
ǣ ᵽ э ȏ ḙ ṍ ɨ ї ẁ ľ ḹ š ṍ ḯ ⱪ ч ŋ ṏ ȅ ů ʆ ḱ ẕ ʜ ſ ɵ ḅ ḋ ɽ ṫ ẫ ṋ ʋ ḽ ử
ầ ḍ û ȼ ɦ ҫ w ſ ᶒ ė ɒ ṉ ȧ ź ģ ɑ g ġ љ ц ġ ʄ ộ ȕ җ x ứ ƿ ḉ ự û ṻ ᶗ ƪ ý
ḅ ṣ ŀ ṑ т я ň ƪ ỡ ę ḅ ű ẅ ȧ ư ṑ ẙ ƣ ç þ ẹ в е ɿ ħ ԕ ḷ ḓ í ɤ ʉ ч ӓ ȉ ṑ
ḗ ǖ ẍ ơ я ḩ ȱ π і ḭ ɬ a ṛ ẻ ẚ ŕ î ы ṏ ḭ ᶕ ɖ ᵷ ʥ œ ả ұ ᶖ ễ ᶅ ƛ ҽ ằ ñ ᵲ
ḃ ⱥ ԡ ḡ ɩ ŗ ē ò ǟ ṥ ṋ p ị ĕ ɯ t ž ẛ ặ č ṥ ĳ ȓ ᶕ á ԅ ṿ ḑ ģ ņ ԅ ů ẻ l e
ố й ẉ ᶆ ṩ ü ỡ ḥ ф ṑ ɓ ҧ ƪ ѣ ĭ ʤ ӕ ɺ β ӟ b y г ɷ ᵷ ԝ ȇ ł ɩ ɞ ồ ṙ ē ṣ ᶌ
ᶔ ġ ᵭ ỏ ұ д ꜩ ᵴ α ư ᵾ î ẕ ǿ ũ ḡ ė ẫ ẁ ḝ ы ą å ḽ ᵴ ș ṯ ʌ ḷ ć ў ẓ д һ g
ᶎ ţ ý ʬ ḫ e ѓ γ ӷ ф ẹ ᶂ ҙ ṑ ᶇ ӻ ᶅ ᶇ ṉ ᵲ ɢ ᶋ ӊ ẽ ӳ ü á ⱪ ç ԅ ď ṫ ḵ ʂ ẛ
ı ǭ у ẁ ȫ ệ ѕ ӡ е ḹ ж ǯ ḃ ỳ ħ r ᶔ ĉ ḽ щ ƭ ӯ ẙ җ ӫ ẋ ḅ ễ ʅ ụ ỗ љ ç ɞ ƒ
ẙ λ â ӝ ʝ ɻ ɲ d х ʂ ỗ ƌ ế ӵ ʜ ẫ û ṱ ỹ ƨ u v ł ɀ ᶕ ȥ ȗ ḟ џ г ľ ƀ ặ ļ ź
ṹ ɳ ḥ ʠ ᵶ ӻ ỵ ḃ d ủ ᶐ ṗ р ŏ γ ð ś ԍ ᵬ ɣ ẓ ö ᶂ ᶏ ṓ ȫ i ï ṕ ẅ w ś ʇ ô ḉ
ŀ ŧ ẘ ю ǡ ṍ π ḗ ȷ ʗ è ợ ṡ ḓ я ƀ ế ẵ ǵ ɽ ȏ ʍ è ṭ ȅ s ᵽ ǯ с ê ȳ ȩ ʎ ặ ḏ
ᵼ ů b ŝ ӎ ʊ þ n ᵳ ḡ ⱪ ŀ ӿ ơ ǿ н ɢ ᶋ β ĝ ẵ ı ử ƫ f ɓ ľ ś π ẳ ȁ ɼ õ ѵ ƣ
ч ḳ є ʝ ặ ѝ ɨ ᵿ ƨ ẁ ō ḅ ã ẋ ģ ɗ ć ŵ ÿ ӽ ḛ м ȍ ì ҥ ḥ ⱶ x ấ ɘ ᵻ l ọ ȭ
ȳ ź ṻ ʠ ᵱ ù ķ ѵ ь ṏ ự ñ є ƈ ị ԁ ŕ ṥ ʑ ᶄ p ƶ ȩ ʃ ề ṳ đ ц ĥ ʈ ӯ ỷ ń ʒ ĉ
ḑ ǥ ī ᵷ ᵴ ы ṧ ɍ ʅ ʋ ᶍ ԝ ȇ ẘ ṅ ɨ ʙ ӻ м ṕ ᶀ π ᶑ ḱ ʣ ɛ ǫ ỉ ԝ ẅ ꜫ ṗ ƹ ɒ ḭ
ʐ љ ҕ ù ō ԏ ẫ ḥ ḳ ā ŏ ɜ о ſ ḙ į ș ȼ š ʓ ǚ ʉ ỏ ʟ ḭ ở ň ꜯ ʗ ԛ ṟ ạ ᵹ ƫ
ẍ ą ų ҏ ặ ʒ ḟ ẍ ɴ ĵ ɡ ǒ m т ẓ ḽ ṱ ҧ ᶍ ẩ ԑ ƌ ṛ ö ǿ ȯ a ᵿ ƥ е ẏ ầ ʛ ỳ ẅ
ԓ ɵ ḇ ɼ ự ẍ v ᵰ ᵼ æ ṕ ž ɩ ъ ṉ ъ ṛ ü ằ ᶂ ẽ ᶗ ᶓ ⱳ ề ɪ ɫ ɓ ỷ ҡ қ ṉ õ ʆ ú
ḳ ʊ ȩ ż ƛ ṫ ҍ ᶖ ơ ᶅ ǚ ƃ ᵰ ʓ ḻ ț ɰ ʝ ỡ ṵ м ж ľ ɽ j ộ ƭ ᶑ k г х а ḯ ҩ ʛ
à ᶊ ᶆ ŵ ổ ԟ ẻ ꜧ į ỷ ṣ ρ ṛ ḣ ȱ ґ ч ù k е ʠ ᵮ ᶐ є ḃ ɔ љ ɑ ỹ ờ ű ӳ ṡ ậ ỹ
ǖ ẋ π ƭ ᶓ ʎ ḙ ę ӌ ō ắ н ü ȓ i ħ ḕ ʌ в ẇ ṵ ƙ ẃ t ᶖ ṧ ᶐ ʋ i ǥ å α ᵽ ı ḭ
ȱ ȁ ẉ o ṁ ṵ ɑ м ɽ ᶚ ḗ ʤ г ỳ ḯ ᶔ ừ ó ӣ ẇ a ố ů ơ ĭ ừ ḝ ԁ ǩ û ǚ ŵ ỏ ʜ ẹ
ȗ ộ ӎ ḃ ʑ ĉ ḏ ȱ ǻ ƴ ặ ɬ ŭ ẩ ʠ й ṍ ƚ ᶄ ȕ ѝ å ᵷ ē a ȥ ẋ ẽ ẚ ə ï ǔ ɠ м ᶇ
ј ḻ ḣ ű ɦ ʉ ś ḁ у á ᶓ ѵ ӈ ᶃ ḵ ď ł ᵾ ß ɋ ӫ ţ з ẑ ɖ y ṇ ɯ ễ ẗ r ӽ ð ṟ ṧ
ồ ҥ ź ḩ ӷ и ṍ ß ᶘ ġ x a ᵬ ⱬ ą ô ɥ ɛ ṳ ᶘ ᵹ ǽ ԛ ẃ ǒ ᵵ ẅ ḉ d ҍ џ ṡ ȯ ԃ ᵽ
ş j č ӡ n ḡ ǡ ṯ ҥ ę й ɖ ᶑ ӿ з ő ǖ ḫ ŧ ɴ ữ ḋ ᵬ ṹ ʈ ᶚ ǯ g ŀ ḣ ɯ ӛ ɤ ƭ ẵ
ḥ ì ɒ ҙ ɸ ӽ j ẃ ż ҩ ӆ ȏ ṇ ȱ ᶎ β ԃ ẹ ƅ ҿ ɀ ɓ ȟ ṙ ʈ ĺ ɔ ḁ ƹ ŧ ᶖ ʂ ủ ᵭ ȼ
ы ế ẖ ľ ḕ в ⱡ ԙ ń ⱬ ë ᵭ ṵ з ᶎ ѳ ŀ ẍ ạ ᵸ ⱳ ɻ ҡ ꝁ щ ʁ ŭ ᶍ i ø ṓ ầ ɬ ɔ ś
ё ǩ ṕ ȁ ᵶ ᶌ à ń с ċ ḅ ԝ ď ƅ ү ɞ r ḫ ү ų ȿ ṕ ṅ ɖ ᶀ ӟ ȗ ь ṙ ɲ ȭ ệ ḗ ж ľ
ƶ ṕ ꜧ ā ä ż ṋ ò ḻ ӊ ḿ q ʆ ᵳ į ɓ ǐ ă ģ ᶕ ɸ ꜳ l ƛ ӑ ű ѳ ä ǝ ṁ ɥ ķ и с ƚ
ҭ ӛ ậ ʄ ḝ ź ḥ ȥ ǹ ɷ đ ô ḇ ɯ ɔ л ᶁ ǻ o ᵵ о ó ɹ ᵮ ḱ ṃ ʗ č ş ẳ ḭ ḛ ʃ ṙ ẽ
ӂ ṙ ʑ ṣ ʉ ǟ ỿ ů ѣ ḩ ȃ ѐ n ọ ᶕ n ρ ԉ ẗ ọ ň ᵲ ậ ờ ꝏ u ṡ ɿ β c ċ ṇ ɣ ƙ ạ
w ҳ ɞ ṧ ќ ṡ ᶖ ʏ ŷ ỏ ẻ ẍ ᶁ ṵ ŭ ɩ у ĭ ȩ ǒ ʁ ʄ ổ ȫ þ ә ʈ ǔ д ӂ ṷ ô ỵ ȁ ż
ȕ ɯ ṓ ȭ ɧ ҭ ʜ я ȅ ɧ ᵯ ņ ȫ k ǹ ƣ э ṝ ề ó v ǰ ȉ ɲ є ү ḵ е ẍ ỳ ḇ е ꜯ ᵾ ũ
ṉ ɔ ũ ч ẍ ɜ ʣ ӑ ᶗ ɨ ǿ ⱳ ắ ѳ ắ ʠ ȿ ứ ň k ƃ ʀ и ẙ ᵽ ő ȣ ẋ ԛ ɱ ᶋ а ǫ ŋ ʋ
ḋ 1 ễ ẁ ể þ ạ ю м ṽ 0 ǟ ĝ ꜵ ĵ ṙ я в ź ộ ḳ э ȋ ǜ ᶚ ễ э ф ḁ ʐ ј ǻ ɽ ṷ ԙ
ḟ ƥ ý ṽ ṝ 1 ế п 0 ì ƣ ḉ ố ʞ ḃ ầ 1 m 0 ҋ α t ḇ 1 1 ẫ ò ş ɜ ǐ ṟ ě ǔ ⱦ q
ṗ 1 1 ꜩ 0 ȇ 0 ẓ 0 ŷ ủ ʌ ӄ ᶏ ʆ 0 ḗ 0 ỗ ƿ 0 ꜯ ź ɇ ᶌ ḯ 1 0 1 ɱ ṉ ȭ 1 1 ш
ᵿ ᶈ ğ ị ƌ ɾ ʌ х ṥ ɒ ṋ ȭ 0 t ỗ 1 ṕ і 1 ɐ ᶀ ź ë t ʛ ҷ 1 ƒ ṽ ṻ ʒ ṓ ĭ ǯ ҟ
0 ҟ ɍ ẓ ẁ у 1 щ ê ȇ 1 ĺ ԁ b ẉ ṩ ɀ ȳ 1 λ 1 ɸ f 0 ӽ ḯ σ ú ĕ ḵ ń ӆ ā 1 ɡ
1 ɭ ƛ ḻ ỡ ṩ ấ ẽ 0 0 1 0 1 ċ й 1 0 1 ᶆ 1 0 ỳ 1 0 ш y ӱ 0 1 0 ӫ 0 ӭ 1 ᶓ
ρ 1 ń ṗ ӹ ĥ 1 ȋ ᶆ ᶒ ӵ 0 ȥ ʚ 1 0 ț ɤ ȫ 0 ҹ ŗ ȫ с ɐ 0 0 ů ł 0 ӿ 1 0 0 ʗ
0 ḛ ổ 1 ỵ ƥ ṓ ỻ 1 1 ɀ э ỵ д 0 ʁ 0 1 ʍ ĺ ӣ ú ȑ 1 0 n ḍ ɕ ᶊ 1 ӷ 0 ĩ ɭ 1
1 1 0 0 ṁ 1 0 ʠ 0 ḳ 0 0 0 0 1 ḃ 0 1 0 ŧ ᶇ ể 1 0 0 0 ṣ s ɝ þ 0 1 0 ʏ ᶁ
ū 0 ừ 0 ꜳ ệ 0 ĩ ԋ 0 0 1 ƺ 1 1 ҥ g ѓ 1 0 0 ã 0 ų 1 0 0 0 0 0 1 ṵ ố 1 1
1 1 1 0 1 ɐ 0 1 0 1 1 1 0 1 1 ᶗ 0 1 1 ɛ 1 1 ӑ 1 ṛ 0 0 ẳ 1 1 ƌ ȣ 0 1 1
0 ɚ 0 ḙ 0 0 ŝ 0 ḣ 1 á ᵶ 0 0 0 ȉ 1 ӱ 0 0 1 1 ȅ 0 0 0 0 1 1 0 1 0 0 0 1
0 0 ң 0 0 1 1 0 ɫ 1 0 0 1 1 0 0 0 β 1 0 1 0 1 0 0 1 0 0 0 ǣ 0 1 ћ 1 0
1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1
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Idiosyncratic frequency as a measure
of derivation vs. inflection

Maria Copot1, Timothee Mickus2, and Olivier Bonami1
1 Université Paris Cité, Laboratoire de linguistique formelle, CNRS

2 University of Helsinki

ABSTRACT

Keywords:
morphology,
derivation–
inflection
gradient,
distributional
semantics

There is ongoing discussion about how to conceptualize the nature
of the distinction between inflection and derivation. A common ap-
proach relies on qualitative differences in the semantic relationship
between inflectionally versus derivationally related words: inflection
yields ways to discuss the same concept in different syntactic contexts,
while derivation gives rise to words for related concepts. This differen-
tial can be expected to manifest in the predictability of word frequency
between words that are related derivationally or inflectionally: pre-
dicting the token frequency of a word based on information about
its base form or about related words should be easier when the two
words are in an inflectional relationship, rather than a derivational
one. We compare prediction error magnitude for statistical models of
token frequency based on distributional and frequency information
of inflectionally or derivationally related words in French. The re-
sults conform to expectations: it is easier to predict the frequency of a
word from properties of an inflectionally related word than from those
of a derivationally related word. Prediction error provides a quanti-
tative, continuous method to explore differences between individual
processes and differences yielded by employing different predicting
information, which in turn can be used to draw conclusions about the
nature and manifestation of the inflection–derivation distinction.

Journal of Language Modelling Vol 10, No 2 (2022), pp. 193–240
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1 INTRODUCTION

The theoretical distinction between inflection and derivation is well-
defined in the literature (Matthews 1991): inflection outputs differ-
ent forms of the same lexeme (read, reads, reading), while derivation
outputs related lexemes (read, reader, readable). Empirically ground-
ing this binary distinction, however, has proved challenging. Linguists
often have strong intuitions about whether a process is inflectional
or derivational, but there is no single criterion that reliably distin-
guishes between the two (Stump 1998). In fact, the distinction ap-
pears much more akin to a gradient with two poles (see e.g. Bybee
1985; Dressler 1989). Inflection and derivation both seem to be char-
acterized by loose clusters of features – features that co-occur fre-
quently, but not systematically. This gradient nature suggests that the
inflection–derivation distinction ought to be studied from a quantita-
tive and empirical perspective, which is the aim of the present paper.

The theoretical distinction stated above can be leveraged to make
quantitative predictions over different morphological processes. If in-
flection provides the means of using the same lexeme in different con-
texts, we can expect that words in inflectional relationships should
have stronger relationships of interpredictability. What changes when
we use a first conjugated verb form instead of second conjugated form
of the same verb, or a plural instead of a singular noun is not the con-
cept we wish to name, but merely the syntactic and semantic context
in which the word is being employed. In contrast, derivation is used
to fill onomasiological needs (Štekauer 2005): a derived word typi-
cally arises because a language user is trying to name a new concept
by building on an existing and related word. Because of the imperfect
correspondence between language and reality, one cannot assume that
there will be a perfect match between the derived meaning and the
expectations set by the morphology used to derive it. Derived words
are expected to have independent lexical representation and hence,
over time, may acquire senses or usages that deviate from those of
their base. As a consequence, we expect derivationally related words
to have patterns of usage that differ in unpredictable ways – making
it in turn harder to predict information pertaining to a word given a
derivationally related term. While lexicalized differences in usage are
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also attested for inflectionally related words, one can expect them to
be much rarer.

Is this variation in patterns of usage across the inflection–deriva-
tion gradient a phenomenon that we can quantify empirically? To do
so, we first need to decide how to measure differences in patterns of
usage. One approach uses distributional representations derived from
word embedding algorithms (Bonami and Paperno 2018). How accu-
rately one can reconstruct the distributional representation of some
target word informs us whether the input used is predictive of this
target’s patterns of usage. This, in turn, allows one to contrast and
compare pairs of morphologically related words depending on where
they sit on the inflection–derivation gradient: words in a derivational
relation should be less predictive of one another’s patterns of usage,
and we should expect the reconstruction to be less accurate. Yet the
sheer diversity of existing architectures and the inherent noisiness of
the methods used to derive them raise concerns. Reconstructing a
word embedding is tantamount to assuming that the corresponding
embedding architecture accurately captures all the relevant distribu-
tional characteristics. In the absence of an independent measure of
predictability that is both fine-grained enough and applicable at scale,
we have no way of establishing that this assumption is warranted. It is
therefore relevant to look for other means of characterizing a word’s
patterns of usage.

In this paper, we focus on frequency as a well-understood, eas-
ily obtainable and holistic correlate of word usage, known to be rel-
evant to morphological relatedness. Derived words tend to be lower
frequency than their bases (Harwood and Wright 1956; Hay 2001),
a fact that can be exploited to help establish direction of derivation
(Kisselew et al. 2016). Two pairs of words that relate to each other
in a parallel way should have distributions that contrast in the same
way, and hence their frequencies of usage should be related by the
same conversion factor. For instance, we expect the frequency ratio
between quicker and quick to be very similar to that between brighter
and bright. On the other hand, where identity of morphological mark-
ing does not mean identity of semantic contrast, we have no such ex-
pectations. We would not be surprised if the frequency ratio between
driver and drive is very different from that between diner and dine. To
measure how reliably a given process causes an identical shift in usage
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for different lexemes, we measure the variability in frequency ratios
between pairs of words linked by the same process: derivationally re-
lated words should show higher variation in frequency ratios.

The remainder of this paper is structured as follows: in Section 2,
we review the theoretical elements underlying our approach. In par-
ticular, we discuss the derivation–inflection gradient in Sections 2.1
and 2.2, and the interface between quantitative morphology and dis-
tributional semantics in Sections 2.3 and 2.4. Section 3 outlines the ex-
perimental protocol: we train separate linear models for several mor-
phological processes, predicting the frequency of a form in the target
cell from various types of information. Section 4 reports the results
of two comparable experiments on datasets of different sizes. We end
with a general summary of our findings and future perspectives for
this work in Section 5.

2 THEORETICAL BACKGROUND

2.1 The derivation–inflection gradient

The key naïve distinction between inflection and derivation is
intuitive and easy to grasp: inflection yields forms for talking
about the same concept in different syntactic contexts (I read∼she
reads), while derivation yields forms for talking about different
but related concepts (I read∼a reader). Based on such observa-
tions, Anderson (1982, 1992) suggests that relevance to syntax is
the only criterion necessary to distinguish inflection from deriva-
tion. Such a strict, binary categorisation hinging upon a single
criterion quickly proves indefensible (Booij 1996). Some inflec-
tion is strictly contextual, in the sense that the choice of an in-
flected form is strictly dictated by the syntactic context: this is
true, most prominently, of variation in agreement morphology and
case. However, morphological distinctions within the traditional
purview of inflection can also be inherent, in the sense that it
is the expression of some content. This is the case, for instance,
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for number on nouns, or most TAM (tense–aspect–mood) distinc-
tions on verbs.1 Inherent inflection can thus be semantically po-
tent and irrelevant to syntax: for instance, in many languages,
whether a verb is future or past will have no syntactic conse-
quences.

Systematically distinguishing inflection and derivation is thus not
a straightforward matter of division of labour between syntax and se-
mantics. Hence linguists have explored many other possible criteria.
Bybee (1985) proposes obligatoriness of expression, degree of seman-
tic change to the word, range of applicability; Payne (1986) proposes
8 criteria, among which a variation of Bybee’s, along with additions
like presence or absence of category change; Plank (1991) highlights
28 criteria that distinguish at least some cases of inflection and deriva-
tion, noting that none of these is either necessary or sufficient to char-
acterize the distinction, but instead these criteria are better conceived
of as prototypical properties of two extremes of a gradient.

The conceptualization of the inflection-derivation distinction is
of importance beyond theoretical morphology. Take as an example
the use of morphological language data in computational linguistics:
large resources such as UniMorph (Kirov et al. 2016, 2018; McCarthy
et al. 2020) have been extensively used to make typological generali-
sations about the world’s languages, to test linguistic hypotheses on a
diverse language sample, and to evaluate the performance of language
processing models, among other things. Decisions made about the Uni-
Morph tagset and the possible shape of the UniMorph paradigms are
dependent on decisions made by editors of the Wiktionary pages for
the languages in the resource – deciding where to draw the line be-
tween inflection and derivation (or whether to draw a line at all) for
an individual language has cascading consequences on all of the uses
made of data from UniMorph. For a concrete example, take Malouf
et al. (2020): contrary to the observation that Navajo noun morphol-
ogy is fairly straightforward, they find that their method flags Navajo
noun paradigms as being particularly unpredictable. This is the out-
come of the same paradigmatic pattern being treated as derivational

1The extent to which phenomena such as sequence of tense and mood selec-
tion should be considered contextual or inherent is a fascinating but understudied
topic.
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for one class of nouns (and therefore worthy of multiple entries in the
dictionary for each set of related items) and as inflectional for a dif-
ferent class (and therefore with each set of related items reported in
the same dictionary entry). Insights about the nature of the inflection-
derivation distinction could have important consequences for all ap-
plications relying on morphological data.

