
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ð ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ð ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
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Learning reduplication
with a neural network

that lacks explicit variables

Brandon Prickett1, Aaron Traylor2, and Joe Pater1
1 University of Massachusetts Amherst

2 Brown University

ABSTRACT

Keywords:
neural networks,
reduplication,
symbolic
computation,
connectionism,
generalization,
phonology

Reduplicative linguistic patterns have been used as evidence for ex-
plicit algebraic variables in models of cognition.1 Here, we show that
a variable-free neural network can model these patterns in a way that
predicts observed human behavior. Specifically, we successfully simu-
late the three experiments presented by Marcus et al. (1999), as well as
Endress et al.’s (2007) partial replication of one of those experiments.
We then explore the model’s ability to generalize reduplicative map-
pings to different kinds of novel inputs. Using Berent’s (2013) scopes of
generalization as a metric, we claim that the model matches the scope
of generalization that has been observed in humans. We argue that
these results challenge past claims about the necessity of symbolic
variables in models of cognition.

1The authors would like to thank Max Nelson, Gaja Jarosz, Brendan
O’Connor, and the members of the UMass Sound Workshop for helpful discus-
sion and feedback. This research was funded by NSF grant BCS-1650957 to the
University of Massachusetts Amherst.
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1 INTRODUCTION

Identity-based patterns in language have been used as evidence for ex-
plicit algebraic variables in models of cognition (Marcus 2001; Berent
2013). Marcus et al. (1999) demonstrated humans’ ability to learn an
identity relationship by training infants on reduplicative linguistic pat-
terns of the form ABB and ABA, where A and B were nonce words
made up of a single syllable each. Marcus et al.’s (1999) participants
heard a series of “sentences” made up of such words (e.g. [linana] or
[gatiti]) and were then tested on two kinds of novel stimuli: sentences
that conformed to the repetition-based pattern in the training phase
and sentences that did not. The infants listened longer to novel stimuli
that did not conform to the pattern they were trained on than novel
stimuli that did. This was taken as evidence that the subjects could
successfully generalize the reduplicative pattern.

Marcus et al. (1999) demonstrated that a simple recurrent neural
network (SRN; Jordan 1986; Elman 1990) could not learn this pattern
in a way that led to human-like generalization,2 given the data that
the infants were exposed to in the experiment. They attributed this
failure to a lack of explicit algebraic variables in the model. An exam-
ple of a variable based analysis of the ABB pattern would be a mapping
like αβ1 → β2, where α and β demonstrate syllable identity and the
subscripts represent two occurrences of identical syllables. A repre-
sentation like this would be blind to individual differences within the
syllables and would generalize to any kind of novel stimulus. Since
the infants in the experiment generalized the pattern to novel items,
and the variable free SRN did not, Marcus et al. (1999) concluded that
algebraic variables were necessary to explain their results.

A number of attempts have been made to simulate the results
of the experiment without using such variables (see Shultz and Bale
2001; Endress et al. 2007, for a summary). The majority of these at-
tempts have been dismissed because they either failed to produce

2While we choose to focus on linguistic generalizations in this paper, a con-
siderable amount of research has also explored non-linguistic generalization (see,
e.g, Doumas and Hummel 2010).
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a model that discriminated between novel conforming and noncon-
forming items or because the model used a mechanism that was equiv-
alent to algebraic variables (although see Alhama and Zuidema 2018
for a successful attempt, described more in Section 2). These failures to
simulate the results with variable-free models have been taken as fur-
ther evidence that a symbolic account of cognition is necessary (Mar-
cus 2001).

We reframe the reduplication problem within a modern con-
text with a focus on generalization outside the training data. The
remainder of the paper is structured as follows: Section 2 summarizes
previous computational work on reduplication generalization, and
Section 3 argues that the Sequence-to-Sequence network (Seq2Seq;
Sutskever et al. 2014) is a straightforward architecture for sequence
transduction and is a natural fit for the reduplication problem. Sec-
tion 4 summarizes a series of simulations that show that a variable-free
Seq2Seq network, when trained correctly, can successfully model Mar-
cus et al.’s (1999) results. Section 5 then explores the model’s ability
to generalize to different kinds of novel items, using Berent’s (2013)
scopes of generalization as a metric for the model’s success, and argues
that its ability to generalize matches that which has been observed
in humans. Finally, Section 6 summarizes our findings, discusses why
our model was successful, suggests future work, and then concludes
the paper.

2BACKGROUND

The debate between connectionist and symbolic theories of language
has often focused on the domain of morphology (for example, see
Rumelhart and McClelland 1986; Pinker and Prince 1988). This in-
cludes reduplication, where all or part of a word is copied to con-
vey some change in semantic information. Corina (1991) and Gasser
(1993) first modeled reduplicative processes with recurrent neural
networks. Gasser found an SRN to be insufficient for the task, cit-
ing the architecture’s need for “a variable of a sort” (1993, p. 6).3

3For discussion on how to integrate variables into connectionist models, see
Marcus (2001) and Smolensky and Legendre (2006).
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To model the process with a neural network, he instead used a feed-
forwardmodel that could discriminate between identical and noniden-
tical pairs of syllables.

Marcus et al. (1999) sought to test how humans learned a redu-
plicative pattern to see whether variables were necessary to model
their behavior (see Rabagliati et al. 2019, for evidence of the reliabil-
ity of these results; for examples of other experimental work on redu-
plication, see Stemberger and Lewis, 1986 and Waksler 1999). To do
this, they trained infants on a pattern that resembled natural language
reduplication, in that two out of three syllables in each stimulus were
copies of one another. This resulted in two experimental conditions:
infants trained on AAB patterns (e.g. with sequences like [lilina]) and
those trained on ABB patterns (e.g. with sequences like [linana]). After
being trained on one of the two patterns, infants were tested on a vari-
ety of items that used novel syllables, as well as novel segments within
the syllables. These were either pattern conforming (e.g. [wofefe] for
the ABB condition) or pattern nonconforming (e.g. [wowofe] for the
ABB condition).

Their results showed that infants looked in the direction of pattern
nonconforming items for significantly longer than pattern conforming
ones. They took this to mean that the nonconforming items were more
surprising for their subjects and that the infants had correctly learned
the reduplicative pattern. The final portion of their paper described
simulations that they ran with an SRN in an attempt to model the
generalization seen in their experiment. While they do not describe
these simulations in detail, they do report that the variable free model
failed to mimic the infants’ behavior and, like Gasser (1993), Marcus
et al. (1999) concluded that a recurrent neural network would need
variables to learn reduplication in a human-like way.

To the best of our knowledge, the cognitive science literature
lacks a formal definition for what exactly constitutes a variable,4 how-
ever there is a consensus that SRNs lack any explicit variables (see,
e.g., Marcus et al. 1999; Seidenberg and Elman 1999). Here, we use
the term explicit to refer to a representation that has been built into
a model’s architecture, pretraining, or the input/output features the

4See Clark and Yoshinaka (2014, pp. 13–14) for some discussion of this from
a formal language theoretic perspective.
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model uses. While it might be the case that SRNs have the ability
to capture variable-like representations in their connection weights,
unless such weights were set by hand, this would not fall under our
definition of an explicit variable.

Marcus et al. (1999) also related SRN’s inability to generalize
reduplication to another linguistic phenomenon – compositionality,
the ability for words to combine tomake novel meanings. For example,
even if a person had no prior exposure to the sentence, “the bicycling
iguana won the game of hop-scotch”, they would be able to compose
the meanings of each word to deduce the meaning of the full sen-
tence. Additionally, even if the word “iguana” was substituted with a
nonce word like “glork”, humans would still be able to intuit a certain
amount of meaning from the sentence. Marcus (1998) demonstrated
that SRNs failed to learn human-like compositionality from linguistic
data, and more modern neural networks still seem to fail at this task
(Lake and Baroni 2017), unless explicit variables are built into their
architecture (Korrel et al. 2019).

A number of attempts have been made to model the Marcus et al.
(1999) results without the use of explicit variables. Shultz and Bale
(2001) laid out diagnostics for determining whether a simulation prop-
erly demonstrates that variables are not necessary for modeling Mar-
cus et al.’s (1999) results (see also Marcus 1999). The first diagnostic
that they described was that the model cannot be trained on any extra
data that was made using an algebraic identity function. Seidenberg
and Elman (1999) did not meet this requirement in their simulation
of Marcus et al.’s (1999) experiment because they exposed their SRN
to pretraining that mapped sequences of syllables to an indicator of
whether or not each syllable was identical to its predecessor. After the
model was familiarized with this identity-based information, it was
able to correctly generalize a reduplicative pattern. Since there is no
reason to assume the infants in the experiment received such pretrain-
ing, this simulation failed to provide evidence for variable free models’
ability to simulate Marcus et al.’s (1999) experiment.

Another example of this criterion’s relevance is Alhama and
Zuidema’s (2018) Incremental Novelty Exposure. This training tech-
nique involves presenting data to a model in a way that slowly intro-
duces it to increasing amounts of novelty over time. This forces the
neural network to find a more general solution than it might otherwise
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be biased toward learning, and was shown to enable a neural network
to model the Marcus et al. (1999) results. Unfortunately, this use of
Incremental Novelty Exposure does not meet Shultz and Bale’s (2001)
first criterion, since whatever mechanism creates the increasingly
novel data would need an explicitly algebraic set of instructions to
perform its task.5

Shultz and Bale’s (2001) next criterion for a variable-free model
was that it could not have an architecture that explicitly compares the
similarity of separate points in time. Endress et al. (2007) point out
that even Shultz and Bale’s (2001) proposed model does not meet this
criterion, since it assumes that there are dedicated, real-valued units
representing each timestep in the input. Since these can act like vari-
ables over each input feature, and since they are explicitly compared
to one another in the model’s hidden layer, they are no different from
variables in regards to this criterion.

The final requirement that Shultz and Bale (2001) discuss is that
to generalize in a human-like way, a model must have more error
for pattern non-conforming test items than for the pattern conform-
ing ones. Christiansen and Curtin (1999) failed to meet this criterion,
since their model could only differentiate between these two stimu-
lus groups in a way that assigned more error to pattern-conforming
items.

Numerous other attempts were made to model Marcus et al.’s
(1999) results, however Shultz and Bale (2001) and Endress et al.
(2007) argue that none of them truly meet these three criteria. Endress
et al. (2007) go on to discuss a successful attempt by Altmann (2002) to
model the experimental results without variables, but show that Alt-
mann’s (2002) model is unsuccessful given the majority of sampled
initial weightings, and that the model makes an incorrect prediction
regarding different types of nonconforming test items (i.e. items that
followed an AAA pattern, where all three syllables in a sequence are
identical). This pathological prediction by Altmann’s (2002) learner
will be discussed further in Section 4 where we show that our model
succeeds on this new type of test item.

5Alhama and Zuidema (2018) also test a model without Incremental Nov-
elty Exposure and find similar results to those presented in Section 4. We leave
exploring the differences between their model and ours to future work.
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3OUR MODEL

In this section, we present the main differences between our model
(a Seq2Seq network with LSTM layers) and the simpler recurrent net-
work used by Marcus et al. (1999). For the documentation on the
Python packages used to implement the model, see Chollet (2015)
and Rahman (2016). The software that we used can be downloaded
at https://github.com/blprickett/Reduplication-Simulations.

We chose to focus on Seq2Seq models because of their recent suc-
cess in a number of linguistic tasks (Cotterell et al. 2016; Kirov and
Cotterell 2018; Prickett 2019; Nelson et al. 2020). For example, Kirov
and Cotterell (2018) showed that a Seq2Seq network could learn both
regular and irregular past tense verbs with almost perfect accuracy.
Additionally, when tested on novel verbs, the model’s judgments cor-
related more with human data gathered by Albright and Hayes (2003)
than any previously proposed model (although generalizing to novel
verbs in a human-like way was dependent on a particular set of start-
ing weights. See Corkery et al. 2019 for more on this).

Crucially for our work, the Seq2Seq network has no algebraic
symbols built into its architecture and does not explicitly compare
the similarity of any two points in time, meaning that it meets the cri-
teria from Shultz and Bale (2001) discussed in Section 2.6 For other
recent approaches to computationally modeling reduplication, see Al-
hama and Zuidema (2018), Wilson (2019), Beguš (2021), Dolatian and
Heinz (2020), and Haley and Wilson (2021).

3.1Seq2Seq architecture

Seq2Seq neural networks were originally designed for machine trans-
lation and have the ability to map from one string to another, with-
out requiring a one-to-one mapping between the strings’ elements

6While it has become standard in machine translation for Seq2Seq models to
use attention (Bahdanau et al. 2015), our model does not include this mechanism,
since it could be considered to be an implementation of the variables that Marcus
(2001) describes. See Nelson et al. (2020) for a discussion of how attention can
help neural networks learn reduplicative patterns.
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Figure 1:
Illustration of Seq2Seq architecture

modeling one of the stimuli
(represented as a mapping from the

first two syllables to the third
syllable) in Marcus et al.’s (1999)

experiments. Each transcribed sound
represents a single timestep

(Sutskever et al., 2014). For example, a sentence like “No, I am your fa-
ther” could be mapped onto the Spanish sentence “No, soy tu padre”,
even though the Spanish sentence has one fewer word. The model
performs this mapping by having an encoder and decoder pair built
into its architecture. Each member in the pair is its own recurrent net-
work, with the encoder processing the input string one element at a
time and the decoder transforming that processed data into an output
string that it unpacks through time. Often these elements that make
up the input and output sequences are referred to as “timesteps”. In
our simulations, each timestep represents a single phonological seg-
ment as either a vector of arbitrary features or a vector of phonetically
motivated features adapted from the phonological literature.

Figure 1 shows an illustration of the Seq2Seq architecture that
resembles the mappings we use in the simulations described in Sec-
tion 4.1. Here, the encoder passes through the entire input (i.e. the
first two syllables) before transferring information (in the form of hid-
den layer activations) to the decoder. The decoder then unpacks this
information, and produces an output string (i.e. the predicted third
syllable, [fe]). The Seq2Seq architecture allows these two strings to
differ in their length, with the input being four segments long and the
output being two.

At each timestep in the input, information is passed forward
through the hidden layers of the encoder (represented in the figure
by the black boxes within the encoder). Additionally, information is
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passed across timesteps through the model’s recurrent connections
(represented by the black, rightward pointing arrows in the figure).
The final recurrent connection in the encoder (represented by the gray
arrow) passes this processed information to the decoder, which un-
packs it timestep-by-timestep in the output. In all of the simulations
discussed in this paper, the encoder is unidirectional, meaning that it
passes through the input string once, from left to right.

3.2Long Short-Term Memory (LSTM)

In all of the simulations presented here, our model uses LSTM hidden
layers (Hochreiter et al. 2001). These are a kind of recurrent neural
network layer which enhances a model’s ability to store information
over several timesteps. While this architectural innovation was origi-
nally designed to address the problem of vanishing gradients (Bengio
et al. 1994), it has been demonstrated that LSTM layers can also pro-
vide models with added representational power (Levy et al. 2018).

LSTM performs both of these by using cell states: bundles of in-
teracting layers that can learn which information is important for the
model to keep track of in the long term, and which information it
can forget. This means that during training, the network is not only
learning how to predict the output from the input at a given point in
time, but also which information at that timestep will help it to pre-
dict the output in the future. Crucially, nothing in LSTMs explicitly
implements an algebraic variable. While the use of LSTM layers likely
has some effect on our model’s predictions, we do not expect it to be
the primary factor affecting the network’s generalization and leave the
question of how crucial this mechanism is to future work.

3.3Dropout

Dropout is a regularization method that helps neural networks gener-
alize correctly to items outside of their training data (Srivastava et al.
2014). When using dropout, a hyperparameter is chosen between 0
and 1 that represents the probability that any given unit in the net-
work is “dropped out” during training (i.e. all of its incoming/outgoing
weights are temporarily set to 0). The set of units that are dropped out
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Figure 2:
A simple feed-forward network, with
and without dropout. Each circle is a
unit and each arrow is a connection.
Dropped out units are in gray. Each
unit’s output (before dropout) is

denoted by the number inside of it.
All connections have a weight of 1

and all activation functions
are f(x) = x

is resampled at each weight update during learning, forcing the model
to find a solution that does not depend too heavily on any single unit.

This is illustrated for a simple feed-forward network on the right
side of Figure 2. In this illustration, dropout causes the output units
to have an activation of 2, instead of 4, because a unit in the middle
layer is being dropped out and cannot contribute to the activations in
the layer above it. For the simulations presented here, dropout was
applied with equal probability to all layers of the network.

4 MODELING MARCUS ET AL. (1999)

This section presents simulations of the three experiments described
in Marcus et al. (1999). In addition to directly simulating these three
experiments, Section 4.1 explores the impact of linguistic structure in
the model’s pretraining, and Section 4.2 simulates a partial replication
of the original Marcus et al. (1999) experiment performed by Endress
et al. (2007).

4.1 Experiments 1 and 2

In their first two experiments, Marcus et al. (1999) trained infants on
ABB and ABA patterns (e.g. [wofefe] and [wofewo], respectively) and
then measured the infants’ listening times to determine whether they
generalized the patterns to words containing novel segments. To sim-
ulate this, we trained our model to predict the third syllable in each
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experimental item, based on the first two.7 For all of the simulations
presented in this section, the Seq2Seq model was given a four segment
input representing the first two syllables, and asked to produce a two
segment output representing the third syllable (as illustrated in Fig-
ure 1). Segments were represented using vectors made up of 11 feature
values, based on standard features used in phonological theory. These
features, along with the segments from Marcus et al.’s (1999) exper-
iments that they describe, are given in the Supplementary Materials.
Both the encoder and decoder each had 4 LSTM layers with 11 units
in each layer.

The model was trained using RMSProp (Tieleman and Hinton
2012), a gradual, error-based algorithm, with the default hyperparam-
eter values used in Keras (Chollet 2015). The probability of dropout
was .85 (chosen after a small amount of pilot testing before running
our final simulations) and the loss that the model was trained to min-
imize was mean squared error (MSE). MSE was calculated by going
through each feature in the model’s predicted output, squaring the
difference between the predicted value of this feature and the correct
value, and averaging across all of these squared differences.

In addition to being trained on the same items as Marcus et al.’s
(1999) subjects, given in Table 1, the model also went through a pre-
training phase meant to familiarize it with the syllables used in the
experiment.

Preliminary simulations that were run without this pretraining
failed to reproduce the kind of generalization observed in the experi-
ment. The pretraining can be thought of as simulating the experience
that the infants would have had with English syllables prior to partic-
ipating in the experiment (since all of the syllables that were used are
attested in English). Unlike the pretraining used by Seidenberg and
Elman (1999), there was no identity-based information in this pre-
training, meaning that it did not violate the first criterion laid out by
Shultz and Bale (2001). Each learning datum in pretraining was a set

7Note that this mapping is much simpler than some kinds of reduplication
present in natural language (see, e.g., Dolatian and Heinz 2020, for more on this)
and should be trivially easy for a neural network to learn. However, since Marcus
et al. (1999) and the current study are primarily interested in generalization, the
formal complexity and learnability of the patterns we look at is irrelevant.
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Table 1:
Training data used in our
simulations of the first two
experiments in Marcus
et al. (1999). For the

phonological features used
to represent each sound,
see the Supplementary

Materials

Experiment Condition Stimuli
1 ABA [gatiga], [ganaga], [gagiga], [galaga],

[litili], [ligili], [lilali], [nigini],
[ninani], [nilani], [talata], [tatita],
[linali], [nitini], [tanata], [tagita]

1 ABB [tigaga], [nagaga], [gigaga], [lagaga],
[tilili], [gilili], [lalili], [ginini],
[nanini], [lanini], [latata], [titata],
[nalili], [tinini], [natata], [gitata]

2 ABA [ledile], [lejele], [lelile], [lewele],
[widiwi], [wijewi], [wiliwi], [wiwewi],
[jidiji], [jijeji], [jiliji], [jiweji],

[dedide], [dejede], [delide], [dewede]
2 ABB [dilele], [jelele], [lilele], [welele],

[diwiwi], [jewiwi], [liwiwi], [wewiwi],
[dijiji], [jejiji], [lijiji], [wejiji],

[didede], [jedede], [lidede], [wedede]

of two randomly sampled syllables that mapped to another randomly
chosen syllable.

After being trained on 1000 of these randomly produced data for
1000 epochs (i.e. full passes through the data) with batches of size 50
(i.e. the model made weight updates based on the average error on
50 data points), the model’s decoder weights were set back to their
original values (with the encoder weights being preserved) and the
experiment simulation began. The model was then trained for 500
epochs (again, with batches of size 50) on a dataset that contained
three copies each of the items from Marcus et al.’s (1999) training
phase. A new random ordering of these data was sampled for each
simulation.

At the end of this training, the model was tested on a dataset that
contained three copies each of the four test items used by Marcus et al.
(1999): [wofefe], [dekoko], [wofewo], and [dekode] for Experiment
1 and [bapopo], [kogaga], [bapoba], [kogako] for Experiment 2. Test-
ing involved feeding the model a set of prespecified input values and
comparing the model’s resulting output values to the correct outputs
(as mentioned above, this comparison is reported using MSE). We used
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Table 2: Results from our simulations and the corresponding experiments in Mar-
cus et al. (1999)

MSE Listening Time
Conf. Nonconf. t(99) p Conf. Nonconf. F(14) p

Exp. 1 .49 .52 −2.8 <.01* 6.3 9.0 25.7 <.01*
Exp. 2 .67 .68 −3.3 <.01* 5.6 7.35 25.6 <.01*

the MSE values obtained from these tests as a dependent variable to
compare to the infant listening times reported by Marcus et al. (1999).
The results for 200 simulations8 (50 per condition, per experiment)
are given in Table 2, along with the results reported by Marcus et al.’s
(1999) 32 subjects (8 per condition, per experiment). All MSE values
are rounded to the nearest hundredth and averaged across runs.

The results in Table 2 demonstrate that the model, like the in-
fants, differentiates between conforming and nonconforming items in
the test data. After running paired t-tests on the MSE values, both Ex-
periment 1 (t[99] = −2.8, p = .003) and Experiment 2 (t[99] = 3.3,
p = .0006) showed significantly less MSE for conforming test stimuli
than for nonconforming ones.9 This means that the nonconforming
stimuli were predicted more poorly by the model, meeting the final
diagnostic laid out by Shultz and Bale (2001) for knowing whether a
simulation successfully captures the infants’ behavior without explicit
variables.

One major difference between Marcus et al.’s (1999) results and
those produced by our model is their respective effect sizes. We do
not find this difference troubling, for a number of reasons. First of
all, the comparison we make above assumes a linking hypothesis in
which each run of the Seq2Seq network is equivalent to a single infant
in the experiment. However, it is not obvious that this is the correct

8To avoid p-hacking, we ran numerous pilot tests to gauge how many simu-
lations were necessary to gain statistical significance. After the pilots, we reran
all 200 simulations and ran all t-tests on these new results.

9Following Marcus et al. (1999), we combined results from both the ABB
and ABA conditions in each experiment, however both groups showed qualita-
tively similar results, with differences in average MSEs between conforming and
nonconforming items of 0.034 and 0.019, respectively.
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assumption. For example, one could imagine combining the results
from several separate runs to simulate a single human’s behavior in
the experiment (for example, by averaging their MSE on the test stim-
uli). This kind of “ensemble” technique, where predictions are com-
bined from multiple models with the same training data, is common
in machine learning (Kuncheva 2014) and would reduce the variabil-
ity in our results (thus increasing the effect size). While it is difficult
to determine what linking hypothesis is the most realistic, ensemble
learning is an example of how the variable-free model we use here
could have an effect size comparable to that of the infants.

Another way that we could reduce the variability and increase
the effect size in our results is by reducing the range in which the
model’s initial weights can vary. Currently, each connection’s weight
was randomly chosen at the start of each run, which is why each
repetition of the simulation got different results, despite getting sim-
ilar pretraining and identical training data. However, the variabil-
ity present in these initial weights was due to the default settings
in the software we were using, rather than any principled measure-
ment based on actual variability in the brains of newborns. It could
be that infants have a relatively low level of variability in their ini-
tial state of learning – and if we replicated this in our simulations it
could increase our effect size considerably, since we could choose a
set of starting weights that led to high levels of generalization and
low amounts of variance across runs (for work that pursues this pos-
sibility in the context of other phonological patterns, see McCoy et al.
2020).

Finally, since the infants would have been exposed to repetition in
language prior to their participation in the experiment, their learning
could have been aided by this previous linguistic experience. Examples
of reduplication are common in both infant-directed speech (Ferguson
1964; Mazuka et al. 2008) and adult English (Nevins and Vaux 2003;
Ghomeshi et al. 2004; Štekauer et al. 2012). For example, many of
the words directed toward infants (such as “mama” and “choochoo”)
contain repetition that could be considered an ABB pattern (since two
adjacent syllables repeat). Similarly, Shm Reduplication (e.g. “pizza-
shmizza”; Nevins and Vaux 2003) could be represented as an ABA pat-
tern, with the B representing the [ʃm] sequence and the A’s represent-
ing the copied material. Mazuka et al. (2008) estimate that as much as
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Figure 3:
The effect of reduplication
in pretraining on the effect
size of the results. Each
datapoint represents the
average difference between
the MSE of conforming
and nonconforming items,
over 100 repetitions. Half
of the simulations were
in the ABB experiment
condition and half were
in the ABA condition

65% of the word types in infant-directed speech could contain some
kind of repetition, based on self reporting from Japanese mothers.

We tested the hypothesis that infants might be aided by native
language reduplication by running another set of simulations in which
we added ABB and ABA conforming words to the model’s pretraining.
We varied the percentage of the pretraining that contained these redu-
plicative words to see if more reduplication in pretraining changed the
effect size when simulating the experiments. Additionally, we added
a feature to represent the semantic information that would be associ-
ated with this repetition. In pretraining, this semantic feature was al-
ways −1 when words followed an ABA pattern and 1 whenever words
were ABB. When simulating the experiment, this feature was always 0
(to represent the lack of meaning associated with the experimental
stimuli). All other hyperparameters were the same as the simulations
described above, and the results from them are shown in Figure 3.

Figure 3 demonstrates that the more repeating items that were
added into the model’s pretraining, the larger its effect size became
when simulating the experiment. While the effect size of the model
does not reach the same levels as the infants in Marcus et al.’s (1999)
study, this demonstrates that adding structure into the model’s pre-
training does have the potential to increase effect size. Since the in-
fants in the study were exposed to much more linguistic structure than
just reduplication, the benefit they received from their prior experi-
ence with English could have had an even larger influence on their
ability to generalize in an experimental setting.
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Table 3:
Training data used in our
simulations of the third
experiment in Marcus
et al. (1999). For the

phonological features used
to represent each sound,
see the Supplementary

Materials

Experiment Condition Stimuli
3 AAB [leledi], [leleje], [leleli], [lelewe],

[wiwidi], [wiwije], [wiwili], [wiwiwe],
[jijidi], [jijije], [jijili], [jijiwe],

[dededi], [dedeje], [dedeli], [dedewe]
3 ABB [dilele], [jelele], [lilele], [welele],

[diwiwi], [jewiwi], [liwiwi], [wewiwi],
[dijiji], [jejiji], [lijiji], [wejiji],

[didede], [jedede], [lidede], [wedede]

4.2 Experiment 3

Marcus et al.’s (1999) third experiment required a different set-up than
our previous simulations. As shown in Table 3, this experiment re-
placed the ABA pattern with AAB, exposing infants to either this or
ABBwords in training, depending on the condition they were assigned.

This was designed to ensure that the infants had not simply
learned to expect changes across syllable boundaries in the ABA con-
dition, and a lack of such change in ABB. However, as pointed out by
Endress et al. (2007), this means that the problem can no longer be
modeled as a mapping from the first two syllables to the third, since
the model would have no way of predicting the third syllable in AAB
sequences.

To overcome this issue, we designed a new kind of simulation in
which the model’s input included three syllables, but the middle sylla-
ble in the input was represented by two empty segments (i.e. segments
that had a value of 0 for every feature). The output of the model was
a single syllable that was intended to represent the material that the
empty syllable was supposed to include (see Devlin et al. 2019, for a
similar approach in natural language processing). This is illustrated in
Figure 4.

Since the second syllable is predictable in both the AAB and ABB
conditions, given the other two syllables, this allowed us to test the
model on a mapping that was relevant to the design of Experiment 3.
While it is unlikely that infants were performing this exact task, fram-
ing the problem in this way allows us to work within the constraints of
the Seq2Seq network (i.e. that all tasks are a string to string mapping)
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Figure 4:
Illustration of an ABB
mapping in Experiment 3’s
simulations. The
“?” symbols represent
empty segments

and still ensure that, like the infants, the model is not just learning to
attend to changes across syllable boundaries.

For pretraining in these simulations, the model was trained to
map two randomly chosen syllables with an empty syllable in between
them to another randomly chosen syllable. After this pretraining, as in
the previous simulations, the decoder’s weights were set back to their
initial values. To simulate the experiment’s training phase, the models
then trained on a data set similar to those in the previous section.
The test phase was also similar to the other experiments, with the
model being tested on the words [bapopo], [kogaga], [babapo], and
[kokoga]. The results on these test items, averaged over 20 simulations
(10 in each condition) are shown in Table 4.

MSE Listening Time
Conf. Nonconf. t(19) p Conf. Nonconf. F(14) p
.56 .57 −2.3 .01635* 6.4 8.5 40.3 <.001*

Table 4:
Results for the
Experiment 3 simulation,
compared to Marcus et al.’s
(1999)

The Experiment 3 simulations also included an additional kind of
test item. This was designed to simulate the AAA stimuli in Endress
et al.’s (2007: Appendix A) replication of Marcus et al.’s (1999) third
experiment. Endress et al. (2007) included these stimuli in the test
phase to explore a prediction made by Altmann’s (2002) model. That
model correctly predicted a preference for conforming stimuli over
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Table 5:
Results on Endress et al.’s (2007) conforming

and nonconforming stimuli
MSE

Conf. Nonconf. (AAA) t(19) p
.56 .57 −2.22 .01933*

Marcus et al.’s (1999) nonconforming ones, however it predicted an
even stronger preference for stimuli that followed an AAA style pat-
tern. That is, stimuli such as [bababa], where all three syllables are
the same.

Endress et al. (2007) showed that when a replication of Marcus
et al.’s (1999) third experiment was run that also tested participants’
preferences for this kind of stimulus, humans still preferred items that
conformed to the reduplicative pattern they were trained on. To en-
sure that the interpretation of our model’s results does not fall into
the same trap as Altmann’s (2002), we also tested it on the Endress
et al. (2007: Appendix A) test items: [bababa] and [kokoko]. The re-
sults, averaged over 20 simulations (10 in each condition), are given
in Table 5.

These simulations show that our model can predict the results
of Marcus et al.’s (1999) third experiment, as well as Endress et
al.’s (2007) partial replication of that experiment. The model’s MSE
was significantly higher for both the standard nonconforming items
(t[19] = −2.30, p= .01635), as well as the AAA nonconforming ones
(t[19] = −2.22, p= .01933).

5 EXPLORING THE MODEL’S SCOPE
OF GENERALIZATION

In Section 4, we demonstrated our model’s ability to simulate Marcus
et al.’s (1999) experiment results, despite its lack of variables. How-
ever, these results only paint a partial picture of how well the model
is able to generalize reduplication. Marcus et al. (1999) tested infants
on words that used segments that were completely novel in the con-
text of the experiment (i.e. they were not present in the words that in-
fants were trained on), however, all of the segments in the experiment
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i e o a
p pi pe po pa
b bi be bo ba
t ti te to ta
d di de do da

Table 6:
Example of generalization to a novel syllable.
Gray cells represent training data,
bolded item indicates the crucial testing item

were present in English, which means that the infants would have
had a considerable amount of experience with them. We simulated
this experience in our models using randomly produced pretraining,
which entails that the model never needed to generalize reduplication
to completely novel phonemes. This also means that it is impossible to
know, based on those results, whether the model learned an algebraic
function like αβ1 → β2, or whether it learned a less general pattern
like “if feature F is 1 in the third sound in the input, feature F′ should
be 1 in the first sound of the output”.

