid]→ ;/[−son] (optional)
LEX:

List of words= tabl,arbr,kapabl,parl,partir,final,aktif,…
Description length: |Gfinal|+ |D :Gfinal|= 29,100.4+ 30,153.8= 59,254.3

Figure 10: Final grammar for the French optionality simulation. The grammar in-
cludes the restricted L-deletion rule and forms like /tabl/ without their L-deleted
counterparts (like /tab/). Here and below all scores are rounded to the first dec-
imal place

The parameters for the present simulation were different from
those for the other simulations reported in this paper (and mentioned
above). In the present simulation, the encoding length of the data
given the grammar was multiplied by 50, and the encoding length of
the HMM was multiplied by 20. The simulation also allowed only one
state in the HMM, between 0 and 2 phonological rules, and up to one
feature vector in the left context and in the right context of each rule.
We tried running the simulation also with the usual parameters, but
the search did not converge. At present, we are not sure whether this
is because the search was difficult in this case or because of something
more significant.

The learner induced the correct optional rule and converged on
the target lexicon (Figure 10). Compared to the final (correct) gram-
mar, the over-generating hypothesis has a shorter grammar but a
longer D :G, leading to an overall longer description:
(13) a. Correct Hypothesis:

• R1 : [+liquid]→ ;/[−son] (optional)
• Description length:
|G|+ |D :G|= 29,100.4+ 30,153.8= 59,254.3

b. Over-generating Hypothesis:
• R1 : [+liquid]→ ;/ (optional)
• Description length:
|G|+ |D :G|= 29,092.9+ 32,853.8= 61,946.7
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In Section 3.1 we discussed the undergeneralization problem for
restrictiveness-only learning principles like the subset principle. We
mentioned a scenario in which a learner has heard a surface form such
as [sabl] but, accidentally, has not yet heard its L-elided variant [sab].
We noted that, while we would expect the human learner to generalize
and learn L-deletion in the face of a single accidental gap, the subset
principle predicts that L-deletion would be avoided. The MDL princi-
ple, on the other hand, predicts generalization. We ran another simu-
lation of French using a variant of the corpus in (12) in which [sabl]
was added without its L-elided variant [sab]. As expected, the learner
generalized correctly and converged on the hypothesis in Figure 11
which includes the L-deletion rule and a variant of the lexicon that
also contains /sabl/.

Gfinal =



RULES: R1 : [+liquid]→ ;/[−son] (optional)
LEX:

List of words= sabl, tabl,arbr,kapabl,parl,partir,final,aktif, . . .

Description length: |Gfinal|+ |D :Gfinal|= 29,517.5+ 30,610.1= 60,127.6

Figure 11: Final grammar for a variant of the French-optionality simulation with
an occurrence of [sabl] in the data but no occurrences of [sab]. The grammar
includes the L-deletion rule which can generate the unattested [sab] as an output
of /sabl/

4.2Joint learning of morphology and phonology

Our next simulation demonstrates the learner’s ability to perform joint
learning of morphology and a single phonological rule. Other works
in the literature that perform joint learning of this kind include Narad-
owsky and Goldwater (2009) and (in a framework of constraint-based
phonology) Rasin and Katzir (2016). After establishing this baseline,
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we will proceed, in the following sections, to the joint learning of mor-
phology and rule interaction, a task that, as discussed in Section 5, has
not been accomplished in previous work. In the present simulation, the
learner’s tasks are to decompose the unanalyzed surface forms into a
lexicon of underlying morphemes and to learn the relevant phonolog-
ical rule.

Our example is modeled after English voicing assimilation where,
as discussed in Section 1, the suffix /z/ becomes voiceless following a
voiceless consonant. The learner was presented with 250 words gener-
ated by creating all combinations of 25 verbal stems with 10 suffixes
(including the null suffix) and applying voicing assimilation.16 A sam-
ple of the data is provided in (14).

(14)

stem\suffix ; -z -ing -er · · ·
rent rent rents renting renter
kontrol kontrol kontrolz kontroling kontroler
glu glu gluz gluing gluer
· · ·

The simulation converged on the grammar in Figure 12, which
contains the correct rule and segmented lexicon. Given this grammar,
generating a surface form requires first choosing a stem (out of 25
stems, at a cost of lg25 bits), then choosing a suffix (out of 10 suffixes,
at a cost of lg10 bits), which makes a total of lg25 + lg 10 ≈ 7.96
bits for encoding each surface form. For comparison, consider the
minimally-different alternative hypothesis in (15) that fails to learn
the voicing-assimilation rule and stores both -z and -s as suffixes with-
out collapsing them into a single UR. The hypothesis in (15) has a
slightly smaller |G|: it stores an additional suffix in the lexicon (-s) but
saves some space by omitting the rule. On the other hand, (15) over-
generates. Any stem can be suffixed by either -z or -s regardless of
the voicing of its final consonant. Thus, for example, both [rents] and
[rentz] can be generated from the stem /rent/. This over-generation

16When attached to verbs, as in our simulation, the suffix /z/ marks the 3rd
person singular in present tense. Since at present we do not model part-of-speech
categories, our presentation of voicing assimilation will not distinguish this suffix
from the nominal plural marker /z/.
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Gfinal =



RULES: R1 : [+strident]→ [−voice]/[−voice]
LEX:

List of stems= rent,klaimb,glu,komit, straik,drim,kontrol, . . .

List of suffixes= ε, z, ing,er,al,abl,ment, i, . . .

Description length: |Gfinal|+ |D :Gfinal|= 837.1+ 19,914.5= 20,751.6

Figure 12: Final grammar for the joint learning simulation. The grammar includes
the voicing assimilation rule and a segmented lexicon with the UR /-z/ from
which both surface [-z] and [-s] can be derived

translates into a larger |D :G|: with the additional suffix, encoding any
surface form given (15) now requires choosing a suffix out of 11 suf-
fixes, so the total cost per surface form is lg25+ lg11≈ 8.1 bits. Com-
pared to the target hypothesis in Figure 12, the added cost of encoding
each surface form given (15) is small (≈ 0.14 bits), but it accumulates
over the entire corpus and ends up outweighing the slight advantage
that (15) has in terms of |G|. Overall, then, the target hypothesis in
Figure 12 wins due to a smaller combined |G|+ |D :G|.
(15) Over-generating Hypothesis:

• Rules: ;
• List of suffixes= z, s, . . .

• Description length: |G| + |D : G| = 804.4 + 20,258.2 =
21,062.6

In the simplified setting we have considered here, the corpus in-
cludes all combinations of 25 stems and 10 suffixes (a total of 250
words). This means, for example, that a hypothesis that simply mem-
orizes the data (without performing any segmentation or learning any
rules) would be as successful as the target hypothesis in terms of tight-
ness of fit to the data, as both hypotheses generate precisely the same
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set of forms. In terms of |D :G|, encoding each surface form given the
memorizing hypothesis would require choosing one out of 250 words
in the lexicon at a cost of lg250 bits. Since lg250= lg25+ lg10, this
cost is identical to the cost given the target hypothesis. Despite the tie
in the value for |D : G|, the target hypothesis wins due to its strictly
smaller |G|. In a more realistic setting, the corpus will typically con-
tain gaps, which would give the memorizing hypothesis an advantage
in terms of |D : G|. For example, if five stem+suffix combinations
(e.g., [kontrol-er]) are missing from the corpus, encoding a surface
form given the memorizing hypothesis would cost lg 245 bits, com-
pared to an unchanged cost of lg250 for the target hypothesis (which
can generate the five unattested combinations). As the data D grows,
this wastefulness of the target hypothesis in terms of |D : G| would
accumulate and at some point outweigh the savings in the lexicon ob-
tained by segmenting D. To estimate the effect of an increase in D,
we created a variant of the data in (14) by omitting five words chosen
at random, and we calculated different values for |G|+ |D : G| while
varying the multiplier for |D : G|. We found that when the multiplier
for |D : G| exceeds 1,039, the target hypothesis loses to the memoriz-
ing hypothesis in terms of the combined |G| + |D : G|. We re-ran the
simulation several times with the gapped corpus using each of the fol-
lowing multipliers for |D : G|: 10, 100, 1,000, 10,000, and 100,000.
The simulation converged on the target hypothesis in Figure 12 in all
cases. At least for the cases of the multipliers 10,000 and 100,000,
this means that the simulation converged on a sub-optimal hypothe-
sis. Since this is an accident of the search procedure, whose modeling
is not our focus in this paper (as mentioned in Section 3.3), we leave
attempts to optimize the results with larger multipliers to a separate
occasion.

4.3 Rule ordering

Rule-based phonology accounts for the interaction of phonological
processes through rule ordering. In English, as we have seen, voic-
ing assimilation devoices the suffix /-z/ when preceded by a voiceless
obstruent. Epenthesis inserts the vowel [ɪ] between two sibilants (as
in [ɡlæsɪz] ,‘glasses’). To derive forms such as [ɡlæsɪz], where voicing
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assimilation does not apply and the suffix remains voiced, epenthe-
sis is ordered before assimilation. When epenthesis applies to the UR
/ɡlæs-z/, it bleeds assimilation by disrupting the adjacency between
the suffix and the preceding consonant, rendering assimilation inap-
plicable. The opposite ordering would have derived the incorrect form
*[ɡlæsɪs], as demonstrated in (16):
(16) a. Good: epenthesis before assimilation

/ɡlæs-z/
Epenthesis ɡlæsɪz
Assimilation –

[ɡlæsɪz]
b. Bad: assimilation before epenthesis

/ɡlæs-z/
Assimilation ɡlæss
Epenthesis ɡlæsɪs

*[ɡlæsɪs]
Our next dataset was generated by an artificial grammar modeled

after the interaction of voicing assimilation and epenthesis in English.
The learner was presented with 250 words generated by creating the
same combinations of stems and suffixes as in the previous section
and applying epenthesis (17a) and voicing assimilation (17b), in this
order. A sample of the data is provided in (18). The learner converged
on the expected lexicon and on the two rules – epenthesis (R1) and
assimilation (R2) – and their correct ordering (Figure 13).
(17) Rules

a. Rule 1: [i]-epenthesis between stridents
b. Rule 2: Progressive assimilation with [−voice] spreading
to an adjacent segment

(18)

stem\suffix ; -z -ing -er · · ·
rent rent rents renting renter
klaimb klaimb klaimbz klaimbing klaimber
kros kros krosiz krosing kroser
· · ·
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Gfinal =



RULES: R1 : ; → [+high,−back]/[+strident] [+strident]
R2 : [+strident]→ [−voice]/[−voice]

LEX:

List of stems= rent,klaimb,glu,komit, straik,drim,kontrol, . . .

List of suffixes= ε, z, ing,er,al,abl,ment, i, . . .

Description length: |Gfinal|+ |D :Gfinal|= 894.1+ 19,914.5= 20,808.6

Figure 13: Final grammar for the rule-ordering simulation. The grammar includes
epenthesis and voicing assimilation, in this order, and a segmented lexicon

4.4 Counterbleeding opacity

The term opacity is used to describe rules whose effect is obscured
on the surface, often because of an interaction with another rule
(Kiparsky 1971, Baković 2011). One type of opacity called coun-
terbleeding in the literature results when a rule R2 removes the condi-
tions for the application of another rule R1 which has applied earlier
in the derivation. R1 is opaque since its environment of application is
missing on the surface.

Our next dataset was designed to test the learner on the problem
of counterbleeding opacity. We used two rules modeled after English
epenthesis and voicing assimilation and changed the order such that
assimilation was ordered first:
(19) Rules

a. Rule 1: Progressive assimilation with [−voice] spreading
to an adjacent segment

b. Rule 2: [i]-epenthesis between stridents
The result is that feature spreading takes place even between

segments that are separated by an epenthetic vowel on the surface.
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Examples of natural languages that reportedly show a similar interac-
tion between feature spreading and epenthesis are some varieties of
English and Armenian, as reported in Vaux (2016), and Iraqi Arabic,
as reported in Kiparsky (2000, citing Erwin, 1963).

As shown in (20), the opposite rule ordering would lead to the
wrong result. Given the correct order, epenthesis applies after assimi-
lation, rendering assimilation opaque: the first consonant of the suffix
undergoes assimilation but is preceded by the epenthetic vowel on the
surface.

(20) Voicing assimilation crucially precedes epenthesis
a. Good: assimilation before epenthesis

/ɡlæs-z/
Assimilation ɡlæss
Epenthesis ɡlæsɪs

[ɡlæsɪs]
b. Bad: epenthesis before assimilation

/ɡlæs-z/
Epenthesis ɡlæsɪz
Assimilation –

*[ɡlæsɪz]

For this simulation, the dataset was generated by taking the same
combinations of 25 stems and 10 suffixes as before and applying voic-
ing assimilation and epenthesis, in this order. A sample of the data is
provided in (21). The learner converged on the expected lexicon and
on the two rules – assimilation (R1) and epenthesis (R2) – and their
correct ordering (Figure 14).

(21)

stem\suffix ; -z -ing -er · · ·
rent rent rents renting renter
kontrol kontrol kontrolz kontroling kontroler
kros kros krosis krosing kroser
· · ·
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Gfinal =



RULES: R1 : [+strident]→ [−voice]/[−voice]
R2 : ; → [+high,−back]/[+strident] [+strident]

LEX:

List of stems= rent,klaimb,glu,komit, straik,drim,kontrol, . . .

List of suffixes= ε, z, ing,er,al,abl,ment, i, . . .

Description length: |Gfinal|+ |D :Gfinal|= 894.1+ 19,914.5= 20,808.6

Figure 14: Final grammar for the counterbleeding opacity simulation. The gram-
mar includes voicing assimilation and epenthesis, in this order, and a segmented
lexicon

4.5 Counterfeeding opacity

The type of opacity called counterfeeding in the literature results when
a rule R2 creates the conditions for the application of another rule
R1 which has applied earlier in the derivation. R1 is opaque since it
does not apply even though its conditions of application are met on
the surface. In Catalan (Mascaró 1976), for example (and simplify-
ing), nasals are deleted word-finally (see (22a)) and a rule of cluster
simplification deletes a stop word-finally after a nasal (see (22b)) and
creates the environment for final-nasal deletion, which does not apply
on the surface in (22b).
(22) a. kuzí ∼ kuzín-s ‘cousin.SG ∼ cousin.PL’

b. kəlén ∼ kəlént-ə ‘hot.MASC ∼ hot.FEM’
Our next dataset was designed to test the learner on the problem

of counterfeeding opacity. We used two rules modeled after final-nasal
deletion and cluster simplification in Catalan. We generated 65 words
by creating all combinations of 13 stems and 5 suffixes (all are actual
Catalan morphemes) and applying final-nasal deletion and cluster sim-
plification, in this order (23). A sample of the data is given in (24).
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Gfinal =



RULES: R1 : [+nasal]→ ;/ #
R2 : [−cont]→ ;/[+nasal] #

LEX:

Description length: |Gfinal|+ |D :Gfinal|= 1093.9+ 14,563.1= 15,657.1

Figure 15: Final grammar for the counterfeeding opacity simulation. The gram-
mar includes final-nasal deletion and cluster simplification (in this order) and a
segmented lexicon

(23) Rules
a. Rule 1: Delete a nasal word-finally
b. Rule 2: Delete a word-final stop following a nasal

(24)

stem\suffix ; -s -et · · ·
kalent kalen kalents kalentet
kuzin kuzi kuzins kuzinet
· · ·

The learner converged on a segmented lexicon and on the two
rules – final-nasal deletion (R1) and cluster simplification (R2) – and
their correct ordering, as in Figure 15. There was one difference be-
tween the final result and the grammar used to generate the corpus.
The rule of cluster simplification induced by the learner deletes stops
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in a broader environment: after any non-continuant consonant rather
than only after nasals. Since all word-final consonant-stop clusters in
our corpus were nasal-stop clusters, multiple left contexts for clus-
ter simplification were consistent with the data, including left con-
texts that specify nasal consonants ([+nasal]), any non-continuants
([−cont]), or any consonants ([+cons]). The statements of these three
left contexts are equally simple under our current representations, so
the learner is expected to choose between them arbitrarily given this
corpus.

5 EXPLANATORY ADEQUACY
AND PREVIOUS WORK ON LEARNING

IN PHONOLOGY

We presented a learner that uses the MDL evaluation metric, which
minimizes |G| + |D : G|, to jointly learn morphology and phonology
within a rule-based framework. This learner is fully distributional,
working from unanalyzed surface forms alone – without access to
paradigms or negative evidence – to obtain the URs in the lexicon, the
possible morphological combinations, and the ordered phonological
rules. It acquires both allophonic rules and alternations and handles
both optionality and rule interaction, including instances of opacity.
By accomplishing all of these tasks, the learner goes beyond previous
work in terms of its ability to address the challenge of explanatory
adequacy discussed in Section 2: arriving at a descriptively-adequate
grammar based on primary linguistic data.

In this section, we review prominent proposals from past work on
learning in phonology and show that they have not gone as far in terms
of achieving explanatory adequacy. This is because previous learners
either do not work with what we take to be the primary linguistic
data (e.g., by assuming that the child is given direct information about
URs) or because they do not arrive at a full phonological grammar
(e.g., by not acquiring opacity). To make the comparison easier, we
will focus on five components of the learning challenge: learning from
distributional evidence alone, learning segmentation simultaneously
with phonology, learning opacity, learning optionality, and learning
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Table 6: Some prominent proposals from past work on learning in phonology and
their ability to address five learning challenges

Theory ↓ Distributional
evidence

Simultaneous
segmentation Opacity Optionality Abstract

URs
1) Constraint reranking 8 8 ? 3 8

2) Reranking + Free Ride 8 8 ? 3 8

3) MaxEnt + OT 8 8 3 ? ?

4) Dist. alt. learner 3 8 8 8 8

5) MaxLikelihood + OT * (see discussion below)
6) Lexicon Entropy * (see discussion below)

abstract URs. Each of the learners we discuss fails on at least one of
those components, as summarized in Table 6 (and as discussed in the
rest of this section).

We first consider constraint reranking algorithms (row 1 in Ta-
ble 6), a family of learning algorithms for OT that include the pro-
posals by Tesar (1995, 2014), Tesar and Smolensky (1998), Boersma
and Hayes (2001), Prince and Tesar (2004), and much related work.
These proposals assume that URs are given to the learner in advance
or that the learner is exposed to surface forms already segmented into
morphemes, along with the information of which surface morphemes
come from the same UR. Therefore, these works do not address the
challenge of learning from distributional evidence and the challenge
of learning segmentation simultaneously with the phonology.

Another shortcoming of the constraint-reranking proposals just
mentioned is that they assume that, in the absence of direct evidence
from alternations, URs are identical to their corresponding surface
forms, Hence, they do not address the challenge of learning abstract
URs. An attempt to address this problem was made by McCarthy
(2005), who proposed to extend constraint reranking algorithms with
the Free Ride Principle, a learning principle that aims to deal with
some cases of abstract URs (row 2 in Table 6). This principle allows
using information from alternations to infer non-identical URs for
non-alternating forms. While addressing some cases of abstract-UR
learning, McCarthy’s algorithm does not offer constraint reranking
algorithms a handle on cases of abstract URs where there is no sup-
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porting evidence from alternations at all, as in Alderete and Tesar’s
(2002) stress-epenthesis example. See Rasin and Katzir 2018 for fur-
ther discussion.

Another family of learners in the OT literature are the so-called
MaxEnt learners (Goldwater and Johnson 2004, Nazarov and Pater
2017, and O’Hara 2017, among others), which rely on the prin-
ciple of Maximum Entropy as an evaluation metric (row 3 in Ta-
ble 6). These learners receive morphologically-segmented surface
forms, as well as information about which surface morphemes come
from the same UR. Hence, like constraint reranking algorithms, they
do not address the challenges of learning from distributional evi-
dence alone and learning segmentation simultaneously with the pho-
nology.

Similarly to the present proposal, the distributional alternation
learner of Calamaro and Jarosz (2015) learns phonological rules –
both allophony and alternations – in a fully distributional way (row 4
in Table 6). Since their learner is closer to our goals than the previous
learners are, we discuss it here in more detail. The proposal extends
the allophonic learner of Peperkamp et al. (2006). Peperkamp et al. de-
tect maximally dissimilar contexts as hints for allophonic distribution.
For example, [æ] and [æ̃] are allophones in English, and the contexts
that they can appear in are very different: [æ̃] can only appear before
a nasal consonant, while [æ] can only appear elsewhere. Peperkamp
et al. provide a statistical score that identifies such dissimilarities in
the contexts in which two segments can appear; when two segments
have highly dissimilar contexts, they are considered to be potential
allophones.17 Calamaro and Jarosz (2015) look to extend Peperkamp
et al.’s (2006) model beyond allophony, in order to account for neu-
tralization processes. The challenge, given Peperkamp et al.’s dissim-

17This raises well-known issues with phonemics, such as the fact that,
in English, [h] and [ŋ] are in complementary distribution but are not
phonemically related. And indeed, Peperkamp et al. encounter many false
positives (a problem that is exacerbated by the fact that their model
does not require full complementary distribution). Echoing early struc-
turalist proposals, they propose that complementarity should be combined
with requirements of phonological similarity. As discussed by Chomsky
(1964, p. 85), such requirements do not resolve the problem for phonemic
analysis.
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ilarity score, is that neutralization involves segments whose possible
contexts may have a significant overlap. Consider, for example, a lan-
guage like Dutch that has final devoicing. In such a language, [t] and
[d] might contrast everywhere except for the context #; a global
score of contextual dissimilarity will consequently treat [t] and [d] as
quite similar and fail to relate them to one another. In order to over-
come this challenge, Calamaro and Jarosz consider contextualized dis-
tributional dissimilarity: for a given context X Y and two potential
alternants A and B, they compute a dissimilarity score for the triple
< X Y , A, B > by comparing the probability of the context X Y
given A and given B. These dissimilarity scores are summed for the
context and for the featural change over all pairs A and B that have
that change, thus allowing for generalization in terms of the change.
A further extension introduces generalization over contexts (subject
to two special conditions). In terms of comparison with the present
proposal, Calamaro and Jarosz’s model faces two challenges that, as
far as we can tell, are hard to address within the framework of distri-
bution comparison that they adopt. First, their model does not handle
rule orderings. This gap is particularly difficult to bridge in the case of
opaque rule interactions, where surface distributions obscure the cor-
rect context for rule application. The second challenge to Calamaro
and Jarosz’s model concerns optionality. When a rule is optional, the
distribution of A and B can be similar in all contexts, so a dissimilarity
detector will fail to identify the rule.

Other learners close to our goals include Jarosz’s (2006, 2009)
Maximum Likelihood OT learner and Riggle’s (2006) Lexicon Entropy
OT learner (rows 5 and 6 in Table 6). Both learners rely on evalua-
tion metrics rather than on a procedural approach to acquire an OT
ranking and URs. Differently from MDL, however, these evaluation
metrics do not balance economy and restrictiveness and thus lead to
overgeneralization and undergeneralization problems of the kinds dis-
cussed earlier in Section 3. These problems for Maximum Likelihood
and Lexicon Entropy have been discussed in detail in Rasin and Katzir
2016.

Of the other learners proposed in the literature, our learner is clos-
est to those proposed by Goldwater and Johnson (2004), Goldsmith
(2006), Naradowsky and Goldwater (2009), and Rasin and Katzir
(2016), all of which are fully distributional phonological learners that
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rely on the same kind of balanced evaluation metric as the present
paper. The first three learn rule-based morpho-phonology, while the
fourth learns constraint-based phonology.18 Goldwater and Johnson’s
(2004) algorithm starts with a morphological analysis based on Gold-
smith’s (2001) MDL-based learner and then searches for phonological
rules that lead to an improved grammar, where the improvement crite-
rion is Bayesian. Goldsmith’s (2006) learner follows a similar path but
uses MDL also for the task of phonological learning. Naradowsky and
Goldwater’s (2009) learner is a variant of Goldwater and Johnson’s
(2004) learner with joint learning of morphology and phonology, thus
addressing (similarly to the present learner) the interdependency of
phonology and morphology. As originally presented, all three learn-
ers can acquire rules only at morpheme boundaries and generalize
only with respect to X Y and not with respect to A and B.19 They
are also aimed at obligatory rules and do not handle rule interaction.
Rasin and Katzir (2016) propose an MDL-based learner for Optimality
Theory that can learn the URs, constraint ranking, and also the con-
straints themselves, from distributional evidence alone. That learner
has not yet been shown to acquire opacity. One way of interpret-
ing our simulations above is as showing that the limitations of all
these balanced distributional learners are not essential within this
framework and that MDL can support the acquisition of allophony,
generalizations over both the context and the change (in the case of
rule-based phonology), optionality, and opacity.

6 DISCUSSION

We argued that the MDL metric can adequately guide the child in
choosing between competing hypotheses while learning phonology.

18Naradowsky and Goldwater (2009) target orthographic rules rather than
phonology, but the difference is immaterial. Other balanced learners proposed
in the literature, which are not fully distributional, include Cotterell et al. (2015)
and Ellis and O’Donnell (2017).