The question of how to distinguish between inflection and deriva-
tion is a live one (see Spencer 2013 for a recent overview), but few
qualitative advances have been made in identifying reliable crite-
ria for distinction since the issue first captured the attention of the
field. There is growing agreement that inflection and derivation can-
not be characterized as dichotomous or otherwise categorical, and
that relatedness between words is a multifactorial and gradient mat-
ter (Dressler 1989; Booij 1996; Haspelmath 1996; Bauer 2004; Corbett
2010; Spencer 2013; Štekauer 2015), with some studies arguing that
the distinction does not apply in the same way across languages (Bauer
and Bauer 2012) or is plainly irrelevant (e.g. Bochner 1993; Ford et al.
1997; Haspelmath forthcoming).

There are plenty of morphological processes that behave neither
in a typical inflectional nor derivational manner, no matter what spe-
cific set of criteria is chosen to characterize the distinction. English
noun pluralization is one of many examples that could illustrate this
(see among many others Acquaviva 2008; Corbett 2019 for a dis-
cussion of its properties). It looks inflectional in many respects: it
is a syntactic requirement that plural marking be employed when
talking about an entity in a plural syntactic context (one car∼two
cars/*two car), and the resulting semantics is generally straightfor-
wardly compositional. However, it can also behave more derivation-
ally: the entity denoted by the plural form may be a different concept
from that denoted by the singular form (spectacle = a show; spec-
tacles = glasses is an extreme example, but milder cases exist too,
such as practice∼practices, where the singular can denote a habit or
the act of practising a profession, while the plural can mainly de-
note the habit), and plural marking may not carry plural semantics
(a pair of scissors). English noun pluralization is not unique in seem-
ingly straddling the inflection–derivation boundary, and a rigorous
account of the distinction between the two must be informative about
such cases.
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2.2Continuum approaches to inflection and derivation
in quantitative morphology

The approaches to the inflection–derivation gradient listed above rely
on the clustering of dichotomous criteria rather than on a quantitative
approach to the difference: in these approaches, a process is consid-
ered more inflection-like than another if it ticks more of the boxes
of binary criteria characterizing inflection. There is a dearth of at-
tempts to find continuous criteria that characterize the entirety of the
gradient.

PRS.3SG_V

PST_V
Agent_N

eats

ate
eater

repeats

repeated
repeater

creates

created
creator

Figure 1:
A subset of the paradigmatic
structure of English

The quest for such a characterization of the inflection–derivation
continuum is a good fit for quantitative paradigmatic approaches to
morphology. We adopt Bonami and Strnadová’s (2019) conceptual-
ization of a paradigmatic system as a collection of content-aligned
sets of words that instantiate parallel morphological relationships.
This is illustrated in Figure 1 with a slice of the paradigm structure
of English morphology: morphological families of words are repre-
sented on horizontal planes that are aligned based on the content-
based contrasts they share. In other words, a paradigmatic system is
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a set of interpredictability relationships2 of form and meaning be-
tween words of a language, while an individual paradigm is a mor-
phological family that is structured by a subset of these relation-
ships.

Let us take a closer look at how paradigms can be established
under such an operationalization. Two words can be said to be in a
morphological relationship if they instantiate a form-meaning corre-
spondence which is also instantiated by other word pairs in the lan-
guage. So cake and cakes are in a morphological relationship: their
meaning relationship of one of X∼more than one of X is instantiated by
the same formal means X∼Xs in other pairs of words in the language
such as squirrel∼squirrels or squid∼squids. The pair foot∼feet does not
instantiate the same morphological relationship: it shares a content
relationship with the words above but not a relationship of form. The
two words are nevertheless in a morphological relationship: their con-
tent relationship is instantiated by the same formal means in word
pairs like tooth∼teeth. In contrast, word pairs like shingle (a mass of
rounded pebbles) ∼ shingles (an illness) do not instantiate a morpho-
logical relationship: they share a formal relationship with the word
pairs above, but there are no other word pairs in the English language
with this same form relationship that also share a parallel content re-
lationship. Morphological relationships can also be found within the
realm of derivation: sing and singer have the same relationship of form
and meaning as pairs like read∼reader and help∼helper. It is important
to note that morphological relationships describe systematic patterns
in a way that does not reify the traditional inflection–derivation dis-
tinction: (she) sings and singer are also in a morphological relationship,
the same as that instantiated by (she) reads and reader.

Sets of morphologically related words that share a conceptual
core are known asmorphological families (Schreuder and Baayen 1997):
read, reads, reader constitutes a morphological family, as does emote,

2A reviewer points out that in the morphological literature, predictability
mostly refers to the amount of information about a form provided by a related
one (see e.g. Ackerman et al. 2009; Stump and Finkel 2013). Here, we use pre-
dictability and interpredictability in the broader, statistical sense: the amount of
information provided on a word’s form, meaning, usage, and other characteris-
tics by information about a related word.
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emotion, emotional. Because the notion of morphological relatedness
is agnostic to the inflection-derivation divide, morphological families
will group together words that stand in either inflectional or deriva-
tional relations in traditional terms, as well as any type of relationship
between the two extremes.

Paradigmatic structure emerges when morphological families
whose members have parallel content relationships are aligned. Under
this particular definition, paradigmatic structure is closely linked to re-
lationships of interpredictability between words, which are exploited
by speakers when producing and processing language. If speakers have
knowledge of a partial morphological family and how it fits within
the paradigmatic system of the language, they may exploit propor-
tional analogy and probabilistic mapping to generate a new member
of said morphological family (Ackerman et al. 2009). Knowing that
repeat (PRS) has a past tense repeated will allow a speaker to induce
disembogued as the past tense of a present form disembogue. Encounter-
ing the form (she) absquatulated will likely lead a speaker to identify
it as a past tense with a hypothetical present form absquatulate, by
analogy with the structure established by the previous forms. These
relationships of predictability may include morphological relations
placed along all parts of the traditional inflection–derivation gradi-
ent. The theory makes no assumptions about the reification of such a
distinction: as long as there is partial interpredictability of form and
meaning, there is paradigmatic structure. As exemplified in Bonami
and Strnadová (2019), the probabilistic nature of paradigm structure
lends itself well to be investigated with quantitative methods.

2.3Quantitative morphology, frequency and semantics

The predictability-based view of paradigm structure outlined above
invites us to explore explicitly quantitative reflexes of the inflection–
derivation continuum. One proposal in that direction is that of Bonami
and Paperno (2018), who use distributional methods to operationalize
the idea that inflection relates words in a more semantically transpar-
ent fashion than derivation (see e.g. Dressler 1989, 5). Another is that
of Rosa and Žabokrtský (2019), who focus on the idea that word pairs
related by inflection tend to be distributionally more similar than pairs
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related by derivation. In this paper we explore a related but different
idea: inflection and derivation differ in how interpredictable the fre-
quencies of morphologically related words are.

Our reasoning is as follows. We start from the basic idea that
derivation yields new lexemes, while inflection yields word forms of
the same lexeme. Under a gradient understanding of this statement,
the output of derivation will tend to be more independent of its input
compared to that of inflection. The more inflectional a morphological
relation is, the more the output will be dependent on other members
of its paradigm, with properties that can be more accurately predicted
on their basis.

In psycholinguistic terms, words in a derivational relationship are
likely to have more independent mental representations. One way that
this independence can manifest is in the extent to which information
about the meaning or usage of one member of the pair can be pre-
dictive about the meaning or usage of the other member. An easily
measurable correlate of similarity of semantics and usage is frequency.
If the frequency of a word in a cell is accurately predicted by the fre-
quency of a related word in a different cell in a systematic fashion, it is
likely that the two cells represent ways of talking about the same con-
cept in different contexts, and can therefore be said to be in a more
inflectional relationship. If related words in two cells are not good
predictors of each other’s frequency, this points to the relative inde-
pendence of words belonging to one cell and words belonging to the
other, making this a more derivational relationship.

In the remainder of this section we give initial circumstantial evi-
dence pointing to the relevance of this idea. Table 1 provides infor-
mation on the distribution of frequency ratios between pairs of French
words related by one derivational relation, one inherent inflectional
relation, and one contextual inflectional relation.3 The median fre-
quency ratio varies independently of the inflection–derivation divide,

3Frequencies are taken from the FRCOW corpus (Schäfer and Bildhauer
2012; Schäfer 2015); derivational relations are extracted from the Démonette
database (Hathout and Namer 2014), while inflectional relations are extracted
from the GLÀFF inflectional lexicon (Hathout et al. 2014). Only pairs of words
which both have non-zero frequency in the corpus and each have no homograph
documented in the GLÀFF are taken into account.
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Table 1: Distribution of frequency ratios for three morphological relations

Reference form Target form Target / Reference frequency ratio Inter-decile
ratioFirst decile Median Ninth decile

Infinitive verb -age derived noun 0.003 0.279 6.500 2166.7
Singular noun plural noun 0.011 0.207 1.702 155.7
Conditional 3SG conditional 3PL 0.136 0.316 1.000 7.4

with the derivational relation standing between the two inflectional
relations. This is not really surprising, as the frequency of inflectional
paradigm cells is known to be subject to considerable variation. What
is of interest to us is the spread of variation in frequency ratios for
each morphological relationship, which we can assess by examining
the ratio between the first and ninth deciles.4 Here we note very strik-
ing differences: for the derivational relation, we witness more than
3 orders of magnitude of variation in the frequency ratios between re-
lated words; for contextual inflection, that variability is less than one
order of magnitude. This seems to indicate that the frequency of one
form is indeed more predictive of that of the other form if the two
words are related by contextual inflection. In addition, our example
of inherent inflection stands firmly in the middle, with slightly more
than two orders of magnitude of variation. This is strongly suggestive
of a gradient quantitative difference that captures the intermediate
status of inherent inflection.

A qualitative look at examples of high and low frequency ratios
provides important insights into the likely causes of the observed dif-
ferences. Table 2 presents examples of denominal verbs in -age. The
pair fixer∼fixage is emblematic of the prototypical situation for very
low frequency ratio items: the -age derivative is very low frequency
because it lost competition with a rival (Aronoff 1976) relying on a dif-
ferent process, here fixation (which instantiates most of the expected

4We compare the first and ninth quantiles rather than more extreme values
because the data tends to be noisy at the very end of the distribution, due to
errors in the automatically derived linguistic resources we rely on. This is only
meant as a preliminary illustrative measure of frequency dispersion, which will
be captured in a more principled way in Section 4.
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Table 2: Sample frequency ratios for -age deverbal nouns

Reference form Target form Frequency ratio

fixer ‘to fasten’ fixage ‘fixing’ 0.003

arriver ‘to arrive’ arrivage ‘delivery’ 0.007

outrer ‘to exaggerate; to cause indignation’ outrage ‘offense’ 49

ouvrer ‘to work’ ouvrage ‘work; book’ 738

action noun senses linked to the verb fixer). Fixage did not disappear
but underwent specialization, and is now a rare technical term in
chemistry and economics, making it far less frequent than its corre-
sponding infinitive. A comparable but less extreme situation is found
with the pair arriver∼arrivage. Arrivage is etymologically ‘the act of
arriving,’ but has specialized to mean ‘delivery of a large quantity of
merchandise.’ The converted past participle arrivée is the general event
noun corresponding to arriver.

At the other end of the spectrum, ouvrage acquired an extra sense
of ‘book, (artistic) body of work’ in addition to its etymological sense
of ‘a work’ – this additional sense boosted its frequency of use, since
there is now another concept for which the word can be used. More
importantly, while the noun ouvrage is alive and well in both of its
senses, the verb ouvrer progressively fell out of usage, displaced by
its synonym travailler. Outrer∼outrage is a comparable case: although
there is a rather transparent semantic relationship between the two
words, the verb is rare in contemporary French and perceived as rather
affected, while the noun has thrived in a legal context.

Let us now turn to examples of the contextual inflectional rela-
tionship between the conditional 3SG and 3PL. As exemplified in Ta-
ble 3, we observe that what variation there is correlates with the syn-
tactic and semantic properties of the underlying lexemes. At the low
end of the spectrum, we find verbs that are most frequently used in
an impersonal construction with 3SG subject il or ça. At the high end,
we find verbs whose subject is semantically constrained to denote a
group. While this is not strictly incompatible with singular number,
plural number for the subject, and hence agreement on the verb, is
much more likely.
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Table 3: Frequency ratio of words in a INF∼COND.3SG relationship in French

LEXEME COND.3SG COND.3PL Frequency ratio
ADVENIR ‘happen’ adviendrait adviendraient 0.0127
ÉTONNER ‘surprise’ étonnerait étonneraient 0.0156
SEMBLER ‘seem’ semblerait sembleraient 0.02845
PULLULER ‘swarm’ pullulerait pulluleraient 8.6667
JONCHER ‘be scattered on’ joncherait joncheraient 9.000
S’ENTRECHOQUER s’entrechoquerait s’entrechoqueraient 13.000
‘knock against one another’

Finally, let us examine an example of inherent inflection, by re-
turning to the relationship between singular and plural nouns. As
shown in Table 4, we find what looks like a mix of the situations found
in derivational and contextually inflectional examples. The frequency
ratio is low for mass terms such as uranium, property nouns such as
unanimité, and names of disciplines such as géologie. In all these cases,
use of the plural is restricted to some shifted meaning of the noun: a
type reading for uranium (referring to different varieties of uranium),
a metonymic sense extension in the case of unanimité (an instance of
a unanimous vote) or géologie (the geological structure of an area).
Given that this shifted meaning is much less frequent than the main
meaning, but relatively more frequent in the plural, we get a non-zero
but small frequency ratio. Arguably then, all these examples exhibit a
frequency ratio predictable from lexical semantics.

Table 4: Frequency ratio of words in a SG∼PL relationship in French

Singular Plural Frequency ratio
uranium ‘uranium’ uraniums ‘uraniums’ 0.001
unanimité ‘unanimity’ unanimités ‘unanimities’ 0.001
géologie ‘geology’ géologies ‘geologies’ 0.002
lipide ‘lipid’ lipides ‘lipids’ 19
ossement ‘bone’ ossements ‘bones’ 29
concitoyen ‘fellow citizen’ concitoyens ‘fellow citizens’ 56
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At the other end of the spectrum, we find items that are nearly
pluralia tantum. Lipide can be used in the singular to denote a particu-
lar type of fat, but the vast majority of uses are in the plural and denote
a quantity of fat. Ossement was originally an ordinary noun meaning
‘skeleton,’ which then specialized as a plurale tantum denoting specif-
ically bones denuded of flesh. This is the main meaning attested in the
corpus, but there is some innovative use in the singular with the same
meaning but unambiguously singular reference. Concitoyen is nearly
always used in the plural with a generic reading; specific readings are
possible in both numbers, but rare. Hence the frequency ratio follows
from the fact that generic quantification is overwhelmingly expressed
in the plural in French. Overall then, we find here effects that are much
more similar to what we witnessed in the case of derivation: a high
frequency ratio tends to be due to the conventionalization of a plurale
tantum use for one of the readings of a noun, a purely lexical property
that is not predictable from either the lexical semantics of the noun or
the relationship between singular and plural.

Given the discussion above, we expect that the frequency of a
word will be on average more predictable from the frequency of its
inflectional relatives than from that of its derivational relatives. More-
over, we expect this effect to be gradient, with inherent inflection
somewhere between derivation and contextual inflection. Although
we have no specific prediction, we can presume that other cases of
morphology aligned neither with canonical inflection nor with canon-
ical derivation (Corbett 2010) may also exhibit such intermediate be-
haviour.

Finally, we expect the causes of variability in frequency to be
different for inflection and derivation, leading to measurably differ-
ent effects. For all morphological relations, the frequency ratio be-
tween pairs of words is modulated by lexical semantics: some lexi-
cal meanings lend themselves to higher or lower frequencies in given
cells. As a result, we expect the frequency ratio between pairs of mor-
phologically related words to be generally variable, and that variabil-
ity to be predicted at least in part by lexical semantic information.
Where inflection and derivation are expected to differ is in the ex-
tent to which the frequency of a word remains unpredictable once
the content it shares with other members of its morphological fam-
ily is known. Within derivation, we expect an additional cause of
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variability: because derivationally related words are less interdepen-
dent than inflectionally related ones, it is more likely that derivation-
ally related words are subject to independent arbitrary semantic shifts,
leading to increased unpredictability of their patterns of usage and fre-
quency properties.

This discussion suggests that a proper exploration of the pre-
dictability of word frequency should take semantic information into
account. Distributional semantics provides a possible operationaliza-
tion of this factor.

2.4Distributional semantics and morphology

The prevalent method for quantifying semantics in linguistics is
through distributional vectors. This approach has long been used
to quantify the degree of similarity in meaning between words or
lexemes. The framework of distributional semantics is based on the
hypothesis, first formulated by Harris (1954), that word distribution
correlates with word meaning. The core idea is that the meaning of
a word influences what we say about it. Given what the word dog
means, we are more likely to say “A dog barks” or “The dog is wagging
its tail” than “This dog shares a border with Romania.” Hence, by virtue
of its meaning, the distribution of the word dog will be more similar
to that of jackal or pug than that of Moldova or Hungary. By abductive
reasoning, this entails that words with similar distributions should
have similar meanings.

The proposal of Harris (1954), taken at face value, implies that
any model of word distribution can be understood as a model of word
meaning. In practice, computational linguists have adopted a stricter
definition of distributional semantics. Lenci (2018) directly begins his
review of the field by equating distributional semantics to vector space
semantics. Boleda (2020) takes a more nuanced approach, and states
that a distributional semantics model (henceforth ‘DSM‘) should ex-
hibit the three following characteristics: words should be represented
by high-dimensional vectors; these word vectors should be empirically
computed from corpus data; the vector space should be continuous.
Many algorithms have been proposed to derive such distributional
vectors, from the LSA model of Landauer and Dumais (1997) based
on co-occurrence counts and singular value decomposition, to neural
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networks trained as classifiers such as the word2vec model of Mikolov
et al. (2013a). A recent trend is the introduction of distributional rep-
resentations of word tokens (Peters et al. 2018; Devlin et al. 2019) –
whereas most previous DSMs focused on describing word types.5

Another theoretical argument in favour of distributional seman-
tics, outlined by Sahlgren (2008), lies in the connections one can make
with structuralism (Saussure 1916; Bloomfield 1933). Sahlgren more
specifically draws on Saussure’s concept of value. The value of a sign
is a differential conceptualization of meaning: it is characterized both
by the allowed positions of the sign on the syntagmatic axis (i.e., the
syntactic contexts where this sign may occur) as well as the relations
this sign entertains within the paradigmatic axis (i.e., how it differs
from other words that could fit in this slot). This concept is framed as
distributional substitutability in the work of Harris (1954): two words
are distributionally substitutable if they can be swapped for one an-
other in any context. In short, we can expect of a DSM that it groups
together words that occur in the same contexts – i.e., words with sim-
ilar semantics and equal morphosyntactic feature values.

On a practical level, the appeal of DSMs in linguistic studies lies in
their ability to produce semantic representations for any word attested
in their training corpus. They are therefore invaluable to corpus-driven
studies of the lexicon, and applications of distributional semantics to
morphology have indeed been fruitful. For instance, Marelli and Ba-
roni (2015) propose to model the semantic effects of derivation as a
linear transformation of the base form: their proposal amounts to com-
puting the representation of a word such as nameless as the application
of a transformation Lless on the base word vector ⃗name. Other studies
include Varvara (2017), who compares the semantic stability of de-
verbal event nominalization processes using an array of metrics, and
Wauquier et al. (2020), who study how different French nominaliza-
tion processes fall into distinct clusters of distributional vectors.

5These word token models are more often presented as “contextualized” em-
beddings; it is straightforward to construe a context-specific representation of a
word type as a word token representation. Previous studies have also explicitly
equated these two characterizations (e.g. Mickus et al. 2020; Lenci et al. 2022),
often harking back to previous context-specific, exemplar-based approaches (e.g.,
Erk and Padó 2010).
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⃗Paris

⃗Parisian

⃗Bucharest

⃗Bucharester

⃗London
⃗Londoner

(a) Semantic contrasts

⃗Parisian

− ⃗Paris

+ ⃗London

⃗Londoner

(b) Predictions using offsets

⃗Paris

⃗Parisian

⃗Parisians

⃗London
⃗Londoner
⃗Londoners

(c) Application to morphology

Figure 2: Operationalization of semantic analogy

One DSM architecture in particular has proven to be very pop-
ular in such studies: the word2vec model of Mikolov et al. (2013a).
The chief reason for this popularity is that word2vec models arguably
encode stable semantic contrasts by means of simple vector offsets.
This characteristic was first described by Mikolov et al. (2013b); we
illustrate it in Figure 2. Figure 2(a) depicts the key insight: stable se-
mantic contrasts, such as the relation between a city and its demonym
(e.g. between Parisian and Paris or London and Londoner), should trans-
late as a stable vector difference between the two related terms, viz.,
⃗Parisian− ⃗Paris≈ ⃗Londoner− ⃗London. Basic vector operations give a pre-

dictive force to this observation, as shown in Figure 2(b): given a pair
of words that instantiate a semantic contrast (e.g., Paris and Parisian)
and a cue (e.g., London), we can infer what the counterpart for this
cue word should be (viz. Londoner) by means of a simple equation:
⃗Londoner≈ ⃗Parisian− ⃗Paris+ ⃗London. This ability to make use of stable

semantic contrasts is especially useful in paradigm-based morphology,
where we can expect pairs of cells in a paradigm to instantiate a stable
semantic contrast (see Figure 2(c)).

A number of works have leveraged this ability to manipulate
semantic contrasts to study morphological properties. One approach
has been to compare and contrast the stability and predictability of
semantic contrasts. Bonami and Paperno (2018) set out to compare the
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semantic stability of inflectional and derivational relations, whereas
Mickus et al. (2019) compare the predictability of grammatical gender
variation for different classes of French adjectives.

However, concerns have been raised about the validity of this
offset method. Linzen (2016) remarks that the terms in an analogy
relation tend to be very close to one another – so much so that one
of the three cues in an analogy (viz. Parisian, Paris and London in
the previous example) is often one of the most likely predicted out-
puts. Rogers et al. (2017) point out that the distance from the target
vector often impacts results: outliers are much less likely to be re-
trieved. Schluter (2018) further details how the common practice of
normalizing word embeddings before performing vector addition dis-
torts results. We take this criticism as an incentive to explore other
means of using distributional representations to predict morphologi-
cal properties.