To better understand the mappings being learned by the Seq2Seq
network, we structured the simulations in this section to map a sin-
gle syllable (e.g. [ba]) to two copies of itself (e.g. [baba]).10 We then
tested how well the model generalized this mapping when given with-
held data at various levels of novelty. To do this, we followed Berent’s
(2013) proposal regarding the scopes of generalization that are possible
for such identity-based patterns. We summarize the three scopes here,
and then in Section 5.1–5.3, we explain the series of simulations we
ran to determine which scope best describes our model’s performance.

The simplest form of generalization that Berent (2013) discussed
is to novel words (which in this context is equivalent to generalization
to novel syllables, since the network is blind to the difference between
these levels of representation). This is illustrated for a reduplicative
pattern in Table 6, with the gray cells representing the input syllables
seen in the training data and the bolded syllable being the input for a
test item withheld from training.

10This also resembles natural language reduplication more closely than the
Marcus et al. (1999) pattern does. For an example, see reduplication in the lan-
guage Karao, which doubles the stem of a word to change the number of some
verbs: [manbakal] “fight each other, 2 people” → [manbabakal] “fight each
other, >2 people” (Štekauer et al. 2012).
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Table 7:
Example of generalization to a novel segment.

Gray cells represent training data,
bolded items indicate crucial testing item

i e o a
p pi pe po pa
b bi be bo ba
t ti te to ta
d di de do da

If a model correctly predicts the mapping [da]→[dada] after be-
ing trained on data that does not include the input [da] (but that
does include other syllables containing both [d] and [a]), it would
successfully be performing this scope of generalization. This would
demonstrate that the model did not simply memorize individual in-
put+output pairs, but doesn’t show that the model has learned any-
thing more sophisticated than how to copy individual segments. For
example, it could have learned patterns like “if [d] occurs as the first
segment in the input, make [d] the first and third segments in the
output.”

The next scope is generalizing to novel segments. As mentioned in
Section 4, we represent segments as vectors of phonological features.
When testing this scope, we trained the model on every relevant value
for each feature, but not on all of the possible feature value combina-
tions. This is demonstrated in Table 7, using the same shading scheme
that was described above.

In the example in Table 7, the model is trained on syllables con-
taining [p], [b], and [t], with [d] remaining outside of its training
data. This would give it experience in training with all of the feature
values that make up [d] (since it shares every value but [voice] with
[t] and it does share its value for [voice] with [b]), without ever seeing
them together in the same vector. This scope of generalization demon-
strates that a learner is doing more than just memorizing a mapping
for each segment. Instead, if a model generalizes at this level, it has
acquired a broader generalization that might reference specific fea-
ture values. For example, it may have learned the generalization “if
the first segment in the input is −1 for [voice], make the first and third
segments in the output have a value of −1 for [voice].”

Berent (2013) points out that generalization to novel segments
would still not demonstrate that a model has learned a full identity-
based function. To show this, a model would need to demonstrate
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i e o a
p pi pe po pa
b bi be bo ba
t ti te to ta
d di de do da
n ni ne no na

Table 8:
Example of generalization to a novel feature value.
Gray cells represent training data, bolded item indicates
the crucial testing item

its ability to generalize to novel feature values, which Berent (2013)
calls “across the board” generalization and Marcus (1998) describes
as “outside of the training space”.11 This is demonstrated in Table
8, where the learner is only trained on oral consonants (i.e. sounds
made without nasal resonance) and then tested on the nasal conso-
nant [n].

In the example from Table 8, the model has only been exposed
to the feature value [nasal]=−1 in its input, so if it generalizes to
[na], there is no way it could have learned a pattern that depends on
feature value based mappings. Generalization to novel feature values
means that a model has learned that the pattern is independent of
any particular feature. For example, the model could have learned the
function α→ αα, where α can be any arbitrary syllable.

To test which scope of generalization our model could achieve,
we ran three kinds of simulations that were more carefully aimed at
this question than the Marcus et al. (1999) experiment: one in which
the model was tested on a novel syllable made up of segments it had
seen reduplicating in its training data (Section 5.1), one in which the
model was tested on a syllable made with a segment that it had not
received in training (Section 5.2), and one in which the model was
tested on a syllable with a novel segment containing a feature value
that had not been presented in the training data (Section 5.3). None

11Note that all scopes of generalization talked about so far can be thought of
as being “outside the training space”, but Marcus and colleagues often use this
term to specifically refer to generalization to novel feature values. By “feature”
here we mean the most atomic level of a model’s representation. For our model,
this is the level of phonological features, following standard linguistic theory
(see, e.g., Chomsky and Halle 1968).
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Figure 5:
Illustration of mappings

in this section’s simulations

of the simulations described here used a pretraining phase like those
in Section 4.

In the results presented in this section, the set of possible segments
and the feature values representing those segments were randomly
produced in each simulation, unless otherwise noted. Input features
for these simulations were binary (either −1 or 1), to avoid ambigu-
ity in interpreting the model’s success. To ensure that each language
had consonants and vowels present in its segment inventory, segments
were divided into these two categories by treating the first feature as
[syllabic], i.e. any of the randomly produced feature vectors that be-
gan with −1 were considered a consonant and any that began with 1
were considered a vowel. No randomly produced language inventories
were used that consisted of only consonants or only vowels.

The toy language for any given simulation consisted of all the
possible consonant+vowel syllables that could be made with that
simulation’s randomly created segment inventory (all inventories con-
tained forty segments total, unless otherwise noted). Crucially, before
the data was given to the model, some portion of it was withheld for
testing (see the subsections below for more information on what was
withheld in each testing condition). The mappings that the model was
trained on took a single syllable (e.g. [ba]) as input and produce two
syllables (e.g. [baba]) as output, as shown in Figure 5.

The models were trained for 1000 epochs, with batches that in-
cluded all of the training data. There were 18 units in the model’s

[ 22 ]



Learning reduplication with a neural network

hidden layer, the probability of dropout was either 0 or .75, and all
other hyperparameters were the same as in Section 4 (as in the pre-
vious section, hyperparameters were chosen after a small amount of
piloting was performed). To test whether the model generalized to
withheld data at the end of training, a much stricter definition of
success was used than in the Marcus et al. (1999) experiments. The
model was given the relevant withheld item as input, and the output
it predicted was computed using Keras’s “predict()” function (Chollet,
2015), which performs a single forward pass through the network.
Since the model is not probabilistic, these predictions do not vary
given the same input and set of connection weights. These predictions
were compared to the corresponding correct outputs (i.e. the redu-
plicated form of the stem it was given). If every feature value in the
predicted output had the same sign (positive/negative) as its counter-
part in the correct output, the model was considered to be successfully
generalizing the reduplication pattern. However, if any of the feature
values did not have the same sign, that model was considered to have
failed at the generalization task.

5.1Generalization to novel syllables

Our first set of simulations tested whether the model could generalize
to novel syllables. If the model failed at this task, then it would mean
that it wasmemorizing whole syllables in the training data, rather than
extracting any actual pattern from the mappings that it was trained
on. The model successfully reduplicated all of the syllables it had been
trained on in all runs for this condition. Additionally, when no dropout
was used, it successfully generalized to novel syllables in 22 of the 25
simulations (88%). This shows that a standard Seq2Seq model, with
LSTM but no dropout, can perform generalization to novel syllables,
and does so a majority of the time. Dropout did not have a noticeable
effect on the model’s ability to generalize. When the probability of
units dropping out was .75, it again generalized to novel syllables in
22 of the 25 simulations (88%).

5.2Generalization to novel segments

Our next set of simulations tested the model’s ability to generalize to
novel segments. If the model failed at this task, it would mean that it
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Figure 6: Difference between dropout with probabilities of .75 and 0 in general-
ization to novel segments

was only learning generalizations that referred to individual sounds,
such as “if [d] is the first segment in the input, make [d] the first and
third segments in the output.” The model successfully reduplicated
syllables from training in 24 of the 25 runs for this condition when
no dropout was applied. However, it failed to generalize to novel seg-
ments in the majority of runs, with only 6 out of 25 simulations be-
ing successful (24%). This shows that a standard Seq2Seq model, with
LSTM but no dropout, does not reliably generalize to unseen segments.

However, when the probability of a unit dropping out was in-
creased to .75, the model successfully reduplicated syllables from
training in all runs and generalized to novel segments in 15 out of 25
runs (60%). This means that as long as dropout is used in training,
the model will reliably achieve this scope of generalization. This dif-
ference between the two dropout conditions is illustrated in Figure 6.

5.3 Generalization to novel feature values

Our next set of simulations tested the model’s ability to generalize
to novel feature values. Failing at this means that the model learned
generalizations that depend on individual features, rather than com-
pletely abstract algebraic functions like α→ αα. In this condition, the
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inventory was designed by hand and always contained 43 segments, in
order to more easily withhold a single feature value. The feature vec-
tors that represented these segments are given in the Supplementary
Materials. The withheld segment was always [n], with the withheld
feature value being [nasal]=1. A variety of other segment inventories
were tested, with no changes in the model’s performance.

Despite the fact that the model achieved perfect performance on
trained syllables, it was never able to generalize to novel feature val-
ues, regardless of whether dropout probability was 0 or .75. A number
of other dropout settings were attempted with no success at increas-
ing the scope of generalization to this level. This suggests that Seq2Seq
models, regardless of whether they are regularized with dropout, can-
not generalize to novel feature values.12

5.4Which scope of generalization is observed
in human language learning?

In this section, we argue that the generalization observed in our
Seq2Seq simulations matches the generalization demonstrated in past
experiments involving humans. As we’ll discuss, the ability of humans
to generalize identity-based patterns to novel words and segments is
well documented and uncontroversial, but we find that the evidence
for humans generalizing to novel feature values is weak.

When discussing generalization of reduplicative patterns, Berent
(2013) used Hebrew speakers’ judgments regarding an AAB pattern
present in their language’s phonotactics. In Hebrew, the first two con-
sonants in a word’s stem cannot be identical (i.e. the first three con-
sonants are not allowed to match the pattern AAB, where the A’s rep-
resent a repetition of the same consonant). For example, the word
[simem] ‘he intoxicated’ is acceptable, while the nonce word *[sisem]
is not. Berent (2013) reviewed a number of past experiments that
showed speakers generalizing this pattern by having them rate the
acceptability of various kinds of novel words.

12One reason why you might expect this behavior is that novel feature val-
ues represent a particularly strong violation of the “independent and identically
distributed” assumption (see Le Boudec 2011, for an introduction) often made in
statistical learning.
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Generalization to novel words/syllables was demonstrated by
Berent and Shimron (1997) in an experiment that asked Hebrew-
speaking participants to rate nonce words. These words were made
up of segments that were attested in Hebrew, such as [s] and [m],
making them equivalent to the novel syllables that we tested our
model on in Section 5.1. Speakers in this experiment rated words
with s-s-m stems (like *[sisem]) as significantly less acceptable than
words with s-m-m and p-s-m stems. This demonstrated that Hebrew
speakers were doing more than just memorizing the lexicon of their
language (i.e. that they could extract phonotactic patterns).

Generalization to novel segments by Hebrew speakers was shown
in Berent et al. (2002), corresponding to the scope of generalization
that the network with dropout achieved in Section 5.2. The segments
of interest were /tʃ/, /dʒ/ and /w/, all of which are not present in
native Hebrew words. Even when these non-native phonemes were
used, Hebrew speakers rated words whose first two consonants were
identical (e.g. dʒ-dʒ-r) as worse than those that did not violate the
phonotactic restriction (e.g. r-dʒ-dʒ). This demonstrated that speakers
had not just memorized a list of consonants that cannot cooccur (e.g.
*pp, *ss, *mm, etc.) while acquiring their phonological system, since
this list would not have included sounds like [w].

Finally, Berent et al. (2002) showed that speakers can generalize
the *AAB pattern to the segment [θ], which they claimed represented
generalization to the novel feature value [wide]. However, [wide] is
not used in any standard phonological feature theory (e.g. Chomsky
and Halle 1968; Hayes 2011). Using a standard featural representation
for [θ], such as [+anterior, +continuant, −strident], would mean
that [θ] does not represent a novel feature value for Hebrew, since
the language contains other, native, [+anterior], [+continuant], and
[−strident] sounds (e.g. [t], [ʃ], and [f], respectively). This is illus-
trated in Table 9.

Berent et al. (2002) present a number of arguments in favor of
using the feature [wide], rather than a more standard phonological
representation. First, they argue that since [wide] is a more phonet-
ically invariant feature value than representations like [+anterior]
and [−strident], that it is more likely to be psychologically real (see
also Gafos 1999). However, it is unclear whether phonological fea-
tures should have invariant phonetic correlates (see Hamann 2010,
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[anterior] [continuant] [strident]
t + −
ʃ − + +
f + −
θ + + −

Table 9:
Demonstration that [θ] does not
represent any novel feature values
for Hebrew speakers when a standard
set of features is used. Gray cells
represent the crucial feature values
needed to describe [θ] that
are present in native Hebrew sounds

sec. 2.1 for some discussion of this), since the process that the mind
uses to map phonetic information to phonological features is an open
question.

Their second piece of evidence was that Hebrew speakers map
[θ] to [t] when borrowing non-Hebrew words, and that this must be
the result of a representational difference between it and other novel
sounds that are borrowed faithfully into the language. However, it has
been widely observed that interdental sounds like [θ] are more likely
to be mapped incorrectly than other phonemes when words contain-
ing them are borrowed into a language (see, e.g., Rau et al. 2009;
Hanulikova and Weber 2010). This is likely due to phonetic diffi-
culty, since children acquiring English as their first language are more
likely to make production (Moskowitz 1975) and perception (Skeel
1969) errors when dealing with interdental sounds than other kinds
of phonemes.

Another experiment claiming to demonstrate generalization to
novel feature values is Berent et al. (2014). In this paper, the authors
claim to observe generalization of a reduplicative pattern in Ameri-
can Sign Language to novel signs made up of novel feature values.
However, they are using the word “feature” differently than we do
here. While they define features as the description of an entire hand
shape, our definition is closer to the sign language features proposed
by Brentari (1998), where feature values are the most atomic part of
a sign’s representation (for example, the position of individual fin-
gers). Since their participants would have had prior linguistic and
non-linguistic experience with visual stimuli that involved hands in
a variety of positions (analagous to the pretraining we used in Sec-
tion 4), these would not be truly novel feature values for them. Berent
et al. (2016) also used signed language to test whether humans could
generalize to novel feature values. Specifically, they showed that na-
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tive speakers of auditory languages seemed to generalize reduplicative
patterns from their L1 to signed nonce words. However, this study also
used visual stimuli that could easily be represented using features that
participants were already exposed to in non-linguistic contexts (i.e. the
different positions of the parts of a hand). Furthermore, since the par-
ticipants in the experiment were not experienced speakers of a signed
language, they could have been mapping the signs to auditory repre-
sentations in their mind, which would mean that they were not gen-
eralizing the reduplicative patterns to novel features at all.

To our knowledge, no experiment has conclusively tested humans’
ability to generalize to novel feature values. Such an experiment would
be difficult, since children stop reliably perceiving most novel feature
contrasts at a relatively young age (see, e.g., Werker and Tees 1983).
Because of this, we conclude that our model generalizes in a way that
captures the scopes observed thus far in human behavior: generaliza-
tion to novel syllables and generalization to novel segments.

6 DISCUSSION

6.1 Summary of results

In Section 4, we showed that a Seq2Seq model without any explicit
variables can capture the results from all three of Marcus et al.’s
(1999) experiments. Results from these simulations are summarized
in Figure 7.

We also demonstrated that unlike Altmann’s (2002) model, ours
does not predict a preference toward AAA items when trained on AAB
and ABB sequences. This means our model can also predict the results
reported by Endress et al. (2007: Appendix A).

Next, we probed our model further in Section 5, more carefully
testing which scope of generalization it could capture when trained
on a reduplicative pattern. A summary of these results can be viewed
in Figure 8.
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Figure 7: Results from our simulations of the three experiments described in Mar-
cus et al. (1999). Error bars show standard error of the mean, check symbols
indicate successful simulations of the behavior observed in each experiment

Figure 8: Summary of results for each dropout condition and scope of gener-
alization. Checks and ‘X’ symbols indicate which conditions the model reliably
succeeded and failed in, respectively
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The findings from this series of simulations showed that even
without dropout, a Seq2Seq model is not simply memorizing map-
pings for each individual datum, since it was able to generalize redu-
plication to novel syllables. We also showed that the model, when us-
ing dropout in training, can reliably generalize reduplication to novel
segments. However, generalization to novel feature values was never
achieved, regardless of whether or not dropout was used.

6.2 Why can the Seq2Seq model learn generalizable
reduplication?

Why neural networks generalize in the way that they do is still an
open question (see, e.g., Valle-Perez et al. 2018). However, the results
presented in Section 5 shed some light on why our model succeeded in
capturing the infant behavior reported by Marcus et al. (1999), while
past neural networks failed (for similar work on probing neural net-
works using generalization tasks, see, e.g., Linzen et al. 2016; McCoy
et al. 2018). First of all, we found that the network could never gen-
eralize to novel feature values. This explains why past models that
were given no pretraining could not capture the infant generalization
– since the pretraining exposed our model to all of the feature values
present in both the training and testing phase of the experiment.

Additionally, we found that generalization to novel segments only
occurred reliably for our model when it used dropout (Srivastava et al.
2014), a standard regularization technique in machine learning. This
also explains the failure of past models, since (to our knowledge)
dropout has not been used in past attempts to simulate the experiment
(although, see Alhama and Zuidema 2018, for the sucessful applica-
tion of a related mechanism).

It remains an open question whether other forms of regularization
(such as an L2 prior) would be as successful at this task as dropout
was. One hypothesis for why dropout worked is that it caused certain
training data to be indistinguishable from crucial testing data. For ex-
ample, if the training set included the inputs [pa] and [da], but [ta]
was withheld, a model without dropout would not generalize to the
novel item because it was never trained on reduplicating [t]. How-
ever, if dropout is applied, then in a subset of epochs, the unit activa-
tions distinguishing [t] from [d] would no longer be available to the
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model. This would allow it to learn how to reduplicate a syllable that
is ambiguous between [ta] and [da]. While this would not allow the
model to generalize to novel feature values that were never activated
in training, it could provide enough information for generalization to
withheld segments. If this hypothesis is correct, then other forms of
regularization may not be as successful at increasing the model’s scope
of generalization. Testing these other methods is an important avenue
that future research should explore.

6.3Future work

There are a number of other opportunities that present themselves
for future work. For example, running experiments on humans that
test for generalization of reduplicative patterns to truly novel feature
values (if such a test is possible) would be beneficial, since it would
help shed more light on what scope of generalization computational
models need to achieve.

Probing the Seq2Seqmodel further to better understand the repre-
sentations it learns when acquiring reduplication is another important
direction for future research to investigate. Our results suggest that
when dropout is used, the model is likely learning a feature-based
representation, but understanding which parts of the model’s archi-
tecture are responsible for this is still an open question. Methods exist
for probing networks in this way (see, e.g., Beguš 2021; Dankers et al.
2021) and could help shed light on what exactly is neccessary for a
model to capture the results from Marcus et al. (1999).

Another area future research should pursue is the relationship be-
tween formal descriptions of reduplication (e.g. Clark and Yoshinaka
2014; Dolatian and Heinz 2020; Wang 2021) and the results discussed
here. While both experimental (Moreton et al. 2021) and computa-
tional (Nelson et al. 2020) work has touched on the formal complexity
of reduplication, there is still much work to be done to bridge the kind
of modeling done here with models like finite state automata that are
often used to more precisely describe the learnability of patterns.

The learning biases inherent to the Seq2Seq model should also be
explored. For example, Endress et al. (2007) and Gallagher (2013)
both found that identity-based patterns were easier for humans to
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learn than more arbitrary ones, and concluded that explicit variables
were necessary to model this behavior. Testing to see whether Seq2Seq
networks with dropout show a similar bias for identity-based patterns
could be another way of testing whether variables are needed in mod-
els of cognition.

Additionally, the question of compositionality should be revis-
ited, given our findings on reduplication. If neural networks’ ability
to model these two phenomena is related, as Marcus et al. (1999)
suggested, then given the right pretraining, a Seq2Seq network with
dropout should be able to learn compositional linguistic patterns. Cap-
turing compositionality may require testing novel kinds of featural
representations, since our results suggest that novel feature values in
the input or output will always be impossible for the model to gener-
alize to (see Lake and Baroni 2017, sec. 5, for a similar suggestion).

6.4 Conclusions

In the past, it has been claimed that it is impossible for variable-free
neural networks to generalize reduplicative patterns in a human-like
way (Marcus et al. 1999; Marcus 2001; Berent 2013). Here, we pre-
sented results showing that a network with no variables, that has been
pretrained on randomized data, can capture Marcus et al.’s (1999) ex-
perimental results. Since our simulations met all three of the criteria
laid out by Shultz and Bale (2001) for a successful variable-free simula-
tion of the experiment, our results challenge the claim that simulating
these results is only possible with a symbolic model of cognition.

We also probed our model’s abilities to determine more precisely
what scope of generalization it was using. We found that it could gen-
eralize to novel syllables and novel segments, but not to novel fea-
ture values. This matches the scope of generalization observed thus
far in humans, and also explains why pretraining was necessary for
our model to simulate Marcus et al.’s (1999) results.

More broadly, this paper challenges the idea that variable-free
neural networks are insufficient for modeling human behavior and
provides another example of the Seq2Seq architecture successfully
mirroring the linguistic capabilities of humans.
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1INTRODUCTION

While computational linguistics is historically rooted in formal lin-
guistics, it might seem that the distance between these two fields has
only grown larger as each field evolved. Still, whether this impression
is correct or not, not all links have been cut, and new ones have ap-
peared. Indeed, while we are currently witnessing a growing interest
within formal linguistics in both explaining the remarkable successes
of neural-based language models and uncovering their limitations, one
should not forget the contribution to theoretical linguistics provided,
for example, by the computational implementation of grammatical
formalisms. And while neural-based methods have recently received
the lion’s share of the public attention, interpretable models based on
symbolic methods are still relevant and widely used in the natural
language processing industry.

The links that exist between formal and computational linguis-
tics have been the subject of discussion for a long time. At the 2009
European Meeting of the Association for Computational Linguistics,
a workshop entitled “Interaction between Linguistics and Computa-
tional Linguistics: Virtuous, Vicious or Vacuous?” was organised. This
workshop led to the publication a couple of years later of the sixth
volume of Linguistic Issues in Language Technology (Baldwin and Ko-
rdoni 2011). At the centre of this publication were discussions about
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how and why formal linguistics and computational linguistics went
down different paths, about the benefits and drawbacks of specialisa-
tion and about how our scientific communities could improve the sit-
uation. On this occasion, Church (2011) predicted that computational
approaches to language would come back to symbolic approaches, ob-
serving that most of the “low hanging fruits” of statistical methods had
already been picked. In a similar vein, Kay (2011) argued that nat-
ural language processing (NLP) – distinguished from computational
linguistics in that the former was held to show little interest in lan-
guage, and to be oriented towards pure performance matters – would
disappear.

However, far from dwindling, statistical methods garnered re-
newed interest due to impressive advances in machine learning and,
in particular, the progress made in the development of word em-
beddings generated as a product of the optimisation of neural-based
language models (Mikolov et al. 2013b,a; Bengio et al. 2001). This
stream of research eventually led to the apparition of the Transformer
architecture (Vaswani et al. 2017), with famous implementations such
as BERT (Devlin et al. 2019) and GPT-3 (Brown et al. 2020) which
offer linguistic representations that are routinely used for a wide ar-
ray of NLP applications, from classification to language generation.
Though remarkably effective, with benchmark performances regularly
smashed by newer and bigger models, the representations offered
by these systems are largely shunned by the linguistic community,
who often sees them as irrelevant to our understanding of language
(see infra).

As already mentioned, it would, however, be a little hasty to de-
clare a divorce between linguistic and computational methods. First,
using computational methods to validate theoretical models remains
common practice in many circles (e.g. among the LFG, HPSG or cat-
egorial grammar communities) and the use of such implementations
can also be used to investigate and test typological hypotheses about
language universals (such as with the LinGo Grammar Matrix; Bender
et al. 2002). The use of symbolic methods also remains common in the
industry, especially for applications for which humanely interpretable
models are necessary (for various reasons including ethical ones; see
Lipton 2018; Miller 2019 and references therein). Second, the prop-
erties of stochastic language models have also come under increasing
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scrutiny. On the one hand, there is a lively debate about the ability
of these models to properly represent natural language meaning (Ben-
der and Koller 2020), and about how representative they are of the
linguistic practices of the members of a linguistic community (Bender
et al. 2021). On the other hand, there are efforts to explain the sheer
effectiveness of these language models, in a way that goes beyond
the mere mention of the distributional hypothesis (Gastaldi 2020),
and to investigate how such models are sensitive (or not) to com-
plex linguistic phenomena such as presupposition projection (Jiang
and de Marneffe 2019) or syntactic generalisations (Hu et al. 2020)
(see also the domain of “BERTology”, which seeks to study the proper-
ties of the representations manipulated by BERT-like models, though
not necessarily from a linguistic angle; Ettinger 2020; Rogers et al.
2020).

2OVERVIEW OF THE SPECIAL SECTION

Inspired by these tensions and connections, we organised a one-day
online event on the interactions between formal and computational
linguistics which took place in June 2021.1 The guiding thread for
the talks at that event was, roughly, to focus on and discuss recent
advances in computational linguistics (be they symbolic or not), their
relationship with linguistic data, and what such systems can do for
language and linguistics itself. These questions were tackled from dif-
ferent angles: practical, theoretical and philosophical. The present spe-
cial section takes its roots in that event, as we offered the presenters a
chance to elaborate on the themes developed in the workshop in the
form of long papers.

Both articles in this special section illustrate the theme of the sem-
inar in two complementary ways, both in their use of computational
methods to address theoretical issues of formal models of language,

1See https://gdr-lift.loria.fr/news/ilfc-en/. The event then
turned into a monthly online seminar https://gdr-lift.loria.fr/monthy-
online-ilfc-seminar/.
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and in the way they use linguistically inspired symbolic methods to
achieve their goals.

In their paper, Olga Zamaraeva and her co-authors retrace the
evolution of the “Grammar Matrix”, a meta-grammar engineering
framework that relies on the HPSG (Pollard and Sag 1994) and MRS
(Copestake et al. 2005) frameworks. The Grammar Matrix is a tool
that automates the implementation of the grammar for a given lan-
guage. To do so, the user provides information about the properties
of the language they wish to implement a grammar of, along with a
sample lexicon. On the basis of those properties and known analy-
ses of the related phenomena in HPSG and MRS, the matrix is able
to produce an implemented grammar that can be used, among other
things, to test the coverage of the grammar on a set of sentences. Be-
yond that, the authors also highlight how the Grammar Matrix can be
used to investigate cross-linguistic variation, and formulate and test
general hypotheses about the structure of language. On the basis of
a test set of sentences in 60 different languages from 40 distinct fam-
ilies, a regression testing system is used to check how modification
in the analyses of phenomena affect the overall architecture of the
system. The Grammar Matrix is thus a prime example of how com-
putational methods can directly influence linguistic analysis, both as
a tool to test such analyses, and as a way to get better insight about
language using an approach that is both theoretically and empirically
grounded.

Haruta et al. present the theoretical foundations and the prac-
tical implementation of an automatic Natural Language Inference
(NLI) solver for English, i.e. a system that, given two input texts,
aims at detecting whether the first entails, contradicts or is neu-
tral toward, the second. One characteristic of their solver is that
it is symbolic; while a recent popular approach in NLI (as in other
NLP tasks) consists in training a classifier using only vector rep-
resentations obtained via a language model (see supra), the system
they describe relies on logical representations of the input texts pro-
duced by a parser and fed to a theorem prover. The various parsers
they use are based on the Combinatory Categorial Grammar formal-
ism (CCG; Steedman and Baldridge 2011); after a little bit of post-
processing of the output trees, the logical representations are stan-
dardly derived from the syntactic analyses in a compositional fashion.
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Obviously, the success of the enterprise crucially depends, among
other things, on the expressive power of the logical language used.
Haruta et al. have chosen to express the semantics of sentences in
a version of First Order Logic (FOL) that incorporates events and
integers/degrees, allowing them to translate a wide range of con-
structions involving adjectives, comparatives, generalised quanti-
fiers and numerals. Key to many of their analyses is the notion of
degree. For example, they analyse Tom is taller than Mary follow-
ing the A-not-A analysis (see Schwarzschild 2008 and references
therein) as meaning that there is some degree such that Tom has,
but Mary has not, this degree of tallness. Haruta et al. evaluate
their system on a large number of NLI datasets, including a novel
one they have designed to cover the phenomena that they have
been particularly interested in, usually absent from existing datasets
such as FraCas (Cooper et al. 1996). Results show that, in general,
non-symbolic models perform significantly worst than state-of-the-
art symbolic models, and that, in particular, the system presented
here is particularly effective. This very interesting paper thus con-
tributes to showing that formal syntax and semantics are still rel-
evant to natural language processing and that, in some domains,
symbolic reasoning is still one step ahead of the purely neuronal
alternatives that have progressively taken the spotlight in the last
decade.
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The Grammar Matrix project is a meta-grammar engineering frame-
work expressed in Head-driven Phrase Structure Grammar (HPSG) and
Minimal Recursion Semantics (MRS). It automates grammar imple-
mentation and is thus a tool and a resource for linguistic hypothesis
testing at scale. In this paper, we summarize how the Grammar Matrix
grew in the last decade and describe how new additions to the system
have made it possible to study interactions between analyses, both
monolingually and cross-linguistically, at new levels of complexity.

1INTRODUCTION

From its beginnings in 2001, the Grammar Matrix project (Bender et al.
2002, 2010, among others)1 has investigated how grammar engineer-

1Olga Zamaraeva contributed the constituent questions and the clausal com-
plements libraries to the Grammar Matrix framework and led the writing of this
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ing can support research into cross-linguistic variation and similarity.
Key to this approach has been the potential of computational imple-
mentation to handle complexity, in both data and analyses. In this
paper we take stock of work on and with the Grammar Matrix since
2010, explore how that potential has been leveraged and envision fu-
ture directions.

The Grammar Matrix is a meta-grammar engineering framework
expressed in the Head-driven Phrase Structure Grammar formalism
(HPSG; Pollard and Sag 1994), specifically in one particular restricted
version of it (Copestake 2002a). Grammar engineering is a discipline
and a methodology concerned with a particular empirical approach to
modelled linguistic knowledge (Bierwisch 1963; Zwicky et al. 1965;
Müller 1999; Butt et al. 1999; Bender 2008; Müller 2015): namely,
grammar modelling and testing. Modelling grammar in this context
means coming up with sets of grammar entities (in this case: types,
rules and lexical entries) and implementing them as a computer pro-
gram which can accept or reject strings by attempting (and either suc-
ceeding or failing) to find a syntactic structure that can correspond to
the input string. Testing (analogous to “competence profiling” as de-
fined by Oepen (2002, page 89)) means deploying this grammar pro-
gram (usually along with a separate parser program) on a list of sen-
tences and then assessing whether or not the grammar indeed correctly
parsed all grammatical sentences and rejected all the ungrammatical
ones – an alternative to doing the testing with pen and paper, per-
forming computations in one’s head. Correctly here means that each
structure assigned by the grammar to any grammatical string is in
fact a correct linguistic representation of it. For the purposes of the

paper. Emily M. Bender is the initial developer and the long-time lead of the
Grammar Matrix project, and the principal investigator of the National Science
Foundation grants for both the Grammar Matrix and AGGREGATION projects.
The rest of the authors are in alphabetical order. Chris Curtis contributed the
valence change library to the project; Guy Emerson is the author of append-lists
and computation types; Antske Fokkens is the author of CLIMB and contributed
to the word order library; Michael W. Goodman contributed to the morphotactics
library and to the regression test system; Kristen Howell contributed the clausal
modifiers and the nominalized clauses libraries and contributed to the AGGRE-
GATION project. T. J. Trimble added the support for adjectives and copulas and
made other contributions to the lexicon component of the Grammar Matrix.
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Grammar Matrix, this last assessment is done with respect not to the
syntactic tree but to the resulting sentence semantics that is directly
paired with the syntactic structure. In our case, the semantics is en-
coded in the Minimal Recursion Semantics formalism (MRS; Copes-
take et al. 2005). In terms of practical set up, the Grammar Matrix
allows the linguist-user to enter a typological, lexical, and morpho-
logical description of a grammar via a web-based questionnaire, and
obtain a grammar fragment implemented in HPSG automatically. This,
in turn, allows this linguist to test the set of hypotheses that the gram-
mar encodes against the data stored in text files, in a computer-aided
fashion.