19By limiting the kinds of rule that can be learned, these learners are similar to
the procedural rule-based learners of Johnson (1984), Albright and Hayes (2002,
2003), and Simpson (2010).
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We illustrated this with an implemented MDL-based learner for the
unsupervised learning of rule-based morpho-phonological grammars.
The generality of the MDL metric has allowed the learner to simul-
taneously perform morphological segmentation and acquire complete
grammars, including URs and ordered rules, and including transparent
and opaque rule interactions, as well as optional rules. By doing that,
the learner is the first learner we know of that acquires opacity and op-
tionality – basic textbook patterns that any theory of learning will have
to address – from distributional evidence alone.20 More generally, the
learner goes beyond the phonological learning literature – including
both rule-based and constraint-based learners – in its ability to address
the challenge of explanatory adequacy. Previous proposals have not
gone as far because they either rely on richer input data than children
require or do not return a full, descriptively-adequate grammar. In
particular, by learning from distributional evidence alone, the learner
differs from many proposals in the literature on phonological learn-
ing which assume that the learner is given systematic paradigmatic
information, information about URs, or even the URs themselves. The
ability of our learner to acquire opaque rule interactions and optional
rules distinguishes it from other learners that are limited to transpar-
ent process interactions or deterministic processes.

While the present work goes beyond the literature in terms of
the challenge of explanatory adequacy in phonology, the simulation
results we presented use corpora that are smaller than corpora used
by some previous learners. In this respect the present work is in line
with Chomsky’s view (Chomsky 1965, p. 26), which prioritizes the
comparison of learning theories based on their success on explanatory
adequacy rather than on their ability to apply to large datasets:

“Clearly, it would be utopian to expect to achieve explanatory ad-
equacy on a large scale in the present state of linguistics. Never-

20To be clear, the ability of the learner to acquire opacity does not necessar-
ily rely on its use of a rule-based formalism. For example, as noted by Baković
(2011), rule-based phonology does not necessarily offer a uniform improvement
over Optimality Theory in terms of its account of known opaque patterns. Since
the MDL metric is general, it could in principle support the acquisition of opaque
patterns using a variety of formalisms, as long as these formalisms are capable
of representing these patterns.
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theless, considerations of explanatory adequacy are often critical
for advancing linguistic theory. Gross coverage of a large mass of
data can often be attained by conflicting theories; for precisely
this reason it is not, in itself, an achievement of any particular
theoretical interest or importance.”

Still, an investigation of how well the MDL metric can extend
to larger, more realistic corpora remains an important task that the
present work has not addressed. A central part of this task is a study
of the optimization procedure to see where it adequately navigates
the highly complex search space and where it fails. The present work,
with its focus on the MDL metric rather than the search barely starts
to probe the behavior of the optimization procedure. We have to leave
the examination of this question to future work.

As mentioned in Section 3.1, the simple and very general MDL
metric compares hypotheses in terms of two readily available quan-
tities: the storage space required for the current grammar and the
storage space required for the current grammar’s best parse of the
grammar. It has been argued recently that this approach has cogni-
tive plausibility as a null hypothesis for language learning in humans
and that it offers a reasonable framework for the comparison of dif-
ferent representational choices in terms of predictions about learning
(see Katzir 2014, Katzir et al. 2020, and Rasin and Katzir 2020). From
an empirical perspective, Pycha et al. (2003) have provided evidence
that simplicity plays a central role in the acquisition of phonological
rules.21 If correct, the present work is a step toward a cognitively plau-
sible learner for rule-based morpho-phonology, and its predictions can
be compared with those of MDL or Bayesian learners for other repre-
sentation choices such as Rasin and Katzir’s (2016) MDL learner for
constraint-based phonology. We leave the investigation of such pre-
dictions for future work.

21See also Moreton and Pater (2012a,b) for simplicity in phonological learn-
ing (though see Moreton et al. 2017 for an argument that phonotactic and concept
learning are guided by something closer to a Maximum Entropy model rather
than by simplicity), and see Goodman et al. (2008) and Orbán et al. (2008),
among others, for empirical evidence for balanced learning elsewhere in cog-
nition.
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A number of experiments have demonstrated what seems to be a bias
in human phonological learning for patterns that are simpler accord-
ing to Formal Language Theory (Finley and Badecker 2008; Lai 2015;
Avcu 2018). This paper demonstrates that a sequence-to-sequence
neural network (Sutskever et al. 2014), which has no such restriction
explicitly built into its architecture, can successfully capture this bias.
These results suggest that a bias for patterns that are simpler according
to Formal Language Theory may not need to be explicitly incorporated
into models of phonological learning.

1INTRODUCTION

Formal Language Theory (FLT; Chomsky 1956) describes how complex
a pattern is in terms of the computational machinery needed to rep-
resent it. The framework was originally designed to demonstrate that
natural language syntax was more complex than the set of Regular pat-
terns (i.e., those that could be represented using finite state machines).
However, Johnson (1972) showed that all known phonological map-
pings could be considered, at most, Regular (see also Kaplan and Kay
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1994). Recent work has supported this finding, arguing that phono-
logical learning must be categorically limited to patterns that can be
characterized as Subregular (i.e., belonging to specific classes of pat-
terns that can be represented with less expressive power than that
of a finite state machine; Heinz 2010; Heinz and Idsardi 2011). One
piece of evidence for this hypothesis is a series of experimental results
that show humans being biased against learning certain patterns that
seem to be too complex according to FLT-based metrics (Finley and
Badecker 2008; Lai 2015; Finley 2017; Avcu 2018).

For example, Finley and Badecker (2008) showed that their par-
ticipants were biased against learning Majority Rule Harmony (also
known as Majority Rules; Lombardi 1999; Bakovic 2000), an unat-
tested phonological process that is more complex than the set of Reg-
ular mappings. Later experimental work went on to show that people
were also biased against learning some Subregular patterns (Lai 2015;
Avcu 2018; McMullin and Hansson 2019), providing evidence that the
phonological grammar might be limited to even simpler levels of the
FLT hierarchy, such as those that can be characterized as Strictly Lo-
cal and Tier-based Strictly Local (TSL; Heinz et al. 2011).1 The former
level of complexity includes any pattern that bans a finite set of sub-
strings from occurring in a word, while the latter does so over a tier
of segments (i.e., certain segments can be ignored by the pattern).

An example of a Strictly Local pattern that commonly occurs
in natural language is the restriction banning voiceless sounds after
nasals (henceforth *NC;̥ Pater, 1999). This pattern is Strictly Local
since it bans any word containing the finite set of strings that result
from combining all nasals with all voiceless sounds (e.g. [nt], [np],
[mt], [mp], etc.). TSL patterns are also common in phonology and are
typically called harmony (see Rose and Walker 2011 for an overview),
since many of them cause a subset of segments in a word to agree
in their value for some feature.2 For example, Navajo contains a har-

1Strictly Piecewise has also been suggested as an appropriate level of com-
plexity to describe phonological patterns (Heinz 2010); however, see McMullin
(2016) and Lamont (2018, 2019a) for arguments against this.

2Long-distance dissimilation patterns (i.e., patterns in which sounds must
disagree in their value for a feature; Bennett 2015), are rarer in natural language
but are also Tier-based Strictly Local.
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Figure 1:
The Subregular Hierarchy
(Heinz 2018),
with examples of Strictly
Local and TSL patterns
given. Dashed blue lines
indicate different orders
of logic. Solid black lines
indicate
subset relationships

mony pattern in which all sibilants (e.g., [s] and [ʃ]) within a word
have to agree in their value for the feature [anterior] (Sapir and Hoi-
jer 1967). This means that on the sibilant tier, the strings [sʃ] and
[ʃs] are banned, since [s] is [+anterior] but [ʃ] is [−anterior]. Any
sounds that are not sibilants are irrelevant to the pattern. A word like
*[saʃ] would not be allowed, since its sibilant tier would exclude [a]
and only include the banned sequence *[sʃ]. Figure 1 shows the full
Subregular Hierarchy and where each of these two types of patterns
are located in it.

While a considerable amount of work has been done to explain
phonological typology and learning in terms of these FLT-based cri-
teria, little work has been done to computationally model the exper-
imental results that support a bias for Subregular patterns.3 Here, I
will show that the biases observed in past FLT-related experiments
can emerge from the learning process of a relatively generic learner,
namely a sequence-to-sequence neural network, which has the expres-
sive power to represent both Subregular and Supraregular patterns
(Siegelmann 1999). Since the network has no explicit, FLT-related
biases built into its architecture, this provides evidence that such a

3Note that most of the literature involving FLT and learning (e.g., Chandlee
et al. 2015; Jardine and Heinz 2016, among others) does not have an explicit
hypothesis for how such learning algorithms can be used to make predictions for
artificial language learning experiments. Instead, such work tends to focus on
whether formally defined classes of languages are learnable at all, given certain
kinds of training data.
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bias may not need to be added to theories of phonological acquisi-
tion.

The paper is structured as follows: Section 2 introduces the neu-
ral network model that I will be using, Section 3 focuses on simulat-
ing experimental results regarding Majority Rule Harmony (Lombardi
1999; Bakovic 1999; Finley and Badecker 2008), Section 4 focuses on
doing the same for experiments that involve First-Last Assimilation
(Lai 2015; Avcu 2018), and Section 5 concludes.

2 MODELLING PHONOLOGICAL LEARNING
WITH NEURAL NETWORKS

Neural networks have been used to model linguistic patterns since
at least Rumelhart and McClelland (1986) and were quickly applied
to the domain of phonology by Touretzky (1989) and Touretzky and
Wheeler (1990). Hare (1990) first used recurrent neural networks
(Jordan 1986; Elman 1990) to capture Hungarian vowel harmony,
demonstrating that this architecture could be particularly useful for
learning phonological mappings. Recurrent neural networks treat a
stimulus as being made up of multiple timesteps, each of which the
model processes separately. At each timestep, the model has con-
nections that lead to the output layer and to the next step in time.
These connections that feed into future timesteps are called recur-
rent and give the model a kind of memory as it walks through the
full stimulus. This is illustrated in Figure 2 for Hungarian vowel har-
mony.

Figure 2:
Illustration of a recurrent neural network.

Circles represent the hidden recurrent layer
processing each timestep, black arrows

represent groups of connections, grey lines
represent the internal structure of the layer,
and IPA symbols represent feature vectors

corresponding to each segment
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The use of such simple recurrent networks was later expanded
to model other phonological phenomena, such as voicing assimila-
tion (Gasser and Lee 1992) and phonotactic learning biases (Doucette
2017). However, these simple networks have been critiqued for their
inability to generalise in a human-like way (Gasser 1993; Marcus et al.
1999) and for being too myopic (Alderete and Tupper 2018), since
they have no ability to look ahead in their input sequence. There are
a number of other reasons to suspect that simple recurrent networks
would not be able to handle the full wealth of phonological phenom-
ena – for example, their dependency on input and output lengths being
equal (Sutskever et al. 2014).

Most of these issues are solved by the neural network architecture
used in this paper, sequence-to-sequence networks (henceforth Seq2Seq;
Sutskever et al. 2014). Seq2Seq networks were originally designed for
machine translation and are meant to handle the fact that different
languages often use different numbers of words to express the same
idea. For example, a sentence like “No, I am your father” could be
translated to Spanish as “No, soy tu padre,” which has one less word.
Seq2Seq networks deal with this by processing sequences in the in-
put with a recurrent network called the encoder which is connected
to a separate network, called the decoder, via its hidden layer con-
nections. This processed data is then unpacked by the decoder into
an output sequence whose length is independent of the length of the
input.

This design also makes Seq2Seq networks well suited for mod-
elling morphological and phonological patterns (e.g., Kirov and Cot-
terell 2018; Prickett et al. 2018; Prickett 2019), since these often in-
volve mapping between forms of different lengths. For the simulations
presented in this paper, words are represented as sequences of sounds,
where sounds are vectors of real-numbered features that range from
0 to 1. In the input, which represents the underlying form, standard
phonological features are used (like [voice] or [back]), with 0 and 1
corresponding to [−] and [+], respectively. In the output, which rep-
resents the surface representation, the network has a binary classifier
for each feature that gives the model’s estimated probability for how
likely that feature is to have a positive value, given the underlying
representation (UR) in its input. This is illustrated in Figure 3 using
the same Hungarian example as above, with the feature vectors in the
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Figure 3:
An example of how Hungarian vowel harmony

might be handled by a Seq2Seq network.
The IPA symbols shown at the top and bottom
of the figure represent the model’s output and

input, respectively, and stand in for vectors
of real-numbered feature values. Black squares

are Gated Recurrent Units and black arrows
are sets of connections. The grey arrow shows

the encoder’s hidden layer activations
being passed to the decoder

input and the most probable sets of feature values in the output being
represented using IPA symbols.

The network presented here also uses Gated Recurrent Units (GRU;
Cho et al. 2014) which were designed to solve another issue with
simple recurrent networks: vanishing gradients (Bengio et al. 1994),
which can prohibit a network from learning long-distance dependen-
cies. While none of the patterns I investigate have dependencies that
are long enough to be affected by this phenomenon, GRU units are rel-
atively standard in the Seq2Seq literature and I leave it to future work
to see whether they are necessary for capturing the results presented
here. Similarly, in all of my simulations, the network’s weights were
optimized using Adam (Kingma and Ba 2015), a standard algorithm
for training neural networks, but one that is likely not necessary to
produce the results that I observed. The loss function used for opti-
mization was the sum of binary cross entropy over all of the binary
feature classifiers in the output and weight updates were made after
seeing each word in training (i.e. batch sizes were equal to 1, some-
times called online learning in the phonological literature).

A final aspect of the model’s architecture worth noting is atten-
tion (Bahdanau et al. 2015). This gives the model’s decoder additional
access to information from the input sequence by allowing it to see
the decoder’s hidden-state activations. Attention has been shown to
encourage human-like generalization in Seq2Seq networks (Nelson
et al. 2020). Some pilot simulations without attention suggested that
it helped the model generalisese better in the simulations presented
here.
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3MAJORITY RULE HARMONY

3.1Background

Majority Rule Harmony is a pattern predicted by some constraint-
based theories of assimilation in which the number of segments in a
word’s underlying representation (UR) with a particular feature value
determines what the value of that feature will be throughout the sur-
face representation (SR) of the word (Lombardi 1999; Bakovic 1999).
For example, if a UR has two [−anterior] segments and only one
[+anterior] segment (e.g. /saʃaʃ/), then the surface representation
of the word would assimilate all of the sounds to be [−anterior] (e.g.
[ʃaʃaʃ]). Conversely, if a UR has two [+anterior] sounds and only a
single [−anterior] one (e.g. /sasaʃ/), the surface form would instead
assimilate all of the sibilants to be [+anterior] (e.g. [sasas]). Since
Majority Rule requires a potentially unbounded amount of memory
(i.e. enough memory to keep track of the quantities for each fea-
ture value), it cannot be represented with a finite state transducer
and is more complex than the set of Regular functions (Heinz and Lai
2013).4

Finley and Badecker (2008) tested whether humans were biased
against Majority Rule. They did this by training participants on a
language that was ambiguous between Majority Rule Harmony and
a more standard, attested harmony pattern (henceforth Attested Har-
mony), in which the value of the relevant feature in the SR was deter-
mined by the value of that feature in either the leftmost or rightmost
segment of the UR (see Rose andWalker 2011, for more on the kinds of
harmony patterns that are common in natural language). Directional
harmony mappings like this are Subregular, since determining how a
vowel will surface only depends on local information in the input and

4Since TSL only defines a set of languages (i.e. phonotactic restrictions on
SRs) and not a set of functions (i.e. UR→SR mappings), standard harmony pat-
terns (when represented as transformations) are Output Tier-based Strictly Local
(Burness and McMullin 2019), a subset of Regular functions. See Lamont (2019b)
for more on this distinction betweenmappings and phonotactics and its relevance
to complexity in phonology.
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output (Chandlee 2014; Chandlee et al. 2014, 2015; Graf and Mayer
2018; Burness and McMullin 2019).

Participants in the experiment were exposed to stimuli meant to
represent underlying forms like /kupoki/, with both [+back] and
[−back] vowels present in a single word. Crucially, the minority
vowel (/i/ in this case, since it is [−back] while /o/ and /u/ are both
[+back]) always occurred on the same side of the word in training. Af-
ter being given each “underlying” form, participants would then be ex-
posed to a stimulus representing the “surface” form it mapped to (e.g.,
[kupoku] for the example above). The mapping /kupoki/→[kupoku]
could then be analysed by the participants in two ways: either At-
tested Harmony, where the [back] value of the final vowel changed
because the leftmost vowel in the word was [+back], or Majority Rule
Harmony, where the word-final /i/ changed because the majority of
vowels in the underlying form were [+back].

After being exposed to a number of these ambiguous mappings,
participants were asked to choose between mappings that were un-
ambiguous between Majority Rule and Attested Harmony.5 For ex-
ample, they might be given /kupeki/ and need to choose between
mapping it to [kupoku] (the Attested Harmony candidate) or [kipeki]
(the Majority Rule candidate). If participants chose between the op-
tions at chance, it would suggest that they had no preference for
either pattern. However, if they chose one significantly more often
than the other, it would suggest that they were biased toward learn-
ing that pattern. Finley and Badecker (2008) found that their par-
ticipants were significantly more likely to generalise in a way that
adhered to Attested Harmony. That is, when choosing to either ap-
ply an Attested Harmony or Majority Rule mapping to items that
were unambiguous between the two patterns, participants only ap-
plied the latter in approximately 20% of trials. This suggests that in
the face of ambiguous training, the participants learned the Attested
Harmony pattern – which Finley and Badecker (2008) interpreted as

5Thanks to a reviewer for pointing out that these forms are only unambiguous
as to which of the two patterns of interest they adhere to. A number of other
analyses could be used to account for both sets of words, such as a bidirectional
harmony process for the Majority Rule items (where the value of [back] spreads
outward from the middle vowel).
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evidence of a bias against learning Supraregular patterns like Majority
Rule.

3.2Simulations

To see whether the behaviour observed by Finley and Badecker (2008)
is mirrored by a Seq2Seq network, I simulated their experiment using
the architecture described in Section 2. The model was exposed to
the same types of training data that Finley and Badecker (2008) gave
their participants, which was ambiguous between Majority Rule and
Attested Harmony. Since only the vowels were relevant to the patterns
in this experiment, all consonants were removed. Other than this dif-
ference, the model was exposed to the same underlying and surface
forms that the experiment participants were given. These are shown
in Table 1 and the features used in all the simulations presented in
this subsection are shown in Table 2.

All simulations consisted of 15 repetitions using this training data,
with randomly initialized weights at the start of learning, and 300 full
passes through the training data (i.e., 300 epochs). At each epoch, the

Underlying Representation Surface Representation
/o u i/ [o u u]
/e i o/ [e i e]
/u o i/ [u o u]
/i e o/ [i e e]
/o u e/ [o u o]
/u o e/ [u o o]
/e i u/ [e i i]
/i e u/ [i e i]

Table 1:
Training data for Majority Rule
simulations

[back] [high]
i − +
u + +
e − −
o + −

Table 2:
Features for Majority Rule
simulations
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Table 3:
Test Data for Majority Rule

simulations. Model was given a UR as
input (shown in the leftmost column)

and assigned probabilities to each
output choice (shown in the center

and rightmost columns)

UR Attested Harmony SR Majority Rule SR
/o i e/ [o u o] [e i e]
/o e i/ [o o u] [e e i]
/u i e/ [u u o] [i i e]
/u e i/ [u o u] [i e i]
/i o u/ [i e i] [u o u]
/i u o/ [i i e] [u u o]
/e o u/ [e e i] [o o u]
/e u o/ [e i e] [o u o]

model was presented with the same kind of crucial forced choices that
Finley and Badecker (2008) gave their participants in the experiment’s
test phase (shown in Table 3).

The conditional probability that the model assigned to each
choice, given a particular UR, was calculated using the equation de-
fined in Equation 2, based on Luce (1959), where pr(URi) → SR j is
found using Equation 1, and where fi j stands for feature j in segment
si of the relevant SR.

(1) pr(UR→ SR) =
∏∏

pr( fi j|UR)

(2) pr(URi → SR1|SR1 or SR2) =
pr(URi → SR1)

pr(URi → SR1) + pr(URi → SR2)

Results for these forced choice estimates were averaged over stim-
ulus types and repetitions, and these averages are shown for each
epoch in Figure 4. Figure 5 gives the 50th epoch in more detail, for
results that are more visually comparable to the ones presented by
Finley and Badecker (2008).

These results show that throughout learning, the model prefers
choices that are consistent with Attested Harmony, even though it has
been trained on data that is ambiguous between the two patterns. This
difference reaches statistical significance for a range of epochs (in-
cluding the 50th epoch), meaning that the bias in humans observed
by Finley and Badecker (2008) can be captured by the model.

To further test the model’s biases in regards to Majority Rule Har-
mony, I also ran a simulation that does not correspond to Finley and
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Figure 4:
Forced choice probabilities
at each epoch in learning
for the simulations
of Finley and Badecker
(2008). Coloured regions
show 95% confidence
intervals

Figure 5:
Forced choice probabilities
for the 50th epoch of
training in the simulation
of Finley and Badecker
(2008). Error bars show
95% confidence intervals

Badecker’s (2008) experiment. Rather than using a generalization-
based design, in this simulation, multiple, unambiguous languages
were used in training. Additional data points were added to the train-
ing data in Table 1 to disambiguate the two patterns of interest. The
data for unambiguous versions of Majority Rule Harmony and Attested
Harmony are shown in Tables 4 and 5.

The model was trained on these unambiguous versions of Attested
Harmony and Majority Rule and the cross entropy and accuracy were
recorded at each epoch. Accuracy was estimated by feeding the model
each of the underlying forms in the training data, sampling from the
probabilities it produced in the output to create surface forms, and
finding the proportion of those surface forms that were perfectly pro-
duced in that epoch’s sample. The learning curves created from these
results (averaged over 15 repetitions) are shown in Figure 6.

These results show that for small portions of the learning curve,
Attested Harmony’s average accuracy is marginally higher than
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Table 4:
Training data for the unambiguous

Majority Rule language, based on the
ambiguous data from Finley and

Badecker (2008). Bolded cells show
which data are unambiguous

Underlying Representation Surface Representation
/o u i/ [o u u]
/e i o/ [e i e]
/u o i/ [u o u]
/i e o/ [i e e]
/o u e/ [o u o]
/u o e/ [u o o]
/e i u/ [e i i]
/i e u/ [i e i]
/o i e/ [e i e]
/o e i/ [e e i]
/u i e/ [i i e]
/u e i/ [i e i]
/i o u/ [u o u]
/i u o/ [u u o]
/e o u/ [o o u]
/e u o/ [o u o]

Table 5:
Training data for the unambiguous

Attested Harmony language, based on
the ambiguous data from Finley

and Badecker (2008). Bolded cells
show which data are unambiguous

Underlying Representation Surface Representation
/o u i/ [o u u]
/e i o/ [e i e]
/u o i/ [u o u]
/i e o/ [i e e]
/o u e/ [o u o]
/u o e/ [u o o]
/e i u/ [e i i]
/i e u/ [i e i]
/o i e/ [o u o]
/o e i/ [o o u]
/u i e/ [u u o]
/u e i/ [u o u]
/i o u/ [i e i]
/i u o/ [i i e]
/e o u/ [e e i]
/e u o/ [e i e]
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Figure 6: Learning curves for Majority Rule and Attested Harmony in the sim-
ulations using unambiguous versions of the language from Finley and Badecker
(2008). Chance performance for the plot on the right would be considerably
lower than 0.1, since the model assigns probabilities to each feature value in
each segment. Coloured regions show 95% confidence intervals

Majority Rule’s, but this difference is not a reliable one. There also
seems to be a small, statistically marginal difference between the
loss curves for the two patterns, but this effect is even less consistent
throughout learning. Assuming that the small, artificial languages
used here adequately represented each of the languages, this suggests
that if the model does have a bias for Subregular patterns in its learn-
ing from unambiguous data, the effect size of this bias is too small to
see in just 15 repetitions.

4FIRST-LAST ASSIMILATION

4.1Background

First-Last Assimilation is a hypothetical phonotactic restriction in which
the first and last segment of a word must agree in some feature value,
while the intervening sounds are ignored (Lai 2015). For example,
if the feature that needed to agree was [anterior], the word [saʃas]
would be allowed, but the word *[saʃaʃ] would not be. Lai (2015) ar-
gued that there are reasonable diachronic origins for such a pattern,
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since the beginning and end of a word are perceptually salient posi-
tions. She went on to argue that the absence of such a pattern in the
phonological typology could be due to its FLT-based complexity.

While First-Last Assimilation is Subregular, it belongs to the Lo-
cally Testable region, which is more complex than TSL, in terms of the
logic needed to define the crucial parts of the pattern. That is, sets
of sequences are necessary to describe words banned by First-Last As-
similation (i.e. “words with either [#s] and [ʃ#] or [#ʃ] and [s#] are
banned”), which is never true for TSL patterns.