We therefore list the criteria we require in word embedding ar-
chitectures before using them in the present study. First, the theo-
retical argument put forward by Sahlgren (2008) that vector spaces
ought to be shaped by structural relations does not hold equally
for all models: Sahlgren expects this characteristic to be found in
DSMs where context is modelled as word-co-occurrences, such as
word2vec, but not in term-document models such as LSA,6 which
is why we favour the former over the latter. Second, if we wish to
study the effects of distributional information and side-step any po-
tential spurious correlations, then we should set aside models that
do not rely solely on word-co-occurrences, such as the spelling-
informed FastText model of Bojanowski et al. (2017). Third, as in-
dicated in the previous section, our interest in the present work
lies in the predictability of word frequency: this is a feature we ex-
pect word type models to encode more directly than word token
representations – hence we will also disregard word token embed-
ding models such as those of Peters et al. (2018) or Devlin et al.
(2019).

6See also Gastaldi (2021) for a discussion.
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3METHODOLOGY

Section 2.3 outlined why one would expect the frequency of derived
lexemes to be subject to more variation than that of inflected forms.
We can reframe this expectation in terms of paradigmatic predictabil-
ity: it is easier to predict the frequency of an inflected word from in-
formation about another member of its paradigm than it is to predict
the frequency of a derived word from information about its base. Be-
cause we are not precommitting to reifying the distinction between
inflection and derivation, we shall employ unifying terminology for
parallel phenomena in the two domains throughout this paper. We
will use the term reference form to refer simultaneously to the notions
of a base in derivation and the citation form in inflection. Likewise,
we call target form any form in the inflectional or derivational cell of
interest. Our hypothesis can therefore be formulated as follows: the
closer the relationship between two words is to canonical inflection,
the easier it should be to predict the frequency of the target form from
information about its reference form.

To test our hypothesis, we model the frequency of words in the
target cell using four sets of predictors. We expect that models of
derivational relations will exhibit a higher amount of prediction er-
ror than models of inflectional processes; comparing error rates be-
tween models and morphological processes will allow us to answer
our research question quantitatively. As we focus on comparing error
rates, we specifically consider simple models so as to avoid introduc-
ing confounding factors. More precisely, we use linear models with no
random effects where the dependent variable is the log-transformed
frequency of the target cell; our choice is motivated by the overall
simplicity of these models.7 We consider four sets of predictors:
(A) Using only the frequency of the reference form.
(B) Using the frequency of the reference form and the distributional

representation of the reference form.

7More complex models, such as neural networks, could be envisioned; we
leave those to future work.
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(C) Using the frequency of the reference form and the relative fre-
quency of the word pairs that instantiate the same meaning con-
trast and are the most semantically similar to the reference form.

(D) Using the frequency of the reference form and the distributional
representations of the words that are the most semantically simi-
lar to the reference form.
We therefore establish four types of models according to the set of

predictors they use. The models of type A provide a baseline; formally
they correspond to:

(1) f (t)∼ f (r)

where r and t are the reference and target forms, and f (. . . )measures
their frequency. In practice, with this model type, we attempt to pre-
dict the frequency of the target form (e.g. lirai) using the frequency of
the corresponding reference form (lire in this example).

Type Bmodels add distributional vector components as predictors
or, more formally:

(2) f (t)∼ f (r) + r1 + · · ·+ rd

with ri the ith component of the d-dimensional vector representation
r⃗ of the word r. Simply put, type B corresponds to predicting the fre-
quency of a target (lirai), using the frequency and the distributional
vector of the corresponding reference form lire. The distributional vec-
tors are raw word embeddings and do not rely on POS tags.

In type C models, we leverage frequency information pooled from
the semantic neighbourhood of the reference form. Formally, they cor-
respond to:

(3) f (t)∼ f (r) +
1
|N(r)|
∑

r ′∈N(r)

f (t ′)
f (r ′)

with N(r) the semantic neighbourhood of r, i.e., a set of forms belong-
ing to the same morphological category as the reference form r and
semantically similar to r. The final term can be seen as an estimate
of the shift in frequency we can expect by observing the behaviour of
reference and target forms for reference forms that are distribution-
ally similar to r. To give a more concrete example, type C models try
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to predict a target form such as lirai from the frequency of the ref-
erence form lire and the average neighbour relative frequency, i.e.,
mean
�

f (interpréterai)
f (interpréter) ,

f (déchiffrerai)
f (déchiffrer) , . . .

�
, as we expect interpréter ‘inter-

pret’, déchiffrer ‘decipher’, and other semantically similar items to pro-
vide helpful insight as to what the target form frequency should be.

The final type of models, type D, combines ideas from types B
and C. In type D models, we first compute a distributional representa-
tion for the semantic neighbourhood of the reference form:

vn(r) =
1
|N(r)|
∑

r ′∈N(r)

r⃗ ′.

Simply put, vn(r) is the average of the word vectors in the neighbor-
hood of r ( ⃗interpréter, ⃗déchiffrer, etc. in our previous example). We then
predict the frequency of the target form (lirai) using the frequency of
the reference form (lire) and the components of this average neighbour
vector vn(r).
(4) f (t)∼ f (r) + (vn(r))1 + · · ·+ (vn(r))d .

Throughout all the experiments described below, we employ dis-
tributional vectors and frequency information computed from the
FRCOW corpus (Schäfer and Bildhauer 2012; Schäfer 2015). Where
relevant, we employ the POS tags provided with the corpus: the vec-
tors used to find neighbours N(r) for models of types C and D are based
on POS-tagged data,8 but the 8-dimensional vectors used as predictors
in models of types B and D are based on raw word embeddings. All dis-
tributional representations correspond to word2vec models (Mikolov
et al. 2013a) trained with the gensim library implementation (Řehůřek
and Sojka 2010) on FRCOW.9

It is worth stressing that, by adding different types of predictors
to the baseline model structure, models of types B, C and D target lexi-
cal semantics in different ways. Our reasoning for using distributional

8These vectors are POS-tagged but unlemmatized. Introducing lemmatiza-
tion would have created asymmetry between inflectional and derivational data.

9We use a skip-gram 100-dimensional architecture with a window of 20 to-
kens, 20 negative examples and 10 epochs over the FRCOW corpus. These hyper-
parameters were selected so as to maximize performance on the French transla-
tion of the Google analogy test set (Bojanowski et al. 2017).
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neighbours instead of the reference form itself in models of types C and
D is that we expect similar words in the cell of interest to be better
predictors of the behaviour of the target form compared to informa-
tion about the reference form: similar words in the cell of interest are
informative about both the lexical semantics of the data point and how
this lexical semantics interacts with the semantics of the morpholog-
ical cell. Simply put, it is important to ascertain that differences in
prediction error for inflectional and derivational data are not merely
the result of differences unaccounted for in lexical semantics.

Two difficulties arise from our choices of predictors. First, models
of types C and D use predictors computed from words that are most
semantically similar to the reference form. To identify which words
are most similar to the reference form, we use the nearest neighbours
of the distributional representation of the reference form. Depending
on the exact formulation of N(r), this can lead to a variable number
of neighbours, and hence to a variable number of potential predic-
tors. This issue is why we average distributional representations or
frequency information of the most similar words when using them as
predictors. The second issue concerns models of types B and D, which
include distributional representations as predictors. These representa-
tions consist of high-dimensional vectors: in our case, the represen-
tations are originally of 100 dimensions. Including all components as
predictors in our models would result in models that are over-specified
and possess enough degrees of freedom to encode all the data at our
disposal. This would therefore hinder our methodology: we would not
be able to compare error rates of such models since they would not
have extracted any reasonable generalization from the data but just
memorized it. To side-step this issue, we reduce the dimensionality of
our embeddings to 8 dimensions when using them as predictors, by
applying a truncated SVD dimensionality reduction.10

10A truncated SVD reduction corresponds to zeroing out the least important
eigenvalues of an SVD factorization. As such, truncating a matrix M to its k
largest eigenvalues can be shown to be the optimal approximation to M of rank
no greater than k, in that such an approximation M̃ minimizes the difference in
Froebenius norm ‖M− M̃‖F (Eckart and Young 1936; Stewart 1993). Plainly put,
using this method guarantees that we minimize the distortion to our entire set of
vectors introduced by the dimensionality reduction.
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To compare the predictability of derivation and inflection, we
train models of these four types on data from words instantiat-
ing several paradigmatic relations in the French morphological sys-
tem straddling the inflection-derivation divide as traditionally con-
ceived. We start by collecting examples of word pairs in various
paradigmatic relations, such as plural and singular nouns, or agent
nouns and their verbal bases. Because of the definition of paradig-
matic structure adopted in Section 2.3, which aligns morpholog-
ical relationships based on their semantic content when building
paradigmatic structure, we follow the same practice in our work: for-
mal contrasts that embody the same semantic contrast are treated
as realizing the same paradigmatic relation (Gaeta 2007; Štekauer
2014). This is standard in paradigmatic approaches to inflection:
words in the same paradigmatic cell are treated as a set with com-
mon semantics, regardless of their conjugation or declension class
(e.g. French agiter and attendre are both infinitives, even though
their ending is different, since their ending remains the infinitive
marker within their class, in the same way that agitation and at-
tente are both deverbal action nouns, despite their different for-
mal relationship to the base). We then train a model of each type
per morphological process. This allows us to compare results on a
per-process basis and thus opens up the possibility of considering
the inflection–derivation distinction as a gradient rather than a di-
chotomy.

We compare the variability of relationships instantiated by each
process using residual standard error (RSE) as a metric. This coeffi-
cient corresponds to the proportion of the variation in the targets not
explained by a model. A model with a lower RSE will be more accu-
rate in its predictions than a model with a higher RSE. In more precise
terms, an RSE of x would indicate that predictions with a standard de-
viation below 1 ought to be accurate to ±x . This measure was chosen
because it is well-suited both for comparing prediction accuracy for
models of the same process with different predictors, and for compar-
ing accuracy of the same type of model trained on datasets of different
sizes. Therefore RSE is better equipped for comparing model fit both
within and between relations than possible alternatives such as R2 or
AIC/BIC.
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4 EXPERIMENTS

4.1 Experiment I

We trained the four model types above for several inflectional and
derivational cells in the French morphological system.

4.1.1 Data Selection

Our initial dataset was constructed by compiling information on
French (base, derivative) pairs documented in the Démonette (Hathout
and Namer 2014), Denom (Strnadová 2014), Mordan (Koehl 2012),
and Converts (Tribout 2010) databases, and combining it with in-
flectional information from the GLÀFF lexicon (Hathout et al. 2014),
itself derived from French entries in the francophone wiktionary.11
This led to a set of 34 derivational processes and 54 inflectional re-
lations between a citation form and a paradigm cell other than the
citation form.

To decide which formal derivational relationship should be
treated as semantically equivalent, we look to Guzmán Naranjo and
Bonami (2023), who assess morphosemantic similarity among deriva-
tional processes by computing average difference vectors between de-
rived words and their bases and clustering them agglomeratively on
the basis of cosine distance. We specifically picked as semantically
equivalent collections of processes with the same input and output
part of speech and belonging to a cluster with a maximum internal
distance of 0.7. The threshold was chosen based on claims in the lit-
erature about which formal contrasts have similar semantics, for for-
mal contrasts on which such discussion is available. As a result of
this grouping, the 34 processes under examination correspond to 8
paradigmatic relations. Table 5 indicates which processes ended up
grouped together, and provides a mnemonic label for each of the
groups.

11Among others, all these databases are currently being integrated into Dé-
monette version 2 as part of the Demonext project (Namer et al. 2019). Unfor-
tunately the enlarged database was not yet available when the present research
was conducted.
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Denominal adjectives -al:N>A, -aire:N>A, -el:N>A, -ique:N>A,
-if:N>A, -eux:N>A, -ier:N>A, -ien:N>A,
CONV:N>A

Denominal verbs -iser:N>V, CONV:N>V
Deadjectival verbs -iser:A>V, -ifier:A>V
Deadjectival nouns -té:A>N, -ité:A>N, -itude:A>N, -erie:A>N
Ordinal adjectives -ième:Num>A
Deverbal adjectives -if:V>A, -ant:V>A, -PST_PART:V>A, -é:V>A, -

Vble:V>A
Action nouns -erie:V>N, -ance:V>N, -ée:V>N, CONV:V>N,

-ure:V>N, -age:V>N, -ment:V>N, -ion:V>N
Agent nouns -euse:V>N, -eur:V>N, -rice:V>N

Table 5:
Grouping
of derivational
processes.
Processes within
the same group
are inputs to the
same model

As one of the goals of this research is to compare the effect that
different types of predictors have on model accuracy, we wish to train
all models for a single paradigmatic relation on the same set of data
points. We therefore select the data points for a relation based on the
requirements of the most demanding model, and if there are too few
data points available to successfully fit the most demanding model,
we discard the entire paradigmatic relation from the data.

Themost demandingmodel is type D, whichmodels the frequency
of a word in the target cell based on the frequency of its reference form
plus each of the dimensions of the 8D average vector of the reference
form’s neighbours inflected/derived in the target cell. To minimize the
risk of overfitting, models of type D require roughly 100 data points
per predictor – with 9 predictors (the reference form frequency, to-
gether with the eight vector dimensions), the model requires relations
with at least 900 data points. Models of type D rely on averaging the
vectors of neighbouring forms – therefore, for a data point to qualify,
it needs to fulfil certain criteria.

French inflection is ripe with syncretisms, some of which are very
hard to disambiguate. For instance, regular first conjugation verbs
have homographic forms for all three singular forms of the present in-
dicative and subjunctive. Homography also straddles parts of speech:
for example, thousands of nouns and adjectives have identical forms.
As a result, no precise estimate of the frequency of individual word-
forms paired with a morphological category is currently available. To
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circumvent that problem, we decided to consider in the model only
words that have no homographs according to the GLÀFF.

The data point should also have a reference form with over 50 oc-
currences in FRCOW (Schäfer 2015): we wish to employ the distribu-
tional vector of the reference form both as a predictor by itself and as
a starting point for finding distributional neighbours. Vectors based
on few occurrences are unreliable, so data points that rely on vec-
tors derived from too few occurrences should be discarded. We chose
50 occurrences as a threshold for what counts as a reliable vector.

Moreover, the data point should have at least 5 neighbours of
the expected PoS, with a cosine similarity of at least 0.7 to the ref-
erence form (an arbitrary threshold to ensure the distributional se-
mantic information of the neighbours can be reasonably informative
about the usage of the form of interest). The neighbours of the refer-
ence form should have the same PoS as the reference form itself, since
the idea behind finding the reference form’s neighbours is to find se-
mantically similar pairs of forms linked by the same paradigmatic re-
lation as the original pair. If the target form is reads and its reference
form is read, we want semantically similar pairs like peruses∼peruse
or interprets∼interpret. To find these, we first find the neighbours of
the reference form which share a PoS with it: book (noun) may be a
close neighbour of read (verb), but book (noun) cannot be inflected in
the third person singular in order to get a pair parallel to read∼reads,
so despite being very similar to the reference form, this particular
neighbour should be discarded. The threshold on the number of us-
able neighbours per data point is to do with the fact that some of the
predictors are averages: the smaller the number of items going into
the average, the more weight each has. To avoid any single neighbour
having a disproportionate impact on this average (as each neighbour
has its own syntactic/semantic/morphological characteristics which
may influence frequency), we set a minimum of 5 neighbours with
the desired characteristics in order for the data point to be included.
For the same reason that we imposed the 50-token threshold on the
reference form, we impose the same threshold on all other distribu-
tional vectors we employ in finding word forms, or in themodels them-
selves.

If a data point fulfils all conditions above, it will be included in
the dataset for models of type D. If, after this filtering, the relation still
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has more than 900 data points available, we fit all four model types
to this same set of filtered data points.

For inflection, we also exclude cells such as the past subjunctive
and the simple past, which are out of current use or restricted to a
specific style of discourse. Usage in these cells is inherently biased
for reasons orthogonal to the inflection–derivation debate, introducing
noise into any generalizations about how usage in these cells relates
to that of a reference form, since the causes for variability would be
different.

These filtering conditions leave us with three deverbal deriva-
tional relations (verb → agent noun; verb → action noun; verb →
agent noun; verb→ adjective), one nominal inflection relation (singu-
lar noun→ plural noun), and inflectional relations between the infini-
tive and 15 other verbal paradigm cells. Note that the dataset includes
no clear instance of contextual inflection; in particular, because we use
the infinitive as the reference form for verbs, the reference and target
forms never differ by agreement only.

4.1.2Results

Full results are presented in tabular format in Table 6, and illus-
trated graphically in Figure 3. As predicted, the RSE for any deriva-
tional targets is higher than the RSE for any inflectional target. This
is true both when comparing models of the same type across paradig-
matic relations, but also across model types: every model fitted to in-
flectional data has an RSE that is lower than that of any model fitted
to derivational data. Frequency, and therefore patterns of use, appear
harder to predict for derivational relationships compared to inflec-
tional ones. This observation appears to be true regardless of the set
of predictors employed. This suggests that there are distinctions in
the predictability of usage patterns between processes, which can be
captured by our methods, and that traditionally inflectional and tra-
ditionally derivational processes pattern together with respect to ease
of prediction. Section 2.3 outlined some of the causal factors that we
expected would lead to inflectional and derivational relations being
distinguished by RSE, all factors ultimately harking back to the fact
that inflection normally produces different ways of talking about the
same concept in different grammatical contexts.
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ipfv.3pl

ipfv.3sg

fut.3pl

fut.2pl

fut.1pl

fut.3sg

fut.2sg

fut.1sg

cond.3pl

cond.3sg

pst.ptcp.f.pl

pst.ptcp.f.sg

pst.ptcp.m.pl

pst.ptcp.m.sg

Plural Nouns

Agent Nouns

Action Nouns

Deverbal Adjectives

0 1 2 3
Resid.Std.Error

Model Type

Model A
Model B
Model C
Model D

Figure 3: RSE for each model type by paradigmatic relation
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Process Model A Model B Model C Model D

1 Deverbal adjectives 2.91 2.89 2.90 2.86
2 Action nouns 2.69 2.61 2.68 2.60
3 Agent nouns 2.55 2.52 2.52 2.52
4 Plural nouns 1.89 1.72 1.67 1.67
5 pst.ptcp.m.sg 1.19 1.16 1.11 1.13
6 pst.ptcp.m.pl 1.53 1.47 1.43 1.40
7 pst.ptcp.f.sg 1.56 1.49 1.46 1.44
8 pst.ptcp.f.pl 1.60 1.50 1.46 1.43
9 cond.3sg 1.10 1.02 1.01 0.96
10 cond.3pl 1.05 1.00 0.93 0.96
11 fut.1sg 1.18 1.03 1.05 1.09
12 fut.2sg 1.13 0.95 1.01 1.01
13 fut.3sg 1.01 0.96 0.89 0.92
14 fut.1pl 1.04 0.99 0.96 0.98
15 fut.2pl 1.09 1.02 1.00 1.02
16 fut.3pl 1.06 0.99 0.93 0.95
17 ipfv.3sg 1.26 1.12 1.04 1.07
18 ipfv.3pl 1.29 1.16 1.09 1.11

Table 6:
RSE for each
model type
by paradigmatic
relation. Worst
performing
model by row
highlighted
in red , best
performing
model
highlighted
in green

There has been much debate about the nature of the inflection-
derivation divide. Our results suggest that they are the two ends of a
uniformly populated gradient: RSE values do not pattern in two cate-
gorical poles, but span the range between the extremes. The average
position of the relations along the gradient patterns well with discus-
sions of their nature in the literature: in the middle, one finds nom-
inal inflection (semantically active) and the past participles (which
in French are part verbal and part adjectival, somewhat more in-
dependent from the rest of the verbal paradigm compared to other
cells).

Within each paradigmatic relation, models of type C or D are gen-
erally the best performing, with type A being consistently the worst.
While there are differences in performance for models within each
relation, the RSE for the four different models is very consistent: as

[ 221 ]



Maria Copot et al.

Table 7:
Pearson correlation of RSE

for each pair of model
types. Values range from 0
to 1. The higher the value,
the closer the correlation

Model A Model B Model C Model D
Model A 1

Model B 0.997 1

Model C 0.997 0.998 1

Model D 0.997 0.998 0.999 1

Table 7 shows, there is a very high correlation between RSE values
across model types. This suggests that there are properties of the data
which make it harder or easier to predict the frequency of words ob-
tained through a given paradigmatic relation, regardless of the exact
predictors employed.

Focusing solely on the RSE scores, however, leaves out a number
of important details. This is apparent if we decompose R2 coefficients
by predictors using dominance analysis (Budescu 1993). According
to these analyses, on average 80.3% of the R2 of type B models and
91.7% of that of type C is to be imparted on the frequency of the
reference form; whereas in type Dmodels, this proportion only reaches
50.1%. The fact that different model types lead to converging results
while building on a quantitatively different mix of predictors can be
construed as confirmation of the robustness of the observed gradient
differences between paradigmatic relations.

4.1.3 Discussion

The reason why models C and D appear to be consistently the best
performers is probably due to the fact that they integrate information
about the target cell and not just about the reference form: it is easier
to predict a word’s frequency, which is in part a function of its context
of use, if information is available about words that are distributed
similarly within that context.

We now discuss those contrasts giving rise to intermediate values
for RSE, namely nominal pluralization and the past participles; within
that latter set, the masculine singular particularly stands out. These
warrant some discussion.

As already discussed, nominal pluralization is semantically ac-
tive: contexts in which a group of things is talked about may dif-
fer from the context in which a singleton thing is talked about. For
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example, things which in the plural behave as a homogeneous mass
(e.g. crumb∼crumbs) will be biased towards a certain set of contexts
in the plural compared to things which in the plural behave as a col-
lective of individual agents (e.g. worker∼workers) or as a series of in-
dividual objects (e.g. pie∼pies). This is probably why type C models
perform so well compared to the rest for this particular relation: they
predict the frequency of the plural noun by finding semantic neigh-
bours of the singular, and using their average relative frequency in
the plural to predict the frequency of the plural form of interest. If we
assume that these distinct types of plural classes defined by their se-
mantic properties are an accurate way to describe the data, one might
see how semantic information scattered across 8 distributional predic-
tors might perform worse than an estimate of the relative frequency
of the plural form for nouns with similar semantics.