We see the Grammar Matrix as a flexible framework for building
up, over time and in a data-driven fashion, a set of analyses which are
demonstrably useful for describing the repertoire of grammatical vari-
ation in the world’s languages. Our conviction is rooted in three prop-
erties of the framework: (i) the Grammar Matrix design is informed by
typological literature (while relying on established HPSG concepts);
(ii) the development methodology prioritizes cross-linguistic applica-
bility of the analyses and as such leaves flexibility to define HPSG
features motivated by the data; (iii) for any new analyses proposed
for inclusion in the Grammar Matrix, there is a system in place which
allows one to automatically test the new analyses in integration with
the existing ones (Bender et al. 2007). Long term, this builds and ex-
tends a system of analyses for which there is a demonstrated area of
applicability – which also grows over time.

The paper is structured as follows. In Section 2, we describe the
syntactic formalism which the Grammar Matrix uses and the grammar
engineering philosophy which it follows. Section 3 gives a summary
of the additions to the Grammar Matrix since 2010 and describes the
development methodologies, including a detailed description of how
the analyses which are part of the Grammar Matrix are being tested
as a holistic system. In Section 4, we discuss several specific examples
of how the Grammar Matrix helps identify tensions between different
analyses, while Section 5 gives examples of the analyses which have
proven particularly robust over the years. The paper concludes with
the discussion of how the Grammar Matrix serves as infrastructure to
support other research projects (Section 6) and a look ahead to future
directions (Section 7).
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2 BACKGROUND

This section is intended to give the reader basic background on HPSG
(Section 2.1) and grammar engineering (Section 2.2), and on the
particular version of the HPSG formalism that the Grammar Matrix
project uses (Section 2.3). Section 2.3 also describes several major
grammar engineering projects and initiatives, some using HPSG and
some using other formalisms.

2.1 HPSG

Head-driven Phrase Structure Grammar (Pollard and Sag 1994) is a
syntactic framework characterized by a sign-based approach to gram-
mar,2 the use of formally precise constraint-based formalisms (Car-
penter 2005), and an emphasis (shared with Construction Grammar
(Fillmore et al. 1988) and especially Sign-Based Construction Gram-
mar (Sag et al. 2012)) on modelling both the broad generalizations at
play in a given language and the rich details of lexical and construc-
tional idiosyncrasy in a single, coherent grammar. Multiple inheri-
tance hierarchies serve as the central device to capture generaliza-
tions in HPSG. Like any grammatical framework, HPSG encompasses
a variety of related theoretical proposals and also has multiple com-
peting formalisms (for some discussion, see Richter 2021). Despite this
variety, the formalisms used in HPSG are relatively stable over time,
making possible the development of software which implements those
formalisms and can be used for sustained grammar development (for
further discussion, see Bender and Emerson 2021).

HPSG formalisms are based on constraint unification. In con-
straint unification, variables may be constrained to have a particular
value or to be equal to the value of another variable. In order for any
two types to unify, there must be a single (unique) type in the hierar-
chy which represents their combination (Copestake 2002b, page 42).
Ultimately, an HPSG parser checks whether, given a tokenized sen-
tence string and a set of types and lexical entries that represent the

2See e.g. Pollard and Sag 1987, page 2 for a summary of de Saussure’s (1916)
theory of language signs.
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Figure 1: An HPSG derivation visualized as a tree

grammar, it can find a feature structure such that each token corre-
sponds to some lexical entry and together they form some syntactic
structure in which all the constraints dictated by the grammar unify.

As a simplified example, consider a tree of feature structures in
Figure 1 representing an HPSG parse for the English [eng] (Indo-
European) sentence (1).3 The feature structures in the tree are visu-

3This tree is a simplified version of a tree produced by a grammar of English
that was output by the Grammar Matrix. In particular, we only show the features
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alized as attribute-value matrices (AVMs). This tree includes only se-
lected feature-value pairs and substructure sharing tags ( 0 etc.), to
illustrate the particular role of each node in the tree that we would
like to emphasize here for purposes of exposition.

(1) The cat sleeps. [eng]

Consider the tree in Figure 1 bottom-up, along with related ex-
amples (2) and (3) located on page 55. Suppose that the termi-
nal nodes in the tree (corresponding to the lexemes the, cat, and
sleep) are provided by some lexicon. The lexical entries in that lex-
icon are instances of lexical types and specify, among other things,
the syntactic category of each word (such as noun or verb) and
what arguments they require, if any. For example, the intransitive
verb sleep requires exactly zero complements and one subject el-
ement; furthermore, it requires an NP subject. The noun cat has
a PNG feature which in turn has PER and NUM features appropri-
ate for it, the values of which in this particular lexical entry are
specified to be PER 3 at the lexical entry level, NUM underspeci-
fied to just number in the lexical type to which the lexical entry be-
longs (2), and further specified to NUM sg after a lexical rule (3) ap-
plies. The SYNSEM feature in the lexical rule (3) is the “mother” of
the unary rule; the DTR feature is the “daughter”.4 Note that while
the NUM value is identified between the mother and the daughter
in the lexical rule, a lexical entry like (2) can unify with the daugh-
ter of (3) because its own value is underspecified. In the fully spec-
ified tree in Figure 1, the NUM has already been identified with
the mother’s NUM in the lexical rule (same with the SUBJ identity
between the verb’s lexical entry node and the verb’s lexical rule
node).

HEAD, SPR (specifier), SUBJ (subject), COMPS (complements), and PNG (person,
number, gender), with only NUM and PER within the last of these (whereas in
reality, there is also GEN). The tree and the explanation are adapted from Zama-
raeva 2021a, page 33.

4This lexical rule does not have an overt grammatical marking (these are
sometimes called “zero-marking” rules); a lexical rule for plural marking would
add the affix s to the orthography.
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All types in the grammar are part of the type hierarchy, with subtypes
inheriting all constraints of their supertypes. Each type is specified to
have features appropriate for it, and each subtype of a type may set the
values for those features (which in turn are constrained to be specific
types). HPSG uses the type hierarchy to define feature appropriate-
ness, to constrain which feature structures can unify with each other,
and to capture generalizations. In that final function, the type hierar-
chy supports compactness and elegance and thus maintainability and
scalability of grammars.

HPSG theory is characterized by rich lexical types and relatively
schematic phrase structure rules. The properties of any given node in
a tree are established by combining constraints from lexical entries
and rules, including constraints which propagate information through
the tree. When information is identified between different parts of fea-
ture structure or tree, this is called structure sharing. One example is
the Head Feature Principle (Pollard and Sag 1994, page 31), which
stipulates that the value of the feature HEAD (including all feature-
value pairs inside HEAD) in a phrase licensed by a headed rule must
be shared between the mother and the head daughter. Accordingly,
for a phrase structure rule, the grammarian must indicate if it is a
headed rule and, if so, which daughter is the head daughter. In Fig-
ure 1, the HEAD category is propagated because the Head Feature
Principle is implemented in the grammar. Other information is prop-
agated because the particular phrase structure or lexical rules are de-
fined specifically to do that; for example, the head-specifier rule iden-
tifies the non-head daughter with the sole element on the SPR list of
the head daughter in Figure 1, and so on.

Structure sharing means some parts of the structure are the same.
Any feature structure can also be visualized as a graph (see Pollard and
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Sag 1994, pages 16–17), and indeed graph data structures provide a
convenient and frequently used implementation of feature structures.
In such cases, identity tags in the AVM notation correspond to reen-
trancies in the graph, meaning the arcs will converge in the exact same
place. In other words, in Figure 1 the subject of the head daughter and
the entire non-head daughter are not only similar (identical); they are
literally the same structure.

The notion of structure-sharing is closely related to the notion of
constraint unification generally, and to unification failure, which is the
mechanism which leads to HPSG grammars rejecting ungrammatical
input, or in other words not generating ungrammatical strings. Sup-
pose the same HPSG grammar that licenses sentence (1) by assigning
it the structure in Figure 1 is given the string (4) as input instead.

(4) *The cats sleeps.

In order for the grammar to license the plural orthography cats,
the instance of the lexical entry for cat had to go through a lexical rule
which specifies its value as pl. This means that if the grammar attempts
to use the head-subject rule to license (4), there will be a unification
failure between the verb’s expected subject’s PNG value and the one
specified for the noun phrase, as illustrated in Figure 2.

Finally, one other thing about the HPSG formalism that is impor-
tant for understanding this paper is the notion of list, seen in Figure
1 as the value type for SPR, SUBJ, and COMPS (specifier, subject, and
complement lists; the list notation being the angle brackets 〈 〉). List
is a type in the type hierarchy, just like everything else. Lists are con-
venient for modelling different parts of grammar, most notably the
notion of children of a node in the tree, and also arguments (e.g. of
a verb).

2.2 Grammar engineering

Grammar engineering is the implementation of formal precision gram-
mars as computer programs such that parsing and generation can be
done automatically. Precision grammars are machine-readable mod-
els of language which encode notions of grammaticality and linguis-
tic knowledge. The concept of precision grammar engineering arises
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Figure 2: Unification failures (red) visualized as an impossible derivation tree.
The asterisk (*) in the top node signifies that this node is impossible given the
constraints
naturally from the idea that modelling grammar is akin to writing
a computer program that accepts or rejects strings. An important
characteristic of a grammar engineering system is rigor: it actually
implements the grammar-program idea on the computer, preclud-
ing human mistakes that are due to e.g. human operational memory
constraints or inconsistency of attention. It was suggested at least as
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early as in Bierwisch 1963 that, without computational aid, the task
of tracking how exactly multiple complex analyses interact with each
other (and therefore how exactly even a small change in an analysis
affects the grammar) becomes virtually impossible.5

One of the biggest benefits of grammar engineering projects like
the Grammar Matrix, the focus of this paper, is that they allow us to
empirically test syntactic theories by creating explicit models of them
on a computer and then deploying those models on test suites of data
from human languages. Engineered grammars make it much harder
for grammarians to fool themselves into thinking that the grammar (a
set of syntactic analyses) covers something it actually does not cover.
The computer will definitively show which strings from the test set
are parsed and which are not, and the grammarians will then be left
with the task of investigating any failures. Conversely, at any point
the grammarians can be confident in stating that the grammar covers
a specific set of strings, namely the ones in the test suites which the
grammar actually parsed. A complete system of analyses covering the
entire set of human languages remains a very distant goal, and the field
proceeds towards it in steps, carefully documenting issues along the
way. This can thus be seen as a practical implementation of the Mon-
tagovian method of fragments (Montague 1974; Partee 1979; Gazdar
et al. 1985).

The grammar engineering landscape includes multiple projects
carried out in various formalisms. The Grammar Matrix is expressed
in one particular version of HPSG developed by the DEep Linguis-
tic Processing with Hpsg INitiative (DELPH-IN, Section 2.3). In ad-
dition to DELPH-IN projects, there are other implementations based
on the ideas of HPSG, including PAGE (later DISCO) (Uszkoreit et al.
1994), ALE (Penn 2000) and its successor TRALE (Meurers et al. 2002;
Penn 2004; Müller 2007), LIGHT (Ciortuz 2002; Ciortuz and Saveluc
2012), Alpino (Bouma et al. 2001b; van Noord 2006, focussing on
Dutch), and Enju (Miyao and Tsujii 2008, focussing on probabilis-
tic disambiguation). A grammar engineering project similar in some
ways to the Grammar Matrix, called CoreGram (Müller 2015), uses

5See Fokkens 2014, page 13 for a discussion of Bierwisch 1963 in English
and Müller 2015, page 34 for similar discussion and for excerpts translated from
German into English.
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TRALE’s version of HPSG. In Lexical Functional Grammar (LFG; Ka-
plan and Bresnan 1982), ParGram (Butt and King 2002) is an analo-
gous project. In Minimalism, there is implementation work associated
with the strongly lexicalized version of the formalism introduced by
Stabler (1997), e.g. Graf and Kostyszyn 2021 and Torr 2018. Can-
dito (1999) proposes a metagrammar for creating French and Italian
grammars using the Lexicalized Tree-Adjoining Grammar (LTAG) for-
malism (Joshi and Schabes 1997). This approach was further devel-
oped into the eXtensible MetaGrammar (Crabbé et al. 2013, XMG).
Clément and Kinyon (2003) propose a metagrammar for generating
LFG grammars, inspired by Candito’s work. Ranta (2011) implements
complex syntactic structures in the multilingual Grammatical Frame-
work Resource Grammar Library. This resource supports the develop-
ment of grammars for natural language processing (NLP) applications
that consist of simple rules that inherit the more complex foundations
of the Resource Grammar Library. OpenCCG (Baldridge et al. 2007)
provides a grammar engineering framework for Combinatory Catego-
rial Grammar (Steedman 2000).6

2.3DELPH-IN consortium and formalism

DELPH-IN7 is an international consortium of researchers interested in
developing implemented grammars with HPSG and MRS and deploy-
ing them in the context of practical applications. DELPH-IN produces
software support for grammar engineering, grammars, and applica-
tions built on grammars, all of which are open source. The software
support includes grammar development environments (of which the
most widely used is the LKB (Copestake 2002b)), parsing and/or gen-
eration engines (the LKB, as well as PET (Callmeier 2000), agree
(Slayden 2012), and ACE (Crysmann and Packard 2012)), treebanking

6Perhaps the strongest current influence of grammar engineering on the rest
of the field of NLP is through treebanks. Treebanks are collections of syntactically
annotated corpora on which machine learning systems can train. All treebanks
were initially either produced by manual annotation, with annotators relying
on a linguistic formalism, or using an engineered grammar and manual parse
selection.

7http://www.delph-in.net, https://github.com/delph-in/
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platforms (Oepen et al. 2004; Packard 2015),8 grammar coverage and
efficiency profiling facilities (Oepen 2002), Python libraries for a wide
variety of data manipulation tasks (Goodman 2019), and the Grammar
Matrix meta-grammar engineering toolkit (Bender et al. 2002, 2010)
which is the focus of this paper.

By far the largest DELPH-IN grammar is the English Resource
Grammar (ERG; Flickinger 2000, 2011), but DELPH-IN work has been
multilingual from the consortium’s inception in 2002, and the original
motivation of the Grammar Matrix was to support the development
of grammars for many languages which are interoperable with the
same grammar development and application software (Bender et al.
2002). Applications developed with DELPH-IN grammatical resources
include machine translation (e.g. Oepen et al. 2007; Bond et al. 2011),
computer-assisted language learning (Flickinger and Yu 2013; Suppes
et al. 2014; Morgado da Costa et al. 2016, 2020), and summarization
(Fang et al. 2016). For further discussion of applications, see Bender
and Emerson 2021, Section 4.2.

Important to the success of the DELPH-IN international consor-
tium is the coordination at the level of formalisms. The particular
variant of the typed-feature structure formalism used in DELPH-IN
(Copestake 2002a) is dubbed the DELPH-IN Joint Reference Formal-
ism (DELPH-IN JRF) and builds on Type Description Language (TDL;
Krieger and Schäfer 1994) as its predecessor. A key design decision in
the DELPH-IN JRF is to keep the formalism simple by disallowing e.g.
set-valued and disjunctive features as well as relational constraints.9
These restrictions ensure that unification in any grammar will yield a
unique well-formed feature structure (if it exists) (Copestake 2002a,
page 230), reducing parsing and generation to well-formed unifica-
tion and allowing for efficient algorithms leading to faster processing
times.10

8 In the context of precision grammars, treebanking refers to manually se-
lecting and storing the linguistically correct tree(s) from the “forest” of all trees
provided for a sentence by the grammar and the parser.

9Relational means the value of a feature may be constrained to be the result
of an operation over some other features’ values.

10For example, eliminating feature value disjunctions in favour of explicit en-
coding via underspecified types preserves generality (Flickinger 2000, pages 18–
24) while allowing unification methods to be optimized to simplify feature
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2.4Summary

This section described the research and engineering landscape in
which the Grammar Matrix exists and is being developed. The Gram-
mar Matrix uses the HPSG theory of syntax (Pollard and Sag 1994;
Müller et al. 2021) with a deliberately restricted version of the formal-
ism (Copestake 2002a) and Minimal Recursion Semantics for semantic
representations (Copestake et al. 2005). Generally, Grammar Matrix
developers subscribe to the grammar engineering philosophy based
on the Montagovian method of fragments (Montague 1974) and are
accumulating a complex cross-linguistic system of grammatical anal-
yses while maintaining empirical rigor.

3THE GRAMMAR MATRIX: TWO DECADES
OF CONTINUOUS DEVELOPMENT

AND RESEARCH

The Grammar Matrix (Bender et al. 2002, 2010)11 is a DELPH-IN-
based meta-grammar engineering framework that includes a web-
based questionnaire,12 a core HPSG grammar, and a grammar cus-
tomization system programmed in Python.13 A user fills out a ques-
tionnaire with typological, lexical, and morphological information
about a language, and, based on the particular combination of their
choices, the system applies the customization logic to output a gram-
mar fragment which includes the core as well as additional, custom
types, custom lexical entries, and custom rules. This grammar can be
used to parse and generate sentences from the language described
through the questionnaire. One of the main goals of the Grammar
Matrix project is rigor in grammatical hypothesis testing; the system
makes more explicit the relationship between a grammar description,

structure subsumption and equality checks (Malouf et al. 2002, pages 114–
122).

11https://github.com/delph-in/matrix#readme
12http://www.delph-in.net/matrix/customize/matrix.cgi
13https://www.python.org/
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or hypothesis, and the actual data from the language for which the
description is intended.

The Grammar Matrix has been in active development for two
decades; the original version, documented in Bender et al. 2002, was
developed in late 2001. In that work, Bender et al. selected portions of
the ERG (Flickinger 2000) which they believed would be useful cross-
linguistically and put them together in the first version of the Gram-
mar Matrix. The idea was that for a new grammar, this core distilled
from the ERG could be included as a foundation, eliminating the need
to write the grammar from scratch. Later, it was observed that some
portions of the core lexical types and phrase structure rules could be
customized to accommodate various typological profiles. This led to
future iterations of the Grammar Matrix project which include the cus-
tomization system (Bender and Flickinger 2005; Drellishak and Ben-
der 2005; Drellishak 2009; Bender et al. 2010), which has been used as
a starting point for a number of grammars (described in Section 6.3).
The main purpose of the customization system is to automate the map-
ping between a language’s typological profile and a particular set of
lexical and phrasal HPSG types which serves this typological profile.
As such, the Grammar Matrix is a research framework which aims
to combine typological breadth with formal-syntactic depth (Bender
et al. 2010). The relationship between the core and the customization
system is such that it can be refined over time, as support for more
and more syntactic phenomena is added for more and more typo-
logical profiles. For example, once newly considered data makes it
obvious that something in the Grammar Matrix core retains any Indo-
European (or specifically English) biases, the constraints representing
those biases can be removed from the core and added instead to the
customization system.14 Conversely, features and types can be added
to the core when a general analysis is developed that is alternative to
the one in the ERG.15

14For example, Trimble (2014, pages 60–67) moved all copula types and most
adjective types to the customization system to account for languages without
copulas and various adjectival phenomena – primarily switching and constrained
argument agreement – that required significant reworking of the ERG’s analysis.

15For example, Zamaraeva (2021a, pages 168–169) added to the core a fea-
ture named WH, which is a generalized version of a feature found in the Zhong
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Linguistic hypothesis testing has been one of the main goals of
the Grammar Matrix project since day one, but the range and the com-
plexity of the hypotheses which can be tested depend directly on the
syntactic and typological coverage of the system, which at first was
modest. Bender et al. (2010) marked a significant milestone of the
Grammar Matrix project, with support added for multiple phenomena
and a wide range of typological profiles. Since then, another decade
of contributions to the system have taken place (Section 3.1). After a
brief overview of how the system can be used to generate a grammar
(Section 3.2), we discuss the formal (Section 3.3) and methodological
(Section 3.4) innovations that have expanded the capabilities of the
system since 2010.

3.1Grammar Matrix libraries added since 2010

Table 1 lists all the Grammar Matrix libraries that are currently
available via the web questionnaire. Twelve new libraries have been
added since 2010, increasing the system’s scope and the complexity of
interactions which can be studied. In particular, the libraries for com-
plex clauses (Howell and Zamaraeva 2018; Zamaraeva et al. 2019b)
enable the Grammar Matrix-derived grammars to parse recursive sen-
tences, meaning much larger test suites can be used for development
and evaluation (see Section 3.4.1). The library for information struc-
ture (Song 2014) brought in the important potential to associate in-
formation structural meanings with a range of syntactic phenomena
used to mark information structure in the world’s languages. This, in
turn, opened up the possibility of modelling aspects of interrogatives
in terms of information structure (Zamaraeva 2021a). The revamped
morphotactics library (Goodman 2013) and lexicon and morphology
extensions for adjectives and copulas (Trimble 2014) in combination
with the new libraries for adnominal possession (Nielsen 2018; Nielsen
and Bender 2018), evidentials (Haeger 2017), valence change (Curtis
2018a,b), and nominalization (Howell et al. 2018) allow us to model

grammar of Chinese (Fan 2018), to accommodate cross-linguistic patterns of
question word fronting. For the discussion, see Zamaraeva 2021a, page 188, foot-
note 61.
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grammars which account for a fairly wide range of data from descrip-
tive sources on languages with very different typological profiles, as
discussed in Section 3.4.2 and illustrated in Figure 10.

3.2How to use the libraries: an example

To illustrate how a user would use the Grammar Matrix customiza-
tion system to model a particular phenomenon, we show an exam-
ple of how one could fill out the questionnaire for constituent ques-
tions (Zamaraeva 2021a) in Paresi-Haliti [pab] (Arawakan). As we
will describe in Section 3.4.1, the process of library development and
evaluation involves using the customization system to generate gram-
mars and then using those grammars to parse sentences from test
suites. In this case, we describe how Zamaraeva (2021a) created a
customized grammar for Paresi-Haliti based on the examples and de-
scription in Brandão 2014. Later in Section 4.1, we present a case
study related to the evaluation of the constituent questions library on
this language.

Based on the description in Brandão 2014, the subpage for con-
stituent questions may look as in Figure 3. For example, Figure 3
reflects the hypotheses that Paresi-Haliti fronts one question phrase
obligatorily and that the question words may be overtly marked with
focus. The reader can see in Figure 3 that the Constituent Questions
subpage of the Grammar Matrix web questionnaire references two
other subpages, namely Information Structure and Lexicon. Given the
specifications shown in Figure 3, at least one question word must be
specified on the Lexicon subpage, as shown in Figure 4. Likewise,
on the Information Structure subpage (Song 2014), an affix or a clitic
which can attach to question words (as well as other words) must be
added. In this case, a contrastive focus marker is specified as in Figure
5. In combination with other grammar specifications made through
these and other subpages of the Grammar Matrix web questionnaire,
it is possible to obtain an implemented grammar of Paresi-Haliti. We
can then test its behaviour with respect to a test suite of grammatical
and ungrammatical examples, as discussed further in Section 4.1.

The web questionnaire is capable of producing human-readable
grammar specifications that can be saved and re-uploaded later or
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Figure 3: The Grammar Matrix web questionnaire, Constituent Questions sub-
page, filled out for Paresi-Haliti [pab]

hand edited, and also acts as the intermediary to the customization
system. As an example, the portion of the text specification corre-
sponding to Figures 3 and 5 can be seen in Figure 6.

Based on specifications such as those shown in Figure 6, the cus-
tomization system applies logic that outputs a customized grammar
including the core types as well as language-specific types, rules and
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Figure 4:
A portion of the
Lexicon subpage
of the Grammar
Matrix web
questionnaire,
filled out
for Paresi-Haliti
[pab]

Figure 5:
A portion of
the Information
Structure
subpage of the
Grammar Matrix
web
questionnaire,
filled out
for Paresi-Haliti
[pab]

lexical entries. For example, specifying an information structure clitic
as in Figure 5 will result in the types shown in Figures 7–8 being added
to the grammar. These types, in turn, rely on supertypes such as no-
rels-hcons-lex-item and one-icons-lex-item in Figure 7 which are defined
in the Grammar Matrix’s core grammar.

The grammar code in Figures 7–8 represents HPSG feature struc-
tures in a machine readable form, specifically in TDL, which is com-
patible with the DELPH-IN JRF. Assuming the grammar files contain
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Figure 6:
Text specification output

by the Grammar Matrix questionnaire

section=wh-q
front-matrix=single
matrix-front-opt=single-oblig
pied-pip=on
oblig-pied-pip-noun=on
focus-marking=on
wh-q-inter-verbs=on

section=info-str
c-focus-pos=clause-initial
c-focus-marker2_type=modifier
c-focus-marker2_pos=after
c-focus-marker2_cat=nouns, verbs
c-focus-marker2_orth==ala

infostr-marking-mod-lex := no-rels-hcons-lex-item &
one-icons-lex-item &

[ SYNSEM [ NON-LOCAL non-local-none,
LOCAL [ CONT.ICONS.LIST < #icons &

[ IARG2 #target ] >,
CAT [ VAL [ SUBJ < >,

COMPS < >,
SPR < >,
SPEC < > ],

HEAD adv &
[ MOD < [ LIGHT luk,

LOCAL [ CONT.HOOK [ INDEX #target,
ICONS-KEY #icons ],

CAT [ MKG [ FC na-or--,
TP na-or-- ],

WH.BOOL bool ] ] ] > ] ] ] ] ].

Figure 7: Grammar code output by the customization system

contrast-focus-marking-mod-lex := infostr-marking-mod-lex &
[ SYNSEM.LOCAL.CAT [ MKG fc,

HEAD.MOD < [ L-PERIPH luk,
LOCAL [ CAT.HEAD +nv,

CONT.HOOK.ICONS-KEY contrast-focus ] ] >,
POSTHEAD + ] ].

Figure 8: Grammar code output by the customization system
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enough code to constitute a functional grammar, they can be directly
used with DELPH-IN parsers/generators such as the LKB or ACE (see
Section 2.3).16 Thus, by adding a new Grammar Matrix library for
a particular syntactic phenomenon, we enable the user to obtain a
machine-readable HPSG grammar capable of parsing and generating
sentences featuring this phenomenon by simply filling out a web ques-
tionnaire and without the need to write the grammar by hand (see
Section 6.2–6.3).

3.3Formal innovations

Once a user has created a grammar with the Grammar Matrix, they
can continue developing it by adding or revising analyses to cover
more phenomena. At this point, they must engage directly with the
DELPH-IN JRF. As mentioned in Section 2.3, this formalism is deliber-
ately restricted (Copestake 2002a). This means some constraints that
are used in theoretical HPSG cannot be directly expressed using the
DELPH-IN JRF. In particular, the formalism does not support relational
constraints, where an operation on a specific feature value influences
the value of another feature. Examples of such relations are applying
logical-OR to feature values, list append (used for semantic composi-
tion and the handling of non-local features, among other things), and
the shuffle operator (used in some analyses of variable word order).17

Emerson (2017, 2019, 2021, and forthcoming) has shown that,
without changing the formalism, relational constraints can be mim-
icked using “computation types” and “wrapper types”. These compu-
tation types can be used to trigger operations such as logical-OR, and
recursive type constraints can result in several lists being appended.18

16The Grammar Matrix customization system includes a validation compo-
nent tasked with ensuring that the grammar specification is both complete and
consistent enough to produce a functioning grammar. When the validation com-
ponent detects that this is not the case, it signals this information to the user
through warnings and errors on the questionnaire web pages.

17For details on non-local features in HPSG see Pollard and Sag 1994 and
Ginzburg and Sag 2000; for DELPH-IN list implementation of list-valued features,
see Copestake 2002a.

18See also Aguila-Multner and Crysmann 2018 for the discussion of applica-
tion of append-lists in the context of feature resolution in coordination.
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A full explanation of the workings of computation types lies beyond
the scope of this paper. The main point we wish to make here is that
they can ease grammar development. We illustrate this by comparing
the classic DELPH-IN implementation of append operations, through
difference lists (for an exposition, see Copestake 2002b, Section 4.3),
to the new append-list type.

Examples (5)–(7) illustrate how difference lists (diff-lists) may be
used to represent appending operations.19 Example (5) provides the
basic type definition of a diff-list specifying that it consists of two lists.
Example (6) shows the definition of a diff-list 〈!a,b !〉. Note that the
value of LAST is identical to the REST of the list starting with b. As
such, LAST corresponds to the end of the list.

(5)
diff-listLIST list

LAST list

 (6)


diff-list

LIST


nonempty-list
FIRST a

REST

nonempty-listFIRST b
REST 1 list




LAST 1


In difference lists, the end of one list can be identified with the

beginning of another list. The example below illustrates how this can
be used to create the diff-list on the left by appending the two lists
following it.

(7)
diff-listLIST 1

LAST 3


diff-listLIST 1

LAST 2


diff-listLIST 2

LAST 3


Using diff-lists for such operations requires carefully keeping track

of the components of the list. The “end” of a difference list is actually
an underspecified list, and for that reason, difference list appends are

19These examples correspond to examples (14)–(16) in Zamaraeva and Emer-
son 2020, pages 162–163. More details and examples can also be found in Za-
maraeva 2021a, pages 42–43.
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notoriously easy to break when introducing new types to the grammar,
leading to such problems as overgeneration, spurious ambiguity, and
semantic representations with missing predications. Also, it is difficult
to count elements on a difference list.20 In practice, wrongly defined
difference lists are a well-known source of errors in the grammar.21

The append-list type, illustrated in Example (8) has a feature
APPEND, which allows for simple and elegant syntax,22 thereby mak-
ing grammars easier to develop and maintain. Example (9) illustrates
what appending two lists looks like when using append-list. For a more
detailed exposition of how the append-list type works, see Zamaraeva
and Emerson 2020.23

(8)

append-list
LIST 0 list

APPEND
�
list-of-list-wrappers-with-append
RESULT 0

�


(9)
append-list

APPEND
¬

1 , 2
¶ 1

append-list
LIST
¬
a , b
¶ 2

append-list
LIST
¬
c
¶

Implementing the append-list type in the Grammar Matrix allowed
for faster development of analyses which relied heavily on manipu-
lating non-local lists, such as the ones developed for the constituent
questions library (Zamaraeva 2021a).

3.4Methodological innovations

This section describes several important methodological principles
characteristic of the Grammar Matrix development (Section 3.4.1)
and what innovations took place in the recent years with respect to

20See Zamaraeva and Emerson 2020 for details.
21We base this claim on our experience as grammar engineers and our expe-

rience of teaching grammar engineering to others.
22 In the sense of programming language syntax, not a branch of linguistics.
23Examples (8) and (9) correspond to examples (17) and (18) in Zamaraeva

and Emerson 2020, page 164.
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those principles. The first innovation is that we extended the prac-
tice of testing analyses for generalizability against held-out languages
to using held-out language families (Section 3.4.2). The second im-
portant development is the evolution of “regression testing” (Sec-
tion 3.4.3), which ensures an explicit area of applicability for the large
and complex system of grammatical hypotheses. The third is CLIMB
(Section 3.4.4), which is a methodology that allows one to track, af-
ter a starter grammar was created (e.g. with the Grammar Matrix),
how one analysis influences subsequent decisions, and what the al-
ternatives could have been. Finally, the last innovation is the “Spring
cleaning” algorithm (Section 3.4.5), which allows the identification of
portions of the grammar that are in fact unused.24

3.4.1 Data-driven Grammar Matrix development

The overall methodology for Grammar Matrix development was first
summarized in Bender et al. 2010. The development is driven by typo-
logy and data: it starts from aggregating typological descriptions and
exemplar sentences for the phenomenon for which support is being
added; data is used as a guide throughout the development of analyses;
finally evaluation is performed using previously unseen (“held-out”)
languages, usually from held-out language families.