Two studies have shown that people have biases against learn-
ing First-Last Assimilation. Lai (2015) trained participants on either a
standard sibilant harmony pattern (henceforth, Attested Harmony) or
First-Last Assimilation by having them listen to and then repeat words
adhering to the pattern they were assigned to. In the testing phase
of the experiment, participants were asked to judge which word was
more likely to belong to the language they were trained on in three
types of forced choice:6

i. a choice between a word that was allowed in both patterns
(e.g. [sasakas], denoted as FL/AH below) and a word that was
only allowed in First-Last Assimilation (e.g. [saʃakas], denoted as
FL/*AH below),

ii. a choice between a word that was allowed in both patterns and
a word that was banned by both (e.g. [sasakaʃ], denoted as
*FL/*AH below),

iii. a choice between a word that was only allowed in First-Last As-
similation and one that was banned by both.
Participants who learned an Attested Harmony pattern would be

expected to choose words that were allowed by both patterns when
presented with choices (i) and (ii), but should choose at random for
choice (iii). This is because choice (iii) forces participants to choose
between twowords that are both banned by the Attested Harmony pat-
tern. Participants who learned a First-Last Assimilation pattern would

6While there are more than three logically possible forced choice options,
including words that were only allowed in Attested Harmony would have been
impossible. This is because all words that are allowed in Attested Harmony are
also allowed in First-Last Assimilation.
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Figure 7: Results adapted from Figures 2–4 in Lai (2015). The x-axis shows which
pattern participants were trained on. Type labels are mine, with “FL” standing
for First-Last Assimilation, “AH” for Attested Harmony, and “*” indicating an
option not being allowed in a given pattern. Note that Lai (2015) used the term
“Standard Harmony”/“SH” for the pattern I’m calling “Attested Harmony”/“AH”

be expected to choose at chance for choice (i), since both choices are
grammatical according to First-Last Assimilation. For choice (ii), they
would be expected to choose words that are allowed by both patterns,
and for choice (iii) they should choose the words that are only allowed
by First-Last Assimilation.

However, participants trained on First-Last Assimilation in Lai’s
(2015) experiment did not behave as expected. Her results (repro-
duced in Figure 7) showed that participants in both language con-
ditions behaved as if they had learned Attested Harmony.

Specifically, when presented with choices (i) and (ii), participants
in both conditions chose items that were grammatical in both lan-
guages significantly more than chance, showing that they preferred
items in which Attested Harmony was not violated. However, when
presented with choice (iii), participants performed at chance, demon-
strating that they had no preference between items that violated First-
Last Assimilation and those that did not. This shows that they failed
to learn First-Last Assimilation when trained on the pattern, and in-
stead learned the Attested Harmony pattern. These results are what
one would expect if there were a categorical restriction banning the
acquisition of phonological patterns that are more complex than TSL.

Avcu (2018) ran another artificial language learning experiment
to test for a bias against First-Last Assimilation. Participants received
the same training as Lai’s (2015) study; however in testing, they were
asked to make a different kind of choice. Instead of choosing between
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two words, participants judged whether they thought each test stimu-
lus (some of which followed the pattern from training and some which
did not) belonged to the language they had just learned. This allowed
Avcu (2018) to analyse participant responses using Signal Detection
Theory (Green and Swets 1966) and provided a measure of how sensi-
tive individuals were to whether a word belonged to the language they
were assigned. The results showed that participants in both language
conditions were better than chance at performing this discrimination
task, but that those who learned Attested Harmony performed signif-
icantly better. Since Avcu’s (2018) participants were less successful
at learning First-Last Assimilation than its more standard counterpart,
these results also support the idea of a bias for patterns that are simpler
according to FLT.

4.2 Simulations

To see if an explicit, FLT-related bias is needed to capture the re-
sults that Lai (2015) and Avcu (2018) observed in human learning,
I ran a simulation using a Seq2Seq network.7 The training and test-
ing data that the model received were identical to the stimuli used
by Lai (2015), except that all vowels were removed from the model’s
representations (as they were irrelevant to the patterns of interest).

Since Lai’s (2015) participants were not exposed to the underlying
forms for any of the stimuli, all training and testing data for the model
assumed that underlying forms were identical to their corresponding
surface forms (see Prince and Tesar 2004, for a similar approach to
phonotactic learning). While this data represents an identity mapping,
the fact that neural networks cannot perfectly learn such a mapping
(Tupper and Shahriari 2016) means that the model must learn alter-
native ways to optimize its objective function, such as acquiring the
phonotactic patterns present in the language (see Kurtz 2007, for a
similar approach using a different neural network architecture). The

7Thanks to a reviewer for pointing me toward similar work in the domain of
syntax: Ravfogel et al. (2019) show that a neural network, when trained on data
that is ambiguous between an agreement pattern analogous to First-Last Assimi-
lation and a pattern that involves more local agreement, the network generalises
in a way that suggests it learned the latter.
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Surface Representation
[ʃ s k ʃ]
[s ʃ k s]
[ʃ k s ʃ]
[s k ʃ s]
[ʃ ʃ k ʃ]
[s s k s]
[ʃ k ʃ ʃ]
[s k s s]

Table 6:
Training data for First-Last Assimilation language
in the simulations of Lai (2015). The input and output
to the model was identical for all data

Surface Representation
[ʃ ʃ k ʃ]
[s s k s]
[ʃ k ʃ ʃ]
[s k s s]
[ʃ ʃ k ʃ]
[s s k s]
[ʃ k ʃ ʃ]
[s k s s]

Table 7:
Training data for Attested Harmony language
in the simulations of Lai (2015). The input and output
to the model was identical for all data

[anterior] [sibilant]
s + +
ʃ − +
k − −

Table 8:
Features and segments used in Lai (2015) simulations

training data for First-Last Assimilation and Attested Harmony are
shown in Tables 6 and 7, respectively. Additionally, the features used
to represent the segments in both patterns are shown in Table 8.

Simulations consisted of 15 repetitions in each language condi-
tion, with randomly initialized weights at the start of learning, and
300 passes through the full data set. At each epoch of training, the
model’s cross entropy and accuracy were measured. Accuracy was es-
timated by feeding the model each of the forms in the training data
as input, sampling from the probabilities it produced in its output to
create surface forms, and finding the proportion of those surface forms
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Figure 8: Learning curves for First-Last Assimilation and Attested Harmony in the
simulations of Lai (2015). Chance performance for the plot on the right would be
considerably lower than 0.1, since the model assigns probabilities to each feature
value in each segment. Coloured regions show 95% confidence intervals

that matched their input in that epoch’s sample. Learning curves show-
ing both of these metrics are given in Figure 8.

The curves in Figure 8 show that Attested Harmony is learned
consistently faster than First-Last Assimilation. This difference is sig-
nificant for considerable portions of learning in both the model’s loss
and accuracy. These results are most comparable to those reported by
Avcu (2018), since the model’s performance is higher than chance for
both patterns, but significantly better for Attested Harmony.

To compare the model’s learning to the results in Lai (2015), the
network was given a forced-choice task similar to the one described
in Section 3.2, with the test data given in Table 9.

Since the patterns here were phonotactic (rather than mappings),
there was no shared UR between the two choices. That is, the condi-
tional probability that the model assigned to each choice was just a
normalized probability for each of the two SRs mapping to themselves,
as shown in Equation 3.

(3) pr(SR1|SR1 or SR2) =
pr(SR1→ SR1)

pr(SR1→ SR1) + pr(SR2→ SR2)

The relevant conditional probabilities were averaged over stimu-
lus types and repetitions, and are shown in Figure 9 and Figure 10 for
the model that was trained on First-Last Assimilation and the model
that was trained on Attested Harmony, respectively.
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FL/*AH Choice *FL/*AH Choice
[s k ʃ s] [ʃ k ʃ s]
[ʃ s k ʃ] [ʃ s k s]
[s ʃ k s] [s ʃ k ʃ]
[ʃ k s ʃ] [s k s ʃ]

FL/AH Choice *FL/*AH Choice
[s k s s] [s k s ʃ]
[ʃ ʃ k ʃ] [s ʃ k ʃ]
[ʃ k ʃ ʃ] [ʃ k ʃ s]
[s s k s] [ʃ s k s]

FL/AH Choice FL/*AH Choice
[ʃ ʃ k ʃ] [ʃ s k ʃ]
[s k s s] [s k ʃ s]
[s s k s] [s ʃ k s]
[ʃ k ʃ ʃ] [ʃ k s ʃ]

Table 9:
Test data for First-Last Assimilation simulations.
Probabilities for each form in the left column
were normalized with their corresponding item
in the right column. These normalized
probabilities were then used to simulate
the model’s performance
on the forced-choice task from Lai (2015)

Figure 9: Forced choice probabilities at each epoch in learning for the First-Last
Assimilation language. Coloured regions show 95% confidence intervals
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Figure 10: Forced choice probabilities at each epoch in learning for the Attested
Harmony Language. Coloured regions show 95% confidence intervals

These results show that the Seq2Seq model, like the human par-
ticipants in Lai (2015), behaved in a way that was consistent with
Attested Harmony, even when trained on data that unambiguously
followed the First-Last Assimilation pattern. That is, regardless of the
model’s training data, it chose at chance between words that were
banned by Attested Harmony, even when one of those words adhered
to First-Last Assimilation (with the only exception to this behaviour
being a small number of epochs in the Attested Harmony condition).
This is shown in the results for choice (iii). By itself, this only shows
that the model did not learn First-Last Assimilation. However, choices
(i) and (ii) both show that the models acquired Attested Harmony,
since words adhering to this pattern are consistently given more prob-
ability than words banned by it for most of the acquisition process.8
To show these results in a way that is more visually comparable to
the results reported in Lai (2015), the model’s estimates for the 100th

8Although, note that toward the end of learning, the model trained on
the attested pattern begins to choose at chance in all three of the choice
types. This could be due to the model eventually learning to faithfully map
the segments in the input in those cases. While this approximates an iden-
tity mapping for the segments that were present in the training, it would
not be a true identity mapping, since neural networks trained with algo-
rithms like Adam cannot capture identity-based functions (Tupper and Shahriari
2016).
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Figure 11: Forced choice probabilities for the 100th epoch of training in both
the First-Last Assimilation language and the Attested Harmony Language. The
dashed line shows chance and the error bars show 95% confidence intervals.
As in Figure 7, “FL” stands for First-Last Assimilation, “AH” stands for Attested
Harmony, and “*” indicates an option not being allowed in a given pattern

epoch in each language, which was a relatively representative point
in each language’s learning curve, are shown in Figure 11.

5DISCUSSION

5.1Why can the Seq2Seq network capture these biases?

In this paper, I showed that the apparent FLT-related bias observed
in past artificial language learning experiments could be modeled by
a recurrent neural network with no FLT-based restrictions built into
its architecture. But the question of why these biases exist has not
been addressed. One reason for the model’s bias against Majority Rule
Harmony could be its inability to count. Weiss et al. (2018) showed
that GRU units, like the one used in the hidden layer of the neural
network I tested, prohibit a model from acquiring the ability to count
(as opposed to simple recurrent networks and networks with LSTM
units, which were able to learn counting-based patterns). Since Ma-
jority Rule Harmony requires counting the occurrences of a particular
feature value in the input, this could explain the model’s preference
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for learning an Attested Harmony pattern in the face of ambiguous
data.

Another relevant factor is the locality bias (sometimes also called
“sequentiality”; Battaglia et al. 2018) present in all recurrent network
architectures. This is a bias for patterns that involve local dependen-
cies, originating from the fact that recurrent connections have a finite
amount of memory with which to store information across time. Past
results on syntactic patterns have shown that this bias can cause RNNs
to learn a local agreement pattern when given ambiguous evidence
between that and a non-local one (Ravfogel et al. 2019). Similarly,
McCoy et al. (2020) showed that Seq2Seq neural networks similar to
the one used here were more likely to learn syntactic patterns that
depended on linear order, which typically involves more local depen-
dencies, than patterns that depended on hierarchical structure, which
typically involves longer distance dependencies. Since First-Last As-
similation also involves non-local dependencies (i.e. two arbitrarily
distant first and last segments), the network could have struggled to
keep track of the relevant feature values in its recurrent connections
when acquiring that pattern.9

5.2 Future work

This paper has shown that three experiments that found evidence sup-
porting an FLT-based bias in humans (Finley and Badecker 2008; Lai
2015; Avcu 2018) can be simulated using a Seq2Seq recurrent neu-
ral network. Future work should continue to explore the phonological
learning biases present in both humans and computational models. For
example, one phonological pattern that was not discussed here but
which the literature has discussed in detail is Sour Grapes Harmony
(Bakovic 2000; Wilson 2003). Sour Grapes is identical to Standard
Harmony, except when a segment that blocks the harmony process is

9The difference between local and non-local dependencies has been thor-
oughly explored in the statistical learning literature as well (e.g., Newport and
Aslin 2004), and simulations of such statistical learning experiments with RNNs
have been performed (see, e.g., Farkaš 2008). I leave exploring the relationship
between these experiments and those that have been used to support FLT-based
biases in phonology to future work.
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present in a word. When this happens, any changes that would have
occurred up to the blocker are prevented from occurring at all. Like
First-Last Assimilation and Majority Rule, Sour Grapes is unattested in
natural language and more complex than the Tier-based Strictly Local
region of the Subregular Hierarchy (O’Hara and Smith 2019; Lamont
2019b).

Another avenue for future work is using more realistic artificial
languages. In all of the experiments simulated here, word length was
kept constant. When testing the effects of formal complexity on human
learning, generalization to novel lengths has been shown to be crucial
in understanding human bias (Westphal-Fitch et al. 2018). Further re-
search that makes use of variable lengths in its training and testing
data could shed light on whether humans display an FLT-based bias
under these more realistic conditions.

Researchers should also explore how the predictions about human
learnability made by FLT and neural networks differ. For example, cer-
tain Context-Sensitive patterns are easier for neural networks and hu-
mans to learn than corresponding Context-Free patterns (Li et al. 2013;
Westphal-Fitch et al. 2018), despite the fact that Context-Sensitive is
more complex according to FLT. Exploring whether mismatches like
this occur in phonological patterns could shed more light on how psy-
chologically real FLT-based complexity is.

Understanding better why the neural network is able to capture
these results and what representations it learns while doing so is an-
other important next step. While the interpretability of recurrent net-
works has primarily been explored in the context of syntactic pat-
terns and language modelling (see, e.g., Alishahi et al. 2019, for a re-
view), some recent work on phonological patterns has shown promis-
ing results in this direction (Nelson et al. 2020; Smith et al. 2021)
and these techniques could likely be applied to the networks used
here.

Finally, a number of choices about the model I used were made
somewhat arbitrarily: the number of hidden states in each layer, the
use of GRU instead of a different kind of recurrent layer in the model,
the use of attention, et cetera. Changing any one of these would likely
have an effect on the model’s ability to capture the experiment re-
sults investigated in Section 3 and Section 4, and I leave exploring the
consequences of such changes to future work.
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5.3 The relationship between FLT and other complexity
metrics

The Subregular Hierarchy is not the only way of measuring complexity
that has been used in phonological research. Feature counting (Chom-
sky and Halle 1968), Minimum Description Length (Rasin and Katzir
2016), and various other methods (e.g. Moreton et al. 2017) have
been used to characterize the complexity of phonological patterns.
While these other methods are related to FLT, they are not perfectly
correlated with it. For example, a feature-counting complexity metric
would find a pattern banning all voiced sounds at the end of words
(i.e., *[+voice]#) to be simpler than a pattern banning voiced, velar
stops in that context (i.e., *[+voice, Dorsal]#). However, according
to FLT, these patterns would both be Strictly Local, with no differ-
ence in complexity. Exploring the relationship between FLT and these
other metrics is outside the scope of this paper; however future work
should investigate what formalizations of complexity best predict both
human behavior and linguistic typology (see, e.g., Moreton and Pater
2012).

5.4 Conclusions

Past work has explained phonological typology using an explicit, cat-
egorical restriction that prohibits the acquisition of patterns that are
too complex according to the Subregular Hierarchy. Evidence for this
hypothesis includes a series of experiments that showed humans be-
ing affected by an apparent FLT-based bias in an artificial language
learning context (Finley and Badecker 2008; Lai 2015; Avcu 2018).

The results in this paper challenge the idea that a categorical, ex-
plicit bias like this is needed to capture phonological learning, since
a Seq2Seq neural network with the expressive power to represent
Supraregular patterns was able to capture these experimental results.
While FLT can be useful for describing phonological typology, these
results suggest that an explicit FLT-based bias may not be needed in
models of phonological learning.
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Research on cross-linguistic differences in morphological paradigms
reveals a wide range of variation on many dimensions, including the
number of categories expressed, the number of unique forms, and
the number of inflectional classes. However, in an influential paper,
Ackerman and Malouf (2013) argue that there is one dimension on
which languages do not differ widely: in predictive structure. Pre-
dictive structure in a paradigm describes the extent to which forms
predict each other, called i-complexity. Ackerman and Malouf (2013)
show that although languages differ according to measure of sur-
face paradigm complexity, called e-complexity, they tend to have
low i-complexity. They conclude that morphological paradigms have
evolved under a pressure for low i-complexity. Here, we evaluate the
hypothesis that language learners are more sensitive to i-complexity
than e-complexity by testing how well paradigms which differ on only
these dimensions are learned. This could result in the typological find-
ings Ackerman and Malouf (2013) report if even paradigms with very
high e-complexity are relatively easy to learn, so long as they have
low i-complexity. First, we summarize a recent work by Johnson et al.
(2020) suggesting that both neural networks and human learners may
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actually be more sensitive to e-complexity than i-complexity. Then we
build on this work, reporting a series of experiments which confirm
that, indeed, across a range of paradigms that vary in either e- or i-
complexity, neural networks (LSTMs) are sensitive to both, but show a
larger effect of e-complexity (and other measures associated with size
and diversity of forms). In human learners, we fail to find any effect
of i-complexity on learning at all. Finally, we analyse a large number
of randomly generated paradigms and show that e- and i-complexity
are negatively correlated: paradigms with high e-complexity neces-
sarily show low i-complexity. We discuss what these findings might
mean for Ackerman and Malouf’s hypothesis, as well as the role of
ease of learning versus generalization to novel forms in the evolution
of paradigms.

1 INTRODUCTION

Languages differ widely in their morphological systems, including sub-
stantial variation in their inflectional paradigms; some languages do
not use morphology to mark grammatical information at all (e.g. Man-
darin) whereas others make use of inflectional morphology to mark
dozens of grammatical functions (e.g. Arabic). Intuitively, this kind
of variation should have an effect on how easy or difficult it is to
learn a morphological system – the more inflected forms for each lex-
eme there are, the more difficult learning should be. Indeed, using the
size of an inflectional paradigm is a common method for measuring
morphological complexity, for example by counting the number of po-
tential inflections a verb or a noun can be marked with (e.g. Shosted
2006; Bickel and Nichols 2013). In addition to the number of inflec-
tional categories, the size of a morphological system is also impacted
by the number of inflection classes, i.e. different realizations for the
samemorphosyntactic or morphosemantic distinction across groups of
lexemes (Aronoff 1994; Corbett 2009), which has also been claimed
to be a source of complexity in morphological systems (e.g. Baerman
et al. 2010; Ackerman and Malouf 2013). These aspects of morpho-
logical complexity, which pertain to the size of a morphological sys-
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tem, are all referred to as enumerative complexity or e-complexity
(e.g. Ackerman and Malouf 2013; Meinhardt et al. 2019).

Recently, another measure of the complexity of morphological
paradigms has been suggested, referred to as integrative complexity,
or i-complexity. I-complexity refers to the organization of the inflected
forms in the paradigm and the relations between the forms that such
organization generates; in paradigms with low i-complexity, forms are
predictive of one another (e.g. Blevins 2006; Ackerman and Malouf
2013). Proponents of this measure suggest that i-complexity reflects
the difficulty speakers face in generating forms they have not previ-
ously encountered, based on known forms of the same lexeme (the
Paradigm Cell Filling Problem, Ackerman and Malouf 2013, 2015).
Predictive structure in a morphological system can be seen in Table 1
below, which shows the Russian nominal inflection paradigm. This
paradigm has four inflectional classes, and inflections for two number
categories and six case categories. The nominative singular -o is pre-
dictive of all the other case forms (i.e. if you know that a given noun
takes -o in the nominative singular you can predict its inflection in any
other combination of case and number); in contrast, the nominative
plural -i is less predictive, since nouns which take that inflection show
variation in inflectional marking elsewhere.

Crucially, Ackerman and Malouf (2013) observe that across
natural language paradigms, while the size or e-complexity vary
widely, i-complexity is consistently low. Further they show that high

Table 1: Russian nominal inflection paradigm (phonological transcription).
Nouns fall into one of 4 inflection classes (rows) which show different pat-
terns of inflection; nouns are inflected for number (SG=singular, PL=plural)
and case (NOM=nominative, ACC=accusative, GEN=genitive, DAT=dative,
LOC=locative, INS=instrumental)

SG PL

NOM ACC GEN DAT LOC INS NOM ACC GEN DAT LOC INS
noun class 1 -o -o -a -u -e -om -a -a ø -am -ax -am’i
noun class 2 ø ø -a -u -e -om -i -i -ov -am -ax -am’i
noun class 3 -a -u -i -e -e -oj -i -i ø -am -ax -am’i
noun class 4 ø ø -i -i -i -ju -i -i -ej -am -ax -am’i

[ 99 ]



Tamar Johnson, Kexin Gao et al.

e-complexity paradigms tend to have low i-complexity. They con-
clude that i-complexity is therefore a primary measure of complexity
which shapes the types of morphological paradigms attested cross-
linguistically.

Ackerman and Malouf (2015) further suggest that the pressure for
low i-complexity shapes languages through the dynamics of language
change. Specifically, during language use, low i-complexity may as-
sist language users in solving the Paradigm Cell Filling Problem, and
further, errors language users make when generalizing to unknown
forms may be i-complexity-reducing. This idea is also compatible with
the general hypothesis that languages evolve to maximise learnability
(e.g. Deacon 1997; Kirby 2002; Christiansen and Chater 2008; Kirby
et al. 2008; Culbertson and Kirby 2016). In this case, a learning bias
against high i-complexity paradigms would drive i-complexity down
over generations of learners. If i-complexity affects learning and use
more than other aspects of complexity, then the former might end up
being constrained across languages, while the latter may vary quite
freely. That said, from this perspective the substantial variation in lan-
guages’ e-complexity that Ackerman and Malouf (2013) observe is on
its face surprising. We might reasonably expect that higher e-com-
plexity also poses challenges for language learners; and the existence
of languages with large morphological paradigms and numerous in-
flectional classes in particular is puzzling.

Here we compare how different sources of morphological com-
plexity affect learnability of inflectional paradigms. We focus on the
two types of measures described above: e-complexity as reflected in
the number of inflection classes in a paradigm and the distribution
of their forms, and i-complexity as reflected in the predictability of
forms in a paradigm based on other parts of the paradigm. We also
investigate how these interact with the number of different markers
in the system, another aspect of the e-complexity of the paradigm, and
different types of syncretism. Syncretism is a phenomenon in which
different cells in an inflectional paradigm are realized by the same
phonological form. Whether the same phonological form marks se-
mantically related meanings or is accidental homonymy, has been sug-
gested to affect the learning of the forms (e.g. Baerman et al. 2005;
Pertsova 2012; Maldonado and Culbertson 2019). For example, in Ta-
ble 1, -o is used for semantically related forms – class 1 nouns which
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differ in case. However, -a can be considered accidental homophony
as it is used across different classes for different cases.

The paper proceeds as follows. We first outline more precisely
how e- and i-complexity are calculated in this study. We then dis-
cuss previous work aimed at providing empirical evidence for the
link between i-complexity and learning of morphological paradigms.
This work has highlighted the role of predictive structure in produc-
ing novel inflections, i.e. generalization. In Section 2 we report a se-
ries of experiments using LSTM neural network and human learners
testing the related hypothesis that low i-complexity provides a more
general facilitatory effect on learning than e-complexity, including fa-
cilitating the retrieval of already-encountered forms early in learning.
While the biases of human learners are obviously of primary inter-
est in understanding the pressures that shape human language, we
use neural networks as a convenient model of an ‘ideal learner’. Test-
ing such a learner serves to provide proof-in-principle for whether i-
complexity can affect learnability and whether its influence is greater
than other types of morphological complexity. For both human and
network learners we see similar results, contrary to the hypothesis
above; e-complexity generally impacts learning more than i-complex-
ity. Finally, in Section 3 we explore the relationship between the i- and
e-complexity by generating a large number of random paradigms with
different values of these two measures. Here we find that i-complexity
and e-complexity are highly negatively correlated: as the number of
distinct forms increases, the implicative structure between forms also
necessarily increases. Furthermore, the range of e-complexity values
is also necessarily higher than the range of i-complexity values for
paradigms of the same size. These findings suggest that the obser-
vations made by Ackerman and Malouf (2013) concerning morpho-
logical paradigms may stem in part from the nature of the measures
rather than pressures (e.g. inductive or usage biases) that are specially
attuned to i-complexity.