To illustrate the mechanism with a simplified case, imagine that
establishing the plural subclass of a noun is dependent on properties
like agentiveness, mass-like behaviour and abstractness, just to give a
few examples. These properties are largely orthogonal to one another,
and as suchmight be captured by different dimensions of the word vec-
tor. Plural subclasses, however, might depend on multiple complex in-
teractions between these properties. For instance, we could expect the
plural distributions of lexemes to group in four clusters, correspond-
ing to inanimate mass-like lexemes (crumbs), inanimate count-like lex-
emes (pies), agentive lexemes with collective tendencies (workers) and
agentive lexemes without collective tendencies (CEOs). Because the
model’s structure is additive, any features of word usage that are de-
pendent on combinations of properties expressed by different vector
dimensions will not be successfully captured. On the other hand, the
model based on relative frequency of the neighbours can take into ac-
count distributional properties resulting from complex interactions of
semantic values: it does so automatically when selecting neighbours
in the first place, and aggregates the information about the relative
frequency in the plural of words with these properties. By aggregating
information, the model type is able to better account for any non-
additive relationships between semantic properties.

Past participles have an apparently peculiar distribution as a set:
while the masculine singular form gives rise to performance on a par
with finite verb forms, the models for masculine plural and feminine
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forms have higher RSEs, not much lower than those found for noun
pluralization. While this is a more subtle point, we argue that this
result conforms with our expectations given what we know of usage of
these forms. The French past participle is used in three constructions:
in so-called ‘compound tenses,’ where it contributes to the periphrastic
expression of TAM and person marking in combination with an aux-
iliary verb (1); in the passive periphrase, where it expresses passive
voice in combination with the auxiliary être ‘be’ (2); and finally as the
head of an absolute participial modifier (3).12

(1) Paul
Paul

a
have.PRS.3SG

envoyé
send.PST.PTCP.M.SG

une
IND.F.SG

lettre.
letter

‘Paul sent a letter’
(2) Une

IND.F.SG
lettre
letter

a
have.PRS.3SG

été
be.PST.PTCP.M.SG

envoyée.
send.PST.PTCP.F.SG
‘A letter was sent.’

(3) Envoyée
send.PST.PTCP.F.SG

hier,
yesterday

la
DEF.F.SG

lettre
letter

arrivera
arrive.FUT.3SG

demain.
tommorrow

‘Sent yesterday, the letter will arrive tomorrow.’
The literature suggests that TAM-expressing uses of the past participle
on the one hand, and passive and absolute constructions on the other,
do not have the same morphological status: while periphrastic expres-
sion of TAM is firmly part of inflection (Bonami 2015), the passive, as
a valence-changing operation subject to lexical exceptions, is often ar-
gued to belong to derivation (see e.g. Kiparsky 2005; Walther 2013).
In a language such as French (or English), where a single form is re-
cruited for the expression of TAM and voice, this entails seeing the past
participle as a syncretic form with two discrete functions of a perfect
vs. passive participle, with distinct morphological and syntactic prop-

12We disregard here participles converted to adjectives, as these have been
excluded by our data selection strategy, as words having a homograph in a dif-
ferent part of speech.
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Construction M.SG M.PL F.SG F.PL Total
Non-agreeing TAM 2815 5 6 1 2827
Agreeing TAM 738 236 385 92 1451
Passive 1275 480 803 265 2823
Absolute 2344 630 1241 455 4670
Total 7172 1351 2435 813 11771
Share of TAM 50% 18% 16% 11% 36%

Table 8:
Frequency of use
of the past
participle
by construction
and agreement
in the UD_French-
GSD corpus

erties (Aronoff 1994; Abeillé and Godard 2002). Under this view, each
of our four past participle datasets is in fact composed of aggregate
data corresponding to two distinct but homophonous paradigm cells,
one of which is higher than the other on the inflection–derivation con-
tinuum.

How does this relate to the contrast between RSEs for models of
the masculine singular vs. other forms of the participle? As it hap-
pens, person and number agreement with the subject is systematic
and obligatory for passive and absolute uses of participles, while it
is rare for perfect uses. In TAM-expressing uses, the vast majority of
verbs use the default masculine singular form in the vast majority of
contexts. Only two situations give rise to agreement: transitive verbs
agree with a preceding object realized as a weak pronoun or a filler
in an unbounded dependency construction, but do not agree in the
canonical VO construction; and a minority of intransitive verbs use
the auxiliary être and agree with their subject.

To evaluate the impact of these differences on our data, we
queried the UD_French-GSD dependency-parsed corpus (Guillaume
et al. 2019) and tabulated all combinations of construction type, gen-
der, and number. The results, displayed in Table 8, clearly show that
TAM expression makes up a much larger share of the use of mascu-
line singular participles (50%) than the other three gender–number
combinations (from 11% to 18%). Hence TAM-expressing uses are
over-represented in the pool of masculine singular participle tokens,
while conversely the share of passive and absolute tokens uses is over-
represented in the three other pools of tokens. Given this, it was to be
expected that the masculine singular models have lower RSE, as the
share of the data corresponding to more inflection-like uses is higher.
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4.2 Experiment II

Experiment I showed that the models with information about seman-
tic neighbours within the target cell were the ones that accounted for
most variability in target frequency prediction. However, employing
such models severely limits the number of paradigmatic relations one
can compare: models with semantic information require that enough
close neighbors be available for each word form (if not, the word form
is excluded), and for it to be possible to train a model for a given cell,
enough word forms need to have available data (if not, the paradig-
matic relation is excluded).

Rather than looking at the best absolute fit, let us turn our atten-
tion to the relative predictability of the frequency of the output of the
different relations. Table 7 indicated that, while models relying on in-
formation about the word form only (models A and B) lead to poorer
prediction, their results are highly correlated with those of better per-
forming model types C and D. This suggests that the relative rank-
ings output by the method, regardless of which specific model is used,
are robust. We can therefore expand the number of morphological
processes we are comparing by using models with information about
the reference form only, from which fewer data points need to be ex-
cluded, under the assumption that the estimate of their relative pre-
dictability will be comparable to what could be obtained with models
incorporating semantic information.

This strategy allowed us to obtain data points for 9 other deriva-
tional relations, providing a larger set of data points on which to
test the prediction that RSE will increase as the relation in question
is more extremely derivational in nature. The derivational relation
with the smallest number of data points available, given the con-
straints for models of type A and B, are denominal adjectives in -al
(norme∼normal), with 147 data points.13

13Given the large number of predictors involved in model type B (reference
form frequency + the 8 dimensions of the reference form vector), we should
beware of overfitting. To check that the models for these paradigmatic relations
are picking up on regularities in the data, we compared the AIC of the target
models to the AIC of models for which the values for the dependent variable
have been scrambled. If the AIC for the target model is consistently lower than
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4.2.1Results

Table 9 and Figure 4 confirm the tendency observed in Experiment
1: relations that are traditionally regarded as derivational have higher
RSEs than those traditionally regarded as inflectional. Three additional
observations are made possible by the presence of more derivational
data.

Process Model A Model B
1 Deadjectival nouns 2.42 2.36
2 Deadjectival verbs 2.12 2.04
3 Denominal verbs 2.68 2.56
4 Denominal adjectives 2.19 2.14
5 Deverbal adjectives 2.88 2.86
6 Action nouns 2.71 2.63
7 Agent nouns 2.57 2.52
8 Plural nouns 2.11 1.98
9 pst.ptcp.m.sg 1.35 1.32
10 pst.ptcp.m.pl 1.73 1.63
11 pst.ptcp.f.sg 1.74 1.65
12 pst.ptcp.f.pl 1.77 1.65
13 cond.3sg 1.09 1.01
14 cond.3pl 1.01 0.95
15 fut.1sg 1.09 0.99
16 fut.2sg 0.93 0.87
17 fut.3sg 1.07 1.02
18 fut.1pl 1.02 0.97
19 fut.2pl 1.01 0.99
20 fut.3pl 1.05 0.98
21 ipfv.3sg 1.32 1.18
22 ipfv.3pl 1.29 1.15

Table 9:
RSE by model type for all relations
included in Experiment 2. Worst
performing model by row highlighted
in red , best performing model
highlighted in green

the AIC for the model trained on scrambled data, this suggests that the model is
doing more than just memorizing the data and picking up on patterns within it.
We scrambled the values of the response variable, fit the model, and extracted the
AIC – this was repeated 10 times for each relation and model type combination.
We then compared the AIC for the target model to that of the models trained
on scrambled data. For all relations and model type combinations, the AIC for
the target model was more than two standard deviations below the mean of the
models fitted to scrambled data, and often many more standard deviations lower.
This reassures us that overfitting is not an issue.
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Figure 4: RSE by model type for all relations included in Experiment 2

First, some contrasts in predictability among derivational re-
lations match expectations derived from the extant literature. For
instance, denominal adjectives are among the most predictable. A con-
siderable proportion of denominal adjectives are so-called ‘relational
adjectives’ such as présidentiel ‘presidential; of the president’ (Bally
1944). While the characterization of this class of adjectives is the sub-
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ject of heated debates (McNally and Boleda 2004; Fradin 2007; Rainer
2013; Strnadová 2014), they are generally considered to have very
close semantic proximity to their nominal base. At the other end of
the spectrum, deverbal adjectives are themost unpredictable. The bulk
of these are modal -able adjectives, which are notorious for their se-
mantic diversity and unpredictability (Riehemann 1998; Hathout et al.
2004).

Second, for other derivational relations, the level of predictabil-
ity is not readily explained: for instance, there is no immediate ex-
planation for the fact that deadjectival verbs are considerably more
predictable than denominal verbs; or for the fact that deadjectival
nouns and action nouns, which are often assumed to be minimally
different from their bases semantically (Croft 1991; Spencer 2013),
lead to contrasting RSEs. These results clearly suggest avenues for
future detailed linguistic explorations of the structure of the derived
lexicon.

Third, the added data changes the perspective on the inflection-
derivation gradient. Based on the smaller sample in Experiment 1,
we did observe granular differences in predictability within inflec-
tional and derivational relations, but there was still a sharp divide
between the two classes: all models for inflectional relations had
RSEs below 2, while all models for derivational relations had RSEs
above 2.5. In the present experiment, we witness overlap between
the two distributions: the least predictable inflectional relation, nom-
inal plural formation, leads to RSEs within the same restricted range
(1.95, 2.20) as the two most predictable derivational relations, dead-
jectival verbs and denominal adjectives. The fact that plural forma-
tion has this borderline character is not that surprising: as already
hinted at, noun plurals readily gain lexical autonomy as pluralia tan-
tum (cf. e.g. ciseau ‘chisel’; ciseaux ‘scissors’). However, the general
observation strongly suggests that, while derivation is less predictable
than inflection on average, the distinction is blurred in some corners of
the system; and hence that no sharp divide can be established between
the two.
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5 CONCLUSIONS

There has been much discussion concerning the nature of the distinc-
tion between inflection and derivation, and how this difference man-
ifests empirically. The paper proposes a quantitative, paradigmatic
method to investigate such questions.

The traditional conceptual difference between inflection and
derivation is that inflection yields ways of talking about the same con-
cept in different grammatical contexts, while derivation yields ways
of talking about different but related concepts. As a consequence,
derivationally related words are expected to behave more indepen-
dently in their patterns of usage than inflectionally related ones for
two reasons: first, the relative independence is more likely to enable
asymmetric semantic shifts; second, even in the absence of semantic
shifts derivationally related words denote different concepts that may
have different patterns of usage due to properties of the real world
– or more broadly, the semantics of the paradigmatic relation might
interact in non-additive ways with the semantics of the base.

If one approaches the lexicon as a series of paradigmatic rela-
tionships of interpredictability between words, the difference between
inflection and derivation does not need to be reified, but can be emer-
gent from the relative reliability of the paradigmatic relationship in
predicting the properties of one form from the other. This would put
paradigmatic approaches among those that see inflection and deriva-
tion as a gradient.

The paper proposes a method that seeks to compare various mor-
phological relations on the basis of their paradigmatic predictability,
to see if this operationalization captures the traditional distinction be-
tween inflection and derivation, and whether any interesting patterns
emerge either in the relative predictability ranking on different mor-
phological relations or in which types of predictors perform best.

The prediction made by the conceptual distinction between in-
flection and derivation is effectively one about usage: inflectionally
related words will have more interpredictable patterns of usage than
derivationally related words. One easily accessible correlate of pat-
terns of linguistic usage is frequency: if two paradigmatic cells sim-
ply constitute ways of talking about the exact same concept in dif-
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ferent grammatical contexts (e.g. past vs present) the frequency ratio
between members of that paradigmatic relationship should have low
variability, since to obtain the frequency of a word in cell B it would
suffice to multiply the frequency of the form in cell A by the ratio of
contexts that require cell A vs cell B. However, if the two paradig-
matic cells link different but related concepts, we expect much more
variability in the relationship between the frequencies of two words
instantiating said relationship, depending on the semantics of the con-
cept and its real-world properties, the semantics of the morphological
relation, and any asymmetrical shift in meaning that might have oc-
curred.

It is therefore expected that the frequency of inflected words
would be more accurately predicted than the frequency of derived
words, based on comparable information. To establish this, we com-
pared RSEs across models for different relations: RSE provides a nor-
malized, continuous measure for examining differences between rela-
tions and model structures. The hypothesis holds up against the data:
models predicting the frequency of derived words have consistently
higher RSE than models predicting the frequency of inflected words.

We also attempted to fit models containing different kinds of pre-
dictors to the same morphological relation. Predictors may include
frequency information or distributional information, and they may
pertain to a cell of reference within the paradigm or to words ob-
tained by the same relation. We find that it is models which include
information about the target cell that tend to provide the best fit for
each morphological relation. Nevertheless, all four model structures
yielded relatively close RSE estimates for each morphological relation,
validating the method: while some information may be more helpful
in predicting the frequency of words in a given cell (which informa-
tion this is for each case is itself informative about the nature of the
relation), there appears to be variability that is intrinsic to the data
yielded by a given morphological relation.

While comparing the performance of different types of predic-
tors on data from a single relation can give rise to insights about
the nature of the relation, the relative consistency in RSE between
the four model types employed for each relation allowed us extend
the method to morphological relations with fewer data points avail-
able. Given that the relative ranking of relations by their predictability
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remained constant for each model type, it was possible to use the types
of models which required the least amount of data in order to make
inferences about a wider range of relations. The larger sample size
confirms that the method is capable of capturing differences in pre-
dictability of patterns of usage between members of different paradig-
matic relationships. Relations traditionally seen as derivational had
lower predictability than relations traditionally seen as inflectional.
The predictability values did not cluster around the two poles but in-
stead spanned the whole range between the extremes, lending further
support to a gradient understanding of the distinction between inflec-
tion and derivation, and opening up the possibility that it be seen as
emergent from the paradigmatic predictability of the properties of the
morphological relation in question.
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We present a learnability analysis of the argument-modifier distinc-
tion, asking whether there is information in the distribution of English
constituents that could allow learners to identify which constituents
are arguments and which are modifiers. We first develop a general de-
scription of some of the ways in which arguments and modifiers differ
in distribution. We then identify two models from the literature that
can capture these differences, which we call the argument-only model
and the argument-modifier model. We employ these models using a
common learning framework based on two simplicity biases which
tradeoff against one another. The first bias favors a small lexicon with
highly reusable lexical items, and the second, opposing, bias favors
simple derivations of individual forms – those using small numbers of
lexical items.

Our first empirical study shows that the argument-modifier model
is able to recover the argument-modifier status of many individual
constituents when evaluated against a gold standard. This provides
evidence in favor of our general account of the distributional differ-
ences between arguments and modifiers. It also suggests a kind of
lower bound on the amount of information that a suitably equipped
learner could use to identify which phrases are arguments or modi-
fiers.
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We then present a series of analyses investigating how and why
the argument-modifier model is able to recover the argument-modifier
status of some constituents. In particular, we show that the argument-
modifier model is able to provide a simpler description of the in-
put corpus than the argument-only model, both in terms of lexicon
size, and in terms of the complexity of individual derivations. Intu-
itively, the argument-modifier model is able to do this because it is
able to ignore spurious modifier structure when learning the lexicon.
These analyses further support our general account of the differences
between arguments and modifiers, as well as our simplicity-based
approach to learning.

1 INTRODUCTION

The expressivity of natural language is made possible by a division of
labor between an inventory of stored items (e.g., morphemes, words,
idioms, etc.), known as the lexicon, and a set of structure-building
operations which combine lexical items to create new expressions,
known as the grammar.1 The operation of the grammatical system is
highly constrained by requirements imposed by specific lexical items.
Consider the verb put. In its most basic usage, this verb can only ap-
pear in sentences which contain constituents expressing: (i) who is
doing the putting, (ii) what is being put, and (iii) the destination of the
putting event. The sentence ∗John put the loaf of bread is incomplete,
while the sentence John put the loaf of bread in his kitchen cupboard is
not. Furthermore, put imposes other requirements on sentence struc-
ture, such as the requirement that object being put be expressed as a
noun phrase. We will refer to such lexically-specified requirements as
the argument structure of put.

1Note that throughout this paper, we use the term lexical item to refer to the
elementary units combined by a grammar formalism – whether or not they con-
tain surface words. In the tree-adjoining grammar tradition, which we make use
of here, these would more formally be called elementary trees. Hence, whenever
we use the term lexical item, we are referring to what are typically referred to
as elementary trees in that literature.

[ 242 ]



Arguments and modifiers

Over the last decades, many linguistic theories have adopted a
lexically-driven view of grammar. Under such an architecture, gram-
matical computation is performed by small number of structure-build-
ing operations (e.g., UNIFY, MERGE, etc.) whose behavior is controlled
by the argument-structure specifications of lexical items (Bresnan
2001; Chomsky 1995a,b; Culicover and Jackendoff 2005; Gamut
1991; Gazdar et al. 1985; Heim and Kratzer 1998; Huddleston and
Pullum 2002; Jackendoff 2002; Johnson and Postal 1980; McConnell-
Ginet and Chierchia 2000; Mel’čuk 1988; Moortgat 1997; Pollard and
Sag 1994; Sag 2012; Stabler 1997; Steedman 2000).2 The develop-
ment of lexically-driven approaches to grammar leads naturally to the
suggestion that much of language learning might be reduced to the
problem of learning the lexicon (see, e.g., Chomsky 1993).

However, natural language also exhibits constituents that do not
appear to be arguments of any lexical item. Consider the sentence
While preparing dinner, John thoughtlessly put the loaf of bread in his
kitchen cupboard. In this sentence, the phrases while preparing dinner
and thoughtlessly specify additional information about the time and
manner of the putting event, but they do not seem to be required
by any other constituent and the sentence is well-formed and inter-
pretable without them. These phrases also differ in a number of other
ways from the core arguments of the verb. For instance, while the
argument-phrase specifying the doer of the putting event (i.e., John)
must appear in the subject position of the sentence (∗put the loaf of
bread John in his kitchen cupboard), these other phrases can appear in
a greater variety of positions (John thoughtlessly put the loaf of bread
in his kitchen cupboard, while preparing dinner). We will refer to such
non-argument phrases as modifiers.

The existence of such (apparent) non-argument-driven structure
raises a fundamental question. If there are both lexical and non-lexical

2We note that an alternate tradition of constructivist theories argue that argu-
ment structure is not associated with particular lexical roots (a position some-
times known as projectivism) but rather is a consequence of the functional struc-
ture into which roots are inserted during syntactic derivation (see Marantz 2013,
for discussion). To the degree that differences between arguments and modifiers
in such frameworks still give rise to the distributional differences we discuss
below, our results are also consistent with these theories.

[ 243 ]



Leon Bergen et al.

modes of composition, how do learners determine when and how each
are used? Consider the phrase in his kitchen. In the sentence John put
the loaf of bread in his kitchen, this phrase is an argument, while it is
a modifier in the sentence John made the loaf of bread in his kitchen.
Adult speakers understand these structural differences despite such
superficial similarities between the constructions. How do they come
by this knowledge?

In this paper, we use computational modeling to address this
question. We argue that the statistics of natural language corpora
provide evidence that would allow learners to distinguish between
argument and non-argument modes of composition in many cases.
This evidence is complementary to other forms of evidence avail-
able to learners that have been discussed in the context of the
argument-modifier distinction in the linguistic literature (such as se-
mantic differences) and can be leveraged by appropriately equipped
learners to determine the argument or modifier status of individual
phrases.

In Section 2, we propose that modifiers tend to differ from lexi-
cally specified arguments in three ways that have distributional con-
sequences (inter alia): iterability vs. finiteness, optionality vs. obli-
gatoriness, and structural flexibility vs. structural fixity. In Sec-
tion 2.1, we describe two models of lexicon learning designed to
minimally capture these differences: the argument-only model and the
argument-modifier model. All formal details can be found in the appen-
dices of the paper.

In Section 3, we describe how lexicon learning under both mod-
els can be formulated in terms of a tradeoff between two simplicity
biases that favor small lexica (simple-lexicon bias) and simple deriva-
tions (simple-derivation bias), respectively. Adopting this tradeoff-
based approach, we first show in Section 5.1 that the argument-
modifier model is able to recover the argument status of many con-
stituents in a gold-standard corpus, indicating that it captures some
aspect of the argument-modifier distinction as discussed in the lin-
guistics literature. We then show in Section 5.2 that the argument-
modifier model is able to provide explanations of the input cor-
pus that are more optimal in terms of both the small-lexicon and
simple-derivation biases. These results imply that there is clear
distributional evidence indicating the argument-modifier status of
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many phrases and that this evidence could be leveraged by learners
who make use of a tradeoff between derivational and lexical sim-
plicity.

2ARGUMENTS AND MODIFIERS

Historically, some distinction between arguments and modifiers
(sometimes called adjuncts) has been assumed by nearly all theo-
ries of syntax and semantics and a number of theoretical mechanisms
have been proposed to handle the distinction. Furthermore, many
different syntactic and semantic tests have been proposed for distin-
guishing between the two kinds of phrase (see Bergen et al. 2015, for
detailed review of this literature). In this paper, we operationalize the
argument-modifier distinction by focusing on one particular question:
Which constituents in a sentence are there because they were required
by some lexical item, and which are not lexically required? In this pa-
per, argument structure will refer to any lexically-specified constraint
or requirement on constituent co-occurrence. We intend this general
notion of argument structure to potentially include many kinds of
lexically-specified constraint that have been proposed over the years
in different grammatical traditions. Thus, it includes verb-argument
structure but, also, the lexical requirements of other categories such
as prepositions or nouns.

The difference between arguments and modifiers is often cast in
semantic terms. While we do not deny that there are important differ-
ences in the way that these types of constituent contribute to the mean-
ing of sentences, in this paper we focus solely on differences between
the two types of phrase that affect the distribution of constituents in
language.