Grammar Matrix libraries are developed in a data-driven manner,
using a set of illustrative “development” languages and correspond-
ing test sets. When adding support for a syntactic phenomenon, a
Grammar Matrix developer typically first compiles test suites from sev-
eral languages consisting of exemplar grammatical and ungrammati-
cal sentences illustrating the syntactic phenomenon being modelled.25

24Both CLIMB and Spring cleaning methods can be applied to any DELPH-IN
grammar but both were developed in the context of Grammar Matrix develop-
ment (Fokkens 2014).
25 In the context of Grammar Matrix library development and in cases when

exemplar sentences from a descriptive grammar contain phenomena which are
not being modelled and are not already present in the Grammar Matrix, the
developer may have to simplify/modify the sentences, e.g. remove a greet-
ing, discourse particle, or even a relative clause (as relative clauses are not
currently supported by the Grammar Matrix customization system). In such
cases, it is ideal to get judgments on the resulting modified sentences from an
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Many of these test suites come from natural languages which the
developer encountered in their typological literature review. Others
are constructed using artificial languages, or “pseudo-languages”, to
ensure the testing of typological combinations not illustrated with spe-
cific examples in the typological literature.

To illustrate the data-driven development process in more detail,
we will use an example that includes both a test suite from an ac-
tual language and a test suite made of artificial data representing a
hypothesized language type (pseudo-language). It helps to (i) connect
the methodology to software engineering practices and (ii) give the
reader additional background for the case study presented later in
Section 4.3. The process described below is exactly the same for real
language data.

The process of library development starts from reading a descrip-
tive source and compiling a test suite of examples, grammatical and
ungrammatical, illustrative of the phenomenon for which the library
is being added. For example, if the descriptive grammar states that the
language has separate morphological paradigms for verbs in declara-
tive (10a) and interrogative sentences (10b–c), the test suite will in-
clude examples of each.

(10) a. oǯa-va
track-ACC

iche-ǯee-v
see-FUT-1SG

‘I will see the tracks.’ [neg] (Khasanova and Pevnov 2002;
cited by Hölzl 2018, page 295)

b. ii-ǰə-m=i?
enter-FUT.Q-1SG.Q=Q
‘Shall I come in?’ [neg] (Khasanova and Pevnov 2002; cited
by Hölzl 2018, page 295)

c. eeva
what

iche-ǯa-m?
see-FUT.Q-1SG.Q

‘What will I see?’ [neg] (Khasanova and Pevnov 2002; cited
by Hölzl 2018, page 295)

L1 speaker; unfortunately that is not always possible to do. The methodology
assumes that any modifications to the original sentences are carefully docu-
mented.
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Examples (10a–c) come from Negidal [neg] (Tungusik). It uses the
same paradigm for polar and constituent questions (e.g. -m in (10b–c)).
This language represents one typological profile; another includes lan-
guages which use three distinct paradigms: one for declaratives, an-
other for polar questions, and yet another for constituent questions.
One such language is Makah [myh] (Wakashan). During the develop-
ment of the constituent questions library, this typological profile was
included as a formal experiment; Zamaraeva (2021a) was not aware
that Makah has this feature but had hypothesized that such languages
may exist and constructed illustrative artificial data (11a–i).

(11) a. noun tverb-PQ noun?
b. who iverb-WHQ?
c. who tverb-WHQ what?
d. who tverb-WHQ noun?
e. noun tverb-WHQ what?
f. *noun tverb-WHQ noun?
g. *who tverb-PQ what?
h. *who tverb-PQ noun?
i. *noun tverb-PQ what?

At this point, the library developer has the test suite like the one
above (11a–i), illustrating the fact that the language uses three sepa-
rate morphological paradigms, and the appropriately filled out ques-
tionnaire which, assuming the questionnaire-customization system in-
terface was already implemented, generates textual grammar specifi-
cation like in Figure 9.26

Given a (complete) specification containing the sections relevant
to the separate morphological marking in polar and constituent ques-
tions, the goal is for the customization system to output a grammar
which behaves correctly with respect to the data in (11a–i), namely
one that maps the grammatical strings (11a–e) to their correct linguis-
tic representations and rejects the ungrammatical strings (11f–i).

26Only the morphology section of the specification is shown.
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section=morphology
verb-pc1_name=mood
verb-pc1_obligatory=on
verb-pc1_order=suffix
verb-pc1_inputs=verb
verb-pc1_lrt1_name=polar
verb-pc1_lrt1_feat1_name=question
verb-pc1_lrt1_feat1_value=polar
verb-pc1_lrt1_feat1_head=verb
verb-pc1_lrt1_lri1_inflecting=yes
verb-pc1_lrt1_lri1_orth=-PQ
verb-pc1_lrt2_feat1_name=question
verb-pc1_lrt2_feat1_value=wh
verb-pc1_lrt2_feat1_head=verb
verb-pc1_lrt2_lri1_inflecting=yes
verb-pc1_lrt2_lri1_orth=-WHQ

verb-pc1_lrt3_name=ind
verb-pc1_lrt3_feat1_name=question
verb-pc1_lrt3_feat1_value=no
verb-pc1_lrt3_feat1_head=verb
verb-pc1_lrt3_lri1_inflecting=no

Figure 9:
Lexical rules specification output
by the Grammar Matrix questionnaire

At this point, the Grammar Matrix library developer has a clear
map of what the finished library should cover, in terms of accepting
and rejecting strings. This is the starting point of so-called test-driven
development in software engineering (Beck 2003)27 where first the
tests are written and then the code is added to the program until all
tests pass.

Building the library entails (i) deciding on target semantic repre-
sentations, (ii) developing the implemented HPSG analyses that will
produce those representations, (iii) developing the customization logic
that will output the correct grammar components given a specifica-
tion, and (iv) writing the questionnaire portions to elicit the speci-
fication. Grammar Matrix developers typically proceed by creating
starter grammars through the customization system with enough other
specifications to cover all other phenomena in the test suites and then
using those grammars as test beds to work out analyses of specific vari-
ants of the phenomenon targeted by the library under development.
Once those analyses are developed, and the semantic representations

27Beck (2003) is often credited for “rediscovering” the concept of test-driven
development, as he popularized the term and the practice. The concept probably
long predates his book, though we could find no other canonical citation.
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they produce hand-verified, they can be generalized and added to the
customization logic.

In the case of Grammar Matrix data-driven development, first we
have the data (the test suite), and then we develop an analysis and add
logic to the customization system until the system starts outputting a
grammar which behaves correctly with respect to this data. It is an ite-
rative process. For example, given only the specification in Figure 9
but no code designed to add something to the grammar based on this
specification, the output grammar will not include the lexical rules
for morphological marking and therefore will not cover sentences like
(11a–i); its coverage over the test suite will be 0%.28 The developer
can then add the programmatic logic to the system such that, upon
encountering a specification like the one in Figure 9, appropriate lex-
ical rules, such as the one in (12), are added to the grammar. This is
a type which is part of the analysis of distinct morphological marking
in polar and constituent questions discussed in Section 4.3.

(12)

polar-lex-rule

SYNSEM|LOCAL|CAT|VAL

SUBJ
D�

NON-LOCAL|QUE|LIST 〈 〉�E
COMPS non-wh-list




Even in cases where there is already literature or other grammars
containing similar types, developing analyses with the level of rigor
and detail that the Grammar Matrix requires is often non-trivial. When
building on the theoretical literature, the analyses may be sketched
in too general a way, and may assume operations not available in the
DELPH-IN JRF. When building on analyses already developed in other
DELPH-IN grammars, the types are likely to be overly specific to an-
other language. In many cases, especially characteristic of non-Indo-
European typology, the analysis will simply not be found anywhere
and will need to be developed from scratch. It is therefore expected
that the process of developing a Grammar Matrix library involves
many debugging cycles. The developer can then load the imperfect
grammar into the software such as the LKB and perform interactive

28The coverage can be computed automatically using tools such as [incr
tsdb()] (Oepen and Flickinger 1998).
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debugging. The LKB will show any errors that occur when loading the
grammar, unification failures that prevent a sentence from parsing,
every possible parse tree for each sentence allowing the developer to
identify the cause of any spurious parses, and the semantic represen-
tation for each parse tree allowing the developer to inspect the cor-
rectness of each parse. The developer can then refine the analysis to
ensure that grammatical sentences in the test suite are parsed correctly
and ungrammatical sentences are not parsed.

To summarize, data-driven development first lays out the gram-
matical territory to cover in a set of test suites, and then extends the
grammar customization system to cover that territory. As the analysis
is developed and refined, the grammar engineer moves back and forth
between increasing the system’s ability to handle grammatical sen-
tences (coverage) and working to minimize both spurious ambiguity
(extraneous extra parses of grammatical sentences) and overgenera-
tion (parses of ungrammatical sentences).29 After the development is
finished, as far as can be tested with the initial test suite, the library
is evaluated as described in Section 3.4.2.

3.4.2Evaluation with languages from held-out language families

After a library’s development is concluded, the developer performs
evaluation on held-out languages from held-out language families.
This means each evaluation language must come from a different lan-
guage family than other evaluation languages, and furthermore, from
a family not represented in the languages used in the library’s develop-
ment (Zamaraeva 2021a, page 103).30 The goal is to assess how well
the Grammar Matrix analyses generalize with respect to a randomly
selected set of languages, specifically languages which may have dif-
ferent properties compared to the languages that were driving the de-
velopment. This is meant to approximate what will happen when users
approach the Grammar Matrix to model additional languages.

29 In practice, lack of coverage, some spurious ambiguity, and some overgen-
eration may be unavoidable due to development time constraints, in which case
the specific cases are documented and left for future work.
30While at this stage we avoid including language families that we worked

with directly in library development, we do not necessarily exclude families just
because they were included in or informed the typological surveys we build on.
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The process of evaluation is very similar to the one described
above in Section 3.4.1, starting with descriptive sources and the com-
pilation of a test suite, then filling out the questionnaire, obtaining a
grammar from the customization system, and deploying it on the test
suite. However, at the evaluation stage no modifications are made to
the system and the coverage, the overgeneration, and the spurious am-
biguity are expected to not be perfect and are reported as measures of
the quality of the newly added library.31

The practice of using held-out languages (but not necessarily com-
ing from unseen language families) goes back to at least Saleem 2010.
Starting with Haeger 2017, only unseen language families are used as
part of the methodology. Ultimately, all the test suites (both devel-
opment and evaluation) are preserved along with the corresponding
language specifications and expected “gold” semantic representations
for each sentence in the test suite. These sets of files constitute the con-
tent of the regression testing system to ensure continued functioning
of existing analyses (Section 3.4.3).

3.4.3 Automatic testing of all existing analyses

A crucial part of Grammar Matrix development methodology is the
automatic testing of all analyses currently implemented in the sys-
tem with respect to stored test suites containing data from different
languages, both actual languages and abstract pseudo-languages (re-
gression testing; Bender et al. 2007). Regression testing is what en-
sures that the combination of analyses that constitute the Grammar
Matrix have at least a known, explicit area of applicability. Most im-
portantly, regression testing makes it possible to see precisely whether
and how any new analysis affects the previous system of analyses with
respect to the previously established area of applicability. In other
words, regression testing of the Grammar Matrix allows us to extend
the computationally assisted method of fragments (Montague 1974;
Partee 1979; Gazdar et al. 1985) to a cross-linguistic arena.

The term regression testing comes from software engineering
where it describes tests that check functional behaviour of a sys-
tem over time; i.e. each modification to the system can be tested on

31Any issues discovered during the evaluation stage are documented such that
they can be addressed later.
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previously used inputs for which the expected (“gold”) output was
recorded. If the system behaves differently after a modification, this
is a “regression”, assuming there is no mistake in the stored gold out-
puts. Regressions need to be addressed, either by fixing the system
such that the behaviour is back to what was expected or by updating
the expected “gold”, if the new output is in fact correct or closer to
correct. The practice of regression testing for monolingual grammar
development is elaborated in Oepen and Flickinger 1998, Oepen 2002,
and Oepen et al. 2002, among others.

In the context of the Grammar Matrix, regression tests are sets of
grammar specifications (valid inputs to the customization system), in-
put language strings from languages corresponding to the descriptions
(with grammatical and ungrammatical items), and finally the corre-
sponding “gold” semantic structures (one or more correct structures
for each grammatical sentence and no structures for ungrammatical
ones). For example, the test suite discussed above in (11a–i) along
with the corresponding grammar specification and the set of correct
MRS representations for all the grammatical sentences in the test suite
will constitute a regression test after the development of this portion
of the system is completed. Running a Grammar Matrix regression test
involves invoking a system which automatically feeds a grammar spec-
ification to the customization system to obtain a grammar fragment,
uses the grammar to process the input language strings, and compares
the output to the stored “gold” results. If there is any difference be-
tween the expected output and the actual output, the test is flagged
and the developer can investigate what causes the difference.

The regression testing system was in place by 2010 with 130 test
suites; in the past decade it has had significant extensions, compris-
ing 527 test suites at time of publication. Re-engineering of the sys-
tem using modern software engineering methods32 resulted in a much
faster, more robust system. This is crucial in the context of the greatly
increased number of tests, as otherwise the time to run all the tests

32The regression testing system was re-engineered twice in the decade, once
by Sanghoun Song to use the faster parser ACE (Crysmann and Packard 2012)
instead of the LKB parser (Copestake 2002b), and once by Michael W. Goodman
to use the PyDelphin libraries and multiprocessing, both times with input from
other DELPH-IN contributors.
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often (such as for each small modification) would have become pro-
hibitive. Another key change in Grammar Matrix regression testing
practice, supported by the more robust regression testing facilities, is
the move to include not only artificial (“pseudo-language”) tests in the
regression testing suite, but also tests depicting natural languages used
in library development (“illustrative languages”) and testing (“held-
out languages”).33

The current regression testing system counts 527 test suites, of
which 75 are from 60 unique natural languages representing 40 lan-
guage families. Figure 10 shows these 60 languages on the world map.
Table 2 summarizes how many languages represent each family.34

The Grammar Matrix regression testing system represents a cru-
cial methodological principle of the project, namely that the analy-
ses can be rigorously tested together, thus allowing Grammar Matrix
developers to state confidently that the set of HPSG analyses imple-
mented in the customization system definitely accounts at least for
the data stored in the system. Over the years, the system has grown to
cover 40 language families from all over the globe. The data compiled
from descriptive resources for 60 languages that the Matrix regression
testing system currently contains can be reused for research purposes
by anyone who is interested in typologically diverse data on any of
the syntactic phenomena represented in the Grammar Matrix.35

33Thus, while all of the libraries were tested on natural languages as well
as pseudo-languages, there are some natural languages described in the Gram-
mar Matrix literature which never made their way into the regression test suite
set.
34Language family and ISO 639-3 codes are given as in WALS (Dryer and

Haspelmath 2013) or, if not found there, as in Glottolog (Hammarström et al.
2021), except in cases where we learned that the name listed in those resources
contained a slur. The second column in the table is the number of unique lan-
guages represented per family, e.g. there are two unique Afro-Asiatic, Niger-
Congo, etc., languages represented in the system. The third column shows the
total number of test profiles. This last number includes any repetitions, e.g.
Japanese is represented in the system by 3 test profiles which may contain differ-
ent sentences and target different syntactic phenomena. That is why the number
in column 3 is not necessarily obtained by multiplying the number in column 2
by the number of items in the corresponding cell in column 1.
35The median size of the test suites is 17 sentences. The largest test suite is for

Umatilla Sahaptin [uma] (Penutian) (Drellishak 2009) and it contains over 6000
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Table 2:
Language

families
represented

in the regression
testing system

Language family (ISO 639-3 codes) N
languages

N
test suites

Indo-European (deu, eng, fra, frr, grc, hin, rus) 7 13
Austronesian (dru, fij, jav, mri, tgl) 5 6
Sino-Tibetan (cmn, cng, lbj, raw) 4 4
Afro-Asiatic (afb, heb), Algic (aaq-pen, crk),
Altaic (kaz, tur), Austro-Asiatic (pac, blr),
Eastern Sudanic (luo, laj),
Inuit-Yupik-Unangan (esu, kal),
Niger-Congo (yor, zul),
Pama-Nyungan (dbl, wgg), Penutian (uma, yak) 2 19
Arawakan (pab), Barbacoan (kwi),
Basque (eus), Caddoan (wic), Central Sudanic (mhi),
Hokan (peb), Japanese (jpn), Kartvelian (kat),
Macro-Ge (apn), Mande (bxl), Mirndi (amb),
Mongolic-Khitan (mon), Mosetenan (cas),
Na-Dene (apw), Nakh-Daghestanian (ddo),
Otomanguean (zpt), Panoan (shp), Siouan (lkt),
Solomons East Papuan (lvk),
Trans-New Guinea (for), Uralic (fin), Urarina (ura),
Wakashan (myh), Washo (was), Yukaghir (yux) 1 33

3.4.4 CLIMB

One motivation for implementing precision grammars is that natural
languages are complex, consisting of many phenomena that interact.
The analyses for these phenomena also interact, which makes it prac-
tically impossible to verify whether a newly proposed analysis inter-
acts correctly with existing analyses without the aid of a computer
(see also Section 4). Implementing grammars provides the means to
test this through systematically adding test sets that represent covered

sentences; it was partially computer generated based on the examples found in
a descriptive grammar. The largest test suite fully vetted by an L1 speaker is for
Russian [rus] (Indo-European) and it contains 273 sentences (Zamaraeva 2021a).

[ 82 ]



The Grammar Matrix at 20

phenomena and applying regression tests as described in Section 3.4.3.
Regression testing is also used in the development of individual gram-
mars, as grammar engineers create and continuously update test data,
and test the grammar on the full set of test data after each change.

In this way, grammar engineering can contribute to more sys-
tematic syntactic research. A challenge that remains, however, is that
regression tests only allow grammar engineers to look back. There are
often multiple ways in which a phenomenon can be analyzed and the
decision for a specific analysis can only be tested on those phenomena
that have already been analyzed and not on those that are not cov-
ered yet.36 It is inevitable that decisions are sometimes made based
on inconclusive evidence. The order in which phenomena are consid-
ered can thus have a major impact on the resulting grammar (Fokkens
2011; Fokkens 2014, page 69).

The CLIMB37 method (Fokkens et al. 2012) aims to address this
challenge by extending the idea of grammar customization from pro-
viding a mere kick-start to a general methodology of grammar devel-
opment. The basic idea behind CLIMB is that, in case of inconclu-
sive evidence, alternative analyses are implemented in a metagram-
mar which can generate grammars with either of the solutions. The
grammar developer can maintain the alternative analyses and keep
on testing their interactions with analyses for other phenomena until
sufficient evidence is found. CLIMB uses the Grammar Matrix cus-
tomization software to continue the development of individual gram-
mars after the kick-start from the general customization system has
taken place. It is thus per se not a method for developing new libraries
for the Grammar Matrix customization system itself. It can however
also be used when developing new customization libraries. In fact,
the method was first developed to compare alternative analyses for
V2-word order across languages (Fokkens 2011). In practical terms,
CLIMB consists of programmatic scripts which work with the Gram-
mar Matrix files.

There are currently three versions of CLIMB for DELPH-IN gram-
mars described in detail in Fokkens 2014, Chapters 3–4. In its origi-

36Naturally, linguists are not fully unaware of phenomena that are not covered
yet and can take them into account to some extent.

37Comparative Libraries of Implementations with Matrix Basis (CLIMB).
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nal form, CLIMB continues to use the Grammar Matrix customization
system for grammar engineering. The grammar developer includes all
analyses in the original customization system (possibly cleared of com-
ponents that are not relevant for the language in question). The de-
velopment cycle consists of (i) generating one or multiple versions of
the grammar using the customization system; (ii) adding and testing
a new analysis in one or more grammars; (iii) adding these analy-
ses to the customization system; (iv) generating and testing grammars
with all alternative analyses for previously covered phenomena; and
(v) adapting the analysis for proper interaction with alternative anal-
yses if applicable and testing again. The advantage of using this ver-
sion of CLIMB is that it offers the full flexibility of the customization
system.

A disadvantage is that it involves moving back and forth between
declarative coding for grammar engineering and procedural coding
in the customization system. Moreover, in practice, the full flexibil-
ity of the customization system is not likely to be exploited. Notably
the morphotactics library offers countless options which are not likely
to be considered as alternative options for which more evidence is
needed. A second version, called declarative CLIMB, offers an alterna-
tive way of using CLIMB without writing procedural code. The gram-
mar engineer can define alternative analyses and the accompanying
modifications that are needed to make them work with the rest of the
grammar with an indication of the analysis they belong to. The Gram-
mar Matrix customization code is used behind the scenes to create
well-formed grammars from a set of selected analyses.

The third version of CLIMB is an adaptation of declarative CLIMB
meant to support research on large-scale grammars developed in the
traditional way. Declarative CLIMB consists of a shared core and col-
lection of (alternative) analyses from which grammars can be gener-
ated. In this third version, CLIMB provides a set of changes that can
be applied to a working grammar. The grammar developer can define
additions, replacements and components to be removed to adjust the
grammar. The customization code is used to generate an adapted
grammar based on the original grammar and the changes. The code
can also generate the set of changes needed to replace the new alter-
native analysis with the original analysis. The developer can thus pro-
pose an alternative analysis, add new analyses to the grammar with
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this alternative and generate a version of the grammar with these new
analyses and the original analysis.

In the scenario above, CLIMB is used to test alternative hypotheses
during (part of) the trajectory of grammar development for a specific
language. The method can also be used for flexible parallel grammar
development. For a specific language, CLIMB could support versions of
the grammar that exhibit (slightly) different behaviour. This could be
versions that are adapted for a specific domain (e.g. one that captures
structures typically used on social media, one more aimed at news-
paper text), that aim to be more robust rather than precise, or that
are designed for a specific application. Fokkens (2014, Section 6.4)
illustrates for instance how CLIMB can be used to include alternative
rules to spot specific errors of second language learners, as also seen
in e.g. Flickinger and Yu 2013, Morgado da Costa et al. 2016, and
Morgado da Costa et al. 2020.

Another natural way of using CLIMB is for multilingual grammar
development. In this case, grammar developers truly continue in the
spirit of the Grammar Matrix customization system. When a new anal-
ysis is developed for one language, code generation can be integrated
in grammars of other typologically related languages. The idea of aim-
ing for full typological coverage is abandoned, which allows for more
depth. In addition to parallel grammar development, this can result in
a significantly larger jump start for a new grammar of an additional re-
lated language. For instance, Fokkens (2014, Section 6.2.5) illustrates
the increase in coverage of phenomena captured when developing a
grammar for Northern Frisian from gCLIMB (a metagrammar for Ger-
man that also contains variations for Dutch) compared to developing it
from the Grammar Matrix customization system alone. In addition to
gCLIMB, CLIMB has been used to create a prototype for a Slavic meta-
grammar that can generate a basic grammar for Russian (Fokkens and
Avgustinova 2013).

3.4.5Spring cleaning

One of the questions that arises when using a resource that supports
grammar development for typologically diverse languages, such as the
Grammar Matrix, is how much of the generic core and provided jump-
start implementations end up being used. Though it is straightforward
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to automatically check which type definitions have been modified, it
is less trivial to find out which type definitions are actually active in
a grammar and which are never invoked. When grammar develop-
ers implement analyses that take a different approach than the gram-
mar core, for instance, they do not necessarily remove the correspond-
ing components from the core. Likewise, obsolete type definitions are
not necessarily removed when analyses are adapted or replaced. The
spring cleaning algorithm (Fokkens et al. 2011) can be used to identify
which components of the grammar actually influence the grammar’s
behaviour. The algorithm was developed with the specific purpose of
identifying components of the Grammar Matrix that are an active part
of (larger) grammars and relies on the code from the customization
system to process DELPH-IN JRF.

A DELPH-IN grammar defines a hierarchy of typed feature struc-
tures. Each type inherits all constraints from its supertypes. A grammar
furthermore defines instances: lexical items or rules defined through
the type hierarchy. The parser and the generator start with instances:
the parser forms syntactico-semantic representations of words based
on its lexicon and lexical rules and then combines them using grammar
rules. Conversely, the generator generates surface strings using the
lexicon and lexical rules and combining them using grammar rules.
This means any type that defines (part of) an instance impacts the
grammar. These types are referred to as instantiated types. Combining
components is done through unification. Types that influence whether
instantiated types can unify therefore also impact the grammar. Con-
versely, types which are neither instantiated nor influence unification
of instantiated types have no effect on the grammar.

The spring cleaning algorithm starts from the instance defini-
tions. It then goes through the grammar and tags all types that are
a supertype of an instance and marks them as instantiated types. It
then extracts the feature values from all instantiated type definitions
and marks the type definitions of these values and their supertypes as
relevant types as well. In the next step, the algorithm checks whether
the remaining types (that are not instantiated types nor types that are
part of the definition of an instantiated type) enable unification of any
relevant type. Any type that influences unification of relevant types is
also marked as relevant. Remaining types are flagged as redundant.
The algorithm was applied to four Grammar Matrix grammars repre-

[ 86 ]



The Grammar Matrix at 20

senting three languages (two grammars with alternative word order
analyses for Wambaya, one for Mandarin Chinese, and one for Bulgar-
ian). The outcome showed that even relatively small grammars con-
tained noise and that identifying superfluous types can help identify
errors in the grammar (Fokkens et al. 2011). Occasional spring clean-
ings of grammars are therefore recommended.

3.5Summary

This section summarized how the support for syntactic phenomena in
the Grammar Matrix has grown since 2010 and covered the most im-
portant formal and methodological innovations adopted in this con-
text. We listed all current Grammar Matrix libraries (and will later
illustrate interactions among some of these). We presented in detail
the testing system that currently covers 60 languages from 40 lan-
guage families and allows for automatic testing of any modification
in any of the analyses with respect to data from this wide typological
range. In addition, this section summarized some formal innovations
particularly relevant to how the system implements non-local depen-
dencies (further discussed in Section 4.3) and described algorithms
which allow the grammar engineer to track how analyses in a DELPH-
IN grammar influence each other and how to determine whether some
parts of the grammar remain unused – which are important for future
improvements of the Grammar Matrix project and the grammars it
gives rise to.

4MAKING TENSIONS BETWEEN
ANALYSES EXPLICIT

Grammar engineering allows a grammarian to identify unexpected
interactions between analyses which might otherwise be overlooked
due to the overall complexity of the grammar. Furthermore, in the
case of the Grammar Matrix, this is done with respect to the entire
cross-linguistic system that the framework provides. In this section, we
present several examples of tensions between syntactic analyses which
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were made explicit in the context of the Grammar Matrix’s develop-
ment and testing. We start in Section 4.1 with a case study illustrating
the range of problems in the analyses that we are now able to discover
and document. The important thing to note here is that documenting
such a range of issues only became possible with the recent additions
to the Grammar Matrix libraries (Section 3.1), because these issues
all have to do with interactions among analyses of phenomena such as
clausal complementation and modification, nominalization, adnomi-
nal possession, information structure, constituent questions, and long-
distance dependencies. We then present a particularly intricate for-
mal issue having to do with non-local dependencies and coordination
which would probably be impossible to detect without a computa-
tional framework but has bearing on very common, seemingly simple
sentences (Section 4.2). Finally, in Section 4.3, we discuss tensions
that inform decisions of what belongs in the core grammar vs. the li-
braries, again revealed in the process of evaluating a new library on a
held-out language.

4.1 Two word order hypotheses in Paresi-Haliti: A case study

In the context of her work on the constituent questions library for
the Grammar Matrix, Zamaraeva (2021a, Section 8.5.9) considers
two alternative analyses for basic word order in Paresi-Haliti [pab]
(Arawakan) based on a descriptive grammar of the language (Brandão
2014). Brandão 2014 features a number of long, complex examples,
which is good material for testing the interaction between Grammar
Matrix libraries. However, according to Zamaraeva (2021a, page 342),
many examples are not yet fully glossed and some phenomena are
not yet fully described or understood (as is normal for an underdocu-
mented language). In particular, the word order is said to be mostly
V-final (the most common order being SOV), yet personal pronouns
can occur after the verb, and indeed if they are taken into account,
then, according to another source, da Silva 2013 (cited by Brandão
(2014, page 318)), the most frequent word orders in the language are
SVO and OSV. All orders in fact occur with some frequency, according
to Brandão (2014, page 319). The exact nature of the interaction of
information structure with word order is not fully worked out, though
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there is a section on focus and topic and many examples are glossed
for information structure marking (13).

(13) aliyakere=ta=la
how=EMPH=FOC

hatyohare
this

‘How is this?’ (Brandão 2014, page 335)

Due to multiple possible hypotheses for what the basic word order
is, this part of the grammatical description of Paresi-Haliti is thus an
excellent candidate for computationally assisted hypothesis testing,
for example using the Grammar Matrix.

To that end, Zamaraeva (2021a, Section 8.5.9) presents two gram-
mars of Paresi-Haliti, both produced automatically by the Grammar
Matrix. The grammars represent two sets of hypotheses, one associ-
ated with SOV word order (with some of the other orders accounted
for by information structure) and another with free word order (re-
flecting the fact that all orders are possible). The analyses are evalu-
ated with respect to a Paresi-Haliti test suite containing grammatical
and ungrammatical sentences. The test suite consists of 67 items, 64
of them grammatical. Out of those 64, 45 are directly from Brandão
2014 while 19 have modifications or were constructed by Zamaraeva
(2021a) based on the information from Brandão 2014. Of the 3 un-
grammatical examples, 2 are constructed by Zamaraeva (2021a) and
1 is from Brandão 2014. Table 3 presents the evaluation numbers ob-
tained by running the LKB parser (Copestake 2002b) over the test
suite.38

While it can be relatively easy to achieve close-to-perfect numbers
on a (small) test suite that is driving grammar development, the Paresi-
Haliti results from Zamaraeva 2021a, Section 8.5.9 (Table 3) represent
the evaluation of the Grammar Matrix system on a held-out language
family after the development process was frozen, and so relatively low

38Raw coverage refers to grammatical sentences for which a grammar can
produce any reading at all; validated coverage is for sentences which get a parse
with correct semantics; overgeneration is for ungrammatical sentences which
nonetheless are accepted by the grammar; and finally ambiguity is the average
number of readings per sentence. High overgeneration and ambiguity indicate
problems with the grammar, as does low coverage; high raw coverage is not
necessarily good unless validated coverage is also high.
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Table 3:
Two word order

hypotheses
for Paresi-Haliti

Hypothesis Raw coverage
(%)

Validated
coverage (%)

Overgeneration
(%) Ambiguity

SOV 40/64 (62.5) 25/64 (39.0) 2/3 (66.7) 43.95
free 53/64 (82.8) 36/64 (56.0) 2/3 (66.7) 36.17

validated coverage, high overgeneration, and high ambiguity can all
be expected. However, after evaluation results are reported, we can
still have a good look into which exact problems led to the missing
coverage as well as to overgeneration and any spurious ambiguity.
For this we use automated DELPH-IN tools, particularly [incr tsdb()]
(Oepen and Flickinger 1998) and treebanking tools.

A close examination of the two grammars with respect to the
Paresi-Haliti test suite revealed the following issues in the Grammar
Matrix system. First of all, we found out that the information structure
library was overconstraining SOV grammars such that complements
could never be extracted out of VP.39 Removing that constraint did
not lead to any regressions in any of the 527 regression tests, so that
problem can easily be fixed at the level of the entire Grammar Matrix
system. Note that it took a complex test suite featuring both infor-
mation structure marking and constituent questions in combination
with the SOV word order to discover this problem; without testing the
interaction, the problem went unnoticed for years.

Second, the large ambiguity in both grammars was caused in par-
ticular by an interaction between the adnominal possession and the
constituent questions libraries in which unwanted underspecification
led to spurious phrase structure rule application. The adnominal pos-
session library (Nielsen 2018) provides lexical rules for constructions
in which possession is marked morphologically (on the possessor, the
possessum, or both). At the time this library was developed, only a
few analyses within the information structure library exercised non-
local features, and (without specific tests for this interaction) it was
not apparent that the lexical rules were leaving the non-local features
underspecified. A grammar with both adnominal possession lexical
rules and an analysis involving, say, head-filler rules for constituent

39More specifically, subject-head phrase was constrained to have an empty
SLASH list.
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questions will produce (nonsensical) “readings” where a filler-gap rule
applies to a structure in which there is no gap (or strictly speaking,
where the information about whether or not there is a gap was lost).