1.1Measuring i-complexity and e-complexity

Here we adopt methods for calculating i-complexity outlined in Ack-
erman and Malouf (2013). The i-complexity of inflectional paradigms
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is measured using the information-theoretic notion of entropy (Shan-
non 1963), specifically the averaged conditional entropy of forms in
the paradigm. The conditional entropy of a pair of grammatical func-
tions X, Y in the paradigm is presented in (1) below. Here P(x , y)
indicates the joint probability of the two grammatical functions in the
paradigm being realized as forms x and y , respectively; P(y|x) indi-
cates the conditional probability of Y being realized as y , given that
X is realized as x . Conditional entropy H(Y |X ) quantifies the uncer-
tainty associated with the value of Y given the value of X . For example,
looking at the Russian nominal inflection paradigm in Table 1, let Y
be the set of forms realizing SG.NOM, [-o, ø, -a, ø], and X be the set
of forms realizing SG.DAT, [-u, -u, -e, - i]. The conditional entropy of
SG.NOM given the form in SG.DAT would represent the uncertainty
associated with the form in SG.NOM, when the form realizing SG.DAT
for the same lexeme is known.

(1) H(Y |X ) = −∑
x∈X

∑
y∈Y

P(x , y) log2 P(y|x)

A paradigm’s total i-complexity is the averaged conditional en-
tropy over all pairs of grammatical functions in the paradigm, as in (2),

(2)
∑

Y∈G

∑
X∈G H(X |Y )

NG(NG − 1)
,

where G is the set of grammatical functions in the paradigm and NG

is their total number.1
Although Ackerman and Malouf (2013) do not explicitly suggest

a measure for e-complexity, we adopt here their average cell entropy
as a measure for e-complexity. The cell entropy, defined in (3) below,
captures the number of inflection classes and the number of differ-
ent variants to mark each grammatical function (e.g. combinations of
number and case in the Russian nominal inflection paradigm above).
Intuitively, grammatical functions that are realized with a large set

1Note that this is not the only way of calculating i-complexity. For alternative
formulations, see Malouf (2017) as well as Bonami and Beniamine (2016) and
Sims and Parker (2016), who propose alternative formulations which are less
dependent on linguist-constructed paradigms.
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of optional forms, or do not have a dominant/frequent variant, have
higher cell entropy. The difference between these two measures rests
in the extent to which they take into account the inter-predictability of
forms across the paradigm. I-complexity is specifically defined to mea-
sure the degree to which one form can be guessed based on another
form, in any other cell of the paradigm. In other words, it critically in-
volves predicting the form of a lexeme in some grammatical function
based on the form of that lexeme in a different grammatical function.
By contrast, average cell entropy is only defined in terms of a single
grammatical function, i.e. it is based on what one can predict from
the form of other lexemes for that grammatical function. Average cell
entropy is thus suitable for measuring what is crucially different about
e-complexity as compared to i-complexity.2 For example, Ackerman
andMalouf (2013) illustrate at their claim that paradigms tend to have
low i-complexity but vary in their e-complexity using the average con-
ditional entropy and average cell entropy, respectively.

(3) H(X ) = −∑
x∈X

P(x) log2 P(x)

2We further discuss the relationship between average cell entropy and an-
other common measures of e-complexity, number of forms in the paradigm,
in Section 3. In general, we prefer average cell entropy over simply counting
the number of forms in the paradigm, or number of forms for a given gram-
matical function, because the entropy-based measure also accounts for the fre-
quency with which forms are used across a grammatical function. For example,
in the Russian paradigm above, SG.GEN and SG.LOC both are expressed with
two affixes, but the skewed distribution over those two affixes for SG.LOC re-
duces uncertainty (the appropriate affix is more likely to be -e than -i), which
the entropy-based measure captures. However, it should be noted that Mal-
ouf (p.c.) has suggested that the number of forms, but not average cell en-
tropy, should be considered a measure of e-complexity. They argue this based
on the fact that average cell entropy, like the measure of i-complexity we use,
also reflects predictive relationships within the paradigm (just not across gram-
matical forms for a given lexeme). We would argue against this interpreta-
tion, since the number of forms – an uncontroversial measure of e-complex-
ity – can also be considered predictive in this way, as it affects how well a
form can be predicted based on knowledge of all the forms in the paradigm.
Put another way, a paradigm with fewer forms makes any given form easier
to guess.
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E-complexity is measured as the averaged cell entropy over all
grammatical functions in a paradigm as in (4),

(4)
∑

X∈G H(X )
NG

,

where G is the set of grammatical functions in the paradigm and NG

is their total number.

1.2 Previous work investigating the effects of complexity
on morphological learnability

As mentioned above, Ackerman and Malouf (2013) find evidence that
while morphological paradigms differ widely in their e-complexity,
the range of i-complexity values appears to be more constrained.
They calculate both e- and i-complexity for inflectional paradigms
in a set of 10 geographically and genetically varying languages. The
e-complexity values they report (as measured by average cell entropy)
ranged between 0.78 and 4.9 bits, while their i-complexity values were
under 1 bit across the board.3 A simulation analysis performed on one
of the languages exhibiting high e-complexity (ChiquihuitlànMazatec)
showed that the i-complexity of the actual paradigm was lower than
the i-complexity values for random permutations of that paradigm.
This suggests that the inflectional paradigms of natural languages may
be organized in such a way as to minimize their i-complexity. How
might this come about? One possibility is that low i-complexity fa-
cilitates solving the Paradigm Cell Filling Problem (Ackerman et al.
2009; Ackerman and Malouf 2015), i.e. it makes it easier to deter-
mine the correct form for novel inflection. This generalization-based
mechanism could lead to lower i-complexity: assuming individuals are
frequently required to produce novel inflections (i.e. generate the in-
flectional form associated with grammatical function Y for a lexeme
which they have only seen inflected for grammatical function X ), and

3The relationship between e-complexity and i-complexity found by Acker-
man and Malouf (2013) is also reported in Cotterell et al. (2019), using different
measures of both e- and i-complexity (the latter based on forms drawn from cor-
pora rather than paradigms posited by linguists, cf. Bonami and Beniamine 2016;
Sims and Parker 2016) .
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assuming they exploit predictive relationships between grammatical
functions as captured by i-complexity, paradigms with low i-complex-
ity will be relatively stable whereas paradigms with high i-complex-
ity (i.e. where prediction from the form for function X to the form
for function Y is not possible) will tend to change. Specifically, they
might be expected to change in ways which reduce i-complexity since
learners might actually introduce errors which reflect predictive rela-
tionships when attempting to generalise.

Seyfarth et al. (2014) tested the Ackerman et al. (2009) hypoth-
esis that i-complexity has an effect on the ability of human learners
to solve the Paradigm Cell Filling Problem. They compared the abil-
ity of human learners to predict novel inflected forms in low vs. high
i-complexity input. They trained participants on an artificially con-
structed nominal inflectional paradigm in which nouns were marked
for three grammatical numbers (singular, dual and plural) according
to one of two noun classes (Table 2a). In the test phase, they asked par-
ticipants to generate inflected forms for a novel lexeme given that lex-
eme’s inflected form in another grammatical number. In some trials,
the required form could be predicted from the given form (predic-
tive trials), while in others it could not be (non-predictive trials). In
Table 2a, for example, being prompted with a novel singular form
marked with -yez allows the learner to predict what form the lexeme

(a) Paradigm with two noun classes
(their Experiment 1)

Singular Dual Plural
noun class 1 -yez -cav -lem
noun class 2 -taf -guk -lem

(b) Paradigm with three noun classes
(their Experiment 2)

Singular Dual Plural
noun class 1 -taf -guk -lem
noun class 2 -yez -cav -lem
noun class 3 -yez -cav -nup

Table 2:
Artificially constructed
nominal inflection paradigms
used in Seyfarth et al. (2014)
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takes in the dual (-cav). However, knowing the form in plural is not
predictive of the form in dual. They found that participants’ perfor-
mance differed across predictive and non-predictive trials, showing
that learners were indeed able to use the predictive structure to gener-
ate a correct novel formwhen it was available. In a second experiment,
Seyfarth et al. (2014) tested whether predictive information facilitated
generalization to novel stems in a larger paradigm (Table 2b). They
found that learners made less use of predictive information in this
larger paradigm: learners tended to inflect novel stems with the most
frequent marker (e.g. they used the suffix -cav to mark dual regard-
less of class). Notably, while predictive relations between forms in the
paradigm is captured by i-complexity, suffix frequency is captured by
our measure of e-complexity. Therefore, these results suggest that e-
complexity may also influence how learners generalize to novel forms.

The Seyfarth et al. (2014) study simulates a case in which lan-
guage learners have to generalize from the paradigm they have
learned to inflect a novel stem for one grammatical feature based
on exposure to that stem inflected for a different grammatical feature.
For example, they might be required to inflect a stem for dual when
they had only seen that stem inflected in the singular. They show that,
in this case, learners are indeed able to use this predictive structure
to predict the novel form. Johnson et al. (2020) replicate these results
with LSTM networks, showing that the networks are able to use the
predictive relations between forms in the paradigm to generalize to
novel wordforms. However, generalizing to completely novel forms
is an extreme case of a much more general problem that language
learners face. In addition to generalizing to completely novel forms,
learners must generate (or retrieve) forms which may have been en-
countered but have not yet been robustly acquired. Our hypothesis is
that if low i-complexity facilitates solving the Paradigm Cell Filling
Problem, i.e. using familiar forms to predict new forms, it should, in
principle, facilitate learning forms under low exposure as well; learn-
ers can use the same strategy they use when generalizing to completely
novel stems to help generate (or retrieve) low frequency forms that
are not fully memorized.

Here we test this hypothesis, comparing the effects of e- and i-
complexity on the learnability of morphological paradigms. We sys-
tematically manipulate i-complexity and e-complexity, holding other
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potential differences among paradigms (e.g. number of forms) con-
stant. In Section 2, we use an artificial language learning task to train
and test LSTM neural networks and human participants on four in-
flectional paradigms with varying values of i- and e-complexity. To
test the effect of i-complexity on speed and final attainment of learn-
ing, we test how well LSTMs and human learners are able to gener-
ate forms they are trained on over the course of learning. Data from
these experiments, in combination with results from Seyfarth et al.
(2014), will provide evidence concerning the mechanism by which
i-complexity might shape paradigms over time. Specifically, whether
the pressure for low i-complexity suggested by Ackerman and Malouf
(2013, 2015) comes solely from how it affects generalization to novel
forms, or from a more general facilitatory effect on learning, includ-
ing retrieval of encountered forms. Moreover, comparing the effects
of e- and i-complexity on learning will potentially provide corroborat-
ing evidence for the hypothesis that i-complexity rather than e-com-
plexity shapes morphological paradigms. To preview, we find that the
LSTM neural networks exhibit different learning rates for paradigms
with different values of i-complexity, however the effect of variations
in e-complexity is larger. Results from the task with human learners
reveal an effect of e-complexity but not i-complexity on learning.

2TESTING THE EFFECTS
OF E- AND I-COMPLEXITY
IN HUMAN LEARNERS

AND LSTM NEURAL NETWORKS

Johnson et al. (2020) report a series of artificial language learning ex-
periments with human learners and Long Short Term Memory (LSTM,
Hochreiter and Schmidhuber 1997) neural networks. Learners and
networks were trained on one of two nominal inflectional paradigms
which were matched in e-complexity but differed in i-complexity: one
with low i-complexity and one with high(er) i-complexity. They found
evidence that the low i-complexity paradigm was learned faster by
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LSTMs, but there was no clear effect of i-complexity for human learn-
ers. In a second series of experiments, manipulating both e- and i-
complexity, e-complexity was shown to better predict learnability for
both LSTMs and human learners. However, in Johnson et al. (2020),
learning was staged, i.e. learners were first exposed to all forms in one
grammatical function (singular), then forms in a second grammatical
function were added (singular and plural), and finally forms in the last
grammatical function were added (singular, plural, and dual). This
was done to increase the chances of finding an effect of i-complex-
ity; in low i-complexity paradigms, the dual forms could be predicted
from the singular. Here, we explore more realistic, unstaged learning:
presentation of forms is fully random and learners are exposed to all
forms in the paradigm from the beginning. In contrast to Johnson et al.
(2020), we also measure the overall accuracy of learning all inflected
forms in the paradigm, rather than focusing only on learning of forms
in one grammatical number. Replicating these results with unstaged
learning is important, since our objective is to compare different types
of complexity and their effects on learning. The learning regime should
therefore be neutral in terms of enhancing or reducing the probability
that learners would be affected by one measure or another. Further-
more, we take this as a starting point to investigate a wider range of
differences in e- and i-complexity across paradigms, and therefore the
privileged role of one specific portion of the paradigm (e.g. the sin-
gular in the staged learning design) will not hold across these more
diverse paradigms.

Artificial language learning tasks allow us to create languages that
differ only in the aspect we are interested in testing, while controlling
for all other aspects of the language. This allows us to test the effects
of i- and e-complexity on learning without confounds from other as-
pects of the paradigm and language such as the size of the paradigm,
number of unique forms and number of words in each noun class. An-
other advantage of artificial languages paradigms is that since they are
small compared to natural languages, they can generally be learned
to a reasonably high proficiency over the course of a single short ses-
sion. While they do not reflect the full complexity of natural languages
learned in natural settings, artificial language paradigms are widely
used in research on language acquisition, including to investigate
learning biases (e.g. Wonnacott and Newport 2005; Hudson Kam and
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Newport 2009; Moreton and Pater 2012; Fedzechkina et al. 2012, and
many others). Moreover, studies using artificial learning paradigms
show correspondence between lab-based learning biases and typology
(e.g. see for reviews Culbertson et al. 2012; Culbertson and Newport
2015).

We use LSTM networks as a supplement to human learners as
an additional means of testing the relative impact of i-complexity
and e-complexity on paradigm learning. LSTM networks are power-
ful learning devices, and various recent studies show that they can be
capable of extracting and using relevant linguistic information in se-
quence processing tasks. For example, Linzen et al. (2016) show that
LSTM networks can in some cases predict long-distance subject-verb
number agreement, in the presence of other potential agreement trig-
gers (often called attractors) intervening between the subject and verb;
Gulordava et al. (2018) show that LSTMs trained on four different lan-
guages can often accurately predict subject-verb agreement even when
they are not trained specifically on that task; Futrell et al. (2019) show
that surprisal scores of LSTMs (ameasure of processing cost) paralleled
preferences of human participants on grammatical judgments task dif-
ferentiating word-order alternations.

Here, we use LSTMs as a convenient ‘ideal learner’, to provide evi-
dence that i-complexity can in principle influence paradigm learnabil-
ity for at least one learning model. This is particularly useful in circum-
stances where (as turns out to be the case here) human data provides
little evidence of an effect of i-complexity. The LSTM models allow
us to show that this is not an intrinsic limitation to the way in which
we set up our learning task – we find that i-complexity does influence
learning in LSTMs trained on the same paradigms. Crucially, we can
then show that, even for a class of learners sensitive to i-complexity,
those effects are smaller than the effects of e-complexity. Finally, di-
rectly comparing performance of LSTMs and humans on a matched
task opens up the possibility that, to the extent that they show similar
patterns of performance, LSTMs could be used as a convenient tool
to quickly generate predictions to be tested in further human experi-
ments on paradigm learning. In other words, if these models reliably
produce a similar pattern of results to human learners then they could
potentially also be used to extrapolate to paradigms that are hard to
test with human learners under controlled circumstances, e.g. learn-
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ing of very large paradigms or paradigms inflecting over very large
lexicons.

2.1 Target paradigms

We use four artificially constructed inflectional paradigms, similar in
size and design to the ones used in Seyfarth et al. (2014) and Johnson
et al. (2020). The same paradigms were used for both neural networks
and human participants. The paradigms consist of nine CVC nouns
(gob, tug, sov, kut, pid, tal, dar, ler, mip), randomly paired with mean-
ings for human participants (see Section 2.3 below). The nouns were
randomly allocated to three classes (for each run of the network, or
each human participant), and each class was inflected for three num-
bers: singular, dual and plural. Inflectional markers were seven VC
monosyllabic suffixes (-op, -oc, -um, -ib, -el, -ek, -at). These inflectional
markers were randomly allocated to cells in each paradigm, such that
the four paradigms were always structured as in Table 3 below but
with a different mapping of affixes to cells for each human partici-
pant.

As summarized in Table 3, the paradigms differ either in i-com-
plexity or e-complexity, holding the other constant. We also hold con-
stant all other aspects of the paradigms: the paradigms are matched in
Table 3: Four target paradigms differing either in i-complexity or e-complex-
ity values. The low i-complexity, low e-complexity (low-i/low-e) and high i-
complexity, low e-complexity (high-i/low-e) paradigms differ in i-complexity
only. The two remaining low-i/high-e paradigms have low i-complexity but have
higher e-complexity; these paradigms also differ in the type of syncretism pattern
(within class or across class)

e-complexity

Low

(1.141 bits)
High

(1.363 bits)

i-complexity

Low

(0.222 bits) low-i/low-e low-i/high-ewithin
low-i/high-eacross

High

(0.444 bits) high-i/low-e
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Table 4: Example paradigms for each type tested. See Table 3 for high-level
descriptions of each type. Colored cells highlight distinct paradigm structures:
in low-i/low-e (a), singular -op predicts dual -um; in high-i/low-e (b), singular
does not predict dual; in both low-i/high-e paradigms (c,d), the singular form
which occurs most frequently is reused for plural elsewhere in the paradigm
(syncretism) – either in one of the classes with that form in the singular
(c low-i/high-ewithin), or in a different class (d low-i/high-eacross)

(a) low-i/low-e
Singular Dual Plural

noun class 1 -op -um -ib
noun class 2 -at -oc -el
noun class 3 -op -um -ek

(b) high-i/low-e
Singular Dual Plural

noun class 1 -op -um -ib
noun class 2 -at -um -el
noun class 3 -op -oc -ek

(c) low-i/high-ewithin
Singular Dual Plural

noun class 1 -op -um -op
noun class 2 -at -ib -el
noun class 3 -op -oc -ek

(d) low-i/high-eacross
Singular Dual Plural

noun class 1 -op -um -el
noun class 2 -at -ib -op
noun class 3 -op -oc -ek

terms of number of distinct affixes and number of inflectional classes,
and they feature the same three-way number distinction. The low
i-complexity, low e-complexity (low-i/low-e) and high i-complexity,
low e-complexity (high-i/low-e) paradigms differ in their i-complex-
ity (0.222 vs. 0.444 bits) while their e-complexity is kept constant
(1.141 bits). The key difference between the two paradigms is that
in the low-i/low-e paradigm, knowing the singular affix of a word
(e.g. -op in Table 4a), predicts the dual affix (e.g. -um). This is not
the case in the high-i/low-e paradigm (in Table 4b the singular -op
does not uniquely determine the form of the dual). The remaining two
paradigms (Table 4c, d) both have low i-complexity (0.222 bits) but
higher e-complexity (1.363 bits). In general, higher e-complexity here
means having distinct dual forms for each class, which results in higher
uncertainty across forms relative to the low e-complexity paradigms.
I-complexity is kept constant and low in these two paradigms since
both the plural and dual forms are predictive of each other as well as
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the forms in singular. However, increasing e-complexity while keeping
the number of markers constant requires syncretism in the paradigm;
a single affix is used to mark different grammatical functions. In order
to additionally explore how syncretism affects learning, here we gen-
erated two different syncretism patterns: within class syncretism (low-
i/high-ewithin) and across class syncretism (low-i/high-eacross). In both
low-i/high-e paradigms, the singular form is the same for classes 1 and
3 (e.g. -op in the example paradigm in Table 4c, d). In the low-i/high-
ewithin the syncretic form is reused as a plural in class 1 (Table 4c). In
the low-i/high-eacross the syncretic form is reused as a plural marker
for class 2 (Table 4d), crucially, not one of the classes which use this
form in the singular. Previous work on morphological paradigms sug-
gests that this difference in syncretism type could affect learning in
human learners (e.g. Baerman et al. 2005; Pertsova 2012; Maldonado
and Culbertson 2019), therefore we test both paradigm types.

Note that we do not include a paradigm with high i-complexity
and high e-complexity. This is not actually possible: there is no way
to distribute markers such that both measures of complexity are high
without changing the number of markers in the paradigm. We discuss
this further below.

As mentioned above, in Johnson et al. (2020), exposure to forms
from a paradigm was staged: input initially contained only singular
forms, then singular and plural forms, then singular, plural, and dual
forms. This was designed to highlight the implicative structure of low
i-complexity paradigms. However, it is also rather unrealistic in that
exposure in natural language is unlikely to be staged in this way, or at
least not so rigidly staged. Here, we expose learners to forms drawn at
random from the entire paradigm. Therefore, we test whether having
low vs. high values of i- or e-complexity is beneficial when learners
have not always learned predictive forms first. We compared speed
and accuracy of learning all forms in the language across all four con-
ditions.

2.2 Experiment 1: LSTM neural networks

Neural networks are computational models which approximate a
function linking the network’s input with its desired output. The

[ 112 ]



Effects of i- and e-complexity on morphological learning

model consists of several layers of nodes interconnected by associa-
tive weights. Given a dataset of input-output pairs, the model tries
to learn the optimal setting of these weights to correctly transform an
input into its corresponding output. Updating the weights to better ap-
proximate the input–output function is done by searching for weights
that minimize the loss function of the network, which measures how
close the network’s output is to the true output. Different algorithms
are used for this search. A common algorithm is (stochastic) gradient
descent. Intuitively, the network generates an output through a for-
ward pass from the input layer to the output layer, after which the
loss function calculates the difference between the predicted and the
target values. Then, in a backward pass, the loss function is used to
compute an error gradient with respect to each weight and the net-
work’s weights are updated in the direction of the greatest descent so
as to reduce this error.

Recurrent neural networks (RNNs) overcome a limitation of sim-
ple neural networks fundamental to language tasks; simple neural net-
works are not sensitive to the ‘context’ of the current input or, in other
words, how previous inputs affect the correct output for the current
input. RNNs overcome this limitation by having ‘short term memory’
through looping back the output or hidden layer activations previ-
ously produced for earlier inputs (Elman 1990; Jordan 1997; Elman
1991). This allows the network to adjust the output for the current in-
put according to previous inputs. The extent to which previous states
of the network affect the current state is also determined by weights
updated through the backpropagation process.

Long Short Term Memory (LSTM) networks are an extension of
recurrent neural networks introduced by Hochreiter and Schmid-
huber (1997) in order to improve learning of longer temporal de-
pendencies. Practically, LSTMs add an element of ‘long term mem-
ory’ to networks by allowing the network to control the influence
of current and previous inputs during the process of activation
propagation, using ‘weighted gates’ in the networks. Like activa-
tion weights, these gates are optimized during training to determine
what information is stored or passed along and therefore allowed
to influence subsequent inputs. This allows LSTMs to make better
use of sequential information, including learning non-adjacent depen-
dencies.
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LSTMs therefore offer a powerful but convenient general-purpose
learning mechanism for language based tasks. Here we use LSTMs
to process relatively short sequences: networks are presented with
stems and grammatical features and produce an inflectional affix, and
we train models on the target paradigms which differ in either their
i-complexity or e-complexity.

2.2.1 Network structure

We trained and tested LSTM networks using the Keras package in
Python (Chollet et al. 2015). In this task, the model gets as input
a sequence containing the noun’s stem and an extra character in-
dicating the grammatical number of the object (1 for singular, 2
for dual and 3 for plural). For example, the string mip3 indicates
the noun with the stem mip in plural. The model’s task is to out-
put the correct affix for this wordform, according to the paradigm
it is trained on. An overview of the network structure is given in
Figure 1. The network has 7 output units, one for each of the 7 af-
fixes in the target paradigms. Input stem+number sequences are en-
coded as one-hot vectors. i.e. every character used in the language
is represented as a vector of zeroes (with length equal to the total
set of characters, 27) with ‘1’ in a different index uniquely iden-
tifying it. We trained the model with a range of embedding vec-
tors dimensionalities for the input layer and LSTM hidden layer di-
mensionalities (from 5-dimensional embedding vectors and 5-unit
layer (542 parameters) to 50 (14,657 parameters), with increases
of 5 units). The state of the LSTM at the end of the input string is
fed into a ‘softmax’ function to produce a one-hot encoding repre-
senting the output affix for this stem+number input (i.e. the net-
work’s task it to learn a 7-way categorical classification of the input
sequences). The network was optimized using Stochastic Gradient
Descent (SGD) with learning rate of 0.1, batch size of 32, and no
dropout.4 Initial weights were randomly generated, according to a

4 In addition to the various network sizes reported in the main paper, we also
ran variants of the model with a range of learning rates, using both SGD and
Adam (Kingma and Ba 2014) optimizers. Detailed results are presented in the
Appendix. Note that the overall conclusions discussed in the main text remain
unchanged across these variants.
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Figure 1: A diagram of the recurrent neural network: the input layer receives a
string of four characters (stem + grammatical number), each coded as a one-hot
vector of the length of the different characters used in the language (27). The in-
put vectors are embedded and the embeddings are transferred to a hidden layer
with 5–50 LSTM units. Output from the LSTM units (h3) is then transferred to
an output layer with seven options, representing the seven suffixes in the lan-
guage. Using a softmax function, the output is converted to a one-hot vector,
representing the suffix the network selected for this input

‘glorot_uniform’ function (sampling from a uniform distribution in
the range of [−x ,+x], where x is a function of the size of the net-
work).