In lexically-specified grammar formalisms, lexical items list their
arguments and (typically) where these arguments appear with respect
to the selecting item. This architecture has three critical properties
which have important distributional consequences. First, lexical items
in such formalisms usually specify only a small number of argument
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positions (finiteness).3 Second, lexical arguments are typically oblig-
atory in such systems (obligatoriness), though some mechanisms for
handling optional arguments are usually provided. Third and finally,
particular arguments are required to appear in fixed relationship to the
selecting lexical item (structural fixity). In languages like English, this
typically corresponds to their structural position with respect to their
selecting head. In other languages, this may correspond to a grammat-
ical relation which is encoded in other ways (e.g., case).

By contrast, the types of constituents which have been tradi-
tionally identified as modifiers differ in each of these three prop-
erties. An unbounded number of modifiers can often be added to
a constituent (finiteness vs. iterability); modifiers tend to be op-
tional (obligatoriness vs. optionality); and modifiers often occur in a
greater variety of structural relationships with their head (structural
fixity vs. structural flexibility). These three dimensions of variation
summarize a large number of properties and linguistic tests that have
been discussed in the literature (Borsley 1999; Comrie 1993; Creis-
sels 2014; Croft 2001; Forker 2014; Haegeman 1994; Haspelmath
2014; Hornstein and Lightfoot 1981; Koenig et al. 2003; Kroeger 2004;
Matthews 1981; Przepiórkowski 1999a,b; Radford 1988; Rákosi 2006;
Schütze 1995; Schütze and Gibson 1999; Tallerman 2015; Tutunjian
and Boland 2008; Vater 1978; Wichmann 2014; Zwicky 1993).4

We emphasize that these properties are not definitional and
do not represent necessary and sufficient conditions on argument-
hood. Instead, they are tendencies: Arguments are sometimes op-
tional (e.g., John ate/John ate the cake) and in some cases there
is more than one structural realization of the same arguments of
some lexical item (e.g., John gave Mary the book/John gave the book
to Mary). At the same time, there are often strong constraints on
the structural position of modifiers (e.g., John gave Mary the book
quickly/∗John gave quickly Mary the book) and there are construc-
tions in which modifiers are obligatory (e.g., These ovens clean eas-
ily).5 Nevertheless, the three properties do roughly summarize a
number of linguistic tests for argument-/modifierhood often dis-

3See Przepiórkowski (2017) for an exception.
4See Bergen et al. (2015) for a detailed review of this literature.
5We thank an anonymous reviewer for this example.
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cussed in the literature. We propose that these statistical tendencies
can be used by suitably equipped learning to determine the argu-
ment/modifier status of many constituents and, thus, provide a use-
ful source of evidence for lexicon learning that is complementary
to other sources of evidence that have been discussed in the litera-
ture.

2.1Tree-substitution and sister-adjunction grammars

In this paper, we use probabilistic tree-substitution grammars as our
model of lexical argument structure. A tree-substitution grammar for-
malizes the lexicon as an inventory of stored tree fragments, such as
those shown in Figure 1 (Bod 1998; Joshi and Levy 1975; Scha 1990,
1992). This figure shows the inventory of elementary trees that we
will use as examples below.6 Each tree fragment encodes the cate-
gory and structural position of argument phrases that must be present
in a complete sentence which is derived using the fragment. In a tree-
substitution grammar, lexical fragments are combined via the SUBSTI-
TUTE operation, which replaces a node at the frontier of a derivation
with another tree fragment from the lexicon – subject to the condition
that the category of the frontier node and the root category of the sub-
stituted fragment are identical. The SUBSTITUTE operation is applied
recursively until no substitutable nodes remain at the frontier, and a
complete sentence has been derived.

S

NP VP

V

put

NP PP PP

S

NP VP

V

put

NP PP

PP

at 5 o’clock

NP

John

NP

the socks

PP

in the drawer

Figure 1:
Inventory of tree fragments

6Note that the internal constituent structure of the noun and prepositional
phrases (NP and PP) has been suppressed.
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Tree-substitution grammars capture the three core properties of
argument structure discussed Section 2. Each lexical fragment can
only possess a fixed (and in practice small) number of leaf variables
(finiteness). All such variables must be filled in a complete derivation
(obligatoriness); and finally, the position of each argument phrase
is fixed relative to the lexical item which selects for it (structural
fixity).
To model modification, we make use of an extension of tree-

substitution grammars which introduces a second structure-building
operation, sister-adjunction (Chiang 2000; Chiang and Bikel 2002;
Rambow et al. 1995; Schabes and Shieber 1994). While SUBSTITUTE
must be licensed by the presence of an argument node at the frontier,
SISTER-ADJOIN can insert a constituent as the sister to any node in an
existing tree. The formalism is strongly equivalent to (unlexicalized)
tree-insertion grammar and, therefore, has the same weak generative
capacity as context-free grammar (Schabes and Waters 1995).7

To derive the complete tree for a sentence using a set of fragments
such as those shown in Figure 1, the generative process starts from a
single nonterminal node of category S (i.e., the start symbol), and then
recursively samples arguments and modifiers according to the follow-
ing procedure. For each node f with nonterminal category A on the
frontier of our derivation, we perform the following two steps. First,
we choose an elementary tree t with category A from our lexicon and,
for each position before or after a node on the interior of t, we sister-
adjoin zero or more new nonterminal nodes, representing modifier
phrases. Second, we substitute f – now with modifier category nodes
– into the derivation at node n (see discussion of Figure 2 below). This
process then repeats on any nonterminal nodes now on the frontier of
the tree. In particular, if we have sister-adjoined a modifier node with
category X, its internal structure will be determined recursively by
choosing an elementary tree of category X from the lexicon.

The SISTER-ADJOIN operation formalizes the three core ways in
which modifiers differ from arguments: (i) The decision to insert or
not insert a modifier does not change the well-formedness of a gen-
erated structure with respect to the satisfaction of lexical argument

7We note that these formalisms have different strong generative capacity,
however.
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S

NP

John

VP

V

put

NP

the socks

PP

in the drawer

PP

at 5 o’clock

NP

John

NP

the socks

PP

in the drawer

PP

at 5 o’clock

S

NP

John

VP

V

put

NP

the socks

PP

in the drawer

PP

at 5 o’clock

NP

John

NP

the socks

PP

at 5 o’clock

PP

in the drawer

Figure 2:
TSG versus SAG derivations

requirements (optionality) (ii) SISTER-ADJOIN can insert any num-
ber of modifiers at a position in a derivation (iterability), and (iii)
SISTER-ADJOIN can insert a modifier at any position in a constituent
(structural flexibility).

Figure 2 illustrates two derivations of the same tree, one in a stan-
dard tree-substitution grammar (TSG) without sister-adjunction, and
one in the model extended with SISTER-ADJOIN, which we term sister-
adjunction grammar (SAG). The tree-substitution grammar derivation,
at the top of the figure, uses an elementary tree with four leaf non-
terminals as the backbone for the derivation. The four phrases filling
these arguments are then substituted into the elementary tree, as in-
dicated by arrows. Note that in tree-substitution grammars the prepo-
sitional phrase, at 5 o’clock, which is a temporal modifier, enters the
derivation through an argument node. However, the sister-adjunction
grammar in the lower part of the figure is able to insert this modifier
using SISTER-ADJOIN (indicated using dotted lines) and, therefore,
uses an elementary tree with only three leaf nonterminals as the back-
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bone of this derivation. This difference will mean that tree-substitution
grammars will require a greater number of tree fragments in the lex-
icon to account for variability that could otherwise be accounted for
using modification.

3 HANDLING UNCERTAINTY:
TRADEOFF-BASED LEARNING OF LEXICA

Neither language learners nor linguists have a priori knowledge of
the set of lexical items in a language, their particular argument struc-
tures, or the argument/modifier status of individual phrases in the in-
put. Rather, the set of lexical argument structures in a language must
be learned from linguistic input, and the derivation of particular sen-
tences must be inferred on a case-by-case basis. In this paper, we adopt
a probabilistic approach to these problems of learning and inference,
specifying prior distributions over lexicons and derivations for both
the argument-only model and the argument-modifier model, and us-
ing probabilistic conditioning to infer language-specific lexicons and
utterance-specific derivations from input data. We give formal defini-
tions of our prior distributions, and algorithms for estimating condi-
tional probabilities in Section 6. In this section, we give an intuitive
overview of the ideas behind the framework.

Following earlier work, we propose that lexicon learning is guided
by two prior biases for simplicity (especially Brent 1999; De Marcken
1996a,b; Goldwater 2006; Johnson et al. 2007; O’Donnell 2011, 2015).
The first, the simple lexicon bias, provides an a priori measure of the
quality of lexicons, favoring those with fewer, more reusable lexical
items. The second, the simple derivation bias, provides an a priori mea-
sure of the quality of the derivations of individual sentences, favoring
simpler derivations involving smaller numbers of lexical items, and
lexical items with higher probability. These two biases lead to a trade-
off: For a fixed set of sentences, if we increase the average reusability
of lexical items, then we must also increase the average number of lex-
ical items used in any derivation. Likewise, if we decrease the average
number of lexical items used per derivation, we must, on average, in-
crease the size of the lexicon. The inference problem is to jointly find a

[ 250 ]



Arguments and modifiers

set of lexical items and sentence derivations that best explains the dis-
tribution of forms in the input data, subject to these two prior biases.

Our two prior biases are a special case of the standard Bayesian
prior/likelihood tradeoff applied to the problem of lexical storage. The
preference for more reusable lexical items is encoded by the prior
over lexical items and the preference for smaller derivations results
from the likelihood, which favors derivations in which fewer random
choices are made. In the two sections below, we provide additional
intuitions about the behavior of our models when applied to input
datasets and details about their implementation.

3.1Simplicity biases and inference

As just discussed, our models encode two simplicity biases. The simple
lexicon bias favors smaller lexicons containing more reusable lexical
items. Following Goldwater (2006), Johnson et al. (2007), and others,
we formalize this bias using a distribution from Bayesian nonparamet-
ric statistics known as the Pitman-Yor Process (Pitman and Yor 1995).
A Pitman-Yor process PYP(G0, a, b) is a distribution over lexical items
that is specified with three parameters, G0, a, and b. The first param-
eter, G0, is a prior distribution over possible tree fragments that can
be stored as lexical items. The other two parameters – known as the
concentration parameter b and discount parameter a – are real-valued
such that 0≥ a ≥ 1 and b > −a.

A Pitman-Yor process operates as follows. The first time we sam-
ple from PYP(G0, a, b), a new lexical item will be chosen according to
G0, stored internally by the Pitman-Yor process, and returned to the
caller. On subsequent invocations, either a previously sampled lexi-
cal item i will be returned with probability ni − a

N + b
, or a new lexical

item will be sampled from G0, stored, and returned, with probability
aK + b
N + b

, where ni is the number of times that lexical item i was pre-
viously sampled, N is the total number of lexical items sampled so far
(i.e., N =
∑

j n j), and K is the number of distinct lexical items that
have been previously sampled (i.e., the number of lexical types). No-
tice that these definitions favor smaller numbers of lexical items and
induce a rich-get-richer dynamic whereby lexical items that are used
more often are more likely to be reused.
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The simple derivation bias favors derivations for individual sen-
tences that use small numbers of more probable lexical items. In both
the argument-only model and argument-modifier model, this bias is
captured by our assumption that the probability of a derivation is the
product of the probabilities of the lexical tree fragments used to con-
struct it. Because probabilities must be numbers between 0 and 1,
the probability of a derivation decreases quickly (geometrically) as
the number of fragments it contains increases. However, this can be
mitigated somewhat if the fragments are highly probable (i.e., have
probability close to 1).

Applying these two simplicity biases to tree-substitution gram-
mar, we arrive at what we call the argument-only model (see Bod
et al. 2003; Cohn et al. 2010; O’Donnell 2011, 2015; Post and Gildea
2013, for related models). To better understand the inferential behav-
ior of the argument-only model, it is useful to consider a toy example.
Figure 3 shows three possible solutions to the problem of inferring the
correct set of stored tree fragments for a toy corpus consisting of three
sentences.

Figure 3: Inference in the argument-only model

[ 252 ]



Arguments and modifiers

Row I of Figure 3 shows the result of storing and using only the
smallest, most abstract fragments of sentence structure. In this case,
each particular lexical item will be highly reusable, and the lexicon
will be maximally compact. However, the derivations of individual
sentences will necessarily make use of many lexical fragments and
will therefore be more complex. Row II of the figure shows the solu-
tion at the other extreme. In this case, every utterance is stored in its
entirety. This solution will result in extremely large lexicons with lex-
ical items of limited reusability. However, individual sentences which
recur in the data will be derivable with a single lexical item, result-
ing in potentially low-cost derivations if particular sentences recur in
the input. Row III of Figure 3 shows an intermediate solution which
is more optimal with respect to this dataset. By storing lexical frag-
ments which express argument structures of intermediate complexity,
this solution produces a more compact lexicon than the solution in
Row II, and simpler derivations than the solution in Row I, providing
a globally better explanation of the input forms. The inference prob-
lem solved by the argument-only model is to find such optimal sets of
tree fragments given an input corpus.

A similar pair of simplicity biases is used to define the distribution
over modifiers. Recall that SISTER-ADJOIN inserts modifier category
nodes into derivations and that these nodes are then filled using SUB-
STITUTE. We place a Pitman-Yor process prior over the set of possible
modifier node categories. This prior will bias the model towards using
a small set of category types when sampling modifiers. For example,
the modifier model might prefer to hypothesize that only adjective
and adverb phrases are likely to be modifiers rather than adjective,
adverb, noun, and verb phrases. A second simplicity bias favors in-
serting only a small number of modifiers into derivations. This bias is
captured by the assumption that the probability of deriving a sequence
of modifiers is the product of probabilities of the individual modifiers
in this sequence. Because this product drops off geometrically in the
number of modifiers, the model will prefer derivations which contain
a small number of modifiers.

Applying all of the simplicity biases to sister-adjunction gram-
mar, we arrive at the argument-modifier model. During inference,
the argument-modifier model will attempt to find an optimal set
of reusable argument-structure fragments by categorizing individual
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nodes in input data trees as either (i) internal to a stored tree frag-
ment, (ii) built by substitution of a lexical item at a frontier node, or
(iii) built by sister-adjunction. In general, the model will categorize a
node as a modifier when doing so will result in a simpler representa-
tion of the input corpus, that is, when it allows the input corpus to be
explained using a smaller set of lexical items. Intuitively, the SISTER-
ADJOIN operation allows the model to prune out constituents when
doing so will lead to more compact and generalizable lexical items.

Figure 4: The argument-only model versus the argument-modifier model

Consider Figure 4. If a model posits that there are no modifiers in
these sentences, then it will not identify the shared structure between
two uses of the verb put, and will derive them using distinct sets of
elementary trees, as on the top line of Figure 4. On the other hand,
if it posits that the PP before dinner is a modifier, then it will be able
to derive the core structure of these sentences using a single elemen-
tary tree, as on the bottom line of Figure 4. Nodes will be identified
as modifiers when, like this PP, their removal from the sentence’s ar-
gument structure leads to simpler derivations of the sentences in the
corpus and greater amounts of sharing in the lexicon.
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3.2Inference

To perform inference, we developed a local Gibbs sampler which gen-
eralizes the one proposed by Cohn et al. (2010). This sampler jointly
explores the space of elementary trees and substitution/adjunction at-
tributions for a corpus consisting of parsed sentences. At each itera-
tion, the sampler determines for each node in the corpus whether (i)
the node is internal to an elementary tree, (ii) the node is the root of a
tree which was inserted by substitution, or (iii) the node is the root of
a tree which was inserted by sister-adjunction. The sampler randomly
selects a node in the corpus and resamples its label from the full condi-
tional posterior given the current hypothesis for the rest of the nodes
in the corpus and the elementary tree set.

4SIMPLICITY AND EVALUATION METRICS

Before presenting our results in the next section, we make some ob-
servations about the relationship between our learning framework and
the broader literature. The tradeoff-based approach that we adopt here
can be understood as an instantiation of the classical linguistic notion
of an evaluation metric (Chomsky 1951 [1979], 1955 [1975], 1964).8
Although we make use of probability theory to capture our two kinds
of simplicity, our framework is closely related to other approaches
that operationalize simplicity using the idea of description-length or
succinctness (e.g., Berwick 1982, 1985; Brent 1997, 1999; Cartwright
and Brent 1994; DeMarcken 1996a,b; Grünwald 2007; Hsu and Chater
2010; Hsu et al. 2011, 2013; Li and Vitányi 2008; Perfors et al. 2011;
Phillips and Pearl 2014; Rissanen 1978; Stolcke and Omohundro 1994;
Wolff 1977, 1980, 1982; Yang and Piantadosi 2022, inter alia). Such
approaches go back at least to Chomsky (1951 [1979]) in linguistics
and have been widely discussed in philosophy, statistics, and cogni-
tive science, both with respect to their normative justification as well
as their appropriateness for describing human psychology (see, Li and

8Also see discussion in Goldsmith (2011) and Rasin and Katzir (2016).
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Vitányi 2008, for an overview of many historical threads in statistics,
mathematics, and computer science).

Perhaps the most general treatment comes from the theory of
Solomonoff induction, which uses a distribution over the set of all
possible computer programs to define simplicity preferences related
to those used in this work (Grünwald 2007; Li and Vitányi 2008; Ris-
sanen 1978; Solomonoff 1978, 1964a,b). In this framework, theories
(i.e. computable distributions over observations) are preferred when
they are both simple to describe and provide simple descriptions of the
data. It has been proven that this distribution can be used to asymptot-
ically learn any computable theory, given a sufficient amount of data,
and as a result it has been proposed as a universal, normative account
of learning. The relation between this work and theoretical and empir-
ical problems of language learning are also beginning to be understood
in more detail (see, e.g., Hsu and Chater 2010; Hsu et al. 2011, 2013,
for recent discussion). In cognitive science, there is a large and grow-
ing body of work suggesting that human inductive biases are captured
by models making use of similar simplicity biases (see, e.g., Feldman
2000; Goodman et al. 2008; Piantadosi 2011, 2021, for examples from
concept learning).

However, any formal definition of simplicity is dependent on the
formalism, representation, or machine model with respect to which it
is defined (Li and Vitányi 2008). Therefore, proposals about simplic-
ity are substantive parts of theories of learning and must be evaluated
together with other aspects of such theories. There remain several
different frameworks implementing the simplicity-based approach –
including the Bayesian framework, adopted here, and the minimum
description length framework (Grünwald 2007; Rissanen 1978). It re-
mains for future work to achieve a more fine-grained theoretical and
empirical understanding of similarities and differences amongst vari-
ous approaches to learning-via-simplicity.

5 SIMULATIONS

In this section, we will use the computational models introduced above
to evaluate two questions. First, do the statistics of natural language
corpora provide evidence for the argument or modifier status of indi-
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vidual phrases that is usable by a learner that optimizes a trade-
off between lexical and derivational simplicity? Second, why is the
argument-modifier model a superior model of the input data under
these simplicity biases.

In order to address these questions, we will perform two sets of
analyses. In the first, we will look at whether the argument-modifier
model learns a distinction between arguments and non-arguments
which agrees with a hand-annotated corpus. We will show that the
argument-modifier model classifies arguments and non-arguments in
a manner that aligns with traditional linguistic assumptions. Thus, we
conclude that the argument/modifier status of individual phrases is
evidenced in the input. This provides evidence in favor of both our
formalization of the distinction and in favor of tradeoff-based learning.

In the second set of analyses, we will examine how the argument-
modifier model infers the argument status of constituents using simpli-
city. We will show that the argument-modifier model learns a simpler
representation of the input data than the argument-only model. We
illustrate how this arises as a result of the representational and infer-
ential assumptions discussed above.

5.1Gold Standard Evaluation

Our first set of analyses examine the ability of the argument-modifier
model to correctly classify constituents as arguments or modifiers.
As we discussed above, the model was designed to capture three dif-
ferences between arguments and modifiers that affect their syntactic
distribution: obligatoriness/optionality, finiteness/iterability, and
fixity/flexibility. If the argument-modifier model is able to correctly
distinguish modifier and argument phrases in the training corpus, we
can conclude that these three distributional differences provide a sig-
nal to appropriately equipped learners.

We trained the argument-modifier model on sections 2–21 of the
Wall Street Journal portion of the Penn Treebank (Marcus et al. 1999).
The input consisted of approximately 40,000 parsed sentences, with-
out any further annotations for argument or modifier status. Under
the Penn Treebank’s tree annotation scheme, arguments and modifiers
are not distinguished from each other by their hierarchical relations
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in the parse tree (or in any other way). In particular, the arguments
and modifiers of a phrase are most often siblings in the tree. Thus,
the argument-modifier model could not directly use any information
in the input corpus to simply read off each sentence’s argument and
modifier structure.

In order to evaluate the accuracy of the argument-modifier model
classification of arguments and modifiers, we require a gold standard
which provides annotations for arguments and modifiers in the Penn
Treebank. Unfortunately, no such resource provides a classification
of all nodes in the Penn Treebank (or CHILDES, MacWhinney 2000,
which we use in our next study). However, for a subset of the phrases
in the Penn Treebank, such information is available in the PropBank
corpus (Palmer et al. 2005) which provides annotations of argument
andmodifier structure for all of the verbal predicates in theWall Street
Journal portion of the corpus. As noted in Palmer et al. (2005), the
annotation of modifiers in PropBank is non-standard in certain cases.
In particular, NEG and MOD categories are annotated as modifiers. We
therefore exclude these categories from our analyses. PropBank does
not annotate the arguments or modifiers of expressions which are not
verbal predicates. Our model evaluations were performed by running
the Gibbs sampler described in Section 3.2 for 100 iterations, and se-
lecting the node labelings which were output on the final iteration.

For the purpose of our analyses, all sister-adjoined nodes are clas-
sified as modifiers, and all other nodes (i.e. nodes which are internal to
an elementary tree or at the leaf of one) are classified as non-modifiers.
We compared the model’s labels to those provided by PropBank, on
the subset of nodes for which PropBank provides annotations.

To show that differences in the distributions of argument and
modifier phrases provide a valuable source of evidence for lexicon ac-
quisition, we first establish that our model is able to correctly classify
phrases at a rate which is better than chance. To demonstrate this, we
computed the precision (i.e. number of correctly identified modifier
nodes divided by the total number of modifier nodes identified by the
model) and recall (i.e. number of correctly identified modifier nodes
divided by the total number of modifier nodes in the gold-standard)
of the model and compared it with two baselines. The first baseline
randomly classifies each node as internal to an elementary tree, the
leaf of an elementary tree, or a modifier with equal probability. Note
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that prior to receiving any training data, the model has no informa-
tion about which phrase types are likely to be modifiers and which
are likely to be arguments. The random baseline therefore represents
the model’s knowledge of the argument/modifier distinction prior to
training, and any improvement in the model’s classification of modi-
fiers must be attributed to information contained in the input data.