More sources of spurious ambiguity were discovered thanks to
these two grammars. They include interactions between the analy-
ses of constituent questions, information structure, and clausal mod-
ifiers and nominalization libraries. For example, we discovered that
the customization system was not properly customizing our base anal-
ysis of the question pronoun for grammars that also had nominalizers.
This led to nominalization lexical rules applying to question pronouns
(while they should only apply to verbs) and ultimately to spurious
parses. The same need for a nominalization-blocking constraint was
found in the filler-gap rule added by the information structure library
to grammars which have clausal modifiers and nominalizers.

Fixing the issues that we found in the Paresi-Haliti grammar dra-
matically reduced ambiguity in both grammars while also raising the
validated coverage of the SOV grammar over the test suite from 39%
to 50% percent and of the free word order from 56 to 65%, as pre-
sented in Table 4. Future work is required for a meaningful compari-
son of the two different word order hypotheses, though we can observe
that the gain in validated coverage is bigger for the SOV grammar.40

Hypothesis Raw coverage
(%)

Validated
coverage (%)

Overgeneration
(%) Ambiguity

SOV 41/64 (64.1) 36/64 (56.2) 2/3 (66.7) 4.02
free 51/64 (79.7) 42/64 (65.6) 2/3 (66.7) 3.98

Table 4:
Improved
grammars
for Paresi-Haliti

4.2Long-distance dependencies

In this section, we discuss a complex interaction between analyses of
coordination, adjuncts, and gapped complements. Each analysis has

40The higher validated coverage of the free word order grammar does not ne-
cessarily mean it is a better hypothesis since the SOV grammar can be developed
further such that more orders are covered by the information structure library.
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a strong motivation, and they are all relevant for long-distance de-
pendencies. In particular, they all manipulate non-local lists such as
SLASH. Taking all the analyses together, non-local lists become over-
constrained, incorrectly predicting ungrammaticality for many gram-
matical sentences. Without computationally implemented grammars,
this interaction would almost certainly have gone unnoticed.41

Since the early days of HPSG, long-distance dependencies have
been analyzed using non-local sets or lists such as SLASH (for a his-
torical overview, see Flickinger et al. 2021). The Non-local Feature
Principle (Pollard and Sag 1994) states that the value of a non-local
feature on the mother is the concatenation of the values on the daugh-
ters.

An alternative approach, advocated by Bouma et al. (2001a), in-
stead passes (or “threads”) the SLASH values of non-head daughters
through the head daughter’s SLASH value. This analysis is particularly
attractive for modelling lexical items that take gapped complements
(see examples in (15)), as it allows each lexical entry to specify how
its SLASH list relates to the SLASH lists of its complements, as in (14).

(14)

lexical threading type

SYNSEM


NON-LOCAL|SLASH|APPEND 〈 1 , 2 〉

LOCAL|CAT|VAL

SUBJ
D�

NON-LOCAL|SLASH 1
�E

COMPS
D�

NON-LOCAL|SLASH 2
�E




In the majority of cases, the SLASH list of the head is simply the

concatenation of the SLASH lists of its arguments, as shown in (14). In
cases like eager and easy, one element is first removed from the com-
plement’s SLASH list. This analysis is known as non-local amalgama-
tion (Bouma et al. 2001a; Ginzburg and Sag 2000) or lexical threading.

(15) a. Kim is eager to please.
b. Kim is easy to please.

41Specifically, this particular issue was discovered when using the Grammar
Matrix in a graduate-level grammar engineering course; see also Section 6.2.
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A lexical threading analysis is implemented in the English Re-
source Grammar (ERG) and was inherited by the Grammar Matrix in
its initial construction, using lexical amalgamation of non-local fea-
tures from arguments and phrasal amalgamation for head-modifier
combinations. While integrated into the broad coverage monolin-
gual grammar (ERG), this system was not thoroughly tested in the
cross-linguistic Grammar Matrix context until the information struc-
ture (Song 2014) and especially the constituent question (Zamaraeva
2021b) libraries were added. On either analysis, the handling of non-
local features requires a notion of append (e.g. the SLASH list of the
mother is the append of the daughters’). Recall that relational con-
straints like append are not part of the DELPH-IN variant of the HPSG
formalism. The Grammar Matrix initially implemented these appends
with difference lists, like the ERG. However, in order to better handle
SLASH lists with more than one element as well as for general better
maintainability, the Grammar Matrix has moved to using append lists
(Zamaraeva and Emerson 2020; see also Section 3.3). We thus had
a system which implemented partially lexical and partially phrasal
amalgamation of non-local features using append lists, combined with
standard HPSG analyses of complementation and modification.

The Grammar Matrix also provides analyses of coordination (Drel-
lishak and Bender 2005), and the interaction between this analysis and
the handling of non-local features revealed complexities. To make sure
that only compatible phrases can be coordinated, an attractive analysis
is to identify large parts of the feature structures for the conjuncts (see
Abeillé and Chaves 2021 for a recent review of approaches to coordi-
nation in HPSG). However, if these feature structures contain compu-
tation types (see Section 3.3), we are identifying not only the outputs
of the computation, but the inputs as well. Implementing amalgama-
tion (lexical or phrasal) of non-local features with computation types
means that a verb phrase’s SLASH contains not only a list, but also the
history of append operations. If we identify not only the lists, but also
the computation histories, then we have a much stronger constraint
on compatibility for coordination.

For example, consider coordinated intransitive and transitive
clauses, as illustrated in (16a). The SLASH list of an intransitive verb
like sleep is precisely the SLASH list of its subject. However, the SLASH
list of a transitive VP like eat bananas appends the subject’s SLASH
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list with the empty SLASH list of bananas. Appending an empty list
results in the original list. However, the feature structure associated
with a computation type includes all intermediate steps in the compu-
tation. With a different number of empty lists being appended, there
is a different feature structure.

(16) a. Monkeys sleep and eat bananas.
b. Monkeys sleep soundly and eat bananas.

If we only had a small finite set of valence frames to consider,
we could carefully define the append operations, so that the compu-
tation histories are compatible for coordination. However, adjuncts
pose a problem here, as illustrated in example (16b), because recur-
sive adjunction creates an unbounded set of possible computation his-
tories.

We can see that the analyses of coordination and non-local depen-
dencies are not fully compatible: combining them, the grammar would
fail to parse grammatical sentences like (16a–b). We must therefore re-
vise our system of hypotheses. The current approach in the Grammar
Matrix involves two changes. First, we only identify the contents of
computation types, without their computation histories. This is illus-
trated in (17), where the SLASH|LIST values are identified, but not
the SLASH values. This is sufficient to resolve the problem noted here.
In addition, we have dropped the lexical amalgamation of non-local
features (although see Section 4.3). This was done in response to this
investigation as well as others where the lexical amalgamation ap-
proach has made it very difficult to reason about analyses.

(17) 
coord-phrase
SYNSEM|NON-LOCAL|SLASH|LIST 1

LCOORD-DTR|SYNSEM|NON-LOCAL|SLASH|LIST 1

RCOORD-DTR|SYNSEM|NON-LOCAL|SLASH|LIST 1


This example illustrates how the Grammar Matrix methodology

allows for discovery and resolution of conflicts between analyses and
how considerations of maintainability (preferring analyses which are
expected to be robust to changes elsewhere in the grammars) also
impact analytical decisions.
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4.3Morphological marking of interrogatives

The study of morphological marking of interrogatives by Zamaraeva
(2021a, Section 6.8) in the context of developing a Grammar Matrix
library for constituent questions turned up a tension between mor-
phology and syntax in DELPH-IN HPSG.42 For the full details of this
study, we refer the reader to Zamaraeva 2021b and Zamaraeva 2021a,
Section 6.8; here we give a brief summary and contextualize the issue
with respect to the Grammar Matrix development.43

The tension lies between the analysis of long-distance dependen-
cies (see also Section 4.2) and the analysis required for a particu-
lar kind of morphological marking of questions found in e.g. Makah
[myh] (Wakashan) which maintains two separate verbal inflection
paradigms for polar (18a) and for constituent (18b–c) questions (in
addition to the indicative paradigm).

(18) a. duduˈk=’aƛ=qaːk=s
sing=TEMP=POLAR=1SG
‘Am I singing?’ [myh] (Davidson 2002, page 100)

b. ʔačaq=qaːɬ
who=CONTENT.3SG

duduˈk
sing

‘Who is singing?’ [myh] (Davidson 2002, page 285)
c. baqiq=qaːɬ

what=CONTENT.3SG
tiˈ
DEM

‘What is this?’ [myh] (Davidson 2002, page 285)

In a sense, this particular tension is related to the one presented in
Section 4.2: while the syntax of coordination as modelled in the Gram-
mar Matrix made using the non-local amalgamation principle less at-
tractive, the example of Makah points in the opposite direction and
suggests that lexical amalgamation of non-local features can still be

42The tension lies not in the implementation of the lexical rules but rather in
the treatment of non-local features involved in interrogative constructions.
43The data and the AVM examples in this section are taken directly from

Zamaraeva 2021b. We refer the reader to that work for a complete exposition of
the issue summarized here.
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very useful in the Grammar Matrix. Specifically, Zamaraeva (2021b)
offers two alternative analyses for data such as in (18a–c) and shows
that the one that uses lexical amalgamation of non-local features is
a lot simpler than the one she developed without lexical amalgama-
tion.44

In particular, the analysis which assumes non-local amalgamation
relies on a straightforward distinction between two lexical rule types,
one for polar and one for constituent questions (19).45

(19) a.
polar-lex-ruleSYNSEM|SF ques

DTR|SYNSEM|NON-LOCAL|QUE|LIST 〈 〉


b.
wh-lex-ruleSYNSEM|SF ques

DTR|SYNSEM|NON-LOCAL|QUE|LIST cons


The QUE list constraint in (19a) means that an affix which is an

instance of this lexical rule type cannot apply to something that has
a question word as an argument (e.g. subject or complement). Con-
versely, a word produced with (19b) must have at least one question
word as an argument. This works because, under the lexical thread-
ing assumption, lexical heads (e.g. verbs) will all be subtypes of a
supertype like (14) and will therefore inherit the constraints stated in
(14); their own non-local lists, including the QUE lists, will be implic-
itly constrained to be a concatenation of their arguments’ QUE lists.46

44Zamaraeva was motivated to develop that version for the Grammar Ma-
trix after lexical amalgamation was removed, in light of the issue discussed in
Section 4.2.
45Both types are subtypes of a more general lexical rule supertype which in

turn is part of the lexical rule hierarchy. The lexical rule hierarchy implements
the various ways in which affixes can contribute to the form and/or meaning of a
word. Here, only the constraints specific to the subtypes for polar and constituent
question lexical rules are shown. The feature name SF stands for sentential force;
the possible values for this feature include question and proposition. The type
cons stands for non-empty list.
46The type shown in (14) focuses on SLASH list but the constraint is exactly

the same for all NON-LOCAL lists including QUE.
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Any question word will have a non-empty QUE list by definition, and
thus the head’s list will be non-empty also. It is particularly important
that for a type to be a subtype of (14) obviates the need to constrain
subjects and complements of this type separately as to whether they
are question words; it is sufficient to say that the head’s QUE list is not
empty.

Without the non-local amalgamation assumption, however, heads
will not inherit the constraints stated in (14), and it becomes neces-
sary to explicitly constrain the valence lists of heads as to whether they
contain question words or not. This necessitates a more complex hier-
archy of interrogative lexical rules (shown in (20)) with separate sub-
types for cases when a head has a question word as a subject (shown
in (20b)) and cases when it has a question word as an object (shown in
(20c)), in addition to the subtype for polar questions (shown in (20a)).

(20) a.

polar-lex-rule

SYNSEM|LOCAL|CAT|VAL

SUBJ
D�

NON-LOCAL|QUE|LIST 〈 〉�E
COMPS non-wh-list




b.
wh-subj-lex-rule

SYNSEM|LOCAL|CAT|VAL|SUBJ
D�

NON-LOCAL|QUE|LIST cons
�E

c.

wh-obj-lex-rule

SYNSEM|LOCAL|CAT|VAL

SUBJ non-wh-list
COMPS
D�

NON-LOCAL|QUE|LIST cons
�E


Furthermore, Zamaraeva (2021b) shows that, even with this more
complex hierarchy, an additional type is needed to constrain some
valence lists either to be empty or to not include any question words
(21). This is needed in order to avoid spurious ambiguity in cases
where there is more than one question word in the sentence. Without
these additional constraints, either lexical rule can apply to license the
sole affix needed on the verb. Lacking sufficient data from Makah but
based on the description in Davidson 2002, Zamaraeva (2021b) shows
how this works on one pseudo-language example (11c), presented here
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as (22), where a tree which would otherwise be licensed using (20c)
is ruled out, leaving only (20b) as the possibility.

(21)

non-wh-cons

FIRST
�
synsem
NON-LOCAL|QUE|LIST 〈 〉

�
REST non-wh-list


(22) S

S

1 NP

who

VP

*Vwh-obj-lex-rule�
DTR|SYNSEM|LOCAL|CAT|VAL|SUBJ non-wh-list

�
V�

SYNSEM|LOCAL|CAT|VAL|SUBJ〈 1 〉�
tverb

NP

what

Zamaraeva’s observation points towards the need for further ex-
ploration of how much the Grammar Matrix core should cover versus
how much should be offloaded to the customization system, or in other
words, which parts of the grammatical system we expect to be in every
grammar (see also Section 3.4.5). For example, lexical amalgamation
of non-local features could be brought back into the Grammar Matrix
but not at the level of the core; instead, it would be provided by the
customization system only for languages which seem to require it.

Our observation here is that this tension would be hard to notice
without the Grammar Matrix which provides the tools to speed up
grammar development (e.g. specifying a system of lexical rules, build-
ing here in particular on the robustness of the morphotactics library
discussed in Section 5) and at the same time embraces a methodology
which requires us to examine such a wide range of typological profiles
simultaneously and in such formal detail.
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4.4Summary

In this section, we presented several examples of how the Grammar
Matrix allowed us to discover tensions between different analyses
which could have gone unnoticed had we attempted to track all the
interactions between all the analyses manually without the means of
computer programs for generating grammars and then parsing sen-
tences with those grammars. This ability to computationally verify
analyses is what supports the explicitness and empiricism of a gram-
mar engineering approach to linguistic hypothesis testing. Identifying
the tensions such as described above efficiently guides future work.
Work-in-progress analyses such as the ones described here are thus
seen as concrete building blocks which ultimately serve to build a ro-
bust system of analyses with an explicit area of applicability.

5ACCUMULATING EVIDENCE
FOR ANALYSES’ ROBUSTNESS

Fully implemented systems of syntactico-semantic analyses which are
deployed in interaction with each other on test suites from diverse
languages not only allow us to detect problems in analyses but also to
accumulate, over time, a certain confidence that some analyses in fact
work well. If a set of hypotheses continues to account for more and
more data from more and more languages over time, it is reassuring
in terms of the quality of those hypotheses.

In this section, we present some examples of robustness that have
been observed in the Grammar Matrix. Section 5.1 gives an example of
how a syntactic phenomenon’s analysis can be built directly upon an
existing analysis of another part of the grammar; Section 5.2 discusses
how the system allows for easy reuse of the existing lexical types to
introduce new ones; and finally Section 5.3 shows several analyses
which relied heavily on the Grammar Matrix’s morphotactics library.
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5.1 Predicative adjectives in polar questions

An interaction between the polar questions library and the adjectives
library is illustrative of how the Grammar Matrix’s analyses, rooted in
typological analyses, are robust to unseen interactions between libra-
ries that occur as grammars grow in size.

The Grammar Matrix customization system has supported the
subject-auxiliary inversion strategy for forming polar questions found
in English (e.g. Is the dog barking?) since Bender and Flickinger
2005. Poulson’s (2011) work on tense/aspect marking and Fokkens’s
(2010) work on word order further developed the support for auxil-
iaries. However, the Grammar Matrix did not directly support cop-
ulas until Trimble (2014) added them in the context of the adjec-
tives library, as some languages require copulas with predicative
adjectives.

Though Trimble’s work was done without reference to polar ques-
tions in particular, the customization system was able to produce
grammars with subject-auxiliary inversion and copulas supporting
predicative adjectives with the interaction of these libraries correctly
supporting subject-copula inversion with minimal spurious ambiguity
that was simple to eliminate. See the examples in (23).

(23) a. copula, inverted: Is the dog old? [eng]
b. copula, not inverted: The dog is old. [eng]
c. auxiliary, inverted: Is the dog barking? [eng]
d. auxiliary, not inverted: The dog is barking. [eng]

The copula type introduced by Trimble (2014) was initially un-
derspecified for the feature controlling inversion (INV) and subse-
quently the inversion phrase structure rule (labelled in (24) as int (in-
terrogative)) was spuriously licensed in non-inverted copula phrases,
such as The dog is old. See both the valid and spurious parses in the
simplified schematic set of examples (24). Because the copula is under-
specified for INV, even though int-phrase bears the constraint [INV +]
the spurious parse in (24b) is produced.
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(24) a. valid analysis
subj-head-phrase

head-spec-phrase

the singular-lex-rule

dog

head-comp

�
INV bool
�

is
old

b. invalid analysis; spurious application of int-phrase rule

int-phrase�
INV+
�

subj-head-phrase

head-spec-phrase

the singular-lex-rule

dog

head-comp-phrase

�
INV bool
�

is
old

c. valid copula inversion analysis

int-phrase�
INV+
�

head-comp-phrase

head-comp-phrase

inv-lr�
INV+
�
�
INV−�

is

head-spec-phrase

the singular-lex-rule

dog

old

Grammars that licensed the spurious analysis in (24b) were only
produced when both polar inversion and copulas were included in the
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specification, a scenario not tested during the development of the po-
lar question library, auxiliary support, or copula support. Once the
connection between auxiliary inversion and copulas became appar-
ent, it was a simple matter to include copulas in the list of types to
which the existing customization logic for the polar question library
was adding the [INV −] constraint. The resulting customization pro-
cess was confirmed to work correctly for languages with inversion; it
licensed inverted and non-inverted questions and did not produce the
spurious ambiguity in the non-inverted questions.

This sort of analysis of the interaction between libraries with min-
imal effort demonstrates the robustness of both libraries and their un-
derlying analyses based on the typological and syntactic literature as
well as the grammar customization process.

5.2 Reusing and extending the lexical type hierarchy

The original Grammar Matrix of Bender et al. (2002) provided a hierar-
chy of lexical types, which early users of the Grammar Matrix extended
by hand, by either creating lexical entries directly instantiating these
types or by creating subtypes and then instantiating them. Drellishak
(2009) developed the original web questionnaire and customization
logic for the lexicon, which exposed a subset of the core grammar’s
lexical types through the questionnaire and allowed users to define
lexical types in an easier and more abstracted way.

Since then, for over a decade, the lexicon’s underlying structure
as well as the web interface for adding lexical types and lexical en-
tries have served the development of many new libraries, for the
most part requiring only minor extensions. Most extensions have in-
volved merely adding new subtypes (and exposing them via the web
interface). From the point of view of HPSG, such developments con-
firm the generality of the original types. This is not to say that there
haven’t also been revisions to underlying types, reflecting the abil-
ity of the project to refine its analyses over time in a data-driven
fashion.

HPSG is a lexicalist theory, which means it assumes a large
number of lexical types in any grammar. Over the years, the core
lexicon structure (consisting of basic supertypes such as lex-item
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with a hierarchy of subtypes for different kinds of semantic com-
position and different valence frames) was successfully extended to
support more parts of speech (Trimble 2014; Song 2014; Nielsen
2018).

In addition to refining and extending the lexical type hierarchy
in the core grammar, the various libraries have also provided a range
of types, accessible via customization at need, which apply in some
but not all languages. These include such items as the paired adverbs
used in Mandarin [cmn] (Sino-Tibetan) and other languages to ex-
press clausal connectives like ‘because’, with one adverb in each clause
(Howell and Zamaraeva 2018) and copulas in languages that use them
with adjectival predicates (Trimble 2014, Section 4.2).

To take an example of how the existing type hierarchy is reused
in more detail, consider the recently added support for question
words (Zamaraeva 2021a, Section 6.1) which includes lexical types
for question pronouns (such as who/what in English), question de-
terminers (such as the English which), location in space and time
adverbs (like the English where and when), and morphologically sim-
ple question verbs such as the Chukchi req which can be roughly
translated into English as ‘do what?’.47 Adding those lexical types
was straightforward given the existing Grammar Matrix lexicon
framework.

For example, the type for question pronouns is substantially
similar to the already existing one for personal pronouns. The con-
straints shared between the two, shown in (25), model words which
are nominal ([HEAD noun]), may not serve as modifiers ([MOD 〈 〉]),
are lexically saturated in their valence (need no dependents as
shown by the empty lists as the values of the VAL features), and
introduce two predications under the REL feature (the pronoun’s
relation and the associated quantifier). The constraints specific to
the question pronoun type are shown in (26), and are limited
to two: the specific quantifier (which_q_rel, characteristic of con-
stituent questions) and the non-empty value for QUE, used to de-
tect the presence of these words in both the in-situ and head-filler
analyses.

47Such verbs do not involve incorporation, according to Hagège (2008,
page 7).
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(25)

SYNSEM



LOCAL



CAT



HEAD
�
noun
MOD〈 〉
�

VAL


SPR 〈 〉
SPEC 〈 〉
SUBJ 〈 〉
COMPS 〈 〉





CONT



HOOK
�
LTOP 5

INDEX 4

�

RELS|LIST
*

3


arg0-relation
LBL 0

ARG0 4
�
ref-ind
�
,
�
quant-relation
RSTR 2

�+

HCONS|LIST
*�

HARG 2

LARG 0

�+
ICONS|LIST 〈 〉




LKEYS

KEYREL 3

�
LBL 5

ARG0 4

�
NON-LOCAL
�
REL|LIST 〈 〉
SLASH|LIST 〈 〉

�





(26)SYNSEM
�
LOCAL|CONT|RELS|LIST 〈 [ARG0 1 ], [ PRED which_q_rel ] 〉
NON-LOCAL|QUE|LIST 〈 1 〉

�
Similarly, the type for question determiners (not shown) only

needs to add, to the basic determiner type, a dependency between
itself and the entity for which the determiner serves as the specifier;
interrogative verbs (not shown) differ from the already existing verb
types in the semantic relations that they introduce (see Sections 6.1,
6.9 in Zamaraeva 2021a for details on all of these lexical types). In
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Section 5.3.1, we give an example of how this analysis straightfor-
wardly interacts with another part of the system, the analysis of ad-
nominal possession.

5.3Lexical rules

Significant progress has been made since 2010 on the support for syn-
tactic phenomena that can be expressed via morphological marking,
including adnominal possession, nominalization, evidentiality, infor-
mation structure, incorporated adjectives, and more (see Table 1). The
Grammar Matrix customization system prompts users to provide posi-
tion classes (groups of lexical rule types which take the same position
within a word), lexical rule types, and lexical rule instances which
may specify spelling and, in some cases, contribute to the seman-
tics.48 The resulting specifications are assembled by the customization
system into fairly complex hierarchies of types and sometimes auto-
matically inferred intermediary types for simplifying the type descrip-
tions. The Grammar Matrix’s goal in general is to partially automate
and therefore speed up grammar development, and its morphotactics
library (O’Hara 2008; Goodman 2013) showcases this feature partic-
ularly well, as directly writing grammar code for large morphological
systems manually would be especially time consuming.

Several significant grammar implementations have tested the lim-
its of the Grammar Matrix morphological systems. Borisova (2010),
Bender et al. (2014), Crowgey (2019), and the efforts discussed in
Section 6.2 have implemented small to large morphological systems
using the Grammar Matrix. Bender et al. (2012) describe a grammar
fragment modelling the lexicon and morphology of Chintang [ctn]
(Sino-Tibetan), defined entirely through the customization system,
with lexical entries imported automatically from a Toolbox file.49
This grammar fragment includes 160 lexical rules for verbs and 24
for nouns, hand-defined via the customization system based on the
analysis in Schikowski 2012. Crowgey (2019, Section 5) describes a

48Examples include lexical rules for incorporated adjectives, certain valence
changing morphology, and evidentials.
49Toolbox is a data management program designed for linguistic work by SIL

International (https://software.sil.org/toolbox/).
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grammar and morphophonological transducer of Lushootseed [lut]
(Salishan) where the grammar includes two general position classes
with seven lexical rules, two nominal position classes with four lexi-
cal rules, and nine verbal position classes with thirty-four lexical rules.
Wax (2014, Section 6.1) describes an automatically specified grammar
fragment of French [fra] with seventy position classes and twenty-one
lexical types described by 938 individual lines in the grammar speci-
fication file that the Grammar Matrix outputs.

Specifying such large morphological systems would take signifi-
cantly longer without the Grammar Matrix morphotactics library with
its web-based user interface and abstracted grammar specifications
and automatic hierarchy creation. But the morphological support in
the Grammar Matrix extends well beyond morphotactics. In this sub-
section, we briefly survey examples of libraries that build on the mor-
photactic infrastructure to provide typologically broad support for a
range of phenomena: adnominal possession, fine-grained differences
between attributive and predicative adjectives, incorporated adjec-
tives, and valence changing morphology.

5.3.1 Adnominal possession

Nielsen (2018) introduces a Grammar Matrix library for adnominal
possession. For languages where the expression of adnominal pos-
session involves affixes indicating features (e.g. person/number) of
the possessor, this library makes use of the case library (Drellishak
2009) and the morphotactics library (O’Hara 2008; Goodman 2013).
Lexical rule supertypes added to the Grammar Matrix system to sup-
port adnominal possession provide an example of how an imple-
mented grammar based on a robust analysis can make correct pre-
dictions which humans working without the aid of a computer may
overlook.

Zamaraeva (2021a, page 369) describes how, in the process of
testing the constituent questions library on a held-out language, Jalku-
nan [bxl] (Mande), she added to the grammar specification a lexical
entry for a question pronoun but was unable to specify an entry for
the corresponding possessive pronoun since in the process of devel-
opment, possessive question pronouns were left unimplemented due
to time constraints. However, it turned out that the Grammar Matrix
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system already contains everything necessary to produce the correct
analysis for the Jalkunan example in question (27), thanks to the ad-
nominal possession library having a lexical rule that can turn a per-
sonal pronoun into a possessive pronoun, and thanks to the constituent
questions library implementing question pronouns very similarly to
how personal pronouns are implemented (see also Section 5.2).

(27) māʔā-nĭ
who-INDEP

sàá=∅
house=be

nɛ=̀∅
there=Q

‘Whose house is that?’ [bxl] (Heath 2017, page 273)

The DMRS50 artifact in Figure 11 shows the correct semantics
for the sentence obtained automatically with the Grammar Matrix-
generated grammar: the questioned element is a person (which_q and
person), the person is the possessor of the house (ARG1 of the pos-
session relation is the possessum, ARG2 is the possessor), and the
house is located in some space. The importance of this example is
that it was not targeted when the grammar specification for Jalku-
nan was put together, and yet the resulting grammar provided ap-
propriate analyses. This shows that the analysis of adnominal pos-
session (Nielsen 2018) robustly generalizes to constituent questions,
even though constituent questions were not part of the Grammar Ma-
trix when the analysis for adnominal possession was developed and
tested.

poss exist_q _person_n which_q _house_n _be_v loc_nonsp _place_n exist_q

TOP

ARG1/EQ

ARG2/NEQ

RSTR/H

RSTR/H

ARG1/NEQ

ARG1/EQ

ARG2/NEQ

RSTR/H

Figure 11: DMRS for sentence (27). The structure can be read as: Which person
possesses the house there?

50DMRS (Copestake 2009) is Dependency MRS, which represents the same
information as MRS, but in a dependency graph.

[ 107 ]



Olga Zamaraeva et al.

5.3.2 Lexical rules supporting adjectival syntax

Trimble (2014) introduces a Grammar Matrix library for adjectives
in attributive and predicative constructions. The customization sys-
tem’s design to provide custom types in addition to the core grammar
proved particularly useful for several adjectival phenomena, enabling
a more parsimonious analysis for most languages while accommodat-
ing several phenomena that were in conflict with the main analysis,
particularly constrained argument agreement and switching adjectives
(Stassen 2013).

Languages such as German [deu] (Indo-European) show what
Trimble (2014, pages 76–79) calls constrained argument agreement.
In these languages, a class of adjectives has one set of morphology
in the attributive construction and a different set in a predicative con-
struction. In German, agreement morphology is licensed in the attribu-
tive construction and is not licensed in the predicative construction.

(28) a. Der
DET.M.NOM.SG

große
big.M.NOM

Hund
dog

bellte.
bark.PST

‘The big dog barked.’ [deu] (adapted from Hankamer and
Lee-Schoenfeld 2005)

b. Ich
1SG

bin
COP.PRES.1SG

groß.
big

‘I am tall.’ [deu] (adapted from Landman and Morzycki
2003)

gClimb (Fokkens 2014) includes an analysis for this construc-
tion where a single position class contains both lexical rules for the
agreement morphology used in the attributive construction and a non-
inflecting lexical rule which allows the adjective to be the complement
of a copula (this rule specifies [PRD +] on the adjective). This way,
adjectives can either undergo the predicative lexical rule and be li-
censed as copula complements or undergo one of the agreement rules
and be licensed in the attributive position.

Trimble (2014, pages 74–79) finds a related behaviour of adjec-
tival morphology that Stassen (2013) calls switching in languages like
Maori [mri] (Austronesian). A single adjective class may be licensed
with different sets of syntax and morphology under different circum-
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stances, such as one set similar to nouns (see (29b)) and one to verbs
(see 29d)).

(29) a. Nominal predicate:

he
DET.INDF

kiwi
kiwi

teera
this

manu
bird

‘This bird is a kiwi.’ [mri] (Biggs 1969, page 90, Stassen
2013)

b. Noun-like adjectival predicate:

he
INDF

pai
good

te
DET.DEF

koorero
talk

‘The talk is good.’ [mri] (Biggs 1969, page 14, Stassen 2013)
c. Verbal predicate:

ka
INCEP

oma
run

te
DET.DEF

kootiro
girl

‘The girl runs.’ [mri] (Biggs 1969, page 18, Stassen 2013)
d. Verb-like adjectival predicate:

ka
INCEP

pai
good

te
DET.DEF

whare
house

nei
this

‘This house is good.’ [mri] (Biggs 1969, page 6, Stassen
2013)

The cross-linguistic analysis that is fundamental to the Grammar
Matrix leads to the juxtaposition of constrained argument agreement
in German and switching adjectives in Maori, offering the opportu-
nity for the same analysis to work in both situations. Like in Fokkens
2014, Trimble’s (2014, pages 74–79) analyses of adjectives in lan-
guages like German and Maori define adjective types without specifics
about their syntactic licensing, such as whether or not the types are
licensed as a copula complement or as a matrix predicate, and the syn-
tactic behaviour and morphology are defined through lexical rules. A
single required position class is defined with two non-inflecting lexical
rule types, one which acts as the base analysis (such as tense mark-
ing or being licensed as a copula complement) and one for the other
behaviour (such as agreement or being licensed in the attributive con-
struction).
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Given the need to support languages like German and Maori, as
well as any languages which don’t have any morphological reflection
of the syntactic distribution of adjectives, the question arises: what
should go into the cross-linguistic core grammar? Making a position
class like the one posited for German and Maori necessary for all
languages would push unwanted complexity into languages where it
is not necessary. The solution adopted is to leverage the type hier-
archy and the possibility of spreading information between cross-
linguistically shared supertypes and language-specific subtypes.

(30) ...

Grammar Matrix
Core Definitions

Language-specific
Definitions

basic-adj-lex

Scopal Adjective basic-intersective-adj-lex

Attributive
(type or rule)

Attributive
only

(type or rule)
Regular

(type or rule)

Stative predicate
(type or rule)

Predicative only
(type or rule)

Stative predicate
only

(type or rule)
Copula

complement
only

(type or rule)

In order to accommodate both constrained argument agree-
ment and switching adjectives, the customization system provides
a type hierarchy (shown in (30)) with basic adjectival type defini-
tions (HEAD type, scopal versus intersective adjectives, intersective
adjectives modify nouns, etc.) in the core grammar and more specific
types (attributive versus predicative, copula complement versus sta-
tive predicate, etc.) in the language-specific subtypes. Subsequently,
the customization system can provide additional lexical types in the
language-specific subtypes if neither constrained argument agreement
nor switching adjectives are present; and if either of these phenomena
are present, it provides lexical rules which specify the correct syn-
tactic behaviour. The source of the robustness of this approach lies
in the combination of the expressive power of the Grammar Matrix’s
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lexical rule infrastructure alongside the basic architecture of splitting
the core grammar and the language-specific subtypes to build custom
analyses based on the typological facts of the language.