For each paradigm and set of hyperparameters, 50 runs were pro-
duced. In each run, the lexical items were randomly assigned to noun
classes and the model was trained and tested on input-output pairs
across 900 epochs. In each epoch, the network is trained and tested
on all 27 wordforms in the language (9 stems marked for singular, dual
and plural). The test set in this task is identical to the training set – we
are not testing the capacity of the network to generalize, but rather
the overall accuracy and speed with which it learns the mapping from
stem+number input to the appropriate affix output.5

2.2.2Results

We measured the average accuracy of the networks in producing the
correct affix for all wordforms in the target paradigm over epochs
(averaged over 50 runs for each combination of target paradigm and

5As discussed above, this task differs from that used in Seyfarth et al. (2014),
who focus on generalizing to unknown forms.
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network size). For simplicity, we first collapse the two low-i/high-
e paradigms in these graphs, and deal with the effect of syncretism
separately below. Figure 2 presents network learning trajectories for
these three paradigm types.

The same trend is seen across different network sizes. While 900
epochs is sufficient for all paradigms to be learned perfectly, even for
the smallest networks, the low-i/low-e paradigm type is learned most
rapidly. Networks trained on the high-i/low-e paradigm type show a
similar but slightly slower learning trajectory. Networks trained on the
low-i/high-e paradigm types show the slowest learning, with accuracy
increasing markedly later in training than the other paradigms. 6

Since we are interested in the effect of i- and e-complexity on the
difficulty of learning the paradigm, rather than whether the language
is eventually learnable or not (all of our paradigms were eventually
learned with 100% accuracy given sufficient training), we compare
the summed accuracy (i.e. the sum of the epoch-by-epoch accuracies)
of the networks trained on the different languages. The summed accu-
racy reflects both the speed of learning the language and the accuracy
throughout learning. For example, in the results shown in Figure 2,
where all networks eventually reach ceiling, networks which learn
more rapidly will have a higher summed accuracy reflecting the
faster pick-up in accuracy over epochs. Other measures of learning
speed are possible, e.g. the mean number of epochs to reach 100%
accuracy; we prefer mean summed accuracy because it relates more
obviously to the different shapes of the curve we see in Figure 2, and
is still interpretable for network parameterisations that do not result
in convergence to 100% accuracy.

6We looked at the errors made by the LSTMs at epochs 1–150 (when the neu-
ral networks show a plateau in learning). At this stage in learning, the networks
use only two out of the seven possible affixes as an output. This likely reflects
a local minimum in the loss function, meaning that the LSTM ‘found’ a partial
solution that maximizes its output accuracy. Each input string is classified with
one of those two affixes solely according to the number indicating the grammat-
ical number at the end of the input string so that all singulars take one affix (one
of the affixes that mark singular), and all dual and plural inputs are marked with
another affix (one of the affixes that mark either dual or plural). After around
150 epochs, the networks start using additional affixes, which is then reflected
by a jump in performance.
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Figure 2: Network learning trajectories. (a) results for one network size (35 cells),
with error bars indicating standard error every 10 epochs, (b) results for all net-
work sizes tested (facet titles give network size in number of cells). Networks
trained on low-i/low-e and high-i/low-e paradigm types show similar learning
trajectories, while networks trained on low-i/high-e paradigms show lower ac-
curacy levels. Results from models with further learning rates for both SGD and
Adam optimizers show similar patterns for most cases, and we never see the op-
posite trend of lower accuracies for the high-i/low-e condition (see the Appendix
for detailed results)
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Figure 3:
Summed accuracy over the
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Figure 3 shows the summed accuracy of the networks trained
on each paradigm type across different network sizes. To determine
whether these differences between network learning trajectories are
significant, we ran a linear mixed-effect regression model7 predicting
the summed accuracy of the network across all epochs based on fixed
effects of paradigm type (low-i/low-e, high-i/low-e, low-i/high-e),
size of the network, and their interaction. In addition to these fixed
effects, we also included random intercepts for each run of a network.
Network size was mean centred. Paradigm type was Helmert-coded
to test our predictions about the relative levels of accuracy across
paradigms. Based on results from Johnson et al. (2020) we predict
low-i/low-e to be the easiest, therefore this was set as the baseline. The
model compares the baseline to the next level, high-i/low-e, then the
mean of these two levels is compared to the third level, low-i/high-e.
The first contrast, therefore, tests the effect of i-complexity and the sec-
ond tests the effect of e-complexity. The model revealed a significant
effect of network size on summed accuracy (β = 1.63 , sd = 0.049,
t = 32.83, p < 0.001), suggesting that larger networks learn the lan-
guages faster. Critically, the model also revealed a significant effect
of both i-complexity (β = −4.48, sd = 0.9, t = −4.68, p < 0.001)
and e-complexity (β = −10.61, sd = 0.52, t = −20.23, p < 0.001)

7All models reported here were run using the lme4 (Bates et al. 2014) and
lmerTest (Kuznetsova et al. 2017) packages in R.
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on summed accuracy. These results suggest that measures of paradigm
complexity based on implicative structure (i-complexity) and on num-
ber and distribution of forms (e-complexity) both impact ease of learn-
ing in LSTM neural networks. Note that while both effects are signif-
icant, the estimated effect size for the effect of e-complexity is larger
than the estimate effect of i-complexity, suggesting the e-complexity
manipulation had a larger effect than our i-complexity manipulation;
this difference in effect sizes can be seen in the timecourses in Figure 2
and in Figure 3.

2.2.3Type of Syncretism

Recall that we included two types of low-i/high-e paradigms: one in
which syncretism was within class, and one where it was across class
(see Table 4). In general, cross-class syncretism can affect both i-com-
plexity and e-complexity, but for our paradigms neither i-complex-
ity nor e-complexity distinguish between syncretism types; the two
paradigm types have the same values for both measures. Figure 4
shows network learning trajectories with these two paradigm types
plotted separately. Across different network sizes, the paradigm type
with cross-class syncretism appears to be learned slower, in line with
previous work (e.g. Pertsova 2012; Maldonado and Culbertson 2019).

Summed accuracies of networks trained on low-i/high-ewithin and
low-i/high-eacross paradigms (averaged over the 50 runs of the model)
across different network sizes are presented in Figure 5. We ran a
linear mixed-effect regression model predicting summed accuracy by
paradigm type (within-class syncretism vs. across-class syncretism),
network size and their interaction. In addition to these fixed effects,
the model included random intercepts for each run of a network.
Paradigm type was dummy coded, with within-class syncretism coded
as the reference group. Network size was mean centred. The model re-
vealed a significant effect for the network size, increasing the learning
accuracy for larger neural networks (β = 1.45, sd = 0.09, t = 15.9,
p < 0.001). Critically, the model also revealed a significant effect of
paradigm type (β = −34.37, sd = 1.84, t = −18.62, p < 0.001), sug-
gesting that paradigms with across-class syncretism are learned slower
by the neural networks.

Since the type of syncretism was found to affect learning, we
conducted an additional analysis to determine whether the effect of
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Figure 4: Network learning trajectories with low-i/high-ewithin and
low-i/high-eacross paradigms plotted separately. Trajectories for networks
trained on low-i/low-e and high-i/low-e paradigms presented in grey (dashed
lines) for comparison. (a) results for one network size (35 cells), with error
bars indicating standard error every 10 epochs. (b) results for all network sizes
tested (facet titles give network size in number of cells). Networks trained on
paradigms with cross-class syncretism show slower learning
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Figure 5:
Summed accuracy over
the 900 epochs of networks
trained on low-i/high-ewithin
and low-i/high-eacross
paradigms across different
network sizes. Error bars
represent standard error.
Across all network sizes the
paradigm type
with across-class
syncretism
is learned slower

e-complexity was entirely driven by the low-i/high-eacross, or whether
this effect is found regardless of syncretism type. We ran a lin-
ear mixed-effect regression model predicting summed accuracy by
paradigm type and network size (mean centred), with random effects
as specified for previous models. Paradigm type was dummy coded
with low-i/low-e as the reference group. The model revealed a sig-
nificant effect of network size (β = 1.61, sd = 0.09, t = 17.25,
p < 0.001). In addition, the model revealed a significant differ-
ence between low-i/low-e and both low-i/high-e paradigm types
(low-i/high- ewithin: β = −31.3, sd = 1.89, t = −16.52, p < 0.001,
low-i/high-eacross: β = −65.67, sd = 1.89, t = −34.67, p < 0.001).
This confirms the generality of the effect of e-complexity on learning;
regardless of the type of syncretism, paradigms with high e-complex-
ity are learned more slowly than languages with low e-complexity,
even when all other aspects of the paradigm (i-complexity, but also
number of inflections, number of inflectional classes, etc.) are held
constant. As before, there was also a significant difference between
low-i/low-e and high-i/low-e (β = −8.96, sd = 1.89, t = −4.73,
p < 0.001).
To summarize, here we trained LSTM neural networks on one

of four nominal inflectional paradigms which differed in either
i-complexity or e-complexity. The results of our simulation experi-
ments showed that both measures of complexity affect learning in
these networks, with more complex paradigms being learned more
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slowly. We also found that type of syncretism mattered: networks
more readily learned syncretic forms which targeted cells within a
class rather than across class. These effects were not necessarily all of
equal strength: effects of i-complexity were weaker than the effects
of e-complexity and syncretism type. The effect size of e-complex-
ity on the network’s accuracy was four times larger than the effect
of i-complexity (estimated β values of −31.3 in the case of within-
class syncretism and −65.67 in the case of across-class syncretism vs.
−8.96 for the effect of increased i-complexity). In sum, our neural
network simulations show that, in principle, i-complexity can affect
learning morphological paradigms. This complements earlier results
for human learners and LSTMs (Seyfarth et al. 2014; Johnson et al.
2020) showing that low i-complexity facilitates generalisation to novel
forms. Importantly however, our results also provide evidence that e-
complexity has a stronger effect on learning. In the next section, we
turn to human learners. Johnson et al. (2020) found that i-complexity
only weakly affected human learning, even in a staged paradigm in-
tended to maximise the effects of i-complexity. Here we will compare
the effects of i- and e-complexity to see whether indeed e-complexity
plays a stronger role in determining ease of learning for humans when
learning is not staged.

2.3 Experiment 2: human learners

2.3.1 Materials

The same artificially constructed paradigms described in Table 4 were
used to train and test human participants. Participants were exposed
to the word forms in the language together with meanings. Stems re-
ferred to a set of simple objects: lemon, cow, tomato, bicycle, horse,
clock, pigeon, mug and pear. Visual stimuli were identical to those
used in Johnson et al. (2020). Singular nouns corresponded to a
single object, dual corresponded to two objects, and plural ranged
from 3 to 12 objects (selected randomly). See Figure 6 for an ex-
ample plural trial. Objects in the language were divided into the
three noun classes so that every noun class had one animate object
(cow/pigeon/horse), one edible object (tomato/lemon/pear) and one
other (clock/bicycle/mug). This was done to ensure that noun class
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membership could not be determined based solely on semantic fea-
tures. All stems and markers were randomly assigned to meanings for
each participant.

2.3.2Participants

144 self-reported native English speakers participants were recruited
via Amazon’s Mechanical Turk crowd-sourcing platform. They were
compensated $6 for their participation and the experiment lasted
53 minutes on average (min = 19, max = 166, mode = 41). We re-
cruited participants who possessed an Mturk qualification indicating
that they were based in the US. Participants were allocated randomly
to each of the four paradigms. We excluded from the final dataset
22 participants who did not complete the experiment,8 thus the final
dataset consisted of 120 participants: low-i/low-e (29); high-i/low-e
(31); low-i/high-ewithin (28); low- i/high-eacross (31).

2.3.3Procedure

Participants learned the language via trial and error. On each trial, a
picture (featuring 1–12 instances of a single object) was presented on
the screen together with a set of possible labels, as in Figure 6. Partici-
pants were asked to choose the correct label after which they received
feedback on their answer. If their answer was incorrect, they were pre-
sented with the correct form. The set of possible labels consisted of all
combinations of the correct stem with all the suffixes in the paradigm.
The task was divided into 3 identical blocks of 108 trials each: in every
block, participants were exposed to all stems inflected in each of the
three grammatical numbers (27 wordforms), 4 times each. The order
of trials was randomized in each block. Participants were allowed a
self-paced break between blocks; they were presented with a screen
announcing the end of the block and were asked to click on ‘continue’
to complete the next block of trials. Participants’ answers on each trial
were recorded and their overall accuracy was measured to test the ef-
fects of i-complexity and e-complexity on paradigm learnability.

8Participants who did not complete the experiment and who contacted us
were paid according to the proportion of trials they completed.
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2.3.4Results

Figure 7 shows learning trajectories for each paradigm type, here with
low-i/high-e paradigm types (which differed in syncretism type) col-
lapsed. Participants’ learning trajectories are non-linear but less com-
plex than the learning curves of the LSTMs and can be described using
quadratic polynomial curves (as in Figure 7). Therefore, we used logis-
tic growth curve analysis (Mirman 2017) to analyse the effect of i-com-
plexity and e-complexity on learning over trials. The model predicted
accuracy by paradigm type and trial number. In addition to these
fixed effects, the model also included by-participant intercepts and
random slopes for trial number. Paradigm type was Helmert-coded
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Figure 7: Mean accuracy by trial for each of the three paradigm types (col-
lapsing the two low-i/high-e paradigms). Points indicate the average accuracy
across participants for each trial. Lines show quadratic polynomial curves pre-
dicting accuracy by trial number for each paradigm type. Learning is worst for
the low-i/high-e and best for the high-i/low-e paradigms
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as in Experiment 1. Learning curves (accuracy over trials) were mod-
elled with second-order orthogonal polynomials. The model revealed
no significant effect of i-complexity (β = 0.2, sd = 0.15, z = 1.29,
p = 0.19), but a significant effect of e-complexity (β = −0.16,
sd = 0.07, z = −2.18, p = 0.028): participants trained on one of two
low e-complexity paradigms learned better than participants trained
on a high e-complexity paradigm. There was also a significant effect
of trial in both the linear (β = 9.9, sd = 0.87, z = 11.3, p < 0.001)
and quadratic (β = −2.23, sd = 0.43, z = −5.16, p < 0.001) terms,
indicating that across trials, overall accuracy increased, but curves be-
came less steep over time. These results provide clear evidence of the
effect of e-complexity on human learning of inflectional paradigms.
However, our results fail to show any effect of i-complexity. The data
are noisy, but the numerical trend is in fact in the wrong direction
– the high-i/low-e paradigm is learned numerically better than the
low-i/low-e paradigm.
One plausible strategy, which would be consistent with the re-

sults showing an effect of e-complexity and no evidence for an effect
of i-complexity, is simply to choose the most frequent form for each
grammatical number, ignoring class membership for each stem. This
strategy would result in higher accuracy in the low e-complexity con-
ditions (where there is a frequent form for both the singular and the
dual, see Table 4) but would yield lower accuracy in the high e-com-
plexity conditions (where there is a frequent form in singular only).
However, a closer look at our participants’ responses, and the rates
with which they chose the frequent form for each grammatical num-
ber, show that this is probably not the case; participants (as a group)
do not choose the frequent form for a specific number more than its
actual probability with which is appears (66% of the trials with this
grammatical number). Participants in the low-i/low-e condition on av-
erage chose the frequent form of a grammatical number in 64.9% of
the relevant trials, and participants in the high-i/low-e condition chose
the frequent form of a grammatical number in 66.5% of the relevant
trials. These results suggest that participants are probability match-
ing (e.g. Hudson Kam and Newport 2005, 2009); participants match
the probability of the form in their responses to its actual probability
in the language rather than simply choosing the most frequent form
for each grammatical number. Therefore, there is an advantage to the
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skewed distribution of forms in low e-complexity paradigms that facil-
itates learning the paradigm even if participants do not simply select
the most frequent form.

2.3.5Type of syncretism

As with the LSTMs, we further tested whether there was a difference in
learning for the two paradigms differing in syncretism type. We ran a
separate logistic growth curve model predicting accuracy by paradigm
type (within-class syncretism vs. across-class syncretism, sum coded)
and trial number, with by-participant intercepts and random slopes
for trial number. Here as well, learning curves (accuracy over tri-
als) were modelled with second-order orthogonal polynomials. The
model revealed no significant effect of syncretism type (β = −0.019,
sd = 0.15, z = −0.127, p = 0.89). As before, the model revealed
a significant effect of trial in both the linear (β = 8.06, sd = 1.19,
z = 6.9, p < 0.001) and quadratic (β = 8.06, sd = 1.19, z = 6.9,
p < 0.001) terms, indicating that across trials, overall accuracy in-
creased, but curves became less steep over time. The results do not
provide any evidence for differences in learnability of morphological
paradigms with across-class as compared to within-class syncretism in
human learners. There is therefore no reason to suspect that the effect
found above of e-complexity in human learners is driven by differences
in learnability across types of syncretism.

3EXPLORING THE RELATIONSHIP
BETWEEN I- AND E-COMPLEXITY

WITH RANDOM PARADIGMS

Results from simulations with LSTM neural networks and behavioural
experiments with human learners both suggest that e-complexity has
a robust effect on learning of inflectional paradigms. By contrast, the
effect of i-complexity was present but weaker in neural networks and
absent in human learners. This suggests that i-complexity is not the
primary determinant of learnability – e-complexity, at least how we
have measured it here, has a much larger impact on how well learners
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are able to generate (or retrieve) forms they have been exposed to. It
may be that the beneficial effects of low i-complexity largely derive
from its facilitating effect on generalisation (as suggested by Ackerman
and Malouf 2015).

Ackerman and Malouf’s (2013) Low I-complexity Conjecture for
natural languages is based on the observation that, across a sample of
natural languages, a relatively wide range of e-complexity values was
found, but the range of i-complexity values was much more narrow.
From this Ackerman and Malouf (2013) concluded that e-complex-
ity in natural morphological paradigms is relatively free to vary and
can be high as long as i-complexity stays low. However, as we have
already mentioned, these two measures are not independent of one
another: it was not possible for us to construct a paradigm with both
high e-complexity and high i-complexity (while keeping the number
of forms constant). In this section we explore the relationship between
i- and e-complexity by looking at their values across 1000 randomly
generated paradigms. To preview, we find an inverse correlation be-
tween i- and e-complexity which is in line with the pattern Ackerman
and Malouf (2013) observe. This suggests that the Low I-complexity
Conjecture is not necessarily a result of language change, i.e. it may
not be driven purely from usage errors or learnability pressure. We
also test the learnability of this set of 1000 paradigms with LSTM
neural networks to show how these two measures relate to learn-
ing across a wider range of paradigms than we covered in Experi-
ments 1 and 2.

3.1 Generating random paradigms

We generated 1000 random inflectional paradigms expressing the
same three grammatical numbers (singular, dual and plural) across
three noun classes, as in the paradigms tested above. The paradigms
were generated by randomly assigning affixes to the nine cells with
replacement, i.e. allowing affixes to repeat. Therefore, paradigms also
vary randomly in number of unique affixes. Generated paradigms had
between three and eight affixes, with most paradigms (42%) including
six unique affixes. For each randomly generated paradigm, we calcu-
lated i- and e-complexity. I-complexity varied between 0 and 0.667
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bits with a mean value of 0.201 bits. E-complexity varied between
0.528 and 1.585 bits with a mean value of 1.36 bits.

3.2Quantifying the relationship
between i- and e-complexity in random paradigms

We first explored the relationship between these three dimensions of
variation (i-complexity, e-complexity, number of distinct affixes) in
the 1000 randomly generated paradigms. Figure 8 shows the distribu-
tion of i-complexity and e-complexity values across paradigms, with
average number of markers indicated by color. As suggested by the fig-
ure, i-complexity is strongly negatively correlated with e-complexity
(r = −0.92, t(998) = −73.8, p < 0.001). In other words, paradigms
with high i-complexity tend to have low e-complexity, and vice versa.
To explore the relationship between these complexity measures and
the number of the unique affixes in the paradigm, we ran additional
correlation tests. While e-complexity is positively correlated with the
number of markers in the paradigm, (r = 0.44, t(998) = 15.62,
p < 0.001), i-complexity is negatively correlated with it (r = −0.38,
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Figure 8: Distribution of randomly generated paradigms in terms of i- and
e-complexity. Colour represents the average number of markers for paradigms
with specific i- and e-complexity values. No paradigms have high i-complexity
and high e-complexity. Paradigms with high i-complexity and low e-complexity
have on average fewer markers while paradigms with low i-complexity and high
e-complexity have more
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t(998) = −13.1, p < 0.001): as the number of distinct forms in-
creases, the implicative structure between forms increases. For exam-
ple, if every cell in the paradigm is expressed by a unique form, then
each form will perfectly predict every other form.

Since both i-complexity and e-complexity correlate with the num-
ber of markers in the paradigm, we further analysed the subset of
random paradigms with the most frequently generated number of
markers (six). We tested the relationship between i-complexity and
e-complexity for these paradigms (423 paradigms), again confirm-
ing the negative correlation (r = −0.94, t(421) = −59.24, p <
0.001). Table 5 presents two randomly-generated example paradigms
with six markers which illustrates how the negative correlation be-
tween i-complexity and e-complexity arises from the organization of
markers in the paradigm, even when the number of markers in the
paradigm is held constant. Paradigms in which a grammatical func-
tion is marked with the same marker across inflection classes tend
to have lower e-complexity (there is a more frequent form mark-
ing this grammatical function) and higher i-complexity (forms in this
grammatical function are less likely to predict other forms in the
paradigm).

The strong negative correlation between i-complexity and e-com-
plexity has clear implications for how Ackerman and Malouf’s ( 2013)
findings should be interpreted. They show that across a sample of
morphological paradigms in ten languages, e-complexity reaches rel-
atively high values (a maximum of 4.9 bits for Mazatec), while i-com-
plexity stays relatively constant (between 0 and 1.1 bits). However,
randomly generating paradigms of a fixed shape results in a similar
distribution: e-complexity varies more than i-complexity,9 and when
a paradigm has high e-complexity, it will necessarily also have low
i-complexity. Ackerman and Malouf’s (2013) findings may therefore
at least partly reflect the nature of the relationship between these two

9Note however, that the paradigms generated here were matched in size
to the paradigms used in Section 2 (3 inflectional classes and 3 grammatical
functions); it could be that for much larger paradigms, such as found in natural
languages, randomly generating the paradigms would result in higher i-complex-
ity than values that can actually be found in natural languages (as suggested by
the simulation with Chiquihuitlàn Mazatec done by Ackerman and Malouf 2013).
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Table 5: Two example paradigms (with affixes indicated by integers) with six
unique markers illustrating the inverse correlation between i-complexity and
e-complexity when number of markers is constant: (a) has relatively high e-com-
plexity (1.58 bits) and low i-complexity (0 bits), while (b) has relatively low
e-complexity (0.83 bits) and relatively high i-complexity (0.52 bits). In (a) there
are three different ways to mark each grammatical function (hence high e-com-
plexity), and forms in all grammatical functions are predictive of all other forms
(hence low i-complexity). In (b), on the other hand, there is only one realization
for marking the plural number and two for marking dual (hence lower e-com-
plexity), but in this organization the plural form is not predictive of forms in any
other grammatical function and forms in dual do not fully predict the singular
(hence higher i-complexity)

(a)
Singular Dual Plural

noun class 1 6 5 6
noun class 2 8 1 3
noun class 3 5 7 7

(b)
Singular Dual Plural

noun class 1 2 6 8
noun class 2 4 0 8
noun class 3 1 6 8

measures rather than anything specific to the dynamics of language
change.

3.3The effects of i- and e-complexity
on LSTM neural networks

The learning results presented in Section 2 already suggest that i-com-
plexity has less impact on learning than e-complexity in networks, and
possibly no impact in humans. To strengthen this conclusion, we also
test how the 1000 randomly generated paradigms described above
are learned using LSTM neural networks with the same architecture
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and parameters described in Section 2.2.1. Since the effects we found
above held across networks of different sizes, here we only used net-
works of size 25 (4,656 parameters). We generated 50 different runs
for each paradigm. In each run the initial weights of the network were
randomly generated. As before, stems were randomly assigned into
one of the three noun classes. Below we analyse accuracy in each
epoch as well as the summed accuracy across epochs.

3.3.1 Results

Figure 9 shows the learning trajectories of the neural networks in
choosing the correct affix for lexemes, both by the i-complexity of
the paradigm, and by its e-complexity.

To test how varying values of i-complexity and e-complexity
affect learning, we ran a linear mixed-effects regression model predict-
ing summed accuracy by paradigm i-complexity, paradigm e-complex-
ity, the number of different affixes in the paradigm, and their inter-
actions.