The second baseline treats every node as a modifier. We introduce
this baseline in order to illustrate some basic facts about PropBank. Ta-
ble 1 shows precision and recall in identifying the modifiers of verbal
predicates in the corpus. The argument-modifier model is compared
to three baselines: an all-modifier baseline, in which every node is la-
beled as a modifier, a random baseline, and a version of the model
that does not use context to predict modifiers. PropBank annotated
179,058 nodes in the corpus for their argument/modifier status. These
nodes represent approximately 10% of the total nodes in the corpus.
Among the annotated nodes, 45,507 (25%) are modifiers, meaning
that 25% of the guesses of the all-modifier baseline are correct.

Precision measures accuracy of modifier-predictions. Table 1
shows that the argument-modifier model is significantly more ac-
curate than the random and the all-modifier baselines, demonstrating
that the training data has provided information which allows the
model to correctly classify many constituents.

Model Precision Recall Accuracy
all-modifier 0.25 1 0.25
all-argument N/A 0 0.75
random 0.29 0.23 0.66
SAG 0.66 0.52 0.81

Table 1:
Precision and recall
of the argument-modifier model

Recall measures the coverage of gold-standard modifier nodes
achieved by themodels. Again, the argument-modifiermodel achieved
significantly higher coverage than the random baseline, indicating
that the training data contains enough information to increase the
number of true modifiers that the model recognizes.

In order to better understand what the argument-modifier model
learned about the modifiers of verbal predicates, the evaluations
against PropBank were further broken down by the category of the
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Table 2:
Labelings for modifiers

of VP nodes, broken down
by child category

VP Parent
Child category Model Precision Recall PropBank
ADVP random 0.95 0.23 12,385
ADVP SAG 0.95 0.47 12,385
NP random 0.04 0.23 3,345
NP SAG 0.47 0.57 3,345
PP random 0.49 0.22 18,841
PP SAG 0.56 0.54 18,841
SBAR random 0.40 0.22 4,552
SBAR SAG 0.84 0.63 4,552

modifier. Table 2 shows the results for the phrase types which occur
most frequently as verbal modifiers: adverb phrases (ADVPs), noun
phrases (NPs), prepositional phrases (PPs), and subordinate clauses
(SBARs). Together these categories of constituent account for more
than 85% of the modifiers in the training corpus.

For the phrase categories of adverb phrases (ADVPs) and preposi-
tional phrases (PPs), the model doubles the recall of the random base-
line, and roughly maintains its baseline precision. Adverb phrases are
typical modifiers when they appear within a verb phrase (VP). Out of
13,197 ADVPs annotated by PropBank, 12,384 are modifiers. Preposi-
tional phrases are also frequently modifiers when they appear in this
context. Out of 38,861 PPs annotated by PropBank, 18,839 are mod-
ifiers. The increase in the model’s recall therefore indicates that the
model learned to correctly classify many of these ADVP and PP modi-
fiers.

In contrast to adverb and prepositional phrases, noun phrases
(NPs) which appear within verb phrases are typically arguments to
the verb. Out of 92,965 NPs annotated by PropBank, only 3,306 ap-
pear as modifiers. Exceptions to this generalization are cases where a
noun phrase is used as an adverbial modifier, such as the noun phrase
last night in They played the game last night. The precision of the model
increased by a factor of 10 for NPs, indicating that it incorrectly classi-
fied many fewer non-modifier NPs. In addition, the model’s precision
more than doubles the baseline.

Phrases belonging to the category of subordinate clauses SBAR can
serve either as arguments or modifiers. For example, in the sentence
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John said that he would be late, the subordinate clause that he would
be late is an argument of the verb said. By contrast, in the sentence
The woman laughed when she heard the joke, the clause when she heard
the joke is a temporal modifier of the verb laughed. Out of 13,617 SBAR
phrases annotated by PropBank, 4,551 are modifiers. The model’s pre-
cision and recall on SBAR phrases was more than twice that of the
random baseline, showing that the model classified fewer clausal ar-
guments as modifiers, and correctly identified a greater number of
clausal modifiers.

As we mentioned above, certain categories of constituents have
highly stereotyped argument-modifier status when they appear as chil-
dren of other categories. For example, adverb phrase (ADVP) children
of verb phrases (VP) and adjective phrase (JJ) children of noun phrases
(NP) are both typically modifiers of their parent constituents.

PropBank only provides argument-modifier annotations for the
children of verb phrases (VP), and therefore we do not have a gold
standard for modifiers occurring outside of VPs. Nonetheless, it is pos-
sible to use the stereotyped behavior of these categories to examine
the model’s performance on the children of non-VP nodes. Tables 3–6
show the model’s classification of constituents which were children
of sentence-level constituents (S), prepositional phrases (PPs), noun
phrases (NPs), and subordinate clauses (SBARs), respectively. In each
of these cases, the category of child constituents is highly indicative
of their argument-modifier status.

For sentence-level (S) constituents, we analyzed three categories
of child phrase: noun phrases (NPs), verb phrases (VPs), and (ADVPs).
These are the three most common categories which have stereotyped
argument/modifier behavior when they appear as children of nodes.
Of these three phrase types, noun and verb phrase are typically not
modifiers, whereas adverb phrases typically are. For example, in Usu-
ally, John wears a coat, the adverb Usually is a modifier of the sentence
while John andwears a coat are not modifiers. Table 3 shows how often
the model labeled the children of sentence-level constituents as modi-
fiers nodes. The model accords with intuition here, most often labeling
adverb phrases but not noun or verb phrases as modifiers.

For prepositional phrases (PPs), we considered four categories of
child constituent: adverb phrases (ADVPs), noun phrases (NPs), prepo-
sitions (INs), and to (TOs). Of these phrase types, only adverb phrases
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Table 3:
Labels

for children
of S nodes

S parent
Child category Model #Guessed Corpus total Typically modifier
ADVP random 1,393 6,063 Y
ADVP SAG 2,331 6,063 Y
NP random 16,654 93,076 N
NP SAG 1,738 93,076 N
VP random 16,005 89,984 N
VP SAG 572 89,984 N

typically modify the parent prepositional phrase. For example, in the
prepositional phrase immediately after the opening, the adverb phrase
immediately is a modifier while the prepositional head after and noun
phrase the opening are not. In accord with these intuitions, Table 4
demonstrates that the model classifies most adverb phrase children of
prepositional phrases as modifiers, but treats prepositional heads and
noun phrases as non-modifiers.

Table 4:
Labels

for children
of PP nodes

PP parent
Child category Model #Guessed Corpus total Typically modifier
ADVP random 216 1,109 Y
ADVP SAG 547 1,109 Y
IN random 13,972 83,848 N
IN SAG 672 83,848 N
NP random 15,060 88,556 N
NP SAG 496 88,556 N
TO random 1,484 8,654 N
TO SAG 64 8,654 N

We considered four categories of subconstituents for noun phrases
(NPs): determiners (e.g., the, a; DT), adjectives (JJ), other noun
phrases, and prepositional phrases. Determiners are unlikely to modify
noun phrases, while adjectives typically do modify them. For example,
in the noun phrase the big chair, the determiner the is not a modifier,
while the adjective big modifies the noun chair. Prepositional phrases
are often modifiers (e.g., in the resort by the sea, the prepositional
phrase by the sea modifies the noun resort), although in some cases,
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NP parent
Child category Model #Guessed Corpus total Typically modifier
DT random 15,791 77,553 N
DT SAG 1,701 77,553 N
JJ random 10,544 45,812 Y
JJ SAG 9,717 45,812 Y
PP random 7,652 43,420 Y
PP SAG 3,226 43,420 Y

Table 5:
Labels
for children
of NP nodes

such as deverbal nominalizations, they are typically treated as argu-
ments of the head noun (e.g., in the noun phrase the destruction of the
city, the prepositional phrase of the city is an argument of the head
noun; see, e.g., Chomsky 1970).

Table 5 shows the modifier-classification rates of noun phrase
children. The model correctly identifies determiners as non-modifiers.
However, for adjectives, the most prototypical modifiers of noun
phrase, the model’s performance is weaker: The number of JJs clas-
sified as modifiers is approximately the same as the random baseline.
The number of PPs classified as modifiers decreased by more than half
relative to the random baseline, though the implications of this are
unclear: As discussed above, PPs appear frequently as the modifiers of
noun phrases but also as arguments. It should be noted that the Penn
treebank is notorious for having many complex noun phrases consist-
ing of long sequences of noun compounds annotated with a single flat
structure. This likely affected the ability of the model to distinguish
amongst the children of NP nodes.

SBAR parent
Child category Model #Guessed Corpus total Typically modifier
S random 4,873 29396 N
S SAG 101 29396 N
WHADVP random 421 2521 N
WHADVP SAG 38 2521 N
WHNP random 1,383 8505 N
WHNP SAG 79 8505 N

Table 6:
Labels
for children
of SBAR nodes
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The category SBAR is used to mark subordinate clauses in the
Penn treebank. Here we consider the following categories of chil-
dren: sentence-level constituents (Ss) and wh-expressions (WHADVPs
and WHNPs) which are used to introduce subordinate clauses (e.g., the
word when in the sentence The woman laughed when she heard the joke).
None of these types of constituent is typically thought of as modifying
subordinate clauses. Table 6 shows, consistent with this intuition, that
the model treats all three categories as non-modifiers.

5.1.1 Discussion

We have presented two sets of results in this section. First, we have
shown that the argument-modifier model’s accuracy at classifying ar-
guments and non-arguments substantially improves over a random
baseline. Second, we have shown that among phrases that are not la-
beled in the gold standard (i.e., all phrase types but verb phrases), the
argument-modifier model learns an argument/non-argument classifi-
cation which appears linguistically reasonable for most major phrasal
categories.

These results have two consequences for the arguments in this
paper. The argument-modifier model is built on the assumption of
three distributional differences between lexical argument-structure-
derived phrases and modifier phrases: finiteness v. iterability, obli-
gatoriness v. optionality, and structural fixity v. structural flexi-
bility. Since the argument-modifier model made use of these prop-
erties in order to classify phrases in the input corpus as arguments
or non-arguments, its performance on the gold standard shows that
we have captured some linguistically relevant properties of arguments
and modifiers using these properties.

The results also show that the distributional information con-
tained in the input corpus is often sufficient for recovering the ar-
gumenthood of specific constituents. The argument-modifier model
does not have any a priori knowledge about which types of phrases
are likely to be arguments, and it leverages only distributional infor-
mation in order to infer the status of individual phrases. Thus, its
performance in categorizing arguments and non-arguments must be
attributable to the distributional information contained in the corpus.
This distributional information is leveraged by the model by trading
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off the simple lexicon and simple derivation biases. We note that our
study is an example of an ideal learner analysis (Pearl and Goldwater
2016); that is, the model is highly idealized and not intended to veridi-
cally represent a child language learner. Therefore, our results do not
demonstrate that children use distributional information to identify
the argument or modifier status of individual constituents. Instead,
they indicate that such information would be available to any learner
that made similar assumptions about the relationship between sim-
plicity and learning.

5.2Lexicon learning, arguments structure, and simplicity

In the previous section, we showed that the argument-modifier model
is able to correctly recover the modifier status of many constituents
using only the pattern of co-occurrences between constituents in the
training set. In this section, we show how this performance is the re-
sult of the simplicity biases outlined in Section 3. As discussed in that
section, our framework makes use of two competing simplicity biases.
The simple lexicon bias favors small numbers of highly reusable lexi-
cal items and the simple derivation bias favors derivations of individ-
ual forms using small numbers of lexical items. Typically, these two
biases lead to a tradeoff. Smaller, more reusable lexical items mean
more complex derivations and vice versa. However in this section, we
present simulations demonstrating that compared to the argument-
only model, the argument-modifier model learns a more compact gen-
eralizable lexicon, while also providing simpler derivations for indi-
vidual forms. If we fix a particular dataset as well as fix a particular
model (argument-only model or argument-modifier model and all pa-
rameters), there is at least one optimal (i.e., most probable), solution
for that model-dataset combination. Any lexicon/derivation set that
increases one kind of simplicity with respect to this optimum will nec-
essarily decrease the other. Thus, our results show that the argument-
modifier model is overall a better model for the data since it is able to
find a solution which is superior under both measures.

To see how it is possible that the argument-modifier model is able
to optimize both kinds of simplicity simultaneously consider a verb
phrase (VP) headed by a verb like put. In simplest form, put requires
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two VP-internal arguments – a noun phrase (NP) expressing the object
which was put somewhere, and a prepositional phrase (PP) expressing
the destination – put his socks in the suitcase. Across particular uses of
this simple put-construction, the VP node will often have the follow-
ing sequence of children: V NP PP. However, because modifiers are
optional, iterable, and appear at a variety of positions within a con-
stituent, they can greatly increase the number of different observed se-
quences of children of the VP node: put his socks suddenly in the suitcase
[V NP ADVP PP], put his socks in the suitcase suddenly without warning
[V NP PP ADVP PP], etc. The argument-modifier model is able to ex-
plain away the presence of these additional phrases using the SISTER-
ADJOIN operation, and is driven to do so because this leads to a lexicon
of argument-structure fragments and derivations of individual forms
which better optimizes both simplicity biases.

In the analyses in this section, we provide empirical support for
this argument. To demonstrate the point, we show that the argument-
modifier model can account for the same data as the argument-only
model with a more compact lexicon and simpler derivations of each
sentence. We show this on both training and holdout data drawn from
two corpora: the Wall Street Journal portion of the Penn Treebank,
and the Brown (1973) portion of the CHILDES database (MacWhinney
2000). For the WSJ, the model was trained on the 40,000 parsed sen-
tences from sections 2-21 (the same sentences that were used in the
gold standard analyses). The CHILDES sections used here consist of
approximately 30,000 child-directed utterances which were recorded
between ages 1;6 to 5;1. Sentence fragments and wh-questions were
excluded from our analyses, though the results do not differ substan-
tially when fragments and questions are included.

The training regime was the same as in the gold standard analy-
sis: The models received parse trees for each sentence as input. Be-
cause the CHILDES database does not provide parses, we used the
corpus of parsed CHILDES sentences developed by Pearl and Sprouse
(2013). We include these CHILDES analyses below because it is more
likely than newspaper text to be representative of the input received
by a typical natural language learner. Note that we did not include
the CHILDES corpus in the previous evaluation because we do not
have gold-standard annotations of the argument/modifier status of
any phrases in this corpus. The differences between the two corpora
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can be illustrated by several simple statistics. On average, the sen-
tences in the WSJ corpus contain 25 words, while the sentences in
CHILDES contain 6.5 words. The parse trees in the WSJ contain 71
nodes on average, while those in CHILDES contain 19 nodes. Finally,
the average maximum depth (i.e., the longest distance from the root
node to a leaf) of the parse trees in the WSJ is 10, while the aver-
age depth in CHILDES is 5. These statistics show that the sentences in
the WSJ are significantly longer and more syntactically complex than
those in CHILDES.

5.2.1Lexical and derivational simplicity in the training set

In this section, we compare the ways in which the argument-modifier
model and the argument-only model represent the input training data
for the WSJ and CHILDES corpora. We first examine the bias for
reusable lexical items. Figure 5 shows the cumulative frequencies of
the 1,000 most often stored tree fragments in the lexicons of the
argument-modifier model and argument-only model, as learned on the
CHILDES (left) and WSJ (right) training sets. We computed these val-
ues by first ranking tree fragments by frequency of occurrence in the
lexicon; this resulted in a rank for each type of tree fragment, with
lower rank corresponding to greater frequency. Then, for all tree frag-
ments below a given rank (e.g., for the tree fragments below rank 100,
corresponding to the 100 most common tree fragments), we computed
the sum of the frequencies of these fragments.9 The figure shows that
the most reusable tree fragments learned by the argument-modifier
model are used more often across sentences in the training corpus
than the most reusable tree fragments learned by the argument-only
model. The difference is more pronounced in the WSJ training set.
This is likely due to the greater sentence complexity and greater num-
ber of modifiers in newspaper text compared to child-directed speech.

9Tree fragments which were rooted at part-of-speech nodes (pre-terminals)
were excluded from this and subsequent analyses. A subtree which is rooted at a
part of speech necessarily consists of exactly two nodes (the part of speech and
the terminal string which it is a parent of). As a result, there is only one parse for
such subtrees, and both models will always parse such a subtree in an identical
manner.
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Figure 5: Cumulative Frequencies

We next examine whichmodel was able to provide simpler deriva-
tions of individual sentences. One way to measure this is to look at the
complexity of stored tree fragments learned by each model. If a model
stores tree fragments which are larger (on average), then it must ac-
count for each sentence using fewer fragments (on average). Figure 6
shows the cumulative average number of nodes (left) and average
depth (right) of the 1,000 most common elementary trees learned
by the argument-modifier model and the argument-only model on
the CHILDES and WSJ corpora. These figures show that the elemen-
tary trees learned by the argument-modifier model are more complex
than those learned by the argument-only model, and therefore that
the derivation of individual sentences involve fewer lexical items (on
average). The difference in tree fragment complexity is greater for the
WSJ corpus than for CHILDES, most likely because the parse trees in
the WSJ corpus contain a greater number of nodes and have greater
depth than those in CHILDES.

Figure 7 shows the cumulative proportion of nodes in the training
corpus which are accounted for by the 1,000 most common stored tree
fragments learned by the argument-modifier model and the argument-
only model. Because it learns both more reusable and larger stored

[ 268 ]



Arguments and modifiers

Average Tree Size-Training Set

Rank

A
ve

ra
ge

 n
um

be
r o

f n
od

es

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

200 400 600 800 1000

CHILDES

WSJ

SAG

TSG

Average Tree Depth-Training Set

Rank

A
ve

ra
ge

 d
ep

th

1.6

1.8

2.0

200 400 600 800 1000

CHILDES

WSJ

SAG

TSG

Figure 6: Complexity of stored tree fragments

Corpus Coverage-Training Set

Rank

P
ro
po
rti
on

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 400 600 800 1000

CHILDES

WSJ

SAG

TSG

Figure 7: Cumulative coverage

[ 269 ]



Leon Bergen et al.

tree fragments, the argument-modifier model is able to account for
the training data using a smaller number of stored items.

5.2.2 Lexical and derivational simplicity in new sentences

The previous analyses demonstrate that the argument-modifier model
learns a more parsimonious representation of the input than the
argument-only model. An important caveat, however, is that the
argument-modifier model is a more complex grammatical formalism
than the argument-only model. Whereas the argument-only model
only has a single composition operation (SUBSTITUTE), the argument-
modifier model has two composition operations (SUBSTITUTE and
SISTER-ADJOIN). This means that the model has more degrees of free-
dom in explaining an input training set. As a result, it is possible that
the argument-modifier model’s performance is due to overfitting. A
standard method to diagnose overfitting is to evaluate the model on
novel data. If the model is overfit on the training data, then it will have
captured spurious regularities in its input, and will therefore general-
ize poorly to new data.

In order to determine whether the parsimony advantages of the
argument-modifier model generalize to novel data, we divided the
CHILDES and WSJ corpora into training and test portions. The train-
ing portion was used as input to the argument-modifier model and
argument-only model, while the test portion was used for evaluating
the generalizability of these grammars. For the WSJ corpus, we used
the standard split: training on sections 2–21 and testing on section 23.
For the CHILDES corpus, we randomly selected 80% of the sentences
for training, and used the remaining 20% for test.

Our evaluation of the argument-modifier model follows the
method in the previous section. We compare the argument-modifier
model to the argument-only model, and conduct similar analyses of
fragment reusability and derivation complexity (fragment size). In
order to perform these analyses, we applied our sampler to the test
portions of the two corpora without incorporating any new tree frag-
ments into the set of learned tree fragments. That is, after training we
froze the set of lexical fragments (and associated counts) and did not
allow any learning from the test set during inference. Thus each sen-
tence in the test corpus was analyzed as if it were the next observed
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Figure 8: Cumulative frequencies (generalization)

sentence after training. The analyses below are otherwise identical to
those in the previous section.

We first examine the bias for reusable lexical items. Figure 8
shows the cumulative frequencies of the 1,000 most common tree
fragments from the lexicons of the argument-modifier model and the
argument-only model, as inferred on the CHILDES (left) and WSJ
(right) test sets. The figure shows that the commonly stored tree frag-
ments learned by the argument-modifier model are used more often
across sentences in the test corpus. The difference is again more pro-
nounced in the WSJ test set due the greater sentence complexity and
number of modifiers in newspaper text compared to child-directed
speech.

We next turn to the bias for simple derivations of individual sen-
tences. As in the previous simplicity analyses, we measure derivation
complexity by examining the size of tree fragments used to account
for test sentences. Larger tree fragments imply fewer fragments per
derivation. Figure 9 shows the cumulative average number of nodes
(left) and average depth (right) of the 1,000most common elementary
trees used to account for the new sentences by the argument-modifier
model and the argument-only model on the CHILDES and WSJ test
corpora. These figures show that the elementary trees learned by the
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argument-modifier model are more complex than those learned by the
argument-only model and, therefore, that the derivations of individual
sentences are simpler.

Thus, the argument-modifier model’s advantage in both kinds of
simplicity transfers to the case of new sentences. This is further con-
firmed in Figure 10 which shows the cumulative proportion of nodes
in the training corpus that are accounted for by the 1,000 most com-
mon stored tree fragments learned by the two models.

5.2.3Discussion

The preceding analyses indicate that the sister-adjunction model is
able to learn both more reusable lexical items, and simpler deriva-
tions of each sentence than the tree-substitution model. As we dis-
cussed previously, the inference performed in learning the set of lexi-
cal fragments for the argument-only model can be understood in terms
of a tradeoff. All else being equal, smaller tree fragments are more
reusable, leading to smaller lexica. However, larger tree fragments
lead to simpler derivations, since fewer are needed per derivation.
For a given corpus, if a particular model is at or near an optimum, in-
creasing the reusability of lexical items in an otherwise optimal model
will necessarily increase the complexity of derivations, and decreasing
the complexity of derivations will necessarily increase the size of the
lexicon. Nevertheless, the argument-modifier model is better in both
simplicity measures, indicating that it provides a globally superior ac-
count of the input data be learning a smaller lexicon of larger tree
fragments.