5.3.3Adjectives as affixes on nouns

Yup’ik [esu] (Inuit-Yupik-Unangan), Penobscot [aaq-pen] (Algic), and
other languages have attributive adjectives that appear as affixes on
nouns (see (31a)) usually in addition to adjectives that appear as
words (see (31b)) (Miyaoka 2012, page 101, Quinn 2006, pages 28–
29). Whereas most morphology either does not add predicates or adds
grammatical predicates (such as negation), adjectives are an open
class of morpheme with one-to-one morpheme to predicate mapping.

(31) a. qayar-pa-ngqer-tuq
kayak-big-have-IND.3SG
‘He has a big kayak.’ [esu] (Miyaoka 2012, page 136)

b. nutaraq
new.thing.ABS.SG

angyaq
boat.ABS.SG

ang’-uq
big-IND.3SG

‘The new boat is big.’ [esu] (Miyaoka 2012, page 466)

While implementing adjectival lexemes in the Grammar Matrix
required reworking of the lexical hierarchy to support adjectives cross-
grammatically (Trimble 2014, pages 76–79), the analysis of incorpo-
rated adjectives introduced by Trimble (2014, page 79) required nei-
ther changes to the core grammar nor the development of new kinds
of questionnaire logic. Rather, it was possible to build it by combining
already existing functionality. The existing lexical rule infrastructure
(O’Hara 2008; Goodman 2013), both in terms of the core grammar and
the customization system, was able to handle this added functionality
with no extensions required. Existing functionality in the user inter-
face for specifying predicates on lexical items was used to allow spec-
ifying predicates for adjectives as affixes on nouns; and existing cus-
tomization logic and core grammar functionality resulted in grammar
fragments that correctly captured the facts of the language (Trimble
2014, pages 128–129).
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5.3.4 Valence change

Curtis (2018a) describes an implementation of valence-changing mor-
phological operations, including passives, causatives, benefactives,
and applicatives found in many language families. These analyses
were built upon the existing foundation of argument structure in the
Grammar Matrix, primarily the separation of syntactic roles in valence
lists and semantic roles in argument slots. Starting from the broad
typological groupings of valence-changing morphology as described
in Haspelmath and Müller-Bardey 2001, pages 4–14, the implemen-
tation focused on decomposing the analyses of these operations into
fine-grained atomic rule components. For example, in Zulu the bene-
factive and motive affixes are homonymous and differ only in the se-
mantic predicate contributed and noun class constraint on the added
object (Buell 2005):

(32) a. Benefactive:

Ngilahlela
Ngi-lahl-el-a
1S.SBJ-dispose.of-APPL-FV

uThandi
u-Thandi
1-1.Thandi

udoti
u-doti
1-1.trash

‘I’m taking out the trash for Thandi.’ [zul] (Buell 2005,
page 189)

b. Motive:

Ngilahlela
Ngi-lahl-el-a
1S.SBJ-dispose.of-APPL-FV

imali
i-mali
9-9.money

udoti
u-doti
1-1.trash

‘I’m taking out the trash for money.’ [zul] (Buell 2005,
page 189)

The library generates distinct, atomic lexical rule components for
these operations, for example specifying only the PRED value of the
added predicates as in (33a) and (33b). These are then assembled by
the customization system – along with the common applicative rule
(33c) and added argument rule (33d), which together add the new
syntactic argument and connect it to the new semantic predicate – into
lexical rule hierarchies that lexical rule instances then inherit from
directly.
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(33) a.
benefactive-pred-lex-rule

C-CONT |RELS |LIST
D�

PRED benefactive_rel
�E

b.
motive-pred-lex-rule

C-CONT |RELS |LIST
D�

PRED motive_rel
�E

c.


basic-applicative-lex-rule

C-CONT

RELS |LIST
*�

event-relation
ARG1 1

�+
HCONS |LIST 〈 〉


DTR |SYNSEM |LOCAL |CONT |HOOK | INDEX 1


d.

added-arg3of3-lex-rule

SYNSEM |LOCAL |CAT |VAL |COMPS
*

2 ,

LOCAL

CAT |VAL
�
SPR 〈 〉
COMPS 〈 〉
�

CONT |HOOK | INDEX 1



+

C-CONT |RELS
D�

ARG2 1
�E

DTR |SYNSEM |LOCAL |CAT |VAL |COMPS 〈 2 〉


Similar decompositions into blocks were implemented for object-

removing, subject-adding, and subject-removing operations, support-
ing implementation of e.g. (respectively) deobjective, causative, and
passive morphology. These phenomena were added to the Grammar
Matrix customization system without any additional theoretical ad-
ditions or machinery: valence-changing operations are specified on
position classes and lexical rule types using the existing morphotac-
tics library, and the rule components operate on valence lists, se-
mantic predicates, case marking, and scopal arguments using the
existing Grammar Matrix mechanisms. Using these existing mech-
anisms and stored analyses to create new abstractions at interme-
diate levels of detail enables grammar engineers to more directly
model the commonalities and variations in how valence change is ex-
pressed.
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5.4 Summary

The Grammar Matrix represents a large and complex system of HPSG
analyses accounting for data in a wide typological range. Crucially, by
rigorously testing said analyses against data from many languages over
the years, the project has demonstrated the robustness of the analyses
that it houses, particularly of the implementation of the lexical types
and the lexical rule types generally and the analyses of specific phe-
nomena relying on those types. In this section, we talked about how it
was possible to elegantly extend the system to include various types of
adjectives, question pronouns, and valence-changing morphology, to
name just several of the phenomena that were successfully added over
the years. Crucially, the analyses for all these phenomena demonstra-
bly work together as a system, even in cases when the system engineers
did not deliberately consider some of the possible interactions.

6 DISCOVERING COMPLEXITY
THROUGH USE

Where the data driven methodology described in Section 3.4.1 and
the attention to interacting phenomena such as described in Section 4
and Section 5 rigorously test the robustness of the Grammar Matrix’s
analyses, the use of the Grammar Matrix outside its own development
offers the opportunity to vet these analyses and corresponding imple-
mentations at scale. External grammars have the potential to extend
the vetting of the Grammar Matrix’s analyses and reveal further un-
foreseen interactions, by incorporating more phenomena and larger
and more complex lexical and morphological systems. Three exam-
ples of such use of the Grammar Matrix are: (i) the AGGREGATION
project (Bender et al. 2014; Zamaraeva et al. 2019a; Howell 2020;
Howell and Bender 2022, among others), which uses the Grammar
Matrix to generate grammars automatically on the basis of linguistic
corpora; (ii) an annually offered graduate-level grammar engineering
course at University of Washington, in which students use the Gram-
mar Matrix as a starting point and build out the grammars by hand;
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and (iii) the broader use of the Grammar Matrix by the research com-
munity to develop larger DELPH-IN grammars for linguistic analysis.
The sizes of these grammars and their associated test suites, compared
with typical Grammar Matrix development grammars, allow the test-
ing of analyses for more interacting phenomena at once. Furthermore,
both AGGREGATION and the grammar engineering course place a fo-
cus on under-documented languages; and in doing so, provide fur-
ther evaluation of the Grammar Matrix’s analyses in terms of cross-
linguistic generalizability.

6.1The AGGREGATION project

The configurable nature of the Grammar Matrix’s grammar specifica-
tions makes this toolkit particularly well-suited to support grammar
inference. Grammar inference (Bender et al. 2014; Zamaraeva et al.
2019a) is the practice of automatically generating grammars from par-
tially annotated text and some external source of linguistic knowledge
(Howell 2020, page 6; Howell and Bender 2022, page 2).51 The AG-
GREGATION Project leverages two sources of linguistic knowledge –
interlinear glossed text (IGT) and the Grammar Matrix customization
system – to automatically create machine-readable grammars by in-
ferring grammar specifications for the latter from the former.

Unlike grammars created by linguists using the Grammar Matrix
customization system directly, grammars inferred by the AGGREGA-
TION Project’s morphological inference system (MOM; Wax 2014; Za-
maraeva 2016; Zamaraeva et al. 2017) and syntactic inference system
(BASIL; Howell 2020; Howell and Bender 2022) are brought to scale
much more quickly. The rapid scaling offered by automatic inference
allows for a degree of complexity that is much more difficult to reach
when defining a grammar by hand.

In particular, the MOM morphological inference system infers lex-
ical entries and morphological rules for each form attested in the cor-
pus of IGT data. These lexical entries and rules are merged into larger

51Howell (2020) and Howell and Bender (2022) define the term grammar
inference in the context of the AGGREGATION project; while earlier work such
as Bender et al. 2014 and Zamaraeva et al. 2019a refers to grammar inference or
describes it as a practice but does not provide a definition.
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classes, resulting in grammars that account for a variety of previously
unseen strings in a language. However, as Howell (2020, pages 123–
128) and Howell and Bender (2022, pages 29–30) observe, such a
large set of morphological forms can lead to unforeseen sources of am-
biguity. Ambiguity in Howell and Bender’s grammars could be traced
back both to inference and to the Grammar Matrix and progress to-
wards reducing this ambiguity was made by Conrad (2021). The dis-
covery of these sources of ambiguity was possible because of the AG-
GREGATION project’s ability to build large-scale grammars quickly
and in turn reveal complexity in language or models of language that
would otherwise be difficult to find.

6.2 Grammar Matrix-based grammar development
in graduate-level curriculum

The Grammar Matrix has been used in a graduate-level multilingual
grammar engineering course that has been taught annually at the Uni-
versity of Washington since 2004 (see Bender 2007). In this course,
students begin by customizing grammars using descriptive resources
and the Grammar Matrix customization system; and then continue to
build those grammars beyond the customization system’s functional-
ity to achieve greater coverage over the ten week course. Since 2004,
over 125 languages have been studied in this course, including many
that are the subject of active language documentation projects. The
course has served as an important testbed for new Grammar Matrix
libraries as they are developed and as a test of the robustness of the
system. Each grammar tests at minimum the lexicon and morpholog-
ical systems; and most exercise the lexicon, morphology, agreement,
case, tense-aspect-mood, and coordination libraries. Over the years,
each of the other libraries have been tested by multiple languages in
connection with the other libraries included in that year’s curriculum.
The result has been thorough debugging of Grammar Matrix libraries
using combinations of phenomena that were not necessarily consid-
ered or tested during library development (such as what we describe
in Section 4.2).

To document the analysis that has come from this course, many
of the resulting grammar specifications, test suites, and grammar frag-
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ments are available via Language CoLLAGE (Bender 2014). In addi-
tion, some grammars from the class have resulted in publications fo-
cussed on testing specific hypotheses, such as analyzing Kolyma Yuk-
aghir [yux] (isolate) as having focus case (Zamaraeva and Bender
2014) and suggesting a previously unconsidered negation strategy in
Nanti [kox] (Arawakan) (Inman and Morrison 2014).

Since 2019, students have used grammar specifications produced
by the AGGREGATION system (Section 6.1) as input to the customiza-
tion system (as opposed to creating the specification from scratch us-
ing the Grammar Matrix’s web-based questionnaire). The incorpora-
tion of the AGGREGATION project in the grammar engineering course
enables grammars to include both the lexical and morphological com-
plexity offered by inference from corpora and consequently increases
the number of phenomena that can be covered in the course. As a
result the potential scale of these grammars increases, allowing for
even more testing as the Grammar Matrix continues to grow.

6.3Larger DELPH-IN grammars

In addition to the relatively small grammars generated by AGGREGA-
TION or developed by students, the Grammar Matrix has given rise
to a number of larger grammars and resource grammars. Mid-sized
grammars have been developed for the following languages using the
Grammar Matrix customization system as a starting point and refin-
ing and adding analyses for additional phenomena: Bulgarian [bul]
(BURGER; Osenova 2010, 2011), Dutch [nld] (gCLIMB Dutch; Fokkens
2011), Hausa [hau] (HaG; Crysmann 2012), Hebrew [heb] (HeGram;
Greshler et al. 2015), Indonesian [ind] (INDRA; Moeljadi et al. 2015),
Lushootseed [lut] (Crowgey 2019), Mandarin [cmn] and Cantonese
[yue] Chinese (ManGO; Chunlei and Flickinger 2014, Zhong; Fan et al.
2015; Fan 2018), Nuuchahnulth [nuk] (Inman 2019), Thai [tha] (Slay-
den 2011), and Wambaya [wmb] (Bender 2010). The Grammar Ma-
trix has also given rise to even larger grammars that have under-
gone long-term development, including for German [deu] (gCLIMB;
Fokkens 2011), Korean [kor] (KRG; Kim and Yang 2003; Song et al.
2010), Modern Greek [ell] (MGRG; Kordoni and Neu 2005), Norwe-
gian [nob] (NorSource; Hellan and Haugereid 2003), Portuguese [por]
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(LXGram; Costa and Branco 2010), and Spanish [spa] (SRG; Marimon
2010).

In addition to the benefits of kick-starting development, these
grammars have also benefited from standardization to Minimal Re-
cursion Semantics provided by the Grammar Matrix. DELPH-IN gram-
mars generate MRS representations for sentences which can be used
in applications which benefit from semantic representations, as well
as to create rich, consistent semantic annotations (see Bender et al.
2015, among others). The consistency of MRS representations gener-
ated by DELPH-IN grammars is useful for such applications as machine
translation (Copestake et al. 1995; Bond et al. 2011). Even some gram-
mars that did not start by using the Grammar Matrix – such as the
Japanese resource grammar (Jacy; Siegel et al. 2016) – have incor-
porated analyses from the Grammar Matrix to maintain consistency
of MRS representations with other DELPH-IN grammars. Examination
of these grammars and how they have diverged from Grammar Ma-
trix analyses during development poses an interesting area for further
work to understand how those analyses hold up at scale.

7 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a resource, a system of methodologies, and
multiple specific examples of how syntactic hypotheses can be stud-
ied rigorously in complex interactions using the HPSG formalism and
the Grammar Matrix meta-grammar engineering framework (Bender
et al. 2002, 2010). We looked back at some of the various contribu-
tions made to the Grammar Matrix project since 2010, summarizing
the range of phenomena that can currently be modelled and the typo-
logical range that the system demonstrably covers.

The first ten years of Grammar Matrix development were charac-
terized by the initial abstraction of the core grammar from the English
Resource Grammar, the innovation of the idea of libraries of anal-
yses of cross-linguistically variable phenomena and the orientation
to linguistic typology as a key source of data and analyses, and the
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development of a regression testing regime for those artifacts. Drel-
lishak’s 2009 project began with organizing imagined Grammar Ma-
trix libraries into a (software) dependency tree, leading him to focus
on core libraries that others would necessarily depend on (such as
case, agreement, and support for the lexicon).

After another decade plus of development, the Grammar Matrix
has grown in complexity, with more libraries covering more com-
plex phenomena, allowing for testing more interactions, beginning to
realize the promise of linguistic hypothesis testing at a large scale,
across languages and ranges of phenomena within those languages.
The CLIMB (e.g. Fokkens 2014) and AGGREGATION (e.g. Howell
2020) projects have pushed the boundaries on linguistic hypothesis
testing in two further directions: (i) maintaining alternative hypothe-
ses over the course of grammar development and (ii) producing work-
ing grammar fragments from the products of field linguistic research.

Where can we expect this project to go in the next decades?
There are still many linguistic phenomena to be modelled in Gram-
mar Matrix libraries, including adverbs (other than adverbial clauses
and question adverbs), noun compounds, relative clauses, a broader
range of valence types (including raising and control phenomena), as
well as phenomena which are high frequency in naturally occurring
speech collected in language documentation projects such as reported
speech, greetings, and discourse markers. There is also near-term work
to be done on interactions discovered (and not yet resolved) such as
the ones described in Section 4. The addition of computation types
to the grammar engineer’s toolkit also opens up the possibility for
streamlining some existing analyses and making the resulting gram-
mars accordingly easier to maintain. An important direction for future
work is seeing how the Grammar Matrix can be informed by its de-
scendant grammars once they are developed beyond the start that the
Grammar Matrix provided.

The Grammar Matrix has shown the value of computational im-
plementation to reproducibility in the study of grammar and the con-
comitant possibility of building directly on the results of others. As
the system grows, it also opens up further avenues for study not pre-
viously accessible, such as seeking to differentiate which aspects of
model complexity are inherent to complexity in the modelled domain
and which are consequences of formal or analytical choices.
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This paper presents a computational framework for Natural Lan-
guage Inference (NLI) using logic-based semantic representations and
theorem-proving. We focus on logical inferences with comparatives
and other related constructions in English, which are known for their
structural complexity and difficulty in performing efficient reasoning.
Using the so-called A-not-A analysis of comparatives, we implement
a fully automated system to map various comparative constructions
to semantic representations in typed first-order logic via Combinatory
Categorial Grammar parsers and to prove entailment relations via a
theorem prover. We evaluate the system on a variety of NLI bench-
marks that contain challenging inferences, in comparison with other
recent logic-based systems and neural NLI models.

1INTRODUCTION

Natural Language Inference (NLI), which is also called Recognizing
Textual Entailment, is the task of determining whether a text entails a
hypothesis. It is a method widely used for evaluating systems in Natu-
ral Language Processing (NLP). In recent years, with the development
of large datasets such as Stanford Natural Language Inference (SNLI;
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Bowman et al. 2015) and Multi-Genre Natural Language Infer-
ence (MultiNLI; Williams et al. 2018), it has been used as one of the
methods for evaluating the performance of deep learning (DL) models.

NLI can be characterized as a black-box type evaluation in the
sense that it does not matter what the internal structure of the evalu-
ated system is (Bos 2008a). Thus, it does not matter whether the sys-
tem to be evaluated is based on DL or on parsing and logic. In fact, the
FraCaS project (Cooper et al. 1996), one of the origins of NLI bench-
marks, was developed to evaluate a pipeline of syntax, semantics, and
inference systems based on linguistic theories. The goal was to make a
meaningful comparison and evaluation of various frameworks of for-
mal syntax and semantics (cf. Morrill and Valentín 2016).

How well can current linguistic and logical theories solve NLI
benchmarks including FraCaS and others that contain challenging se-
mantic phenomena? The purpose of this paper is to address this ques-
tion. The question has important implications both in the context of
NLP and theoretical linguistics. In the context of NLP, a logic-based
approach to NLI can provide a basis for a more explanatory and inter-
pretable alternative to DL-based approaches. In the context of theo-
retical linguistics, it has the significance of systematically testing and
evaluating linguistic theories using NLI benchmarks well-designed by
linguists.

In this paper, we introduce a logic-based framework for NLI, fo-
cusing on comparatives and other related constructions in English,
including adjectives, adverbs, numerals, and generalized quantifiers.
Comparative constructions have been actively studied in formal se-
mantics yet still pose a challenge to computational approaches (Pul-
man 2007). Our system has a pipeline consisting of syntactic parsing
based on Combinatory Categorial Grammar (CCG; Steedman 1996,
2000), compositional mapping of parsed trees to logical forms, and
theorem-proving in a First-Order Logic (FOL) setting. In this respect,
the system is transparent, allowing us to examine what happens at
each step of parsing (syntax), semantic analysis (semantics), and the-
orem proving (logic).

Each linguistic phenomenon we are concerned with in this paper
has been largely tackled by a separate semantic theory, for example,
event semantics for verbs, degree semantics for adjectives, and theo-
ries of generalized quantifier for noun phrases (see Section 2 for the
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detail of each theory). What is needed here is to put together these dif-
ferent theories, to formulate the resulting system as a computational
model, and to empirically evaluate its prediction. Note also that it is
often the case that computational implementation of existing theories
is not a trivial task but one that requires additional substantial work,
to decide things for which the published papers do not specify the de-
tails. In this respect, there is a large gap between formal semantics and
its computational implementation. We also emphasize the importance
of a fully-automated NLI system for evaluating a linguistic theory: if
you throw an inference in natural language to the system, it can im-
mediately compute the logical forms and evaluate the entailment re-
lation, thus facilitating to make a prediction of the theory in an easy
and quick way.

Our system is designed to have a reasonable expressive power to
represent various comparative constructions without compromising
the efficiency of automated theorem proving. The results of the eval-
uation on various datasets, including FraCaS, show that our system is
capable of solving complex logical reasoning with high accuracy. We
also compare our system with existing logic-based systems and current
state-of-the-art DL models. All code and evaluation results are publicly
available.1

Our contributions are summarized as follow:
• We propose semantic representations (logical forms) for various
comparative constructions and related constructions in English,
including generalized quantifiers, numerals, and adverbs, using a
uniform representation language in typed FOL that is suitable for
automated theorem proving (Section 2).
• We implement a compositional semantics for these constructions
in the framework of CCG (Section 3).
• We evaluate our system on various NLI datasets including FraCaS
that contain complex logical inferences with comparatives and
other linguistic phenomena, in comparison with other logic-based
systems and DL-based NLI models (Section 4).

1https://github.com/izumi-h/ccgcomp
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2 SEMANTIC REPRESENTATIONS

In this section, we first introduce our representation language, in com-
parison with other approaches (Section 2.1). Then we present the se-
mantic representations of various gradable constructions, in particu-
lar, adjectives (Section 2.2), comparatives (Section 2.3), adverbs (Sec-
tion 2.4), and generalized quantifiers (Section 2.5).

2.1 Representation language: Typed FOL

As a representation language, we use the Typed First-Order Form
(TFF) of the Thousands of Problems for Theorem Provers (TPTP) for-
mat (Sutcliffe et al. 2012; Sutcliffe 2017). TPTP is a library of problems
for automated theorem proving systems. TFF is a formal expression
in FOL with equality and arithmetic operations. TFF extends the lan-
guage of FOL with the notion of types. It has predefined basic types
for entity (e) and truth-value (t), and arithmetic types for integers,
rational numbers, and real numbers.2 We use integers as the type of
degrees (d), although we can instead use other arithmetic types (ra-
tional numbers or real numbers) in the implementation. In addition,
we use the type of events (v) as a user-defined type. Thus, the semantic
type τ of an expression is defined by the following rule:

τ ::= e | t | v | d | τ→ τ
Here τ → τ is a function type, where → is right-associative. Thus
t → t → t means t → (t → t).
Note that although we use λ-calculus for semantic composition

as will be explained in Section 3, the language of TFF does not al-
low the use of λ-abstraction. Thus, λ-terms can only appear in the
process of a compositional derivation but not in the resulting logical
form. Whether this language has a sufficient descriptive capacity is
an empirical question, and we will show through evaluation by NLI
benchmarks that the language is expressive enough to represent vari-
ous linguistic phenomena we deal with in this paper.

2TFF uses the notations $i for individuals and $o for truth-values (booleans).
We instead use e and t in this paper.
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Other representation languages used in the logic-based ap-
proaches to NLI include (i) Higher-Order Logic (HOL), (ii) FOL, and
(iii) Type Theory. Regarding (i), Mineshima et al. (2015) and Abzian-
idze (2015, 2016) propose an NLI system combining CCG parsers with
provers specialized for natural languages using a controlled fragment
of HOL. Although HOL is expressive enough to handle complex ex-
pressions such as generalized quantifiers, provers based on HOL are
less efficient than those based on FOL and tend to rely on hand-coded
rules, causing scalability issues.

For (ii), Bos (2008b) and Martínez-Gómez et al. (2017) present
NLI systems based on standard FOL. While theorem provers based on
FOL are more efficient than HOL, the expressive power is limited so
that there are linguistic phenomena that resist straightforward treat-
ment in FOL. A notable exception is Hahn and Richter (2016), which
introduces a method to encode HOL constructions in natural languages
in FOL Henkin Semantics. However it is not extended to complex
phenomena such as comparatives covered in FraCaS. Perhaps the ap-
proach that is closest to ours is that of Pulman (2018), which presents
methods to approximate some higher-order inferences with adjectives
in a first-order setting. Compared with these previous works, our sys-
tem has broader coverage, handling a variety of inferences with ad-
jectives, comparatives, generalized quantifiers, numerals, and adverbs
from a unified perspective.

For (iii), Chatzikyriakidis and Luo (2014), Bernardy and Chatzi-
kyriakidis (2017) and Chatzikyriakidis and Bernardy (2019) present a
type-theoretic system using Coq as a proof assistant for NLI, tackling
problems in FraCaS. However they inherit the disadvantages of HOL
in that the theorem proving is not computationally efficient; in fact,
the theorem-proving component of these type-theoretic systems is not
fully automated, due in part to the fact that there is no decision proce-
dure for HOL. Thus, it cannot be used as part of a system that would be
comparable to logic-based NLI systems studied in the context of nat-
ural language processing (NLP). By contrast, TFF, which is adopted
in our approach, has computational efficiency and expressive power
in that it can handle equality and arithmetic operations implemented
in automated theorem provers. It is a language that suits the purpose
of our study. We emphasize the importance of building a fully auto-
mated NLI system, which allows us to build a system usable in NLP
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applications and to compute the predictions of each formal semantic
theory quickly and precisely. This would be an initial step towards es-
tablishing a meaningful and systematic way to evaluate each linguistic
framework.

2.2 Adjectives

We start with the analysis of adjectives in our framework. This serves
as a basis for developing computational degree-based semantics for
other gradable constructions.

2.2.1 Gradable adjectives

We introduce the phenomenon of GRADABILITY and present an anal-
ysis of gradable adjectives in degree-based semantics.3

(1) My car is expensive. (Gradable)
a. My car is very expensive.
b. My car is more expensive than yours.

(2) My pet is four-legged. (Non-gradable)
a. # My pet is very four-legged.
b. # My pet is more four-legged than yours.

Expensive and tall are gradable adjectives, and can take degree mod-
ifiers such as very and have comparative form as in (1a) and (1b).
On the other hand, four-legged is not a gradable adjective; the sen-
tences (2a) and (2b) are not felicitous.

In degree-based semantics, gradable adjectives can be treated as
two-place predicates that take entity and degree (Cresswell 1976). For
instance, John is 5 feet tall, containing the specific numerical expres-
sion 5 feet, is analyzed as tall(john, 5 feet), where tall(x ,δ) is read as
“x is at least as tall as degree δ” (Klein 1991).4 For simplicity, we do
not consider the internal structure of a measure phrase such as 5 feet
and write as tall(john, 5), where 5 is treated as an integer.

3See Lassiter (2015) and Morzycki (2016) for an overview of degree-based
semantics.

4For an explanation of why tall(x ,δ) is not treated as “x is exactly as tall as
δ”, see Section 3.2.
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2.2.2Positive form and comparison class

The positive form of a gradable adjective is regarded as involving com-
parison to some threshold that can be inferred from the context of the
utterance. We write θF (A) to denote the contextually specified thresh-
old for a predicate F given a set A, which is called a COMPARISON
CLASS (Klein 1980, 1982). When a comparison class is implicit, as
in (3a) and (4a), we use the universal set U as a default comparison
class.5 We often abbreviate θF (U) as θF . Thus, (3a) is represented as
(3b), which means the height of Mary is more than or equal to the
threshold θtall.
(3) a. Mary is tall.

b. tall(mary,θtall)

We semantically distinguish the positive adjective tall from its
antonym short, which we call a negative adjective. The logical form of
(4a), where a negative adjective short appears, is (4b); we take it that
(4b) means that the height of Mary is less than the threshold θshort.6

(4) a. Mary is short.
b. short(mary,θshort)

A threshold can be explicitly constrained by an NP modified by a grad-
able adjective. Thus, (5a) can be interpreted as (5b) relative to an
explicit comparison class, namely, the sets of animals.7

(5) a. Mickey is a small animal. (FraCaS-204)
b. small(mickey,θsmall(animal))∧ animal(mickey)

For positive gradable adjectives, if tall(x ,δ) is true, then x satis-
fies all heights below δ. By contrast, for negative gradable adjectives,

5 In this study, we do not consider the context-sensitivity of an implicit com-
parison class. See Narisawa et al. (2013) and Pezzelle and Fernández (2019) for
work on this topic in computational linguistics.

6We do not claim that this analysis can fully address the subtle infer-
ences about antonyms (cf. Lehrer and Lehrer 1982). A more detailed analysis
of antonyms is left for future work.

7Here and henceforth, when an example appears in FraCaS dataset (Cooper
et al. 1996), we refer to the ID of the sentence in the dataset.
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if short(x ,δ) is true, then x satisfies all the heights δ or above. To for-
malize these properties, we postulate the following axioms for each
positive adjective P and negative adjective N :
(up) ∀x∀δ1(P(x ,δ1)→∀δ2((δ2 ≤ δ1)→ P(x ,δ2)))

(down) ∀x∀δ1(N(x ,δ1)→∀δ2((δ1 ≤ δ2)→ N(x ,δ2)))

2.2.3 Privative adjectives

Apart from gradable and non-gradable adjectives, former and fake are
classified as privative adjectives (Kamp 1975). For a privative adjec-
tive Adj and a noun phrase N, the intersection of JAdj NK and JNK is
empty. For example, (6) holds for the privative adjective former and
the noun phrase student.8

(6) Jformer studentK∩ JstudentK= ;
(6) can be expressed as an axiom in our system using a predicate vari-
able F in the following way:
(7) ∀x(former(F(x))→¬F(x))

For instance, (8a) is mapped to (8b). By using (7), (8a) contradicts
Peter is a student.
(8) a. Peter is a former student.

b. former(student(peter))

2.3 Adjectival comparatives

Next, we consider adjectival comparatives using the analysis of grad-
able adjectives described in the previous sections.

8The truth condition of former may involve temporal semantics, which we
neglect in order to avoid complicating the whole system.
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2.3.1A-not-A analysis

To begin with, we introduce the so-called A-not-A analysis (Seuren
1973; Klein 1980, 1982, 1991; Schwarzschild 2008) for comparatives
in degree-based semantics.9

(9) a. Ann is taller than Bob is.
b. ∃δ(tall(ann,δ)∧¬tall(bob,δ))

Ann
Bob
0 δ

δ1δ2 δ

According to this analysis, (9a) is analyzed as (9b), where (9a) is in-
terpreted as saying that there exists a degree δ of height that Ann
satisfies but Bob does not. As shown in the figure in (9), together with
the Consistency Postulate (CP) explained below, this guarantees that
Ann’s height is greater than Bob’s height. More generally, if an ad-
jective F is associated with a degree such as heights and weights, we
can say “A is more F than B is” is true if and only if there exists a
threshold δ that A satisfies but B does not. A-not-A analysis makes it
possible to derive entailment relations between various comparative
constructions in a simple way using FOL theorem provers.10

We show the logical forms for other basic comparative construc-
tions under A-not-A analysis.
(10) a. Tom is taller than Mary. (Increasing)

b. ∃δ(tall(tom,δ)∧¬tall(mary,δ))

(11) a. Harry is less tall than Ken. (Decreasing)
b. ∃δ(¬tall(harry,δ)∧ tall(ken,δ))

(12) a. Tom is as tall as Mary. (Equatives)
b. ∀δ(tall(mary,δ)→ tall(tom,δ))

The sentence (11a) is a construction representing that the height of
Harry is less than that of Ken. The sentence (12a) is interpreted as

9A version of this analysis is called delineation analysis, which goes back to
Lewis (1972).

10This possibility is also suggested by Pulman (2007).
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“Tom is at least as tall as Mary”, which means the height of Tom is
greater than or equal to that of Mary. This reading is captured by
mapping (12a) to (12b). The sentence (12a) can also be interpreted as
“Tom is exactly as tall as Mary”. See Section 3.2 for a discussion on
how to derive this strong reading in our setting.

In A-not-A analysis, there is an axiom called Consistency Postulate
(CP), which formalizes the relation between the degrees of two enti-
ties under A-not-A analysis (Klein 1980, 1982). It asserts that if there
is a degree satisfied by x but not by y , then every degree satisfied by
y is satisfied by x as well.