Summed accuracy was divided by 900 (number of epochs) to get
the proportional summed accuracy, ranging from 0 to 1. I-complexity
and e-complexity were scaled and number of markers was centred
such that estimates for the effects of i-complexity or e-complexity re-
flect their effect on learning when the number of affixes equals the
mean value (six affixes). In addition to these fixed effects, the model
included random intercepts for different runs of the network (recall
that network size was held constant).

The model revealed a significant effect of both i-complexity
(β = −0.0093, t(49992) = −9.96, p < 0.001) and e-complexity
(β = −0.04, t(49992) = −40.66, p < 0.001). These results replicate
our initial findings with only four paradigms: increasing either the i-
complexity or e-complexity of the paradigm leads to slower learning.
Note that this holds even though, as discussed above, i-complexity and
e-complexity have a strong inverse correlation (r = −0.94). Impor-
tantly, as before the effect size of e-complexity is much higher than the
effect size of i-complexity (−0.04 vs. −0.009; approximately 4 times
greater), suggesting a stronger effect of e-complexity on learning.

The model also reveals a significant effect of number of affixes
(β = 0.007, t(49992) = 18.51, p < 0.001). Surprisingly, this effect
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Figure 9: Network learning trajectory for paradigms varying in i-complexity and
e-complexity values. (a) i-complexity varying by colour (facet titles showing
e-complexity in bits). (b) e-complexity varying by colour (facet titles showing
i-complexity in bits). Note that, as discussed above, for some values of e-com-
plexity, the random paradigms do not vary in i-complexity. In these cases, only
one learning curve is shown (e.g. for e-complexity of 0.53 bits, there are only
paradigms with i-complexity of 0.53 bits). Differences in e-complexity produce
higher variability in network learning trajectories (b) compared to differences in
i-complexity (a)
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is positive: more unique affixes appears to facilitate learning. How-
ever, a closer look at paradigms with the same i- and e-complexity and
the same number of markers reveals a potential confounding factor,
namely syncretism type. Table 6 shows an example of two of the ran-
dom paradigms (labelled (a) and (b)), both of which have i-complexity
of 0 bits, e-complexity of 1.58 bits, and 5 unique affixes (represented
by numbers). While the proportional summed accuracy for paradigm
(a) is 0.538, for paradigm (b) it is 0.87.

In paradigm (a), markers are distributed such that there is syn-
cretism targeting forms across different noun classes. For example,
the affix 1 marks singular for noun class 1, but plural for noun
class 3. On the other hand, syncretic affixes in paradigm (b) are largely
within noun classes. For example, the affix 1 marks singular and plu-
ral for noun class 1. There is one case of across-class syncretism in
paradigm (b) – the affix 8 marks dual for noun class 1 but plural
for noun class 3 – whereas in paradigm (a) there are 4 such cases.
The learnability disadvantage for across-class syncretism is expected

Table 6: Two example paradigms (with affixes indicated by integers) differing
only in their degree of cross-class syncretism: (a) shows only across-class syn-
cretism, while (b) shows mostly within-class syncretism. For both paradigms i-
complexity (0 bits), e-complexity (1.58 bits) and number of markers (5 markers)
are matched. Paradigm (b) is learned more accurately by our networks

(a)
Singular Dual Plural

noun class 1 1 2 8
noun class 2 8 3 5
noun class 3 3 8 1

(b)
Singular Dual Plural

noun class 1 1 8 1
noun class 2 0 5 0
noun class 3 2 2 8
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based on the previous results reported above. However, it turns out to
lead to the unexpected apparent advantage for paradigms with more
unique affixes, since paradigms with fewer affixes will tend to have
more across-class syncretic forms in our design. We added number
of across-class syncretic forms (centred) as a predictor in our previ-
ous regression model, including its interaction with the original pre-
dictors. This model again reveals a significant effect of i-complexity
(β = −0.0086, t(49992) = −9.12, p < 0.001) and e-complexity
(β = −0.024, t(49992) = −23.42, p < 0.001). The model also re-
veals a significant negative effect of number of affixes (β = −0.034,
(49992) = −91.4, p < 0.001), and a significant effect of the num-
ber of across-class syncretic forms (β = −0.039, t(49992) = −151.1,
p < 0.001). Here, both of these effects are in the expected direc-
tion: having more unique affixes or having more across-class syncretic
forms both lead to slower learning.

4DISCUSSION

In this study, we compared how different features of morphological
paradigms affect learnability of morphological systems. Specifically,
we compared measures reflecting the number of inflection classes in
the paradigm and the number of different variants to mark each in-
flection (e-complexity), measures capturing the implicative structure
of the paradigm and the extent to which forms in the paradigm predict
each other (i-complexity), number of affixes used in the paradigm, and
type of syncretism (within versus across class). We tested the effects
of these features on learning inflection paradigms with human partic-
ipants and with recurrent neural networks (LSTMs). In Section 2 we
compared the learnability of four artificially constructed nominal in-
flection paradigms differing either in e- or i-complexity. We found that
changing the i-complexity of the paradigm had an effect on learning
only in LSTMs but did not show an effect on learning in human partic-
ipants. By contrast, e-complexity was found to have a stronger effect
on learning in LSTMs relative to i-complexity and low e-complexity
was beneficial for human learners. These results replicate the effects
reported in Johnson et al. (2020) and extend them to a more realistic
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learning scenario where input includes all forms at all stages (rather
than restricting early input to predictive forms).

It is worth noting that the differences in i-complexity between
our low- and high-complexity paradigms were not very large – the
difference is 0.222 bits. It could be that larger differences in i-com-
plexity values would reveal a larger effect on learning. However even
this difference corresponds to complete predictability of the dual given
the singular in the low complexity paradigm, compared to at best 66%
predictability in the high complexity paradigm. In other words, while
the difference as measured in bits is small, the difference in probability
of correct prediction in the paradigm is large. Furthermore, the same
size difference in e-complexity values did reveal a significant effect on
learning. Testing more extreme values of i-complexity and e-complex-
ity is, in principle, possible, but would necessitate training participants
onmuch larger inflectional paradigms. This is challenging with human
participants, since our experiment was already at the upper end of
what we believe participants will tolerate in a single sitting; using
the same methods for larger paradigms would probably necessitate a
multi-day experiment.10

Type of syncretism was also found to be predictive of learning
in LSTMs; a paradigm with across-class syncretism in which the same
affix is used to mark two different categories (e.g. singular and plu-
ral) for lexemes from separate inflection classes was learned slower
than a paradigm with within-class syncretism, where the same affix
is used to mark different numbers for lexemes within the same inflec-
tion class. This effect of syncretism on learning in LSTMs was seen
both in Section 2, with the two example paradigms differing by types
of syncretism, and in Section 3, when training the neural networks
on paradigms with varying number of across-class syncretic forms.
These results are compatible with studies with human learners show-
ing that certain types of syncretism patterns are easier to learn than

10 It is also worth noting that we only tested adult learners, and thus the sce-
nario is most similar to adult L2 acquisition. It is of course possible that child
L2 learners might behave differently, or that the effect of i-complexity is only
relevant for first language acquisition. Although we have no specific reason to
believe this is the case, one could, in principle, investigate child learners using
the kind of study we have reported here.
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others (e.g. Pertsova 2012; Maldonado and Culbertson 2019). How-
ever, in our experiment with human learners, there was no effect of
type of syncretism. Given the different results in the LSTMs and hu-
man learners, these mixed results call for a more systematic investi-
gation into the effects of syncretism type on learning morphological
paradigms.

Recall that Ackerman and Malouf (2015) suggested that mor-
phological paradigms come to have restricted values of i-complex-
ity through the process by which language users solve the Paradigm
Cell Filling Problem for unknown forms. In other words, the mecha-
nism by which i-complexity is kept low in natural language is gen-
eralization, rather than learning more generally. In Johnson et al.
(2020), we tested the effect of i-complexity on generalization with
LSTMs, and our results there match Ackerman and Malouf’s predic-
tion: we saw a clear generalization advantage for low i-complexity
paradigms. Together with our finding that i-complexity does not ro-
bustly affect paradigm learning in the absence of generalization to
completely novel forms, these results suggest that i-complexity may in-
deed influence how paradigms evolve, but primarily (or perhaps even
solely) through its impact on generalisation.

However, this interpretation is made somewhat less plausi-
ble by the results from Section 3 investigating randomly generated
paradigms. These results suggest that the low i-complexity that Acker-
man and Malouf (2013) observed may to some extent reflect an intrin-
sic relationship between the two measures. Specifically, we found that
for randomly-generated paradigms, e-complexity and i-complexity are
strongly negatively correlated; crucially, there were no paradigms
with both high e-complexity and high i-complexity (Figure 8). More-
over, the ranges of values the two measures exhibited were different,
with lower and less varied values of i-complexity (0 to 1.667 bits) than
the values of e-complexity (0.528 to 1.585 bits). Following these re-
sults from Section 3, we would therefore expect to find similar trends in
natural languages, as indeed shown in Ackerman and Malouf (2013).
Any typological observation deviating from this trend would call for
a theoretical explanation.

In addition to manipulating e- and i-complexity, the number of af-
fixes used in the random paradigms was not fixed and varied randomly
from 3 to 8 affixes. This allowed us to test the effect of the number of
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affixes on morphological learning by the networks and to explore the
relationship between this aspect of the paradigm and the two complex-
ity measures. The number of affixes was found to positively correlate
with e-complexity and to negatively correlate with i-complexity; an
inflectional paradigm with low i-complexity is more likely to have a
high number of affixes and to be more e-complex. Note that this gives
support to our decision to use average cell entropy to measure e-com-
plexity in this study; it is positively correlated with number of affixes
in the paradigm, a common measure for e-complexity in the literature,
in randomly generated paradigms.

The high inverse correlation between e-complexity and i-com-
plexity was also found when looking at a subset of paradigms with the
same number of unique affixes (six). Together with the previous find-
ing, showing that both e-complexity and i-complexity correlate with
number of affixes, these results suggest that the inverse correlation
between i-complexity and e-complexity derives from both the number
of affixes in the paradigm, and from the way the affixes are organized
in the paradigm; intuitively, when there is a frequent form with which
a grammatical function is realized across noun classes, the entropy of
this grammatical function is reduced and thus the overall e-complex-
ity is likely to be lower. However, forms in this grammatical function
are less likely to predict other forms in the paradigm and therefore its
overall i-complexity is likely to be high. This is more likely to occur
with low number of unique affixes in the paradigm, but the relation-
ship between e- and i-complexity can be seen even when controlling
for number of affixes.

Finally, generating the random paradigms also enabled us to test
the effect of e- and i-complexity on learning with LSTM networks
for a larger range of values of the two measures, as opposed to the
specific values we tested in Section 2. Again, we found that both
e-complexity and number of affixes strongly predict learnability of the
paradigm. I-complexity was also found to predict the learnability of
the paradigm, but with a much smaller effect size (−0.0086 vs.−0.024
for e-complexity).

The strong effect of e-complexity (measured as average cell en-
tropy) on the learnability of morphological paradigms found here sug-
gests that the frequency of forms play an important role in the learn-
ability of the paradigm. This is a further evidence for the pervasive-
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ness of the effects of frequency on language learning (e.g. Ambridge
et al. 2015). In the context of inflectional complexity, Sims and Parker
(2016) suggest that in addition to implicative structure (i-complexity),
type frequency of inflection classes also plays a role in reducing the
complexity of the paradigm. In our experiments, type frequency of all
noun classes was kept constant (with three words per noun class), but
our results support the general claim that the frequency of elements
in the paradigm plays a role in inferring the correct inflected form for
a lexeme.

To summarize, our findings suggest that a number of factors affect
the learnability of inflection paradigms. However, these factors do not
all play equal roles in determining ease of learning. The i-complexity
of a paradigm does affect learning, at least in neural networks. But it
is a relatively weak predictor of learnability relative to e-complexity
(and number of unique affixes). Moreover, all paradigm features ex-
amined here were found to be interdependent, most crucially e- and
i-complexity. This suggests that conclusions about the contribution
of different types of complexity to natural language paradigms must
take into account how measures of complexity relate to one another;
observing measures independently can lead to potentially misleading
conclusions about how different types of complexity might shape lan-
guage.

Lastly, it is worth returning to the observation that e-complex-
ity varies widely in morphological paradigms across languages. Since
our findings show that e-complexity better predicts the learnability
of the paradigm, all other things being equal, paradigms with low
e-complexity should be preferred. Of course, learnability is not the
only factor shaping linguistic systems: languages are used for commu-
nication, and linguistic systems have been claimed to reflect a trade-off
between inductive biases (e.g. for simplicity) and pressure from com-
munication (e.g. minimizing ambiguity, Kemp and Regier 2012). This
trade-off has been shown in a variety of linguistic domains, where nat-
ural languages show a near-optimal balance between these two pres-
sures (e.g. Regier et al. 2015; Xu et al. 2016; Zaslavsky et al. 2020).
Evidence for this trade-off has also been found in experimental studies
manipulating the relative importance of learning and communication
(e.g. Silvey et al. 2015; Kirby et al. 2015; Motamedi et al. 2019). Since
we showed here that e-complexity correlates positively with a num-
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ber of distinct forms in the paradigm (i.e. distinctions in the lexicon),
morphological paradigms with high e-complexity could in principle
reflect a balance between the communicative needs of speakers and
the inductive biases of learners. Relatedly, it may be that e-complex-
ity interacts with frequency effects coming from other aspects of the
morphological paradigm and the lexicon. E-complexity captures the
distribution of forms for each grammatical number, and thus reflects
only the frequency of a specific aspect of the morphological paradigm.
It is possible however that paradigms with high e-complexity have
other means for reducing learning-relevant complexity, e.g. through
skewed distribution of other aspects of the paradigm (e.g. type/token
frequencies of inflection classes or frequencies of forms of grammati-
cal functions in the paradigm).

5 CONCLUSIONS

On the surface, natural languages exhibit a huge range of variation in
terms of their inflectional paradigms; some languages have relatively
little morphology, and others have large morphological paradigms
with many inflectional classes, expressing many grammatical cate-
gories. How such large paradigms are acquired, and by extension
how they persist across generations of learners is thus something of
a mystery. A recent influential conjecture is that predictive structure
is a shared feature of large paradigms one finds in natural languages
(Ackerman and Malouf 2013). One possibility is that this predictive
structure influences how languages change over time: inflectional
paradigms have evolved under a pressure for low i-complexity (a mea-
sure of predictive structure in paradigms), rather than a pressure for
low e-complexity (a measure of paradigm size). Here we presented re-
sults from a series of experiments with neural networks and human
learners which muddy this picture. First, we find relatively small ef-
fects of i-complexity on learning, but robust effects of e-complexity.
Further, we find that in randomly generated paradigms, e-complex-
ity and i-complexity are negatively correlated; roughly speaking, as
paradigms get bigger, they will necessarily have more predictive struc-
ture. Although it may well be that learners use predictive structure
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when it’s all they have to go on, our findings therefore suggest that
pressure from learning should tend to favour low e-complexity rather
than low i-complexity.

6APPENDIX

6.1Exploring hyperparameters space

For the LSTM model presented in Section 2.2 we explored further hy-
perparameters in addition to the parameter settings specified in the
main text. We explored two optimizers, SGD and Adam (Kingma and
Ba 2014). We used these two optimizers with networks of two hid-
den and embedding dimensions (5 and 25), trained with four different
learning rates. Since we were interested in the cases were the networks
fully learned the forms in the language by the end of 900 epochs, the
explored learning rates differed across optimizers; for models opti-
mized with SGD, we explored learning rates of 0.05, 0.1, 0.15 and 0.2.
For models optimized with Adam, where learning was more rapid, we
explored learning rates of 0.0005, 0.001, 0.0015 and 0.002.

Results are presented in Figures 10–13, and a summary of the
mean summed accuracy for all combinations of hyperparameters is
presented in Tables 7, 8 below. Results from all models optimized
with SGD show small effects of i-complexity compared to effects of
e-complexity, regardless of the learning rate of the network. Models
optimized with Adam show a similar trend for the very low learning
rates, but for the rest of the models there is no difference between
the conditions. Crucially, none of the hyperparameters combinations
we explored showed the opposite picture where i-complexity has a
stronger effect on learning than e-complexity.

These results show that for this space of hyperparameters, all
models replicate the results presented in Section 2.2, namely that in
cases where i-complexity has an effect on learning the paradigm, the
effect is smaller than the effect of e-complexity.
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Table 7: Summary of mean of summed accuracy of the model runs optimized
with SGD with combinations of hidden and embedding dimensions (5, 25) and
learning rates (0.05, 0.1, 0.15, 0.2). Standard deviations are presented in brackets

5 25

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

SGD

low-i
/low-e

439.6
(48.7)

637.0
(47.0)

724.4
(32.2)

761.7
(22.9)

560.6
(35.1)

722.2
(20.0)

784.4
(15.6)

811.1
(10.82)

high-i
/low-e

440.5
(50.3)

629.0
(49.2)

724.3
(30.8)

765.6
(21.6)

538.5
(27.1)

722.3
(16.9)

782.9
(12.7)

808.0
(11.4)

low-i
/high-e

367.9
(41.4)

594.5
(51.0)

690.8
(33.5)

743.1
(21.4)

466.8
(41.4)

674.9
(26.5)

750.9
(18.1)

787.7
(13.4)

Table 8: Summary of mean of summed accuracy of the model runs optimized
with Adam with combinations of hidden and embedding dimensions (5, 25) and
learning rates (0.0005, 0.001, 0.0015, 0.002). Standard deviations are presented
in brackets

5 25

0.0005 0.001 0.0015 0.002 0.0005 0.001 0.0015 0.002

Adam

low-i
/low-e

483.5
(58.7)

678.7
(35.2)

747.9
(24.2)

786.9
(18.3)

786.7
(13.8)

827.9
(8.5)

849.7
(7.1)

860.8
(5.2)

high-i
/low-e

512.1
(44.8)

680.3
(28.8)

751.4
(21.7)

787.7
(13.5)

762.2
(14.6)

827.3
(7.5)

847.3
(5.9)

858.2
(4.9)

low-i
/high-e

469.3
(40.9)

670.2
(32.0)

742.9
(20.11)

782.3
(13.0)

746.6
(11.4)

814.6
(5.9)

840.1
(3.8)

852.5
(3.3)
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Figure 10: Learning trajectories of networks with two embedding and hidden
layer dimensionalities; (a) networks with 5-dimensional embedding vectors and
hidden layer, (b) networks with 25-dimentional embedding vectors and hidden
layer, trained with different learning rates (columns), and optimized with SGD.
X axis shows number of epochs up to perfect learning of the forms in the language
(differs across learning rates and network dimensions)
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Figure 11: Learning trajectories of networks with two embedding and hidden
layer dimensionalities; (a) networks with 5-dimensional embedding vectors and
hidden layer, (b) networks with 25-dimentional embedding vectors and hidden
layer, trained with different learning rates (columns), and optimized with Adam.
X axis shows number of epochs up to perfect learning of the forms in the language
(differs across learning rates and networks dimensions)
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Figure 12: Summed accuracy over the 900 epochs of the networks trained on each
of the three paradigm types for models with different learning rates (x axis) and
for models with different dimensions (columns) optimized with SGD
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Figure 13: Summed accuracy over the 900 epochs of the networks trained on each
of the three paradigm types for models with different learning rates (x axis) and
for models with different dimensions (columns) optimized with Adam
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We derive well-understood and well-studied subregular classes of for-
mal languages purely from the computational perspective of algorith-
mic learning problems. We parameterise the learning problem along
dimensions of representation and inference strategy. Of special inter-
est are those classes of languages whose learning algorithms are neces-
sarily not prohibitively expensive in space and time, since learners are
often exposed to adverse conditions and sparse data. Learned natural
language patterns are expected to be most like the patterns in these
classes, an expectation supported by previous typological and linguis-
tic research in phonology. A second result is that the learning algo-
rithms presented here are completely agnostic to choice of linguistic
representation. In the case of the subregular classes, the results fall out
from traditional model-theoretic treatments of words and strings. The
same learning algorithms, however, can be applied to model-theoretic
treatments of other linguistic representations such as syntactic trees
or autosegmental graphs, which opens a useful direction for future
research.
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1 INTRODUCTION

This paper presents an analysis supporting the view that the computa-
tional simplicity of learning mechanisms has considerable impact on
the types of patterns found in natural languages.

First, we derive well-understood and well-studied subregular
classes of formal languages purely from the computational perspective
of algorithmic learning problems. We present a family of four learn-
ing algorithms, generalizing the String Extension learners in Heinz
(2010b). We show that these algorithms, over different data struc-
tures, naturally structure the subregular Hierarchy of language classes
purely by difficulty of learning. We show that the simplest classes of
languages in these hierarchies are precisely the ones whose learning
algorithms use the least computational resources, in particular space
complexity. In fact, these are the only ones that are not prohibitively
expensive to learn. A reasonable prediction is that learned natural
language patterns would be most similar to patterns in the simplest of
these classes, and this expectation is supported by previous typological
and linguistic research in the domain of phonology.

The second result is that we introduce linear-time learning algo-
rithms for some subregular classes, a further restriction of the typology
beyond space-efficiency. As we explain, these algorithms are helpful
in certain cases and not so helpful in others, depending on the extent
to which the target patterns interact with other constraints. At issue
is that a set of data points which may be helpful in identifying one
constraint do not occur because they also happen to violate another.
A virtue of this analysis is that we can identify precisely the situations
where the linear-time learning algorithms can be applied.

Our third result is that the learning algorithms presented here
are completely agnostic to choice of linguistic representation. These
learning algorithms essentially parameterise the learning problem
in two ways: the structural knowledge salient to the learner (the
representation), and the way the learner collects and combines this
structural information to derive sets of acceptable and unacceptable
linguistic structures. In the case of the subregular classes of formal
languages, the results emerge from traditional model-theoretic treat-
ments of words and strings on the representational side and how the
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combinatorics of the grammars relate to kinds of logical languages on
the other side.

Since the algorithms are agnostic to the representations, the same
learning algorithms can be applied to model-theoretic treatments of
other linguistic representations such as syntactic tree structures or au-
tosegmental graphs. Of course, the real-life learning problem is com-
plicated by the fact that language learners do not have direct access
to linguistic structures like trees. Nonetheless the generality of these
learning algorithms means the real-life learning problems may be re-
duced to these algorithms coupled with appropriate parsing mecha-
nisms.

1.1Priors in language learning

Language acquisition succeeds despite sparse, underdetermined, Zipf-
distributed input, compounded by a lack of invariance in the signal –
the so-called poverty of stimulus (Yang 2013). This holds across all
domains of language, from phonological to syntactic induction.

It is uncontroversial that some bias or innate component restricts
a learner’s hypothesis space regardless of its strategy to solve this in-
duction problem, often referred to as Universal Grammar (Nowak et al.
2002). The question is its nature. How is it rich, and how is it poor?

Data-driven statistical learning does not change this basic calcu-
lus. One reason is that children often learn language in ways that defy
adult distributions (Legate and Yang 2002). Another is that induc-
tion from a data distribution without a prior may only recapitulate
the training data (Fodor and Pylyshyn 1988; Mitchell 1982, 2017),
and cannot generalize. Without a lens in which linguistic experience
is viewed, even the input distribution cannot be recovered, simply be-
cause distributions are based on the structure of their parameters (Lap-
pin and Shieber 2007). Consequently, the nontrivial open question
central to learnability research in linguistics instead concerns the char-
acteristics of this additional prior knowledge or bias such that learn-
ers generalize from limited experience (Rawski and Heinz 2019). This
point is not specific to language. Any cognitive theory requires care-
fully constructed computational restrictions on the hypothesis space in
order to be tractable and analytically verifiable (van Rooij and Baggio
2021).
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1.2 Regular and subregular patterns

Recent typological and experimental work highlights the Regular re-
gion of languages as a sufficient structural bound on computational ex-
pressivity for phonological andmorphological grammars. This Regular
characterization has been extended to syntactic distributions when the
data structure characterizing the computational trace is formulated as
a tree rather than strings, which enforce syntactic membership in the
Mildly Context-Sensitive class of languages (Kobele 2011; Graf 2011).
However, the Regular class is not learnable under various learning
scenarios including identification in the limit from positive data, and
the Probably Approximately Correct (PAC) framework (Gold 1967;
Valiant 1984; de la Higuera 2010). Additionally, the range of distri-
butions present in phonology and morphology that sit in the Regular
region do not require the full complexity of Regular power (Heinz
2018; Chandlee 2017).