To understand these results better, again consider the example
sentences in Figure 4. The argument-modifier model is able to use a
single elementary tree (stretching from the root S node to the verb
put) to derive the core of both sentences. In contrast, as Figure 4
shows, the argument-only model will require two distinct elementary
trees, one with three arguments under the VP node (for the first sen-
tence) and one with four arguments (for the second). Thus, because
the argument-modifier model can compose an optional PP such as at
5 o’clock separately from a sentence’s core argument structure, it can
re-use the same elementary tree to derive a greater number sentences
in the corpus. This explains how the argument-modifier model can use
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Figure 11:
Example

derivation from
the WSJ corpus
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Most of those who left stock funds

its sister-adjunction operation to find more reusable elementary trees
than the argument-only model. It is driven to do so by the the prior
preference for a smaller lexicon.

Figure 11 illustrates a representative example from the WSJ cor-
pus. By using SISTER-ADJOIN to account for the ADVP node separately
from the rest of the sentence’s derivation, the argument-modifier
model was able to use a common depth-three elementary tree to derive
the backbone of the sentence. By contrast, the argument-only model
must include the ADVP node in an elementary tree; this elementary
tree is much less common in the corpus.

6 CONCLUSION

In this paper, we have studied the learnability of the argument-
modifier status of phrases. We have formulated the distinction as one
between lexical and non-lexical modes of composition which give rise
to three differences between the two types of constituents which have
distributional consequences: iterability v. finiteness), optionality v.
obligatoriness, and structural flexibility v. structural fixity. We then
proposed that the modifier or argument status of individual phrases
could be learned based on optimizing a tradeoff between two compet-
ing biases: the simple lexicon bias and the simple derivation bias.
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Our first set of gold standard results indicate that our formaliza-
tion of the distinction accords with the traditional distinction between
arguments andmodifiers. Furthermore, our results show that linguistic
input contains a strong distributional signal to the modifier/argument
status of individual phrases – at least for a learner making use of the
tradeoff between lexical and derivational simplicity.

Our second set of results illustrate why the argument-modifier
model is able to identify the status of individual phrases. The addi-
tion of the SISTER-ADJUNCTION operation allows the model to put
derivations into a kind of normal form for which the optimal lexicon
contains of both more complex and more reusable fragments. Thus,
the argument-modifier model achieves a greater degree of lexical and
derivational simplicity simultaneously.

Taken together, these results show that there is considerable dis-
tributional evidence for the traditional argument-modifier distinction,
but that a simplicity-based learner equipped with lexical and extra-
lexical modes of composition could make use of this evidence to ac-
quire the pattern of arguments and modifiers in their language. This
result is complementary to traditional linguistic argumentation about
the distinction. Our formulation of the problem has deliberately ig-
nored any semantic or, in fact, any non-distributional aspects of the
argument-modifier distinction. Any such systematically correlated in-
formation should only make the learning problem easier.

APPENDIX

FORMALIZATION OF THE MODELS

The argument-modifier model extends earlier work on induction of
Bayesian TSGs (Cohn et al. 2010; O’Donnell 2011, 2015; O’Donnell
et al. 2011; Post and Gildea 2009). The Pitman-Yor Process allows
the complexity of the lexicon to grow with more input sentences,
while still enforcing a bias for more compact lexicons (Pitman and
Yor 1995). As discussed in Section 3.1, the model has two compo-
nents: (i) A distribution over elementary trees, similar to earlier mod-
els of Bayesian TSG induction, and (ii) a distribution over modifiers.
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Algorithm 1 provides pseudocode for the generative model. Note that
throughout, we will use the notation cp to refer to the nonterminal
category of a node p.

For each node p, the distribution over elementary trees rooted at
that node is given by:

(1) Gcp
|acp

, bcp
, PE ∼ PYP(acp

, bcp
, PE(·|cp))

where PE(·|cp) is a context free distribution over elementary trees with
root label cp. The hyperparameters acp

, bcp
are set to acp

= 0, bcp
= 1

for this paper.10
The context-free distribution over elementary trees PE(e|c) is de-

fined by:

(2) PE(e|c) =
∏

i∈I(e)

(1− sci
)
∏

f ∈F(e)

sc f

∏
c′→α∈e

Pcfg(α|c′),

where I(e) is the set of internal nodes in e, F(e) is the set of frontier
nodes, sc is the probability that we stop expanding at a node labeled
c, and Pcfg(α|c′) is the probability of the context-free rule expanding
category c′ to the sequence α, c′ → α. For this paper, the parameters
sc are set to 0.5. The distribution Pcfg(α|c′) is defined using a distribu-
tion that is similar to the Infinite PCFG (Finkel et al. 2007; Liang et al.
2007),11 which provides a Dirichlet process prior for PCFG rules.12

10Given these parameter values, the prior reduces to the model known as
a Dirichlet process. Since our implementation allows for other values of a we
present the more general version of the mathematics.

11Our base distribution over PCFG rules differs from the Infinite PCFG as
presented in Liang et al. (2007) in a number of ways. First, rather than being a
hierarchical Dirichlet process model, our set of nonterminal categories is fixed to
be equal to the set of nonterminal categories in the treebank. Second, our rules
are not fixed to be in Chomsky normal form, but rather the length of the right-
hand side of each rule is sampled from a geometric distribution, and each child
symbol is drawn conditioned on the parent symbol and then entire left context of
the symbol, which is backed-off using the scheme of Teh (2006) and Goldwater
et al. (2006).

12We use this nonparametric prior so that in addition to learning a distribution
over elementary trees, we can also learn a distribution over context-free rules.
The inferred distribution over context-free rules may substantially differ from the
maximum-likelihood estimate derived from the corpus, as nodes that the model
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β ∼ Dir(1, ..., 1) [draw prior over nonterminals]
for each nonterminal sequence c1, ..., cn:

Prhs(c1, ..., cn) =
1
2n

∏
i βci

[define base distribution for pcfg
prior]

for each nonterminal c:
Pcfg(·|c)∼ DP(a, Prhs(·)) [draw distributions over CF rules]

for each nonterminal c:
for each elementary tree e rooted at c:

F(e)= frontier of e, I(e)= interior nodes of e
PE(e|c) =∏i∈I(e)(1− sci

)
∏

f ∈F(e) sc f

∏
c′→α∈e Pcfg(α|c′)

Gc ∼ PYP(ac, bc, PE(·|c)) [draw distributions over elementary
trees]

θ ∼ Dir(1, ..., 1) [draw base distribution over nonterminals]
for each sequence of nonterminals C = ql , ..., q1: [draw modifier
distributions]
if length(C)==1

HC ∼ DP(α,Multinomial(θ ))
else

HC ∼ DP(α, HC ′), where C ′ = ql−1, ..., q1

for each node f on the frontier of the parse tree:
e ∼ Gc f

[sample an elementary tree rooted at category c f ]
substitute e at f
for each internal node p in e:
for each argument child di of p:
j=1
C = cd1

, s1,1, ..., cdi
, cp [C is the context for di]

si, j ∼ HC [draw from the modifier distribution for di]
while si, j ̸= STOP [continue until drawing a STOPsymbol]
sister-adjoin a node labeled si, j between di, di+1

j+=1
C = cd1

, s1,1, ..., cdi
, si,1, ..., si, j−1, cp [add sampled modifier

to the context]
si, j ∼ HC

Algorithm 1:
Sister-adjunction
grammar
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A similar base distribution for elementary trees is used in Cohn et al.
(2010) and Post and Gildea (2009). The base distribution over elemen-
tary trees thus will be biased towards small elementary trees which use
frequent context-free expansions.

In addition to defining a distribution over elementary trees,
we also define a distribution which governs modification via sister-
adjunction. To sample a modifier, we first decide whether or not to
sister-adjoin into location l in a tree. Following this step, we sample
a modifier category (e.g., a PP) conditioned on the location l ’s con-
text: its parent and left siblings. Because contexts are sparse, we use
a backoff scheme based on hierarchical Dirichlet processes similar to
the ngram backoff schemes defined in Teh (2006) and Goldwater et al.
(2006). Let e be an elementary tree that has been substituted into the
parse tree, and let p be an internal node in e. The node p will have
n ≥ 1 children derived by argument substitution: d1, ..., dn. In order
to sister-adjoin between two of these children di, di+1, we recursively
sample nonterminals si,1, ..., si,k until we sample a STOP symbol:

Pa(si,1, ..., si,k,STOP|C0) = (
k∏

j=1

Pa(si, j|C j)) · Pa(STOP|Ck+1)(3)

where C j = cd1
, s1,1, ..., cdi

, si,1, ..., si, j−1, cp is the context for the jth
modifier between these children. The distribution over sister-adjoined
nonterminals is defined using a hierarchical Dirichlet process to im-
plement backoff in a prefix tree over contexts. Given the context
C = ql , ..., q1 (where l > 1), we define the distribution HC over sister-
adjoined nonterminals si, j by:

(4) HC ∼ DP(α, HC ′),

where C ′ = ql−1, ..., q1. A sample is drawn from the root of the hier-
archy when the context C is of length 1 (and hence the backed-off
context is empty). A Dirichlet-multinomial distribution is used as the

labels as modifiers are not included in the derivation of an elementary tree. This
approach is also suitable to the unsupervised setting (as in Cohn et al. 2010), in
which the derived trees in the corpus are not observed.
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prior in this case:

θ ∼ Dir(1, ..., 1)

HC ∼ DP(α,Multinomial(θ ))

where C = q1 and θ is a vector with entries for each nonterminal
and an entry for the STOP symbol. The backoff scheme for sampling
modifiers is illustrated in Figure 12.

VP

NP NP PP

VP

NP NP PP

VP

NP NP PP

VP

NP NP PP

Figure 12: This illustrates the procedure for sampling a modifier at the right
edge of a VP. The distribution over modifiers is conditioned on the modifier’s
context, which contains its VP parent and left siblings, as illustrated on the left
of the figure. This distribution is estimated by successively backing off to smaller
contexts
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Constructionist approaches to language make use of form-meaning
pairings, called constructions, to capture all linguistic knowledge
that is necessary for comprehending and producing natural language
expressions. Language processing consists then in combining the con-
structions of a grammar in such a way that they solve a given language
comprehension or production problem. Finding such an adequate se-
quence of constructions constitutes a search problem that is combi-
natorial in nature and becomes intractable as grammars increase in
size. In this paper, we introduce a neural methodology for learning
heuristics that substantially optimise the search processes involved in
constructional language processing. We validate the methodology in
a case study for the CLEVR benchmark dataset. We show that our
novel methodology outperforms state-of-the-art techniques in terms
of size of the search space and time of computation, most markedly
in the production direction. The results reported on in this paper have
the potential to overcome the major efficiency obstacle that hinders
current efforts in learning large-scale construction grammars, thereby
contributing to the development of scalable constructional language
processing systems.
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1 INTRODUCTION

Constructionist approaches to language (Goldberg 2003) analyse all
linguistic knowledge that is necessary for language comprehension
and production in terms of constructions. A construction is defined as
a conventionalised pairing between a linguistic form and its meaning
(Goldberg 1995; Kay and Fillmore 1999). There exists no restriction
in the nature of the form and the meaning that a construction can
capture (Fillmore 1988, p. 36). The form pole of a construction can
include morphemes and word forms, as well as larger patterns that
range from idiomatic expressions (e.g. “Break a leg!”), over partially
instantiated structures (e.g. “X takes Y for granted”), to fully abstract
schemata (e.g. the ditransitive “X VERB Y Z” as instantiated in “Simon
sent his parents a postcard”). The meaning pole of a construction can
contain any semantic or pragmatic information that is associated with
a particular form, including lexical and phrasal meaning, the assign-
ment of semantic roles, and the composition of logical structures.

According to the constructionist paradigm, the different construc-
tions that constitute a construction grammar can freely combine in
order to collaboratively map between a natural language utterance
and a representation of its meaning (Goldberg 2006, p. 22). Due to
the unrestricted nature of a construction grammar, the non-locality
of constructions, and the fact that the application of a construction
does not necessarily correspond to a tree-building operation (van Trijp
2016), constructional language processing cannot straightforwardly
be implemented in a faithful way using common techniques such as
chart parsing and chart generation (see e.g. Pereira and Warren 1983;
Shieber 1988; Kay 1996). Instead, current systems implement the pro-
cess of finding a sequence of constructions that perform an adequate
mapping between a linguistic expression and a representation of its
meaning as a search process (Bleys et al. 2011; Van Eecke and Beuls
2017). This search process is combinatorial in nature and becomes in-
tractable as grammars increase in size. The intractability of construc-
tion grammars is a consequential problem as it constitutes a major ob-
stacle that hinders ongoing research in learning large-scale construc-
tion grammars. It thereby limits their usability in both usage-based
linguistics research and language technology applications.
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Previous approaches to overcoming this intractability problem
have either only been partially effective, as in the case of priming net-
works (Wellens and De Beule 2010; Wellens 2011), or have imposed
a global order on constructions, which goes against the constructional
idea of “allowing constructions to combine freely as long as there are no
conflicts” (Goldberg 2006, p. 22), as in the case of construction sets
(Beuls 2011).

In this paper, we introduce a novel methodology for learning
heuristics that substantially optimise the search processes involved
in constructional language processing. The heuristics are based on
sequence-to-sequence models that are trained to estimate at any point
in processing the probability that the application of a particular con-
struction will lead to a solution. We evaluate the methodology on
the CLEVR benchmark dataset (Johnson et al. 2017) and show that
it outperforms state-of-the-art approaches, both in terms of size of the
search space and time of computation.

The remainder of this paper is structured as follows. Section 2 pre-
cisely defines the search problem involved in constructional language
processing, discusses state-of-the-art approaches, and introduces the
dataset and grammar that we will use. Section 3 presents our neural
methodology for learning heuristics, which constitutes the main con-
tribution of the paper. Section 4 describes the setup of our experiments
and presents the evaluation results. Finally, the method and results are
discussed in Section 5. An interactive web demonstration accompany-
ing this paper can be consulted at https://emergent-languages.
org/demos/neural-heuristics. The web demonstration provides
examples of the methodology introduced in this paper in full detail.

2PROBLEM DEFINITION

We first define constructional language processing as a state-space
search problem, which is a class of problems that has a long history
in the field of artificial intelligence (Newell and Simon 1956; Nilsson
1971). For doing this, we adopt the terminology that is used in Fluid
Construction Grammar (FCG – https://www.fcg-net.org) (Steels
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2011; van Trijp et al. 2022; Beuls and Van Eecke 2023), the lead-
ing computational construction grammar implementation. We then
discuss the merits and limitations of state-of-the-art approaches, in
particular the use of priming networks and the use of construction
sets. Finally, we introduce the CLEVR dataset, which will be used as
a benchmark to evaluate our methodology against the state of the art
in Section 4.

2.1 Constructional language processing

Constructional language processing is the process in which the dif-
ferent constructions of a construction grammar combine in order to
comprehend or produce natural language expressions. Comprehension
refers to the process of mapping a natural language expression to a
representation of its meaning, while production refers to the inverse
process of mapping a semantic representation to a natural language ut-
terance. Both processes are performed by the same grammar, i.e. the
same inventory of constructions. Constructional language processing,
as operationalised in the FCG framework, revolves around two basic
concepts: ‘transient structures’ and ‘constructions’.

• Transient structures A transient structure is a feature structure
that represents all that is known about a linguistic expression at a
given point during processing. Transient structures correspond to
state representations in the classical problem solving paradigm.
Before processing has started, the transient structure, which is
at that point called ‘initial transient structure’, only contains the
input to the comprehension or production process. In compre-
hension, the input consists of an utterance; while in production,
it consists of a semantic representation.

• Constructions A construction (CXN) is a feature structure that
represents a bidirectional mapping between the formal and the se-
mantic aspects of a linguistic entity. Constructions correspond to
operators in the problem solving paradigm and consist of precon-
ditions and postconditions. The preconditions can be ‘matched’
against a transient structure and if matching succeeds, the post-
conditions can be ‘merged’ into the transient structure. Matching
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is a first-order syntactic unification operation that checks the com-
patibility of two feature structures, whereas merging is a unifica-
tion operation that combines the information contained in two
feature structures. For a formal definition of matching and merg-
ing, see Steels and De Beule (2006) and Sierra Santibáñez (2012).

Constructional language processing consists in the sequential
application of constructions to a transient structure. Each individ-
ual construction application thereby expands the transient structure
with new information. Initially, the transient structure only contains
the input utterance or input meaning representation, and only con-
structions that match this information can apply. Through their appli-
cation, these constructions can contribute additional information to
the transient structure, which can in turn satisfy the preconditions of
other constructions. Analogous to the use of goal tests in the classi-
cal problem solving paradigm, goal tests in constructional language
processing verify whether a given transient structure qualifies as a
solution to the search problem. Typical goal tests for constructional
language processing include (i) checking whether no more construc-
tions can apply, (ii) verifying whether the input utterance or input
meaning representation has been fully processed, and (iii) checking
whether the meaning comprehended so far consists of a fully con-
nected network of predicates linked through their arguments. When
all goal tests succeed for a given transient structure, it qualifies as a
solution and the resulting meaning representation (in comprehension)
or the resulting utterance (in production) are extracted.

An illustrative example of a construction application process is
shown in Figure 1. Note that the constructions used in this example
were created for didactic purposes, and do not necessarily correspond
to insightful linguistic analyses. From left to right, the figure shows the
transient structures and constructions involved in the processing of the
utterance Sam cycles in comprehension and production. The transient
structures shown in the top-left and bottom-left corners (i.e. the green
boxes labelled with the number 1) are the initial transient structures
in comprehension and production respectively. The initial transient
structure in comprehension contains an input unit with a number of
predicates representing the utterance. The initial transient structure in
production contains an input unit with the meaning representation of
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the utterance in predicate notation. The middle-left box in the figure
represents the SAM-CXN, which matches both initial transient struc-
tures. Conventionally, the preconditions and postconditions of a con-
struction are separated by a left-pointing arrow. The preconditions are
written on the right-hand side of the arrow, while the postconditions
are specified on its left-hand side. As constructions support language
processing in both the comprehension and production direction, they
contain two sets of preconditions on their right-hand side. The precon-
ditions that are active in comprehension are always specified under
a dashed line and the preconditions that are active in production are
specified above it. The preconditions of one direction become postcon-
ditions in the opposite direction, and are as such treated in the same
way as the information specified on the left-hand side. In this case,
the construction matches the string Sam in comprehension and adds
the meaning predicate above the dashed line along with the semantic
and syntactic features specified on the left-hand side. The resulting
transient structure (labelled with the number 2) is shown just right
of the initial transient structure. In production, an analogous process
takes place. Here, the construction matches a meaning predicate that
is present in the initial transient structure, and contributes a string
predicate along with the same semantic and syntactic features as in
comprehension.

Next, the CYCLES-CXN applies in the same way to the transient
structure that was just created, adding new information related to the
string cycles in comprehension and to the predicate cycle(?y) in pro-
duction. After that, the INTRANSITIVE-CXN (labelled with the num-
ber 3) can apply, as its preconditions are now satisfied by information
from the input unit, in combination with information that was con-
tributed by the SAM-CXN and the CYCLES-CXN. The INTRANSITIVE-
CXN maps between the adjacency of a proper noun and a verb, and
the agentive relation between the person and action they represent. Fi-
nally, the ROUTINE-ASPECT-CXN (labelled with the number 4) maps
between an action verb in the present tense and a meaning predicate
denoting that the aspectual structure of the action corresponds to a
routine.

From the final transient structure, shown in the top-right and
bottom-right corners of the figure and labelled with the number 5,
the result of the construction application process can be extracted.
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In comprehension, this is the combination of all ‘meaning’ features in
the transient structure, while in production, it is the combination of all
‘form’ features. Note that the construction application process is en-
tirely bidirectional. The output in comprehension is equal to the input
in production and vice versa. Moreover, the exact same set of con-
structions has been applied, in this case even in the same sequential
order.

This illustrative example shows how constructions can collabora-
tively map between an utterance and a representation of its meaning,
both in the comprehension and the production direction, with exam-
ples of constructions that can apply based on the input only (SAM-
CXN and CYCLES-CXN), constructions that build hierarchical struc-
tures (INTRANSITIVE-CXN) and constructions that only contribute
non-hierarchical information (ROUTINE-ASPECT-CXN). What the ex-
ample doesn’t show is how a constructional language processing en-
gine can determine that it is exactly this combination of constructions
that needs to apply. Construction grammars that exceed the size of
these toy examples are immediately faced with constructions that are
in competition with each other, and in particular with sequences of
constructions that can apply but do not ultimately lead to a solution.
This challenge, which is central to the problem solving paradigm, can
be solved by backtracking to earlier transient structures in case of fail-
ure and possibly, in the worst case, exploring the entire search space,
i.e. trying out all possible combinations of construction applications. It
is this process of construction application and backtracking that makes
constructional language processing intractable for larger grammars.

As can be seen in the figure, the constructions that constitute con-
struction grammars differ in many aspects from the rules that consti-
tute traditional formal grammars. First of all, constructions do not nec-
essarily correspond to tree-building operations, as exemplified by the
ROUTINE-ASPECT-CXN and discussed in van Trijp (2016). Construc-
tions are also non-local, in the sense that they can match information
that is present anywhere in the transient structure. As a consequence,
constructional language processing cannot straightforwardly be opti-
mised using well-known techniques for efficiently processing formal
grammars, such as chart parsing and chart generation (see e.g. Pereira
and Warren 1983; Shieber 1988; Kay 1996).
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2.2State-of-the-art approaches

In the computational construction grammar literature, a number of
techniques for reducing the search space created by all possible con-
struction applications have been proposed. A straightforward optimi-
sation that is almost always used consists in checking whether a new
transient structure is different from all other transient structures that
already occur in the search tree. If this is not the case, the duplicate
transient structure can immediately be pruned away. A second com-
mon optimisation consists in hashing constructions that match string
predicates or meaning predicates in the input unit, which reduces the
search problem to abstract constructions only.

When it comes to the choice of the baseline search strategy, a
depth-first search algorithm with backtracking is often chosen. For
constructional language processing, depth-first search generally out-
performs breadth-first search for two reasons. First, solutions are typ-
ically found deep in the search tree (after many constructions have
been applied) and there is no inherent preference for shorter solutions,
like for example in the case of planning problems. Second, there often
exist many correct orders in which constructions can apply, which can
lead to a high branching factor and an abundance of duplicate tran-
sient structures, some of which can only be detected deep in the search
tree.

Two more advanced approaches that go beyond the depth-first
search with backtracking, duplicate detection and hashing baseline
have been proposed in the literature: ‘construction sets’ and ‘priming
networks’.