(CP) ∀x∀y(∃δ(A(x ,δ)∧¬A(y,δ))→∀δ(A(y,δ)→ A(x ,δ))),
where A is an arbitrary gradable adjective.

The axiom (CP) can be deduced as a derivable rule of (up) and (down):

PROPOSITION 1 (CP) follows from (up) and (down).

PROOF Consider the case where A is a positive adjective. Suppose
there exists δ0 such that A(x ,δ0) holds but A(y,δ0) does not. Also let
δ be arbitrary and suppose A(y,δ). To show A(x ,δ), let us assume
δ0 < δ for the sake of contradiction. By (up) and A(y,δ), we have
A(y,δ0), but this is the contradiction. Hence, δ ≤ δ0 holds, and by
(up) we have A(x ,δ). Thus, A(y,δ)→ A(x ,δ) holds for any δ. When
A is a negative adjective, by using (down) instead of (up) we get the
same conclusion. Hence we obtain (CP). �

2.3.2 Measure phrases and differential comparatives

The sentence (13a) contains the measure phrase 2 inches before the
comparative form taller of the gradable adjective tall and mentions
the difference in height between Ken and Harry. Such constructions
are known as DIFFERENTIAL COMPARATIVES. (13a) means the height
of Ken is 2 inches or greater than the height of Harry. Thus differential
comparatives can be handled by extending the analysis of equatives
such as the sentence (12a). (13a) is mapped to the logical form (13b).
(13) a. Ken is 2 inches taller than Harry.

b. ∀δ(tall(harry,δ)→ tall(ken,δ+ 2))
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Note that if (13a) is mapped to ∃δ(tall(ken,δ+ 2) ∧ ¬tall(harry,δ)),
then the meaning that the difference in height between Ken and Harry
is exactly 2 inches is missing.

To derive inferences with measure phrases, we define the axioms
(sup) and (inf) that formalize supremum and infimum on degree, re-
spectively.
(sup) ∀x∃δ1(P(x ,δ1)∧¬∃δ2((δ1 < δ2)∧ P(x ,δ2)))

(inf) ∀x∃δ1(N(x ,δ1)∧¬∃δ2((δ2 < δ1)∧ N(x ,δ2)))

The import of (sup) is expressed as follows. Assume we are given some
assignment of values to variable x and P. Then there is a value δ1 that
makes P(x ,δ1) true, but there is no value δ2 that is more than δ1 and
makes P(x ,δ2) true. Thus, the inference from (13a) to Ken is taller
than Harry follows from (sup).
PROPOSITION 2 From ∀δ(tall(harry,δ) → tall(ken,δ+ 2)), it fol-
lows that ∃δ(tall(ken,δ)∧¬tall(harry,δ)).
PROOF By (sup), there exists δ0 such that tall(harry,δ0) and there
is no δ1 such that δ0 < δ1 and tall(harry,δ1). Since δ0 < δ0+2, it fol-
lows that ¬tall(harry,δ0 + 2). By the premise, we have tall(ken,δ0 + 2).
Hence, we have ∃δ(tall(ken,δ)∧¬tall(harry,δ)). �

Finally, consider the construction with ameasure phrase in a than-
clause. The sentence (14a) includes the measure phrase 4 feet in the
than-clause. It has the same meaning as “Ken is more than 4 feet tall”
and is mapped to (14b). Here, instead of comparing the degree of two
entities, we compare the height of Ken with the specific value 4 feet.
(14) a. Ken is taller than 4 feet.

b. ∃δ(tall(ken,δ)∧ (4< δ))
2.3.3Extensional and intensional comparison classes

Gradable expressions can be divided into extensional and intensional
adjectives (Kamp 1975; Partee 2007):
(15) All dogs are animals.

a. ⇒ All fat dogs are fat animals. (Extensional)
b. ⇏ All clever dogs are clever animals. (Intensional)
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Fat and tall are extensional adjectives and license the inference
in (15a). In contrast, clever and skillful are intensional adjectives,
which do not allow the same pattern of inference. Thus, (15b) does
not hold.

The difference between extensional and intensional adjectives
also arises in reasoning with comparative expressions. Consider the
following:
(16) a. John is a fatter politician than Bill.

⇒ John is fatter than Bill. (FraCaS-216)
b. John is a cleverer politician than Bill.⇏ John is cleverer than Bill. (FraCaS-217)

The sentences in (16a) involve the comparative form fatter of the ex-
tensional adjective fat. The adjective fat is classified as an extensional
adjective since fat as a politician does not make sense.11 Accordingly,
John is a fatter politician than Bill can be decomposed into John is a
politician and fatter than Bill. Thus the inference in (16a) holds. On
the other hand, the inference (16b), which contains the comparative
form cleverer of the intensional adjective clever, does not hold. This is
because even if John is cleverer than Bill as a politician, we do not
know the relation between John and Bill with respect to the clever-
ness in other domains. For extensional adjectives, the sentence (17a)
is mapped to the logical form (17b).
(17) a. John is a fatter politician than Bill.

b. politician(john)∧ politician(bill)
∧ ∃δ(fat(john,δ)∧¬fat(bill,δ))

(18) a. John is fatter than Bill.
b. ∃δ(fat(john,δ)∧¬fat(bill,δ))

For intensional adjectives clever(x ,δ), we extend its second ar-
gument to take an intensional comparison class; in the second argu-
ment of the intensional adjectives we use a two-place function for a
noun parameter λNδ.np(N ,δ).12 The type of np(N ,δ) is degree. For

11Note that it is meaningful to say fat for a politician, so the adjective fat can
take a comparison class and is context-sensitive (cf. Partee 2007).

12Throughout the paper, we abbreviate λX1λX2 . . .λXn.M as λX1X2 . . . Xn.M .
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instance, clever(x , np(politician,δ)) is intended to mean that x is clever
as a politician (at least) to degree δ. The sentence (19a) is mapped to
the logical form (19b). (19a) means that John is cleverer than Bill as
a politician, and thus it does not entail (20a), which means that John
is cleverer than Bill for any extension U.
(19) a. John is a cleverer politician than Bill.

b. politician(john)∧ politician(bill)
∧ ∃δ(clever(john, np(politician,δ))
∧¬clever(bill, np(politician,δ)))

(20) a. John is cleverer than Bill.
b. ∃δ(clever(john, np(U,δ))∧¬clever(bill, np(U,δ)))

2.3.4Degree modifiers

Consider the case where an adjective appears with degree modifiers
such as very and much. The following two sentences (21a) and (22a)
are examples:
(21) a. Peter is fat.

b. fat(peter,θfat)

(22) a. Peter is very fat.
b. ∃δ(fat(peter,δ)∧ (θfat +δ′ ≤ δ))

The sentence (21a) is represented as (21b), which means that Peter
meets the threshold θfat. In (22a), the degree modifier very appears
preceding the adjective, which emphasizes the degree that Peter is
fat. In this case, we set the lower bound on Peter’s weight as θfat + δ′
for a constant δ′ such that 0< δ′ and map (22a) to (22b).

As mentioned in Section 2.2.2, we consider not only positive grad-
able adjectives such as fat but also negative gradable adjectives such as
small. (23a) is interpreted as (23b), where the size of the room satisfies
a value less than the threshold θsmall. The sentence (24a) emphasizes
the small size of this room. In this case, we interpret the size that the
room satisfies as being less than θsmall −δ′, and express it as (24b).
(23) a. This room is small.

b. ∃x(room(x)∧ small(x ,θsmall))
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(24) a. This room is very small.
b. ∃x(room(x)∧ ∃δ(small(x ,δ)∧ (δ ≤ θsmall −δ′)))

A sentence with the degree modifier much such as (25a) is inter-
preted as having a difference of at least a fixed value δ′ between the
degrees satisfied by the two entities being compared. It is represented
as (25b) in a similar way to the analysis of (13).
(25) a. David is much taller than Jim.

b. ∀δ(tall(jim,δ)→ tall(david,δ+δ′))

2.4 Adverbial comparatives
In the previous sections, we analyzed comparative expressions of ad-
jectives using a theory based on degree-based semantics, which was
developed for analyzing adjectives and comparatives. In formal se-
mantics, there is another semantic framework, event semantics, used
largely to account for the semantics of verb phrases and adverbial
modifiers (Davidson 1967; Parsons 1990). To address comparative ex-
pressions of adverbs, it is necessary to present a theory that incorpo-
rates not only degree semantics but also event semantics. Building
on the work in Haruta et al. (2020), we combine the two semantic
theories and extend the theory of A-not-A analysis with comparative
constructions of adverbs.

2.4.1 Adverbs in event semantics

To handle adverbial expressions, we adopt a standard neo-David-
sonian event semantics (Parsons 1990), which analyzes sentences as
involving quantification over events. For example, the sentence (26a)
is analyzed as (26b), where subj is a function term that associates an
event to its subject.
(26) a. John ran.

b. ∃e(run(e)∧ (subj(e) = john))

A sentence containing an adverb like (27a) is analyzed as (27b), where
the adverb slowly acts as a predicate of an event.
(27) a. John ran slowly.

b. ∃e(run(e)∧ (subj(e) = john)∧ slowly(e))
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This allows us to derive an inference from (27a) to (26a), i.e., an in-
ference to drop adverbial phrases.13

2.4.2Combining event semantics and degree semantics

To correctly derive entailment relations between sentences with grad-
able adverbials and comparative expressions of adverbs, we apply the
same analysis to gradable adverbials such as slowly and fast as to grad-
able adjectives. The following examples show logical forms of basic
constructions, where adverbs like loudly are treated as binary predi-
cates of an event and a degree:
(28) a. John shouted loudly. (Positive)

b. ∃e(shout(e)∧ (subj(e) = john)∧ loud(e,θloud))

(29) a. Jim sang better than Mary. (Comparative)
b. ∃e1∃e2(sing(e1)∧ (subj(e1) = jim)∧ sing(e2)∧ (subj(e2) = mary)∧ ∃δ(good(e1,δ)∧¬good(e2,δ)))

(30) a. Bob drove as carefully as John. (Equative)
b. ∃e1∃e2(drive(e1)∧ (subj(e1) = bob)∧ drive(e2)∧ (subj(e2) = john)∧∀δ(careful(e2,δ)→ careful(e1,δ)))

The sentence (28a) contains the adverbial phrase loudly, which is an-
alyzed as loud(e,θloud) as in (28b). This means that John’s shouting is
at least as loud as a certain threshold θloud, which we take to be the
same logical form as the positive form of gradable adjectives. To treat
predicates for adverbs in the same way as those for adjectives, we con-
vert a gradable adverb (e.g., loudly) to its adjectival form (e.g., loud)
in the logical form. The sentence (29a) is the adverbial comparative
construction with the comparative form better. The logical form (29b)
means there exists a degree of “goodness” δ such that event e1 satis-
fies, but e2 does not. Similarly, we can assign an appropriate logical
form to the sentence (30a) by extending the analyses for adjectival
comparatives as described in Section 2.3.

13 In this study, we do not introduce event variables to adjectives and ad-
verbs themselves. For instance, Tim is tall is analyzed as tall(tim,θtall) not as∃e(tall(e,θtall) ∧ (subj(e) = tim)), where e quantifiers over underlying states de-
noted by tall. We do not pursue this alternative analysis here; see Parsons (1990,
Chap.10) for some discussion.
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2.5 Generalized quantifiers

We extend the analysis of comparatives by the degree semantics de-
scribed above to generalized quantifiers. In the traditional analy-
sis (Barwise and Cooper 1981), generalized quantifiers such as many,
few, more than, and most are analyzed as denoting a relation between
sets. Alternatively, these quantifiers can be analyzed as adjectives in
degree semantics (Partee 1988; Rett 2018) and the proportional quan-
tifier most as the superlative form of many (Hackl 2000; Szabolcsi
2010). We implement this alternative analysis in our computational
framework.

2.5.1 Numerical adjectives

We represent a numerical adjective such as ten in ten orders by the
predicate many(x , n), which means that the cardinality of x is at least
n, where x ranges over pluralities and n is a positive integer (Hackl
2000). The following shows the logical forms of some typical sentences
involving numerical adjectives.
(31) a. Ann won ten orders.

b. ∃x(order(x) ∧many(x , 10) ∧ ∃e(win(e) ∧ (subj(e) = ann) ∧
(obj(e) = x)))

(32) a. Ann won many orders.
b. ∃δ∃x(order(x)∧many(x ,δ)∧ (θmany(order)< δ)
∧ ∃e(win(e)∧ (subj(e) = ann)∧ (obj(e) = x)))

(33) a. Ann won more orders than Harry.
b. ∃δ(∃x(order(x)∧many(x ,δ)∧∃e(win(e)∧(subj(e) = ann)∧
(obj(e) = x))) ∧ ¬∃y(order(y) ∧many(y,δ) ∧ ∃e(win(e) ∧
(subj(e) = harry)∧ (obj(e) = y))))

As mentioned in the previous section, a sentence like John is 5 feet tall
is mapped to the logical form tall(john, 5) using the binary predicate
of the adjective tall. In a similar vein, the sentence (31a) is mapped to
the logical form (31b), taking the adjectivemany to be hidden between
ten and orders (see Section 3.2 for a compositional derivation). In the
case of (32a), we take many as the positive form of the adjective and
introduce the threshold θmany(order) in the logical form (32b). In the
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Table 1: Logical forms of some constructions with numerical adjectives

Sentence Logical form

Mary won at least eleven orders. ∃x(order(x)∧many(x , 11)

∧∃e(win(e)∧ (subj(e) =mary)∧ (obj(e) = x)))

Mary sold 20 more books than John.

∀δ(∃x(book(x)∧many(x ,δ)

∧∃e(sell(e)∧ (subj(e) = john)∧ (obj(e) = x)))

→∃x(book(x)∧many(x ,δ+ 20)

∧∃e(sell(e)∧ (subj(e) =mary)∧ (obj(e) = x))))

John won twice as many orders than Ann.

∀δ(∃x(order(x)∧many(x ,δ)

∧∃e(win(e)∧ (subj(e) = john)∧ (obj(e) = x)))

→∃x(order(x)∧many(x ,δ× 2)

∧∃e(win(e)∧ (subj(e) = ann)∧ (obj(e) = x))))

Bob won more orders than Luis lost.

∃δ(∃x(order(x)∧many(x ,δ)

∧∃e(win(e)∧ (subj(e) = bob)∧ (obj(e) = x)))

∧¬∃x(order(x)∧many(x ,δ)

∧∃e(lost(e)∧ (subj(e) = luis)∧ (obj(e) = x))))

More than five campers caught a cold.
∃x∃δ(camper(x)∧many(x ,δ)∧ (δ > 5)

∧∃y(cold(y)∧ ∃e(catch(e)∧ (subj(e) = x)

∧(obj(e) = y))))

case of (33a), more is analyzed as the comparative form of many; the
logical form (33b) says that there exists a positive integer δ such that
Ann won (at least) δ-many orders but Harry did not. Table 1 shows
some more examples of logical forms of constructions with numerical
adjectives.

2.5.2Comparative quantificational determiners

We also use the predicate many(x , n) to analyze proportional quanti-
fiers such asmost and at least half of. For example, the sentence (34a) is
analyzed as meaning “More than half of A is B”, following the standard
truth-condition (Barwise and Cooper 1981), and can be represented as
(34b). The logical form in (34b) implies that there are more red apples
than non-red apples. The sentence (35a) with at most half of is ana-
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lyzed as meaning “Less than or equal to half of A is B”, and is mapped
to the logical form with the negation in (35b).14

(34) a. Most apples are red.
b. ∃δ(∃x(apple(x)∧ red(x)∧many(x ,δ))
∧¬∃x(apple(x)∧¬red(x)∧many(x ,δ)))

(35) a. At most half of apples are red.
b. ¬∃δ(∃x(apple(x)∧ red(x)∧many(x ,δ))
∧¬∃x(apple(x)∧¬red(x)∧many(x ,δ)))

This analysis correctly captures the monotonicity property of most,
according to which most is right-upward monotone;15 thus (34a) en-
tails Most apples are red or green. Likewise, at most half of in (35a)
is right-downward monotone, which is captured in the logical form
(35b). Similarly, the sentence (36a) can be analyzed as meaning “More
than or equal to half of A is B” and is represented as (36b). The sen-
tence (37a) with less than half of is mapped to (37b). Since less than
half of is also a downward quantifier, we give it the logical form with
negation.
(36) a. At least half of apples are red.

b. ∀δ(∃x(apple(x)∧¬red(x)∧many(x ,δ))
→∃x(apple(x)∧ red(x)∧many(x ,δ)))

(37) a. Less than half of apples are red.
b. ¬∀δ(∃x(apple(x)∧¬red(x)∧many(x ,δ))
→∃x(apple(x)∧ red(x)∧many(x ,δ)))

14Since we assume each variable can stand for pluralities, red(x) should be
interpreted as distributive, meaning that each atomic part of x satisfies the pred-
icate red (Link 1983). Similarly, ¬red(x) should be interpreted as meaning that
each atomic part of x does not satisfy red, where the negation is treated as a
predicate modifier. However, it is beyond the scope of this paper to implement
the distinction between collective and distributive predication, so we leave a full
treatment of the semantics of pluralities to future work.

15Let Q be a quantifier and A and B be its restrictor and nuclear scope, re-
spectively. The quantifier Q is right-upward monotone if Q(A, B) and B ⊆ C entail
Q(A, C); Q is right-downward monotone if Q(A, B) and C ⊆ B entail Q(A, C). For
the classification of generalized quantifiers and monotonicity properties, see e.g.,
Barwise and Cooper (1981) and Westerstaåhl (2007).
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ID Premises and hypothesis Gold label

253 P: At most half of the students take the class. Unknown
H: Less than half of the students take the class.

254 P: Most students take the class. No
H: None of the students take the class.

255 P: Less than half of the students take the class. No
H: Most students take the class.

256 P: More than half of the students take the class. Yes
H: Most students take the class.

257 P: Most students take the class. Yes
H: At least half of the students take the class.

Table 2:
Examples
of entailment
problems
for generalized
quantifiers
from CAD

The above analysis shows that monotonicity inferences with propor-
tional quantifiers can be handled in typed FOL with arithmetic by as-
signing logical forms based on A-not-A analysis. Table 2 shows some
examples of entailment relations with sentences containing the expres-
sions described above. These are extracted from CAD dataset we will
use for evaluation (see Section 4.2).

2.5.3Comparatives and quantifiers

When determiners such as all or some appear in than-clauses, we need
to consider the scope of the corresponding quantifiers (Larson 1988).
As examples, (38a) and (39a) are assigned the logical forms in (38b)
and (39b), respectively.
(38) a. Mary is taller than every student.

b. ∀y(student(y)→∃δ(tall(mary,δ)∧¬tall(y,δ)))

(39) a. Mary is taller than some student.
b. ∃y(student(y)∧ ∃δ(tall(mary,δ)∧¬tall(y,δ)))

Conjunction (and) and disjunction (or) appearing in a than-clause
show different behaviors in scope taking, as pointed out in Larson
(1988). For instance, in (40a), the conjunction and takes wide scope
over the main clause, whereas in (41a), the disjunction or can take
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narrow scope. Thus, we can infer Mary is taller than Harry from both
(40a) and (41a). These readings are represented as in (40b) and (41b),
respectively.
(40) a. Mary is taller than Harry and Bob.

b. ∃δ(tall(mary,δ)∧¬tall(harry,δ))
∧ ∃δ(tall(mary,δ)∧¬tall(bob,δ))

(41) a. Mary is taller than Harry or Bob.
b. ∃δ(tall(mary,δ)∧¬(tall(harry,δ)∨ tall(bob,δ)))

The quantifiers in the than-clause as in the sentences (38a), (39a), and
(40a) need to take wide scope, while that in (41a) needs to take narrow
scope. To derive this kind of scope ambiguity is not the focus of the
current study and remains unsolved in our implementation. We use a
fixed scope relation for quantifiers in than-clauses and take the wide
scope reading as in (38a), (39a), and (40a) as a default reading.

3 COMPOSITIONAL SEMANTICS

In this section, we present an overview of compositional semantics
that maps various comparative constructions in English to logical
forms. We use CCG as a syntactic framework, a lexicalized gram-
mar formalism that provides a transparent syntax-semantics inter-
face (Steedman 1996, 2000). To implement a fully automated sys-
tem, we use off-the-shelf CCG parsers (Clark and Curran 2007; Lewis
and Steedman 2014; Yoshikawa et al. 2017), which are based on En-
glish CCGBank (Hockenmaier and Steedman 2007). Though it has
been pointed out that there is room to improve English CCGBank with
respect to the analysis of comparative constructions (Honnibal et al.
2010), it provides a reasonably fine-grained and rich syntactic struc-
ture that derives the type of logical forms suitable for our purposes,
as we will show below. A point of using existing resources such as
CCGBank is to make explicit what can be done in currently available
treebanks and parsers. This would make clear the potentials and lim-
itations of the current English CCGBank, thereby contributing to the
acceleration of the study of computational semantics based on tree-
banks.
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Table 3: Lexical entries for basic categories

Category Logical form Example
N ann Ann
N λx .boy(x) boy
NP/N λFG.∃x .(F(x)∧ G(x)) a
NP/N λFG.∀x .(F(x)→ G(x)) every
S\NP λQ.Q(λx .∃e.(run(e) = x)) run
S\NP/NP λQ1Q2.Q1(λy.Q2(λx .∃e.love(e)∧ (subj(e) = x)∧ (obj(e) = y))) love

3.1CCG-style Compositional semantics for comparatives

In CCG-style compositional semantics, the mapping from syntax to
semantics is defined by assigning a syntactic category to each word.
The logical form of a sentence is then compositionally derived using
the standard λ-calculus. In CCGBank, major basic (ground) syntactic
categories consist of N (noun), NP (noun phrase), and S (sentence).
Functional categories are of the form X\Y and X/Y , which derives an
expression of category X when combined with an expression of cate-
gory Y to its left and right, respectively. Thus, category S\NP expects
an expression of category NP to its left and produces an expression
of category S, which plays the role of intransitive verbs. Similarly,
S\NP/NP is a category for a transitive verb.16

There is a correspondence between syntactic categories and se-
mantic types: if E1 and E2 are expressions assigned the same category,
then the semantic types of E1 and E2 necessarily become the same.
Table 3 shows a list of major lexical entries with semantic representa-
tions.17

To see how to derive a logical form from a CCG parsing tree based
on English CCGBank, let us start with a simple example:
(42) Ann saw a boy.

16\ and / are left-associative; S\NP/NP means (S\NP)/NP.
17 In CCGBank, a proper noun such as Ann is assigned the category N and

shifted to NP by the unary rule lex, to which we assign the semantics N : ann⇒
NP : λF.F(ann).
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Ann
N

ann
NP lex

λF.F(ann)

saw
(S\NP)/NP

λQ1Q2.Q2(λy.Q1(λx .∃e.(see(e)
∧ (subj(e) = y)∧ (obj(e) = x))))

a
NP/N

λF1F2.∃x .(F1(x)∧ F2(x))

boy
N

λx .boy(x)

NP >

λF2.∃x .(boy(x)∧ F2(x))

S\NP >

λQ2.Q2(λy.∃x .(boy(x)∧ ∃e.(see(e)∧ (subj(e) = y)∧ (obj(e) = x))))
S

<

∃x .(boy(x)∧ ∃e.(see(e)∧ (subj(e) = ann)∧ (obj(e) = x)))

Figure 1: Parsing tree of Ann saw a boy

The parsing tree with logical forms looks as in Figure 1.18 Here to
accommodate our compositional semantics to English CCGBank, it is
convenient to use Argument Raising (Hendriks 1993), which assigns a
λ-term of the quantifier type (e→ t)→ t to an expression of category
NP. Thus a transitive verb is assigned a lambda term of type ((e →
t)→ t)→ ((e→ t)→ t)→ t.
Given this background, let us see how to derive a suitable logical

form to adjectival and comparative constructions. Here are three basic
constructions with their logical form under our A-not-A analysis.
(43) a. Ann is tall. tall(ann,θtall)

b. Ann is taller than Bob. ∃δ(tall(ann,δ)∧¬tall(bob,δ))
c. Ann is as tall as Bob. ∀δ(tall(bob,δ)→ tall(ann,δ))

To derive these logical forms compositionally, there are two main
questions to be addressed: (i) which constituent introduces a degree
variable and (ii) how to “saturate” the degree variables in terms of a
threshold value as in (43a), existential closure as in (43b), or universal
quantification as in (43c). For (i), we take it that adjectives themselves

18The variable convention for major semantic types we adopt throughout the
paper is as follows. Each variable can be attached subscripts like x1, x2.

Variable Type Description
x , y, z e entities
δ d degrees
F, G e→ t predicates
Q (e→ t)→ t quantifiers
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introduce degree variable.19 Thus, under the argument raising analy-
sis we adopt, the basic semantic representation for the adjective tall is
λQδ.Q(λx .tall(x ,δ)), though a more complicated form will be needed
as explained below. For (ii), we introduce an empty category into the
adjunct position (i.e., a position where a measure phrase appears as in
4 feet tall), to control the compositional derivations of the three types
of logical forms.20 Since English CCGBank does not support this type
of empty categories, we insert them in the post-processing process of
syntactic parsing. That is, we rewrite each tree in the following way.
• Empty category pos for positive form

¹¹Ë
is

(S\NP)/(Sadj\NP)
tall

Sadj\NP
S\NP >

is
(S\NP)/(Sadj\NP)

pos
(Sadj\NP)/(Sadj\NP)

tall
Sadj\NP

Sadj\NP >

S\NP >

• Empty category dgr for comparative form

¹¹Ë
taller

Sadj\NP
than Bob

(Sadj\NP)\(Sadj\NP)
Sadj\NP <

dgr
(Sadj\NP)/(Sadj\NP)

taller
Sadj\NP

Sadj\NP >
than Bob

(Sadj\NP)\(Sadj\NP)
Sadj\NP <

• Empty category dgr2 for equative

¹¹Ë
as tall

Sadj\NP
as Bob

(Sadj\NP)\(Sadj\NP)
Sadj\NP <

dgr2
(Sadj\NP)/(Sadj\NP)

as tall
Sadj\NP

Sadj\NP >
as Bob

(Sadj\NP)\(Sadj\NP)
Sadj\NP <

19See Klein (1991), among others. See also Klein (1980, 1982) for views
against this type of analysis.

20 Instead we could introduce type-shifting rules that correspond to the empty
categories.
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The parsing tree for each sentence in (43) is shown in Figures
2, 3, and 4, respectively.21 We assign a uniform semantic represen-
tation to each adjective, following the strategy of generalizing to the
worst case (Montague 1970). An adjective (e.g., tall) and its compara-
tive form (e.g., taller) of category Sadj\NP are uniformly assigned the
following term:
(44) λQδHI .Q(I(λx .tall(x ,δ), H(tall,δ)))

This term is combined with the other terms including empty ele-
ments to form the relevant logical form as illustrated in Figures 2,
3, and 4. For comparison, Figure 5 shows the parsing tree for the
case where the explicit degree modifier 4 feet appears in the adjunct
position.

We introduce two variables H and I in the semantic repre-
sentation in (44). H can be filled in different ways to control the
meaning of a than-clause, as illustrated in Figure 2 where there
is no than-clause or Figure 3 where there is a noun phrase in
the than-clause. I is used to determine whether the entire logical
form is of existential type as in (43b) or of universal type as in
(43c). We ascribe the negation in A-not-A analysis to than, follow-
ing the analysis of than-clauses as introducing negative contexts
as presented in the categorial grammar literature (Hendriks 1995).

Ann
N

ann
NP lex

λF.F(ann)

is
(S\NP)/(Sadj\NP)

λAQ.Q(λx .A(λF1.F1(x),δ′, H ′, I ′))

pos
(Sadj\NP)/(Sadj\NP)

λAQδHI .A(Q,θtall,λH1δ.>,
λF1F2 x .F1(x))

tall
Sadj\NP

λQδHI .Q(I(λx .tall(x ,δ),
H(tall,δ)))

Sadj\NP >

λQδHI .Q(λx .tall(x ,θtall))

S\NP >

λQ.Q(λx .tall(x ,θtall))
S

<

tall(ann,θtall)

Figure 2: Parsing tree of Ann is tall

21 In these semantic representations, δ′, H ′, and I ′ are constants to be applied
to the vacuous λ-abstraction appearing in the term of category Sadj\NP.
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Ann
N

ann
NP lex

λF.F(ann)

is
(S\NP)/(Sadj\NP)

λAQ.Q(λx .A(λF1.F1(x),
δ′, H ′, I ′))

4 feet
(Sadj\NP)/(Sadj\NP)

λAQδHI .∃δ1.A(Q,δ1,λH1δ.>,
λF1F2 x .(F1(x)∧ (δ1 = 4)))

tall
Sadj\NP

λQδHI .Q(I(λx .tall(x ,δ),
H(tall,δ)))

Sadj\NP >

λQδHI .∃δ1.Q(λx .(tall(x ,δ1)∧ (δ1 = 4)))

S\NP >

λQ.Q(λx .∃δ1.(tall(x ,δ1)∧ (δ1 = 4)))
S

<

∃δ1.(tall(ann,δ1)∧ (δ1 = 4))

Figure 5: Parsing tree for Ann is 4 feet tall

3.2 Generalized quantifiers and numeral adjectives

Determiners such as every, no, and most are assigned the category
NP/N in CCGBank. Table 4 shows some representative examples of
lexical entries for determiners. The lexical entry for most here derives
the desired logical form in (34).

To see how to give a compositional analysis of numeral adjec-
tives in our framework, let us first take a look at modified numer-
als. Here we need to distinguish three types of NPs according to their
monotonicity property (Barwise and Cooper 1981), upward mono-
tonic (e.g., at least two), downward monotonic (e.g., at most two),
and non-monotonic (e.g., exactly two). Table 5 gives lexical entries
for these three types of modifiers. Here we use the category Num
for numeral expressions such as two. For bare numerals like two in
(45a), we shift the category Num to NP/N , which yields the term
λF1F2.∃x(F1(x) ∧ F2(x) ∧ many(x , 2)). This allows us to derive the
logical form in (45b):

Table 4:
Lexical entries
for quantifiers

Expression Syntactic category LF
every NP/N λF1F2.∀x(F1(x)→ F2(x))

some NP/N λF1F2.∃x(F1(x)∧ F2(x))

no NP/N λF1F2.¬∃x(F1(x)∧ F2(x))

most NP/N λF1F2.∃δ(∃x(F1(x)∧ F2(x)∧many(x ,δ))

∧¬∃y(F1(y)∧¬F2(y)∧many(y,δ)))
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Table 5: Lexical entries for monotonicity

Expression Syntactic category Logical form

2 Num 2

at least (NP/N)/Num λδF1F2.∃x(F1(x)∧ F2(x)∧many(x ,δ))

at most (NP/N)/Num λδF1F2.¬∃x(F1(x)∧ F2(x)∧many(x ,δ+ 1))

exactly (NP/N)/Num λδF1F2.(∃x(F1(x)∧ F2(x)∧many(x ,δ))

∧∀δ1(∃x(F1(x)∧ F2(x)∧many(x ,δ1))→ (δ1 ≤ δ)))
ϕexactly (NP/N)/Num λδF1F2.(∃x(F1(x)∧ F2(x)∧many(x ,δ))

∧∀δ1(∃x(F1(x)∧ F2(x)∧many(x ,δ1))→ (δ1 ≤ δ)))

(45) a. Mary read two books. (Upward)
b. ∃x(book(x)∧many(x , 2)∧ ∃e(read(e)∧ (subj(e) = mary)
∧ (obj(e) = x)))

For numeral modifiers such as at least, we give the category
(NP/N)/Num. Figure 6 shows an example derivation. The following is
an example of a sentence involving a downward monotonic modifier
less than.
(46) a. Mary read less than two books. (Downward)

b. ¬∃x(book(x)∧many(x , 2)∧∃e(read(e)∧(subj(e) = mary)∧
(obj(e) = x)))

at least
(NP/N)/Num

λδF1F2.(∃x(F1(x)∧ F2(x)∧many(x ,δ))

two
Num

2

NP/N >

λF1F2.(∃x(F1(x)∧ F2(x)∧many(x , 2))

books
N

λx .book(x)
NP >

λF2.(∃x(book(x)∧ F2(x)∧many(x , 2))

Figure 6:
Parsing tree of
at least two books

Similarly, we assign syntactic categories like (NP/N)/Num to non-
monotonic quantifiers such as exactly and only. This allows the sen-
tence (47a) to be assigned the complex logical form (47b), which adds
the meaning “the number of books Mary read is less than or equal to
two” to (45b).
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(47) a. Mary read exactly two books. (Non-monotonicity)
b. ∃x(book(x)∧many(x , 2)∧ ∃e(read(e)∧ (subj(e) = mary)∧
(obj(e) = x)))∧∀x∀δ(book(x)∧many(x ,δ)∧∃e(read(e)∧
(subj(e) = mary)∧ (obj(e) = x))→ (δ ≤ 2))

Here (45a) has the at least reading glossed as “Mary read at least
two books”. However, it is often natural to interpret (45a) as “Mary
read exactly three books”. This exactly reading is usually derived prag-
matically as scalar implicature (SI) (Horn 1973; Gazdar 1979; van
Rooij and Schulz 2004). To account for this reading, as an initial at-
tempt, we implement the mechanism of scalar implicature in our sys-
tem. For this purpose, we use empty category ϕexactly, which derives
the same interpretation as in (47b) for (45a). Thus the system can dis-
tinguish two logical forms for a sentence involving a bare numeral,
depending on the environment in which it appears.22

This type of pragmatic ambiguity is related to the fact that
tall(x ,δ) is not interpreted as “x is exactly as tall as δ” but as “x is
at least as tall as δ”, as mentioned in Section 2.3.1. Thus by inserting
the ϕexactly operator we can uniformly derive SI readings for sentences
with numerical expressions as in (45), equatives as in (48), measure
phrases as in (49) and (50).
(48) a. Tom is as tall as Mary.