For these reasons, phonological constraints are hypothesised to
inhabit structured subclasses of the Regular languages, lumped under
the term subregular (Heinz 2010a, 2018). Various connections be-
tween logic, formal languages and automata defining these classes
have been explored in great detail. These characterizations build
on two classical results in formal language theory: Büchi’s monadic
second-order characterization of the Regular languages (1960), and
the first-order characterization by McNaughton and Papert (1971) of
the Star-Free languages, which are also characterized by aperiodic de-
terministic finite-state automata (Schützenberger 1965). Refinements
of these results from logical, automata-theoretic, and algebraic view-
points have defined the Local and Piecewise hierarchies (Rogers et al.
2012). Linguistically, these refinements have garnered interest since
the morphological and phonological typology correlates with these
refinements, favouring the weakest subclasses in the subregular hier-
archy. Experimental work also favours this characterization (Finley
2008; Lai 2015; McMullin and Hansson 2019). Our learning algo-
rithms can be applied to model-theoretic treatments of other linguis-
tic representations such as syntactic trees or autosegmental graphs,
which opens a useful direction for future research.
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1.3Outline

This paper proceeds as follows. Section 2 defines a general model-
theoretic treatment of linguistic representations, and analyzes several
types of linguistic structures based on different model signatures. Sec-
tion 3 defines a typology of online learning algorithms and derives the
subregular language classes, hierarchically organised by space com-
plexity. Section 4 characterizes this space of algorithms according to
time complexity, and picks out of the least space-intensive subregular
classes those that can be learned in linear time. Section 5 characterizes
interactions of constraints defined in and between these classes. Sec-
tion 6 discusses model signatures for other linguistic representations.
Section 7 describes related work. Section 8 concludes with future di-
rections.

2MODEL THEORIES

This section will introduce the structural representations that the
learning algorithms will work over. We will first discuss a general
notion of structural information, and use it to derive a notion of sub-
structures. In contrast to previous approaches, this will allow us to
describe several distinct representations of words in a uniform way.
Structural information is defined relationally in terms of model the-
ory. Finite model theory provides a unified ontology and a vocabulary
for representing many kinds of objects, by considering them as rela-
tional structures (see Libkin 2004 for a thorough introduction). This
allows flexible but precise definitions of the structural information in
an object, by explicitly defining its parts and the relations between
them. This makes model-theoretic representations a powerful tool for
analyzing the information characterizing a certain structure. This ap-
plication of model theory is nothing new. It has been applied to syntax
by Johnson (1988), King (1989), and Rogers (1998), to phonology by
Potts and Pullum (2002), Rogers et al. (2012), and Strother-Garcia
(2019), and to tonal systems and autosegmental representations by
Jardine (2017a), Jardine et al. (2021), and Oakden (2020).

[ 155 ]



Dakotah Lambert et al.

The discussion of this section is organized around different no-
tions of order: successor, precedence, and relativized successor. The
successor and precedence orders give rise to the Local and Piecewise
branches of the subregular hierarchy, and the relativized successor
gives rise to the Tier-Based Local branch. We assume some familiar-
ity with these classes. Because this presentation focuses on deriving
these subregular classes from a model-theoretic and learning perspec-
tive, we postpone most references to these classes and related work to
Section 7.

A relational structure in general is a set of domain elements, D,
which is augmented with a set of relations of arbitrary arity, Ri ⊆ Dni .
The relations provide information about the domain elements. The
model signatureM = 〈D; Ri〉 collects these parts and defines the nature
of the structure in terms of the information in the model. Let w be a
string over some alphabet Σ. Then a model for a word w is a structure:

M Ri
Σ (w) :=

Dw; Ri,σw

�
σ∈Σ

where Dw is isomorphic to an initial segment 〈1, . . . , |w|〉 of the non-
zero natural numbers and represents the positions in w, and each σw

is a unary relation that holds for all and only those positions at which
σ occurs. Note that it is assumed that the set {σw}σ∈Σ is a partition of
Dw.1 Without loss of generality, consider an alphabet Σ = {s, ʃ,á,à},
which represent two types of sibilants and a vowel with either low or
high tone. Strings are combinations of these symbols at certain events,
like the word ‘sásàʃá’.

The remaining Ri are the other salient relations, which are used to
define order in a particular structure. One model signature for strings,
called the precedence model, is given as

M<(w) = 〈Dw;<w, sw, ʃw,áw,àw〉.
This model says that for every symbolσ in alphabetΣ, there is a unary
relation Rσ inR that can be thought of as a labelling relation for that
symbol. For our set Σ = {s, ʃ,á,à}, R includes the unary relations Rs,

1One can convert a model in which multiple unary relations may apply to a
given domain element into a partitioned normal form by simply replacing these
unary relations with their powerset.
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Rʃ, Rà, and Rá. It also defines a binary relation (x < y), the general
precedence relation on the domain D. A visual of the word model for
‘sásàʃá’ under this signature is given in Figure 1.

s á s à ʃ á

〈D;<, s, ʃ,á,à〉

á à á

Figure 1:
The general precedence model of
‘sásàʃá’, along with the 3-factor ‘áàá’.
Each edge defined by the relation is
pictured, while the thick solid edges
designate those that form the window
from which this 3-factor is derived

The general precedence relation describes a notion of structural
information purely in terms of whether a node precedes another one.
While the information that, say, the last element in a string comes af-
ter the first is immediately accessible from the model, this distinction
collapses the notions of immediate and general structural adjacency.
Building on this precedence relation we can derive different types of
relational structure. These refine the model of a word to describe im-
mediate, relativized, or multiply-relativized adjacency.

Perhaps we would like to consider only immediately adjacent ele-
ments. Rather than a general precedence relation <, we may consider
an immediate precedence, or successor, relation Ã. The standard suc-
cessor relation is the transitive reduction of the precedence relation
and is first-order definable from the latter as follows:

x Ã y := x < y ∧ (∀z)[x < z ⇒ y ≤ z].
This relation gives a different word model, where elements are ar-
ranged according to immediate adjacency, commonly called the suc-
cessor model. The signature for this model is given as

MÃ(w) = 〈Dw;Ãw, sw, ʃw,áw,àw〉.
A visual of the successor word model for the word ‘sásàʃá’ is given in
Figure 2.
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Figure 2:
The immediate successor model

of ‘sásàʃá’, along with its 3-factor ‘ásà’
s á s à ʃ á

〈D;Ã, s, ʃ,á,à〉

á s à

The general precedence relation can alternatively be refined to
discuss a form of immediate adjacency relativized to certain unary re-
lations in the signature. In particular, we can form relations between
subsets of the alphabet, commonly called a tier-alphabet. For example,
we may want to discuss the relations between only the sibilant ele-
ments present in a word, to the exclusion of all others. Similarly to
how the successor relation is derived, we can restrict the precedence
relation to the intended tier-alphabet τ and first-order define a similar
tier-successor relation Ãτ:

x Ãτ y := τ(x)∧τ(y) ∧ x < y ∧ �∀z
���
τ(z) ∧ x < z
� ⇒ y ≤ z
�
.

Figure 3 depicts the relationships among these ordering relations.
Figure 3:

Relationships between the general
precedence relation and others

first-order definable from it

< <τ

Ã Ãτ

reduce

restrict

reduce

relativize

Adjusting the model signature appropriately, shown below, we
get a tier-based notion of structure, shown visually in Figure 4.

MÃ{s,ʃ}(w) = 〈Dw;Ã{s,ʃ}w , sw, ʃw,áw,àw〉.

Because the unary relations partition the domain elements, we
can create a tier-adjacency relation for each element of the powerset of
these relations. This merely amounts to adding tier-adjacency relations
to the model signature to create a multi-tier signature. A model of the
multi-tier relations is shown in Figure 5.

MÃ{s,ʃ},Ã{à,á}
(w) = 〈Dw;Ã{s,ʃ}w ,Ã{à,á}

w , sw, ʃw,áw,àw〉.
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s á s à ʃ á

〈D;Ã{s,ʃ}, s, ʃ,á,à〉

s s ʃ

Figure 4:
The tier-successor model of ‘sásàʃá’
relativized over the set τ= {s, ʃ},
along with its only 3-factor ‘sʃs’

s á s à ʃ á

〈D;Ã{s,ʃ},Ã{à,á}, s, ʃ,à,á〉

s s ʃ á à á

Figure 5:
The multi-tier-successor model
of ‘sásàʃá’ relativized over the sets
{s, ʃ} and {à,á}, along with its only
two 3-factors, ‘sʃs’ and ‘áàá’

These four model signatures are by no means the only relational
word models that may be considered. However, for the purposes of
this paper we restrict ourselves to these signatures. Additionally, the
definability of these signatures from other signatures leads to a general
ability to define a notion of substructure, which we cover below.

2.1Windows and factors

Now that we have a general model-theoretic notion of structure, we
would like a way to define certain parts of each structure, each of
which is a structure in itself defined by the signature. Here, we gen-
eralize the method of Lambert and Rogers (2020) in defining these
restrictions on models.

In order to pick out the subparts of a word model, we first pick
out sets of elements that will define the substructure. Given a homo-
geneous relation R of arity a, the set

W R
a (m) :=
¦�〈 i

x i,
i+1
x i+1〉 : 1≤ i < a

	
: 〈x1, . . . , xa〉 ∈ Rm

©
is the set of a-windows over R in the context of the model m. These are
merely directed acyclic graphs (represented by their edge sets alone)
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constructed from the relations in R, such that each instance of a given
domain element in the tuple is represented by a distinct node in the
window, rather than merging all instances into a single node. Con-
cretely, if 1 were a domain element and 〈1,1〉 an element of the re-
lation, the corresponding 2-window would have two distinct nodes,
both labelled by an index and the domain element 1: 〈11,

2
1〉. The set of

windows of length greater than a is defined inductively by

W R
k+1(m) :=
¦

A∪ 〈 ja−1xa−1,
k+1
xa 〉 : A∈W R

k (m) and 〈x1, . . . , xa〉 ∈ R

and { j1, . . . , ja−1} ⊆ {1, . . . , k}
and {〈 jix i,

ji+1x i+1〉 : 1≤ i < a− 1} ⊆ A

and (∃y,ℓ)[〈 ja−1xa−1,
ℓ
y〉 ∈ A or 〈 ℓy ,

ja−1xa−1〉 ∈ A]

and
�∀ ja ∈ {1, . . . , k}��〈 ja−1xa−1,

jaxa〉 6∈ A
�©
.

This means that for each k-window, we find a linear subgraph (a path)
that maps to the initial a − 1 domain elements of one of the a-tuples
that comprise R and add an edge from the final node of this path to a
newly constructed node representing the final domain element from
that tuple. The conditions are arranged in such a way that each iter-
ation actually adds a new step to the path rather than simply repeat-
ing an older step, while still allowing cycles to be taken arbitrarily
many times. Each of these larger windows can then be thought of
as a graph of positions that are formed from a set of overlapping a-
windows, which in turn are merely representations of tuples in the
relation R. However, we may also wish to discuss a window which is
of shorter length than the arity of the relation that defines it. To do
so, we simply state that any connected subgraph of a window is itself
a window.

For a given window x of a word model m, we define the factor at
x (written ¹xºm) as the restriction of m to the domain elements that
occur in x . This lets us define the set of all k-factors of m as follows:

F R
k (m) :=
�¹xºm : x ∈W R

k (m)
	
.

Note that a window is distinct from a factor in that the former is a
graph of positions while the latter describes a word model whose do-
main consists of only a certain set of positions.
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As example, consider the tier successor model of the word ‘sásàʃá’
as above. Consider a 3-window x which contains all and only the do-
main elements {1,3, 5}. Here, the restriction of the word model that
defines this 3-factor is

¹xºm = m � x =

{1,3,5}; {〈1,3〉, 〈3,5〉}, {1,3}, {5},∅,∅

�
.

Similar examples can be seen above in Figures 1–5. Various par-
allels emerge. The precedence word model contains a strict superset
of the factors of every other word model we have considered. The
tier-based and multi-tier-based word models have ‘sʃs’ as a 3-factor,
but the immediate successor model does not. On the other hand, ‘ásà’
is a 3-factor of only the precedence and immediate successor models.
Only the precedence and multi-tier successor models have both ‘sʃs’
and ‘áàá’ (a sequence of High-Low-High tone vowels) as 3-factors.

2.2Anchored word models

The word models considered up to this point do not encode domain
boundaries explicitly. However, many prior treatments, including that
of Lambert and Rogers (2020), explicitly assume such boundaries. One
approach that has not been explicitly considered in this prior work is
a model whose string yield is biinfinite. Here, left and right boundary
symbols (labelled o and n, respectively) exist in the model and both
participate in and are self-related under any ordering relations. This
approach naturally captures words shorter than k symbols in its con-
cept of a k-factor, without having to consider a union of smaller factor
widths. The successor model for ‘sásàʃá’ is shown along with each of
its 3-factors in Figure 6.

The learning algorithms that we consider in this work are not
bound to any particular model signature. Thus, we may consider the
standard word models as shown in, for example, Figure 1, or we might
consider these anchored word models.

This section has shown concretely how relational structures pro-
vide a uniform language for describing the structural information in
representations of words. In this way, the differences between distinct
subregular classes are isolated according to the relevant structural in-
formation. Also, the models considered in this section are just some
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Figure 6:
The anchored word model
under successor for ‘sásàʃá’

along with each of its
3-factors. Note that every

factor that includes
a boundary symbol has an
infinite yield. Those factors

shorter than 3 symbols
are formed from windows

of length 3 that repeat
the boundary symbols

o s á s à ʃ á n

o

o s

o s á
s á s

á s à
s à ʃ

à ʃ á
ʃ á n

á n

n

of many models. The contents of each model signature clarify pre-
cisely what structural information the learner has immediate access
to when making inferences during learning, described by the notion
of a k-factor, and which it must computationally infer. For example,
the non-local information that is immediately present in the prece-
dence model requires more work in the successor model, its transitive
reduct. These properties are encoded into the grammars being learned,
and directly carve out the properties of classes of languages that result
from a particular learning algorithm inferring such structures.

3 SPACE COMPLEXITY AND THE
SUBREGULAR GRID

This section will introduce and examine four learning algorithms—
algorithms I, II, III, and IV—where stringsets are learned in the limit
from arbitrary positive data. Indeed, we will only be considering sub-
classes of a style of learning algorithm presented by Heinz (2010b, ex-
panded upon by Heinz et al. 2012). We show that of these subclasses,

[ 162 ]



Simplicity in representations and learning

some require substantially more space than others to properly account
for the distinctions that must be made in the course of learning, and we
argue that this alone would cause linguistic typology to tend toward
the simpler, less space-intensive classes.

First we briefly discuss some background from learning theory.
Generally, our presentation follows the style of Gold (1967). While is-
sues with this theoretical framework have been pointed out (Johnson
2004; Clark and Lappin 2011), these criticisms stem from misunder-
standings (see Heinz 2016, and references therein). Gold’s framework
is the basis for much influential work on learning formal languages
(Jain et al. 1999; Nowak et al. 2002; Niyogi 2006; de la Higuera 2010;
Clark and Lappin 2011).

More importantly, however, the algorithms we present here are
largely independent of the particular learning framework that we use
to evaluate their behaviour. They can be studied with respect to the
various identifiability-in-the-limit paradigms of Gold, but they can
also be studied with respect to other paradigms (Mohri et al. 2012). For
example, all of the algorithms presented here are not only identifiable
in the limit from positive data in polynomial time, they are also PAC-
learnable.2 While the assumptions of PAC learning, including the use
of negative evidence and approximate identification, seem to make
the learning problem easier, in fact the conclusions show the learn-
ing problem is harder. For example, the finite languages, learnable
in the limit from positive data, are not PAC learnable. Interestingly,
not all PAC-learning algorithms even require negative evidence. The
standard textbook examples of rectangles (Kearns and Vazirani 1994)
and rays (Anthony and Biggs 1992) only use positive data just like our
algorithms here. Despite these differences, both frameworks focus the
learning problem on generalization which has led some researchers to
provide a unified analysis of these different frameworks (Niyogi 2006).
Nonetheless, irrespective of the framework, we demostrate that the
space complexity requirements are severe for algorithms III and IV,
but not for algorithms I and II.

It is important to note that, while we present only four algorithms
here that are sufficient to learn the well-understood subregular classes

2This is because when the parameters k (and t) are fixed, the defined class
has a finite VC dimension (since the class has finite cardinality) (Vapnik 1995).
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under consideration, these are not the only possible algorithms. Others
do exist and may well meet the criteria for these learning frameworks.
The complexity results here are general, applying to any algorithm
that can learn the classes, simply because they are based on the kinds
of distinctions that must be made.

First, we describe the general learning setup. Let L be a set of
strings drawn from Σ∗ and let Lý represent L with an adjoined ele-
ment ý. An online learner is a function φ : G × Lý→G , where G is
some kind of grammar representation, a mechanism by which one can
decide whether a given string is in L. In other words, an online learner
begins with some guess as to what the grammar might be and updates
this guess for each input word. Let L : G →P (Σ∗) be the function
that maps a grammar to its extensions, the set of strings it represents.
Two grammars G1 and G2 are equivalent (G1 ≡ G2) iff they are exten-
sionally equal, that is, L (G1) =L (G2).

A text for L is a function t : N→ Lý, a sequence of strings drawn
from L or pauses in which data does not appear. Following traditional
mathematical notation for sequences, we use tn to represent t(n). If
∅ represents an initial guess at what the grammar might be, then the
recursively-defined sequence

an(t) :=

¨
∅ if n= 0

φ(an−1, tn) otherwise.
represents the learning trajectory over a given text. Then given a text
t for a language L, we say that a learning algorithm φ converges on t
iff there is some i ∈ N such that for all j > i it holds that a j(t)≡ ai(t).
If for every possible text t over L it is the case that φ converges on t
andL �limn→∞ an(t)

�
= L, then we sayφ converges on L. As a second

lift, if for every stringset L in a class L it is the case that φ converges
on L, then we say φ converges on L.

3.1 String extension learning

Heinz (2010b, expanded by Heinz et al. 2012) defined string extension
learning, a general notion of learning from gathered substructures.
Originally treated only as a batch learner, the online definition is triv-
ial to derive. Given a function f :M →S that extracts informational
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content from a word model, where S represents some notion of struc-
tural content, along with a combinator ⊕: G ×S →G that somehow
informs the grammar of these structures, we define

φ(G, w) :=

¨
G if w= ý
G ⊕ f
�M (w)� otherwise.

In a simple case, G and S will be the same type, and ⊕ will simply
be set union, but this is not a necessary requirement.

Although the present discussion has been contextualized in the
presence of a complete text, the algorithms can only ever operate on a
finite sample. No infinite complete presentation is ever needed or even
available. The analysis with complete texts guarantees that no matter
the order of the input there is always some finite point in time, some
finite sample, at which point every piece of informational content that
could occur has occured, and the algorithm will converge exactly to
the target grammar (Heinz et al. 2012). For samples that do not meet
this criterion, the smallest stringset in the target class that is consistent
with the data will be learned instead of the target stringset itself (Heinz
et al. 2012).

The space required by any string extension learning algorithm is
bounded below by the output grammar size. This is dependent on the
type of information that the grammar must retain. For the subsequent
discussion, no additional space is necessary, so all that is relevant is
the size of the grammar representation. Generally the worst case is
when the target language is Σ∗ and every factor, set, or multiset will
need to be observed and stored.

3.1.1Learning with factors

This simple case is exemplified by a learner that makes distinctions
only between permitted and nonpermitted factors. This learner is pa-
rameterised by a factor width k. We have G = S = P (Σk) and
G ⊕ S = G ∪ S. The information extraction function is

f (m) :=Fk(m).

Upon convergence, a word w is accepted iff all of its factors occur in G
as shown in Figure 7.
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Figure 7:
Grammars returned by Algorithm II accept
all and only those strings w whose factors

are all in G

factors of Σ∗

G

factors of w

Since the grammar only needs to maintain a single merged set
of attested factors, the space complexity for this class of learner is
O (|Σ|k). This will be referred to as Algorithm II. A variant, which will
be Algorithm I, will be discussed in Section 3.1.4.

3.1.2 Learning with sets

The primary difference between learning with factors and learning
with sets thereof is the grammar augmentation combinator. Rather
than set union, G⊕S = G ∪S, we have set insertion, G⊕S = G ∪{S}.
This of course means that G and S are no longer equal, with G being
the powerset P (S ), adding a layer of structure. Upon convergence, a
word w is accepted iff its set of factors is an element of G as shown in
Figure 8. Since a given grammar is in this case a set of sets of factors,
with this larger grammar the space complexity is O (2|Σ|k). These set-
based classes can make more distinctions than the purely factor-based
classes, but this power comes at a cost. This is Algorithm III.

Figure 8:
Grammars returned by Algorithm III accept

all and only those strings w whose set of factors
is an element of G

powerset of factors of Σ∗

G

set of factors in w

3.1.3 Learning with multisets

A set is simply a structure that contains for each possible element
a Boolean value describing whether or not that element is included.
Given the natural isomorphism between the Booleans and the subset of
N consisting of 0 and 1, one might consider a natural expansion of this
structure which denotes number of occurrences saturating not at 1 but
at some arbitrary value t. (In other words, t is the largest number one
can count to.) We can learn classes in which well-formedness is charac-
terized by the saturating multisets of factors in a word as follows. With
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S =P (Σk ×Nt) andG =P (S ), we can maintain from the set-based
learner the augmentation combinator where G⊕S = G∪{S}. However,
the function that extracts informational content must be modified to
include the t-counts associated with a given factor as follows

f (m) := H¹xºm : x ∈Wk(m)It .

The notation H. . .It represents a multiset that saturates at a count of
t. Note that this parallels the window-based definition of factors in a
model, except that a saturating multiset is formed rather than merely a
set. Upon convergence, a word w is accepted iff its saturating multiset
of factors is an element of G as shown in Figure 9. The space complex-
ity here is much like that of Algorithm III, except that the base of the
exponent is changed to correspond with the number of values each
factor may be associated with: O �(t + 1)|Σ|k

�
. This is Algorithm IV.

Using this algorithm with t = 1 is equivalent in every way to Algo-
rithm III, so in fact there are only three algorithms under discussion.
That said, we will retain this separation for the current discussion.

saturating multisets of factors over Σ∗

G

saturating multiset of factors in w

Figure 9:
Grammars returned by Algorithm IV
accept all and only those strings w
whose saturating multiset of factors
is an element of G

3.1.4Learning with factors, revisited

A variant of Algorithm II ignores all input words longer than k sym-
bols. The only difference then is the information extraction function

f (m) :=

¨
m if |m| ≤ k

∅ otherwise.

Upon convergence, a word w is accepted iff it contains a factor that
also occur in G as shown in Figure 10. This is Algorithm I. Notably, us-
ing the anchored word models with this algorithm produces only finite
languages. In contrast to the other algorithms, translating such models
into unanchored ones provides an increase in expressive power.
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Figure 10:
Grammars returned by Algorithm I accept

all and only those strings w
whose sets of factors are not disjoint with G

factors of Σ∗

G

factors of w

3.1.5 Illustration

Considering a standard unanchored word model, with the algorithmic
parameters k and t both set to 2, Table 1 represents the outputs of
these four learning algorithms after seeing the single word ‘aaaab’.
Notably, this word is not short enough to inform Algorithm I of any-
thing. Also, despite the fact that ‘aa’ occurs as a substring three distinct
times, Algorithm IV saturates at a count of 2 under these assumed pa-
rameters.

Table 1:
Encountering the single word ‘aaaab’ with each learner Algorithm Resulting Grammar

I ∅
II {aa,ab}
III
�{aa,ab}	

IV
�{〈aa, 2〉, 〈ab, 1〉}	

3.2 The grid

These learning algorithms are model-agnostic. As long as there exists
some way to extract windows or factors (i.e., substructures) from a
model, the algorithms will work with that. When allowed to range
over selected model signatures, the classes learned by each algorithm
are shown in Figure 11. Each of the cells of the grid represent a partic-
ular class of languages. For example, the strictly local class contains
languages for which no word may contain any of a finite set of local
factors.

For clarity, we restrict our discussion of the fifteen classes present
in the subregular Grid to the Appendix. There, we provide a brief de-
scription of the class, as well as a sample of attested linguistic patterns
that it accounts for, as well as an interpretable implementation of the
grammar for each of those patterns.
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Figure 11: The subregular classes. Learning difficulty increases along the verti-
cal axis. The horizontal axis is categorical, describing the type of substructure.
The dotted line indicates the predicted region of phonological typology

Note that Algorithm I learns only strong classes (those in which
domain boundaries, i.e. anchors, are unreferenced), while the others
do not have this restriction. In the Piecewise case, where themodel sig-
nature contains the general precedence relation (<), the strong classes
are equivalent to the general classes and this distinction is irrelevant.

We note that the amount of space required to store the grammar
is fairly large for any of these algorithms. But Algorithms III and IV
require exponentially more space than I and II. These space require-
ments are shown in Figure 12, where it is apparent that even on a
binary alphabet, the smallest possible nontrivial alphabet, the Locally
5-Testable class of languages, for example, requires more storage space
than there are synapses in an average human being (Azevedo et al.
2009; Herculano-Houzel and Lent 2005). With the larger alphabet
sizes commonly encountered in natural language the restrictions be-
come even tighter. The interested reader could as an exercise consider
how this graph would change if the size of the alphabet were around

[ 169 ]



Dakotah Lambert et al.

5 10 15

10100.2

10100.4

10100.6

10100.8

10101.0

10101.2

Factor Width

Space Requirements for Learning
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Saturating Multisets, t = 2
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Figure 12: While gathering factors requires space exponential in terms of factor
width, the requirements are doubly exponential for any of the larger structures
we might employ. Here the space requirements are shown for just a binary al-
phabet
30 or 40, the average phoneme count in languages of the world. How-
ever, it should be noted that attempting to plot this graph for an alpha-
bet of size 10 exceeded the numerical range of our plotting software.