• Construction sets This approach consists in subdividing the con-
struction inventory into (possibly overlapping) sets of construc-
tions. Two global orders of construction sets are specified, one
for comprehension and one for production. The basic idea is that
constructions of a later set are not applied before constructions
of an earlier set have at least been matched against the transient
structure (Beuls 2011). The use of construction sets can drastically
decrease the size of the search space, but comes with a number
of important drawbacks. Construction sets are inherently in dis-
agreement with the constructionist idea that constructions can
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freely combine as long as there are no conflicts, which is crucial
for supporting open-ended and creative language use (Van Eecke
and Beuls 2018; Goldberg 2006, p. 22). Also, the global ordering
of construction sets and the allocation of constructions to partic-
ular sets is difficult to learn, as it presupposes that the general
architecture of a grammar is known beforehand. Finally, scaling
grammars that make use of construction sets is even difficult in
the case of hand-crafted grammars, as the grammar engineer then
does not only need to encode the necessary linguistic knowledge,
but also needs to determine the order in which constructions need
to be scheduled for matching.

• Priming networks Priming networks are inspired by the psy-
chological phenomenon whereby current behaviour is noncon-
sciously influenced by exposure to past experiences (see e.g.
Schacter and Buckner 1998). In the case of computational con-
struction grammar, this approach argues that the application of
a construction can prime the application of another construction.
In this way, frequent co-occurrences of constructions can be cap-
tured in the form of a priming network (Wellens and De Beule
2010; Wellens 2011). Priming links can be learned in a usage-
based fashion by extracting the frequency of co-occurrences of
constructions from successful branches of the search trees gener-
ated during past construction application processes. These links
can then be used to guide the search process by always expanding
the transient structure created by the construction that was most
strongly primed. The priming links are based either on the order
of the constructions themselves or on dependencies between a
construction’s preconditions and the postconditions of other con-
structions by which they were satisfied. Two priming networks
are learned for a construction inventory, one for use in compre-
hension and the other for use in production. The main advantage
of priming networks is that they can be learned in a straightfor-
ward way. However, an important disadvantage is that if only
local priming links are taken into account, priming is only par-
tially effective, and if longer-distance links are taken into account,
the networks are often not efficacious as they suffer from sparsity
problems.
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Another solution that has been proposed in the literature is to pro-
cess construction grammars using existing systems for implementing
generative grammar formalisms (Müller 2017). A major disadvantage
of this approach is that this is only possible for generative grammar
formalisms that include constructional properties (e.g. constructional
HPSG and SBCG). These formalisms are inherently limited to local con-
structions that correspond to tree-building operations (van Trijp 2016;
van Trijp et al. 2022). As a consequence, this approach does not satisfy
the methodological needs of the construction grammar community at
large.

2.3The CLEVR dataset and grammar

We use the CLEVR dataset (Johnson et al. 2017) and CLEVR con-
struction grammar (Nevens et al. 2019) to benchmark the effect of
the heuristics that we propose in this paper. This choice is motivated
by three main reasons. First of all, with its nearly 1,000,000 utter-
ances, the CLEVR dataset is sufficiently large to train even the most
data-intensive heuristics. Second, there exists a computational con-
struction grammar that, given infinite computation time, covers the
entire dataset, in both the comprehension and production direction
(Nevens et al. 2019). This means that this grammar achieves 100%
accuracy on the tasks of mapping from utterances to their meaning
representation and vice versa. This allows us to evaluate the effect of
the proposed heuristics in isolation. Finally, the grammar gives rise to
a search space that can only be processed efficiently using powerful
heuristics.

The utterances in the CLEVR dataset are synthetically generated
English questions about images of scenes depicting different config-
urations of geometrical figures. Each question is annotated with a
semantic representation that captures the logical meaning that under-
lies it. The question-annotation pairs embrace various aspects of rea-
soning, including attribute identification (There is a large cube; what is
its color?), counting (How many green spheres are there?), comparison
(Are there an equal number of large cubes and small things?), spatial rela-
tionships (What size is the cylinder that is right of the yellow shiny thing
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that is left of the cube?) and logical operations (How many objects are ei-
ther red cubes or yellow cylinders?). The average length of the questions
is 18.4 words with a maximum length of 42 words.

The CLEVR grammar consists of 170 constructions, of which
55 are morphological and lexical constructions. Apart from these, the
grammar also contains 115 grammatical constructions that capture
phenomena including referential expressions, spatial relations, coor-
dination and subordination structures, and a wide range of interrog-
ative structures. On average, 25 constructions should be applied in
order to successfully comprehend or produce an utterance from the
dataset. This means that the average solution is found at depth 25 in
the search tree.

The size of the search space for an average sentence amounts thus
in theory to 17025 construction applications. In practice, most of these
construction applications are not possible given the dependencies be-
tween the preconditions and postconditions of the constructions. Still,
when using the baseline depth-first strategy with backtracking, dupli-
cate detection and hashing, the search tree in comprehension includes
on average more than 3.5 times the number of construction appli-
cations than were needed to find a solution. While this might still
be manageable to a certain extent, this number grows to more than
29 in production. In practice, this means that many solutions cannot
be found in a reasonable amount of time without the use of suitable
heuristics.

We make use of the same splits as the original dataset, with the
training, validation and test sets consisting of 699,989 utterances,
149,991 utterances and 149,988 utterances respectively.

3 METHODOLOGY

We will now introduce our novel methodology for learning heuristics
that substantially optimise the search processes involved in construc-
tional language processing. These heuristics take the form of neural
networks that are trained to estimate at any point in processing the
probability that the application of a particular construction will lead to
a solution. Our approach is inspired by recent successes obtained using
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neural heuristics in other domains that typically employ the problem
solving paradigm, in particular games (Mnih et al. 2015; Silver et al.
2016) and planning (Takahashi et al. 2019; Wang et al. 2019; Ferber
et al. 2020).

3.1General architecture

We design neural heuristics that can be used to assign after each con-
struction application a score to the resulting transient structure. This
score, called ‘heuristic value’, reflects how close a transient structure
is to a solution. It can then be used to decide on the order in which
transient structures are expanded, with the goal of minimizing the av-
erage number of construction applications that is needed to reach a
solution. Intuitively, this score is influenced by both the input utter-
ance (in comprehension) or meaning representation (in production)
and the sequence of constructions that have been applied so far in the
same branch of the search tree.

For each direction of processing, this intuitive idea is opera-
tionalised using two recurrent neural networks (RNNs) that are organ-
ised in an encoder-decoder constellation. Before processing starts, the
encoder RNN encodes the input utterance or meaning representation
into a context vector. During processing, the decoder RNN is called
for each transient structure, just before its expansion. The input to
the decoder RNN is the sequence of names of constructions that have
been applied so far in that branch of the search tree, along with the
output of the encoder RNN (context vector) and its hidden states. The
output of the decoder RNN is at each decoding timestep a probability
distribution over all constructions in the construction inventory. The
constructions are then applied and the heuristic values of the result-
ing transient structures are computed as the sum of the heuristic value
of their parent transient structure and the probability score returned
by the decoder RNN. The heuristic values of the transient structures
are used in combination with a beam search algorithm. This process
is graphically depicted in Figure 2, where the beam size is set to three
for clarity reasons.

The choice for an RNN-based encoder-decoder architecture is mo-
tivated by two main reasons. First of all, the problem of mapping
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Figure 2: Schematic representation of the integration of the neural heuristics in
constructional language processing. Before a node in the search tree is expanded,
the encoder-decoder model is queried, and a probability distribution over all
constructions of the construction inventory is returned. The heuristic values are
then calculated and used by a beam search algorithm, in this case with the beam
size set to three. ‘Hv’ stands for ‘heuristic value’

an input utterance or meaning representation to a sequence of con-
structions can be naturally framed as a sequence-to-sequence prob-
lem. RNN-based architectures are typically good at handling this class
of problems (Sutskever et al. 2014), although also CNN-based (Gehring
et al. 2017) and transformer-based (Vaswani et al. 2017) architectures
have more recently been successfully applied to the same class of prob-
lems. Second, and most importantly, the sequential nature of the RNN-
based architecture allows us to query the decoder RNN while already
providing a partial sequence of predictions. This is necessary for inte-
grating the neural architecture as a heuristic in the construction ap-
plication process, while being able to keep the benefits of the exist-
ing search and backtracking facilities. Indeed, the neural networks
are used to make the search process created by the grammar more
efficient, unlike their use in end-to-end neural semantic parsers, where
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they perform the actual mapping from utterances to their semantic
representation (see e.g. Jia and Liang 2016; Konstas et al. 2017; van
Noord et al. 2018; Yu and Gildea 2022).

Our neural encoder-decoder architecture is based on the neural
machine translation architecture proposed by Bahdanau et al. (2015).
It consists of an encoder with bidirectional single-layer gated recur-
rent units (GRUs), a decoder with single-layer GRUs and an attention
mechanism that attends over the encoder’s hidden states at every de-
coder time step. The attention mechanism ensures that the decoder
does not need to rely on a single high-dimensional representation of
the entire input sequence (the context vector). Instead, the decoder
has access to all encoder hidden states and learns to use a subset of
these hidden states. Intuitively, the decoder chooses at every timestep
to pay attention to specific parts of the input utterance or meaning
representation.

The basic idea underlying our methodology is somewhat reminis-
cent of the use of recurrent neural networks for guiding dependency
parsing (Kiperwasser and Goldberg 2016; Dozat and Manning 2017,
2018). In this line of research, RNNs are also used to predict sequences
of actions (e.g. transitions) based on utterances and previous actions.
The main difference resides in the correspondence between the length
of the input and the length of the predictions. In the case of depen-
dency parsing, an action needs to predicted for each input word. In
the case of constructional language processing, however, the number
of constructions that needs to be predicted is not tied to the length of
the input utterance or meaning representation. Indeed, multiple words
or meaning predicates (even organised in non-contiguous patterns)
can be covered by the application of a single construction, and single
words or meaning predicates can give rise to the application of mul-
tiple constructions (see e.g. the ROUTINE-ASPECT-CXN in Figure 1).
In order to accommodate for this asymmetry between the length of
the input pattern and the length of the output pattern, we have opted
for two RNNs in an encoder-decoder constellation instead of directly
using an RNN for prediction. This allows us to effectively decouple the
length of both sequences.
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3.2 Training

Training the neural encoder-decoder architecture requires a dataset
of input utterances (in comprehension) or meaning representations
(in production), paired with, for each utterance or meaning represen-
tation, a sequence of names of constructions of which the applica-
tion would lead to a solution. Annotating the original CLEVR dataset,
which contains utterances along with a representation of their mean-
ing, in this format is a non-trivial task, as we face at this moment
the very search problem that we are aiming to optimise. We therefore
adopted a spiral approach. For both comprehension and production,
we started processing the data from CLEVR’s training and validation
splits using the depth-first search strategy with backtracking, dupli-
cate detection and hashing, setting a time limit of 400 seconds. We
collected the sequences of construction names for all input utterances
or meaning representations that were successfully processed within
this time frame. Then, we trained a first version of the sequence-to-
sequence heuristic and used it to process more utterances using the
same time limit. After three iterations, the entire dataset could be suc-
cessfully annotated.

The encoder-decoder architecture requires that input utterances
or meaning representations are represented as sequences. For utter-
ances, this is naturally done by using sequences of tokens. For mean-
ing representations, this is somewhat more complicated as they come
in the form of networks of predicates that share variables. We there-
fore transformed the predicate networks into sequences notated in re-
verse Polish notation. In this notation, predicate names follow their
arguments. Since the arity of each predicate is known, the notation is
unambiguous without the need for variables and their equalities to be
explicitly represented.

We trained the encoder-decoder models for 100,000 time steps
with a batch size of 64, using the Adam optimisation algorithm with a
learning rate of 5e-4 and weight decay of 1e-6. We used cross-entropy
as the loss function and used a teacher forcing ratio of 1. We included
a dropout layer after the embedding layer in both the encoder and
the decoder. We ran a hyperparameter optimisation process for the
embedding size (100, 200, 300), the hidden layer size (64, 128, 256,
512) and the dropout probability (0.0, 0.1, 0.2, 0.5). We found that
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best performance was achieved using the model with an embedding
size of 100 in comprehension and 300 in production, a hidden layer
size of 512 in comprehension and 256 in production and a dropout
probability of 0.2 in comprehension and 0.1 in production. Note that
for efficiency reasons, the hyperparameters were optimised based on
the gold standard annotation of the dataset, and not based on their
performance as a heuristic in FCG.

4EXPERIMENTS

In order to benchmark the efficiency of our methodology and com-
pare it against the state of the art, we conducted two experiments that
evaluate the use of the proposed neural heuristics in constructional
language processing. The first experiment is concerned with the com-
prehension direction, while the second experiment is concerned with
the production direction.

4.1Experimental setup

Both experiments consist in processing the test split of the CLEVR
dataset using three different search strategies. The first strategy makes
use of FCG’s standard search algorithm, namely depth-first search with
backtracking, duplicate detection and hashing. The second strategy
makes use of priming networks as proposed by Wellens and De Beule
(2010). The third strategy evaluates the encoder-decoder methodol-
ogy that we introduced above, with an unrestricted beam size.

The strategies are evaluated in terms of the size of the search
space and the time that is required to reach a solution. The size of the
search space is defined as the total number of transient structures that
were created during processing, divided by the number of transient
structures in the branch of the solution. The optimal size of the search
space is thus equal to one, indicating that a solution was found without
any backtracking taking place. The time of computation is measured
in seconds, spanning from the creation of the initial transient structure
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until the resulting meaning representation (in comprehension) or ut-
terance (in production) has been extracted from the solution transient
structure. In general, the size of the search space is the most accu-
rate measure for gauging the performance of a search strategy, but it
does not take into account the computational overhead caused by the
heuristic itself. The computation time metric includes both factors, but
should be interpreted with extreme caution, as it is also influenced by
external factors.

For the purposes of this paper, we have chosen to focus on the
fundamental issue of reducing the search space, and have not in-
cluded any other time-related optimisations. Such optimisations could
include the implementation of a more efficient protocol for communi-
cation between the FCG engine and the neural networks, deploying the
neural networks on GPUs, or not using the neural heuristics for utter-
ances under a maximum number of words. The reason that we include
the computation time metric is to show that even without these op-
timisations, a reduction in the search space already corresponds to a
reduction in processing time.

If no solution was found within 400 seconds, the search process
was halted and the result was logged as ‘no solution found’.

The evaluation was carried out using computing nodes with
2×20-core Intel Xeon Gold 6148 (Skylake) CPUs and 16GB of RAM.

4.2 Experimental results: comprehension

The results of the comprehension experiment are presented in Table 1
and visualised through violin plots in Figure 3. The table provides the
mean values, standard deviation and maximum values of the search
space size and the computation time for the depth-first, priming and
neural strategies. The plots show the probabilistic density of the search
space size (Figure 3a) and computation time (Figure 3b) for the three
strategies. When it comes to the size of the search space, the results
show that the neural strategy greatly outperforms the depth-first and
priming strategies. More density mass is situated close to a search
space size of one, which is the theoretical minimum. The average size
of the search space is 1.16 in the case of the neural strategy, 3.21
in the case of the priming strategy and 3.69 in the case of the depth-
first strategy. Importantly, the performance gain obtained through the
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Table 1: Performance of the different strategies in the comprehension direction

Search space size Computation time (s) # Timed out
mean sd max mean sd max > 400 s

Depth-first 3.69 7.09 174.26 0.84 4.42 141.28 0
Priming 3.21 5.98 161.09 0.72 3.73 158.48 0
Neural 1.16 0.19 15.84 0.91 0.80 49.48 0

0 25 50 75 100 125 150 175
Size of the Search Space

depth first

priming

neural

(a) Search space size per strategy

0 20 40 60 80 100 120 140 160
Computation Time (s)

depth first

priming

neural

(b) Computation time per strategy
Figure 3: Visualisation of the results of the comprehension experiment

neural strategy also extends to sentences that otherwise require a large
search space. The largest search space required by the neural strategy
is 15.82, while the depth-first and priming strategies require search
space sizes of up to 174.26 and 161.09, respectively. The results ob-
tained through the computation time metric are in line with those
obtained through the search space size metric. Even the most difficult
sentences take less than 50 seconds using the neural strategy, whereas
they take more than 140 seconds using the depth-first and priming
strategies. In sum, we can conclude from the comprehension exper-
iment that the neural strategy outperforms the state of the art both
in terms of size of the search space and in terms of time of computa-
tion. Importantly, the greatest reduction in search space and time of
computation is achieved for the most difficult sentences.

4.3Experimental results: production

The results of the production experiment are presented in Table 2
and visualised through violin plots in Figure 4. Figure 4a shows the
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Table 2: Performance of the different strategies in the production direction

Search space size Computation time (s) # Timed out
mean sd max mean sd max (> 400 s)

Depth-first 29.08 90.40 1149.74 8.84 37.57 400.00 1325
Priming 20.81 67.78 938.25 6.40 29.38 400.00 475
Neural 6.35 16.85 173.90 3.64 12.32 360.25 0

0 200 400 600 800 1000 1200
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depth first
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(a) Search space size per strategy

0 50 100 150 200 250 300 350 400
Computation Time (s)

depth first
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(b) Computation time per strategy
Figure 4: Visualisation of the results of the production experiment

average size of the search space for each strategy. We can immediately
observe that the search problem in production is considerably more
difficult than the search problem in comprehension, and that the per-
formance gain that is obtained through the neural strategy is even
larger. In the case of the neural strategy, the density mass is concen-
trated around a lower mean value (6.35) than in the case of the prim-
ing (20.81) and depth-first (29.08) strategies. The maximum value is
reduced from 1149.74 (depth-first) and 938.25 (priming) to 173.90
(neural). When it comes to computation time (Figure 4b), the re-
sults are analogous. The average processing time is reduced from 8.84
(depth-first) and 6.40 (priming) seconds to 3.64 seconds (neural). The
maximum processing time that was needed amounts to 360.25 seconds
for the neural strategy. For the other two strategies, not all sentences
could be produced within the maximum time frame of 400 seconds.

An analysis of the utterances for which the neural strategy could
not reduce the search space to under 5 reveals an interesting limita-
tion of the methodology that we have introduced. The decoder RNN
takes as input a sequence of constructions that have so far been applied
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during the application process and returns as output a probability dis-
tribution over all constructions in the construction inventory. In other
terms, it makes predictions about which constructions should be ap-
plied at which moment in time. However, it does not make any pre-
dictions about the way in which the constructions should apply, in
particular to which units in the transient structure. As a consequence,
only the ambiguity that arises from multiple applicable constructions
(i.e. multiple transient structures resulting from the application of dif-
ferent constructions) can be solved, not the ambiguity that arises from
multiple ways in which a single construction can apply (i.e. multiple
transient structures resulting from the application of a single construc-
tion). While this ambiguity is far less substantial than the ambiguity
that stems from multiple applicable constructions, it explains why the
search space is not consistently reduced to around 1 even if every pre-
diction by the neural network is optimal.

In sum, we can conclude that the production experiment con-
firms the results obtained in the comprehension experiment. The neu-
ral strategy outperforms the state of the art both in terms of size of the
search space and in terms of time of computation, especially when it
comes to processing the most difficult sentences of the dataset.

5DISCUSSION AND CONCLUSIONS

Constructionist approaches to language, as originally laid out by,
among others, Fillmore (1988), Goldberg (1995), Kay and Fillmore
(1999) and Croft and Cruse (2004), consider form-meaning mappings,
called constructions, to be the basic unit of linguistic analysis. Apart
from the fact that they constitute form-meaning mappings, construc-
tions are subject to very few restrictions. First of all, constructions
do not necessarily correspond to tree-building operations (van Trijp
2016). Second, constructions are non-local in the sense that they can
access all information that is known during processing. Third, con-
structions can involve units of arbitrary size, both on the form and the
meaning side. Finally, constructions are not restricted to continuous
constituents and are not even required to include word order con-
straints. As a consequence, constructional language processing cannot
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straightforwardly be implemented in a faithful way using common
grammar processing techniques, such as chart parsing and generation
(see e.g. Pereira and Warren 1983; Shieber 1988; Kay 1996). Instead,
faithful computational construction grammar implementations imple-
ment constructional language processing as a state-space search prob-
lem (Bleys et al. 2011; Van Eecke and Beuls 2017).

In order to reliably scale to large problems, state-space search
methods rely on heuristics that can estimate the likelihood that a
given state will lead to a solution. While certain optimisations have
in the past been applied to the case of computational construction
grammar, including construction sets (Beuls 2011) and priming net-
works (Wellens and De Beule 2010; Wellens 2011), a lack of general
and powerful heuristics remained a major obstacle to ongoing con-
struction grammar research, in particular to research on representing,
processing and learning large-scale construction grammars.

The neural methodology that we have presented in this paper
introduces a general and effective way to learn heuristics that sub-
stantially optimise the search processes involved in constructional lan-
guage processing. Analogous to recent successes in many subfields of
artificial intelligence, including game playing (Mnih et al. 2015; Silver
et al. 2016) and planning (Takahashi et al. 2019; Wang et al. 2019; Fer-
ber et al. 2020), the methodology combines the predictive strengths of
neural networks with the expressive representations, sound logic oper-
ations and backtracking abilities of traditional search and unification
methods.

An integration of the proposed method in the Fluid Construc-
tion Grammar system (Steels 2011; van Trijp et al. 2022; Beuls and
Van Eecke 2023) and an evaluation of the method using the CLEVR
benchmark dataset (Johnson et al. 2017) and the CLEVR construction
grammar (Nevens et al. 2019) show that the neural heuristics indeed
outperform the state-of-the-art priming strategy and can substantially
reduce the search space and processing time in both the comprehen-
sion and the production direction, especially in the case of utterances
that otherwise gave rise to a large search space.

We posit that this general methodology for learning neural heuris-
tics that optimise the search processes involved in constructional lan-
guage processing constitutes a promising contribution towards the
scaling of constructionist approaches to language. It thereby has both
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theoretical and practical implications. On the theoretical side, scal-
able processing models will allow construction grammarians to go be-
yond the study of constructions in isolation, and model the intricate
interactions that take place between constructions as part of a larger
grammar. On the practical side, the scaling of constructional language
processing paves the way for achieving breakthroughs in ongoing re-
search on learning large-scale construction grammars (Nevens et al.
2022; Doumen et al. 2023), which has in turn major implications on
research in usage-based linguistics (Diessel 2015), models of language
acquisition (Tomasello 2003) and the use of construction grammar in
language technology applications (Willaert et al. 2020, 2021; Beuls
et al. 2021; Verheyen et al. 2022).
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