  Tom is exactly as tall as Mary.
b. ∀δ(fast(mary,δ)↔ fast(tom,δ))

(49) a. John is 5 cm shorter than Bob.
  John is exactly 5 cm shorter than Bob.

b. ∀δ(short(bob,δ)↔ short(john,δ− 5 cm))
(50) a. Bob is 170 cm tall.

  Bob is exactly 170 cm tall.
b. tall(bob, 170 cm)∧∀δ(tall(bob,δ)→ (δ ≤ 170 cm))

On the other hand, negative sentences from (51) to (53) have at
least reading (see Spector (2013) for an overview). Thus, we do not
insert the empty categories in the following constructions.

22This strategy is similar to the grammatical encoding of scalar implicature
proposed by Chierchia (2004).
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(51) a. Peter didn’t solve ten problems.
b. ¬∃x(problem(x)∧ solve(peter, x)∧many(x , 10))

(52) a. Tom is not as tall as Mary.
b. ¬∀δ(tall(mary,δ)→ tall(tom,δ))

(51a) can be interpreted to mean that Peter solved no more than nine
problems, i.e., the number of problems Peter solved is less than ten.
To derive the reading in (51b), we need to assign the at least reading
to the numeral adjective ten. Similarly, the equative construction with
the negation in (52a) has the at least reading as in (52b).

Such differences in interpretation occur not only in negation but
also more generally in downward environments triggered by negative
adjectives such as fewer than five and few, as well as in the antecedent
of a conditional and the restrictor of a universal quantifier.23

(53) a. Fewer than five children play in the park.
b. Few boys had three cookies.
c. If Andy is 5 feet tall, he is taller than Bob.
d. Every student who solved 10 problems passed.

We apply the same technique to derive two reading of the deter-
miner any (Kadmon and Landman 1993), the existential reading as in
(54a) and the universal reading as in (54b).
(54) a. Bob did not take any exams. (Existential reading)

b. Any owl hunts mice. (Universal reading)
The existential reading is known to be allowed only if any appears
within the range of DOWNWARD ENTAILING (DE) operators (DE en-
vironments) that reverse the direction of entailment, such as negative
expressions (Ladusaw 1979). We assume that there is lexical ambigu-
ity in that any as an NPI has an existential meaning (Horn 1973; Ladu-
saw 1979), while any as free choice has a universal meaning (Carlson
1981).

To derive two interpretations, we determine from the CCG parsing
trees whether any appears in the DE environment. Specifically, when

23Note that there is disagreement as to whether hypothetical clauses are truly
SI-free; see the discussion in Breheny (2008) and Spector (2013).
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any appears in a non-DE environment, we assign a universal meaning
(any∀), and when any appears in a DE environment, we assign an ex-
istential meaning (any∃). This is accomplished in the same way as the
process for deriving SIs as described before.

3.3 Compositional event semantics
and adverbial comparatives

For the compositional account of adverbs and adverbial comparatives,
we basically follow the implementation of compositional event seman-
tics presented in Martínez-Gómez et al. (2017), which derives the log-
ical form (55b) from the sentence (55a). The compositional derivation
is shown in Figure 7.
(55) a. Tim ran fast.

b. ∃e(run(e)∧ (subj(e) = tim)∧ fast(e,θfast))

To derive the logical form in (55b) compositionally, we follow
Champollion (2015) to use a continuation variable K which is to be
filled in by an adverbial element; If there is no adverbial element as
in the root of the parsing tree, it is filled by the constant > (meaning
“true”). We also need to introduce an empty category pos that sets the
threshold value to θtall, in a similar way to the treatment of positive
adjectives.

4 EXPERIMENTS

We implemented our system and evaluated it on various NLI datasets.
All code and data, including visualized CCG parsing trees with logical
forms obtained for each dataset, are made publicly available at https:
//github.com/izumi-h/ccgcomp.

4.1 System architecture

Figure 8 shows the pipeline of the proposed system. First, the input
consists of a set of premises P1, . . . , Pn and a hypothesis H, which are
mapped to CCG parsing trees. The trees are converted so that they
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are suitable for our compositional semantics described in Section 3.
The modified trees are mapped to logical forms. Before the process
of theorem-proving, the abduction mechanism searches for lexical re-
lations holding on the predicates in the mapped logical forms and
introduces them as axioms. Then, a theorem prover checks whether
P1 ∧ · · · ∧ Pn → H holds, potentially with the aid of the axioms. The
system outputs yes (entailment) if P1 ∧ · · · ∧ Pn → H can be proved
by a theorem prover, and outputs no (contradiction) if the negation of
the hypothesis (i.e., P1 ∧ · · · ∧ Pn→¬H) can be proved. If both fail, it
tries to construct a counter-model and outputs unknown (neutral) if a
counter model is found or a timeout occurs.

We build the system on top of off-the-shelf CCG parsers and a
theorem prover. To these existing tools, we mainly add three com-
ponents, (1) rules to transform CCG derivation trees, (2) rules to map
CCG derivation trees to logical forms, and (3) axioms for comparatives
to derive theorems. We will explain each step in the pipeline in detail.
1. Syntactic parsing To obtain CCG parsing trees we use three CCG
parsers to mitigate parsing errors: C&C (Clark and Curran 2007), Easy-
CCG (Lewis and Steedman 2014), and depccg (Yoshikawa et al. 2017).
For all parsers, we use the standard model trained on the original CCG-
Bank. We also use POS tagging to supplement the information avail-
able from CCG trees. For example, CCG categories do not distinguish
positive and comparative forms of adjectives. To remedy this, we use
POS tags JJ and JJR for positive and comparative forms. For POS tag-
ging, we use the C&C POS tagger for C&C and spaCy24 for depccg.
2. Tree conversion To modify CCG parsing trees, we use Tsur-
geon (Levy and Andrew 2006). We use 125 entries (regex rewriting
rules) in the Tsurgeon script. In addition to modifying trees, we use
the following rules to add information needed to derive logical forms
in our compositional semantics. There are five types of rewriting rules.
• Multiword Expression. We add rules to join multiword expres-
sions for determiners; e.g. a lot of to a∼lot∼of and a few to a∼few.
• Empty category. We insert empty categories and add syntactic
features to CCG categories as described in Section 3.

24https://github.com/explosion/spaCy
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• Adjective type. Based on the analysis presented in Section 2, we
classify adjectives into six types: extensional positive (POS), ex-
tensional negative (NEG), intensional positive (POS-INT), inten-
sional negative (NEG-INT), non-gradable (PRE), or non-subsective
(N-SUB). To classify positive and negative adjectives, we use Sen-
tiWordNet (Baccianella et al. 2010). For the other types, we pre-
pare hand-rewritten rules for a set of the adjectives appearing in
the FraCaS dataset.
• Negative Polarity any. We distinguish any∀ and any∃ according to
its environment as described in Section 3.2.
• Lemmatization. Comparative forms of adverbs are converted to
positive forms (e.g., faster to fast), and positive forms of adverbs
are converted to corresponding adjectives (e.g., slowly to slow).
We use the WordNet (Miller 1995) library in NLTK25 for this con-
version.

3. Semantic parsing To implement compositional semantics, we
use the semantic parsing platform ccg2lambda (Martínez-Gómez et al.
2016), which uses λ-calculus to obtain logical forms. We extend the
schematic lexical entries (called semantic templates) for FOL event se-
mantics proposed in Martínez-Gómez et al. (2017) to handle linguistic
phenomena based on degree-based semantics. In this system, semantic
parsing is performed using two different semantic templates to manip-
ulate the scope of negation in logical forms. If input sentences contain
the negation not or n’t, the proof is attempted in two different logi-
cal forms with negation taking wide scope or narrow scope. The total
number of lexical entries assigned to CCG categories is 551, and the
number of entries directly assigned to particular words (e.g., than and
as for comparatives and items for quantifiers) is 151.
4. Abduction mechanism To handle basic lexical inferences, we
adapt an abduction mechanism presented in Martínez-Gómez et al.
(2017) to our framework. Given logical forms for premises, the abduc-
tion mechanism searches lexical relations from two lexical knowledge
bases: WordNet (Miller 1995) and VerbOcean (Chklovski and Pantel
2004). Following Martínez-Gómez et al. (2017), we use seven rela-

25https://www.nltk.org/
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tionships such as antonym and hypernym and add the corresponding
axioms. The acquisition of antonym relations of gradable adjectives
such as tall and short is also based on the use of this mechanism.
5. Theorem proving For theorem proving, we use a resolution-based
FOL prover Vampire 4.4 (Kovács and Voronkov 2013),26 which ac-
cepts TFF forms with arithmetic operations. The proof runs in the
automatic modes casc and casc_sat, which automatically select a
series of strategies that attempt to prove a particular problem. While
casc is aimed at solving theorems, casc_sat is aimed at solving satis-
fiable or non-theorem problems, that is, those problems where there is
a model in which the premises are true but the conclusion is false (i.e.,
there is a counter-model for the inference). In our system, we first try
to prove the problem in casc mode and then try to prove it again in
casc_sat mode for any problems that are labeled unknown. We set
the timeout at 7 sec in casc mode and 1 sec in casc_sat. We add
the four axiom schemata described in Section 2, which we call the ax-
iomatic system COMP, before starting the process of theorem proving.
Each axiom scheme is instantiated by gradable adjectives appearing
in the target sentences.

We run a process of theorem proving for each of the three
parsers and obtain three outputs. If the three outputs are different,
we choose the system answer in the following way: if two answers
are yes (resp. no), then the system answer is yes (resp. no), no matter
what the other answer is; if one answer is yes (resp. no) and the others
are unknown, the system answer is yes (resp. no); if all answers are
different, then the system answer is unknown.

4.2 Datasets

For evaluation, we use five NLI datasets containing linguistically chal-
lenging problems with quantifiers, adjectives, adverbs, comparatives,
and lexical knowledge. Table 6 shows some examples in each dataset.
FraCaS FraCaS (Cooper et al. 1996) is a dataset comprising nine sec-
tions, each of which contains semantically challenging inferences re-
lated to various linguistic phenomena. In this study, we target four

26https://github.com/vprover/vampire
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Table 6: Examples of entailment problems from the FraCaS, MED, SICK, HANS,
and CAD datasets. They are solved by our system but not by the DL models

Dataset Label ID Example (premises and hypothesis) Gold label

FraCaS

Adj
P1: Mickey is a small animal.

209 P2: Dumbo is a large animal. No
H: Mickey is larger than Dumbo.

Com
P1: ITEL won more orders than APCOM lost.

241 P2: APCOM lost ten orders. Yes
H: ITEL won at least eleven orders.

MED gq

485 P: Exactly 12 aliens threw some tennis balls. Unknown
H: Exactly 12 aliens threw some balls.

1021
P: More than five campers have had a sunburn

Unknownor caught a cold.
H: More than five campers have caught a cold.

gqlex 176 P: Few aliens saw birds. Yes
H: Few aliens saw doves.

SICK –
1357

P: A puppy is repeatedly rolling from side to
Yesside on its back.

H: A dog is rolling from side to side.
4789 P: There is no woman riding on an elephant. Unknown

H: A woman is opening a soda and drinking it.

HANS –

16005 P: Happy authors advised the artists. Yes
H: Authors advised the artists.

23990
P: The student recommended the author,

Unknownor the presidents believed the managers.
H: The student recommended the author.

CAD –

P1: John is 5 cm taller than Bob.
001 P2: Bob is 170 cm tall. Yes

H: John is 175 cm tall.
P1: Bob is not tall.

103 P2: John is not tall. Unknown
H: John is taller than Bob.

115 P: Exactly seven students smiled. Yes
H: At most nine students smiled.

157
P1: Ann runs as fast as Luis does.
P2: Ann runs slowly. No
H: Luis runs fast.
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sections: Generalized Quantifiers (GQ: 73 problems), Adjectives (Adj:
22 problems), Comparatives (Com: 31 problems), and Attitudes (Att:
13 problems). The Comparative section contains a complex inference
that requires arithmetic operation, such as ID-241 in Table 6.

MED MED (Yanaka et al. 2019) collects problems with monotonic-
ity inferences with generalized quantifiers and lexical knowledge via
crowdsourcing. We use a portion of the dataset tagged with gqlex and
gq, those inferences that require lexical knowledge (gqlex: 691 prob-
lems) and those that do not (gq: 498 problems).
SICK We use the 2014 version of SemEval (Marelli et al. 2014) of SICK
dataset. The dataset contains 4,927 problems for test set. SICK is de-
signed to evaluate compositional inferences involving lexical knowl-
edge and logical operations such as negation and quantifiers.

HANS HANS (McCoy et al. 2019) is a dataset containing problems
that DL-based systems tend to erroneously output yes for cases in
which they rely on simple heuristics, for example, problems where
the hypothesis is a constituent or a sub-string of the premise, such
as disjunctive sentences (e.g., HANS-23990 in Table 6), and problems
related to those concerning adjectives and adverbs (e.g., ID-16005 in
Table 6). The entire test set contains 30,000 problems, which are di-
vided into entailment (yes) and non-entailment (unknown) problems.

CAD The above four datasets do not cover linguistically interesting
inferences such as ones concerned with adverb phrases (e.g., dropping
adverbial phrases and comparative forms of adverbs). Accordingly, we
created a new dataset containing 257 inference problems concerning
adjectives, comparatives, adverbs, and quantifiers. The dataset also
includes problems related to SI (29 problems), to which both gold
labels for semantic interpretation and pragmatics interpretation (i.e.,
those considering SIs) are annotated. We collected a set of inferences
(13 problems) from linguistics papers (Klein 1982; Lasersohn 2006)
and created more problems by adding negation and degree modifiers
(e.g., very), changing numerical expressions, replacing positive and
negative adjectives (e.g., large to small), or swapping the premise and
hypothesis of an inference. Of the 257 problems, 137 are single-pre-
mise problems, and 120 are multi-premise problems. The distribution
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of gold answer labels is (yes/no/unknown) = (110/70/77). All of the
gold labels were checked by an expert in linguistics.

4.3Results and discussion

Tables 7, 8, 9, 10, and 11 show the results of the evaluation. We will
describe the details of each result from Section 4.3.1 to Section 4.3.5
below. Since MED and HANS use binary labels (yes and unknown),
for these two datasets we modify the system so that it outputs yes if
the hypothesis can be proved from the premise; otherwise, the output
is unknown. Majority is the accuracy of the majority baseline. Before
looking at the details of the results, let us explain the setting of an
ablation analysis and the systems being compared.
Ablation analysis To gain insights into the impact of each compo-
nent, we performed an ablation analysis on overall performance.
• Plain is the accuracy of the system with the transformation of CCG
parsing trees only.
• +abduction is the accuracy achieved by the insertion of lexical
knowledge through the implementation of the abduction mecha-
nism, as described in Section 4.1.
• +rule is the accuracy achieved by the addition of hand-coded
rules. Some errors were caused by failing to assign correct POS
tags and lemmas to comparatives. For example, cleverer is wrongly
assigned NN rather than JJR (FraCaS-217). To estimate the upper

FraCaS
Section GQ Adj Com Att
#All 73 22 31 13
Majority .49 .41 .61 .62
DL RB .73 .45 .52 .69
Logic MN .77 .68 .48 .77

LP .93 .73 – .92

Ours
plain .96 .82 .90 .92
+abduction .97 .82 .90 .92
+abduction +rule .99 .95 .90 .92

Table 7:
Accuracy on FraCaS dataset
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Table 8:
Accuracy on MED dataset

MED
Label gq gqlex
#All 498 691
Majority .58 .63

DL
BERT .56 .58
BERT+ .54 .68
RB .57 .55

Ours
plain .97 .67
+abduction .97 .91
+abduction +rule .97 .92

Table 9:
Accuracy on SICK dataset

SICK
#All 4,927
Majority .57
DL RB .56

Logic LP .81
MG .83

Ours
plain .76
+abduction .82
+abduction +rule .82

bound on the accuracy of our system by reducing error propaga-
tion, we added hand-coded rules to assign correct POS tags and
lemmas (23 words). We also added two rules to join multiword
expressions to derive correct logical forms (law lecturer and legal
authority in FraCaS-214, 215).
• For CAD, we also experimented with an implementation for SI, as
described in Section 3.2. We use 23 rules in Tsurgeon scripts. The
accuracy is shown in+implicature.

Comparison of existing NLI systems We compare our system with
other logic-based systems and recent DL-based systems. For logic-
based systems, we mainly compare three systems based on CCG
parsers and theorem proving:
• MN (Mineshima et al. 2015) uses a CCG parser (C&C; Clark and
Curran 2007) and implements a theorem prover for NLI based
on HOL. This system uses Coq (Castéran and Bertot 2004), an

[ 176 ]



Implementing natural language inference for comparatives

HANS
Gold yes unknown
#All 15,000 15,000
Majority .50 .50

DL BF .87 .61
RB 1.0 .56

Symbolic GKR4 .84 .59

DL & Symbolic HNB .84 .54
HNX .83 .25

Ours
plain .98 .83

+abduction .98 .83

+abduction +rule .98 .83

Table 10:
Accuracy on HANS dataset

CAD
#All 257
Majority .43
DL RB .58

Ours

plain 81
+abduction .81
+abduction +rule .82
+abduction +rule +implicature .92

Table 11:
Accuracy on CAD dataset

interactive natural deduction theorem prover in a fully automated
way.
• LP (Abzianidze 2015, 2016) is a system that uses two CCG parsers
(C&C and EasyCCG) and implements a natural logic inference
system based on semantic tableau. The system uses the theorem
prover for HOL (Abzianidze 2015) based on natural logic (Lakoff
1970; van Benthem 1986).
• MG (Martínez-Gómez et al. 2017) is a system based on two CCG
parsings (C&C and EasyCCG) with compositional event semantics
and theorem proving, an updated version of MN.

Table 12 summarizes the characteristics of the logic-based systems,
including ours.

For DL-based systems, we compare our system with the following.
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Table 12: Existing logic-based NLI systems

System Proof strategy Logic Prover Abduction Arithmetic
MN natural deduction HOL Coq
LP tableau Natural Logic/HOL NLogPro Ø
MG natural deduction FOL Coq Ø
Ours resolution Typed FOL Vampire Ø Ø

• BERT shows the performance of a BERT model fine-tuned with
MultiNLI, and BERT+ shows that of a BERT model with data aug-
mentation for approximately 36,000 monotonicity inferences in
addition to the MultiNLI training set. Both models were tested
and reported in Yanaka et al. (2019).
• BF is a BiLSTM model trained on MultiNLI, which is a state-
of-the-art model on HANS. The model was tested and reported
in Yaghoobzadeh et al. (2019).
• RB shows that we use a state-of-the-art model RoBERTa (Liu et al.
2019) trained on MultiNLI (Williams et al. 2018) using the imple-
mentation provided in AllenNLP.27 The accuracies in the table
represent those we tested.
In addition, for HANS dataset (see Table 10) we refer to the accu-

racy of a hybrid system with a symbolic component and a DL compo-
nent reported in Kalouli et al. (2020), where three systems, HNB, HNX,
and GKR4 are distinguished.
• HNB uses the Graphical Knowledge Representation (GKR) context
graphs (Kalouli and Crouch 2018) to determine whether a given
inference is semantically complex or not; for a complex problem,
it uses a symbolic component that makes use of multiple graphs
to represent sentence information, while for a simple problem, it
uses a BERT model for determining the entailment label.
• HNX is a system that uses an XLNet model as the DL-model.
• GKR4 is a system that only uses the symbolic component.

27https://github.com/allenai/allennlp
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4.3.1FraCaS

Table 7 shows the results on FraCaS. For comparison, we use the two
logic-based systems (MN and LP) and the DL-based system (RB). Our
system achieved very high accuracy and outperformed the DL-system
by a large margin. Table 6 shows examples that were solved by our
system but not by the DL-system. Our system successfully solved infer-
ences such as FraCaS-209 that involve antonyms, which the DL-system
found particularly difficult to solve. FraCaS-241 is a complex inference
with numerical expressions and clausal comparatives. This problem is
solved by our system but by neither of the other logic-based systems,
nor by the DL-system.

One problem that our system was not yet able to solve is con-
cerned with comparative ellipsis. The sentence APCOM has a more
important customer than ITEL (FraCaS-244, 245) can have two inter-
pretations (56H) or (57H).
(56) P: APCOM has a more important customer than ITEL.

H: APCOM has a more important customer than ITEL is.
(FraCaS-244, gold label: yes)

(57) P: APCOM has a more important customer than ITEL.
H: APCOM has a more important customer than ITEL has.
(FraCaS-245, gold label: yes)

Our system does not have a component to handle this type of com-
parative ellipsis and can only derive the interpretation in (56H), thus
failing to provide the correct judgement for FraCaS-245.

4.3.2MED

Table 8 shows the results on MED. Our system outperformed the DL-
based systems. MED-176 and MED-485 in Table 6, which involve a
downward quantifier (few) and a non-monotonic quantifier (exactly
12), respectively, are examples that our system correctly solved but
the DL-models did not. For the problems containing lexical inferences
in gqlex, our system achieved a high improvement in accuracy (67%
to 91%) by implementing the abduction mechanism, showing that our
system is compatible with lexical knowledge.
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4.3.3 SICK

Table 9 shows the results on SICK. Our system outperformed the DL-
based system (RB) and achieved comparable results with the logic-
based systems (LP and MG). SICK-1357 in Table 6 is an example in-
volving the lexical inference from puppy to dog. Our system correctly
predicted the yes label for this problem, while the DL-based system
(RB) predicted the no label. SICK-4789 in Table 6 contains negation no;
our system can represent what information is negated by the scope of
the negation in the logical form, but DL-based systems tend to answer
no to such inferences.

One problem that was solved by MG but not by our system is the
following.
(58) P: Someone is on a black and white motorcycle and is stand-

ing on the seat.
H: A motorcycle rider is standing up on the seat of a white
motorcycle. (SICK-199, gold label: unknown)

In the case of MG, which implements on-demand abduction (an axiom
is added during the process of constructing a natural deduction proof),
the premise sentence does not generate any axioms, while in our sys-
tem, the axiom ∀x(black(x) → ¬white(x)) based on the antonym is
added before the proof process, making the premise inconsistent with
the same entity being white and not white at the same time. Thus, our
system incorrectly predicts yes by the principle of explosion (i.e., any
proposition can be derived from the contradiction).

Another type of error is found in the following problem.
(59) P: A man is holding a small animal in one hand.

H: A man is holding an animal, which is small, in one hand.
(SICK-4690, gold label: yes)

The gradable adjective small in P is a nominal adjective, generating
the threshold θsmall(animal), while that in H is a predicate adjective,
generating the threshold θsmall(U) with the universal set U. Due to this
mismatch in the comparison class, the system failed the proof.

Overall, our system achieved performance comparable to that of
MG based on event semantics, thus showing the compatibility of event
semantics and degree semantics.
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4.3.4HANS

Table 10 shows the results on HANS. We compared our system with
the following systems: BF, RB, GKR4, HNB, and HNX.

McCoy et al. (2019) reported that DL-based systems tend to er-
roneously output yes for cases in which the hypothesis was a con-
stituent or a substring of the premise, such as disjunctive sentences
(e.g., HANS-23990 in Table 6). To see how a system performs in these
cases, we present the accuracy for each gold answer label (yes and
unknown). While accuracy whose gold label is yes was close to 100%
in both our system and the DL-based system (RB), the accuracy of our
system was higher than that of RB when the label is unknown (83% vs.
56%).

One reason for the relatively low accuracy (83%) of our system
in comparison with its performance on the other datasets is parse er-
ror. HANS contains syntactically complex sentences such as The au-
thor who advised the lawyer supported the athlete (HANS-12182, subse-
quence), for which the CCG parsers output incorrect parses. For exam-
ple, in the case of C&C parser, the substring of the sentence, The author
who advised, is parsed as NP, separated from the object noun phrase
the lawyer. The rest of the sentence, the lawyer supported the athlete, is
parsed as S and shifted to NP\NP. For depccg, the sentence The athletes
presented in the library (HANS-13002) is parsed as NP instead of S.

Another type of error is concerned with an inference involving a
modal adverb, e.g., the inference from Probably the secretary admired
the athlete to The secretary admired the athlete (HANS-24034). The gold
label is unknown, but our system predicts yes since any adverb can be
dropped in the current implementation. A more fine-grained classifi-
cation of adverbs will be needed to handle this type of inference.

4.3.5CAD

Table 11 shows the results on CAD. Our system outperformed the DL-
based system (RB). Our system was able to solve inference involving
numerical computations (CAD-001,115) and antonym conversion for
adverbs (CAD-157) shown in Table 6, while RB incorrectly predicted
unknown for CAD-001, no for CAD-115, and yes for CAD-157.

Table 13 shows some example problems from CADwhere the gold
label changes between semantics and pragmatics. In the setting shown
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Table 13:
Examples

of entailment
problems for SI
of gradable
expressions
from CAD

ID Premises and hypothesis Gold label
Semantics Pragmatics

P1: John is 5 cm shorter than Bob.
002 P2: Bob is 170 cm tall. Unknown Yes

H: John is 165 cm tall.
P1: Bob is much taller than John.

052 P2: Bob is a 5 feet tall boy. Unknown Yes
H: John is shorter than 5 feet.

112 P: Bob saw four students. Yes No
H: Bob saw three students.

145 P: Ann runs as fast as Luis. Unknown No
H: Ann runs faster than Luis.

245 P: There are a few books. Unknown No
H: There are many books.

in+implicature, our system was able to solve problems involving SIs,
which led to the improvement in accuracy. Our system also solved
complex inferences (CAD-002,052) that involve antonyms and numer-
ical expressions.

There are still problems that need to be addressed. For example,
the sentence Jones drives more carefully today than yesterday (CAD-183)
conjoins two adverbs today and yesterday by than. The current system
does not derive the correct logical form for this type of complex coordi-
nate structure formed by than-clauses. Also, in the case of the sentence
Chris is more happy than Alex is sad (CAD-013), which is an instance of
COMPARATIVE SUBDELETION (Bresnan 1975), the clause Alex is sad
is simply parsed as S and mapped to sad(alex,θsad), making it impossi-
ble to compare it the degrees introduced by the main clause. Further
improvement to CCG parsing is needed to handle complex coordinate
constructions and comparative subdeletion.

4.3.6 Comparison of CCG parsers

For a comprehensive comparison, Table 14 shows accuracies for each
CCG parser at its best performances in our system. It shows that our
system achieved the best accuracy with depccg in most datasets. One
of the reasons for this is that the tree conversion is designed based on
the outputs of depccg. It is also noted that as described in Section 4.1,
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Table 14: Accuracy for each CCG parser at the best performances

Parser FraCaS MED SICK HANS CADGQ Adj Com Att gq gqlex yes unknown
Multi .99 .95 .90 .92 .97 .92 .82 .98 .83 .92
C&C .82 .86 .61 .69 .93 .88 .76 .80 .85 .52

EasyCCG .97 .86 .55 .92 .97 .89 .77 .93 .98 .53
depccg .96 .95 .90 .92 .96 .91 .77 .97 .95 .92

our system prioritizes yes (or no) rather than unknown among the an-
swers given by the three parsers. For this reason, parse errors caused
by C&C led to a decrease in overall accuracy in the case of unknown
problems, as shown in Table 14. It would be necessary to refine the
system’s answer selection mechanism when multiple parsers are used.

4.3.7General discussion

FraCaS and CAD are datasets manually constructed by experts; their
size is small (FraCaS: 139 , CAD: 257) but contains linguistically chal-
lenging inferences. The evaluation of FraCaS and CAD shows that the
proposed system can handle the various types of complex inferences
discussed in formal semantics, including adjectives, comparatives, and
generalized quantifiers.

MED, SICK, and HANS are crowdsourced or automatically gener-
ated datasets that are larger in size than FraCaS and CAD (MED: 1,189,
SICK: 4,297, HANS: 30,000). The inferences in MED, SICK, and HANS
are single-premise inferences, simpler than FraCaS and CAD but con-
taining lexical inferences (MED, SICK) and logical phenomena such as
quantification, disjunction, and negation (MED, SICK, HANS). The ex-
perimental results for MED, SICK, and HANS indicate that our system
can successfully handle these types of inferences.

The ablation study aimed to estimate the effects of three addi-
tional mechanisms: (1) abduction (lexical inference) mechanism, (2)
hand-written rules for error correction, and (3) mechanisms for han-
dling implicature. The results of the ablation study for each dataset
show that the system improved accuracy for the datasets that include
lexical inference (indicated by +abduction in MED and SICK) and
for the dataset containing implicature (indicated by +implicature in
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CAD). These results were more or less expected, but still seem to be
meaningful enough to show the effectiveness of the additional com-
ponents.

5 CONCLUSION

We presented a CCG-based compositional semantics and inference
system for comparatives and other related constructions. The logi-
cal forms used are based on A-not-A analysis in formal semantics
and the inference system is combined with the axioms of COMP
based on TFF forms acceptable in efficient FOL provers. The en-
tire system is transparently composed of multiple modules and can
solve complex inferences in an explanatory manner. The system can
handle gradable expressions such as comparatives and adjectives,
which are a weakness of conventional logic-based systems. The sys-
tem can also be extended to handle generalized quantifiers, adverbs,
and numerals while maintaining the advantages of the original sys-
tem for adjectival comparatives. For adverbs in particular, by com-
bining two semantic theories, degree semantics and event semantics,
we were able to assign appropriate logical forms to solve complex in-
ferences.

For evaluation, we used various NLI datasets containing linguisti-
cally challenging problems. The results showed that our system works
well on complex logical inferences for which standard DL-based sys-
tems show poor performance. In addition, our system has the advan-
tage that it does not require large amounts of training data, such as
SNLI or MultiNLI, as opposed to DL-based systems.

It might be objected that the results on the DL models in Sec-
tion 4.3 were not surprising, because these models were trained on
SNLI and MultiNLI that do not target the logical and numerical in-
ferences we are concerned with in this study. However, it is fair to
say that it is challenging to generate effective training data for han-
dling various complex inferences with comparatives, numerals, and
generalized quantifiers. This study can also contribute to the study
of computational modeling and to the evaluation of formal semantic
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theories, as well as to the creation of challenging NLI problems that
DL-based models need to address.

In addition to the problems we have already mentioned, there
are still some unresolved issues in this study. For example, we need to
extend our analysis to cover more challenging comparative construc-
tions such as GAPPING (Ross 1970; Hendriks 1995). It would also be
interesting to modify CCGbank, which is the training data for CCG
parsers, based on the proposed transformation of parsing trees. These
are left for future work.
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