Due to the enormous space requirements in terms of alphabet size
of the higher-numbered algorithms, it seems in general unfeasible to
learn patterns that lie strictly in their corresponding classes. That is,
purely from learnability considerations alone, we would expect the
typology of patterns in natural language to lie primarily within the
region spanned by Algorithms I and II. This region is highlighted in
Figure 11 by a dotted line. Further, we would expect any attested pat-
terns to require relatively small values for the factor width parameter
k, since that is the exponent of these singly and doubly exponential
space complexities. This constraint on the learning algorithms is again
agnostic to the representation, showing that the way the learner col-
lects and stores the data matters.

The multiple-tier-based classes also require significant space, but
in a different way. The classes of Algorithms III and IV admit expo-
nentially more distinctions than Algorithms I and II, and thus require
exponentially more space. The multiple-tier-based classes in contrast
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require many grammars of the same type: one per subset of Σ. This
scales the space requirements by a multiplicative factor of 2|Σ|. This
difference, while less pronounced, is still significant and will be taken
into account later.

To briefly sum up, this section presented a suite of online learning
algorithms that extract structural information based on the particular
representations it is given. The combination of a particular algorithm
and a model-theoretic signature define a range of classes of languages
that can be learned. One model signature may be used by any of the
learning algorithms, and any of the algorithms may use any of the
signatures. In this way, we have organized the space of possible gen-
eralizations the typology can inhabit, which ultimately amounts to
possible restrictions on the capacity of the learner. This provides a
unifying perspective on previously studied subregular classes. Another
contribution of this section is the introduction of Algorithm I, which
naturally leads to “Complement” classes of the “Strict” ones.

However, there is a strong divergence between the space require-
ments of the two algorithms that make distinctions based solely on
the presence of individual factors and those two algorithms that make
distinctions based on sets or multisets of factors. For a feasible learner,
then, it is advantageous to disprefer learning strategies that rely on an
ability to make as many distinctions as these two more complex al-
gorithms allow. Drawing a boundary for the language classes learned
by the two simpler algorithms, we significantly reduce the possible
typology available to the learner. Can there be any other restrictions?
This is the topic of the next section.

4COMPLEXITY IN TIME

The Strictly Local (SL) class (McNaughton and Papert 1971) is learned
by gathering the factors of simple adjacency. Under such a model,
there exists at most a single window of size k at any given point. Thus
for each index in the word, we can simply insert the contents of this
single window into the grammar. Including the time it takes to insert a
factor into a set, the class is learnable in O (nk log|Σ|) time for input of
size n, and since Σ and k are assumed constant this amounts to linear
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time. As discussed, this Algorithm II learner also uses constant space
that is but singly exponential in the width of the factors.

For the Tier-Based Strictly Local (TSL) class (Heinz et al. 2011,
see also Lambert and Rogers 2020), if the tier alphabet τ is known,
then this approach applies directly to the projection of the word to
τ. But generally we assume that τ is not known, and one might ini-
tially assume that a learner might need to construct grammars for all
possibilities, which would result in increased resource requirements,
be that in terms of time, space, or both. Per Jardine and McMullin
(2017), maintaining the factors of width bounded above by k + 1 is
sufficient to determine the value of τ. But their approach seems to
require a batch approach, first deciding the value of the τ parameter
and then processing the (projections of) the input as for the Strictly
Local class. But it turns out that, due to (inverse-)projection closure
and the fact that in the Gold framework we assume a complete text,
we can guarantee that any substring whose projection will appear on
the tier will itself appear as a substring in some word. Since we still
need to determine the value of τ, we do still require the factors of
width bounded above by k+ 1, but nothing more. The exact learning
algorithm used for SLk+1 will produce a grammar for TSLk, and only
the interpretation of the result is changed (Lambert 2021). These same
properties hold true for the relativized variants of the Locally Testable
(LT) (McNaughton and Papert 1971) and Locally Threshold Testable
(LTT) (Beauquier and Pin 1989) classes as well, where the correspond-
ing adjacency-based learners suffice to learn the relativized-adjancy
classes (Lambert 2021).

The Strictly Piecewise (SP) class (Rogers et al. 2010, see also
Haines 1969) is similar in that, one might expect a time complexity on
the order of O (nk) to find all of the subsequences of each word. Heinz
and Rogers (2013) show that in fact a factored approach can use sim-
ply O (n|Σ|k), but we can reduce this even further by taking advantage
of this same property. Given a complete text, every attested subse-
quence will eventually occur as a substring due to the SP stringsets’
closure under deletion. Again then, the same learning algorithm used
for SLk will produce a grammar for SPk as well, where the difference
lies only in interpretation.

Given this ability to learn the SP, SL, and TSL classes in linear
time and in space only singly exponential in factor width, we can mod-
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ify Figure 11 to indicate the boundary between the classes that are
learnable within these resource bounds and those that are not. This
boundary is indicated by a thick line in Figure 13, which also uses
dashed lines to indicate where one algorithm may be used for multi-
ple distinct classes. As discussed in Section 3.2, the multiple-tier-based
classes do not fit within this low-resource region because, in general,
exponentially many grammars must be learned.
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Figure 13: Dashed lines indicate that the classes on either side can be learned
by exactly the same algorithm. The thick solid line denotes the barrier between
linear-time O (|Σ|k)-space learning and more resource-intensive learning

Considering only the SP class of stringsets, there are at least three
online learning algorithms of various complexities:

• Gather all factors under general precedence of each word.
– O (nkk log|Σ|) time
– O (|Σ|k) space
– Learns an SP least upper bound (lub) of the source text.
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• Use factored learning as per Heinz and Rogers (2013).
– O (n|Σ|k) time
– O (|Σ|k) space
– Learns an SP lub of the source text.

• Gather all adjacency factors of each word.
– O (nk log|Σ|) time
– O (|Σ|k) space
– Only works if every permitted subsequence eventually occurs
adjacently, which holds for SP targets.

One caveat is that these optimizations of the learning algorithms
for the SP and TSL classes rely on certain properties of the input
stringset. The nonoptimized variants are guaranteed to learn a small-
est in-class superset of the input stringset, a property which is lost in
this optimization. For example, a long distance sibilant harmony con-
straint (Heinz 2010a) will not be learned by the optimized SP learner
if the text is drawn from a language that exemplifies both this con-
straint and a CV syllable structure, even though it would be learned by
the nonoptimized variant. Other examples of this type may be found
in the Appendix. This prompts a question regarding the learnability
consequences of constraint interaction.

5 LEARNING INTERACTIONS

Most natural languages are describable not by a single subregular
class but by an interaction of constraints from multiple such classes.
The interaction of constraints from different classes might influence
the learnability of each constraint individually, in which case time or
space tradeoffs might be necessary.

For example, we might consider the default-to-opposite stress pat-
tern of Chuvash (Krueger 1961), where primary stress falls on the
rightmost heavy syllable if there is one, or on the initial syllable other-
wise. One way of describing this invokes the conjunction of two con-
straints from two different classes, namely an SP constraint detailing
a lack of:
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• a heavy syllable anywhere after a stressed syllable,
• a stressed light syllable after any other syllable, or
• two stressed syllables in the same word,

and a coSP constraint that states that every word contains some
stressed syllable.

The requirement that some stress must occur does not affect
which substrings may appear in a word, and so the SP constraint may
be learned by any of the three algorithms that have been discussed
for that class so far, including the optimized substring-based learner.
Further, the precedence restrictions do not prevent seeing the two
words (light and heavy stressed monosyllables) required to learn the
stress requirement. In other words, these constraints interact in such
a way that learning is not hindered. This is not always the case.

Consider now the sibilant harmony of Samala (Applegate 1972),
in which as ‘s’ and an ‘ʃ’ may not appear in the same word. Since this
constraint acts on the segment level rather than the syllable level, we
might assume that it is isolated from any kind of stress constraint. But
other segment-level constraints will certainly have the possibility of
interaction. For example, imposing a CV syllable pattern restricts the
substrings that may occur, in such a way that using an SL learner to
infer the SP constraints is not a possibility. This means that one has to
decide among the other possible SP learning algorithms, where time
or space tradeoffs must be made.

In contrast, a tone plateauing constraint like that which occurs
in Luganda (Hyman and Katamba 1993) is SP3, which means that it
could be learned directly alongside this sibilant harmony constraint
without fear of interaction effects. Note that the word ‘sásàʃá’ that has
been our running example violates both the harmony constraint and
the tone plateauing constraint.

Given our space-based learnability considerations, we would as-
sume that Algorithms III or IV are not practically learnable and would
likely be unattested. In other words, we would expect linguistic typol-
ogy to inhabit only the lower regions of the hierarchy, or at least be bi-
ased heavily toward this region. Rogers and Lambert (2019b) provide
strong evidence that this is in fact the case when it comes to stress pat-
terns. Their exhaustive analysis of the more than one hundred stress
patterns in the StressTyp2 database (Goedemans et al. 2015) showed
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that each of these can be described as the interaction of constraints
that can be learned by Algorithms I and II.

6 MODEL-THEORETIC REPRESENTATIONS
OF NONLINEAR STRUCTURES

This model-theoretic formulation provides a distinct advantage when
applied to various linguistic objects. It allows one to characterize the
content of a particular linguistic representation, and in so doing, im-
mediately guarantee that there are learning algorithms which can
describe various constraints over those representations. This is im-
portant, because work describing nonlinear structures in syntax and
phonology has proceeded in an ad-hoc way, by first defining con-
straints, and working backwards to the representations, often without
any learning algorithms at all, or ones relativized to a particular struc-
ture.

The previous sections used various model signatures that charac-
terized information based on a string data structure. This is because
the subregular classes that were the central motivation for this paper
are defined over strings, or model signatures based on strings, in the
work of Büchi, Thomas, and others. The constructions considered to
this point are not restricted to simple string models. Without mod-
ification, the algorithms may be applied to any relational model at
all. They in fact apply to any structure that can be characterized as a
graph. In this sense, strings are a special case, but the distinctions that
each of the four learning algorithms pick out carry over onto these
more general factors as well. In this section, we discuss some other
linguistically-motivated models that one might consider.

6.1 Autosegmental graphs

An example of a nonlinear structure where the graph perspective is
clearly relevant to linguistic research concerns autosegmental repre-
sentations in phonology. Graphs were proposed to handle a variety of
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prosodic phenomena for which the string-based perspective was in-
adequate. Phonological processes affecting domains larger than two
adjacent segments, such as tonal alternations in tonal languages, have
temporal properties that do not always map consistently onto discrete
vowel segments in a one-to-one fashion (Goldsmith 1976; Williams
1976). Goldsmith introduced a model of the phonological word where
tonal features formed an independent string from the segmental string,
called a tier. Segments on the two strings are linked via many-to-one
relations, turning the structure into a graph.

In practice, encoding these adjustments into a word model in-
volves adding more relational structure. Jardine (2017a,b, 2019) uses
a binary relation α(x , y) to encode the association relation between
autosegmental tiers. Augmenting the successor model signature used
throughout this paper gives a signature as

M α,Ã(w) = 〈Dw;αw,Ãw, sw, ʃw,aw,Hw,Lw〉.
Here, the domain is increased to accommodate the new autosegments,
and the successor relation holds between elements on both tiers. The
unary relations encoding vowels with tonal features have been split,
into a relation ‘a’ for vowel information, and distinct ‘H’ and ‘L’ re-
lations for tonal information. Under this signature, a word model for
the example ‘sásàʃá’ is given in Figure 14.

Our notion of a factor is exactly a notion of a subgraph. The pre-
vious section showcased how this word violates a constraint on tone
plateauing. The autosegmental model makes this information immedi-
ately accessible by encoding the ‘HLH’ structure as its own subgraph,
shown on the bottom of Figure 14. Thus, the permissibility of tone
sequences is liberated from the segmental elements that carry them.

s a s a ʃ a

H L H

〈D;α,Ã, s, ʃ,a,H,L〉

H L H

α α α

Figure 14:
The autosegmental successor model
of ‘sásàʃá’, along with its 3-factor
‘HLH’. The α relation is shown
without tips because it is symmetric
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6.2 Tree models

The model-theoretic framework also allows describing tree structures
(Rogers 1998), and opens the door to study parallels between phono-
logical and syntactic constraints (Graf 2014). Rogers (2003) describes
a model-theoretic characterization of trees of arbitrary dimensional-
ity. In this framework, we specify the domain D as a Gorn tree do-
main (Gorn 1967). This is a hereditarily prefix closed set D of node
addresses, that is to say, for every d ∈ D with d = αi, it holds that
α ∈ D, and if i 6= 0 then α(i − 1) ∈ D as well. In this view, a string
may be called a one-dimensional or unary-branching tree, since it has
one axis along which its nodes are ordered. In a standard tree, on
the other hand, the set of nodes is ordered as above by two relations,
“dominance” and “immediate right-of”. Suppose s is the mother of two
nodes t and u in some standard tree, and also assume that t precedes
u. Then we might say that s dominates the string tu.

While a Gorn tree domain as written encodes these dominance
and adjacency relations implicitly, we may explicitly write them
out model-theoretically so that a signature for a Σ-labelled two-
dimensional tree T is MÃ↓,Ã→ = 〈D;Ã↓,Ã→, Rσ〉σ∈Σ where Ã↓ is
the immediate dominance relation and Ã→ is the immediate right-of
relation (see Figure 15). Model signatures that include the transitive
closures of each of these relations have also been studied. Additionally,
the anchored word models considered above for strings lift naturally

Figure 15:
A tree model. Nodes are organised

by immediate dominance (black tip)
and immediate right-of (white tip)
relations. Labelling relations are

omitted to show Gorn addresses. All
edges are shown, with a particular
factor noted with solid thick lines
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to trees, where a root node is an anchor and each leaf is a separate
anchor, or there is a single additional node which serves as the anchor
for every leaf .

Recent work in syntax has synthesised the model-theoretic ap-
proach to trees with insights from the subregular approach to phonol-
ogy. For instance, Graf and Shafiei (2019) hypothesise that the TSL
class is sufficient to characterize syntactic constraints.

To sum up, this section has shown how the model-theoretic rep-
resentations presented in Section 2 naturally apply to other linguistic
representations.

7FURTHER READING

The subregular classes considered here have been widely studied for
decades. McNaughton and Papert (1971) introduce the Local hier-
archy, with Beauquier and Pin (1989) adding the Locally Threshold
Testable class. The Piecewise branch of the hierarchy stems from Si-
mon (1975), with the Strictly Piecewise class only being integrated
into the hierarchy in 2010 by Rogers et al.. (Languages closed under
subsequence had been discussed by Haines 1969, though not in con-
nection with other subregular classes.) The Tier-Based Strictly Local
class was introduced by Heinz et al. (2011) and extended in various
ways by De Santo and Graf (2019), Lambert and Rogers (2020), and
Lambert (2021). Recent work in syntax has synthesized the model-
theoretic perspective on trees with insights from the subregular pro-
gram (Graf and Shafiei 2019; Graf 2020, 2014)

Provided a finite-state automaton, Caron (1998, see also Caron
2000) describe algorithms that decide whether the corresponding lan-
guage is Locally or Piecewise Testable. An efficient algorithm for de-
ciding SL is described by Edlefsen et al. (2008). Algorithms that extract
SL and SP factors from a given language (and thus can also be used to
decide class membership) are due to Rogers and Lambert (2019a), and
these were extended to the TSL class by Lambert and Rogers (2020).

While this paper has so far focused on constraints, this work is
easily extended to consider mappings between structures, expressed
mathematically as Regular functions (Courcelle 1994; Courcelle and
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Engelfriet 2012; Filiot 2015; Engelfriet and Hoogeboom 2001). The
notion of strict locality has been generalized to functions and shown
to be relevant for natural language phonology and morphology (Chan-
dlee 2014, 2017). These local functions have been model-theoretically
characterized and extended to consider nonlinear structures in phonol-
ogy (Chandlee and Jardine 2019; Strother-Garcia 2019). Relativing
input representations to consider multi-arity functions allows a no-
tion of strictly local transducers expressed using multi-tape automata
(Rawski and Dolatian 2020; Dolatian and Rawski 2020). Expressed as
functions, these subregular characterizations have been extended to
consider continuous functions over vector spaces and learning algo-
rithms operating over them (Rawski 2019; Nelson et al. 2020).

There exist other learning algorithms alongside the string ex-
tension learners of Heinz (2010b) and Heinz et al. (2012). Garcia
et al. (1990) demonstrate the learnability of SL. Heinz and Rogers
(2013) provide learning algorithms for the SL and SP classes as well
as their Testable correlates. Other approaches have directly incorpo-
rated phonological features into the models (Vu et al. 2018; Chandlee
et al. 2019). Learning of TSL classes has been discussed by Jardine
and Heinz (2016) and Jardine and McMullin (2017), while online
learners for this class and the remaining single-tier-based hierarchy
were proposed by Lambert (2021).

8 CONCLUSION

This paper showed how the nature of phonological typology emerges
from simple representations and inference strategies. We discussed the
nature of these representations in model-theoretic terms, forming a
general notion of structural information (factors) that characterizes
virtually any linguistic representation, from strings, to trees, to graphs.
We also discussed a series of learning algorithms that work over any
form of these factors, and are organised into a hierarchy of space com-
plexity based on the distinctions they make with respect to structural
information. We then derived the full hierarchical range of subregu-
lar formal language classes from the product of these different repre-
sentations and inference strategies. Consideration of time complexity
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further parameterises this hierarchy, drawing equivalences and dis-
tinctions amongst the classes with respect to learning. We find that
the scope of phonological typology is strongly biased into the range
defined by the simplest learning algorithms and representations.

The relevance of these results for linguistic theory is clear. A
learner, faced with dramatically sparse data, favours grammar induc-
tion strategies that limit the amount of necessary distinctions between
structural forms in order to ensure that learning is possible and feasi-
ble. The requirement for learners to structure and limit their hypoth-
esis spaces plays off the distinctions learners make and the represen-
tations they make them over. The results here, as well as typological
and experimental evidence, suggest that a learner may fix a learning
algorithm and allow representational primitives to vary. From this per-
spective, the requirement of parsing from a linguistic input to a par-
ticular linguistic form is of the utmost importance. Linguistic learn-
ing can be relativized over various representations, be they strings or
graphs for phonology, or trees for syntax. In this way, natural language
typology, considered through an algorithmic lens, can be shown to
emerge from the interaction of simple learning algorithms and simple
but wide-ranging notions of representation.

9APPENDIX

This appendix offers a brief reference to the fifteen classes charac-
terized by combinations of the learning algorithms and model signa-
tures described in this text. Each class is accompanied by a sample
of attested patterns that it can account for, with those accessible to a
lower algorithm having backreferences. Each pattern is provided with
a grammar given as a plebby-style expression3 formatted in a way typ-
ical of the class.

3The Piecewise-Local Expression Builder Interpreter (plebby) is one compo-
nent of the Language Toolkit, available from https://github.com/vvulpes0/
Language-Toolkit-2, currently version 0.3.
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9.1 Expression syntax

A complete formal description of the plebby expression language is
available in the package documentation. An abridged summary fol-
lows here.

Expressions are built on factors, represented by sequences be-
tween angle brackets. For example 〈a b, c d〉 asserts the occurrence
of four positions, say 1, 2, 3, and 4, that are respectively labelled by
symbols in sets a, b, c, and d, where positions 1 and 2 are connected
by the successor relation, as are positions 3 and 4, while positions
2 and 3 are connected by the general precedence relation. If a left
(right) boundary symbol is prefixed to this notation, that means the
leftmost (rightmost) position aligns with the left (right) edge of the
word. For instance, on〈a〉 asserts that all words consist of a single po-
sition labelled by an element of the symbolset a. Assignment of names
to symbolsets is not discussed here.

More complex expressions are built from unary (⊗e) or n-ary
(⊗{e1, e2, . . . , en}) operations, where ⊗ is the operator and the vari-
ous e are expressions. The Boolean ‘and’ (∩) and ‘or’ (∪) operations
are n-ary and represent language intersection and union, respectively.
The other n-ary operation is concatenation (•). Complement (¬) and
projection ([s1, s2, . . . , sn]) are unary operations, where the projection
operation asserts that the subexpression it operates over applies after
a word has been projected to include only symbols in the union of
symbolsets s1 through sn.

9.2 Algorithm I

Words must contain at least one element of some finite set of factors.

9.2.1 Complement Strictly Piecewise

Factors are subsequences.
• Minimum word length: ∪{〈 ∗σ,

∗
σ〉}.

Two syllables. More or fewer by adding or removing ∗
σ.

• Stress obligatoriness (Hyman 2009): ∪{〈σ́〉}.
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9.2.2Complement Strictly Local

Factors are substrings.
• Minimum word length: ∪{〈 ∗σ ∗

σ〉}.
Two syllables. More or fewer by adding or removing ∗

σ.
• Stress obligatoriness: ∪{〈σ́〉}.

9.2.3Complement Tier-Based Strictly Local

Factors are substrings after projection to some subset of the alphabet.
• Anything complement strictly local.

9.2.4Complement Multi-Tier Strictly Local

All words must satisfy at least one of a set of complement tier-based
strictly local grammars.

• Anything complement tier-based strictly local.

9.3Algorithm II

No word may contain any of a finite set of factors.

9.3.1Strictly Piecewise

Factors are subsequences.
• Harmony, unblocked (Heinz 2010a): ¬∪{〈s, ʃ〉, 〈ʃ, s〉}.
Symmetric. Asymmetric if only one factor were included.

• Stress culminativity (Hyman 2009): ¬∪{〈σ́, σ́〉}.
• Tone Plateauing (Hyman and Katamba 1993): ¬∪{〈H,L, H〉}.

9.3.2Strictly Local

Factors are substrings.
• AB alternation: ¬∪{〈A A〉, 〈B B〉}.
• Cambodian stress (Lambert and Rogers 2019):
¬∪{n〈σ̄〉,on〈〉, 〈σ́ ∗

σ〉, 〈H〉, 〈 ∗L ∗
L〉.o〈 ∗L〉}.

• No light monosyllables (Lambert and Rogers 2019): ¬∪{on〈 ∗L〉}.
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9.3.3 Tier-Based Strictly Local

Factors are substrings after projection to some subset of the alphabet.
• Anything strictly local.
• Dissimilation (Heinz et al. 2011): [k, l, r]¬∪{〈l l〉, 〈r r〉}.
• Harmony (Heinz 2010a): [s, ʃ]¬∪{〈s ʃ〉, 〈ʃ s〉}.
Unblocked. Blocked if other symbols project.

• Stress culminativity: [σ́]¬∪{〈σ́ σ́〉}.
9.3.4 Multi-Tier Strictly Local

Words must satisfy each member of a set of tier-based strictly local
grammars.

• Anything tier-based strictly local.
• Bukusu harmony (Aksënova et al. 2020):
∩{[vowel]¬∪{〈hi lo〉, 〈lo hi〉}, [l, r]¬∪{〈r l〉}}.

9.4 Algorithm III

The set of factors in a word must be a member of some finite set of
factorsets.

9.4.1 Piecewise Testable

Factors are subsequences.
• Anything (complement) strictly piecewise.
• No light monosyllables: ∪{¬〈 ∗L〉, 〈 ∗σ,

∗
σ〉}.

See also strictly local, Algorithm II.

9.4.2 Locally Testable

Factors are substrings.
• Anything (complement) strictly local.
• Harmony, unblocked, symmetric: ¬∩{〈s〉, 〈ʃ〉}.
See also strictly piecewise, Algorithm II.

[ 184 ]



Simplicity in representations and learning

9.4.3Tier-Based Locally Testable

Factors are substrings after projection to some subset of the alphabet.
• Anything (complement) tier-based strictly local.
• Anything locally testable.

9.4.4Multi-Tier Locally Testable

Words must satisfy a Boolean network of tier-based locally testable
grammars.

• Anything (complement) multi-tier strictly local.
• Anything tier-based locally testable.

9.5Algorithm IV

The multiset of factors in a word must be a member of some finite
set of multisets of factors. Note that while plebby has no intrinsic
notion of multisets, concatenation can be used as in the expression
•{〈a b〉, 〈a b〉} which asserts that 〈a b〉 occurs at least twice.

9.5.1Locally Threshold Testable

Factors are substrings.
• Anything locally testable.
• Stress culminativity: ¬∪{•{〈σ́〉, 〈σ́〉}}.
See also strictly piecewise, Algorithm II.

9.5.2Tier-Based Locally Threshold Testable

Factors are substrings after projection to some subset of the alphabet.
• Anything tier-based locally testable.
• Anything locally threshold testable.
• Tone plateauing: [H,L]¬∪{•{〈H L〉, 〈H L〉},∩{〈H L〉,n〈H〉}}.
See also strictly piecewise, Algorithm II.
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9.5.3 Multi-Tier Locally Threshold Testable

Words must satisfy a Boolean network of tier-based locally threshold
testable grammars.

• Anything multi-tier locally testable.
• Anything tier-based locally threshold testable.
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